ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.292
Committed: Mon Jun 29 07:22:56 2009 UTC (14 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.291: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.278 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40     #ifdef __cplusplus
41     extern "C" {
42     #endif
43    
44 root 1.220 /* this big block deduces configuration from config.h */
45 root 1.59 #ifndef EV_STANDALONE
46 root 1.133 # ifdef EV_CONFIG_H
47     # include EV_CONFIG_H
48     # else
49     # include "config.h"
50     # endif
51 root 1.60
52 root 1.274 # if HAVE_CLOCK_SYSCALL
53     # ifndef EV_USE_CLOCK_SYSCALL
54     # define EV_USE_CLOCK_SYSCALL 1
55     # ifndef EV_USE_REALTIME
56     # define EV_USE_REALTIME 0
57     # endif
58     # ifndef EV_USE_MONOTONIC
59     # define EV_USE_MONOTONIC 1
60     # endif
61     # endif
62 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
63     # define EV_USE_CLOCK_SYSCALL 0
64 root 1.274 # endif
65    
66 root 1.60 # if HAVE_CLOCK_GETTIME
67 root 1.97 # ifndef EV_USE_MONOTONIC
68     # define EV_USE_MONOTONIC 1
69     # endif
70     # ifndef EV_USE_REALTIME
71 root 1.279 # define EV_USE_REALTIME 0
72 root 1.97 # endif
73 root 1.126 # else
74     # ifndef EV_USE_MONOTONIC
75     # define EV_USE_MONOTONIC 0
76     # endif
77     # ifndef EV_USE_REALTIME
78     # define EV_USE_REALTIME 0
79     # endif
80 root 1.60 # endif
81    
82 root 1.193 # ifndef EV_USE_NANOSLEEP
83     # if HAVE_NANOSLEEP
84     # define EV_USE_NANOSLEEP 1
85     # else
86     # define EV_USE_NANOSLEEP 0
87     # endif
88     # endif
89    
90 root 1.127 # ifndef EV_USE_SELECT
91     # if HAVE_SELECT && HAVE_SYS_SELECT_H
92     # define EV_USE_SELECT 1
93     # else
94     # define EV_USE_SELECT 0
95     # endif
96 root 1.60 # endif
97    
98 root 1.127 # ifndef EV_USE_POLL
99     # if HAVE_POLL && HAVE_POLL_H
100     # define EV_USE_POLL 1
101     # else
102     # define EV_USE_POLL 0
103     # endif
104 root 1.60 # endif
105 root 1.127
106     # ifndef EV_USE_EPOLL
107     # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108     # define EV_USE_EPOLL 1
109     # else
110     # define EV_USE_EPOLL 0
111     # endif
112 root 1.60 # endif
113 root 1.127
114     # ifndef EV_USE_KQUEUE
115     # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116     # define EV_USE_KQUEUE 1
117     # else
118     # define EV_USE_KQUEUE 0
119     # endif
120 root 1.60 # endif
121 root 1.127
122     # ifndef EV_USE_PORT
123     # if HAVE_PORT_H && HAVE_PORT_CREATE
124     # define EV_USE_PORT 1
125     # else
126     # define EV_USE_PORT 0
127     # endif
128 root 1.118 # endif
129    
130 root 1.152 # ifndef EV_USE_INOTIFY
131     # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132     # define EV_USE_INOTIFY 1
133     # else
134     # define EV_USE_INOTIFY 0
135     # endif
136     # endif
137    
138 root 1.220 # ifndef EV_USE_EVENTFD
139     # if HAVE_EVENTFD
140     # define EV_USE_EVENTFD 1
141     # else
142     # define EV_USE_EVENTFD 0
143     # endif
144     # endif
145 root 1.250
146 root 1.29 #endif
147 root 1.17
148 root 1.1 #include <math.h>
149     #include <stdlib.h>
150 root 1.7 #include <fcntl.h>
151 root 1.16 #include <stddef.h>
152 root 1.1
153     #include <stdio.h>
154    
155 root 1.4 #include <assert.h>
156 root 1.1 #include <errno.h>
157 root 1.22 #include <sys/types.h>
158 root 1.71 #include <time.h>
159    
160 root 1.72 #include <signal.h>
161 root 1.71
162 root 1.152 #ifdef EV_H
163     # include EV_H
164     #else
165     # include "ev.h"
166     #endif
167    
168 root 1.103 #ifndef _WIN32
169 root 1.71 # include <sys/time.h>
170 root 1.45 # include <sys/wait.h>
171 root 1.140 # include <unistd.h>
172 root 1.103 #else
173 root 1.256 # include <io.h>
174 root 1.103 # define WIN32_LEAN_AND_MEAN
175     # include <windows.h>
176     # ifndef EV_SELECT_IS_WINSOCKET
177     # define EV_SELECT_IS_WINSOCKET 1
178     # endif
179 root 1.45 #endif
180 root 1.103
181 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
182 root 1.40
183 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
184     # if __linux && __GLIBC__ >= 2
185     # define EV_USE_CLOCK_SYSCALL 1
186     # else
187     # define EV_USE_CLOCK_SYSCALL 0
188     # endif
189     #endif
190    
191 root 1.29 #ifndef EV_USE_MONOTONIC
192 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193     # define EV_USE_MONOTONIC 1
194     # else
195     # define EV_USE_MONOTONIC 0
196     # endif
197 root 1.37 #endif
198    
199 root 1.118 #ifndef EV_USE_REALTIME
200 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201 root 1.118 #endif
202    
203 root 1.193 #ifndef EV_USE_NANOSLEEP
204 root 1.253 # if _POSIX_C_SOURCE >= 199309L
205     # define EV_USE_NANOSLEEP 1
206     # else
207     # define EV_USE_NANOSLEEP 0
208     # endif
209 root 1.193 #endif
210    
211 root 1.29 #ifndef EV_USE_SELECT
212     # define EV_USE_SELECT 1
213 root 1.10 #endif
214    
215 root 1.59 #ifndef EV_USE_POLL
216 root 1.104 # ifdef _WIN32
217     # define EV_USE_POLL 0
218     # else
219     # define EV_USE_POLL 1
220     # endif
221 root 1.41 #endif
222    
223 root 1.29 #ifndef EV_USE_EPOLL
224 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225     # define EV_USE_EPOLL 1
226     # else
227     # define EV_USE_EPOLL 0
228     # endif
229 root 1.10 #endif
230    
231 root 1.44 #ifndef EV_USE_KQUEUE
232     # define EV_USE_KQUEUE 0
233     #endif
234    
235 root 1.118 #ifndef EV_USE_PORT
236     # define EV_USE_PORT 0
237 root 1.40 #endif
238    
239 root 1.152 #ifndef EV_USE_INOTIFY
240 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241     # define EV_USE_INOTIFY 1
242     # else
243     # define EV_USE_INOTIFY 0
244     # endif
245 root 1.152 #endif
246    
247 root 1.149 #ifndef EV_PID_HASHSIZE
248     # if EV_MINIMAL
249     # define EV_PID_HASHSIZE 1
250     # else
251     # define EV_PID_HASHSIZE 16
252     # endif
253     #endif
254    
255 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
256     # if EV_MINIMAL
257     # define EV_INOTIFY_HASHSIZE 1
258     # else
259     # define EV_INOTIFY_HASHSIZE 16
260     # endif
261     #endif
262    
263 root 1.220 #ifndef EV_USE_EVENTFD
264     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265     # define EV_USE_EVENTFD 1
266     # else
267     # define EV_USE_EVENTFD 0
268     # endif
269     #endif
270    
271 root 1.249 #if 0 /* debugging */
272 root 1.250 # define EV_VERIFY 3
273 root 1.249 # define EV_USE_4HEAP 1
274     # define EV_HEAP_CACHE_AT 1
275     #endif
276    
277 root 1.250 #ifndef EV_VERIFY
278     # define EV_VERIFY !EV_MINIMAL
279     #endif
280    
281 root 1.243 #ifndef EV_USE_4HEAP
282     # define EV_USE_4HEAP !EV_MINIMAL
283     #endif
284    
285     #ifndef EV_HEAP_CACHE_AT
286     # define EV_HEAP_CACHE_AT !EV_MINIMAL
287     #endif
288    
289 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290     /* which makes programs even slower. might work on other unices, too. */
291     #if EV_USE_CLOCK_SYSCALL
292     # include <syscall.h>
293     # ifdef SYS_clock_gettime
294     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295     # undef EV_USE_MONOTONIC
296     # define EV_USE_MONOTONIC 1
297     # else
298     # undef EV_USE_CLOCK_SYSCALL
299     # define EV_USE_CLOCK_SYSCALL 0
300     # endif
301     #endif
302    
303 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
304 root 1.40
305     #ifndef CLOCK_MONOTONIC
306     # undef EV_USE_MONOTONIC
307     # define EV_USE_MONOTONIC 0
308     #endif
309    
310 root 1.31 #ifndef CLOCK_REALTIME
311 root 1.40 # undef EV_USE_REALTIME
312 root 1.31 # define EV_USE_REALTIME 0
313     #endif
314 root 1.40
315 root 1.152 #if !EV_STAT_ENABLE
316 root 1.185 # undef EV_USE_INOTIFY
317 root 1.152 # define EV_USE_INOTIFY 0
318     #endif
319    
320 root 1.193 #if !EV_USE_NANOSLEEP
321     # ifndef _WIN32
322     # include <sys/select.h>
323     # endif
324     #endif
325    
326 root 1.152 #if EV_USE_INOTIFY
327 root 1.264 # include <sys/utsname.h>
328 root 1.273 # include <sys/statfs.h>
329 root 1.152 # include <sys/inotify.h>
330 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331     # ifndef IN_DONT_FOLLOW
332     # undef EV_USE_INOTIFY
333     # define EV_USE_INOTIFY 0
334     # endif
335 root 1.152 #endif
336    
337 root 1.185 #if EV_SELECT_IS_WINSOCKET
338     # include <winsock.h>
339     #endif
340    
341 root 1.220 #if EV_USE_EVENTFD
342     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343 root 1.221 # include <stdint.h>
344 root 1.222 # ifdef __cplusplus
345     extern "C" {
346     # endif
347 root 1.220 int eventfd (unsigned int initval, int flags);
348 root 1.222 # ifdef __cplusplus
349     }
350     # endif
351 root 1.220 #endif
352    
353 root 1.40 /**/
354 root 1.1
355 root 1.250 #if EV_VERIFY >= 3
356 root 1.248 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357     #else
358     # define EV_FREQUENT_CHECK do { } while (0)
359     #endif
360    
361 root 1.176 /*
362     * This is used to avoid floating point rounding problems.
363     * It is added to ev_rt_now when scheduling periodics
364     * to ensure progress, time-wise, even when rounding
365     * errors are against us.
366 root 1.177 * This value is good at least till the year 4000.
367 root 1.176 * Better solutions welcome.
368     */
369     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370    
371 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
372 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
373 root 1.176 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
374 root 1.1
375 root 1.185 #if __GNUC__ >= 4
376 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
377 root 1.169 # define noinline __attribute__ ((noinline))
378 root 1.40 #else
379     # define expect(expr,value) (expr)
380 root 1.140 # define noinline
381 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382 root 1.169 # define inline
383     # endif
384 root 1.40 #endif
385    
386     #define expect_false(expr) expect ((expr) != 0, 0)
387     #define expect_true(expr) expect ((expr) != 0, 1)
388 root 1.169 #define inline_size static inline
389    
390     #if EV_MINIMAL
391     # define inline_speed static noinline
392     #else
393     # define inline_speed static inline
394     #endif
395 root 1.40
396 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397 root 1.164 #define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
398 root 1.42
399 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
400 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
401 root 1.103
402 root 1.136 typedef ev_watcher *W;
403     typedef ev_watcher_list *WL;
404     typedef ev_watcher_time *WT;
405 root 1.10
406 root 1.229 #define ev_active(w) ((W)(w))->active
407 root 1.228 #define ev_at(w) ((WT)(w))->at
408    
409 root 1.279 #if EV_USE_REALTIME
410 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
411     /* giving it a reasonably high chance of working on typical architetcures */
412 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413     #endif
414    
415     #if EV_USE_MONOTONIC
416 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
417 root 1.198 #endif
418 root 1.54
419 root 1.103 #ifdef _WIN32
420 root 1.98 # include "ev_win32.c"
421     #endif
422 root 1.67
423 root 1.53 /*****************************************************************************/
424 root 1.1
425 root 1.70 static void (*syserr_cb)(const char *msg);
426 root 1.69
427 root 1.141 void
428     ev_set_syserr_cb (void (*cb)(const char *msg))
429 root 1.69 {
430     syserr_cb = cb;
431     }
432    
433 root 1.141 static void noinline
434 root 1.269 ev_syserr (const char *msg)
435 root 1.69 {
436 root 1.70 if (!msg)
437     msg = "(libev) system error";
438    
439 root 1.69 if (syserr_cb)
440 root 1.70 syserr_cb (msg);
441 root 1.69 else
442     {
443 root 1.70 perror (msg);
444 root 1.69 abort ();
445     }
446     }
447    
448 root 1.224 static void *
449     ev_realloc_emul (void *ptr, long size)
450     {
451     /* some systems, notably openbsd and darwin, fail to properly
452     * implement realloc (x, 0) (as required by both ansi c-98 and
453     * the single unix specification, so work around them here.
454     */
455    
456     if (size)
457     return realloc (ptr, size);
458    
459     free (ptr);
460     return 0;
461     }
462    
463     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
464 root 1.69
465 root 1.141 void
466 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
467 root 1.69 {
468     alloc = cb;
469     }
470    
471 root 1.150 inline_speed void *
472 root 1.155 ev_realloc (void *ptr, long size)
473 root 1.69 {
474 root 1.224 ptr = alloc (ptr, size);
475 root 1.69
476     if (!ptr && size)
477     {
478 root 1.155 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
479 root 1.69 abort ();
480     }
481    
482     return ptr;
483     }
484    
485     #define ev_malloc(size) ev_realloc (0, (size))
486     #define ev_free(ptr) ev_realloc ((ptr), 0)
487    
488     /*****************************************************************************/
489    
490 root 1.288 /* file descriptor info structure */
491 root 1.53 typedef struct
492     {
493 root 1.68 WL head;
494 root 1.288 unsigned char events; /* the events watched for */
495     unsigned char reify; /* flag set when this ANFD needs reification */
496     unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
497 root 1.269 unsigned char unused;
498     #if EV_USE_EPOLL
499 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
500 root 1.269 #endif
501 root 1.103 #if EV_SELECT_IS_WINSOCKET
502     SOCKET handle;
503     #endif
504 root 1.53 } ANFD;
505 root 1.1
506 root 1.288 /* stores the pending event set for a given watcher */
507 root 1.53 typedef struct
508     {
509     W w;
510 root 1.288 int events; /* the pending event set for the given watcher */
511 root 1.53 } ANPENDING;
512 root 1.51
513 root 1.155 #if EV_USE_INOTIFY
514 root 1.241 /* hash table entry per inotify-id */
515 root 1.152 typedef struct
516     {
517     WL head;
518 root 1.155 } ANFS;
519 root 1.152 #endif
520    
521 root 1.241 /* Heap Entry */
522     #if EV_HEAP_CACHE_AT
523 root 1.288 /* a heap element */
524 root 1.241 typedef struct {
525 root 1.243 ev_tstamp at;
526 root 1.241 WT w;
527     } ANHE;
528    
529 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
530     #define ANHE_at(he) (he).at /* access cached at, read-only */
531     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532 root 1.241 #else
533 root 1.288 /* a heap element */
534 root 1.241 typedef WT ANHE;
535    
536 root 1.248 #define ANHE_w(he) (he)
537     #define ANHE_at(he) (he)->at
538     #define ANHE_at_cache(he)
539 root 1.241 #endif
540    
541 root 1.55 #if EV_MULTIPLICITY
542 root 1.54
543 root 1.80 struct ev_loop
544     {
545 root 1.86 ev_tstamp ev_rt_now;
546 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
547 root 1.80 #define VAR(name,decl) decl;
548     #include "ev_vars.h"
549     #undef VAR
550     };
551     #include "ev_wrap.h"
552    
553 root 1.116 static struct ev_loop default_loop_struct;
554     struct ev_loop *ev_default_loop_ptr;
555 root 1.54
556 root 1.53 #else
557 root 1.54
558 root 1.86 ev_tstamp ev_rt_now;
559 root 1.80 #define VAR(name,decl) static decl;
560     #include "ev_vars.h"
561     #undef VAR
562    
563 root 1.116 static int ev_default_loop_ptr;
564 root 1.54
565 root 1.51 #endif
566 root 1.1
567 root 1.8 /*****************************************************************************/
568    
569 root 1.292 #ifndef EV_HAVE_EV_TIME
570 root 1.141 ev_tstamp
571 root 1.1 ev_time (void)
572     {
573 root 1.29 #if EV_USE_REALTIME
574 root 1.279 if (expect_true (have_realtime))
575     {
576     struct timespec ts;
577     clock_gettime (CLOCK_REALTIME, &ts);
578     return ts.tv_sec + ts.tv_nsec * 1e-9;
579     }
580     #endif
581    
582 root 1.1 struct timeval tv;
583     gettimeofday (&tv, 0);
584     return tv.tv_sec + tv.tv_usec * 1e-6;
585     }
586 root 1.292 #endif
587 root 1.1
588 root 1.284 inline_size ev_tstamp
589 root 1.1 get_clock (void)
590     {
591 root 1.29 #if EV_USE_MONOTONIC
592 root 1.40 if (expect_true (have_monotonic))
593 root 1.1 {
594     struct timespec ts;
595     clock_gettime (CLOCK_MONOTONIC, &ts);
596     return ts.tv_sec + ts.tv_nsec * 1e-9;
597     }
598     #endif
599    
600     return ev_time ();
601     }
602    
603 root 1.85 #if EV_MULTIPLICITY
604 root 1.51 ev_tstamp
605     ev_now (EV_P)
606     {
607 root 1.85 return ev_rt_now;
608 root 1.51 }
609 root 1.85 #endif
610 root 1.51
611 root 1.193 void
612     ev_sleep (ev_tstamp delay)
613     {
614     if (delay > 0.)
615     {
616     #if EV_USE_NANOSLEEP
617     struct timespec ts;
618    
619     ts.tv_sec = (time_t)delay;
620     ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
621    
622     nanosleep (&ts, 0);
623     #elif defined(_WIN32)
624 root 1.217 Sleep ((unsigned long)(delay * 1e3));
625 root 1.193 #else
626     struct timeval tv;
627    
628     tv.tv_sec = (time_t)delay;
629     tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
630    
631 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632     /* somehting nto guaranteed by newer posix versions, but guaranteed */
633     /* by older ones */
634 root 1.193 select (0, 0, 0, 0, &tv);
635     #endif
636     }
637     }
638    
639     /*****************************************************************************/
640    
641 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642 root 1.232
643 root 1.288 /* find a suitable new size for the given array, */
644     /* hopefully by rounding to a ncie-to-malloc size */
645 root 1.284 inline_size int
646 root 1.163 array_nextsize (int elem, int cur, int cnt)
647     {
648     int ncur = cur + 1;
649    
650     do
651     ncur <<= 1;
652     while (cnt > ncur);
653    
654 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
655     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
656 root 1.163 {
657     ncur *= elem;
658 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
659 root 1.163 ncur = ncur - sizeof (void *) * 4;
660     ncur /= elem;
661     }
662    
663     return ncur;
664     }
665    
666 root 1.171 static noinline void *
667 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
668     {
669     *cur = array_nextsize (elem, *cur, cnt);
670     return ev_realloc (base, elem * *cur);
671     }
672 root 1.29
673 root 1.265 #define array_init_zero(base,count) \
674     memset ((void *)(base), 0, sizeof (*(base)) * (count))
675    
676 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
677 root 1.163 if (expect_false ((cnt) > (cur))) \
678 root 1.69 { \
679 root 1.163 int ocur_ = (cur); \
680     (base) = (type *)array_realloc \
681     (sizeof (type), (base), &(cur), (cnt)); \
682     init ((base) + (ocur_), (cur) - ocur_); \
683 root 1.1 }
684    
685 root 1.163 #if 0
686 root 1.74 #define array_slim(type,stem) \
687 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
688     { \
689     stem ## max = array_roundsize (stem ## cnt >> 1); \
690 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
691 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
692     }
693 root 1.163 #endif
694 root 1.67
695 root 1.65 #define array_free(stem, idx) \
696 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
697 root 1.65
698 root 1.8 /*****************************************************************************/
699    
700 root 1.288 /* dummy callback for pending events */
701     static void noinline
702     pendingcb (EV_P_ ev_prepare *w, int revents)
703     {
704     }
705    
706 root 1.140 void noinline
707 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
708 root 1.1 {
709 root 1.78 W w_ = (W)w;
710 root 1.171 int pri = ABSPRI (w_);
711 root 1.78
712 root 1.123 if (expect_false (w_->pending))
713 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
714     else
715 root 1.32 {
716 root 1.171 w_->pending = ++pendingcnt [pri];
717     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
718     pendings [pri][w_->pending - 1].w = w_;
719     pendings [pri][w_->pending - 1].events = revents;
720 root 1.32 }
721 root 1.1 }
722    
723 root 1.284 inline_speed void
724     feed_reverse (EV_P_ W w)
725     {
726     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727     rfeeds [rfeedcnt++] = w;
728     }
729    
730     inline_size void
731     feed_reverse_done (EV_P_ int revents)
732     {
733     do
734     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735     while (rfeedcnt);
736     }
737    
738     inline_speed void
739 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
740 root 1.27 {
741     int i;
742    
743     for (i = 0; i < eventcnt; ++i)
744 root 1.78 ev_feed_event (EV_A_ events [i], type);
745 root 1.27 }
746    
747 root 1.141 /*****************************************************************************/
748    
749 root 1.284 inline_speed void
750 root 1.79 fd_event (EV_P_ int fd, int revents)
751 root 1.1 {
752     ANFD *anfd = anfds + fd;
753 root 1.136 ev_io *w;
754 root 1.1
755 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
756 root 1.1 {
757 root 1.79 int ev = w->events & revents;
758 root 1.1
759     if (ev)
760 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
761 root 1.1 }
762     }
763    
764 root 1.79 void
765     ev_feed_fd_event (EV_P_ int fd, int revents)
766     {
767 root 1.168 if (fd >= 0 && fd < anfdmax)
768     fd_event (EV_A_ fd, revents);
769 root 1.79 }
770    
771 root 1.288 /* make sure the external fd watch events are in-sync */
772     /* with the kernel/libev internal state */
773 root 1.284 inline_size void
774 root 1.51 fd_reify (EV_P)
775 root 1.9 {
776     int i;
777    
778 root 1.27 for (i = 0; i < fdchangecnt; ++i)
779     {
780     int fd = fdchanges [i];
781     ANFD *anfd = anfds + fd;
782 root 1.136 ev_io *w;
783 root 1.27
784 root 1.184 unsigned char events = 0;
785 root 1.27
786 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
787 root 1.184 events |= (unsigned char)w->events;
788 root 1.27
789 root 1.103 #if EV_SELECT_IS_WINSOCKET
790     if (events)
791     {
792 root 1.254 unsigned long arg;
793 root 1.200 #ifdef EV_FD_TO_WIN32_HANDLE
794     anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
795     #else
796     anfd->handle = _get_osfhandle (fd);
797     #endif
798 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
799 root 1.103 }
800     #endif
801    
802 root 1.184 {
803     unsigned char o_events = anfd->events;
804     unsigned char o_reify = anfd->reify;
805    
806     anfd->reify = 0;
807     anfd->events = events;
808 root 1.27
809 root 1.281 if (o_events != events || o_reify & EV__IOFDSET)
810 root 1.184 backend_modify (EV_A_ fd, o_events, events);
811     }
812 root 1.27 }
813    
814     fdchangecnt = 0;
815     }
816    
817 root 1.288 /* something about the given fd changed */
818 root 1.284 inline_size void
819 root 1.183 fd_change (EV_P_ int fd, int flags)
820 root 1.27 {
821 root 1.183 unsigned char reify = anfds [fd].reify;
822 root 1.184 anfds [fd].reify |= flags;
823 root 1.27
824 root 1.183 if (expect_true (!reify))
825     {
826     ++fdchangecnt;
827     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
828     fdchanges [fdchangecnt - 1] = fd;
829     }
830 root 1.9 }
831    
832 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833 root 1.284 inline_speed void
834 root 1.51 fd_kill (EV_P_ int fd)
835 root 1.41 {
836 root 1.136 ev_io *w;
837 root 1.41
838 root 1.136 while ((w = (ev_io *)anfds [fd].head))
839 root 1.41 {
840 root 1.51 ev_io_stop (EV_A_ w);
841 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
842 root 1.41 }
843     }
844    
845 root 1.288 /* check whether the given fd is atcually valid, for error recovery */
846 root 1.284 inline_size int
847 root 1.71 fd_valid (int fd)
848     {
849 root 1.103 #ifdef _WIN32
850     return _get_osfhandle (fd) != -1;
851 root 1.71 #else
852     return fcntl (fd, F_GETFD) != -1;
853     #endif
854     }
855    
856 root 1.19 /* called on EBADF to verify fds */
857 root 1.140 static void noinline
858 root 1.51 fd_ebadf (EV_P)
859 root 1.19 {
860     int fd;
861    
862     for (fd = 0; fd < anfdmax; ++fd)
863 root 1.27 if (anfds [fd].events)
864 root 1.254 if (!fd_valid (fd) && errno == EBADF)
865 root 1.51 fd_kill (EV_A_ fd);
866 root 1.41 }
867    
868     /* called on ENOMEM in select/poll to kill some fds and retry */
869 root 1.140 static void noinline
870 root 1.51 fd_enomem (EV_P)
871 root 1.41 {
872 root 1.62 int fd;
873 root 1.41
874 root 1.62 for (fd = anfdmax; fd--; )
875 root 1.41 if (anfds [fd].events)
876     {
877 root 1.51 fd_kill (EV_A_ fd);
878 root 1.41 return;
879     }
880 root 1.19 }
881    
882 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
883 root 1.140 static void noinline
884 root 1.56 fd_rearm_all (EV_P)
885     {
886     int fd;
887    
888     for (fd = 0; fd < anfdmax; ++fd)
889     if (anfds [fd].events)
890     {
891     anfds [fd].events = 0;
892 root 1.268 anfds [fd].emask = 0;
893 root 1.281 fd_change (EV_A_ fd, EV__IOFDSET | 1);
894 root 1.56 }
895     }
896    
897 root 1.8 /*****************************************************************************/
898    
899 root 1.235 /*
900 root 1.241 * the heap functions want a real array index. array index 0 uis guaranteed to not
901     * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
902     * the branching factor of the d-tree.
903     */
904    
905     /*
906 root 1.235 * at the moment we allow libev the luxury of two heaps,
907     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
908     * which is more cache-efficient.
909     * the difference is about 5% with 50000+ watchers.
910     */
911 root 1.241 #if EV_USE_4HEAP
912 root 1.235
913 root 1.237 #define DHEAP 4
914     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
915 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
917 root 1.235
918     /* away from the root */
919 root 1.284 inline_speed void
920 root 1.241 downheap (ANHE *heap, int N, int k)
921 root 1.235 {
922 root 1.241 ANHE he = heap [k];
923     ANHE *E = heap + N + HEAP0;
924 root 1.235
925     for (;;)
926     {
927     ev_tstamp minat;
928 root 1.241 ANHE *minpos;
929 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
930 root 1.235
931 root 1.248 /* find minimum child */
932 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
933 root 1.235 {
934 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
935     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 root 1.235 }
939 root 1.240 else if (pos < E)
940 root 1.235 {
941 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 root 1.235 }
946 root 1.240 else
947     break;
948 root 1.235
949 root 1.241 if (ANHE_at (he) <= minat)
950 root 1.235 break;
951    
952 root 1.247 heap [k] = *minpos;
953 root 1.241 ev_active (ANHE_w (*minpos)) = k;
954 root 1.235
955     k = minpos - heap;
956     }
957    
958 root 1.247 heap [k] = he;
959 root 1.241 ev_active (ANHE_w (he)) = k;
960 root 1.235 }
961    
962 root 1.248 #else /* 4HEAP */
963 root 1.235
964     #define HEAP0 1
965 root 1.247 #define HPARENT(k) ((k) >> 1)
966 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
967 root 1.235
968 root 1.248 /* away from the root */
969 root 1.284 inline_speed void
970 root 1.248 downheap (ANHE *heap, int N, int k)
971 root 1.1 {
972 root 1.241 ANHE he = heap [k];
973 root 1.1
974 root 1.228 for (;;)
975 root 1.1 {
976 root 1.248 int c = k << 1;
977 root 1.179
978 root 1.248 if (c > N + HEAP0 - 1)
979 root 1.179 break;
980    
981 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982     ? 1 : 0;
983    
984     if (ANHE_at (he) <= ANHE_at (heap [c]))
985     break;
986    
987     heap [k] = heap [c];
988 root 1.241 ev_active (ANHE_w (heap [k])) = k;
989 root 1.248
990     k = c;
991 root 1.1 }
992    
993 root 1.243 heap [k] = he;
994 root 1.248 ev_active (ANHE_w (he)) = k;
995 root 1.1 }
996 root 1.248 #endif
997 root 1.1
998 root 1.248 /* towards the root */
999 root 1.284 inline_speed void
1000 root 1.248 upheap (ANHE *heap, int k)
1001 root 1.1 {
1002 root 1.241 ANHE he = heap [k];
1003 root 1.1
1004 root 1.179 for (;;)
1005 root 1.1 {
1006 root 1.248 int p = HPARENT (k);
1007 root 1.179
1008 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 root 1.179 break;
1010 root 1.1
1011 root 1.248 heap [k] = heap [p];
1012 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1013 root 1.248 k = p;
1014 root 1.1 }
1015    
1016 root 1.241 heap [k] = he;
1017     ev_active (ANHE_w (he)) = k;
1018 root 1.1 }
1019    
1020 root 1.288 /* move an element suitably so it is in a correct place */
1021 root 1.284 inline_size void
1022 root 1.241 adjustheap (ANHE *heap, int N, int k)
1023 root 1.84 {
1024 root 1.247 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1025     upheap (heap, k);
1026     else
1027     downheap (heap, N, k);
1028 root 1.84 }
1029    
1030 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1031 root 1.284 inline_size void
1032 root 1.248 reheap (ANHE *heap, int N)
1033     {
1034     int i;
1035 root 1.251
1036 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038     for (i = 0; i < N; ++i)
1039     upheap (heap, i + HEAP0);
1040     }
1041    
1042 root 1.8 /*****************************************************************************/
1043    
1044 root 1.288 /* associate signal watchers to a signal signal */
1045 root 1.7 typedef struct
1046     {
1047 root 1.68 WL head;
1048 root 1.207 EV_ATOMIC_T gotsig;
1049 root 1.7 } ANSIG;
1050    
1051     static ANSIG *signals;
1052 root 1.4 static int signalmax;
1053 root 1.1
1054 root 1.207 static EV_ATOMIC_T gotsig;
1055 root 1.7
1056 root 1.207 /*****************************************************************************/
1057    
1058 root 1.288 /* used to prepare libev internal fd's */
1059     /* this is not fork-safe */
1060 root 1.284 inline_speed void
1061 root 1.207 fd_intern (int fd)
1062     {
1063     #ifdef _WIN32
1064 root 1.254 unsigned long arg = 1;
1065 root 1.207 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1066     #else
1067     fcntl (fd, F_SETFD, FD_CLOEXEC);
1068     fcntl (fd, F_SETFL, O_NONBLOCK);
1069     #endif
1070     }
1071    
1072     static void noinline
1073     evpipe_init (EV_P)
1074     {
1075 root 1.288 if (!ev_is_active (&pipe_w))
1076 root 1.207 {
1077 root 1.220 #if EV_USE_EVENTFD
1078     if ((evfd = eventfd (0, 0)) >= 0)
1079     {
1080     evpipe [0] = -1;
1081     fd_intern (evfd);
1082 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1083 root 1.220 }
1084     else
1085     #endif
1086     {
1087     while (pipe (evpipe))
1088 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1089 root 1.207
1090 root 1.220 fd_intern (evpipe [0]);
1091     fd_intern (evpipe [1]);
1092 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 root 1.220 }
1094 root 1.207
1095 root 1.288 ev_io_start (EV_A_ &pipe_w);
1096 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1097 root 1.207 }
1098     }
1099    
1100 root 1.284 inline_size void
1101 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102 root 1.207 {
1103 root 1.214 if (!*flag)
1104 root 1.207 {
1105 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1106 root 1.214
1107     *flag = 1;
1108 root 1.220
1109     #if EV_USE_EVENTFD
1110     if (evfd >= 0)
1111     {
1112     uint64_t counter = 1;
1113     write (evfd, &counter, sizeof (uint64_t));
1114     }
1115     else
1116     #endif
1117     write (evpipe [1], &old_errno, 1);
1118 root 1.214
1119 root 1.207 errno = old_errno;
1120     }
1121     }
1122    
1123 root 1.288 /* called whenever the libev signal pipe */
1124     /* got some events (signal, async) */
1125 root 1.207 static void
1126     pipecb (EV_P_ ev_io *iow, int revents)
1127     {
1128 root 1.220 #if EV_USE_EVENTFD
1129     if (evfd >= 0)
1130     {
1131 root 1.232 uint64_t counter;
1132 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1133     }
1134     else
1135     #endif
1136     {
1137     char dummy;
1138     read (evpipe [0], &dummy, 1);
1139     }
1140 root 1.207
1141 root 1.211 if (gotsig && ev_is_default_loop (EV_A))
1142 root 1.207 {
1143     int signum;
1144     gotsig = 0;
1145    
1146     for (signum = signalmax; signum--; )
1147     if (signals [signum].gotsig)
1148     ev_feed_signal_event (EV_A_ signum + 1);
1149     }
1150    
1151 root 1.209 #if EV_ASYNC_ENABLE
1152 root 1.207 if (gotasync)
1153     {
1154     int i;
1155     gotasync = 0;
1156    
1157     for (i = asynccnt; i--; )
1158     if (asyncs [i]->sent)
1159     {
1160     asyncs [i]->sent = 0;
1161     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1162     }
1163     }
1164 root 1.209 #endif
1165 root 1.207 }
1166    
1167     /*****************************************************************************/
1168    
1169 root 1.7 static void
1170 root 1.218 ev_sighandler (int signum)
1171 root 1.7 {
1172 root 1.207 #if EV_MULTIPLICITY
1173     struct ev_loop *loop = &default_loop_struct;
1174     #endif
1175    
1176 root 1.103 #if _WIN32
1177 root 1.218 signal (signum, ev_sighandler);
1178 root 1.67 #endif
1179    
1180 root 1.7 signals [signum - 1].gotsig = 1;
1181 root 1.214 evpipe_write (EV_A_ &gotsig);
1182 root 1.7 }
1183    
1184 root 1.140 void noinline
1185 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1186     {
1187 root 1.80 WL w;
1188    
1189 root 1.79 #if EV_MULTIPLICITY
1190 root 1.278 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1191 root 1.79 #endif
1192    
1193     --signum;
1194    
1195     if (signum < 0 || signum >= signalmax)
1196     return;
1197    
1198     signals [signum].gotsig = 0;
1199    
1200     for (w = signals [signum].head; w; w = w->next)
1201     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1202     }
1203    
1204 root 1.8 /*****************************************************************************/
1205    
1206 root 1.182 static WL childs [EV_PID_HASHSIZE];
1207 root 1.71
1208 root 1.103 #ifndef _WIN32
1209 root 1.45
1210 root 1.136 static ev_signal childev;
1211 root 1.59
1212 root 1.206 #ifndef WIFCONTINUED
1213     # define WIFCONTINUED(status) 0
1214     #endif
1215    
1216 root 1.288 /* handle a single child status event */
1217 root 1.284 inline_speed void
1218 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1219 root 1.47 {
1220 root 1.136 ev_child *w;
1221 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1222 root 1.47
1223 root 1.149 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1224 root 1.206 {
1225     if ((w->pid == pid || !w->pid)
1226     && (!traced || (w->flags & 1)))
1227     {
1228 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1229 root 1.206 w->rpid = pid;
1230     w->rstatus = status;
1231     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1232     }
1233     }
1234 root 1.47 }
1235    
1236 root 1.142 #ifndef WCONTINUED
1237     # define WCONTINUED 0
1238     #endif
1239    
1240 root 1.288 /* called on sigchld etc., calls waitpid */
1241 root 1.47 static void
1242 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1243 root 1.22 {
1244     int pid, status;
1245    
1246 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1247     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1248     if (!WCONTINUED
1249     || errno != EINVAL
1250     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1251     return;
1252    
1253 root 1.216 /* make sure we are called again until all children have been reaped */
1254 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1255     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1256 root 1.47
1257 root 1.216 child_reap (EV_A_ pid, pid, status);
1258 root 1.149 if (EV_PID_HASHSIZE > 1)
1259 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1260 root 1.22 }
1261    
1262 root 1.45 #endif
1263    
1264 root 1.22 /*****************************************************************************/
1265    
1266 root 1.118 #if EV_USE_PORT
1267     # include "ev_port.c"
1268     #endif
1269 root 1.44 #if EV_USE_KQUEUE
1270     # include "ev_kqueue.c"
1271     #endif
1272 root 1.29 #if EV_USE_EPOLL
1273 root 1.1 # include "ev_epoll.c"
1274     #endif
1275 root 1.59 #if EV_USE_POLL
1276 root 1.41 # include "ev_poll.c"
1277     #endif
1278 root 1.29 #if EV_USE_SELECT
1279 root 1.1 # include "ev_select.c"
1280     #endif
1281    
1282 root 1.24 int
1283     ev_version_major (void)
1284     {
1285     return EV_VERSION_MAJOR;
1286     }
1287    
1288     int
1289     ev_version_minor (void)
1290     {
1291     return EV_VERSION_MINOR;
1292     }
1293    
1294 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1295 root 1.140 int inline_size
1296 root 1.51 enable_secure (void)
1297 root 1.41 {
1298 root 1.103 #ifdef _WIN32
1299 root 1.49 return 0;
1300     #else
1301 root 1.41 return getuid () != geteuid ()
1302     || getgid () != getegid ();
1303 root 1.49 #endif
1304 root 1.41 }
1305    
1306 root 1.111 unsigned int
1307 root 1.129 ev_supported_backends (void)
1308     {
1309 root 1.130 unsigned int flags = 0;
1310 root 1.129
1311     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1312     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1313     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1314     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1315     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1316    
1317     return flags;
1318     }
1319    
1320     unsigned int
1321 root 1.130 ev_recommended_backends (void)
1322 root 1.1 {
1323 root 1.131 unsigned int flags = ev_supported_backends ();
1324 root 1.129
1325     #ifndef __NetBSD__
1326     /* kqueue is borked on everything but netbsd apparently */
1327     /* it usually doesn't work correctly on anything but sockets and pipes */
1328     flags &= ~EVBACKEND_KQUEUE;
1329     #endif
1330     #ifdef __APPLE__
1331 root 1.278 /* only select works correctly on that "unix-certified" platform */
1332     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1334 root 1.129 #endif
1335    
1336     return flags;
1337 root 1.51 }
1338    
1339 root 1.130 unsigned int
1340 root 1.134 ev_embeddable_backends (void)
1341     {
1342 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1343    
1344 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1345 root 1.196 /* please fix it and tell me how to detect the fix */
1346     flags &= ~EVBACKEND_EPOLL;
1347    
1348     return flags;
1349 root 1.134 }
1350    
1351     unsigned int
1352 root 1.130 ev_backend (EV_P)
1353     {
1354     return backend;
1355     }
1356    
1357 root 1.162 unsigned int
1358     ev_loop_count (EV_P)
1359     {
1360     return loop_count;
1361     }
1362    
1363 root 1.193 void
1364     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1365     {
1366     io_blocktime = interval;
1367     }
1368    
1369     void
1370     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1371     {
1372     timeout_blocktime = interval;
1373     }
1374    
1375 root 1.288 /* initialise a loop structure, must be zero-initialised */
1376 root 1.151 static void noinline
1377 root 1.108 loop_init (EV_P_ unsigned int flags)
1378 root 1.51 {
1379 root 1.130 if (!backend)
1380 root 1.23 {
1381 root 1.279 #if EV_USE_REALTIME
1382     if (!have_realtime)
1383     {
1384     struct timespec ts;
1385    
1386     if (!clock_gettime (CLOCK_REALTIME, &ts))
1387     have_realtime = 1;
1388     }
1389     #endif
1390    
1391 root 1.29 #if EV_USE_MONOTONIC
1392 root 1.279 if (!have_monotonic)
1393     {
1394     struct timespec ts;
1395    
1396     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1397     have_monotonic = 1;
1398     }
1399 root 1.1 #endif
1400    
1401 root 1.209 ev_rt_now = ev_time ();
1402     mn_now = get_clock ();
1403     now_floor = mn_now;
1404     rtmn_diff = ev_rt_now - mn_now;
1405 root 1.1
1406 root 1.193 io_blocktime = 0.;
1407     timeout_blocktime = 0.;
1408 root 1.209 backend = 0;
1409     backend_fd = -1;
1410     gotasync = 0;
1411     #if EV_USE_INOTIFY
1412     fs_fd = -2;
1413     #endif
1414 root 1.193
1415 root 1.158 /* pid check not overridable via env */
1416     #ifndef _WIN32
1417     if (flags & EVFLAG_FORKCHECK)
1418     curpid = getpid ();
1419     #endif
1420    
1421 root 1.128 if (!(flags & EVFLAG_NOENV)
1422     && !enable_secure ()
1423     && getenv ("LIBEV_FLAGS"))
1424 root 1.108 flags = atoi (getenv ("LIBEV_FLAGS"));
1425    
1426 root 1.225 if (!(flags & 0x0000ffffU))
1427 root 1.129 flags |= ev_recommended_backends ();
1428 root 1.41
1429 root 1.118 #if EV_USE_PORT
1430 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1431 root 1.118 #endif
1432 root 1.44 #if EV_USE_KQUEUE
1433 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1434 root 1.44 #endif
1435 root 1.29 #if EV_USE_EPOLL
1436 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1437 root 1.41 #endif
1438 root 1.59 #if EV_USE_POLL
1439 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1440 root 1.1 #endif
1441 root 1.29 #if EV_USE_SELECT
1442 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1443 root 1.1 #endif
1444 root 1.70
1445 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1446    
1447     ev_init (&pipe_w, pipecb);
1448     ev_set_priority (&pipe_w, EV_MAXPRI);
1449 root 1.56 }
1450     }
1451    
1452 root 1.288 /* free up a loop structure */
1453 root 1.151 static void noinline
1454 root 1.56 loop_destroy (EV_P)
1455     {
1456 root 1.65 int i;
1457    
1458 root 1.288 if (ev_is_active (&pipe_w))
1459 root 1.207 {
1460     ev_ref (EV_A); /* signal watcher */
1461 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1462 root 1.207
1463 root 1.220 #if EV_USE_EVENTFD
1464     if (evfd >= 0)
1465     close (evfd);
1466     #endif
1467    
1468     if (evpipe [0] >= 0)
1469     {
1470     close (evpipe [0]);
1471     close (evpipe [1]);
1472     }
1473 root 1.207 }
1474    
1475 root 1.152 #if EV_USE_INOTIFY
1476     if (fs_fd >= 0)
1477     close (fs_fd);
1478     #endif
1479    
1480     if (backend_fd >= 0)
1481     close (backend_fd);
1482    
1483 root 1.118 #if EV_USE_PORT
1484 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1485 root 1.118 #endif
1486 root 1.56 #if EV_USE_KQUEUE
1487 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1488 root 1.56 #endif
1489     #if EV_USE_EPOLL
1490 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1491 root 1.56 #endif
1492 root 1.59 #if EV_USE_POLL
1493 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1494 root 1.56 #endif
1495     #if EV_USE_SELECT
1496 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1497 root 1.56 #endif
1498 root 1.1
1499 root 1.65 for (i = NUMPRI; i--; )
1500 root 1.164 {
1501     array_free (pending, [i]);
1502     #if EV_IDLE_ENABLE
1503     array_free (idle, [i]);
1504     #endif
1505     }
1506 root 1.65
1507 root 1.186 ev_free (anfds); anfdmax = 0;
1508    
1509 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1510 root 1.284 array_free (rfeed, EMPTY);
1511 root 1.164 array_free (fdchange, EMPTY);
1512     array_free (timer, EMPTY);
1513 root 1.140 #if EV_PERIODIC_ENABLE
1514 root 1.164 array_free (periodic, EMPTY);
1515 root 1.93 #endif
1516 root 1.187 #if EV_FORK_ENABLE
1517     array_free (fork, EMPTY);
1518     #endif
1519 root 1.164 array_free (prepare, EMPTY);
1520     array_free (check, EMPTY);
1521 root 1.209 #if EV_ASYNC_ENABLE
1522     array_free (async, EMPTY);
1523     #endif
1524 root 1.65
1525 root 1.130 backend = 0;
1526 root 1.56 }
1527 root 1.22
1528 root 1.226 #if EV_USE_INOTIFY
1529 root 1.284 inline_size void infy_fork (EV_P);
1530 root 1.226 #endif
1531 root 1.154
1532 root 1.284 inline_size void
1533 root 1.56 loop_fork (EV_P)
1534     {
1535 root 1.118 #if EV_USE_PORT
1536 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1537 root 1.56 #endif
1538     #if EV_USE_KQUEUE
1539 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1540 root 1.45 #endif
1541 root 1.118 #if EV_USE_EPOLL
1542 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1543 root 1.118 #endif
1544 root 1.154 #if EV_USE_INOTIFY
1545     infy_fork (EV_A);
1546     #endif
1547 root 1.70
1548 root 1.288 if (ev_is_active (&pipe_w))
1549 root 1.70 {
1550 root 1.207 /* this "locks" the handlers against writing to the pipe */
1551 root 1.212 /* while we modify the fd vars */
1552     gotsig = 1;
1553     #if EV_ASYNC_ENABLE
1554     gotasync = 1;
1555     #endif
1556 root 1.70
1557     ev_ref (EV_A);
1558 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1559 root 1.220
1560     #if EV_USE_EVENTFD
1561     if (evfd >= 0)
1562     close (evfd);
1563     #endif
1564    
1565     if (evpipe [0] >= 0)
1566     {
1567     close (evpipe [0]);
1568     close (evpipe [1]);
1569     }
1570 root 1.207
1571     evpipe_init (EV_A);
1572 root 1.208 /* now iterate over everything, in case we missed something */
1573 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1574 root 1.70 }
1575    
1576     postfork = 0;
1577 root 1.1 }
1578    
1579 root 1.55 #if EV_MULTIPLICITY
1580 root 1.250
1581 root 1.54 struct ev_loop *
1582 root 1.108 ev_loop_new (unsigned int flags)
1583 root 1.54 {
1584 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1585    
1586     memset (loop, 0, sizeof (struct ev_loop));
1587 root 1.54
1588 root 1.108 loop_init (EV_A_ flags);
1589 root 1.56
1590 root 1.130 if (ev_backend (EV_A))
1591 root 1.55 return loop;
1592 root 1.54
1593 root 1.55 return 0;
1594 root 1.54 }
1595    
1596     void
1597 root 1.56 ev_loop_destroy (EV_P)
1598 root 1.54 {
1599 root 1.56 loop_destroy (EV_A);
1600 root 1.69 ev_free (loop);
1601 root 1.54 }
1602    
1603 root 1.56 void
1604     ev_loop_fork (EV_P)
1605     {
1606 root 1.205 postfork = 1; /* must be in line with ev_default_fork */
1607 root 1.56 }
1608 root 1.248
1609     #if EV_VERIFY
1610 root 1.258 static void noinline
1611 root 1.251 verify_watcher (EV_P_ W w)
1612     {
1613 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1614 root 1.251
1615     if (w->pending)
1616 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1617 root 1.251 }
1618    
1619     static void noinline
1620     verify_heap (EV_P_ ANHE *heap, int N)
1621     {
1622     int i;
1623    
1624     for (i = HEAP0; i < N + HEAP0; ++i)
1625     {
1626 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1627     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1628     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1629 root 1.251
1630     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1631     }
1632     }
1633    
1634     static void noinline
1635     array_verify (EV_P_ W *ws, int cnt)
1636 root 1.248 {
1637     while (cnt--)
1638 root 1.251 {
1639 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1640 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1641     }
1642 root 1.248 }
1643 root 1.250 #endif
1644 root 1.248
1645 root 1.250 void
1646 root 1.248 ev_loop_verify (EV_P)
1647     {
1648 root 1.250 #if EV_VERIFY
1649 root 1.248 int i;
1650 root 1.251 WL w;
1651    
1652     assert (activecnt >= -1);
1653    
1654     assert (fdchangemax >= fdchangecnt);
1655     for (i = 0; i < fdchangecnt; ++i)
1656 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1657 root 1.251
1658     assert (anfdmax >= 0);
1659     for (i = 0; i < anfdmax; ++i)
1660     for (w = anfds [i].head; w; w = w->next)
1661     {
1662     verify_watcher (EV_A_ (W)w);
1663 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1664     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1665 root 1.251 }
1666    
1667     assert (timermax >= timercnt);
1668     verify_heap (EV_A_ timers, timercnt);
1669 root 1.248
1670     #if EV_PERIODIC_ENABLE
1671 root 1.251 assert (periodicmax >= periodiccnt);
1672     verify_heap (EV_A_ periodics, periodiccnt);
1673 root 1.248 #endif
1674    
1675 root 1.251 for (i = NUMPRI; i--; )
1676     {
1677     assert (pendingmax [i] >= pendingcnt [i]);
1678 root 1.248 #if EV_IDLE_ENABLE
1679 root 1.252 assert (idleall >= 0);
1680 root 1.251 assert (idlemax [i] >= idlecnt [i]);
1681     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1682 root 1.248 #endif
1683 root 1.251 }
1684    
1685 root 1.248 #if EV_FORK_ENABLE
1686 root 1.251 assert (forkmax >= forkcnt);
1687     array_verify (EV_A_ (W *)forks, forkcnt);
1688 root 1.248 #endif
1689 root 1.251
1690 root 1.250 #if EV_ASYNC_ENABLE
1691 root 1.251 assert (asyncmax >= asynccnt);
1692     array_verify (EV_A_ (W *)asyncs, asynccnt);
1693 root 1.250 #endif
1694 root 1.251
1695     assert (preparemax >= preparecnt);
1696     array_verify (EV_A_ (W *)prepares, preparecnt);
1697    
1698     assert (checkmax >= checkcnt);
1699     array_verify (EV_A_ (W *)checks, checkcnt);
1700    
1701     # if 0
1702     for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1703     for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1704     # endif
1705 root 1.248 #endif
1706     }
1707    
1708 root 1.250 #endif /* multiplicity */
1709 root 1.56
1710     #if EV_MULTIPLICITY
1711     struct ev_loop *
1712 root 1.125 ev_default_loop_init (unsigned int flags)
1713 root 1.54 #else
1714     int
1715 root 1.116 ev_default_loop (unsigned int flags)
1716 root 1.56 #endif
1717 root 1.54 {
1718 root 1.116 if (!ev_default_loop_ptr)
1719 root 1.56 {
1720     #if EV_MULTIPLICITY
1721 root 1.116 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1722 root 1.56 #else
1723 ayin 1.117 ev_default_loop_ptr = 1;
1724 root 1.54 #endif
1725    
1726 root 1.110 loop_init (EV_A_ flags);
1727 root 1.56
1728 root 1.130 if (ev_backend (EV_A))
1729 root 1.56 {
1730 root 1.103 #ifndef _WIN32
1731 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
1732     ev_set_priority (&childev, EV_MAXPRI);
1733     ev_signal_start (EV_A_ &childev);
1734     ev_unref (EV_A); /* child watcher should not keep loop alive */
1735     #endif
1736     }
1737     else
1738 root 1.116 ev_default_loop_ptr = 0;
1739 root 1.56 }
1740 root 1.8
1741 root 1.116 return ev_default_loop_ptr;
1742 root 1.1 }
1743    
1744 root 1.24 void
1745 root 1.56 ev_default_destroy (void)
1746 root 1.1 {
1747 root 1.57 #if EV_MULTIPLICITY
1748 root 1.116 struct ev_loop *loop = ev_default_loop_ptr;
1749 root 1.57 #endif
1750 root 1.56
1751 root 1.266 ev_default_loop_ptr = 0;
1752    
1753 root 1.103 #ifndef _WIN32
1754 root 1.56 ev_ref (EV_A); /* child watcher */
1755     ev_signal_stop (EV_A_ &childev);
1756 root 1.71 #endif
1757 root 1.56
1758     loop_destroy (EV_A);
1759 root 1.1 }
1760    
1761 root 1.24 void
1762 root 1.60 ev_default_fork (void)
1763 root 1.1 {
1764 root 1.60 #if EV_MULTIPLICITY
1765 root 1.116 struct ev_loop *loop = ev_default_loop_ptr;
1766 root 1.60 #endif
1767    
1768 root 1.270 postfork = 1; /* must be in line with ev_loop_fork */
1769 root 1.1 }
1770    
1771 root 1.8 /*****************************************************************************/
1772    
1773 root 1.168 void
1774     ev_invoke (EV_P_ void *w, int revents)
1775     {
1776     EV_CB_INVOKE ((W)w, revents);
1777     }
1778    
1779 root 1.284 inline_speed void
1780 root 1.51 call_pending (EV_P)
1781 root 1.1 {
1782 root 1.42 int pri;
1783    
1784     for (pri = NUMPRI; pri--; )
1785     while (pendingcnt [pri])
1786     {
1787     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1788 root 1.1
1789 root 1.288 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1790     /* ^ this is no longer true, as pending_w could be here */
1791 root 1.139
1792 root 1.288 p->w->pending = 0;
1793     EV_CB_INVOKE (p->w, p->events);
1794     EV_FREQUENT_CHECK;
1795 root 1.42 }
1796 root 1.1 }
1797    
1798 root 1.234 #if EV_IDLE_ENABLE
1799 root 1.288 /* make idle watchers pending. this handles the "call-idle */
1800     /* only when higher priorities are idle" logic */
1801 root 1.284 inline_size void
1802 root 1.234 idle_reify (EV_P)
1803     {
1804     if (expect_false (idleall))
1805     {
1806     int pri;
1807    
1808     for (pri = NUMPRI; pri--; )
1809     {
1810     if (pendingcnt [pri])
1811     break;
1812    
1813     if (idlecnt [pri])
1814     {
1815     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1816     break;
1817     }
1818     }
1819     }
1820     }
1821     #endif
1822    
1823 root 1.288 /* make timers pending */
1824 root 1.284 inline_size void
1825 root 1.51 timers_reify (EV_P)
1826 root 1.1 {
1827 root 1.248 EV_FREQUENT_CHECK;
1828    
1829 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1830 root 1.1 {
1831 root 1.284 do
1832     {
1833     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1834 root 1.1
1835 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1836    
1837     /* first reschedule or stop timer */
1838     if (w->repeat)
1839     {
1840     ev_at (w) += w->repeat;
1841     if (ev_at (w) < mn_now)
1842     ev_at (w) = mn_now;
1843 root 1.61
1844 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1845 root 1.90
1846 root 1.284 ANHE_at_cache (timers [HEAP0]);
1847     downheap (timers, timercnt, HEAP0);
1848     }
1849     else
1850     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1851 root 1.243
1852 root 1.284 EV_FREQUENT_CHECK;
1853     feed_reverse (EV_A_ (W)w);
1854 root 1.12 }
1855 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1856 root 1.30
1857 root 1.284 feed_reverse_done (EV_A_ EV_TIMEOUT);
1858 root 1.12 }
1859     }
1860 root 1.4
1861 root 1.140 #if EV_PERIODIC_ENABLE
1862 root 1.288 /* make periodics pending */
1863 root 1.284 inline_size void
1864 root 1.51 periodics_reify (EV_P)
1865 root 1.12 {
1866 root 1.248 EV_FREQUENT_CHECK;
1867 root 1.250
1868 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1869 root 1.12 {
1870 root 1.284 int feed_count = 0;
1871    
1872     do
1873     {
1874     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1875 root 1.1
1876 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1877 root 1.61
1878 root 1.284 /* first reschedule or stop timer */
1879     if (w->reschedule_cb)
1880     {
1881     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1882 root 1.243
1883 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1884 root 1.243
1885 root 1.284 ANHE_at_cache (periodics [HEAP0]);
1886     downheap (periodics, periodiccnt, HEAP0);
1887     }
1888     else if (w->interval)
1889 root 1.246 {
1890 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1891     /* if next trigger time is not sufficiently in the future, put it there */
1892     /* this might happen because of floating point inexactness */
1893     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1894     {
1895     ev_at (w) += w->interval;
1896    
1897     /* if interval is unreasonably low we might still have a time in the past */
1898     /* so correct this. this will make the periodic very inexact, but the user */
1899     /* has effectively asked to get triggered more often than possible */
1900     if (ev_at (w) < ev_rt_now)
1901     ev_at (w) = ev_rt_now;
1902     }
1903 root 1.243
1904 root 1.284 ANHE_at_cache (periodics [HEAP0]);
1905     downheap (periodics, periodiccnt, HEAP0);
1906 root 1.246 }
1907 root 1.284 else
1908     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1909 root 1.243
1910 root 1.284 EV_FREQUENT_CHECK;
1911     feed_reverse (EV_A_ (W)w);
1912 root 1.1 }
1913 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1914 root 1.12
1915 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
1916 root 1.12 }
1917     }
1918    
1919 root 1.288 /* simply recalculate all periodics */
1920     /* TODO: maybe ensure that at leats one event happens when jumping forward? */
1921 root 1.140 static void noinline
1922 root 1.54 periodics_reschedule (EV_P)
1923 root 1.12 {
1924     int i;
1925    
1926 root 1.13 /* adjust periodics after time jump */
1927 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1928 root 1.12 {
1929 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1930 root 1.12
1931 root 1.77 if (w->reschedule_cb)
1932 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1933 root 1.77 else if (w->interval)
1934 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1935 root 1.242
1936 root 1.248 ANHE_at_cache (periodics [i]);
1937 root 1.77 }
1938 root 1.12
1939 root 1.248 reheap (periodics, periodiccnt);
1940 root 1.1 }
1941 root 1.93 #endif
1942 root 1.1
1943 root 1.288 /* adjust all timers by a given offset */
1944 root 1.285 static void noinline
1945     timers_reschedule (EV_P_ ev_tstamp adjust)
1946     {
1947     int i;
1948    
1949     for (i = 0; i < timercnt; ++i)
1950     {
1951     ANHE *he = timers + i + HEAP0;
1952     ANHE_w (*he)->at += adjust;
1953     ANHE_at_cache (*he);
1954     }
1955     }
1956    
1957 root 1.288 /* fetch new monotonic and realtime times from the kernel */
1958     /* also detetc if there was a timejump, and act accordingly */
1959 root 1.284 inline_speed void
1960 root 1.178 time_update (EV_P_ ev_tstamp max_block)
1961 root 1.4 {
1962 root 1.40 #if EV_USE_MONOTONIC
1963     if (expect_true (have_monotonic))
1964     {
1965 root 1.289 int i;
1966 root 1.178 ev_tstamp odiff = rtmn_diff;
1967    
1968     mn_now = get_clock ();
1969    
1970     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1971     /* interpolate in the meantime */
1972     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1973 root 1.40 {
1974 root 1.178 ev_rt_now = rtmn_diff + mn_now;
1975     return;
1976     }
1977    
1978     now_floor = mn_now;
1979     ev_rt_now = ev_time ();
1980 root 1.4
1981 root 1.178 /* loop a few times, before making important decisions.
1982     * on the choice of "4": one iteration isn't enough,
1983     * in case we get preempted during the calls to
1984     * ev_time and get_clock. a second call is almost guaranteed
1985     * to succeed in that case, though. and looping a few more times
1986     * doesn't hurt either as we only do this on time-jumps or
1987     * in the unlikely event of having been preempted here.
1988     */
1989     for (i = 4; --i; )
1990     {
1991     rtmn_diff = ev_rt_now - mn_now;
1992 root 1.4
1993 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1994 root 1.178 return; /* all is well */
1995 root 1.4
1996 root 1.178 ev_rt_now = ev_time ();
1997     mn_now = get_clock ();
1998     now_floor = mn_now;
1999     }
2000 root 1.4
2001 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2002     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2003 root 1.140 # if EV_PERIODIC_ENABLE
2004 root 1.178 periodics_reschedule (EV_A);
2005 root 1.93 # endif
2006 root 1.4 }
2007     else
2008 root 1.40 #endif
2009 root 1.4 {
2010 root 1.85 ev_rt_now = ev_time ();
2011 root 1.40
2012 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2013 root 1.13 {
2014 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2015     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2016 root 1.140 #if EV_PERIODIC_ENABLE
2017 root 1.54 periodics_reschedule (EV_A);
2018 root 1.93 #endif
2019 root 1.13 }
2020 root 1.4
2021 root 1.85 mn_now = ev_rt_now;
2022 root 1.4 }
2023     }
2024    
2025 root 1.51 static int loop_done;
2026    
2027     void
2028     ev_loop (EV_P_ int flags)
2029 root 1.1 {
2030 root 1.219 loop_done = EVUNLOOP_CANCEL;
2031 root 1.1
2032 root 1.158 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2033    
2034 root 1.161 do
2035 root 1.9 {
2036 root 1.250 #if EV_VERIFY >= 2
2037     ev_loop_verify (EV_A);
2038     #endif
2039    
2040 root 1.158 #ifndef _WIN32
2041     if (expect_false (curpid)) /* penalise the forking check even more */
2042     if (expect_false (getpid () != curpid))
2043     {
2044     curpid = getpid ();
2045     postfork = 1;
2046     }
2047     #endif
2048    
2049 root 1.157 #if EV_FORK_ENABLE
2050     /* we might have forked, so queue fork handlers */
2051     if (expect_false (postfork))
2052     if (forkcnt)
2053     {
2054     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2055     call_pending (EV_A);
2056     }
2057     #endif
2058 root 1.147
2059 root 1.170 /* queue prepare watchers (and execute them) */
2060 root 1.40 if (expect_false (preparecnt))
2061 root 1.20 {
2062 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2063     call_pending (EV_A);
2064 root 1.20 }
2065 root 1.9
2066 root 1.70 /* we might have forked, so reify kernel state if necessary */
2067     if (expect_false (postfork))
2068     loop_fork (EV_A);
2069    
2070 root 1.1 /* update fd-related kernel structures */
2071 root 1.51 fd_reify (EV_A);
2072 root 1.1
2073     /* calculate blocking time */
2074 root 1.135 {
2075 root 1.193 ev_tstamp waittime = 0.;
2076     ev_tstamp sleeptime = 0.;
2077 root 1.12
2078 root 1.193 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2079 root 1.135 {
2080     /* update time to cancel out callback processing overhead */
2081 root 1.178 time_update (EV_A_ 1e100);
2082 root 1.135
2083 root 1.287 waittime = MAX_BLOCKTIME;
2084    
2085 root 1.135 if (timercnt)
2086     {
2087 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2088 root 1.193 if (waittime > to) waittime = to;
2089 root 1.135 }
2090 root 1.4
2091 root 1.140 #if EV_PERIODIC_ENABLE
2092 root 1.135 if (periodiccnt)
2093     {
2094 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2095 root 1.193 if (waittime > to) waittime = to;
2096 root 1.135 }
2097 root 1.93 #endif
2098 root 1.4
2099 root 1.193 if (expect_false (waittime < timeout_blocktime))
2100     waittime = timeout_blocktime;
2101    
2102     sleeptime = waittime - backend_fudge;
2103    
2104     if (expect_true (sleeptime > io_blocktime))
2105     sleeptime = io_blocktime;
2106    
2107     if (sleeptime)
2108     {
2109     ev_sleep (sleeptime);
2110     waittime -= sleeptime;
2111     }
2112 root 1.135 }
2113 root 1.1
2114 root 1.162 ++loop_count;
2115 root 1.193 backend_poll (EV_A_ waittime);
2116 root 1.178
2117     /* update ev_rt_now, do magic */
2118 root 1.193 time_update (EV_A_ waittime + sleeptime);
2119 root 1.135 }
2120 root 1.1
2121 root 1.9 /* queue pending timers and reschedule them */
2122 root 1.51 timers_reify (EV_A); /* relative timers called last */
2123 root 1.140 #if EV_PERIODIC_ENABLE
2124 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2125 root 1.93 #endif
2126 root 1.1
2127 root 1.164 #if EV_IDLE_ENABLE
2128 root 1.137 /* queue idle watchers unless other events are pending */
2129 root 1.164 idle_reify (EV_A);
2130     #endif
2131 root 1.9
2132 root 1.20 /* queue check watchers, to be executed first */
2133 root 1.123 if (expect_false (checkcnt))
2134 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2135 root 1.9
2136 root 1.51 call_pending (EV_A);
2137 root 1.1 }
2138 root 1.219 while (expect_true (
2139     activecnt
2140     && !loop_done
2141     && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2142     ));
2143 root 1.13
2144 root 1.135 if (loop_done == EVUNLOOP_ONE)
2145     loop_done = EVUNLOOP_CANCEL;
2146 root 1.51 }
2147    
2148     void
2149     ev_unloop (EV_P_ int how)
2150     {
2151     loop_done = how;
2152 root 1.1 }
2153    
2154 root 1.285 void
2155     ev_ref (EV_P)
2156     {
2157     ++activecnt;
2158     }
2159    
2160     void
2161     ev_unref (EV_P)
2162     {
2163     --activecnt;
2164     }
2165    
2166     void
2167     ev_now_update (EV_P)
2168     {
2169     time_update (EV_A_ 1e100);
2170     }
2171    
2172     void
2173     ev_suspend (EV_P)
2174     {
2175     ev_now_update (EV_A);
2176     }
2177    
2178     void
2179     ev_resume (EV_P)
2180     {
2181     ev_tstamp mn_prev = mn_now;
2182    
2183     ev_now_update (EV_A);
2184     timers_reschedule (EV_A_ mn_now - mn_prev);
2185 root 1.286 #if EV_PERIODIC_ENABLE
2186 root 1.288 /* TODO: really do this? */
2187 root 1.285 periodics_reschedule (EV_A);
2188 root 1.286 #endif
2189 root 1.285 }
2190    
2191 root 1.8 /*****************************************************************************/
2192 root 1.288 /* singly-linked list management, used when the expected list length is short */
2193 root 1.8
2194 root 1.284 inline_size void
2195 root 1.10 wlist_add (WL *head, WL elem)
2196 root 1.1 {
2197     elem->next = *head;
2198     *head = elem;
2199     }
2200    
2201 root 1.284 inline_size void
2202 root 1.10 wlist_del (WL *head, WL elem)
2203 root 1.1 {
2204     while (*head)
2205     {
2206     if (*head == elem)
2207     {
2208     *head = elem->next;
2209     return;
2210     }
2211    
2212     head = &(*head)->next;
2213     }
2214     }
2215    
2216 root 1.288 /* internal, faster, version of ev_clear_pending */
2217 root 1.284 inline_speed void
2218 root 1.166 clear_pending (EV_P_ W w)
2219 root 1.16 {
2220     if (w->pending)
2221     {
2222 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2223 root 1.16 w->pending = 0;
2224     }
2225     }
2226    
2227 root 1.167 int
2228     ev_clear_pending (EV_P_ void *w)
2229 root 1.166 {
2230     W w_ = (W)w;
2231     int pending = w_->pending;
2232    
2233 root 1.172 if (expect_true (pending))
2234     {
2235     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2236 root 1.288 p->w = (W)&pending_w;
2237 root 1.172 w_->pending = 0;
2238     return p->events;
2239     }
2240     else
2241 root 1.167 return 0;
2242 root 1.166 }
2243    
2244 root 1.284 inline_size void
2245 root 1.164 pri_adjust (EV_P_ W w)
2246     {
2247     int pri = w->priority;
2248     pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2249     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2250     w->priority = pri;
2251     }
2252    
2253 root 1.284 inline_speed void
2254 root 1.51 ev_start (EV_P_ W w, int active)
2255 root 1.1 {
2256 root 1.164 pri_adjust (EV_A_ w);
2257 root 1.1 w->active = active;
2258 root 1.51 ev_ref (EV_A);
2259 root 1.1 }
2260    
2261 root 1.284 inline_size void
2262 root 1.51 ev_stop (EV_P_ W w)
2263 root 1.1 {
2264 root 1.51 ev_unref (EV_A);
2265 root 1.1 w->active = 0;
2266     }
2267    
2268 root 1.8 /*****************************************************************************/
2269    
2270 root 1.171 void noinline
2271 root 1.136 ev_io_start (EV_P_ ev_io *w)
2272 root 1.1 {
2273 root 1.37 int fd = w->fd;
2274    
2275 root 1.123 if (expect_false (ev_is_active (w)))
2276 root 1.1 return;
2277    
2278 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2279 root 1.281 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2280 root 1.33
2281 root 1.248 EV_FREQUENT_CHECK;
2282    
2283 root 1.51 ev_start (EV_A_ (W)w, 1);
2284 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2285 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2286 root 1.1
2287 root 1.281 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2288     w->events &= ~EV__IOFDSET;
2289 root 1.248
2290     EV_FREQUENT_CHECK;
2291 root 1.1 }
2292    
2293 root 1.171 void noinline
2294 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2295 root 1.1 {
2296 root 1.166 clear_pending (EV_A_ (W)w);
2297 root 1.123 if (expect_false (!ev_is_active (w)))
2298 root 1.1 return;
2299    
2300 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2301 root 1.89
2302 root 1.248 EV_FREQUENT_CHECK;
2303    
2304 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2305 root 1.51 ev_stop (EV_A_ (W)w);
2306 root 1.1
2307 root 1.184 fd_change (EV_A_ w->fd, 1);
2308 root 1.248
2309     EV_FREQUENT_CHECK;
2310 root 1.1 }
2311    
2312 root 1.171 void noinline
2313 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2314 root 1.1 {
2315 root 1.123 if (expect_false (ev_is_active (w)))
2316 root 1.1 return;
2317    
2318 root 1.228 ev_at (w) += mn_now;
2319 root 1.12
2320 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2321 root 1.13
2322 root 1.248 EV_FREQUENT_CHECK;
2323    
2324     ++timercnt;
2325     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2326 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2327     ANHE_w (timers [ev_active (w)]) = (WT)w;
2328 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2329 root 1.235 upheap (timers, ev_active (w));
2330 root 1.62
2331 root 1.248 EV_FREQUENT_CHECK;
2332    
2333 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2334 root 1.12 }
2335    
2336 root 1.171 void noinline
2337 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2338 root 1.12 {
2339 root 1.166 clear_pending (EV_A_ (W)w);
2340 root 1.123 if (expect_false (!ev_is_active (w)))
2341 root 1.12 return;
2342    
2343 root 1.248 EV_FREQUENT_CHECK;
2344    
2345 root 1.230 {
2346     int active = ev_active (w);
2347 root 1.62
2348 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2349 root 1.151
2350 root 1.248 --timercnt;
2351    
2352     if (expect_true (active < timercnt + HEAP0))
2353 root 1.151 {
2354 root 1.248 timers [active] = timers [timercnt + HEAP0];
2355 root 1.181 adjustheap (timers, timercnt, active);
2356 root 1.151 }
2357 root 1.248 }
2358 root 1.228
2359 root 1.248 EV_FREQUENT_CHECK;
2360 root 1.4
2361 root 1.228 ev_at (w) -= mn_now;
2362 root 1.14
2363 root 1.51 ev_stop (EV_A_ (W)w);
2364 root 1.12 }
2365 root 1.4
2366 root 1.171 void noinline
2367 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2368 root 1.14 {
2369 root 1.248 EV_FREQUENT_CHECK;
2370    
2371 root 1.14 if (ev_is_active (w))
2372     {
2373     if (w->repeat)
2374 root 1.99 {
2375 root 1.228 ev_at (w) = mn_now + w->repeat;
2376 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2377 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2378 root 1.99 }
2379 root 1.14 else
2380 root 1.51 ev_timer_stop (EV_A_ w);
2381 root 1.14 }
2382     else if (w->repeat)
2383 root 1.112 {
2384 root 1.229 ev_at (w) = w->repeat;
2385 root 1.112 ev_timer_start (EV_A_ w);
2386     }
2387 root 1.248
2388     EV_FREQUENT_CHECK;
2389 root 1.14 }
2390    
2391 root 1.140 #if EV_PERIODIC_ENABLE
2392 root 1.171 void noinline
2393 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2394 root 1.12 {
2395 root 1.123 if (expect_false (ev_is_active (w)))
2396 root 1.12 return;
2397 root 1.1
2398 root 1.77 if (w->reschedule_cb)
2399 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2400 root 1.77 else if (w->interval)
2401     {
2402 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2403 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2404 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2405 root 1.77 }
2406 root 1.173 else
2407 root 1.228 ev_at (w) = w->offset;
2408 root 1.12
2409 root 1.248 EV_FREQUENT_CHECK;
2410    
2411     ++periodiccnt;
2412     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2413 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2414     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2415 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2416 root 1.235 upheap (periodics, ev_active (w));
2417 root 1.62
2418 root 1.248 EV_FREQUENT_CHECK;
2419    
2420 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2421 root 1.1 }
2422    
2423 root 1.171 void noinline
2424 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2425 root 1.1 {
2426 root 1.166 clear_pending (EV_A_ (W)w);
2427 root 1.123 if (expect_false (!ev_is_active (w)))
2428 root 1.1 return;
2429    
2430 root 1.248 EV_FREQUENT_CHECK;
2431    
2432 root 1.230 {
2433     int active = ev_active (w);
2434 root 1.62
2435 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2436 root 1.151
2437 root 1.248 --periodiccnt;
2438    
2439     if (expect_true (active < periodiccnt + HEAP0))
2440 root 1.151 {
2441 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2442 root 1.181 adjustheap (periodics, periodiccnt, active);
2443 root 1.151 }
2444 root 1.248 }
2445 root 1.228
2446 root 1.248 EV_FREQUENT_CHECK;
2447 root 1.2
2448 root 1.51 ev_stop (EV_A_ (W)w);
2449 root 1.1 }
2450    
2451 root 1.171 void noinline
2452 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2453 root 1.77 {
2454 root 1.84 /* TODO: use adjustheap and recalculation */
2455 root 1.77 ev_periodic_stop (EV_A_ w);
2456     ev_periodic_start (EV_A_ w);
2457     }
2458 root 1.93 #endif
2459 root 1.77
2460 root 1.56 #ifndef SA_RESTART
2461     # define SA_RESTART 0
2462     #endif
2463    
2464 root 1.171 void noinline
2465 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2466 root 1.56 {
2467     #if EV_MULTIPLICITY
2468 root 1.278 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2469 root 1.56 #endif
2470 root 1.123 if (expect_false (ev_is_active (w)))
2471 root 1.56 return;
2472    
2473 root 1.278 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2474 root 1.56
2475 root 1.207 evpipe_init (EV_A);
2476    
2477 root 1.248 EV_FREQUENT_CHECK;
2478    
2479 root 1.180 {
2480     #ifndef _WIN32
2481     sigset_t full, prev;
2482     sigfillset (&full);
2483     sigprocmask (SIG_SETMASK, &full, &prev);
2484     #endif
2485    
2486 root 1.265 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2487 root 1.180
2488     #ifndef _WIN32
2489     sigprocmask (SIG_SETMASK, &prev, 0);
2490     #endif
2491     }
2492    
2493 root 1.56 ev_start (EV_A_ (W)w, 1);
2494 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2495 root 1.56
2496 root 1.63 if (!((WL)w)->next)
2497 root 1.56 {
2498 root 1.103 #if _WIN32
2499 root 1.218 signal (w->signum, ev_sighandler);
2500 root 1.67 #else
2501 root 1.56 struct sigaction sa;
2502 root 1.218 sa.sa_handler = ev_sighandler;
2503 root 1.56 sigfillset (&sa.sa_mask);
2504     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2505     sigaction (w->signum, &sa, 0);
2506 root 1.67 #endif
2507 root 1.56 }
2508 root 1.248
2509     EV_FREQUENT_CHECK;
2510 root 1.56 }
2511    
2512 root 1.171 void noinline
2513 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2514 root 1.56 {
2515 root 1.166 clear_pending (EV_A_ (W)w);
2516 root 1.123 if (expect_false (!ev_is_active (w)))
2517 root 1.56 return;
2518    
2519 root 1.248 EV_FREQUENT_CHECK;
2520    
2521 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2522 root 1.56 ev_stop (EV_A_ (W)w);
2523    
2524     if (!signals [w->signum - 1].head)
2525     signal (w->signum, SIG_DFL);
2526 root 1.248
2527     EV_FREQUENT_CHECK;
2528 root 1.56 }
2529    
2530 root 1.28 void
2531 root 1.136 ev_child_start (EV_P_ ev_child *w)
2532 root 1.22 {
2533 root 1.56 #if EV_MULTIPLICITY
2534 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2535 root 1.56 #endif
2536 root 1.123 if (expect_false (ev_is_active (w)))
2537 root 1.22 return;
2538    
2539 root 1.248 EV_FREQUENT_CHECK;
2540    
2541 root 1.51 ev_start (EV_A_ (W)w, 1);
2542 root 1.182 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2543 root 1.248
2544     EV_FREQUENT_CHECK;
2545 root 1.22 }
2546    
2547 root 1.28 void
2548 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2549 root 1.22 {
2550 root 1.166 clear_pending (EV_A_ (W)w);
2551 root 1.123 if (expect_false (!ev_is_active (w)))
2552 root 1.22 return;
2553    
2554 root 1.248 EV_FREQUENT_CHECK;
2555    
2556 root 1.182 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2557 root 1.51 ev_stop (EV_A_ (W)w);
2558 root 1.248
2559     EV_FREQUENT_CHECK;
2560 root 1.22 }
2561    
2562 root 1.140 #if EV_STAT_ENABLE
2563    
2564     # ifdef _WIN32
2565 root 1.146 # undef lstat
2566     # define lstat(a,b) _stati64 (a,b)
2567 root 1.140 # endif
2568    
2569 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2570     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2571     #define MIN_STAT_INTERVAL 0.1074891
2572 root 1.143
2573 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2574 root 1.152
2575     #if EV_USE_INOTIFY
2576 root 1.153 # define EV_INOTIFY_BUFSIZE 8192
2577 root 1.152
2578     static void noinline
2579     infy_add (EV_P_ ev_stat *w)
2580     {
2581     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2582    
2583     if (w->wd < 0)
2584     {
2585 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2586     ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2587 root 1.152
2588     /* monitor some parent directory for speedup hints */
2589 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2590 root 1.233 /* but an efficiency issue only */
2591 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2592 root 1.152 {
2593 root 1.153 char path [4096];
2594 root 1.152 strcpy (path, w->path);
2595    
2596     do
2597     {
2598     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2599     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2600    
2601     char *pend = strrchr (path, '/');
2602    
2603 root 1.275 if (!pend || pend == path)
2604     break;
2605 root 1.152
2606     *pend = 0;
2607 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
2608 root 1.152 }
2609     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2610     }
2611     }
2612 root 1.275
2613     if (w->wd >= 0)
2614 root 1.273 {
2615     wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2616    
2617     /* now local changes will be tracked by inotify, but remote changes won't */
2618     /* unless the filesystem it known to be local, we therefore still poll */
2619     /* also do poll on <2.6.25, but with normal frequency */
2620     struct statfs sfs;
2621    
2622     if (fs_2625 && !statfs (w->path, &sfs))
2623     if (sfs.f_type == 0x1373 /* devfs */
2624     || sfs.f_type == 0xEF53 /* ext2/3 */
2625     || sfs.f_type == 0x3153464a /* jfs */
2626     || sfs.f_type == 0x52654973 /* reiser3 */
2627     || sfs.f_type == 0x01021994 /* tempfs */
2628     || sfs.f_type == 0x58465342 /* xfs */)
2629     return;
2630 root 1.152
2631 root 1.273 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2632     ev_timer_again (EV_A_ &w->timer);
2633     }
2634 root 1.152 }
2635    
2636     static void noinline
2637     infy_del (EV_P_ ev_stat *w)
2638     {
2639     int slot;
2640     int wd = w->wd;
2641    
2642     if (wd < 0)
2643     return;
2644    
2645     w->wd = -2;
2646     slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2647     wlist_del (&fs_hash [slot].head, (WL)w);
2648    
2649     /* remove this watcher, if others are watching it, they will rearm */
2650     inotify_rm_watch (fs_fd, wd);
2651     }
2652    
2653     static void noinline
2654     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2655     {
2656     if (slot < 0)
2657 root 1.264 /* overflow, need to check for all hash slots */
2658 root 1.152 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2659     infy_wd (EV_A_ slot, wd, ev);
2660     else
2661     {
2662     WL w_;
2663    
2664     for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2665     {
2666     ev_stat *w = (ev_stat *)w_;
2667     w_ = w_->next; /* lets us remove this watcher and all before it */
2668    
2669     if (w->wd == wd || wd == -1)
2670     {
2671     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2672     {
2673 root 1.275 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2674 root 1.152 w->wd = -1;
2675     infy_add (EV_A_ w); /* re-add, no matter what */
2676     }
2677    
2678 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
2679 root 1.152 }
2680     }
2681     }
2682     }
2683    
2684     static void
2685     infy_cb (EV_P_ ev_io *w, int revents)
2686     {
2687     char buf [EV_INOTIFY_BUFSIZE];
2688     struct inotify_event *ev = (struct inotify_event *)buf;
2689     int ofs;
2690     int len = read (fs_fd, buf, sizeof (buf));
2691    
2692     for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2693     infy_wd (EV_A_ ev->wd, ev->wd, ev);
2694     }
2695    
2696 root 1.284 inline_size void
2697 root 1.273 check_2625 (EV_P)
2698 root 1.152 {
2699 root 1.264 /* kernels < 2.6.25 are borked
2700     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2701     */
2702 root 1.273 struct utsname buf;
2703     int major, minor, micro;
2704    
2705     if (uname (&buf))
2706     return;
2707    
2708     if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2709     return;
2710    
2711     if (major < 2
2712     || (major == 2 && minor < 6)
2713     || (major == 2 && minor == 6 && micro < 25))
2714     return;
2715 root 1.264
2716 root 1.273 fs_2625 = 1;
2717     }
2718 root 1.264
2719 root 1.284 inline_size void
2720 root 1.273 infy_init (EV_P)
2721     {
2722     if (fs_fd != -2)
2723     return;
2724 root 1.264
2725 root 1.273 fs_fd = -1;
2726 root 1.264
2727 root 1.273 check_2625 (EV_A);
2728 root 1.264
2729 root 1.152 fs_fd = inotify_init ();
2730    
2731     if (fs_fd >= 0)
2732     {
2733     ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2734     ev_set_priority (&fs_w, EV_MAXPRI);
2735     ev_io_start (EV_A_ &fs_w);
2736     }
2737     }
2738    
2739 root 1.284 inline_size void
2740 root 1.154 infy_fork (EV_P)
2741     {
2742     int slot;
2743    
2744     if (fs_fd < 0)
2745     return;
2746    
2747     close (fs_fd);
2748     fs_fd = inotify_init ();
2749    
2750     for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2751     {
2752     WL w_ = fs_hash [slot].head;
2753     fs_hash [slot].head = 0;
2754    
2755     while (w_)
2756     {
2757     ev_stat *w = (ev_stat *)w_;
2758     w_ = w_->next; /* lets us add this watcher */
2759    
2760     w->wd = -1;
2761    
2762     if (fs_fd >= 0)
2763     infy_add (EV_A_ w); /* re-add, no matter what */
2764     else
2765 root 1.273 ev_timer_again (EV_A_ &w->timer);
2766 root 1.154 }
2767     }
2768     }
2769    
2770 root 1.152 #endif
2771    
2772 root 1.255 #ifdef _WIN32
2773     # define EV_LSTAT(p,b) _stati64 (p, b)
2774     #else
2775     # define EV_LSTAT(p,b) lstat (p, b)
2776     #endif
2777    
2778 root 1.140 void
2779     ev_stat_stat (EV_P_ ev_stat *w)
2780     {
2781     if (lstat (w->path, &w->attr) < 0)
2782     w->attr.st_nlink = 0;
2783     else if (!w->attr.st_nlink)
2784     w->attr.st_nlink = 1;
2785     }
2786    
2787 root 1.157 static void noinline
2788 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2789     {
2790     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2791    
2792     /* we copy this here each the time so that */
2793     /* prev has the old value when the callback gets invoked */
2794     w->prev = w->attr;
2795     ev_stat_stat (EV_A_ w);
2796    
2797 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2798     if (
2799     w->prev.st_dev != w->attr.st_dev
2800     || w->prev.st_ino != w->attr.st_ino
2801     || w->prev.st_mode != w->attr.st_mode
2802     || w->prev.st_nlink != w->attr.st_nlink
2803     || w->prev.st_uid != w->attr.st_uid
2804     || w->prev.st_gid != w->attr.st_gid
2805     || w->prev.st_rdev != w->attr.st_rdev
2806     || w->prev.st_size != w->attr.st_size
2807     || w->prev.st_atime != w->attr.st_atime
2808     || w->prev.st_mtime != w->attr.st_mtime
2809     || w->prev.st_ctime != w->attr.st_ctime
2810     ) {
2811 root 1.152 #if EV_USE_INOTIFY
2812 root 1.264 if (fs_fd >= 0)
2813     {
2814     infy_del (EV_A_ w);
2815     infy_add (EV_A_ w);
2816     ev_stat_stat (EV_A_ w); /* avoid race... */
2817     }
2818 root 1.152 #endif
2819    
2820     ev_feed_event (EV_A_ w, EV_STAT);
2821     }
2822 root 1.140 }
2823    
2824     void
2825     ev_stat_start (EV_P_ ev_stat *w)
2826     {
2827     if (expect_false (ev_is_active (w)))
2828     return;
2829    
2830     ev_stat_stat (EV_A_ w);
2831    
2832 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2833     w->interval = MIN_STAT_INTERVAL;
2834 root 1.143
2835 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2836 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
2837 root 1.152
2838     #if EV_USE_INOTIFY
2839     infy_init (EV_A);
2840    
2841     if (fs_fd >= 0)
2842     infy_add (EV_A_ w);
2843     else
2844     #endif
2845 root 1.273 ev_timer_again (EV_A_ &w->timer);
2846 root 1.140
2847     ev_start (EV_A_ (W)w, 1);
2848 root 1.248
2849     EV_FREQUENT_CHECK;
2850 root 1.140 }
2851    
2852     void
2853     ev_stat_stop (EV_P_ ev_stat *w)
2854     {
2855 root 1.166 clear_pending (EV_A_ (W)w);
2856 root 1.140 if (expect_false (!ev_is_active (w)))
2857     return;
2858    
2859 root 1.248 EV_FREQUENT_CHECK;
2860    
2861 root 1.152 #if EV_USE_INOTIFY
2862     infy_del (EV_A_ w);
2863     #endif
2864 root 1.140 ev_timer_stop (EV_A_ &w->timer);
2865    
2866 root 1.134 ev_stop (EV_A_ (W)w);
2867 root 1.248
2868     EV_FREQUENT_CHECK;
2869 root 1.134 }
2870     #endif
2871    
2872 root 1.164 #if EV_IDLE_ENABLE
2873 root 1.144 void
2874     ev_idle_start (EV_P_ ev_idle *w)
2875     {
2876     if (expect_false (ev_is_active (w)))
2877     return;
2878    
2879 root 1.164 pri_adjust (EV_A_ (W)w);
2880    
2881 root 1.248 EV_FREQUENT_CHECK;
2882    
2883 root 1.164 {
2884     int active = ++idlecnt [ABSPRI (w)];
2885    
2886     ++idleall;
2887     ev_start (EV_A_ (W)w, active);
2888    
2889     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2890     idles [ABSPRI (w)][active - 1] = w;
2891     }
2892 root 1.248
2893     EV_FREQUENT_CHECK;
2894 root 1.144 }
2895    
2896     void
2897     ev_idle_stop (EV_P_ ev_idle *w)
2898     {
2899 root 1.166 clear_pending (EV_A_ (W)w);
2900 root 1.144 if (expect_false (!ev_is_active (w)))
2901     return;
2902    
2903 root 1.248 EV_FREQUENT_CHECK;
2904    
2905 root 1.144 {
2906 root 1.230 int active = ev_active (w);
2907 root 1.164
2908     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2909 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2910 root 1.164
2911     ev_stop (EV_A_ (W)w);
2912     --idleall;
2913 root 1.144 }
2914 root 1.248
2915     EV_FREQUENT_CHECK;
2916 root 1.144 }
2917 root 1.164 #endif
2918 root 1.144
2919     void
2920     ev_prepare_start (EV_P_ ev_prepare *w)
2921     {
2922     if (expect_false (ev_is_active (w)))
2923     return;
2924    
2925 root 1.248 EV_FREQUENT_CHECK;
2926    
2927 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
2928     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2929     prepares [preparecnt - 1] = w;
2930 root 1.248
2931     EV_FREQUENT_CHECK;
2932 root 1.144 }
2933    
2934     void
2935     ev_prepare_stop (EV_P_ ev_prepare *w)
2936     {
2937 root 1.166 clear_pending (EV_A_ (W)w);
2938 root 1.144 if (expect_false (!ev_is_active (w)))
2939     return;
2940    
2941 root 1.248 EV_FREQUENT_CHECK;
2942    
2943 root 1.144 {
2944 root 1.230 int active = ev_active (w);
2945    
2946 root 1.144 prepares [active - 1] = prepares [--preparecnt];
2947 root 1.230 ev_active (prepares [active - 1]) = active;
2948 root 1.144 }
2949    
2950     ev_stop (EV_A_ (W)w);
2951 root 1.248
2952     EV_FREQUENT_CHECK;
2953 root 1.144 }
2954    
2955     void
2956     ev_check_start (EV_P_ ev_check *w)
2957     {
2958     if (expect_false (ev_is_active (w)))
2959     return;
2960    
2961 root 1.248 EV_FREQUENT_CHECK;
2962    
2963 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
2964     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2965     checks [checkcnt - 1] = w;
2966 root 1.248
2967     EV_FREQUENT_CHECK;
2968 root 1.144 }
2969    
2970     void
2971     ev_check_stop (EV_P_ ev_check *w)
2972     {
2973 root 1.166 clear_pending (EV_A_ (W)w);
2974 root 1.144 if (expect_false (!ev_is_active (w)))
2975     return;
2976    
2977 root 1.248 EV_FREQUENT_CHECK;
2978    
2979 root 1.144 {
2980 root 1.230 int active = ev_active (w);
2981    
2982 root 1.144 checks [active - 1] = checks [--checkcnt];
2983 root 1.230 ev_active (checks [active - 1]) = active;
2984 root 1.144 }
2985    
2986     ev_stop (EV_A_ (W)w);
2987 root 1.248
2988     EV_FREQUENT_CHECK;
2989 root 1.144 }
2990    
2991     #if EV_EMBED_ENABLE
2992     void noinline
2993     ev_embed_sweep (EV_P_ ev_embed *w)
2994     {
2995 root 1.188 ev_loop (w->other, EVLOOP_NONBLOCK);
2996 root 1.144 }
2997    
2998     static void
2999 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3000 root 1.144 {
3001     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3002    
3003     if (ev_cb (w))
3004     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3005     else
3006 root 1.195 ev_loop (w->other, EVLOOP_NONBLOCK);
3007 root 1.144 }
3008    
3009 root 1.189 static void
3010     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3011     {
3012     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3013    
3014 root 1.195 {
3015     struct ev_loop *loop = w->other;
3016    
3017     while (fdchangecnt)
3018     {
3019     fd_reify (EV_A);
3020     ev_loop (EV_A_ EVLOOP_NONBLOCK);
3021     }
3022     }
3023     }
3024    
3025 root 1.261 static void
3026     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3027     {
3028     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3029    
3030 root 1.277 ev_embed_stop (EV_A_ w);
3031    
3032 root 1.261 {
3033     struct ev_loop *loop = w->other;
3034    
3035     ev_loop_fork (EV_A);
3036 root 1.277 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3037 root 1.261 }
3038 root 1.277
3039     ev_embed_start (EV_A_ w);
3040 root 1.261 }
3041    
3042 root 1.195 #if 0
3043     static void
3044     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3045     {
3046     ev_idle_stop (EV_A_ idle);
3047 root 1.189 }
3048 root 1.195 #endif
3049 root 1.189
3050 root 1.144 void
3051     ev_embed_start (EV_P_ ev_embed *w)
3052     {
3053     if (expect_false (ev_is_active (w)))
3054     return;
3055    
3056     {
3057 root 1.188 struct ev_loop *loop = w->other;
3058 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3059 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3060 root 1.144 }
3061    
3062 root 1.248 EV_FREQUENT_CHECK;
3063    
3064 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3065     ev_io_start (EV_A_ &w->io);
3066    
3067 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3068     ev_set_priority (&w->prepare, EV_MINPRI);
3069     ev_prepare_start (EV_A_ &w->prepare);
3070    
3071 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3072     ev_fork_start (EV_A_ &w->fork);
3073    
3074 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3075    
3076 root 1.144 ev_start (EV_A_ (W)w, 1);
3077 root 1.248
3078     EV_FREQUENT_CHECK;
3079 root 1.144 }
3080    
3081     void
3082     ev_embed_stop (EV_P_ ev_embed *w)
3083     {
3084 root 1.166 clear_pending (EV_A_ (W)w);
3085 root 1.144 if (expect_false (!ev_is_active (w)))
3086     return;
3087    
3088 root 1.248 EV_FREQUENT_CHECK;
3089    
3090 root 1.261 ev_io_stop (EV_A_ &w->io);
3091 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3092 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3093 root 1.248
3094     EV_FREQUENT_CHECK;
3095 root 1.144 }
3096     #endif
3097    
3098 root 1.147 #if EV_FORK_ENABLE
3099     void
3100     ev_fork_start (EV_P_ ev_fork *w)
3101     {
3102     if (expect_false (ev_is_active (w)))
3103     return;
3104    
3105 root 1.248 EV_FREQUENT_CHECK;
3106    
3107 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3108     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3109     forks [forkcnt - 1] = w;
3110 root 1.248
3111     EV_FREQUENT_CHECK;
3112 root 1.147 }
3113    
3114     void
3115     ev_fork_stop (EV_P_ ev_fork *w)
3116     {
3117 root 1.166 clear_pending (EV_A_ (W)w);
3118 root 1.147 if (expect_false (!ev_is_active (w)))
3119     return;
3120    
3121 root 1.248 EV_FREQUENT_CHECK;
3122    
3123 root 1.147 {
3124 root 1.230 int active = ev_active (w);
3125    
3126 root 1.147 forks [active - 1] = forks [--forkcnt];
3127 root 1.230 ev_active (forks [active - 1]) = active;
3128 root 1.147 }
3129    
3130     ev_stop (EV_A_ (W)w);
3131 root 1.248
3132     EV_FREQUENT_CHECK;
3133 root 1.147 }
3134     #endif
3135    
3136 root 1.207 #if EV_ASYNC_ENABLE
3137     void
3138     ev_async_start (EV_P_ ev_async *w)
3139     {
3140     if (expect_false (ev_is_active (w)))
3141     return;
3142    
3143     evpipe_init (EV_A);
3144    
3145 root 1.248 EV_FREQUENT_CHECK;
3146    
3147 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3148     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3149     asyncs [asynccnt - 1] = w;
3150 root 1.248
3151     EV_FREQUENT_CHECK;
3152 root 1.207 }
3153    
3154     void
3155     ev_async_stop (EV_P_ ev_async *w)
3156     {
3157     clear_pending (EV_A_ (W)w);
3158     if (expect_false (!ev_is_active (w)))
3159     return;
3160    
3161 root 1.248 EV_FREQUENT_CHECK;
3162    
3163 root 1.207 {
3164 root 1.230 int active = ev_active (w);
3165    
3166 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3167 root 1.230 ev_active (asyncs [active - 1]) = active;
3168 root 1.207 }
3169    
3170     ev_stop (EV_A_ (W)w);
3171 root 1.248
3172     EV_FREQUENT_CHECK;
3173 root 1.207 }
3174    
3175     void
3176     ev_async_send (EV_P_ ev_async *w)
3177     {
3178     w->sent = 1;
3179 root 1.214 evpipe_write (EV_A_ &gotasync);
3180 root 1.207 }
3181     #endif
3182    
3183 root 1.1 /*****************************************************************************/
3184 root 1.10
3185 root 1.16 struct ev_once
3186     {
3187 root 1.136 ev_io io;
3188     ev_timer to;
3189 root 1.16 void (*cb)(int revents, void *arg);
3190     void *arg;
3191     };
3192    
3193     static void
3194 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3195 root 1.16 {
3196     void (*cb)(int revents, void *arg) = once->cb;
3197     void *arg = once->arg;
3198    
3199 root 1.259 ev_io_stop (EV_A_ &once->io);
3200 root 1.51 ev_timer_stop (EV_A_ &once->to);
3201 root 1.69 ev_free (once);
3202 root 1.16
3203     cb (revents, arg);
3204     }
3205    
3206     static void
3207 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3208 root 1.16 {
3209 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3210    
3211     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3212 root 1.16 }
3213    
3214     static void
3215 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3216 root 1.16 {
3217 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3218    
3219     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3220 root 1.16 }
3221    
3222     void
3223 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3224 root 1.16 {
3225 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3226 root 1.16
3227 root 1.123 if (expect_false (!once))
3228 root 1.16 {
3229 root 1.123 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3230     return;
3231     }
3232    
3233     once->cb = cb;
3234     once->arg = arg;
3235 root 1.16
3236 root 1.123 ev_init (&once->io, once_cb_io);
3237     if (fd >= 0)
3238     {
3239     ev_io_set (&once->io, fd, events);
3240     ev_io_start (EV_A_ &once->io);
3241     }
3242 root 1.16
3243 root 1.123 ev_init (&once->to, once_cb_to);
3244     if (timeout >= 0.)
3245     {
3246     ev_timer_set (&once->to, timeout, 0.);
3247     ev_timer_start (EV_A_ &once->to);
3248 root 1.16 }
3249     }
3250    
3251 root 1.282 /*****************************************************************************/
3252    
3253 root 1.288 #if EV_WALK_ENABLE
3254 root 1.282 void
3255     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3256     {
3257     int i, j;
3258     ev_watcher_list *wl, *wn;
3259    
3260     if (types & (EV_IO | EV_EMBED))
3261     for (i = 0; i < anfdmax; ++i)
3262     for (wl = anfds [i].head; wl; )
3263     {
3264     wn = wl->next;
3265    
3266     #if EV_EMBED_ENABLE
3267     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3268     {
3269     if (types & EV_EMBED)
3270     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3271     }
3272     else
3273     #endif
3274     #if EV_USE_INOTIFY
3275     if (ev_cb ((ev_io *)wl) == infy_cb)
3276     ;
3277     else
3278     #endif
3279 root 1.288 if ((ev_io *)wl != &pipe_w)
3280 root 1.282 if (types & EV_IO)
3281     cb (EV_A_ EV_IO, wl);
3282    
3283     wl = wn;
3284     }
3285    
3286     if (types & (EV_TIMER | EV_STAT))
3287     for (i = timercnt + HEAP0; i-- > HEAP0; )
3288     #if EV_STAT_ENABLE
3289     /*TODO: timer is not always active*/
3290     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3291     {
3292     if (types & EV_STAT)
3293     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3294     }
3295     else
3296     #endif
3297     if (types & EV_TIMER)
3298     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3299    
3300     #if EV_PERIODIC_ENABLE
3301     if (types & EV_PERIODIC)
3302     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3303     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3304     #endif
3305    
3306     #if EV_IDLE_ENABLE
3307     if (types & EV_IDLE)
3308     for (j = NUMPRI; i--; )
3309     for (i = idlecnt [j]; i--; )
3310     cb (EV_A_ EV_IDLE, idles [j][i]);
3311     #endif
3312    
3313     #if EV_FORK_ENABLE
3314     if (types & EV_FORK)
3315     for (i = forkcnt; i--; )
3316     if (ev_cb (forks [i]) != embed_fork_cb)
3317     cb (EV_A_ EV_FORK, forks [i]);
3318     #endif
3319    
3320     #if EV_ASYNC_ENABLE
3321     if (types & EV_ASYNC)
3322     for (i = asynccnt; i--; )
3323     cb (EV_A_ EV_ASYNC, asyncs [i]);
3324     #endif
3325    
3326     if (types & EV_PREPARE)
3327     for (i = preparecnt; i--; )
3328     #if EV_EMBED_ENABLE
3329     if (ev_cb (prepares [i]) != embed_prepare_cb)
3330     #endif
3331     cb (EV_A_ EV_PREPARE, prepares [i]);
3332    
3333     if (types & EV_CHECK)
3334     for (i = checkcnt; i--; )
3335     cb (EV_A_ EV_CHECK, checks [i]);
3336    
3337     if (types & EV_SIGNAL)
3338     for (i = 0; i < signalmax; ++i)
3339     for (wl = signals [i].head; wl; )
3340     {
3341     wn = wl->next;
3342     cb (EV_A_ EV_SIGNAL, wl);
3343     wl = wn;
3344     }
3345    
3346     if (types & EV_CHILD)
3347     for (i = EV_PID_HASHSIZE; i--; )
3348     for (wl = childs [i]; wl; )
3349     {
3350     wn = wl->next;
3351     cb (EV_A_ EV_CHILD, wl);
3352     wl = wn;
3353     }
3354     /* EV_STAT 0x00001000 /* stat data changed */
3355     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3356     }
3357     #endif
3358    
3359 root 1.188 #if EV_MULTIPLICITY
3360     #include "ev_wrap.h"
3361     #endif
3362    
3363 root 1.87 #ifdef __cplusplus
3364     }
3365     #endif
3366