ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.299
Committed: Tue Jul 14 00:09:59 2009 UTC (14 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.298: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.278 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40     #ifdef __cplusplus
41     extern "C" {
42     #endif
43    
44 root 1.220 /* this big block deduces configuration from config.h */
45 root 1.59 #ifndef EV_STANDALONE
46 root 1.133 # ifdef EV_CONFIG_H
47     # include EV_CONFIG_H
48     # else
49     # include "config.h"
50     # endif
51 root 1.60
52 root 1.274 # if HAVE_CLOCK_SYSCALL
53     # ifndef EV_USE_CLOCK_SYSCALL
54     # define EV_USE_CLOCK_SYSCALL 1
55     # ifndef EV_USE_REALTIME
56     # define EV_USE_REALTIME 0
57     # endif
58     # ifndef EV_USE_MONOTONIC
59     # define EV_USE_MONOTONIC 1
60     # endif
61     # endif
62 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
63     # define EV_USE_CLOCK_SYSCALL 0
64 root 1.274 # endif
65    
66 root 1.60 # if HAVE_CLOCK_GETTIME
67 root 1.97 # ifndef EV_USE_MONOTONIC
68     # define EV_USE_MONOTONIC 1
69     # endif
70     # ifndef EV_USE_REALTIME
71 root 1.279 # define EV_USE_REALTIME 0
72 root 1.97 # endif
73 root 1.126 # else
74     # ifndef EV_USE_MONOTONIC
75     # define EV_USE_MONOTONIC 0
76     # endif
77     # ifndef EV_USE_REALTIME
78     # define EV_USE_REALTIME 0
79     # endif
80 root 1.60 # endif
81    
82 root 1.193 # ifndef EV_USE_NANOSLEEP
83     # if HAVE_NANOSLEEP
84     # define EV_USE_NANOSLEEP 1
85     # else
86     # define EV_USE_NANOSLEEP 0
87     # endif
88     # endif
89    
90 root 1.127 # ifndef EV_USE_SELECT
91     # if HAVE_SELECT && HAVE_SYS_SELECT_H
92     # define EV_USE_SELECT 1
93     # else
94     # define EV_USE_SELECT 0
95     # endif
96 root 1.60 # endif
97    
98 root 1.127 # ifndef EV_USE_POLL
99     # if HAVE_POLL && HAVE_POLL_H
100     # define EV_USE_POLL 1
101     # else
102     # define EV_USE_POLL 0
103     # endif
104 root 1.60 # endif
105 root 1.127
106     # ifndef EV_USE_EPOLL
107     # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108     # define EV_USE_EPOLL 1
109     # else
110     # define EV_USE_EPOLL 0
111     # endif
112 root 1.60 # endif
113 root 1.127
114     # ifndef EV_USE_KQUEUE
115     # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116     # define EV_USE_KQUEUE 1
117     # else
118     # define EV_USE_KQUEUE 0
119     # endif
120 root 1.60 # endif
121 root 1.127
122     # ifndef EV_USE_PORT
123     # if HAVE_PORT_H && HAVE_PORT_CREATE
124     # define EV_USE_PORT 1
125     # else
126     # define EV_USE_PORT 0
127     # endif
128 root 1.118 # endif
129    
130 root 1.152 # ifndef EV_USE_INOTIFY
131     # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132     # define EV_USE_INOTIFY 1
133     # else
134     # define EV_USE_INOTIFY 0
135     # endif
136     # endif
137    
138 root 1.220 # ifndef EV_USE_EVENTFD
139     # if HAVE_EVENTFD
140     # define EV_USE_EVENTFD 1
141     # else
142     # define EV_USE_EVENTFD 0
143     # endif
144     # endif
145 root 1.250
146 root 1.29 #endif
147 root 1.17
148 root 1.1 #include <math.h>
149     #include <stdlib.h>
150 root 1.7 #include <fcntl.h>
151 root 1.16 #include <stddef.h>
152 root 1.1
153     #include <stdio.h>
154    
155 root 1.4 #include <assert.h>
156 root 1.1 #include <errno.h>
157 root 1.22 #include <sys/types.h>
158 root 1.71 #include <time.h>
159    
160 root 1.72 #include <signal.h>
161 root 1.71
162 root 1.152 #ifdef EV_H
163     # include EV_H
164     #else
165     # include "ev.h"
166     #endif
167    
168 root 1.103 #ifndef _WIN32
169 root 1.71 # include <sys/time.h>
170 root 1.45 # include <sys/wait.h>
171 root 1.140 # include <unistd.h>
172 root 1.103 #else
173 root 1.256 # include <io.h>
174 root 1.103 # define WIN32_LEAN_AND_MEAN
175     # include <windows.h>
176     # ifndef EV_SELECT_IS_WINSOCKET
177     # define EV_SELECT_IS_WINSOCKET 1
178     # endif
179 root 1.45 #endif
180 root 1.103
181 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
182 root 1.40
183 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
184     # if __linux && __GLIBC__ >= 2
185     # define EV_USE_CLOCK_SYSCALL 1
186     # else
187     # define EV_USE_CLOCK_SYSCALL 0
188     # endif
189     #endif
190    
191 root 1.29 #ifndef EV_USE_MONOTONIC
192 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193     # define EV_USE_MONOTONIC 1
194     # else
195     # define EV_USE_MONOTONIC 0
196     # endif
197 root 1.37 #endif
198    
199 root 1.118 #ifndef EV_USE_REALTIME
200 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201 root 1.118 #endif
202    
203 root 1.193 #ifndef EV_USE_NANOSLEEP
204 root 1.253 # if _POSIX_C_SOURCE >= 199309L
205     # define EV_USE_NANOSLEEP 1
206     # else
207     # define EV_USE_NANOSLEEP 0
208     # endif
209 root 1.193 #endif
210    
211 root 1.29 #ifndef EV_USE_SELECT
212     # define EV_USE_SELECT 1
213 root 1.10 #endif
214    
215 root 1.59 #ifndef EV_USE_POLL
216 root 1.104 # ifdef _WIN32
217     # define EV_USE_POLL 0
218     # else
219     # define EV_USE_POLL 1
220     # endif
221 root 1.41 #endif
222    
223 root 1.29 #ifndef EV_USE_EPOLL
224 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225     # define EV_USE_EPOLL 1
226     # else
227     # define EV_USE_EPOLL 0
228     # endif
229 root 1.10 #endif
230    
231 root 1.44 #ifndef EV_USE_KQUEUE
232     # define EV_USE_KQUEUE 0
233     #endif
234    
235 root 1.118 #ifndef EV_USE_PORT
236     # define EV_USE_PORT 0
237 root 1.40 #endif
238    
239 root 1.152 #ifndef EV_USE_INOTIFY
240 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241     # define EV_USE_INOTIFY 1
242     # else
243     # define EV_USE_INOTIFY 0
244     # endif
245 root 1.152 #endif
246    
247 root 1.149 #ifndef EV_PID_HASHSIZE
248     # if EV_MINIMAL
249     # define EV_PID_HASHSIZE 1
250     # else
251     # define EV_PID_HASHSIZE 16
252     # endif
253     #endif
254    
255 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
256     # if EV_MINIMAL
257     # define EV_INOTIFY_HASHSIZE 1
258     # else
259     # define EV_INOTIFY_HASHSIZE 16
260     # endif
261     #endif
262    
263 root 1.220 #ifndef EV_USE_EVENTFD
264     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265     # define EV_USE_EVENTFD 1
266     # else
267     # define EV_USE_EVENTFD 0
268     # endif
269     #endif
270    
271 root 1.249 #if 0 /* debugging */
272 root 1.250 # define EV_VERIFY 3
273 root 1.249 # define EV_USE_4HEAP 1
274     # define EV_HEAP_CACHE_AT 1
275     #endif
276    
277 root 1.250 #ifndef EV_VERIFY
278     # define EV_VERIFY !EV_MINIMAL
279     #endif
280    
281 root 1.243 #ifndef EV_USE_4HEAP
282     # define EV_USE_4HEAP !EV_MINIMAL
283     #endif
284    
285     #ifndef EV_HEAP_CACHE_AT
286     # define EV_HEAP_CACHE_AT !EV_MINIMAL
287     #endif
288    
289 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290     /* which makes programs even slower. might work on other unices, too. */
291     #if EV_USE_CLOCK_SYSCALL
292     # include <syscall.h>
293     # ifdef SYS_clock_gettime
294     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295     # undef EV_USE_MONOTONIC
296     # define EV_USE_MONOTONIC 1
297     # else
298     # undef EV_USE_CLOCK_SYSCALL
299     # define EV_USE_CLOCK_SYSCALL 0
300     # endif
301     #endif
302    
303 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
304 root 1.40
305     #ifndef CLOCK_MONOTONIC
306     # undef EV_USE_MONOTONIC
307     # define EV_USE_MONOTONIC 0
308     #endif
309    
310 root 1.31 #ifndef CLOCK_REALTIME
311 root 1.40 # undef EV_USE_REALTIME
312 root 1.31 # define EV_USE_REALTIME 0
313     #endif
314 root 1.40
315 root 1.152 #if !EV_STAT_ENABLE
316 root 1.185 # undef EV_USE_INOTIFY
317 root 1.152 # define EV_USE_INOTIFY 0
318     #endif
319    
320 root 1.193 #if !EV_USE_NANOSLEEP
321     # ifndef _WIN32
322     # include <sys/select.h>
323     # endif
324     #endif
325    
326 root 1.152 #if EV_USE_INOTIFY
327 root 1.264 # include <sys/utsname.h>
328 root 1.273 # include <sys/statfs.h>
329 root 1.152 # include <sys/inotify.h>
330 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331     # ifndef IN_DONT_FOLLOW
332     # undef EV_USE_INOTIFY
333     # define EV_USE_INOTIFY 0
334     # endif
335 root 1.152 #endif
336    
337 root 1.185 #if EV_SELECT_IS_WINSOCKET
338     # include <winsock.h>
339     #endif
340    
341 root 1.220 #if EV_USE_EVENTFD
342     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343 root 1.221 # include <stdint.h>
344 root 1.222 # ifdef __cplusplus
345     extern "C" {
346     # endif
347 root 1.220 int eventfd (unsigned int initval, int flags);
348 root 1.222 # ifdef __cplusplus
349     }
350     # endif
351 root 1.220 #endif
352    
353 root 1.40 /**/
354 root 1.1
355 root 1.250 #if EV_VERIFY >= 3
356 root 1.248 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357     #else
358     # define EV_FREQUENT_CHECK do { } while (0)
359     #endif
360    
361 root 1.176 /*
362     * This is used to avoid floating point rounding problems.
363     * It is added to ev_rt_now when scheduling periodics
364     * to ensure progress, time-wise, even when rounding
365     * errors are against us.
366 root 1.177 * This value is good at least till the year 4000.
367 root 1.176 * Better solutions welcome.
368     */
369     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370    
371 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
372 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
373 root 1.176 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
374 root 1.1
375 root 1.185 #if __GNUC__ >= 4
376 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
377 root 1.169 # define noinline __attribute__ ((noinline))
378 root 1.40 #else
379     # define expect(expr,value) (expr)
380 root 1.140 # define noinline
381 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382 root 1.169 # define inline
383     # endif
384 root 1.40 #endif
385    
386     #define expect_false(expr) expect ((expr) != 0, 0)
387     #define expect_true(expr) expect ((expr) != 0, 1)
388 root 1.169 #define inline_size static inline
389    
390     #if EV_MINIMAL
391     # define inline_speed static noinline
392     #else
393     # define inline_speed static inline
394     #endif
395 root 1.40
396 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397    
398     #if EV_MINPRI == EV_MAXPRI
399     # define ABSPRI(w) (((W)w), 0)
400     #else
401     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402     #endif
403 root 1.42
404 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
405 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
406 root 1.103
407 root 1.136 typedef ev_watcher *W;
408     typedef ev_watcher_list *WL;
409     typedef ev_watcher_time *WT;
410 root 1.10
411 root 1.229 #define ev_active(w) ((W)(w))->active
412 root 1.228 #define ev_at(w) ((WT)(w))->at
413    
414 root 1.279 #if EV_USE_REALTIME
415 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
416     /* giving it a reasonably high chance of working on typical architetcures */
417 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418     #endif
419    
420     #if EV_USE_MONOTONIC
421 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422 root 1.198 #endif
423 root 1.54
424 root 1.103 #ifdef _WIN32
425 root 1.98 # include "ev_win32.c"
426     #endif
427 root 1.67
428 root 1.53 /*****************************************************************************/
429 root 1.1
430 root 1.70 static void (*syserr_cb)(const char *msg);
431 root 1.69
432 root 1.141 void
433     ev_set_syserr_cb (void (*cb)(const char *msg))
434 root 1.69 {
435     syserr_cb = cb;
436     }
437    
438 root 1.141 static void noinline
439 root 1.269 ev_syserr (const char *msg)
440 root 1.69 {
441 root 1.70 if (!msg)
442     msg = "(libev) system error";
443    
444 root 1.69 if (syserr_cb)
445 root 1.70 syserr_cb (msg);
446 root 1.69 else
447     {
448 root 1.70 perror (msg);
449 root 1.69 abort ();
450     }
451     }
452    
453 root 1.224 static void *
454     ev_realloc_emul (void *ptr, long size)
455     {
456     /* some systems, notably openbsd and darwin, fail to properly
457     * implement realloc (x, 0) (as required by both ansi c-98 and
458     * the single unix specification, so work around them here.
459     */
460    
461     if (size)
462     return realloc (ptr, size);
463    
464     free (ptr);
465     return 0;
466     }
467    
468     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
469 root 1.69
470 root 1.141 void
471 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
472 root 1.69 {
473     alloc = cb;
474     }
475    
476 root 1.150 inline_speed void *
477 root 1.155 ev_realloc (void *ptr, long size)
478 root 1.69 {
479 root 1.224 ptr = alloc (ptr, size);
480 root 1.69
481     if (!ptr && size)
482     {
483 root 1.155 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
484 root 1.69 abort ();
485     }
486    
487     return ptr;
488     }
489    
490     #define ev_malloc(size) ev_realloc (0, (size))
491     #define ev_free(ptr) ev_realloc ((ptr), 0)
492    
493     /*****************************************************************************/
494    
495 root 1.298 /* set in reify when reification needed */
496     #define EV_ANFD_REIFY 1
497    
498 root 1.288 /* file descriptor info structure */
499 root 1.53 typedef struct
500     {
501 root 1.68 WL head;
502 root 1.288 unsigned char events; /* the events watched for */
503 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
505 root 1.269 unsigned char unused;
506     #if EV_USE_EPOLL
507 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
508 root 1.269 #endif
509 root 1.103 #if EV_SELECT_IS_WINSOCKET
510     SOCKET handle;
511     #endif
512 root 1.53 } ANFD;
513 root 1.1
514 root 1.288 /* stores the pending event set for a given watcher */
515 root 1.53 typedef struct
516     {
517     W w;
518 root 1.288 int events; /* the pending event set for the given watcher */
519 root 1.53 } ANPENDING;
520 root 1.51
521 root 1.155 #if EV_USE_INOTIFY
522 root 1.241 /* hash table entry per inotify-id */
523 root 1.152 typedef struct
524     {
525     WL head;
526 root 1.155 } ANFS;
527 root 1.152 #endif
528    
529 root 1.241 /* Heap Entry */
530     #if EV_HEAP_CACHE_AT
531 root 1.288 /* a heap element */
532 root 1.241 typedef struct {
533 root 1.243 ev_tstamp at;
534 root 1.241 WT w;
535     } ANHE;
536    
537 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
538     #define ANHE_at(he) (he).at /* access cached at, read-only */
539     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540 root 1.241 #else
541 root 1.288 /* a heap element */
542 root 1.241 typedef WT ANHE;
543    
544 root 1.248 #define ANHE_w(he) (he)
545     #define ANHE_at(he) (he)->at
546     #define ANHE_at_cache(he)
547 root 1.241 #endif
548    
549 root 1.55 #if EV_MULTIPLICITY
550 root 1.54
551 root 1.80 struct ev_loop
552     {
553 root 1.86 ev_tstamp ev_rt_now;
554 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
555 root 1.80 #define VAR(name,decl) decl;
556     #include "ev_vars.h"
557     #undef VAR
558     };
559     #include "ev_wrap.h"
560    
561 root 1.116 static struct ev_loop default_loop_struct;
562     struct ev_loop *ev_default_loop_ptr;
563 root 1.54
564 root 1.53 #else
565 root 1.54
566 root 1.86 ev_tstamp ev_rt_now;
567 root 1.80 #define VAR(name,decl) static decl;
568     #include "ev_vars.h"
569     #undef VAR
570    
571 root 1.116 static int ev_default_loop_ptr;
572 root 1.54
573 root 1.51 #endif
574 root 1.1
575 root 1.297 #if EV_MINIMAL < 2
576 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
579     #else
580 root 1.298 # define EV_RELEASE_CB (void)0
581     # define EV_ACQUIRE_CB (void)0
582 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583     #endif
584    
585 root 1.298 #define EVUNLOOP_RECURSE 0x80
586    
587 root 1.8 /*****************************************************************************/
588    
589 root 1.292 #ifndef EV_HAVE_EV_TIME
590 root 1.141 ev_tstamp
591 root 1.1 ev_time (void)
592     {
593 root 1.29 #if EV_USE_REALTIME
594 root 1.279 if (expect_true (have_realtime))
595     {
596     struct timespec ts;
597     clock_gettime (CLOCK_REALTIME, &ts);
598     return ts.tv_sec + ts.tv_nsec * 1e-9;
599     }
600     #endif
601    
602 root 1.1 struct timeval tv;
603     gettimeofday (&tv, 0);
604     return tv.tv_sec + tv.tv_usec * 1e-6;
605     }
606 root 1.292 #endif
607 root 1.1
608 root 1.284 inline_size ev_tstamp
609 root 1.1 get_clock (void)
610     {
611 root 1.29 #if EV_USE_MONOTONIC
612 root 1.40 if (expect_true (have_monotonic))
613 root 1.1 {
614     struct timespec ts;
615     clock_gettime (CLOCK_MONOTONIC, &ts);
616     return ts.tv_sec + ts.tv_nsec * 1e-9;
617     }
618     #endif
619    
620     return ev_time ();
621     }
622    
623 root 1.85 #if EV_MULTIPLICITY
624 root 1.51 ev_tstamp
625     ev_now (EV_P)
626     {
627 root 1.85 return ev_rt_now;
628 root 1.51 }
629 root 1.85 #endif
630 root 1.51
631 root 1.193 void
632     ev_sleep (ev_tstamp delay)
633     {
634     if (delay > 0.)
635     {
636     #if EV_USE_NANOSLEEP
637     struct timespec ts;
638    
639     ts.tv_sec = (time_t)delay;
640     ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
641    
642     nanosleep (&ts, 0);
643     #elif defined(_WIN32)
644 root 1.217 Sleep ((unsigned long)(delay * 1e3));
645 root 1.193 #else
646     struct timeval tv;
647    
648     tv.tv_sec = (time_t)delay;
649     tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
650    
651 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 root 1.293 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 root 1.257 /* by older ones */
654 root 1.193 select (0, 0, 0, 0, &tv);
655     #endif
656     }
657     }
658    
659     /*****************************************************************************/
660    
661 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
662 root 1.232
663 root 1.288 /* find a suitable new size for the given array, */
664     /* hopefully by rounding to a ncie-to-malloc size */
665 root 1.284 inline_size int
666 root 1.163 array_nextsize (int elem, int cur, int cnt)
667     {
668     int ncur = cur + 1;
669    
670     do
671     ncur <<= 1;
672     while (cnt > ncur);
673    
674 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
675     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
676 root 1.163 {
677     ncur *= elem;
678 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
679 root 1.163 ncur = ncur - sizeof (void *) * 4;
680     ncur /= elem;
681     }
682    
683     return ncur;
684     }
685    
686 root 1.171 static noinline void *
687 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
688     {
689     *cur = array_nextsize (elem, *cur, cnt);
690     return ev_realloc (base, elem * *cur);
691     }
692 root 1.29
693 root 1.265 #define array_init_zero(base,count) \
694     memset ((void *)(base), 0, sizeof (*(base)) * (count))
695    
696 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
697 root 1.163 if (expect_false ((cnt) > (cur))) \
698 root 1.69 { \
699 root 1.163 int ocur_ = (cur); \
700     (base) = (type *)array_realloc \
701     (sizeof (type), (base), &(cur), (cnt)); \
702     init ((base) + (ocur_), (cur) - ocur_); \
703 root 1.1 }
704    
705 root 1.163 #if 0
706 root 1.74 #define array_slim(type,stem) \
707 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
708     { \
709     stem ## max = array_roundsize (stem ## cnt >> 1); \
710 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
711 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
712     }
713 root 1.163 #endif
714 root 1.67
715 root 1.65 #define array_free(stem, idx) \
716 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
717 root 1.65
718 root 1.8 /*****************************************************************************/
719    
720 root 1.288 /* dummy callback for pending events */
721     static void noinline
722     pendingcb (EV_P_ ev_prepare *w, int revents)
723     {
724     }
725    
726 root 1.140 void noinline
727 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
728 root 1.1 {
729 root 1.78 W w_ = (W)w;
730 root 1.171 int pri = ABSPRI (w_);
731 root 1.78
732 root 1.123 if (expect_false (w_->pending))
733 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
734     else
735 root 1.32 {
736 root 1.171 w_->pending = ++pendingcnt [pri];
737     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
738     pendings [pri][w_->pending - 1].w = w_;
739     pendings [pri][w_->pending - 1].events = revents;
740 root 1.32 }
741 root 1.1 }
742    
743 root 1.284 inline_speed void
744     feed_reverse (EV_P_ W w)
745     {
746     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747     rfeeds [rfeedcnt++] = w;
748     }
749    
750     inline_size void
751     feed_reverse_done (EV_P_ int revents)
752     {
753     do
754     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755     while (rfeedcnt);
756     }
757    
758     inline_speed void
759 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
760 root 1.27 {
761     int i;
762    
763     for (i = 0; i < eventcnt; ++i)
764 root 1.78 ev_feed_event (EV_A_ events [i], type);
765 root 1.27 }
766    
767 root 1.141 /*****************************************************************************/
768    
769 root 1.284 inline_speed void
770 root 1.298 fd_event_nc (EV_P_ int fd, int revents)
771 root 1.1 {
772     ANFD *anfd = anfds + fd;
773 root 1.136 ev_io *w;
774 root 1.1
775 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
776 root 1.1 {
777 root 1.79 int ev = w->events & revents;
778 root 1.1
779     if (ev)
780 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
781 root 1.1 }
782     }
783    
784 root 1.298 /* do not submit kernel events for fds that have reify set */
785     /* because that means they changed while we were polling for new events */
786     inline_speed void
787     fd_event (EV_P_ int fd, int revents)
788     {
789     ANFD *anfd = anfds + fd;
790    
791     if (expect_true (!anfd->reify))
792     fd_event_nc (EV_A_ fd, revents);
793     }
794    
795 root 1.79 void
796     ev_feed_fd_event (EV_P_ int fd, int revents)
797     {
798 root 1.168 if (fd >= 0 && fd < anfdmax)
799 root 1.298 fd_event_nc (EV_A_ fd, revents);
800 root 1.79 }
801    
802 root 1.288 /* make sure the external fd watch events are in-sync */
803     /* with the kernel/libev internal state */
804 root 1.284 inline_size void
805 root 1.51 fd_reify (EV_P)
806 root 1.9 {
807     int i;
808    
809 root 1.27 for (i = 0; i < fdchangecnt; ++i)
810     {
811     int fd = fdchanges [i];
812     ANFD *anfd = anfds + fd;
813 root 1.136 ev_io *w;
814 root 1.27
815 root 1.184 unsigned char events = 0;
816 root 1.27
817 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
818 root 1.184 events |= (unsigned char)w->events;
819 root 1.27
820 root 1.103 #if EV_SELECT_IS_WINSOCKET
821     if (events)
822     {
823 root 1.254 unsigned long arg;
824 root 1.200 #ifdef EV_FD_TO_WIN32_HANDLE
825     anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
826     #else
827     anfd->handle = _get_osfhandle (fd);
828     #endif
829 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
830 root 1.103 }
831     #endif
832    
833 root 1.184 {
834     unsigned char o_events = anfd->events;
835     unsigned char o_reify = anfd->reify;
836    
837     anfd->reify = 0;
838     anfd->events = events;
839 root 1.27
840 root 1.281 if (o_events != events || o_reify & EV__IOFDSET)
841 root 1.184 backend_modify (EV_A_ fd, o_events, events);
842     }
843 root 1.27 }
844    
845     fdchangecnt = 0;
846     }
847    
848 root 1.288 /* something about the given fd changed */
849 root 1.284 inline_size void
850 root 1.183 fd_change (EV_P_ int fd, int flags)
851 root 1.27 {
852 root 1.183 unsigned char reify = anfds [fd].reify;
853 root 1.184 anfds [fd].reify |= flags;
854 root 1.27
855 root 1.183 if (expect_true (!reify))
856     {
857     ++fdchangecnt;
858     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
859     fdchanges [fdchangecnt - 1] = fd;
860     }
861 root 1.9 }
862    
863 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864 root 1.284 inline_speed void
865 root 1.51 fd_kill (EV_P_ int fd)
866 root 1.41 {
867 root 1.136 ev_io *w;
868 root 1.41
869 root 1.136 while ((w = (ev_io *)anfds [fd].head))
870 root 1.41 {
871 root 1.51 ev_io_stop (EV_A_ w);
872 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
873 root 1.41 }
874     }
875    
876 root 1.288 /* check whether the given fd is atcually valid, for error recovery */
877 root 1.284 inline_size int
878 root 1.71 fd_valid (int fd)
879     {
880 root 1.103 #ifdef _WIN32
881     return _get_osfhandle (fd) != -1;
882 root 1.71 #else
883     return fcntl (fd, F_GETFD) != -1;
884     #endif
885     }
886    
887 root 1.19 /* called on EBADF to verify fds */
888 root 1.140 static void noinline
889 root 1.51 fd_ebadf (EV_P)
890 root 1.19 {
891     int fd;
892    
893     for (fd = 0; fd < anfdmax; ++fd)
894 root 1.27 if (anfds [fd].events)
895 root 1.254 if (!fd_valid (fd) && errno == EBADF)
896 root 1.51 fd_kill (EV_A_ fd);
897 root 1.41 }
898    
899     /* called on ENOMEM in select/poll to kill some fds and retry */
900 root 1.140 static void noinline
901 root 1.51 fd_enomem (EV_P)
902 root 1.41 {
903 root 1.62 int fd;
904 root 1.41
905 root 1.62 for (fd = anfdmax; fd--; )
906 root 1.41 if (anfds [fd].events)
907     {
908 root 1.51 fd_kill (EV_A_ fd);
909 root 1.41 return;
910     }
911 root 1.19 }
912    
913 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
914 root 1.140 static void noinline
915 root 1.56 fd_rearm_all (EV_P)
916     {
917     int fd;
918    
919     for (fd = 0; fd < anfdmax; ++fd)
920     if (anfds [fd].events)
921     {
922     anfds [fd].events = 0;
923 root 1.268 anfds [fd].emask = 0;
924 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
925 root 1.56 }
926     }
927    
928 root 1.8 /*****************************************************************************/
929    
930 root 1.235 /*
931 root 1.241 * the heap functions want a real array index. array index 0 uis guaranteed to not
932     * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
933     * the branching factor of the d-tree.
934     */
935    
936     /*
937 root 1.235 * at the moment we allow libev the luxury of two heaps,
938     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
939     * which is more cache-efficient.
940     * the difference is about 5% with 50000+ watchers.
941     */
942 root 1.241 #if EV_USE_4HEAP
943 root 1.235
944 root 1.237 #define DHEAP 4
945     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
946 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
948 root 1.235
949     /* away from the root */
950 root 1.284 inline_speed void
951 root 1.241 downheap (ANHE *heap, int N, int k)
952 root 1.235 {
953 root 1.241 ANHE he = heap [k];
954     ANHE *E = heap + N + HEAP0;
955 root 1.235
956     for (;;)
957     {
958     ev_tstamp minat;
959 root 1.241 ANHE *minpos;
960 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
961 root 1.235
962 root 1.248 /* find minimum child */
963 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
964 root 1.235 {
965 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
966     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 root 1.235 }
970 root 1.240 else if (pos < E)
971 root 1.235 {
972 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 root 1.235 }
977 root 1.240 else
978     break;
979 root 1.235
980 root 1.241 if (ANHE_at (he) <= minat)
981 root 1.235 break;
982    
983 root 1.247 heap [k] = *minpos;
984 root 1.241 ev_active (ANHE_w (*minpos)) = k;
985 root 1.235
986     k = minpos - heap;
987     }
988    
989 root 1.247 heap [k] = he;
990 root 1.241 ev_active (ANHE_w (he)) = k;
991 root 1.235 }
992    
993 root 1.248 #else /* 4HEAP */
994 root 1.235
995     #define HEAP0 1
996 root 1.247 #define HPARENT(k) ((k) >> 1)
997 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
998 root 1.235
999 root 1.248 /* away from the root */
1000 root 1.284 inline_speed void
1001 root 1.248 downheap (ANHE *heap, int N, int k)
1002 root 1.1 {
1003 root 1.241 ANHE he = heap [k];
1004 root 1.1
1005 root 1.228 for (;;)
1006 root 1.1 {
1007 root 1.248 int c = k << 1;
1008 root 1.179
1009 root 1.248 if (c > N + HEAP0 - 1)
1010 root 1.179 break;
1011    
1012 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013     ? 1 : 0;
1014    
1015     if (ANHE_at (he) <= ANHE_at (heap [c]))
1016     break;
1017    
1018     heap [k] = heap [c];
1019 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1020 root 1.248
1021     k = c;
1022 root 1.1 }
1023    
1024 root 1.243 heap [k] = he;
1025 root 1.248 ev_active (ANHE_w (he)) = k;
1026 root 1.1 }
1027 root 1.248 #endif
1028 root 1.1
1029 root 1.248 /* towards the root */
1030 root 1.284 inline_speed void
1031 root 1.248 upheap (ANHE *heap, int k)
1032 root 1.1 {
1033 root 1.241 ANHE he = heap [k];
1034 root 1.1
1035 root 1.179 for (;;)
1036 root 1.1 {
1037 root 1.248 int p = HPARENT (k);
1038 root 1.179
1039 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1040 root 1.179 break;
1041 root 1.1
1042 root 1.248 heap [k] = heap [p];
1043 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1044 root 1.248 k = p;
1045 root 1.1 }
1046    
1047 root 1.241 heap [k] = he;
1048     ev_active (ANHE_w (he)) = k;
1049 root 1.1 }
1050    
1051 root 1.288 /* move an element suitably so it is in a correct place */
1052 root 1.284 inline_size void
1053 root 1.241 adjustheap (ANHE *heap, int N, int k)
1054 root 1.84 {
1055 root 1.247 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1056     upheap (heap, k);
1057     else
1058     downheap (heap, N, k);
1059 root 1.84 }
1060    
1061 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1062 root 1.284 inline_size void
1063 root 1.248 reheap (ANHE *heap, int N)
1064     {
1065     int i;
1066 root 1.251
1067 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069     for (i = 0; i < N; ++i)
1070     upheap (heap, i + HEAP0);
1071     }
1072    
1073 root 1.8 /*****************************************************************************/
1074    
1075 root 1.288 /* associate signal watchers to a signal signal */
1076 root 1.7 typedef struct
1077     {
1078 root 1.68 WL head;
1079 root 1.207 EV_ATOMIC_T gotsig;
1080 root 1.7 } ANSIG;
1081    
1082     static ANSIG *signals;
1083 root 1.4 static int signalmax;
1084 root 1.1
1085 root 1.207 static EV_ATOMIC_T gotsig;
1086 root 1.7
1087 root 1.207 /*****************************************************************************/
1088    
1089 root 1.288 /* used to prepare libev internal fd's */
1090     /* this is not fork-safe */
1091 root 1.284 inline_speed void
1092 root 1.207 fd_intern (int fd)
1093     {
1094     #ifdef _WIN32
1095 root 1.254 unsigned long arg = 1;
1096 root 1.207 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1097     #else
1098     fcntl (fd, F_SETFD, FD_CLOEXEC);
1099     fcntl (fd, F_SETFL, O_NONBLOCK);
1100     #endif
1101     }
1102    
1103     static void noinline
1104     evpipe_init (EV_P)
1105     {
1106 root 1.288 if (!ev_is_active (&pipe_w))
1107 root 1.207 {
1108 root 1.220 #if EV_USE_EVENTFD
1109     if ((evfd = eventfd (0, 0)) >= 0)
1110     {
1111     evpipe [0] = -1;
1112     fd_intern (evfd);
1113 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1114 root 1.220 }
1115     else
1116     #endif
1117     {
1118     while (pipe (evpipe))
1119 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1120 root 1.207
1121 root 1.220 fd_intern (evpipe [0]);
1122     fd_intern (evpipe [1]);
1123 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1124 root 1.220 }
1125 root 1.207
1126 root 1.288 ev_io_start (EV_A_ &pipe_w);
1127 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1128 root 1.207 }
1129     }
1130    
1131 root 1.284 inline_size void
1132 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1133 root 1.207 {
1134 root 1.214 if (!*flag)
1135 root 1.207 {
1136 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1137 root 1.214
1138     *flag = 1;
1139 root 1.220
1140     #if EV_USE_EVENTFD
1141     if (evfd >= 0)
1142     {
1143     uint64_t counter = 1;
1144     write (evfd, &counter, sizeof (uint64_t));
1145     }
1146     else
1147     #endif
1148     write (evpipe [1], &old_errno, 1);
1149 root 1.214
1150 root 1.207 errno = old_errno;
1151     }
1152     }
1153    
1154 root 1.288 /* called whenever the libev signal pipe */
1155     /* got some events (signal, async) */
1156 root 1.207 static void
1157     pipecb (EV_P_ ev_io *iow, int revents)
1158     {
1159 root 1.220 #if EV_USE_EVENTFD
1160     if (evfd >= 0)
1161     {
1162 root 1.232 uint64_t counter;
1163 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1164     }
1165     else
1166     #endif
1167     {
1168     char dummy;
1169     read (evpipe [0], &dummy, 1);
1170     }
1171 root 1.207
1172 root 1.211 if (gotsig && ev_is_default_loop (EV_A))
1173 root 1.207 {
1174     int signum;
1175     gotsig = 0;
1176    
1177     for (signum = signalmax; signum--; )
1178     if (signals [signum].gotsig)
1179     ev_feed_signal_event (EV_A_ signum + 1);
1180     }
1181    
1182 root 1.209 #if EV_ASYNC_ENABLE
1183 root 1.207 if (gotasync)
1184     {
1185     int i;
1186     gotasync = 0;
1187    
1188     for (i = asynccnt; i--; )
1189     if (asyncs [i]->sent)
1190     {
1191     asyncs [i]->sent = 0;
1192     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1193     }
1194     }
1195 root 1.209 #endif
1196 root 1.207 }
1197    
1198     /*****************************************************************************/
1199    
1200 root 1.7 static void
1201 root 1.218 ev_sighandler (int signum)
1202 root 1.7 {
1203 root 1.207 #if EV_MULTIPLICITY
1204     struct ev_loop *loop = &default_loop_struct;
1205     #endif
1206    
1207 root 1.103 #if _WIN32
1208 root 1.218 signal (signum, ev_sighandler);
1209 root 1.67 #endif
1210    
1211 root 1.7 signals [signum - 1].gotsig = 1;
1212 root 1.214 evpipe_write (EV_A_ &gotsig);
1213 root 1.7 }
1214    
1215 root 1.140 void noinline
1216 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1217     {
1218 root 1.80 WL w;
1219    
1220 root 1.79 #if EV_MULTIPLICITY
1221 root 1.278 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1222 root 1.79 #endif
1223    
1224     --signum;
1225    
1226     if (signum < 0 || signum >= signalmax)
1227     return;
1228    
1229     signals [signum].gotsig = 0;
1230    
1231     for (w = signals [signum].head; w; w = w->next)
1232     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1233     }
1234    
1235 root 1.8 /*****************************************************************************/
1236    
1237 root 1.182 static WL childs [EV_PID_HASHSIZE];
1238 root 1.71
1239 root 1.103 #ifndef _WIN32
1240 root 1.45
1241 root 1.136 static ev_signal childev;
1242 root 1.59
1243 root 1.206 #ifndef WIFCONTINUED
1244     # define WIFCONTINUED(status) 0
1245     #endif
1246    
1247 root 1.288 /* handle a single child status event */
1248 root 1.284 inline_speed void
1249 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1250 root 1.47 {
1251 root 1.136 ev_child *w;
1252 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1253 root 1.47
1254 root 1.149 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1255 root 1.206 {
1256     if ((w->pid == pid || !w->pid)
1257     && (!traced || (w->flags & 1)))
1258     {
1259 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1260 root 1.206 w->rpid = pid;
1261     w->rstatus = status;
1262     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1263     }
1264     }
1265 root 1.47 }
1266    
1267 root 1.142 #ifndef WCONTINUED
1268     # define WCONTINUED 0
1269     #endif
1270    
1271 root 1.288 /* called on sigchld etc., calls waitpid */
1272 root 1.47 static void
1273 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1274 root 1.22 {
1275     int pid, status;
1276    
1277 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1278     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1279     if (!WCONTINUED
1280     || errno != EINVAL
1281     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1282     return;
1283    
1284 root 1.216 /* make sure we are called again until all children have been reaped */
1285 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1286     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1287 root 1.47
1288 root 1.216 child_reap (EV_A_ pid, pid, status);
1289 root 1.149 if (EV_PID_HASHSIZE > 1)
1290 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1291 root 1.22 }
1292    
1293 root 1.45 #endif
1294    
1295 root 1.22 /*****************************************************************************/
1296    
1297 root 1.118 #if EV_USE_PORT
1298     # include "ev_port.c"
1299     #endif
1300 root 1.44 #if EV_USE_KQUEUE
1301     # include "ev_kqueue.c"
1302     #endif
1303 root 1.29 #if EV_USE_EPOLL
1304 root 1.1 # include "ev_epoll.c"
1305     #endif
1306 root 1.59 #if EV_USE_POLL
1307 root 1.41 # include "ev_poll.c"
1308     #endif
1309 root 1.29 #if EV_USE_SELECT
1310 root 1.1 # include "ev_select.c"
1311     #endif
1312    
1313 root 1.24 int
1314     ev_version_major (void)
1315     {
1316     return EV_VERSION_MAJOR;
1317     }
1318    
1319     int
1320     ev_version_minor (void)
1321     {
1322     return EV_VERSION_MINOR;
1323     }
1324    
1325 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1326 root 1.140 int inline_size
1327 root 1.51 enable_secure (void)
1328 root 1.41 {
1329 root 1.103 #ifdef _WIN32
1330 root 1.49 return 0;
1331     #else
1332 root 1.41 return getuid () != geteuid ()
1333     || getgid () != getegid ();
1334 root 1.49 #endif
1335 root 1.41 }
1336    
1337 root 1.111 unsigned int
1338 root 1.129 ev_supported_backends (void)
1339     {
1340 root 1.130 unsigned int flags = 0;
1341 root 1.129
1342     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1343     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1344     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1345     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1346     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1347    
1348     return flags;
1349     }
1350    
1351     unsigned int
1352 root 1.130 ev_recommended_backends (void)
1353 root 1.1 {
1354 root 1.131 unsigned int flags = ev_supported_backends ();
1355 root 1.129
1356     #ifndef __NetBSD__
1357     /* kqueue is borked on everything but netbsd apparently */
1358     /* it usually doesn't work correctly on anything but sockets and pipes */
1359     flags &= ~EVBACKEND_KQUEUE;
1360     #endif
1361     #ifdef __APPLE__
1362 root 1.278 /* only select works correctly on that "unix-certified" platform */
1363     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1365 root 1.129 #endif
1366    
1367     return flags;
1368 root 1.51 }
1369    
1370 root 1.130 unsigned int
1371 root 1.134 ev_embeddable_backends (void)
1372     {
1373 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1374    
1375 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1376 root 1.196 /* please fix it and tell me how to detect the fix */
1377     flags &= ~EVBACKEND_EPOLL;
1378    
1379     return flags;
1380 root 1.134 }
1381    
1382     unsigned int
1383 root 1.130 ev_backend (EV_P)
1384     {
1385     return backend;
1386     }
1387    
1388 root 1.297 #if EV_MINIMAL < 2
1389 root 1.162 unsigned int
1390     ev_loop_count (EV_P)
1391     {
1392     return loop_count;
1393     }
1394    
1395 root 1.294 unsigned int
1396     ev_loop_depth (EV_P)
1397     {
1398     return loop_depth;
1399     }
1400    
1401 root 1.193 void
1402     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1403     {
1404     io_blocktime = interval;
1405     }
1406    
1407     void
1408     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1409     {
1410     timeout_blocktime = interval;
1411     }
1412    
1413 root 1.297 void
1414     ev_set_userdata (EV_P_ void *data)
1415     {
1416     userdata = data;
1417     }
1418    
1419     void *
1420     ev_userdata (EV_P)
1421     {
1422     return userdata;
1423     }
1424    
1425     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426     {
1427     invoke_cb = invoke_pending_cb;
1428     }
1429    
1430 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431 root 1.297 {
1432 root 1.298 release_cb = release;
1433     acquire_cb = acquire;
1434 root 1.297 }
1435     #endif
1436    
1437 root 1.288 /* initialise a loop structure, must be zero-initialised */
1438 root 1.151 static void noinline
1439 root 1.108 loop_init (EV_P_ unsigned int flags)
1440 root 1.51 {
1441 root 1.130 if (!backend)
1442 root 1.23 {
1443 root 1.279 #if EV_USE_REALTIME
1444     if (!have_realtime)
1445     {
1446     struct timespec ts;
1447    
1448     if (!clock_gettime (CLOCK_REALTIME, &ts))
1449     have_realtime = 1;
1450     }
1451     #endif
1452    
1453 root 1.29 #if EV_USE_MONOTONIC
1454 root 1.279 if (!have_monotonic)
1455     {
1456     struct timespec ts;
1457    
1458     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1459     have_monotonic = 1;
1460     }
1461 root 1.1 #endif
1462    
1463 root 1.209 ev_rt_now = ev_time ();
1464     mn_now = get_clock ();
1465     now_floor = mn_now;
1466     rtmn_diff = ev_rt_now - mn_now;
1467 root 1.297 #if EV_MINIMAL < 2
1468 root 1.296 invoke_cb = ev_invoke_pending;
1469 root 1.297 #endif
1470 root 1.1
1471 root 1.193 io_blocktime = 0.;
1472     timeout_blocktime = 0.;
1473 root 1.209 backend = 0;
1474     backend_fd = -1;
1475     gotasync = 0;
1476     #if EV_USE_INOTIFY
1477     fs_fd = -2;
1478     #endif
1479 root 1.193
1480 root 1.158 /* pid check not overridable via env */
1481     #ifndef _WIN32
1482     if (flags & EVFLAG_FORKCHECK)
1483     curpid = getpid ();
1484     #endif
1485    
1486 root 1.128 if (!(flags & EVFLAG_NOENV)
1487     && !enable_secure ()
1488     && getenv ("LIBEV_FLAGS"))
1489 root 1.108 flags = atoi (getenv ("LIBEV_FLAGS"));
1490    
1491 root 1.225 if (!(flags & 0x0000ffffU))
1492 root 1.129 flags |= ev_recommended_backends ();
1493 root 1.41
1494 root 1.118 #if EV_USE_PORT
1495 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1496 root 1.118 #endif
1497 root 1.44 #if EV_USE_KQUEUE
1498 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1499 root 1.44 #endif
1500 root 1.29 #if EV_USE_EPOLL
1501 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1502 root 1.41 #endif
1503 root 1.59 #if EV_USE_POLL
1504 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1505 root 1.1 #endif
1506 root 1.29 #if EV_USE_SELECT
1507 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1508 root 1.1 #endif
1509 root 1.70
1510 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1511    
1512     ev_init (&pipe_w, pipecb);
1513     ev_set_priority (&pipe_w, EV_MAXPRI);
1514 root 1.56 }
1515     }
1516    
1517 root 1.288 /* free up a loop structure */
1518 root 1.151 static void noinline
1519 root 1.56 loop_destroy (EV_P)
1520     {
1521 root 1.65 int i;
1522    
1523 root 1.288 if (ev_is_active (&pipe_w))
1524 root 1.207 {
1525     ev_ref (EV_A); /* signal watcher */
1526 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1527 root 1.207
1528 root 1.220 #if EV_USE_EVENTFD
1529     if (evfd >= 0)
1530     close (evfd);
1531     #endif
1532    
1533     if (evpipe [0] >= 0)
1534     {
1535     close (evpipe [0]);
1536     close (evpipe [1]);
1537     }
1538 root 1.207 }
1539    
1540 root 1.152 #if EV_USE_INOTIFY
1541     if (fs_fd >= 0)
1542     close (fs_fd);
1543     #endif
1544    
1545     if (backend_fd >= 0)
1546     close (backend_fd);
1547    
1548 root 1.118 #if EV_USE_PORT
1549 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1550 root 1.118 #endif
1551 root 1.56 #if EV_USE_KQUEUE
1552 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1553 root 1.56 #endif
1554     #if EV_USE_EPOLL
1555 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1556 root 1.56 #endif
1557 root 1.59 #if EV_USE_POLL
1558 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1559 root 1.56 #endif
1560     #if EV_USE_SELECT
1561 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1562 root 1.56 #endif
1563 root 1.1
1564 root 1.65 for (i = NUMPRI; i--; )
1565 root 1.164 {
1566     array_free (pending, [i]);
1567     #if EV_IDLE_ENABLE
1568     array_free (idle, [i]);
1569     #endif
1570     }
1571 root 1.65
1572 root 1.186 ev_free (anfds); anfdmax = 0;
1573    
1574 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1575 root 1.284 array_free (rfeed, EMPTY);
1576 root 1.164 array_free (fdchange, EMPTY);
1577     array_free (timer, EMPTY);
1578 root 1.140 #if EV_PERIODIC_ENABLE
1579 root 1.164 array_free (periodic, EMPTY);
1580 root 1.93 #endif
1581 root 1.187 #if EV_FORK_ENABLE
1582     array_free (fork, EMPTY);
1583     #endif
1584 root 1.164 array_free (prepare, EMPTY);
1585     array_free (check, EMPTY);
1586 root 1.209 #if EV_ASYNC_ENABLE
1587     array_free (async, EMPTY);
1588     #endif
1589 root 1.65
1590 root 1.130 backend = 0;
1591 root 1.56 }
1592 root 1.22
1593 root 1.226 #if EV_USE_INOTIFY
1594 root 1.284 inline_size void infy_fork (EV_P);
1595 root 1.226 #endif
1596 root 1.154
1597 root 1.284 inline_size void
1598 root 1.56 loop_fork (EV_P)
1599     {
1600 root 1.118 #if EV_USE_PORT
1601 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1602 root 1.56 #endif
1603     #if EV_USE_KQUEUE
1604 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1605 root 1.45 #endif
1606 root 1.118 #if EV_USE_EPOLL
1607 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1608 root 1.118 #endif
1609 root 1.154 #if EV_USE_INOTIFY
1610     infy_fork (EV_A);
1611     #endif
1612 root 1.70
1613 root 1.288 if (ev_is_active (&pipe_w))
1614 root 1.70 {
1615 root 1.207 /* this "locks" the handlers against writing to the pipe */
1616 root 1.212 /* while we modify the fd vars */
1617     gotsig = 1;
1618     #if EV_ASYNC_ENABLE
1619     gotasync = 1;
1620     #endif
1621 root 1.70
1622     ev_ref (EV_A);
1623 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1624 root 1.220
1625     #if EV_USE_EVENTFD
1626     if (evfd >= 0)
1627     close (evfd);
1628     #endif
1629    
1630     if (evpipe [0] >= 0)
1631     {
1632     close (evpipe [0]);
1633     close (evpipe [1]);
1634     }
1635 root 1.207
1636     evpipe_init (EV_A);
1637 root 1.208 /* now iterate over everything, in case we missed something */
1638 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1639 root 1.70 }
1640    
1641     postfork = 0;
1642 root 1.1 }
1643    
1644 root 1.55 #if EV_MULTIPLICITY
1645 root 1.250
1646 root 1.54 struct ev_loop *
1647 root 1.108 ev_loop_new (unsigned int flags)
1648 root 1.54 {
1649 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1650    
1651     memset (loop, 0, sizeof (struct ev_loop));
1652 root 1.54
1653 root 1.108 loop_init (EV_A_ flags);
1654 root 1.56
1655 root 1.130 if (ev_backend (EV_A))
1656 root 1.55 return loop;
1657 root 1.54
1658 root 1.55 return 0;
1659 root 1.54 }
1660    
1661     void
1662 root 1.56 ev_loop_destroy (EV_P)
1663 root 1.54 {
1664 root 1.56 loop_destroy (EV_A);
1665 root 1.69 ev_free (loop);
1666 root 1.54 }
1667    
1668 root 1.56 void
1669     ev_loop_fork (EV_P)
1670     {
1671 root 1.205 postfork = 1; /* must be in line with ev_default_fork */
1672 root 1.56 }
1673 root 1.297 #endif /* multiplicity */
1674 root 1.248
1675     #if EV_VERIFY
1676 root 1.258 static void noinline
1677 root 1.251 verify_watcher (EV_P_ W w)
1678     {
1679 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680 root 1.251
1681     if (w->pending)
1682 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683 root 1.251 }
1684    
1685     static void noinline
1686     verify_heap (EV_P_ ANHE *heap, int N)
1687     {
1688     int i;
1689    
1690     for (i = HEAP0; i < N + HEAP0; ++i)
1691     {
1692 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695 root 1.251
1696     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697     }
1698     }
1699    
1700     static void noinline
1701     array_verify (EV_P_ W *ws, int cnt)
1702 root 1.248 {
1703     while (cnt--)
1704 root 1.251 {
1705 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1707     }
1708 root 1.248 }
1709 root 1.250 #endif
1710 root 1.248
1711 root 1.297 #if EV_MINIMAL < 2
1712 root 1.250 void
1713 root 1.248 ev_loop_verify (EV_P)
1714     {
1715 root 1.250 #if EV_VERIFY
1716 root 1.248 int i;
1717 root 1.251 WL w;
1718    
1719     assert (activecnt >= -1);
1720    
1721     assert (fdchangemax >= fdchangecnt);
1722     for (i = 0; i < fdchangecnt; ++i)
1723 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724 root 1.251
1725     assert (anfdmax >= 0);
1726     for (i = 0; i < anfdmax; ++i)
1727     for (w = anfds [i].head; w; w = w->next)
1728     {
1729     verify_watcher (EV_A_ (W)w);
1730 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 root 1.251 }
1733    
1734     assert (timermax >= timercnt);
1735     verify_heap (EV_A_ timers, timercnt);
1736 root 1.248
1737     #if EV_PERIODIC_ENABLE
1738 root 1.251 assert (periodicmax >= periodiccnt);
1739     verify_heap (EV_A_ periodics, periodiccnt);
1740 root 1.248 #endif
1741    
1742 root 1.251 for (i = NUMPRI; i--; )
1743     {
1744     assert (pendingmax [i] >= pendingcnt [i]);
1745 root 1.248 #if EV_IDLE_ENABLE
1746 root 1.252 assert (idleall >= 0);
1747 root 1.251 assert (idlemax [i] >= idlecnt [i]);
1748     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749 root 1.248 #endif
1750 root 1.251 }
1751    
1752 root 1.248 #if EV_FORK_ENABLE
1753 root 1.251 assert (forkmax >= forkcnt);
1754     array_verify (EV_A_ (W *)forks, forkcnt);
1755 root 1.248 #endif
1756 root 1.251
1757 root 1.250 #if EV_ASYNC_ENABLE
1758 root 1.251 assert (asyncmax >= asynccnt);
1759     array_verify (EV_A_ (W *)asyncs, asynccnt);
1760 root 1.250 #endif
1761 root 1.251
1762     assert (preparemax >= preparecnt);
1763     array_verify (EV_A_ (W *)prepares, preparecnt);
1764    
1765     assert (checkmax >= checkcnt);
1766     array_verify (EV_A_ (W *)checks, checkcnt);
1767    
1768     # if 0
1769     for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770     for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771     # endif
1772 root 1.248 #endif
1773     }
1774 root 1.297 #endif
1775 root 1.56
1776     #if EV_MULTIPLICITY
1777     struct ev_loop *
1778 root 1.125 ev_default_loop_init (unsigned int flags)
1779 root 1.54 #else
1780     int
1781 root 1.116 ev_default_loop (unsigned int flags)
1782 root 1.56 #endif
1783 root 1.54 {
1784 root 1.116 if (!ev_default_loop_ptr)
1785 root 1.56 {
1786     #if EV_MULTIPLICITY
1787 root 1.116 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1788 root 1.56 #else
1789 ayin 1.117 ev_default_loop_ptr = 1;
1790 root 1.54 #endif
1791    
1792 root 1.110 loop_init (EV_A_ flags);
1793 root 1.56
1794 root 1.130 if (ev_backend (EV_A))
1795 root 1.56 {
1796 root 1.103 #ifndef _WIN32
1797 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
1798     ev_set_priority (&childev, EV_MAXPRI);
1799     ev_signal_start (EV_A_ &childev);
1800     ev_unref (EV_A); /* child watcher should not keep loop alive */
1801     #endif
1802     }
1803     else
1804 root 1.116 ev_default_loop_ptr = 0;
1805 root 1.56 }
1806 root 1.8
1807 root 1.116 return ev_default_loop_ptr;
1808 root 1.1 }
1809    
1810 root 1.24 void
1811 root 1.56 ev_default_destroy (void)
1812 root 1.1 {
1813 root 1.57 #if EV_MULTIPLICITY
1814 root 1.116 struct ev_loop *loop = ev_default_loop_ptr;
1815 root 1.57 #endif
1816 root 1.56
1817 root 1.266 ev_default_loop_ptr = 0;
1818    
1819 root 1.103 #ifndef _WIN32
1820 root 1.56 ev_ref (EV_A); /* child watcher */
1821     ev_signal_stop (EV_A_ &childev);
1822 root 1.71 #endif
1823 root 1.56
1824     loop_destroy (EV_A);
1825 root 1.1 }
1826    
1827 root 1.24 void
1828 root 1.60 ev_default_fork (void)
1829 root 1.1 {
1830 root 1.60 #if EV_MULTIPLICITY
1831 root 1.116 struct ev_loop *loop = ev_default_loop_ptr;
1832 root 1.60 #endif
1833    
1834 root 1.270 postfork = 1; /* must be in line with ev_loop_fork */
1835 root 1.1 }
1836    
1837 root 1.8 /*****************************************************************************/
1838    
1839 root 1.168 void
1840     ev_invoke (EV_P_ void *w, int revents)
1841     {
1842     EV_CB_INVOKE ((W)w, revents);
1843     }
1844    
1845 root 1.297 void noinline
1846 root 1.296 ev_invoke_pending (EV_P)
1847 root 1.1 {
1848 root 1.42 int pri;
1849    
1850     for (pri = NUMPRI; pri--; )
1851     while (pendingcnt [pri])
1852     {
1853     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1854 root 1.1
1855 root 1.288 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1856     /* ^ this is no longer true, as pending_w could be here */
1857 root 1.139
1858 root 1.288 p->w->pending = 0;
1859     EV_CB_INVOKE (p->w, p->events);
1860     EV_FREQUENT_CHECK;
1861 root 1.42 }
1862 root 1.1 }
1863    
1864 root 1.234 #if EV_IDLE_ENABLE
1865 root 1.288 /* make idle watchers pending. this handles the "call-idle */
1866     /* only when higher priorities are idle" logic */
1867 root 1.284 inline_size void
1868 root 1.234 idle_reify (EV_P)
1869     {
1870     if (expect_false (idleall))
1871     {
1872     int pri;
1873    
1874     for (pri = NUMPRI; pri--; )
1875     {
1876     if (pendingcnt [pri])
1877     break;
1878    
1879     if (idlecnt [pri])
1880     {
1881     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1882     break;
1883     }
1884     }
1885     }
1886     }
1887     #endif
1888    
1889 root 1.288 /* make timers pending */
1890 root 1.284 inline_size void
1891 root 1.51 timers_reify (EV_P)
1892 root 1.1 {
1893 root 1.248 EV_FREQUENT_CHECK;
1894    
1895 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1896 root 1.1 {
1897 root 1.284 do
1898     {
1899     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1900 root 1.1
1901 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1902    
1903     /* first reschedule or stop timer */
1904     if (w->repeat)
1905     {
1906     ev_at (w) += w->repeat;
1907     if (ev_at (w) < mn_now)
1908     ev_at (w) = mn_now;
1909 root 1.61
1910 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1911 root 1.90
1912 root 1.284 ANHE_at_cache (timers [HEAP0]);
1913     downheap (timers, timercnt, HEAP0);
1914     }
1915     else
1916     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1917 root 1.243
1918 root 1.284 EV_FREQUENT_CHECK;
1919     feed_reverse (EV_A_ (W)w);
1920 root 1.12 }
1921 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1922 root 1.30
1923 root 1.284 feed_reverse_done (EV_A_ EV_TIMEOUT);
1924 root 1.12 }
1925     }
1926 root 1.4
1927 root 1.140 #if EV_PERIODIC_ENABLE
1928 root 1.288 /* make periodics pending */
1929 root 1.284 inline_size void
1930 root 1.51 periodics_reify (EV_P)
1931 root 1.12 {
1932 root 1.248 EV_FREQUENT_CHECK;
1933 root 1.250
1934 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1935 root 1.12 {
1936 root 1.284 int feed_count = 0;
1937    
1938     do
1939     {
1940     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1941 root 1.1
1942 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1943 root 1.61
1944 root 1.284 /* first reschedule or stop timer */
1945     if (w->reschedule_cb)
1946     {
1947     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948 root 1.243
1949 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1950 root 1.243
1951 root 1.284 ANHE_at_cache (periodics [HEAP0]);
1952     downheap (periodics, periodiccnt, HEAP0);
1953     }
1954     else if (w->interval)
1955 root 1.246 {
1956 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957     /* if next trigger time is not sufficiently in the future, put it there */
1958     /* this might happen because of floating point inexactness */
1959     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1960     {
1961     ev_at (w) += w->interval;
1962    
1963     /* if interval is unreasonably low we might still have a time in the past */
1964     /* so correct this. this will make the periodic very inexact, but the user */
1965     /* has effectively asked to get triggered more often than possible */
1966     if (ev_at (w) < ev_rt_now)
1967     ev_at (w) = ev_rt_now;
1968     }
1969 root 1.243
1970 root 1.284 ANHE_at_cache (periodics [HEAP0]);
1971     downheap (periodics, periodiccnt, HEAP0);
1972 root 1.246 }
1973 root 1.284 else
1974     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1975 root 1.243
1976 root 1.284 EV_FREQUENT_CHECK;
1977     feed_reverse (EV_A_ (W)w);
1978 root 1.1 }
1979 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1980 root 1.12
1981 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
1982 root 1.12 }
1983     }
1984    
1985 root 1.288 /* simply recalculate all periodics */
1986     /* TODO: maybe ensure that at leats one event happens when jumping forward? */
1987 root 1.140 static void noinline
1988 root 1.54 periodics_reschedule (EV_P)
1989 root 1.12 {
1990     int i;
1991    
1992 root 1.13 /* adjust periodics after time jump */
1993 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1994 root 1.12 {
1995 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1996 root 1.12
1997 root 1.77 if (w->reschedule_cb)
1998 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1999 root 1.77 else if (w->interval)
2000 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2001 root 1.242
2002 root 1.248 ANHE_at_cache (periodics [i]);
2003 root 1.77 }
2004 root 1.12
2005 root 1.248 reheap (periodics, periodiccnt);
2006 root 1.1 }
2007 root 1.93 #endif
2008 root 1.1
2009 root 1.288 /* adjust all timers by a given offset */
2010 root 1.285 static void noinline
2011     timers_reschedule (EV_P_ ev_tstamp adjust)
2012     {
2013     int i;
2014    
2015     for (i = 0; i < timercnt; ++i)
2016     {
2017     ANHE *he = timers + i + HEAP0;
2018     ANHE_w (*he)->at += adjust;
2019     ANHE_at_cache (*he);
2020     }
2021     }
2022    
2023 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2024     /* also detetc if there was a timejump, and act accordingly */
2025 root 1.284 inline_speed void
2026 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2027 root 1.4 {
2028 root 1.40 #if EV_USE_MONOTONIC
2029     if (expect_true (have_monotonic))
2030     {
2031 root 1.289 int i;
2032 root 1.178 ev_tstamp odiff = rtmn_diff;
2033    
2034     mn_now = get_clock ();
2035    
2036     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2037     /* interpolate in the meantime */
2038     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2039 root 1.40 {
2040 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2041     return;
2042     }
2043    
2044     now_floor = mn_now;
2045     ev_rt_now = ev_time ();
2046 root 1.4
2047 root 1.178 /* loop a few times, before making important decisions.
2048     * on the choice of "4": one iteration isn't enough,
2049     * in case we get preempted during the calls to
2050     * ev_time and get_clock. a second call is almost guaranteed
2051     * to succeed in that case, though. and looping a few more times
2052     * doesn't hurt either as we only do this on time-jumps or
2053     * in the unlikely event of having been preempted here.
2054     */
2055     for (i = 4; --i; )
2056     {
2057     rtmn_diff = ev_rt_now - mn_now;
2058 root 1.4
2059 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2060 root 1.178 return; /* all is well */
2061 root 1.4
2062 root 1.178 ev_rt_now = ev_time ();
2063     mn_now = get_clock ();
2064     now_floor = mn_now;
2065     }
2066 root 1.4
2067 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2068     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2069 root 1.140 # if EV_PERIODIC_ENABLE
2070 root 1.178 periodics_reschedule (EV_A);
2071 root 1.93 # endif
2072 root 1.4 }
2073     else
2074 root 1.40 #endif
2075 root 1.4 {
2076 root 1.85 ev_rt_now = ev_time ();
2077 root 1.40
2078 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2079 root 1.13 {
2080 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2081     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2082 root 1.140 #if EV_PERIODIC_ENABLE
2083 root 1.54 periodics_reschedule (EV_A);
2084 root 1.93 #endif
2085 root 1.13 }
2086 root 1.4
2087 root 1.85 mn_now = ev_rt_now;
2088 root 1.4 }
2089     }
2090    
2091 root 1.51 void
2092     ev_loop (EV_P_ int flags)
2093 root 1.1 {
2094 root 1.297 #if EV_MINIMAL < 2
2095 root 1.294 ++loop_depth;
2096 root 1.297 #endif
2097 root 1.294
2098 root 1.298 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2099    
2100 root 1.219 loop_done = EVUNLOOP_CANCEL;
2101 root 1.1
2102 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2103 root 1.158
2104 root 1.161 do
2105 root 1.9 {
2106 root 1.250 #if EV_VERIFY >= 2
2107     ev_loop_verify (EV_A);
2108     #endif
2109    
2110 root 1.158 #ifndef _WIN32
2111     if (expect_false (curpid)) /* penalise the forking check even more */
2112     if (expect_false (getpid () != curpid))
2113     {
2114     curpid = getpid ();
2115     postfork = 1;
2116     }
2117     #endif
2118    
2119 root 1.157 #if EV_FORK_ENABLE
2120     /* we might have forked, so queue fork handlers */
2121     if (expect_false (postfork))
2122     if (forkcnt)
2123     {
2124     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2125 root 1.297 EV_INVOKE_PENDING;
2126 root 1.157 }
2127     #endif
2128 root 1.147
2129 root 1.170 /* queue prepare watchers (and execute them) */
2130 root 1.40 if (expect_false (preparecnt))
2131 root 1.20 {
2132 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2133 root 1.297 EV_INVOKE_PENDING;
2134 root 1.20 }
2135 root 1.9
2136 root 1.298 if (expect_false (loop_done))
2137     break;
2138    
2139 root 1.70 /* we might have forked, so reify kernel state if necessary */
2140     if (expect_false (postfork))
2141     loop_fork (EV_A);
2142    
2143 root 1.1 /* update fd-related kernel structures */
2144 root 1.51 fd_reify (EV_A);
2145 root 1.1
2146     /* calculate blocking time */
2147 root 1.135 {
2148 root 1.193 ev_tstamp waittime = 0.;
2149     ev_tstamp sleeptime = 0.;
2150 root 1.12
2151 root 1.193 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2152 root 1.135 {
2153 root 1.293 /* remember old timestamp for io_blocktime calculation */
2154     ev_tstamp prev_mn_now = mn_now;
2155    
2156 root 1.135 /* update time to cancel out callback processing overhead */
2157 root 1.178 time_update (EV_A_ 1e100);
2158 root 1.135
2159 root 1.287 waittime = MAX_BLOCKTIME;
2160    
2161 root 1.135 if (timercnt)
2162     {
2163 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2164 root 1.193 if (waittime > to) waittime = to;
2165 root 1.135 }
2166 root 1.4
2167 root 1.140 #if EV_PERIODIC_ENABLE
2168 root 1.135 if (periodiccnt)
2169     {
2170 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2171 root 1.193 if (waittime > to) waittime = to;
2172 root 1.135 }
2173 root 1.93 #endif
2174 root 1.4
2175 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2176 root 1.193 if (expect_false (waittime < timeout_blocktime))
2177     waittime = timeout_blocktime;
2178    
2179 root 1.293 /* extra check because io_blocktime is commonly 0 */
2180     if (expect_false (io_blocktime))
2181     {
2182     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2183 root 1.193
2184 root 1.293 if (sleeptime > waittime - backend_fudge)
2185     sleeptime = waittime - backend_fudge;
2186 root 1.193
2187 root 1.293 if (expect_true (sleeptime > 0.))
2188     {
2189     ev_sleep (sleeptime);
2190     waittime -= sleeptime;
2191     }
2192 root 1.193 }
2193 root 1.135 }
2194 root 1.1
2195 root 1.297 #if EV_MINIMAL < 2
2196 root 1.162 ++loop_count;
2197 root 1.297 #endif
2198 root 1.298 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2199 root 1.193 backend_poll (EV_A_ waittime);
2200 root 1.298 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2201 root 1.178
2202     /* update ev_rt_now, do magic */
2203 root 1.193 time_update (EV_A_ waittime + sleeptime);
2204 root 1.135 }
2205 root 1.1
2206 root 1.9 /* queue pending timers and reschedule them */
2207 root 1.51 timers_reify (EV_A); /* relative timers called last */
2208 root 1.140 #if EV_PERIODIC_ENABLE
2209 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2210 root 1.93 #endif
2211 root 1.1
2212 root 1.164 #if EV_IDLE_ENABLE
2213 root 1.137 /* queue idle watchers unless other events are pending */
2214 root 1.164 idle_reify (EV_A);
2215     #endif
2216 root 1.9
2217 root 1.20 /* queue check watchers, to be executed first */
2218 root 1.123 if (expect_false (checkcnt))
2219 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2220 root 1.9
2221 root 1.297 EV_INVOKE_PENDING;
2222 root 1.1 }
2223 root 1.219 while (expect_true (
2224     activecnt
2225     && !loop_done
2226     && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2227     ));
2228 root 1.13
2229 root 1.135 if (loop_done == EVUNLOOP_ONE)
2230     loop_done = EVUNLOOP_CANCEL;
2231 root 1.294
2232 root 1.297 #if EV_MINIMAL < 2
2233 root 1.294 --loop_depth;
2234 root 1.297 #endif
2235 root 1.51 }
2236    
2237     void
2238     ev_unloop (EV_P_ int how)
2239     {
2240     loop_done = how;
2241 root 1.1 }
2242    
2243 root 1.285 void
2244     ev_ref (EV_P)
2245     {
2246     ++activecnt;
2247     }
2248    
2249     void
2250     ev_unref (EV_P)
2251     {
2252     --activecnt;
2253     }
2254    
2255     void
2256     ev_now_update (EV_P)
2257     {
2258     time_update (EV_A_ 1e100);
2259     }
2260    
2261     void
2262     ev_suspend (EV_P)
2263     {
2264     ev_now_update (EV_A);
2265     }
2266    
2267     void
2268     ev_resume (EV_P)
2269     {
2270     ev_tstamp mn_prev = mn_now;
2271    
2272     ev_now_update (EV_A);
2273     timers_reschedule (EV_A_ mn_now - mn_prev);
2274 root 1.286 #if EV_PERIODIC_ENABLE
2275 root 1.288 /* TODO: really do this? */
2276 root 1.285 periodics_reschedule (EV_A);
2277 root 1.286 #endif
2278 root 1.285 }
2279    
2280 root 1.8 /*****************************************************************************/
2281 root 1.288 /* singly-linked list management, used when the expected list length is short */
2282 root 1.8
2283 root 1.284 inline_size void
2284 root 1.10 wlist_add (WL *head, WL elem)
2285 root 1.1 {
2286     elem->next = *head;
2287     *head = elem;
2288     }
2289    
2290 root 1.284 inline_size void
2291 root 1.10 wlist_del (WL *head, WL elem)
2292 root 1.1 {
2293     while (*head)
2294     {
2295     if (*head == elem)
2296     {
2297     *head = elem->next;
2298     return;
2299     }
2300    
2301     head = &(*head)->next;
2302     }
2303     }
2304    
2305 root 1.288 /* internal, faster, version of ev_clear_pending */
2306 root 1.284 inline_speed void
2307 root 1.166 clear_pending (EV_P_ W w)
2308 root 1.16 {
2309     if (w->pending)
2310     {
2311 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2312 root 1.16 w->pending = 0;
2313     }
2314     }
2315    
2316 root 1.167 int
2317     ev_clear_pending (EV_P_ void *w)
2318 root 1.166 {
2319     W w_ = (W)w;
2320     int pending = w_->pending;
2321    
2322 root 1.172 if (expect_true (pending))
2323     {
2324     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2325 root 1.288 p->w = (W)&pending_w;
2326 root 1.172 w_->pending = 0;
2327     return p->events;
2328     }
2329     else
2330 root 1.167 return 0;
2331 root 1.166 }
2332    
2333 root 1.284 inline_size void
2334 root 1.164 pri_adjust (EV_P_ W w)
2335     {
2336 root 1.295 int pri = ev_priority (w);
2337 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2338     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2339 root 1.295 ev_set_priority (w, pri);
2340 root 1.164 }
2341    
2342 root 1.284 inline_speed void
2343 root 1.51 ev_start (EV_P_ W w, int active)
2344 root 1.1 {
2345 root 1.164 pri_adjust (EV_A_ w);
2346 root 1.1 w->active = active;
2347 root 1.51 ev_ref (EV_A);
2348 root 1.1 }
2349    
2350 root 1.284 inline_size void
2351 root 1.51 ev_stop (EV_P_ W w)
2352 root 1.1 {
2353 root 1.51 ev_unref (EV_A);
2354 root 1.1 w->active = 0;
2355     }
2356    
2357 root 1.8 /*****************************************************************************/
2358    
2359 root 1.171 void noinline
2360 root 1.136 ev_io_start (EV_P_ ev_io *w)
2361 root 1.1 {
2362 root 1.37 int fd = w->fd;
2363    
2364 root 1.123 if (expect_false (ev_is_active (w)))
2365 root 1.1 return;
2366    
2367 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2368 root 1.281 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2369 root 1.33
2370 root 1.248 EV_FREQUENT_CHECK;
2371    
2372 root 1.51 ev_start (EV_A_ (W)w, 1);
2373 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2374 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2375 root 1.1
2376 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2377 root 1.281 w->events &= ~EV__IOFDSET;
2378 root 1.248
2379     EV_FREQUENT_CHECK;
2380 root 1.1 }
2381    
2382 root 1.171 void noinline
2383 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2384 root 1.1 {
2385 root 1.166 clear_pending (EV_A_ (W)w);
2386 root 1.123 if (expect_false (!ev_is_active (w)))
2387 root 1.1 return;
2388    
2389 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2390 root 1.89
2391 root 1.248 EV_FREQUENT_CHECK;
2392    
2393 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2394 root 1.51 ev_stop (EV_A_ (W)w);
2395 root 1.1
2396 root 1.184 fd_change (EV_A_ w->fd, 1);
2397 root 1.248
2398     EV_FREQUENT_CHECK;
2399 root 1.1 }
2400    
2401 root 1.171 void noinline
2402 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2403 root 1.1 {
2404 root 1.123 if (expect_false (ev_is_active (w)))
2405 root 1.1 return;
2406    
2407 root 1.228 ev_at (w) += mn_now;
2408 root 1.12
2409 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2410 root 1.13
2411 root 1.248 EV_FREQUENT_CHECK;
2412    
2413     ++timercnt;
2414     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2415 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2416     ANHE_w (timers [ev_active (w)]) = (WT)w;
2417 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2418 root 1.235 upheap (timers, ev_active (w));
2419 root 1.62
2420 root 1.248 EV_FREQUENT_CHECK;
2421    
2422 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2423 root 1.12 }
2424    
2425 root 1.171 void noinline
2426 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2427 root 1.12 {
2428 root 1.166 clear_pending (EV_A_ (W)w);
2429 root 1.123 if (expect_false (!ev_is_active (w)))
2430 root 1.12 return;
2431    
2432 root 1.248 EV_FREQUENT_CHECK;
2433    
2434 root 1.230 {
2435     int active = ev_active (w);
2436 root 1.62
2437 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2438 root 1.151
2439 root 1.248 --timercnt;
2440    
2441     if (expect_true (active < timercnt + HEAP0))
2442 root 1.151 {
2443 root 1.248 timers [active] = timers [timercnt + HEAP0];
2444 root 1.181 adjustheap (timers, timercnt, active);
2445 root 1.151 }
2446 root 1.248 }
2447 root 1.228
2448 root 1.248 EV_FREQUENT_CHECK;
2449 root 1.4
2450 root 1.228 ev_at (w) -= mn_now;
2451 root 1.14
2452 root 1.51 ev_stop (EV_A_ (W)w);
2453 root 1.12 }
2454 root 1.4
2455 root 1.171 void noinline
2456 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2457 root 1.14 {
2458 root 1.248 EV_FREQUENT_CHECK;
2459    
2460 root 1.14 if (ev_is_active (w))
2461     {
2462     if (w->repeat)
2463 root 1.99 {
2464 root 1.228 ev_at (w) = mn_now + w->repeat;
2465 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2466 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2467 root 1.99 }
2468 root 1.14 else
2469 root 1.51 ev_timer_stop (EV_A_ w);
2470 root 1.14 }
2471     else if (w->repeat)
2472 root 1.112 {
2473 root 1.229 ev_at (w) = w->repeat;
2474 root 1.112 ev_timer_start (EV_A_ w);
2475     }
2476 root 1.248
2477     EV_FREQUENT_CHECK;
2478 root 1.14 }
2479    
2480 root 1.140 #if EV_PERIODIC_ENABLE
2481 root 1.171 void noinline
2482 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2483 root 1.12 {
2484 root 1.123 if (expect_false (ev_is_active (w)))
2485 root 1.12 return;
2486 root 1.1
2487 root 1.77 if (w->reschedule_cb)
2488 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2489 root 1.77 else if (w->interval)
2490     {
2491 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2492 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2493 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2494 root 1.77 }
2495 root 1.173 else
2496 root 1.228 ev_at (w) = w->offset;
2497 root 1.12
2498 root 1.248 EV_FREQUENT_CHECK;
2499    
2500     ++periodiccnt;
2501     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2502 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2503     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2504 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2505 root 1.235 upheap (periodics, ev_active (w));
2506 root 1.62
2507 root 1.248 EV_FREQUENT_CHECK;
2508    
2509 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2510 root 1.1 }
2511    
2512 root 1.171 void noinline
2513 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2514 root 1.1 {
2515 root 1.166 clear_pending (EV_A_ (W)w);
2516 root 1.123 if (expect_false (!ev_is_active (w)))
2517 root 1.1 return;
2518    
2519 root 1.248 EV_FREQUENT_CHECK;
2520    
2521 root 1.230 {
2522     int active = ev_active (w);
2523 root 1.62
2524 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2525 root 1.151
2526 root 1.248 --periodiccnt;
2527    
2528     if (expect_true (active < periodiccnt + HEAP0))
2529 root 1.151 {
2530 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2531 root 1.181 adjustheap (periodics, periodiccnt, active);
2532 root 1.151 }
2533 root 1.248 }
2534 root 1.228
2535 root 1.248 EV_FREQUENT_CHECK;
2536 root 1.2
2537 root 1.51 ev_stop (EV_A_ (W)w);
2538 root 1.1 }
2539    
2540 root 1.171 void noinline
2541 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2542 root 1.77 {
2543 root 1.84 /* TODO: use adjustheap and recalculation */
2544 root 1.77 ev_periodic_stop (EV_A_ w);
2545     ev_periodic_start (EV_A_ w);
2546     }
2547 root 1.93 #endif
2548 root 1.77
2549 root 1.56 #ifndef SA_RESTART
2550     # define SA_RESTART 0
2551     #endif
2552    
2553 root 1.171 void noinline
2554 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2555 root 1.56 {
2556     #if EV_MULTIPLICITY
2557 root 1.278 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2558 root 1.56 #endif
2559 root 1.123 if (expect_false (ev_is_active (w)))
2560 root 1.56 return;
2561    
2562 root 1.278 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2563 root 1.56
2564 root 1.207 evpipe_init (EV_A);
2565    
2566 root 1.248 EV_FREQUENT_CHECK;
2567    
2568 root 1.180 {
2569     #ifndef _WIN32
2570     sigset_t full, prev;
2571     sigfillset (&full);
2572     sigprocmask (SIG_SETMASK, &full, &prev);
2573     #endif
2574    
2575 root 1.265 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2576 root 1.180
2577     #ifndef _WIN32
2578     sigprocmask (SIG_SETMASK, &prev, 0);
2579     #endif
2580     }
2581    
2582 root 1.56 ev_start (EV_A_ (W)w, 1);
2583 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2584 root 1.56
2585 root 1.63 if (!((WL)w)->next)
2586 root 1.56 {
2587 root 1.103 #if _WIN32
2588 root 1.218 signal (w->signum, ev_sighandler);
2589 root 1.67 #else
2590 root 1.299 struct sigaction sa = { };
2591 root 1.218 sa.sa_handler = ev_sighandler;
2592 root 1.56 sigfillset (&sa.sa_mask);
2593     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2594     sigaction (w->signum, &sa, 0);
2595 root 1.67 #endif
2596 root 1.56 }
2597 root 1.248
2598     EV_FREQUENT_CHECK;
2599 root 1.56 }
2600    
2601 root 1.171 void noinline
2602 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2603 root 1.56 {
2604 root 1.166 clear_pending (EV_A_ (W)w);
2605 root 1.123 if (expect_false (!ev_is_active (w)))
2606 root 1.56 return;
2607    
2608 root 1.248 EV_FREQUENT_CHECK;
2609    
2610 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2611 root 1.56 ev_stop (EV_A_ (W)w);
2612    
2613     if (!signals [w->signum - 1].head)
2614     signal (w->signum, SIG_DFL);
2615 root 1.248
2616     EV_FREQUENT_CHECK;
2617 root 1.56 }
2618    
2619 root 1.28 void
2620 root 1.136 ev_child_start (EV_P_ ev_child *w)
2621 root 1.22 {
2622 root 1.56 #if EV_MULTIPLICITY
2623 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2624 root 1.56 #endif
2625 root 1.123 if (expect_false (ev_is_active (w)))
2626 root 1.22 return;
2627    
2628 root 1.248 EV_FREQUENT_CHECK;
2629    
2630 root 1.51 ev_start (EV_A_ (W)w, 1);
2631 root 1.182 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2632 root 1.248
2633     EV_FREQUENT_CHECK;
2634 root 1.22 }
2635    
2636 root 1.28 void
2637 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2638 root 1.22 {
2639 root 1.166 clear_pending (EV_A_ (W)w);
2640 root 1.123 if (expect_false (!ev_is_active (w)))
2641 root 1.22 return;
2642    
2643 root 1.248 EV_FREQUENT_CHECK;
2644    
2645 root 1.182 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2646 root 1.51 ev_stop (EV_A_ (W)w);
2647 root 1.248
2648     EV_FREQUENT_CHECK;
2649 root 1.22 }
2650    
2651 root 1.140 #if EV_STAT_ENABLE
2652    
2653     # ifdef _WIN32
2654 root 1.146 # undef lstat
2655     # define lstat(a,b) _stati64 (a,b)
2656 root 1.140 # endif
2657    
2658 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2659     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2660     #define MIN_STAT_INTERVAL 0.1074891
2661 root 1.143
2662 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2663 root 1.152
2664     #if EV_USE_INOTIFY
2665 root 1.153 # define EV_INOTIFY_BUFSIZE 8192
2666 root 1.152
2667     static void noinline
2668     infy_add (EV_P_ ev_stat *w)
2669     {
2670     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2671    
2672     if (w->wd < 0)
2673     {
2674 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2675     ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2676 root 1.152
2677     /* monitor some parent directory for speedup hints */
2678 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2679 root 1.233 /* but an efficiency issue only */
2680 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2681 root 1.152 {
2682 root 1.153 char path [4096];
2683 root 1.152 strcpy (path, w->path);
2684    
2685     do
2686     {
2687     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2688     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2689    
2690     char *pend = strrchr (path, '/');
2691    
2692 root 1.275 if (!pend || pend == path)
2693     break;
2694 root 1.152
2695     *pend = 0;
2696 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
2697 root 1.152 }
2698     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2699     }
2700     }
2701 root 1.275
2702     if (w->wd >= 0)
2703 root 1.273 {
2704     wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2705    
2706     /* now local changes will be tracked by inotify, but remote changes won't */
2707     /* unless the filesystem it known to be local, we therefore still poll */
2708     /* also do poll on <2.6.25, but with normal frequency */
2709     struct statfs sfs;
2710    
2711     if (fs_2625 && !statfs (w->path, &sfs))
2712     if (sfs.f_type == 0x1373 /* devfs */
2713     || sfs.f_type == 0xEF53 /* ext2/3 */
2714     || sfs.f_type == 0x3153464a /* jfs */
2715     || sfs.f_type == 0x52654973 /* reiser3 */
2716     || sfs.f_type == 0x01021994 /* tempfs */
2717     || sfs.f_type == 0x58465342 /* xfs */)
2718     return;
2719 root 1.152
2720 root 1.273 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2721     ev_timer_again (EV_A_ &w->timer);
2722     }
2723 root 1.152 }
2724    
2725     static void noinline
2726     infy_del (EV_P_ ev_stat *w)
2727     {
2728     int slot;
2729     int wd = w->wd;
2730    
2731     if (wd < 0)
2732     return;
2733    
2734     w->wd = -2;
2735     slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2736     wlist_del (&fs_hash [slot].head, (WL)w);
2737    
2738     /* remove this watcher, if others are watching it, they will rearm */
2739     inotify_rm_watch (fs_fd, wd);
2740     }
2741    
2742     static void noinline
2743     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2744     {
2745     if (slot < 0)
2746 root 1.264 /* overflow, need to check for all hash slots */
2747 root 1.152 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2748     infy_wd (EV_A_ slot, wd, ev);
2749     else
2750     {
2751     WL w_;
2752    
2753     for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2754     {
2755     ev_stat *w = (ev_stat *)w_;
2756     w_ = w_->next; /* lets us remove this watcher and all before it */
2757    
2758     if (w->wd == wd || wd == -1)
2759     {
2760     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2761     {
2762 root 1.275 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2763 root 1.152 w->wd = -1;
2764     infy_add (EV_A_ w); /* re-add, no matter what */
2765     }
2766    
2767 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
2768 root 1.152 }
2769     }
2770     }
2771     }
2772    
2773     static void
2774     infy_cb (EV_P_ ev_io *w, int revents)
2775     {
2776     char buf [EV_INOTIFY_BUFSIZE];
2777     struct inotify_event *ev = (struct inotify_event *)buf;
2778     int ofs;
2779     int len = read (fs_fd, buf, sizeof (buf));
2780    
2781     for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2782     infy_wd (EV_A_ ev->wd, ev->wd, ev);
2783     }
2784    
2785 root 1.284 inline_size void
2786 root 1.273 check_2625 (EV_P)
2787 root 1.152 {
2788 root 1.264 /* kernels < 2.6.25 are borked
2789     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2790     */
2791 root 1.273 struct utsname buf;
2792     int major, minor, micro;
2793    
2794     if (uname (&buf))
2795     return;
2796    
2797     if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2798     return;
2799    
2800     if (major < 2
2801     || (major == 2 && minor < 6)
2802     || (major == 2 && minor == 6 && micro < 25))
2803     return;
2804 root 1.264
2805 root 1.273 fs_2625 = 1;
2806     }
2807 root 1.264
2808 root 1.284 inline_size void
2809 root 1.273 infy_init (EV_P)
2810     {
2811     if (fs_fd != -2)
2812     return;
2813 root 1.264
2814 root 1.273 fs_fd = -1;
2815 root 1.264
2816 root 1.273 check_2625 (EV_A);
2817 root 1.264
2818 root 1.152 fs_fd = inotify_init ();
2819    
2820     if (fs_fd >= 0)
2821     {
2822     ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2823     ev_set_priority (&fs_w, EV_MAXPRI);
2824     ev_io_start (EV_A_ &fs_w);
2825     }
2826     }
2827    
2828 root 1.284 inline_size void
2829 root 1.154 infy_fork (EV_P)
2830     {
2831     int slot;
2832    
2833     if (fs_fd < 0)
2834     return;
2835    
2836     close (fs_fd);
2837     fs_fd = inotify_init ();
2838    
2839     for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2840     {
2841     WL w_ = fs_hash [slot].head;
2842     fs_hash [slot].head = 0;
2843    
2844     while (w_)
2845     {
2846     ev_stat *w = (ev_stat *)w_;
2847     w_ = w_->next; /* lets us add this watcher */
2848    
2849     w->wd = -1;
2850    
2851     if (fs_fd >= 0)
2852     infy_add (EV_A_ w); /* re-add, no matter what */
2853     else
2854 root 1.273 ev_timer_again (EV_A_ &w->timer);
2855 root 1.154 }
2856     }
2857     }
2858    
2859 root 1.152 #endif
2860    
2861 root 1.255 #ifdef _WIN32
2862     # define EV_LSTAT(p,b) _stati64 (p, b)
2863     #else
2864     # define EV_LSTAT(p,b) lstat (p, b)
2865     #endif
2866    
2867 root 1.140 void
2868     ev_stat_stat (EV_P_ ev_stat *w)
2869     {
2870     if (lstat (w->path, &w->attr) < 0)
2871     w->attr.st_nlink = 0;
2872     else if (!w->attr.st_nlink)
2873     w->attr.st_nlink = 1;
2874     }
2875    
2876 root 1.157 static void noinline
2877 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2878     {
2879     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2880    
2881     /* we copy this here each the time so that */
2882     /* prev has the old value when the callback gets invoked */
2883     w->prev = w->attr;
2884     ev_stat_stat (EV_A_ w);
2885    
2886 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2887     if (
2888     w->prev.st_dev != w->attr.st_dev
2889     || w->prev.st_ino != w->attr.st_ino
2890     || w->prev.st_mode != w->attr.st_mode
2891     || w->prev.st_nlink != w->attr.st_nlink
2892     || w->prev.st_uid != w->attr.st_uid
2893     || w->prev.st_gid != w->attr.st_gid
2894     || w->prev.st_rdev != w->attr.st_rdev
2895     || w->prev.st_size != w->attr.st_size
2896     || w->prev.st_atime != w->attr.st_atime
2897     || w->prev.st_mtime != w->attr.st_mtime
2898     || w->prev.st_ctime != w->attr.st_ctime
2899     ) {
2900 root 1.152 #if EV_USE_INOTIFY
2901 root 1.264 if (fs_fd >= 0)
2902     {
2903     infy_del (EV_A_ w);
2904     infy_add (EV_A_ w);
2905     ev_stat_stat (EV_A_ w); /* avoid race... */
2906     }
2907 root 1.152 #endif
2908    
2909     ev_feed_event (EV_A_ w, EV_STAT);
2910     }
2911 root 1.140 }
2912    
2913     void
2914     ev_stat_start (EV_P_ ev_stat *w)
2915     {
2916     if (expect_false (ev_is_active (w)))
2917     return;
2918    
2919     ev_stat_stat (EV_A_ w);
2920    
2921 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2922     w->interval = MIN_STAT_INTERVAL;
2923 root 1.143
2924 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2925 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
2926 root 1.152
2927     #if EV_USE_INOTIFY
2928     infy_init (EV_A);
2929    
2930     if (fs_fd >= 0)
2931     infy_add (EV_A_ w);
2932     else
2933     #endif
2934 root 1.273 ev_timer_again (EV_A_ &w->timer);
2935 root 1.140
2936     ev_start (EV_A_ (W)w, 1);
2937 root 1.248
2938     EV_FREQUENT_CHECK;
2939 root 1.140 }
2940    
2941     void
2942     ev_stat_stop (EV_P_ ev_stat *w)
2943     {
2944 root 1.166 clear_pending (EV_A_ (W)w);
2945 root 1.140 if (expect_false (!ev_is_active (w)))
2946     return;
2947    
2948 root 1.248 EV_FREQUENT_CHECK;
2949    
2950 root 1.152 #if EV_USE_INOTIFY
2951     infy_del (EV_A_ w);
2952     #endif
2953 root 1.140 ev_timer_stop (EV_A_ &w->timer);
2954    
2955 root 1.134 ev_stop (EV_A_ (W)w);
2956 root 1.248
2957     EV_FREQUENT_CHECK;
2958 root 1.134 }
2959     #endif
2960    
2961 root 1.164 #if EV_IDLE_ENABLE
2962 root 1.144 void
2963     ev_idle_start (EV_P_ ev_idle *w)
2964     {
2965     if (expect_false (ev_is_active (w)))
2966     return;
2967    
2968 root 1.164 pri_adjust (EV_A_ (W)w);
2969    
2970 root 1.248 EV_FREQUENT_CHECK;
2971    
2972 root 1.164 {
2973     int active = ++idlecnt [ABSPRI (w)];
2974    
2975     ++idleall;
2976     ev_start (EV_A_ (W)w, active);
2977    
2978     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2979     idles [ABSPRI (w)][active - 1] = w;
2980     }
2981 root 1.248
2982     EV_FREQUENT_CHECK;
2983 root 1.144 }
2984    
2985     void
2986     ev_idle_stop (EV_P_ ev_idle *w)
2987     {
2988 root 1.166 clear_pending (EV_A_ (W)w);
2989 root 1.144 if (expect_false (!ev_is_active (w)))
2990     return;
2991    
2992 root 1.248 EV_FREQUENT_CHECK;
2993    
2994 root 1.144 {
2995 root 1.230 int active = ev_active (w);
2996 root 1.164
2997     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2998 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2999 root 1.164
3000     ev_stop (EV_A_ (W)w);
3001     --idleall;
3002 root 1.144 }
3003 root 1.248
3004     EV_FREQUENT_CHECK;
3005 root 1.144 }
3006 root 1.164 #endif
3007 root 1.144
3008     void
3009     ev_prepare_start (EV_P_ ev_prepare *w)
3010     {
3011     if (expect_false (ev_is_active (w)))
3012     return;
3013    
3014 root 1.248 EV_FREQUENT_CHECK;
3015    
3016 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3017     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3018     prepares [preparecnt - 1] = w;
3019 root 1.248
3020     EV_FREQUENT_CHECK;
3021 root 1.144 }
3022    
3023     void
3024     ev_prepare_stop (EV_P_ ev_prepare *w)
3025     {
3026 root 1.166 clear_pending (EV_A_ (W)w);
3027 root 1.144 if (expect_false (!ev_is_active (w)))
3028     return;
3029    
3030 root 1.248 EV_FREQUENT_CHECK;
3031    
3032 root 1.144 {
3033 root 1.230 int active = ev_active (w);
3034    
3035 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3036 root 1.230 ev_active (prepares [active - 1]) = active;
3037 root 1.144 }
3038    
3039     ev_stop (EV_A_ (W)w);
3040 root 1.248
3041     EV_FREQUENT_CHECK;
3042 root 1.144 }
3043    
3044     void
3045     ev_check_start (EV_P_ ev_check *w)
3046     {
3047     if (expect_false (ev_is_active (w)))
3048     return;
3049    
3050 root 1.248 EV_FREQUENT_CHECK;
3051    
3052 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3053     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3054     checks [checkcnt - 1] = w;
3055 root 1.248
3056     EV_FREQUENT_CHECK;
3057 root 1.144 }
3058    
3059     void
3060     ev_check_stop (EV_P_ ev_check *w)
3061     {
3062 root 1.166 clear_pending (EV_A_ (W)w);
3063 root 1.144 if (expect_false (!ev_is_active (w)))
3064     return;
3065    
3066 root 1.248 EV_FREQUENT_CHECK;
3067    
3068 root 1.144 {
3069 root 1.230 int active = ev_active (w);
3070    
3071 root 1.144 checks [active - 1] = checks [--checkcnt];
3072 root 1.230 ev_active (checks [active - 1]) = active;
3073 root 1.144 }
3074    
3075     ev_stop (EV_A_ (W)w);
3076 root 1.248
3077     EV_FREQUENT_CHECK;
3078 root 1.144 }
3079    
3080     #if EV_EMBED_ENABLE
3081     void noinline
3082     ev_embed_sweep (EV_P_ ev_embed *w)
3083     {
3084 root 1.188 ev_loop (w->other, EVLOOP_NONBLOCK);
3085 root 1.144 }
3086    
3087     static void
3088 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3089 root 1.144 {
3090     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3091    
3092     if (ev_cb (w))
3093     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3094     else
3095 root 1.195 ev_loop (w->other, EVLOOP_NONBLOCK);
3096 root 1.144 }
3097    
3098 root 1.189 static void
3099     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3100     {
3101     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3102    
3103 root 1.195 {
3104     struct ev_loop *loop = w->other;
3105    
3106     while (fdchangecnt)
3107     {
3108     fd_reify (EV_A);
3109     ev_loop (EV_A_ EVLOOP_NONBLOCK);
3110     }
3111     }
3112     }
3113    
3114 root 1.261 static void
3115     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3116     {
3117     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3118    
3119 root 1.277 ev_embed_stop (EV_A_ w);
3120    
3121 root 1.261 {
3122     struct ev_loop *loop = w->other;
3123    
3124     ev_loop_fork (EV_A);
3125 root 1.277 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3126 root 1.261 }
3127 root 1.277
3128     ev_embed_start (EV_A_ w);
3129 root 1.261 }
3130    
3131 root 1.195 #if 0
3132     static void
3133     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3134     {
3135     ev_idle_stop (EV_A_ idle);
3136 root 1.189 }
3137 root 1.195 #endif
3138 root 1.189
3139 root 1.144 void
3140     ev_embed_start (EV_P_ ev_embed *w)
3141     {
3142     if (expect_false (ev_is_active (w)))
3143     return;
3144    
3145     {
3146 root 1.188 struct ev_loop *loop = w->other;
3147 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3148 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3149 root 1.144 }
3150    
3151 root 1.248 EV_FREQUENT_CHECK;
3152    
3153 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3154     ev_io_start (EV_A_ &w->io);
3155    
3156 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3157     ev_set_priority (&w->prepare, EV_MINPRI);
3158     ev_prepare_start (EV_A_ &w->prepare);
3159    
3160 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3161     ev_fork_start (EV_A_ &w->fork);
3162    
3163 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3164    
3165 root 1.144 ev_start (EV_A_ (W)w, 1);
3166 root 1.248
3167     EV_FREQUENT_CHECK;
3168 root 1.144 }
3169    
3170     void
3171     ev_embed_stop (EV_P_ ev_embed *w)
3172     {
3173 root 1.166 clear_pending (EV_A_ (W)w);
3174 root 1.144 if (expect_false (!ev_is_active (w)))
3175     return;
3176    
3177 root 1.248 EV_FREQUENT_CHECK;
3178    
3179 root 1.261 ev_io_stop (EV_A_ &w->io);
3180 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3181 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3182 root 1.248
3183     EV_FREQUENT_CHECK;
3184 root 1.144 }
3185     #endif
3186    
3187 root 1.147 #if EV_FORK_ENABLE
3188     void
3189     ev_fork_start (EV_P_ ev_fork *w)
3190     {
3191     if (expect_false (ev_is_active (w)))
3192     return;
3193    
3194 root 1.248 EV_FREQUENT_CHECK;
3195    
3196 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3197     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3198     forks [forkcnt - 1] = w;
3199 root 1.248
3200     EV_FREQUENT_CHECK;
3201 root 1.147 }
3202    
3203     void
3204     ev_fork_stop (EV_P_ ev_fork *w)
3205     {
3206 root 1.166 clear_pending (EV_A_ (W)w);
3207 root 1.147 if (expect_false (!ev_is_active (w)))
3208     return;
3209    
3210 root 1.248 EV_FREQUENT_CHECK;
3211    
3212 root 1.147 {
3213 root 1.230 int active = ev_active (w);
3214    
3215 root 1.147 forks [active - 1] = forks [--forkcnt];
3216 root 1.230 ev_active (forks [active - 1]) = active;
3217 root 1.147 }
3218    
3219     ev_stop (EV_A_ (W)w);
3220 root 1.248
3221     EV_FREQUENT_CHECK;
3222 root 1.147 }
3223     #endif
3224    
3225 root 1.207 #if EV_ASYNC_ENABLE
3226     void
3227     ev_async_start (EV_P_ ev_async *w)
3228     {
3229     if (expect_false (ev_is_active (w)))
3230     return;
3231    
3232     evpipe_init (EV_A);
3233    
3234 root 1.248 EV_FREQUENT_CHECK;
3235    
3236 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3237     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3238     asyncs [asynccnt - 1] = w;
3239 root 1.248
3240     EV_FREQUENT_CHECK;
3241 root 1.207 }
3242    
3243     void
3244     ev_async_stop (EV_P_ ev_async *w)
3245     {
3246     clear_pending (EV_A_ (W)w);
3247     if (expect_false (!ev_is_active (w)))
3248     return;
3249    
3250 root 1.248 EV_FREQUENT_CHECK;
3251    
3252 root 1.207 {
3253 root 1.230 int active = ev_active (w);
3254    
3255 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3256 root 1.230 ev_active (asyncs [active - 1]) = active;
3257 root 1.207 }
3258    
3259     ev_stop (EV_A_ (W)w);
3260 root 1.248
3261     EV_FREQUENT_CHECK;
3262 root 1.207 }
3263    
3264     void
3265     ev_async_send (EV_P_ ev_async *w)
3266     {
3267     w->sent = 1;
3268 root 1.214 evpipe_write (EV_A_ &gotasync);
3269 root 1.207 }
3270     #endif
3271    
3272 root 1.1 /*****************************************************************************/
3273 root 1.10
3274 root 1.16 struct ev_once
3275     {
3276 root 1.136 ev_io io;
3277     ev_timer to;
3278 root 1.16 void (*cb)(int revents, void *arg);
3279     void *arg;
3280     };
3281    
3282     static void
3283 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3284 root 1.16 {
3285     void (*cb)(int revents, void *arg) = once->cb;
3286     void *arg = once->arg;
3287    
3288 root 1.259 ev_io_stop (EV_A_ &once->io);
3289 root 1.51 ev_timer_stop (EV_A_ &once->to);
3290 root 1.69 ev_free (once);
3291 root 1.16
3292     cb (revents, arg);
3293     }
3294    
3295     static void
3296 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3297 root 1.16 {
3298 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3299    
3300     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3301 root 1.16 }
3302    
3303     static void
3304 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3305 root 1.16 {
3306 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3307    
3308     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3309 root 1.16 }
3310    
3311     void
3312 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3313 root 1.16 {
3314 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3315 root 1.16
3316 root 1.123 if (expect_false (!once))
3317 root 1.16 {
3318 root 1.123 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3319     return;
3320     }
3321    
3322     once->cb = cb;
3323     once->arg = arg;
3324 root 1.16
3325 root 1.123 ev_init (&once->io, once_cb_io);
3326     if (fd >= 0)
3327     {
3328     ev_io_set (&once->io, fd, events);
3329     ev_io_start (EV_A_ &once->io);
3330     }
3331 root 1.16
3332 root 1.123 ev_init (&once->to, once_cb_to);
3333     if (timeout >= 0.)
3334     {
3335     ev_timer_set (&once->to, timeout, 0.);
3336     ev_timer_start (EV_A_ &once->to);
3337 root 1.16 }
3338     }
3339    
3340 root 1.282 /*****************************************************************************/
3341    
3342 root 1.288 #if EV_WALK_ENABLE
3343 root 1.282 void
3344     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3345     {
3346     int i, j;
3347     ev_watcher_list *wl, *wn;
3348    
3349     if (types & (EV_IO | EV_EMBED))
3350     for (i = 0; i < anfdmax; ++i)
3351     for (wl = anfds [i].head; wl; )
3352     {
3353     wn = wl->next;
3354    
3355     #if EV_EMBED_ENABLE
3356     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3357     {
3358     if (types & EV_EMBED)
3359     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3360     }
3361     else
3362     #endif
3363     #if EV_USE_INOTIFY
3364     if (ev_cb ((ev_io *)wl) == infy_cb)
3365     ;
3366     else
3367     #endif
3368 root 1.288 if ((ev_io *)wl != &pipe_w)
3369 root 1.282 if (types & EV_IO)
3370     cb (EV_A_ EV_IO, wl);
3371    
3372     wl = wn;
3373     }
3374    
3375     if (types & (EV_TIMER | EV_STAT))
3376     for (i = timercnt + HEAP0; i-- > HEAP0; )
3377     #if EV_STAT_ENABLE
3378     /*TODO: timer is not always active*/
3379     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3380     {
3381     if (types & EV_STAT)
3382     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3383     }
3384     else
3385     #endif
3386     if (types & EV_TIMER)
3387     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3388    
3389     #if EV_PERIODIC_ENABLE
3390     if (types & EV_PERIODIC)
3391     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3392     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3393     #endif
3394    
3395     #if EV_IDLE_ENABLE
3396     if (types & EV_IDLE)
3397     for (j = NUMPRI; i--; )
3398     for (i = idlecnt [j]; i--; )
3399     cb (EV_A_ EV_IDLE, idles [j][i]);
3400     #endif
3401    
3402     #if EV_FORK_ENABLE
3403     if (types & EV_FORK)
3404     for (i = forkcnt; i--; )
3405     if (ev_cb (forks [i]) != embed_fork_cb)
3406     cb (EV_A_ EV_FORK, forks [i]);
3407     #endif
3408    
3409     #if EV_ASYNC_ENABLE
3410     if (types & EV_ASYNC)
3411     for (i = asynccnt; i--; )
3412     cb (EV_A_ EV_ASYNC, asyncs [i]);
3413     #endif
3414    
3415     if (types & EV_PREPARE)
3416     for (i = preparecnt; i--; )
3417     #if EV_EMBED_ENABLE
3418     if (ev_cb (prepares [i]) != embed_prepare_cb)
3419     #endif
3420     cb (EV_A_ EV_PREPARE, prepares [i]);
3421    
3422     if (types & EV_CHECK)
3423     for (i = checkcnt; i--; )
3424     cb (EV_A_ EV_CHECK, checks [i]);
3425    
3426     if (types & EV_SIGNAL)
3427     for (i = 0; i < signalmax; ++i)
3428     for (wl = signals [i].head; wl; )
3429     {
3430     wn = wl->next;
3431     cb (EV_A_ EV_SIGNAL, wl);
3432     wl = wn;
3433     }
3434    
3435     if (types & EV_CHILD)
3436     for (i = EV_PID_HASHSIZE; i--; )
3437     for (wl = childs [i]; wl; )
3438     {
3439     wn = wl->next;
3440     cb (EV_A_ EV_CHILD, wl);
3441     wl = wn;
3442     }
3443     /* EV_STAT 0x00001000 /* stat data changed */
3444     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3445     }
3446     #endif
3447    
3448 root 1.188 #if EV_MULTIPLICITY
3449     #include "ev_wrap.h"
3450     #endif
3451    
3452 root 1.87 #ifdef __cplusplus
3453     }
3454     #endif
3455