ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.300
Committed: Tue Jul 14 20:31:21 2009 UTC (14 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.299: +12 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.278 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40     #ifdef __cplusplus
41     extern "C" {
42     #endif
43    
44 root 1.220 /* this big block deduces configuration from config.h */
45 root 1.59 #ifndef EV_STANDALONE
46 root 1.133 # ifdef EV_CONFIG_H
47     # include EV_CONFIG_H
48     # else
49     # include "config.h"
50     # endif
51 root 1.60
52 root 1.274 # if HAVE_CLOCK_SYSCALL
53     # ifndef EV_USE_CLOCK_SYSCALL
54     # define EV_USE_CLOCK_SYSCALL 1
55     # ifndef EV_USE_REALTIME
56     # define EV_USE_REALTIME 0
57     # endif
58     # ifndef EV_USE_MONOTONIC
59     # define EV_USE_MONOTONIC 1
60     # endif
61     # endif
62 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
63     # define EV_USE_CLOCK_SYSCALL 0
64 root 1.274 # endif
65    
66 root 1.60 # if HAVE_CLOCK_GETTIME
67 root 1.97 # ifndef EV_USE_MONOTONIC
68     # define EV_USE_MONOTONIC 1
69     # endif
70     # ifndef EV_USE_REALTIME
71 root 1.279 # define EV_USE_REALTIME 0
72 root 1.97 # endif
73 root 1.126 # else
74     # ifndef EV_USE_MONOTONIC
75     # define EV_USE_MONOTONIC 0
76     # endif
77     # ifndef EV_USE_REALTIME
78     # define EV_USE_REALTIME 0
79     # endif
80 root 1.60 # endif
81    
82 root 1.193 # ifndef EV_USE_NANOSLEEP
83     # if HAVE_NANOSLEEP
84     # define EV_USE_NANOSLEEP 1
85     # else
86     # define EV_USE_NANOSLEEP 0
87     # endif
88     # endif
89    
90 root 1.127 # ifndef EV_USE_SELECT
91     # if HAVE_SELECT && HAVE_SYS_SELECT_H
92     # define EV_USE_SELECT 1
93     # else
94     # define EV_USE_SELECT 0
95     # endif
96 root 1.60 # endif
97    
98 root 1.127 # ifndef EV_USE_POLL
99     # if HAVE_POLL && HAVE_POLL_H
100     # define EV_USE_POLL 1
101     # else
102     # define EV_USE_POLL 0
103     # endif
104 root 1.60 # endif
105 root 1.127
106     # ifndef EV_USE_EPOLL
107     # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108     # define EV_USE_EPOLL 1
109     # else
110     # define EV_USE_EPOLL 0
111     # endif
112 root 1.60 # endif
113 root 1.127
114     # ifndef EV_USE_KQUEUE
115     # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116     # define EV_USE_KQUEUE 1
117     # else
118     # define EV_USE_KQUEUE 0
119     # endif
120 root 1.60 # endif
121 root 1.127
122     # ifndef EV_USE_PORT
123     # if HAVE_PORT_H && HAVE_PORT_CREATE
124     # define EV_USE_PORT 1
125     # else
126     # define EV_USE_PORT 0
127     # endif
128 root 1.118 # endif
129    
130 root 1.152 # ifndef EV_USE_INOTIFY
131     # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132     # define EV_USE_INOTIFY 1
133     # else
134     # define EV_USE_INOTIFY 0
135     # endif
136     # endif
137    
138 root 1.220 # ifndef EV_USE_EVENTFD
139     # if HAVE_EVENTFD
140     # define EV_USE_EVENTFD 1
141     # else
142     # define EV_USE_EVENTFD 0
143     # endif
144     # endif
145 root 1.250
146 root 1.29 #endif
147 root 1.17
148 root 1.1 #include <math.h>
149     #include <stdlib.h>
150 root 1.7 #include <fcntl.h>
151 root 1.16 #include <stddef.h>
152 root 1.1
153     #include <stdio.h>
154    
155 root 1.4 #include <assert.h>
156 root 1.1 #include <errno.h>
157 root 1.22 #include <sys/types.h>
158 root 1.71 #include <time.h>
159    
160 root 1.72 #include <signal.h>
161 root 1.71
162 root 1.152 #ifdef EV_H
163     # include EV_H
164     #else
165     # include "ev.h"
166     #endif
167    
168 root 1.103 #ifndef _WIN32
169 root 1.71 # include <sys/time.h>
170 root 1.45 # include <sys/wait.h>
171 root 1.140 # include <unistd.h>
172 root 1.103 #else
173 root 1.256 # include <io.h>
174 root 1.103 # define WIN32_LEAN_AND_MEAN
175     # include <windows.h>
176     # ifndef EV_SELECT_IS_WINSOCKET
177     # define EV_SELECT_IS_WINSOCKET 1
178     # endif
179 root 1.45 #endif
180 root 1.103
181 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
182 root 1.40
183 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
184     # if __linux && __GLIBC__ >= 2
185     # define EV_USE_CLOCK_SYSCALL 1
186     # else
187     # define EV_USE_CLOCK_SYSCALL 0
188     # endif
189     #endif
190    
191 root 1.29 #ifndef EV_USE_MONOTONIC
192 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193     # define EV_USE_MONOTONIC 1
194     # else
195     # define EV_USE_MONOTONIC 0
196     # endif
197 root 1.37 #endif
198    
199 root 1.118 #ifndef EV_USE_REALTIME
200 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201 root 1.118 #endif
202    
203 root 1.193 #ifndef EV_USE_NANOSLEEP
204 root 1.253 # if _POSIX_C_SOURCE >= 199309L
205     # define EV_USE_NANOSLEEP 1
206     # else
207     # define EV_USE_NANOSLEEP 0
208     # endif
209 root 1.193 #endif
210    
211 root 1.29 #ifndef EV_USE_SELECT
212     # define EV_USE_SELECT 1
213 root 1.10 #endif
214    
215 root 1.59 #ifndef EV_USE_POLL
216 root 1.104 # ifdef _WIN32
217     # define EV_USE_POLL 0
218     # else
219     # define EV_USE_POLL 1
220     # endif
221 root 1.41 #endif
222    
223 root 1.29 #ifndef EV_USE_EPOLL
224 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225     # define EV_USE_EPOLL 1
226     # else
227     # define EV_USE_EPOLL 0
228     # endif
229 root 1.10 #endif
230    
231 root 1.44 #ifndef EV_USE_KQUEUE
232     # define EV_USE_KQUEUE 0
233     #endif
234    
235 root 1.118 #ifndef EV_USE_PORT
236     # define EV_USE_PORT 0
237 root 1.40 #endif
238    
239 root 1.152 #ifndef EV_USE_INOTIFY
240 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241     # define EV_USE_INOTIFY 1
242     # else
243     # define EV_USE_INOTIFY 0
244     # endif
245 root 1.152 #endif
246    
247 root 1.149 #ifndef EV_PID_HASHSIZE
248     # if EV_MINIMAL
249     # define EV_PID_HASHSIZE 1
250     # else
251     # define EV_PID_HASHSIZE 16
252     # endif
253     #endif
254    
255 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
256     # if EV_MINIMAL
257     # define EV_INOTIFY_HASHSIZE 1
258     # else
259     # define EV_INOTIFY_HASHSIZE 16
260     # endif
261     #endif
262    
263 root 1.220 #ifndef EV_USE_EVENTFD
264     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265     # define EV_USE_EVENTFD 1
266     # else
267     # define EV_USE_EVENTFD 0
268     # endif
269     #endif
270    
271 root 1.249 #if 0 /* debugging */
272 root 1.250 # define EV_VERIFY 3
273 root 1.249 # define EV_USE_4HEAP 1
274     # define EV_HEAP_CACHE_AT 1
275     #endif
276    
277 root 1.250 #ifndef EV_VERIFY
278     # define EV_VERIFY !EV_MINIMAL
279     #endif
280    
281 root 1.243 #ifndef EV_USE_4HEAP
282     # define EV_USE_4HEAP !EV_MINIMAL
283     #endif
284    
285     #ifndef EV_HEAP_CACHE_AT
286     # define EV_HEAP_CACHE_AT !EV_MINIMAL
287     #endif
288    
289 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290     /* which makes programs even slower. might work on other unices, too. */
291     #if EV_USE_CLOCK_SYSCALL
292     # include <syscall.h>
293     # ifdef SYS_clock_gettime
294     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295     # undef EV_USE_MONOTONIC
296     # define EV_USE_MONOTONIC 1
297     # else
298     # undef EV_USE_CLOCK_SYSCALL
299     # define EV_USE_CLOCK_SYSCALL 0
300     # endif
301     #endif
302    
303 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
304 root 1.40
305     #ifndef CLOCK_MONOTONIC
306     # undef EV_USE_MONOTONIC
307     # define EV_USE_MONOTONIC 0
308     #endif
309    
310 root 1.31 #ifndef CLOCK_REALTIME
311 root 1.40 # undef EV_USE_REALTIME
312 root 1.31 # define EV_USE_REALTIME 0
313     #endif
314 root 1.40
315 root 1.152 #if !EV_STAT_ENABLE
316 root 1.185 # undef EV_USE_INOTIFY
317 root 1.152 # define EV_USE_INOTIFY 0
318     #endif
319    
320 root 1.193 #if !EV_USE_NANOSLEEP
321     # ifndef _WIN32
322     # include <sys/select.h>
323     # endif
324     #endif
325    
326 root 1.152 #if EV_USE_INOTIFY
327 root 1.264 # include <sys/utsname.h>
328 root 1.273 # include <sys/statfs.h>
329 root 1.152 # include <sys/inotify.h>
330 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331     # ifndef IN_DONT_FOLLOW
332     # undef EV_USE_INOTIFY
333     # define EV_USE_INOTIFY 0
334     # endif
335 root 1.152 #endif
336    
337 root 1.185 #if EV_SELECT_IS_WINSOCKET
338     # include <winsock.h>
339     #endif
340    
341 root 1.220 #if EV_USE_EVENTFD
342     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343 root 1.221 # include <stdint.h>
344 root 1.222 # ifdef __cplusplus
345     extern "C" {
346     # endif
347 root 1.220 int eventfd (unsigned int initval, int flags);
348 root 1.222 # ifdef __cplusplus
349     }
350     # endif
351 root 1.220 #endif
352    
353 root 1.40 /**/
354 root 1.1
355 root 1.250 #if EV_VERIFY >= 3
356 root 1.248 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357     #else
358     # define EV_FREQUENT_CHECK do { } while (0)
359     #endif
360    
361 root 1.176 /*
362     * This is used to avoid floating point rounding problems.
363     * It is added to ev_rt_now when scheduling periodics
364     * to ensure progress, time-wise, even when rounding
365     * errors are against us.
366 root 1.177 * This value is good at least till the year 4000.
367 root 1.176 * Better solutions welcome.
368     */
369     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370    
371 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
372 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
373 root 1.176 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
374 root 1.1
375 root 1.185 #if __GNUC__ >= 4
376 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
377 root 1.169 # define noinline __attribute__ ((noinline))
378 root 1.40 #else
379     # define expect(expr,value) (expr)
380 root 1.140 # define noinline
381 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382 root 1.169 # define inline
383     # endif
384 root 1.40 #endif
385    
386     #define expect_false(expr) expect ((expr) != 0, 0)
387     #define expect_true(expr) expect ((expr) != 0, 1)
388 root 1.169 #define inline_size static inline
389    
390     #if EV_MINIMAL
391     # define inline_speed static noinline
392     #else
393     # define inline_speed static inline
394     #endif
395 root 1.40
396 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397    
398     #if EV_MINPRI == EV_MAXPRI
399     # define ABSPRI(w) (((W)w), 0)
400     #else
401     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402     #endif
403 root 1.42
404 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
405 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
406 root 1.103
407 root 1.136 typedef ev_watcher *W;
408     typedef ev_watcher_list *WL;
409     typedef ev_watcher_time *WT;
410 root 1.10
411 root 1.229 #define ev_active(w) ((W)(w))->active
412 root 1.228 #define ev_at(w) ((WT)(w))->at
413    
414 root 1.279 #if EV_USE_REALTIME
415 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
416     /* giving it a reasonably high chance of working on typical architetcures */
417 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418     #endif
419    
420     #if EV_USE_MONOTONIC
421 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422 root 1.198 #endif
423 root 1.54
424 root 1.103 #ifdef _WIN32
425 root 1.98 # include "ev_win32.c"
426     #endif
427 root 1.67
428 root 1.53 /*****************************************************************************/
429 root 1.1
430 root 1.70 static void (*syserr_cb)(const char *msg);
431 root 1.69
432 root 1.141 void
433     ev_set_syserr_cb (void (*cb)(const char *msg))
434 root 1.69 {
435     syserr_cb = cb;
436     }
437    
438 root 1.141 static void noinline
439 root 1.269 ev_syserr (const char *msg)
440 root 1.69 {
441 root 1.70 if (!msg)
442     msg = "(libev) system error";
443    
444 root 1.69 if (syserr_cb)
445 root 1.70 syserr_cb (msg);
446 root 1.69 else
447     {
448 root 1.70 perror (msg);
449 root 1.69 abort ();
450     }
451     }
452    
453 root 1.224 static void *
454     ev_realloc_emul (void *ptr, long size)
455     {
456     /* some systems, notably openbsd and darwin, fail to properly
457     * implement realloc (x, 0) (as required by both ansi c-98 and
458     * the single unix specification, so work around them here.
459     */
460    
461     if (size)
462     return realloc (ptr, size);
463    
464     free (ptr);
465     return 0;
466     }
467    
468     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
469 root 1.69
470 root 1.141 void
471 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
472 root 1.69 {
473     alloc = cb;
474     }
475    
476 root 1.150 inline_speed void *
477 root 1.155 ev_realloc (void *ptr, long size)
478 root 1.69 {
479 root 1.224 ptr = alloc (ptr, size);
480 root 1.69
481     if (!ptr && size)
482     {
483 root 1.155 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
484 root 1.69 abort ();
485     }
486    
487     return ptr;
488     }
489    
490     #define ev_malloc(size) ev_realloc (0, (size))
491     #define ev_free(ptr) ev_realloc ((ptr), 0)
492    
493     /*****************************************************************************/
494    
495 root 1.298 /* set in reify when reification needed */
496     #define EV_ANFD_REIFY 1
497    
498 root 1.288 /* file descriptor info structure */
499 root 1.53 typedef struct
500     {
501 root 1.68 WL head;
502 root 1.288 unsigned char events; /* the events watched for */
503 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
505 root 1.269 unsigned char unused;
506     #if EV_USE_EPOLL
507 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
508 root 1.269 #endif
509 root 1.103 #if EV_SELECT_IS_WINSOCKET
510     SOCKET handle;
511     #endif
512 root 1.53 } ANFD;
513 root 1.1
514 root 1.288 /* stores the pending event set for a given watcher */
515 root 1.53 typedef struct
516     {
517     W w;
518 root 1.288 int events; /* the pending event set for the given watcher */
519 root 1.53 } ANPENDING;
520 root 1.51
521 root 1.155 #if EV_USE_INOTIFY
522 root 1.241 /* hash table entry per inotify-id */
523 root 1.152 typedef struct
524     {
525     WL head;
526 root 1.155 } ANFS;
527 root 1.152 #endif
528    
529 root 1.241 /* Heap Entry */
530     #if EV_HEAP_CACHE_AT
531 root 1.288 /* a heap element */
532 root 1.241 typedef struct {
533 root 1.243 ev_tstamp at;
534 root 1.241 WT w;
535     } ANHE;
536    
537 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
538     #define ANHE_at(he) (he).at /* access cached at, read-only */
539     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540 root 1.241 #else
541 root 1.288 /* a heap element */
542 root 1.241 typedef WT ANHE;
543    
544 root 1.248 #define ANHE_w(he) (he)
545     #define ANHE_at(he) (he)->at
546     #define ANHE_at_cache(he)
547 root 1.241 #endif
548    
549 root 1.55 #if EV_MULTIPLICITY
550 root 1.54
551 root 1.80 struct ev_loop
552     {
553 root 1.86 ev_tstamp ev_rt_now;
554 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
555 root 1.80 #define VAR(name,decl) decl;
556     #include "ev_vars.h"
557     #undef VAR
558     };
559     #include "ev_wrap.h"
560    
561 root 1.116 static struct ev_loop default_loop_struct;
562     struct ev_loop *ev_default_loop_ptr;
563 root 1.54
564 root 1.53 #else
565 root 1.54
566 root 1.86 ev_tstamp ev_rt_now;
567 root 1.80 #define VAR(name,decl) static decl;
568     #include "ev_vars.h"
569     #undef VAR
570    
571 root 1.116 static int ev_default_loop_ptr;
572 root 1.54
573 root 1.51 #endif
574 root 1.1
575 root 1.297 #if EV_MINIMAL < 2
576 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
579     #else
580 root 1.298 # define EV_RELEASE_CB (void)0
581     # define EV_ACQUIRE_CB (void)0
582 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583     #endif
584    
585 root 1.298 #define EVUNLOOP_RECURSE 0x80
586    
587 root 1.8 /*****************************************************************************/
588    
589 root 1.292 #ifndef EV_HAVE_EV_TIME
590 root 1.141 ev_tstamp
591 root 1.1 ev_time (void)
592     {
593 root 1.29 #if EV_USE_REALTIME
594 root 1.279 if (expect_true (have_realtime))
595     {
596     struct timespec ts;
597     clock_gettime (CLOCK_REALTIME, &ts);
598     return ts.tv_sec + ts.tv_nsec * 1e-9;
599     }
600     #endif
601    
602 root 1.1 struct timeval tv;
603     gettimeofday (&tv, 0);
604     return tv.tv_sec + tv.tv_usec * 1e-6;
605     }
606 root 1.292 #endif
607 root 1.1
608 root 1.284 inline_size ev_tstamp
609 root 1.1 get_clock (void)
610     {
611 root 1.29 #if EV_USE_MONOTONIC
612 root 1.40 if (expect_true (have_monotonic))
613 root 1.1 {
614     struct timespec ts;
615     clock_gettime (CLOCK_MONOTONIC, &ts);
616     return ts.tv_sec + ts.tv_nsec * 1e-9;
617     }
618     #endif
619    
620     return ev_time ();
621     }
622    
623 root 1.85 #if EV_MULTIPLICITY
624 root 1.51 ev_tstamp
625     ev_now (EV_P)
626     {
627 root 1.85 return ev_rt_now;
628 root 1.51 }
629 root 1.85 #endif
630 root 1.51
631 root 1.193 void
632     ev_sleep (ev_tstamp delay)
633     {
634     if (delay > 0.)
635     {
636     #if EV_USE_NANOSLEEP
637     struct timespec ts;
638    
639     ts.tv_sec = (time_t)delay;
640     ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
641    
642     nanosleep (&ts, 0);
643     #elif defined(_WIN32)
644 root 1.217 Sleep ((unsigned long)(delay * 1e3));
645 root 1.193 #else
646     struct timeval tv;
647    
648     tv.tv_sec = (time_t)delay;
649     tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
650    
651 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 root 1.293 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 root 1.257 /* by older ones */
654 root 1.193 select (0, 0, 0, 0, &tv);
655     #endif
656     }
657     }
658    
659     /*****************************************************************************/
660    
661 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
662 root 1.232
663 root 1.288 /* find a suitable new size for the given array, */
664     /* hopefully by rounding to a ncie-to-malloc size */
665 root 1.284 inline_size int
666 root 1.163 array_nextsize (int elem, int cur, int cnt)
667     {
668     int ncur = cur + 1;
669    
670     do
671     ncur <<= 1;
672     while (cnt > ncur);
673    
674 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
675     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
676 root 1.163 {
677     ncur *= elem;
678 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
679 root 1.163 ncur = ncur - sizeof (void *) * 4;
680     ncur /= elem;
681     }
682    
683     return ncur;
684     }
685    
686 root 1.171 static noinline void *
687 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
688     {
689     *cur = array_nextsize (elem, *cur, cnt);
690     return ev_realloc (base, elem * *cur);
691     }
692 root 1.29
693 root 1.265 #define array_init_zero(base,count) \
694     memset ((void *)(base), 0, sizeof (*(base)) * (count))
695    
696 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
697 root 1.163 if (expect_false ((cnt) > (cur))) \
698 root 1.69 { \
699 root 1.163 int ocur_ = (cur); \
700     (base) = (type *)array_realloc \
701     (sizeof (type), (base), &(cur), (cnt)); \
702     init ((base) + (ocur_), (cur) - ocur_); \
703 root 1.1 }
704    
705 root 1.163 #if 0
706 root 1.74 #define array_slim(type,stem) \
707 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
708     { \
709     stem ## max = array_roundsize (stem ## cnt >> 1); \
710 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
711 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
712     }
713 root 1.163 #endif
714 root 1.67
715 root 1.65 #define array_free(stem, idx) \
716 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
717 root 1.65
718 root 1.8 /*****************************************************************************/
719    
720 root 1.288 /* dummy callback for pending events */
721     static void noinline
722     pendingcb (EV_P_ ev_prepare *w, int revents)
723     {
724     }
725    
726 root 1.140 void noinline
727 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
728 root 1.1 {
729 root 1.78 W w_ = (W)w;
730 root 1.171 int pri = ABSPRI (w_);
731 root 1.78
732 root 1.123 if (expect_false (w_->pending))
733 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
734     else
735 root 1.32 {
736 root 1.171 w_->pending = ++pendingcnt [pri];
737     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
738     pendings [pri][w_->pending - 1].w = w_;
739     pendings [pri][w_->pending - 1].events = revents;
740 root 1.32 }
741 root 1.1 }
742    
743 root 1.284 inline_speed void
744     feed_reverse (EV_P_ W w)
745     {
746     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747     rfeeds [rfeedcnt++] = w;
748     }
749    
750     inline_size void
751     feed_reverse_done (EV_P_ int revents)
752     {
753     do
754     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755     while (rfeedcnt);
756     }
757    
758     inline_speed void
759 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
760 root 1.27 {
761     int i;
762    
763     for (i = 0; i < eventcnt; ++i)
764 root 1.78 ev_feed_event (EV_A_ events [i], type);
765 root 1.27 }
766    
767 root 1.141 /*****************************************************************************/
768    
769 root 1.284 inline_speed void
770 root 1.298 fd_event_nc (EV_P_ int fd, int revents)
771 root 1.1 {
772     ANFD *anfd = anfds + fd;
773 root 1.136 ev_io *w;
774 root 1.1
775 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
776 root 1.1 {
777 root 1.79 int ev = w->events & revents;
778 root 1.1
779     if (ev)
780 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
781 root 1.1 }
782     }
783    
784 root 1.298 /* do not submit kernel events for fds that have reify set */
785     /* because that means they changed while we were polling for new events */
786     inline_speed void
787     fd_event (EV_P_ int fd, int revents)
788     {
789     ANFD *anfd = anfds + fd;
790    
791     if (expect_true (!anfd->reify))
792     fd_event_nc (EV_A_ fd, revents);
793     }
794    
795 root 1.79 void
796     ev_feed_fd_event (EV_P_ int fd, int revents)
797     {
798 root 1.168 if (fd >= 0 && fd < anfdmax)
799 root 1.298 fd_event_nc (EV_A_ fd, revents);
800 root 1.79 }
801    
802 root 1.288 /* make sure the external fd watch events are in-sync */
803     /* with the kernel/libev internal state */
804 root 1.284 inline_size void
805 root 1.51 fd_reify (EV_P)
806 root 1.9 {
807     int i;
808    
809 root 1.27 for (i = 0; i < fdchangecnt; ++i)
810     {
811     int fd = fdchanges [i];
812     ANFD *anfd = anfds + fd;
813 root 1.136 ev_io *w;
814 root 1.27
815 root 1.184 unsigned char events = 0;
816 root 1.27
817 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
818 root 1.184 events |= (unsigned char)w->events;
819 root 1.27
820 root 1.103 #if EV_SELECT_IS_WINSOCKET
821     if (events)
822     {
823 root 1.254 unsigned long arg;
824 root 1.200 #ifdef EV_FD_TO_WIN32_HANDLE
825     anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
826     #else
827     anfd->handle = _get_osfhandle (fd);
828     #endif
829 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
830 root 1.103 }
831     #endif
832    
833 root 1.184 {
834     unsigned char o_events = anfd->events;
835     unsigned char o_reify = anfd->reify;
836    
837     anfd->reify = 0;
838     anfd->events = events;
839 root 1.27
840 root 1.281 if (o_events != events || o_reify & EV__IOFDSET)
841 root 1.184 backend_modify (EV_A_ fd, o_events, events);
842     }
843 root 1.27 }
844    
845     fdchangecnt = 0;
846     }
847    
848 root 1.288 /* something about the given fd changed */
849 root 1.284 inline_size void
850 root 1.183 fd_change (EV_P_ int fd, int flags)
851 root 1.27 {
852 root 1.183 unsigned char reify = anfds [fd].reify;
853 root 1.184 anfds [fd].reify |= flags;
854 root 1.27
855 root 1.183 if (expect_true (!reify))
856     {
857     ++fdchangecnt;
858     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
859     fdchanges [fdchangecnt - 1] = fd;
860     }
861 root 1.9 }
862    
863 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864 root 1.284 inline_speed void
865 root 1.51 fd_kill (EV_P_ int fd)
866 root 1.41 {
867 root 1.136 ev_io *w;
868 root 1.41
869 root 1.136 while ((w = (ev_io *)anfds [fd].head))
870 root 1.41 {
871 root 1.51 ev_io_stop (EV_A_ w);
872 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
873 root 1.41 }
874     }
875    
876 root 1.288 /* check whether the given fd is atcually valid, for error recovery */
877 root 1.284 inline_size int
878 root 1.71 fd_valid (int fd)
879     {
880 root 1.103 #ifdef _WIN32
881     return _get_osfhandle (fd) != -1;
882 root 1.71 #else
883     return fcntl (fd, F_GETFD) != -1;
884     #endif
885     }
886    
887 root 1.19 /* called on EBADF to verify fds */
888 root 1.140 static void noinline
889 root 1.51 fd_ebadf (EV_P)
890 root 1.19 {
891     int fd;
892    
893     for (fd = 0; fd < anfdmax; ++fd)
894 root 1.27 if (anfds [fd].events)
895 root 1.254 if (!fd_valid (fd) && errno == EBADF)
896 root 1.51 fd_kill (EV_A_ fd);
897 root 1.41 }
898    
899     /* called on ENOMEM in select/poll to kill some fds and retry */
900 root 1.140 static void noinline
901 root 1.51 fd_enomem (EV_P)
902 root 1.41 {
903 root 1.62 int fd;
904 root 1.41
905 root 1.62 for (fd = anfdmax; fd--; )
906 root 1.41 if (anfds [fd].events)
907     {
908 root 1.51 fd_kill (EV_A_ fd);
909 root 1.41 return;
910     }
911 root 1.19 }
912    
913 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
914 root 1.140 static void noinline
915 root 1.56 fd_rearm_all (EV_P)
916     {
917     int fd;
918    
919     for (fd = 0; fd < anfdmax; ++fd)
920     if (anfds [fd].events)
921     {
922     anfds [fd].events = 0;
923 root 1.268 anfds [fd].emask = 0;
924 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
925 root 1.56 }
926     }
927    
928 root 1.8 /*****************************************************************************/
929    
930 root 1.235 /*
931 root 1.241 * the heap functions want a real array index. array index 0 uis guaranteed to not
932     * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
933     * the branching factor of the d-tree.
934     */
935    
936     /*
937 root 1.235 * at the moment we allow libev the luxury of two heaps,
938     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
939     * which is more cache-efficient.
940     * the difference is about 5% with 50000+ watchers.
941     */
942 root 1.241 #if EV_USE_4HEAP
943 root 1.235
944 root 1.237 #define DHEAP 4
945     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
946 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
948 root 1.235
949     /* away from the root */
950 root 1.284 inline_speed void
951 root 1.241 downheap (ANHE *heap, int N, int k)
952 root 1.235 {
953 root 1.241 ANHE he = heap [k];
954     ANHE *E = heap + N + HEAP0;
955 root 1.235
956     for (;;)
957     {
958     ev_tstamp minat;
959 root 1.241 ANHE *minpos;
960 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
961 root 1.235
962 root 1.248 /* find minimum child */
963 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
964 root 1.235 {
965 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
966     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 root 1.235 }
970 root 1.240 else if (pos < E)
971 root 1.235 {
972 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 root 1.235 }
977 root 1.240 else
978     break;
979 root 1.235
980 root 1.241 if (ANHE_at (he) <= minat)
981 root 1.235 break;
982    
983 root 1.247 heap [k] = *minpos;
984 root 1.241 ev_active (ANHE_w (*minpos)) = k;
985 root 1.235
986     k = minpos - heap;
987     }
988    
989 root 1.247 heap [k] = he;
990 root 1.241 ev_active (ANHE_w (he)) = k;
991 root 1.235 }
992    
993 root 1.248 #else /* 4HEAP */
994 root 1.235
995     #define HEAP0 1
996 root 1.247 #define HPARENT(k) ((k) >> 1)
997 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
998 root 1.235
999 root 1.248 /* away from the root */
1000 root 1.284 inline_speed void
1001 root 1.248 downheap (ANHE *heap, int N, int k)
1002 root 1.1 {
1003 root 1.241 ANHE he = heap [k];
1004 root 1.1
1005 root 1.228 for (;;)
1006 root 1.1 {
1007 root 1.248 int c = k << 1;
1008 root 1.179
1009 root 1.248 if (c > N + HEAP0 - 1)
1010 root 1.179 break;
1011    
1012 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013     ? 1 : 0;
1014    
1015     if (ANHE_at (he) <= ANHE_at (heap [c]))
1016     break;
1017    
1018     heap [k] = heap [c];
1019 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1020 root 1.248
1021     k = c;
1022 root 1.1 }
1023    
1024 root 1.243 heap [k] = he;
1025 root 1.248 ev_active (ANHE_w (he)) = k;
1026 root 1.1 }
1027 root 1.248 #endif
1028 root 1.1
1029 root 1.248 /* towards the root */
1030 root 1.284 inline_speed void
1031 root 1.248 upheap (ANHE *heap, int k)
1032 root 1.1 {
1033 root 1.241 ANHE he = heap [k];
1034 root 1.1
1035 root 1.179 for (;;)
1036 root 1.1 {
1037 root 1.248 int p = HPARENT (k);
1038 root 1.179
1039 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1040 root 1.179 break;
1041 root 1.1
1042 root 1.248 heap [k] = heap [p];
1043 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1044 root 1.248 k = p;
1045 root 1.1 }
1046    
1047 root 1.241 heap [k] = he;
1048     ev_active (ANHE_w (he)) = k;
1049 root 1.1 }
1050    
1051 root 1.288 /* move an element suitably so it is in a correct place */
1052 root 1.284 inline_size void
1053 root 1.241 adjustheap (ANHE *heap, int N, int k)
1054 root 1.84 {
1055 root 1.247 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1056     upheap (heap, k);
1057     else
1058     downheap (heap, N, k);
1059 root 1.84 }
1060    
1061 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1062 root 1.284 inline_size void
1063 root 1.248 reheap (ANHE *heap, int N)
1064     {
1065     int i;
1066 root 1.251
1067 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069     for (i = 0; i < N; ++i)
1070     upheap (heap, i + HEAP0);
1071     }
1072    
1073 root 1.8 /*****************************************************************************/
1074    
1075 root 1.288 /* associate signal watchers to a signal signal */
1076 root 1.7 typedef struct
1077     {
1078 root 1.68 WL head;
1079 root 1.207 EV_ATOMIC_T gotsig;
1080 root 1.7 } ANSIG;
1081    
1082     static ANSIG *signals;
1083 root 1.4 static int signalmax;
1084 root 1.1
1085 root 1.207 static EV_ATOMIC_T gotsig;
1086 root 1.7
1087 root 1.207 /*****************************************************************************/
1088    
1089 root 1.288 /* used to prepare libev internal fd's */
1090     /* this is not fork-safe */
1091 root 1.284 inline_speed void
1092 root 1.207 fd_intern (int fd)
1093     {
1094     #ifdef _WIN32
1095 root 1.254 unsigned long arg = 1;
1096 root 1.207 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1097     #else
1098     fcntl (fd, F_SETFD, FD_CLOEXEC);
1099     fcntl (fd, F_SETFL, O_NONBLOCK);
1100     #endif
1101     }
1102    
1103     static void noinline
1104     evpipe_init (EV_P)
1105     {
1106 root 1.288 if (!ev_is_active (&pipe_w))
1107 root 1.207 {
1108 root 1.220 #if EV_USE_EVENTFD
1109     if ((evfd = eventfd (0, 0)) >= 0)
1110     {
1111     evpipe [0] = -1;
1112     fd_intern (evfd);
1113 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1114 root 1.220 }
1115     else
1116     #endif
1117     {
1118     while (pipe (evpipe))
1119 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1120 root 1.207
1121 root 1.220 fd_intern (evpipe [0]);
1122     fd_intern (evpipe [1]);
1123 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1124 root 1.220 }
1125 root 1.207
1126 root 1.288 ev_io_start (EV_A_ &pipe_w);
1127 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1128 root 1.207 }
1129     }
1130    
1131 root 1.284 inline_size void
1132 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1133 root 1.207 {
1134 root 1.214 if (!*flag)
1135 root 1.207 {
1136 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1137 root 1.214
1138     *flag = 1;
1139 root 1.220
1140     #if EV_USE_EVENTFD
1141     if (evfd >= 0)
1142     {
1143     uint64_t counter = 1;
1144     write (evfd, &counter, sizeof (uint64_t));
1145     }
1146     else
1147     #endif
1148     write (evpipe [1], &old_errno, 1);
1149 root 1.214
1150 root 1.207 errno = old_errno;
1151     }
1152     }
1153    
1154 root 1.288 /* called whenever the libev signal pipe */
1155     /* got some events (signal, async) */
1156 root 1.207 static void
1157     pipecb (EV_P_ ev_io *iow, int revents)
1158     {
1159 root 1.220 #if EV_USE_EVENTFD
1160     if (evfd >= 0)
1161     {
1162 root 1.232 uint64_t counter;
1163 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1164     }
1165     else
1166     #endif
1167     {
1168     char dummy;
1169     read (evpipe [0], &dummy, 1);
1170     }
1171 root 1.207
1172 root 1.211 if (gotsig && ev_is_default_loop (EV_A))
1173 root 1.207 {
1174     int signum;
1175     gotsig = 0;
1176    
1177     for (signum = signalmax; signum--; )
1178     if (signals [signum].gotsig)
1179     ev_feed_signal_event (EV_A_ signum + 1);
1180     }
1181    
1182 root 1.209 #if EV_ASYNC_ENABLE
1183 root 1.207 if (gotasync)
1184     {
1185     int i;
1186     gotasync = 0;
1187    
1188     for (i = asynccnt; i--; )
1189     if (asyncs [i]->sent)
1190     {
1191     asyncs [i]->sent = 0;
1192     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1193     }
1194     }
1195 root 1.209 #endif
1196 root 1.207 }
1197    
1198     /*****************************************************************************/
1199    
1200 root 1.7 static void
1201 root 1.218 ev_sighandler (int signum)
1202 root 1.7 {
1203 root 1.207 #if EV_MULTIPLICITY
1204     struct ev_loop *loop = &default_loop_struct;
1205     #endif
1206    
1207 root 1.103 #if _WIN32
1208 root 1.218 signal (signum, ev_sighandler);
1209 root 1.67 #endif
1210    
1211 root 1.7 signals [signum - 1].gotsig = 1;
1212 root 1.214 evpipe_write (EV_A_ &gotsig);
1213 root 1.7 }
1214    
1215 root 1.140 void noinline
1216 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1217     {
1218 root 1.80 WL w;
1219    
1220 root 1.79 #if EV_MULTIPLICITY
1221 root 1.278 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1222 root 1.79 #endif
1223    
1224     --signum;
1225    
1226     if (signum < 0 || signum >= signalmax)
1227     return;
1228    
1229     signals [signum].gotsig = 0;
1230    
1231     for (w = signals [signum].head; w; w = w->next)
1232     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1233     }
1234    
1235 root 1.8 /*****************************************************************************/
1236    
1237 root 1.182 static WL childs [EV_PID_HASHSIZE];
1238 root 1.71
1239 root 1.103 #ifndef _WIN32
1240 root 1.45
1241 root 1.136 static ev_signal childev;
1242 root 1.59
1243 root 1.206 #ifndef WIFCONTINUED
1244     # define WIFCONTINUED(status) 0
1245     #endif
1246    
1247 root 1.288 /* handle a single child status event */
1248 root 1.284 inline_speed void
1249 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1250 root 1.47 {
1251 root 1.136 ev_child *w;
1252 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1253 root 1.47
1254 root 1.149 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1255 root 1.206 {
1256     if ((w->pid == pid || !w->pid)
1257     && (!traced || (w->flags & 1)))
1258     {
1259 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1260 root 1.206 w->rpid = pid;
1261     w->rstatus = status;
1262     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1263     }
1264     }
1265 root 1.47 }
1266    
1267 root 1.142 #ifndef WCONTINUED
1268     # define WCONTINUED 0
1269     #endif
1270    
1271 root 1.288 /* called on sigchld etc., calls waitpid */
1272 root 1.47 static void
1273 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1274 root 1.22 {
1275     int pid, status;
1276    
1277 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1278     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1279     if (!WCONTINUED
1280     || errno != EINVAL
1281     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1282     return;
1283    
1284 root 1.216 /* make sure we are called again until all children have been reaped */
1285 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1286     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1287 root 1.47
1288 root 1.216 child_reap (EV_A_ pid, pid, status);
1289 root 1.149 if (EV_PID_HASHSIZE > 1)
1290 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1291 root 1.22 }
1292    
1293 root 1.45 #endif
1294    
1295 root 1.22 /*****************************************************************************/
1296    
1297 root 1.118 #if EV_USE_PORT
1298     # include "ev_port.c"
1299     #endif
1300 root 1.44 #if EV_USE_KQUEUE
1301     # include "ev_kqueue.c"
1302     #endif
1303 root 1.29 #if EV_USE_EPOLL
1304 root 1.1 # include "ev_epoll.c"
1305     #endif
1306 root 1.59 #if EV_USE_POLL
1307 root 1.41 # include "ev_poll.c"
1308     #endif
1309 root 1.29 #if EV_USE_SELECT
1310 root 1.1 # include "ev_select.c"
1311     #endif
1312    
1313 root 1.24 int
1314     ev_version_major (void)
1315     {
1316     return EV_VERSION_MAJOR;
1317     }
1318    
1319     int
1320     ev_version_minor (void)
1321     {
1322     return EV_VERSION_MINOR;
1323     }
1324    
1325 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1326 root 1.140 int inline_size
1327 root 1.51 enable_secure (void)
1328 root 1.41 {
1329 root 1.103 #ifdef _WIN32
1330 root 1.49 return 0;
1331     #else
1332 root 1.41 return getuid () != geteuid ()
1333     || getgid () != getegid ();
1334 root 1.49 #endif
1335 root 1.41 }
1336    
1337 root 1.111 unsigned int
1338 root 1.129 ev_supported_backends (void)
1339     {
1340 root 1.130 unsigned int flags = 0;
1341 root 1.129
1342     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1343     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1344     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1345     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1346     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1347    
1348     return flags;
1349     }
1350    
1351     unsigned int
1352 root 1.130 ev_recommended_backends (void)
1353 root 1.1 {
1354 root 1.131 unsigned int flags = ev_supported_backends ();
1355 root 1.129
1356     #ifndef __NetBSD__
1357     /* kqueue is borked on everything but netbsd apparently */
1358     /* it usually doesn't work correctly on anything but sockets and pipes */
1359     flags &= ~EVBACKEND_KQUEUE;
1360     #endif
1361     #ifdef __APPLE__
1362 root 1.278 /* only select works correctly on that "unix-certified" platform */
1363     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1365 root 1.129 #endif
1366    
1367     return flags;
1368 root 1.51 }
1369    
1370 root 1.130 unsigned int
1371 root 1.134 ev_embeddable_backends (void)
1372     {
1373 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1374    
1375 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1376 root 1.196 /* please fix it and tell me how to detect the fix */
1377     flags &= ~EVBACKEND_EPOLL;
1378    
1379     return flags;
1380 root 1.134 }
1381    
1382     unsigned int
1383 root 1.130 ev_backend (EV_P)
1384     {
1385     return backend;
1386     }
1387    
1388 root 1.297 #if EV_MINIMAL < 2
1389 root 1.162 unsigned int
1390     ev_loop_count (EV_P)
1391     {
1392     return loop_count;
1393     }
1394    
1395 root 1.294 unsigned int
1396     ev_loop_depth (EV_P)
1397     {
1398     return loop_depth;
1399     }
1400    
1401 root 1.193 void
1402     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1403     {
1404     io_blocktime = interval;
1405     }
1406    
1407     void
1408     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1409     {
1410     timeout_blocktime = interval;
1411     }
1412    
1413 root 1.297 void
1414     ev_set_userdata (EV_P_ void *data)
1415     {
1416     userdata = data;
1417     }
1418    
1419     void *
1420     ev_userdata (EV_P)
1421     {
1422     return userdata;
1423     }
1424    
1425     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426     {
1427     invoke_cb = invoke_pending_cb;
1428     }
1429    
1430 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431 root 1.297 {
1432 root 1.298 release_cb = release;
1433     acquire_cb = acquire;
1434 root 1.297 }
1435     #endif
1436    
1437 root 1.288 /* initialise a loop structure, must be zero-initialised */
1438 root 1.151 static void noinline
1439 root 1.108 loop_init (EV_P_ unsigned int flags)
1440 root 1.51 {
1441 root 1.130 if (!backend)
1442 root 1.23 {
1443 root 1.279 #if EV_USE_REALTIME
1444     if (!have_realtime)
1445     {
1446     struct timespec ts;
1447    
1448     if (!clock_gettime (CLOCK_REALTIME, &ts))
1449     have_realtime = 1;
1450     }
1451     #endif
1452    
1453 root 1.29 #if EV_USE_MONOTONIC
1454 root 1.279 if (!have_monotonic)
1455     {
1456     struct timespec ts;
1457    
1458     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1459     have_monotonic = 1;
1460     }
1461 root 1.1 #endif
1462    
1463 root 1.209 ev_rt_now = ev_time ();
1464     mn_now = get_clock ();
1465     now_floor = mn_now;
1466     rtmn_diff = ev_rt_now - mn_now;
1467 root 1.297 #if EV_MINIMAL < 2
1468 root 1.296 invoke_cb = ev_invoke_pending;
1469 root 1.297 #endif
1470 root 1.1
1471 root 1.193 io_blocktime = 0.;
1472     timeout_blocktime = 0.;
1473 root 1.209 backend = 0;
1474     backend_fd = -1;
1475     gotasync = 0;
1476     #if EV_USE_INOTIFY
1477     fs_fd = -2;
1478     #endif
1479 root 1.193
1480 root 1.158 /* pid check not overridable via env */
1481     #ifndef _WIN32
1482     if (flags & EVFLAG_FORKCHECK)
1483     curpid = getpid ();
1484     #endif
1485    
1486 root 1.128 if (!(flags & EVFLAG_NOENV)
1487     && !enable_secure ()
1488     && getenv ("LIBEV_FLAGS"))
1489 root 1.108 flags = atoi (getenv ("LIBEV_FLAGS"));
1490    
1491 root 1.225 if (!(flags & 0x0000ffffU))
1492 root 1.129 flags |= ev_recommended_backends ();
1493 root 1.41
1494 root 1.118 #if EV_USE_PORT
1495 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1496 root 1.118 #endif
1497 root 1.44 #if EV_USE_KQUEUE
1498 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1499 root 1.44 #endif
1500 root 1.29 #if EV_USE_EPOLL
1501 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1502 root 1.41 #endif
1503 root 1.59 #if EV_USE_POLL
1504 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1505 root 1.1 #endif
1506 root 1.29 #if EV_USE_SELECT
1507 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1508 root 1.1 #endif
1509 root 1.70
1510 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1511    
1512     ev_init (&pipe_w, pipecb);
1513     ev_set_priority (&pipe_w, EV_MAXPRI);
1514 root 1.56 }
1515     }
1516    
1517 root 1.288 /* free up a loop structure */
1518 root 1.151 static void noinline
1519 root 1.56 loop_destroy (EV_P)
1520     {
1521 root 1.65 int i;
1522    
1523 root 1.288 if (ev_is_active (&pipe_w))
1524 root 1.207 {
1525     ev_ref (EV_A); /* signal watcher */
1526 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1527 root 1.207
1528 root 1.220 #if EV_USE_EVENTFD
1529     if (evfd >= 0)
1530     close (evfd);
1531     #endif
1532    
1533     if (evpipe [0] >= 0)
1534     {
1535     close (evpipe [0]);
1536     close (evpipe [1]);
1537     }
1538 root 1.207 }
1539    
1540 root 1.152 #if EV_USE_INOTIFY
1541     if (fs_fd >= 0)
1542     close (fs_fd);
1543     #endif
1544    
1545     if (backend_fd >= 0)
1546     close (backend_fd);
1547    
1548 root 1.118 #if EV_USE_PORT
1549 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1550 root 1.118 #endif
1551 root 1.56 #if EV_USE_KQUEUE
1552 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1553 root 1.56 #endif
1554     #if EV_USE_EPOLL
1555 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1556 root 1.56 #endif
1557 root 1.59 #if EV_USE_POLL
1558 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1559 root 1.56 #endif
1560     #if EV_USE_SELECT
1561 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1562 root 1.56 #endif
1563 root 1.1
1564 root 1.65 for (i = NUMPRI; i--; )
1565 root 1.164 {
1566     array_free (pending, [i]);
1567     #if EV_IDLE_ENABLE
1568     array_free (idle, [i]);
1569     #endif
1570     }
1571 root 1.65
1572 root 1.186 ev_free (anfds); anfdmax = 0;
1573    
1574 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1575 root 1.284 array_free (rfeed, EMPTY);
1576 root 1.164 array_free (fdchange, EMPTY);
1577     array_free (timer, EMPTY);
1578 root 1.140 #if EV_PERIODIC_ENABLE
1579 root 1.164 array_free (periodic, EMPTY);
1580 root 1.93 #endif
1581 root 1.187 #if EV_FORK_ENABLE
1582     array_free (fork, EMPTY);
1583     #endif
1584 root 1.164 array_free (prepare, EMPTY);
1585     array_free (check, EMPTY);
1586 root 1.209 #if EV_ASYNC_ENABLE
1587     array_free (async, EMPTY);
1588     #endif
1589 root 1.65
1590 root 1.130 backend = 0;
1591 root 1.56 }
1592 root 1.22
1593 root 1.226 #if EV_USE_INOTIFY
1594 root 1.284 inline_size void infy_fork (EV_P);
1595 root 1.226 #endif
1596 root 1.154
1597 root 1.284 inline_size void
1598 root 1.56 loop_fork (EV_P)
1599     {
1600 root 1.118 #if EV_USE_PORT
1601 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1602 root 1.56 #endif
1603     #if EV_USE_KQUEUE
1604 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1605 root 1.45 #endif
1606 root 1.118 #if EV_USE_EPOLL
1607 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1608 root 1.118 #endif
1609 root 1.154 #if EV_USE_INOTIFY
1610     infy_fork (EV_A);
1611     #endif
1612 root 1.70
1613 root 1.288 if (ev_is_active (&pipe_w))
1614 root 1.70 {
1615 root 1.207 /* this "locks" the handlers against writing to the pipe */
1616 root 1.212 /* while we modify the fd vars */
1617     gotsig = 1;
1618     #if EV_ASYNC_ENABLE
1619     gotasync = 1;
1620     #endif
1621 root 1.70
1622     ev_ref (EV_A);
1623 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1624 root 1.220
1625     #if EV_USE_EVENTFD
1626     if (evfd >= 0)
1627     close (evfd);
1628     #endif
1629    
1630     if (evpipe [0] >= 0)
1631     {
1632     close (evpipe [0]);
1633     close (evpipe [1]);
1634     }
1635 root 1.207
1636     evpipe_init (EV_A);
1637 root 1.208 /* now iterate over everything, in case we missed something */
1638 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1639 root 1.70 }
1640    
1641     postfork = 0;
1642 root 1.1 }
1643    
1644 root 1.55 #if EV_MULTIPLICITY
1645 root 1.250
1646 root 1.54 struct ev_loop *
1647 root 1.108 ev_loop_new (unsigned int flags)
1648 root 1.54 {
1649 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1650    
1651     memset (loop, 0, sizeof (struct ev_loop));
1652 root 1.54
1653 root 1.108 loop_init (EV_A_ flags);
1654 root 1.56
1655 root 1.130 if (ev_backend (EV_A))
1656 root 1.55 return loop;
1657 root 1.54
1658 root 1.55 return 0;
1659 root 1.54 }
1660    
1661     void
1662 root 1.56 ev_loop_destroy (EV_P)
1663 root 1.54 {
1664 root 1.56 loop_destroy (EV_A);
1665 root 1.69 ev_free (loop);
1666 root 1.54 }
1667    
1668 root 1.56 void
1669     ev_loop_fork (EV_P)
1670     {
1671 root 1.205 postfork = 1; /* must be in line with ev_default_fork */
1672 root 1.56 }
1673 root 1.297 #endif /* multiplicity */
1674 root 1.248
1675     #if EV_VERIFY
1676 root 1.258 static void noinline
1677 root 1.251 verify_watcher (EV_P_ W w)
1678     {
1679 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680 root 1.251
1681     if (w->pending)
1682 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683 root 1.251 }
1684    
1685     static void noinline
1686     verify_heap (EV_P_ ANHE *heap, int N)
1687     {
1688     int i;
1689    
1690     for (i = HEAP0; i < N + HEAP0; ++i)
1691     {
1692 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695 root 1.251
1696     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697     }
1698     }
1699    
1700     static void noinline
1701     array_verify (EV_P_ W *ws, int cnt)
1702 root 1.248 {
1703     while (cnt--)
1704 root 1.251 {
1705 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1707     }
1708 root 1.248 }
1709 root 1.250 #endif
1710 root 1.248
1711 root 1.297 #if EV_MINIMAL < 2
1712 root 1.250 void
1713 root 1.248 ev_loop_verify (EV_P)
1714     {
1715 root 1.250 #if EV_VERIFY
1716 root 1.248 int i;
1717 root 1.251 WL w;
1718    
1719     assert (activecnt >= -1);
1720    
1721     assert (fdchangemax >= fdchangecnt);
1722     for (i = 0; i < fdchangecnt; ++i)
1723 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724 root 1.251
1725     assert (anfdmax >= 0);
1726     for (i = 0; i < anfdmax; ++i)
1727     for (w = anfds [i].head; w; w = w->next)
1728     {
1729     verify_watcher (EV_A_ (W)w);
1730 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 root 1.251 }
1733    
1734     assert (timermax >= timercnt);
1735     verify_heap (EV_A_ timers, timercnt);
1736 root 1.248
1737     #if EV_PERIODIC_ENABLE
1738 root 1.251 assert (periodicmax >= periodiccnt);
1739     verify_heap (EV_A_ periodics, periodiccnt);
1740 root 1.248 #endif
1741    
1742 root 1.251 for (i = NUMPRI; i--; )
1743     {
1744     assert (pendingmax [i] >= pendingcnt [i]);
1745 root 1.248 #if EV_IDLE_ENABLE
1746 root 1.252 assert (idleall >= 0);
1747 root 1.251 assert (idlemax [i] >= idlecnt [i]);
1748     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749 root 1.248 #endif
1750 root 1.251 }
1751    
1752 root 1.248 #if EV_FORK_ENABLE
1753 root 1.251 assert (forkmax >= forkcnt);
1754     array_verify (EV_A_ (W *)forks, forkcnt);
1755 root 1.248 #endif
1756 root 1.251
1757 root 1.250 #if EV_ASYNC_ENABLE
1758 root 1.251 assert (asyncmax >= asynccnt);
1759     array_verify (EV_A_ (W *)asyncs, asynccnt);
1760 root 1.250 #endif
1761 root 1.251
1762     assert (preparemax >= preparecnt);
1763     array_verify (EV_A_ (W *)prepares, preparecnt);
1764    
1765     assert (checkmax >= checkcnt);
1766     array_verify (EV_A_ (W *)checks, checkcnt);
1767    
1768     # if 0
1769     for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770     for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771     # endif
1772 root 1.248 #endif
1773     }
1774 root 1.297 #endif
1775 root 1.56
1776     #if EV_MULTIPLICITY
1777     struct ev_loop *
1778 root 1.125 ev_default_loop_init (unsigned int flags)
1779 root 1.54 #else
1780     int
1781 root 1.116 ev_default_loop (unsigned int flags)
1782 root 1.56 #endif
1783 root 1.54 {
1784 root 1.116 if (!ev_default_loop_ptr)
1785 root 1.56 {
1786     #if EV_MULTIPLICITY
1787 root 1.116 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1788 root 1.56 #else
1789 ayin 1.117 ev_default_loop_ptr = 1;
1790 root 1.54 #endif
1791    
1792 root 1.110 loop_init (EV_A_ flags);
1793 root 1.56
1794 root 1.130 if (ev_backend (EV_A))
1795 root 1.56 {
1796 root 1.103 #ifndef _WIN32
1797 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
1798     ev_set_priority (&childev, EV_MAXPRI);
1799     ev_signal_start (EV_A_ &childev);
1800     ev_unref (EV_A); /* child watcher should not keep loop alive */
1801     #endif
1802     }
1803     else
1804 root 1.116 ev_default_loop_ptr = 0;
1805 root 1.56 }
1806 root 1.8
1807 root 1.116 return ev_default_loop_ptr;
1808 root 1.1 }
1809    
1810 root 1.24 void
1811 root 1.56 ev_default_destroy (void)
1812 root 1.1 {
1813 root 1.57 #if EV_MULTIPLICITY
1814 root 1.116 struct ev_loop *loop = ev_default_loop_ptr;
1815 root 1.57 #endif
1816 root 1.56
1817 root 1.266 ev_default_loop_ptr = 0;
1818    
1819 root 1.103 #ifndef _WIN32
1820 root 1.56 ev_ref (EV_A); /* child watcher */
1821     ev_signal_stop (EV_A_ &childev);
1822 root 1.71 #endif
1823 root 1.56
1824     loop_destroy (EV_A);
1825 root 1.1 }
1826    
1827 root 1.24 void
1828 root 1.60 ev_default_fork (void)
1829 root 1.1 {
1830 root 1.60 #if EV_MULTIPLICITY
1831 root 1.116 struct ev_loop *loop = ev_default_loop_ptr;
1832 root 1.60 #endif
1833    
1834 root 1.270 postfork = 1; /* must be in line with ev_loop_fork */
1835 root 1.1 }
1836    
1837 root 1.8 /*****************************************************************************/
1838    
1839 root 1.168 void
1840     ev_invoke (EV_P_ void *w, int revents)
1841     {
1842     EV_CB_INVOKE ((W)w, revents);
1843     }
1844    
1845 root 1.300 unsigned int
1846     ev_pending_count (EV_P)
1847     {
1848     int pri;
1849     unsigned int count = 0;
1850    
1851     for (pri = NUMPRI; pri--; )
1852     count += pendingcnt [pri];
1853    
1854     return count;
1855     }
1856    
1857 root 1.297 void noinline
1858 root 1.296 ev_invoke_pending (EV_P)
1859 root 1.1 {
1860 root 1.42 int pri;
1861    
1862     for (pri = NUMPRI; pri--; )
1863     while (pendingcnt [pri])
1864     {
1865     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1866 root 1.1
1867 root 1.288 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1868     /* ^ this is no longer true, as pending_w could be here */
1869 root 1.139
1870 root 1.288 p->w->pending = 0;
1871     EV_CB_INVOKE (p->w, p->events);
1872     EV_FREQUENT_CHECK;
1873 root 1.42 }
1874 root 1.1 }
1875    
1876 root 1.234 #if EV_IDLE_ENABLE
1877 root 1.288 /* make idle watchers pending. this handles the "call-idle */
1878     /* only when higher priorities are idle" logic */
1879 root 1.284 inline_size void
1880 root 1.234 idle_reify (EV_P)
1881     {
1882     if (expect_false (idleall))
1883     {
1884     int pri;
1885    
1886     for (pri = NUMPRI; pri--; )
1887     {
1888     if (pendingcnt [pri])
1889     break;
1890    
1891     if (idlecnt [pri])
1892     {
1893     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1894     break;
1895     }
1896     }
1897     }
1898     }
1899     #endif
1900    
1901 root 1.288 /* make timers pending */
1902 root 1.284 inline_size void
1903 root 1.51 timers_reify (EV_P)
1904 root 1.1 {
1905 root 1.248 EV_FREQUENT_CHECK;
1906    
1907 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1908 root 1.1 {
1909 root 1.284 do
1910     {
1911     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1912 root 1.1
1913 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1914    
1915     /* first reschedule or stop timer */
1916     if (w->repeat)
1917     {
1918     ev_at (w) += w->repeat;
1919     if (ev_at (w) < mn_now)
1920     ev_at (w) = mn_now;
1921 root 1.61
1922 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1923 root 1.90
1924 root 1.284 ANHE_at_cache (timers [HEAP0]);
1925     downheap (timers, timercnt, HEAP0);
1926     }
1927     else
1928     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1929 root 1.243
1930 root 1.284 EV_FREQUENT_CHECK;
1931     feed_reverse (EV_A_ (W)w);
1932 root 1.12 }
1933 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1934 root 1.30
1935 root 1.284 feed_reverse_done (EV_A_ EV_TIMEOUT);
1936 root 1.12 }
1937     }
1938 root 1.4
1939 root 1.140 #if EV_PERIODIC_ENABLE
1940 root 1.288 /* make periodics pending */
1941 root 1.284 inline_size void
1942 root 1.51 periodics_reify (EV_P)
1943 root 1.12 {
1944 root 1.248 EV_FREQUENT_CHECK;
1945 root 1.250
1946 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1947 root 1.12 {
1948 root 1.284 int feed_count = 0;
1949    
1950     do
1951     {
1952     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1953 root 1.1
1954 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1955 root 1.61
1956 root 1.284 /* first reschedule or stop timer */
1957     if (w->reschedule_cb)
1958     {
1959     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1960 root 1.243
1961 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1962 root 1.243
1963 root 1.284 ANHE_at_cache (periodics [HEAP0]);
1964     downheap (periodics, periodiccnt, HEAP0);
1965     }
1966     else if (w->interval)
1967 root 1.246 {
1968 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1969     /* if next trigger time is not sufficiently in the future, put it there */
1970     /* this might happen because of floating point inexactness */
1971     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1972     {
1973     ev_at (w) += w->interval;
1974    
1975     /* if interval is unreasonably low we might still have a time in the past */
1976     /* so correct this. this will make the periodic very inexact, but the user */
1977     /* has effectively asked to get triggered more often than possible */
1978     if (ev_at (w) < ev_rt_now)
1979     ev_at (w) = ev_rt_now;
1980     }
1981 root 1.243
1982 root 1.284 ANHE_at_cache (periodics [HEAP0]);
1983     downheap (periodics, periodiccnt, HEAP0);
1984 root 1.246 }
1985 root 1.284 else
1986     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1987 root 1.243
1988 root 1.284 EV_FREQUENT_CHECK;
1989     feed_reverse (EV_A_ (W)w);
1990 root 1.1 }
1991 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1992 root 1.12
1993 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
1994 root 1.12 }
1995     }
1996    
1997 root 1.288 /* simply recalculate all periodics */
1998     /* TODO: maybe ensure that at leats one event happens when jumping forward? */
1999 root 1.140 static void noinline
2000 root 1.54 periodics_reschedule (EV_P)
2001 root 1.12 {
2002     int i;
2003    
2004 root 1.13 /* adjust periodics after time jump */
2005 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2006 root 1.12 {
2007 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2008 root 1.12
2009 root 1.77 if (w->reschedule_cb)
2010 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2011 root 1.77 else if (w->interval)
2012 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2013 root 1.242
2014 root 1.248 ANHE_at_cache (periodics [i]);
2015 root 1.77 }
2016 root 1.12
2017 root 1.248 reheap (periodics, periodiccnt);
2018 root 1.1 }
2019 root 1.93 #endif
2020 root 1.1
2021 root 1.288 /* adjust all timers by a given offset */
2022 root 1.285 static void noinline
2023     timers_reschedule (EV_P_ ev_tstamp adjust)
2024     {
2025     int i;
2026    
2027     for (i = 0; i < timercnt; ++i)
2028     {
2029     ANHE *he = timers + i + HEAP0;
2030     ANHE_w (*he)->at += adjust;
2031     ANHE_at_cache (*he);
2032     }
2033     }
2034    
2035 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2036     /* also detetc if there was a timejump, and act accordingly */
2037 root 1.284 inline_speed void
2038 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2039 root 1.4 {
2040 root 1.40 #if EV_USE_MONOTONIC
2041     if (expect_true (have_monotonic))
2042     {
2043 root 1.289 int i;
2044 root 1.178 ev_tstamp odiff = rtmn_diff;
2045    
2046     mn_now = get_clock ();
2047    
2048     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2049     /* interpolate in the meantime */
2050     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2051 root 1.40 {
2052 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2053     return;
2054     }
2055    
2056     now_floor = mn_now;
2057     ev_rt_now = ev_time ();
2058 root 1.4
2059 root 1.178 /* loop a few times, before making important decisions.
2060     * on the choice of "4": one iteration isn't enough,
2061     * in case we get preempted during the calls to
2062     * ev_time and get_clock. a second call is almost guaranteed
2063     * to succeed in that case, though. and looping a few more times
2064     * doesn't hurt either as we only do this on time-jumps or
2065     * in the unlikely event of having been preempted here.
2066     */
2067     for (i = 4; --i; )
2068     {
2069     rtmn_diff = ev_rt_now - mn_now;
2070 root 1.4
2071 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2072 root 1.178 return; /* all is well */
2073 root 1.4
2074 root 1.178 ev_rt_now = ev_time ();
2075     mn_now = get_clock ();
2076     now_floor = mn_now;
2077     }
2078 root 1.4
2079 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2080     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2081 root 1.140 # if EV_PERIODIC_ENABLE
2082 root 1.178 periodics_reschedule (EV_A);
2083 root 1.93 # endif
2084 root 1.4 }
2085     else
2086 root 1.40 #endif
2087 root 1.4 {
2088 root 1.85 ev_rt_now = ev_time ();
2089 root 1.40
2090 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2091 root 1.13 {
2092 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2093     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2094 root 1.140 #if EV_PERIODIC_ENABLE
2095 root 1.54 periodics_reschedule (EV_A);
2096 root 1.93 #endif
2097 root 1.13 }
2098 root 1.4
2099 root 1.85 mn_now = ev_rt_now;
2100 root 1.4 }
2101     }
2102    
2103 root 1.51 void
2104     ev_loop (EV_P_ int flags)
2105 root 1.1 {
2106 root 1.297 #if EV_MINIMAL < 2
2107 root 1.294 ++loop_depth;
2108 root 1.297 #endif
2109 root 1.294
2110 root 1.298 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2111    
2112 root 1.219 loop_done = EVUNLOOP_CANCEL;
2113 root 1.1
2114 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2115 root 1.158
2116 root 1.161 do
2117 root 1.9 {
2118 root 1.250 #if EV_VERIFY >= 2
2119     ev_loop_verify (EV_A);
2120     #endif
2121    
2122 root 1.158 #ifndef _WIN32
2123     if (expect_false (curpid)) /* penalise the forking check even more */
2124     if (expect_false (getpid () != curpid))
2125     {
2126     curpid = getpid ();
2127     postfork = 1;
2128     }
2129     #endif
2130    
2131 root 1.157 #if EV_FORK_ENABLE
2132     /* we might have forked, so queue fork handlers */
2133     if (expect_false (postfork))
2134     if (forkcnt)
2135     {
2136     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2137 root 1.297 EV_INVOKE_PENDING;
2138 root 1.157 }
2139     #endif
2140 root 1.147
2141 root 1.170 /* queue prepare watchers (and execute them) */
2142 root 1.40 if (expect_false (preparecnt))
2143 root 1.20 {
2144 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2145 root 1.297 EV_INVOKE_PENDING;
2146 root 1.20 }
2147 root 1.9
2148 root 1.298 if (expect_false (loop_done))
2149     break;
2150    
2151 root 1.70 /* we might have forked, so reify kernel state if necessary */
2152     if (expect_false (postfork))
2153     loop_fork (EV_A);
2154    
2155 root 1.1 /* update fd-related kernel structures */
2156 root 1.51 fd_reify (EV_A);
2157 root 1.1
2158     /* calculate blocking time */
2159 root 1.135 {
2160 root 1.193 ev_tstamp waittime = 0.;
2161     ev_tstamp sleeptime = 0.;
2162 root 1.12
2163 root 1.193 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2164 root 1.135 {
2165 root 1.293 /* remember old timestamp for io_blocktime calculation */
2166     ev_tstamp prev_mn_now = mn_now;
2167    
2168 root 1.135 /* update time to cancel out callback processing overhead */
2169 root 1.178 time_update (EV_A_ 1e100);
2170 root 1.135
2171 root 1.287 waittime = MAX_BLOCKTIME;
2172    
2173 root 1.135 if (timercnt)
2174     {
2175 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2176 root 1.193 if (waittime > to) waittime = to;
2177 root 1.135 }
2178 root 1.4
2179 root 1.140 #if EV_PERIODIC_ENABLE
2180 root 1.135 if (periodiccnt)
2181     {
2182 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2183 root 1.193 if (waittime > to) waittime = to;
2184 root 1.135 }
2185 root 1.93 #endif
2186 root 1.4
2187 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2188 root 1.193 if (expect_false (waittime < timeout_blocktime))
2189     waittime = timeout_blocktime;
2190    
2191 root 1.293 /* extra check because io_blocktime is commonly 0 */
2192     if (expect_false (io_blocktime))
2193     {
2194     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2195 root 1.193
2196 root 1.293 if (sleeptime > waittime - backend_fudge)
2197     sleeptime = waittime - backend_fudge;
2198 root 1.193
2199 root 1.293 if (expect_true (sleeptime > 0.))
2200     {
2201     ev_sleep (sleeptime);
2202     waittime -= sleeptime;
2203     }
2204 root 1.193 }
2205 root 1.135 }
2206 root 1.1
2207 root 1.297 #if EV_MINIMAL < 2
2208 root 1.162 ++loop_count;
2209 root 1.297 #endif
2210 root 1.298 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2211 root 1.193 backend_poll (EV_A_ waittime);
2212 root 1.298 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2213 root 1.178
2214     /* update ev_rt_now, do magic */
2215 root 1.193 time_update (EV_A_ waittime + sleeptime);
2216 root 1.135 }
2217 root 1.1
2218 root 1.9 /* queue pending timers and reschedule them */
2219 root 1.51 timers_reify (EV_A); /* relative timers called last */
2220 root 1.140 #if EV_PERIODIC_ENABLE
2221 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2222 root 1.93 #endif
2223 root 1.1
2224 root 1.164 #if EV_IDLE_ENABLE
2225 root 1.137 /* queue idle watchers unless other events are pending */
2226 root 1.164 idle_reify (EV_A);
2227     #endif
2228 root 1.9
2229 root 1.20 /* queue check watchers, to be executed first */
2230 root 1.123 if (expect_false (checkcnt))
2231 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2232 root 1.9
2233 root 1.297 EV_INVOKE_PENDING;
2234 root 1.1 }
2235 root 1.219 while (expect_true (
2236     activecnt
2237     && !loop_done
2238     && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2239     ));
2240 root 1.13
2241 root 1.135 if (loop_done == EVUNLOOP_ONE)
2242     loop_done = EVUNLOOP_CANCEL;
2243 root 1.294
2244 root 1.297 #if EV_MINIMAL < 2
2245 root 1.294 --loop_depth;
2246 root 1.297 #endif
2247 root 1.51 }
2248    
2249     void
2250     ev_unloop (EV_P_ int how)
2251     {
2252     loop_done = how;
2253 root 1.1 }
2254    
2255 root 1.285 void
2256     ev_ref (EV_P)
2257     {
2258     ++activecnt;
2259     }
2260    
2261     void
2262     ev_unref (EV_P)
2263     {
2264     --activecnt;
2265     }
2266    
2267     void
2268     ev_now_update (EV_P)
2269     {
2270     time_update (EV_A_ 1e100);
2271     }
2272    
2273     void
2274     ev_suspend (EV_P)
2275     {
2276     ev_now_update (EV_A);
2277     }
2278    
2279     void
2280     ev_resume (EV_P)
2281     {
2282     ev_tstamp mn_prev = mn_now;
2283    
2284     ev_now_update (EV_A);
2285     timers_reschedule (EV_A_ mn_now - mn_prev);
2286 root 1.286 #if EV_PERIODIC_ENABLE
2287 root 1.288 /* TODO: really do this? */
2288 root 1.285 periodics_reschedule (EV_A);
2289 root 1.286 #endif
2290 root 1.285 }
2291    
2292 root 1.8 /*****************************************************************************/
2293 root 1.288 /* singly-linked list management, used when the expected list length is short */
2294 root 1.8
2295 root 1.284 inline_size void
2296 root 1.10 wlist_add (WL *head, WL elem)
2297 root 1.1 {
2298     elem->next = *head;
2299     *head = elem;
2300     }
2301    
2302 root 1.284 inline_size void
2303 root 1.10 wlist_del (WL *head, WL elem)
2304 root 1.1 {
2305     while (*head)
2306     {
2307     if (*head == elem)
2308     {
2309     *head = elem->next;
2310     return;
2311     }
2312    
2313     head = &(*head)->next;
2314     }
2315     }
2316    
2317 root 1.288 /* internal, faster, version of ev_clear_pending */
2318 root 1.284 inline_speed void
2319 root 1.166 clear_pending (EV_P_ W w)
2320 root 1.16 {
2321     if (w->pending)
2322     {
2323 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2324 root 1.16 w->pending = 0;
2325     }
2326     }
2327    
2328 root 1.167 int
2329     ev_clear_pending (EV_P_ void *w)
2330 root 1.166 {
2331     W w_ = (W)w;
2332     int pending = w_->pending;
2333    
2334 root 1.172 if (expect_true (pending))
2335     {
2336     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2337 root 1.288 p->w = (W)&pending_w;
2338 root 1.172 w_->pending = 0;
2339     return p->events;
2340     }
2341     else
2342 root 1.167 return 0;
2343 root 1.166 }
2344    
2345 root 1.284 inline_size void
2346 root 1.164 pri_adjust (EV_P_ W w)
2347     {
2348 root 1.295 int pri = ev_priority (w);
2349 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2350     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2351 root 1.295 ev_set_priority (w, pri);
2352 root 1.164 }
2353    
2354 root 1.284 inline_speed void
2355 root 1.51 ev_start (EV_P_ W w, int active)
2356 root 1.1 {
2357 root 1.164 pri_adjust (EV_A_ w);
2358 root 1.1 w->active = active;
2359 root 1.51 ev_ref (EV_A);
2360 root 1.1 }
2361    
2362 root 1.284 inline_size void
2363 root 1.51 ev_stop (EV_P_ W w)
2364 root 1.1 {
2365 root 1.51 ev_unref (EV_A);
2366 root 1.1 w->active = 0;
2367     }
2368    
2369 root 1.8 /*****************************************************************************/
2370    
2371 root 1.171 void noinline
2372 root 1.136 ev_io_start (EV_P_ ev_io *w)
2373 root 1.1 {
2374 root 1.37 int fd = w->fd;
2375    
2376 root 1.123 if (expect_false (ev_is_active (w)))
2377 root 1.1 return;
2378    
2379 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2380 root 1.281 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2381 root 1.33
2382 root 1.248 EV_FREQUENT_CHECK;
2383    
2384 root 1.51 ev_start (EV_A_ (W)w, 1);
2385 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2386 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2387 root 1.1
2388 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2389 root 1.281 w->events &= ~EV__IOFDSET;
2390 root 1.248
2391     EV_FREQUENT_CHECK;
2392 root 1.1 }
2393    
2394 root 1.171 void noinline
2395 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2396 root 1.1 {
2397 root 1.166 clear_pending (EV_A_ (W)w);
2398 root 1.123 if (expect_false (!ev_is_active (w)))
2399 root 1.1 return;
2400    
2401 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2402 root 1.89
2403 root 1.248 EV_FREQUENT_CHECK;
2404    
2405 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2406 root 1.51 ev_stop (EV_A_ (W)w);
2407 root 1.1
2408 root 1.184 fd_change (EV_A_ w->fd, 1);
2409 root 1.248
2410     EV_FREQUENT_CHECK;
2411 root 1.1 }
2412    
2413 root 1.171 void noinline
2414 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2415 root 1.1 {
2416 root 1.123 if (expect_false (ev_is_active (w)))
2417 root 1.1 return;
2418    
2419 root 1.228 ev_at (w) += mn_now;
2420 root 1.12
2421 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2422 root 1.13
2423 root 1.248 EV_FREQUENT_CHECK;
2424    
2425     ++timercnt;
2426     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2427 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2428     ANHE_w (timers [ev_active (w)]) = (WT)w;
2429 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2430 root 1.235 upheap (timers, ev_active (w));
2431 root 1.62
2432 root 1.248 EV_FREQUENT_CHECK;
2433    
2434 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2435 root 1.12 }
2436    
2437 root 1.171 void noinline
2438 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2439 root 1.12 {
2440 root 1.166 clear_pending (EV_A_ (W)w);
2441 root 1.123 if (expect_false (!ev_is_active (w)))
2442 root 1.12 return;
2443    
2444 root 1.248 EV_FREQUENT_CHECK;
2445    
2446 root 1.230 {
2447     int active = ev_active (w);
2448 root 1.62
2449 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2450 root 1.151
2451 root 1.248 --timercnt;
2452    
2453     if (expect_true (active < timercnt + HEAP0))
2454 root 1.151 {
2455 root 1.248 timers [active] = timers [timercnt + HEAP0];
2456 root 1.181 adjustheap (timers, timercnt, active);
2457 root 1.151 }
2458 root 1.248 }
2459 root 1.228
2460 root 1.248 EV_FREQUENT_CHECK;
2461 root 1.4
2462 root 1.228 ev_at (w) -= mn_now;
2463 root 1.14
2464 root 1.51 ev_stop (EV_A_ (W)w);
2465 root 1.12 }
2466 root 1.4
2467 root 1.171 void noinline
2468 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2469 root 1.14 {
2470 root 1.248 EV_FREQUENT_CHECK;
2471    
2472 root 1.14 if (ev_is_active (w))
2473     {
2474     if (w->repeat)
2475 root 1.99 {
2476 root 1.228 ev_at (w) = mn_now + w->repeat;
2477 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2478 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2479 root 1.99 }
2480 root 1.14 else
2481 root 1.51 ev_timer_stop (EV_A_ w);
2482 root 1.14 }
2483     else if (w->repeat)
2484 root 1.112 {
2485 root 1.229 ev_at (w) = w->repeat;
2486 root 1.112 ev_timer_start (EV_A_ w);
2487     }
2488 root 1.248
2489     EV_FREQUENT_CHECK;
2490 root 1.14 }
2491    
2492 root 1.140 #if EV_PERIODIC_ENABLE
2493 root 1.171 void noinline
2494 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2495 root 1.12 {
2496 root 1.123 if (expect_false (ev_is_active (w)))
2497 root 1.12 return;
2498 root 1.1
2499 root 1.77 if (w->reschedule_cb)
2500 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2501 root 1.77 else if (w->interval)
2502     {
2503 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2504 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2505 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2506 root 1.77 }
2507 root 1.173 else
2508 root 1.228 ev_at (w) = w->offset;
2509 root 1.12
2510 root 1.248 EV_FREQUENT_CHECK;
2511    
2512     ++periodiccnt;
2513     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2514 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2515     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2516 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2517 root 1.235 upheap (periodics, ev_active (w));
2518 root 1.62
2519 root 1.248 EV_FREQUENT_CHECK;
2520    
2521 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2522 root 1.1 }
2523    
2524 root 1.171 void noinline
2525 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2526 root 1.1 {
2527 root 1.166 clear_pending (EV_A_ (W)w);
2528 root 1.123 if (expect_false (!ev_is_active (w)))
2529 root 1.1 return;
2530    
2531 root 1.248 EV_FREQUENT_CHECK;
2532    
2533 root 1.230 {
2534     int active = ev_active (w);
2535 root 1.62
2536 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2537 root 1.151
2538 root 1.248 --periodiccnt;
2539    
2540     if (expect_true (active < periodiccnt + HEAP0))
2541 root 1.151 {
2542 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2543 root 1.181 adjustheap (periodics, periodiccnt, active);
2544 root 1.151 }
2545 root 1.248 }
2546 root 1.228
2547 root 1.248 EV_FREQUENT_CHECK;
2548 root 1.2
2549 root 1.51 ev_stop (EV_A_ (W)w);
2550 root 1.1 }
2551    
2552 root 1.171 void noinline
2553 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2554 root 1.77 {
2555 root 1.84 /* TODO: use adjustheap and recalculation */
2556 root 1.77 ev_periodic_stop (EV_A_ w);
2557     ev_periodic_start (EV_A_ w);
2558     }
2559 root 1.93 #endif
2560 root 1.77
2561 root 1.56 #ifndef SA_RESTART
2562     # define SA_RESTART 0
2563     #endif
2564    
2565 root 1.171 void noinline
2566 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2567 root 1.56 {
2568     #if EV_MULTIPLICITY
2569 root 1.278 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2570 root 1.56 #endif
2571 root 1.123 if (expect_false (ev_is_active (w)))
2572 root 1.56 return;
2573    
2574 root 1.278 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2575 root 1.56
2576 root 1.207 evpipe_init (EV_A);
2577    
2578 root 1.248 EV_FREQUENT_CHECK;
2579    
2580 root 1.180 {
2581     #ifndef _WIN32
2582     sigset_t full, prev;
2583     sigfillset (&full);
2584     sigprocmask (SIG_SETMASK, &full, &prev);
2585     #endif
2586    
2587 root 1.265 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2588 root 1.180
2589     #ifndef _WIN32
2590     sigprocmask (SIG_SETMASK, &prev, 0);
2591     #endif
2592     }
2593    
2594 root 1.56 ev_start (EV_A_ (W)w, 1);
2595 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2596 root 1.56
2597 root 1.63 if (!((WL)w)->next)
2598 root 1.56 {
2599 root 1.103 #if _WIN32
2600 root 1.218 signal (w->signum, ev_sighandler);
2601 root 1.67 #else
2602 root 1.299 struct sigaction sa = { };
2603 root 1.218 sa.sa_handler = ev_sighandler;
2604 root 1.56 sigfillset (&sa.sa_mask);
2605     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2606     sigaction (w->signum, &sa, 0);
2607 root 1.67 #endif
2608 root 1.56 }
2609 root 1.248
2610     EV_FREQUENT_CHECK;
2611 root 1.56 }
2612    
2613 root 1.171 void noinline
2614 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2615 root 1.56 {
2616 root 1.166 clear_pending (EV_A_ (W)w);
2617 root 1.123 if (expect_false (!ev_is_active (w)))
2618 root 1.56 return;
2619    
2620 root 1.248 EV_FREQUENT_CHECK;
2621    
2622 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2623 root 1.56 ev_stop (EV_A_ (W)w);
2624    
2625     if (!signals [w->signum - 1].head)
2626     signal (w->signum, SIG_DFL);
2627 root 1.248
2628     EV_FREQUENT_CHECK;
2629 root 1.56 }
2630    
2631 root 1.28 void
2632 root 1.136 ev_child_start (EV_P_ ev_child *w)
2633 root 1.22 {
2634 root 1.56 #if EV_MULTIPLICITY
2635 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2636 root 1.56 #endif
2637 root 1.123 if (expect_false (ev_is_active (w)))
2638 root 1.22 return;
2639    
2640 root 1.248 EV_FREQUENT_CHECK;
2641    
2642 root 1.51 ev_start (EV_A_ (W)w, 1);
2643 root 1.182 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2644 root 1.248
2645     EV_FREQUENT_CHECK;
2646 root 1.22 }
2647    
2648 root 1.28 void
2649 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2650 root 1.22 {
2651 root 1.166 clear_pending (EV_A_ (W)w);
2652 root 1.123 if (expect_false (!ev_is_active (w)))
2653 root 1.22 return;
2654    
2655 root 1.248 EV_FREQUENT_CHECK;
2656    
2657 root 1.182 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2658 root 1.51 ev_stop (EV_A_ (W)w);
2659 root 1.248
2660     EV_FREQUENT_CHECK;
2661 root 1.22 }
2662    
2663 root 1.140 #if EV_STAT_ENABLE
2664    
2665     # ifdef _WIN32
2666 root 1.146 # undef lstat
2667     # define lstat(a,b) _stati64 (a,b)
2668 root 1.140 # endif
2669    
2670 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2671     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2672     #define MIN_STAT_INTERVAL 0.1074891
2673 root 1.143
2674 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2675 root 1.152
2676     #if EV_USE_INOTIFY
2677 root 1.153 # define EV_INOTIFY_BUFSIZE 8192
2678 root 1.152
2679     static void noinline
2680     infy_add (EV_P_ ev_stat *w)
2681     {
2682     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2683    
2684     if (w->wd < 0)
2685     {
2686 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2687     ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2688 root 1.152
2689     /* monitor some parent directory for speedup hints */
2690 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2691 root 1.233 /* but an efficiency issue only */
2692 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2693 root 1.152 {
2694 root 1.153 char path [4096];
2695 root 1.152 strcpy (path, w->path);
2696    
2697     do
2698     {
2699     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2700     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2701    
2702     char *pend = strrchr (path, '/');
2703    
2704 root 1.275 if (!pend || pend == path)
2705     break;
2706 root 1.152
2707     *pend = 0;
2708 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
2709 root 1.152 }
2710     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2711     }
2712     }
2713 root 1.275
2714     if (w->wd >= 0)
2715 root 1.273 {
2716     wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2717    
2718     /* now local changes will be tracked by inotify, but remote changes won't */
2719     /* unless the filesystem it known to be local, we therefore still poll */
2720     /* also do poll on <2.6.25, but with normal frequency */
2721     struct statfs sfs;
2722    
2723     if (fs_2625 && !statfs (w->path, &sfs))
2724     if (sfs.f_type == 0x1373 /* devfs */
2725     || sfs.f_type == 0xEF53 /* ext2/3 */
2726     || sfs.f_type == 0x3153464a /* jfs */
2727     || sfs.f_type == 0x52654973 /* reiser3 */
2728     || sfs.f_type == 0x01021994 /* tempfs */
2729     || sfs.f_type == 0x58465342 /* xfs */)
2730     return;
2731 root 1.152
2732 root 1.273 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2733     ev_timer_again (EV_A_ &w->timer);
2734     }
2735 root 1.152 }
2736    
2737     static void noinline
2738     infy_del (EV_P_ ev_stat *w)
2739     {
2740     int slot;
2741     int wd = w->wd;
2742    
2743     if (wd < 0)
2744     return;
2745    
2746     w->wd = -2;
2747     slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2748     wlist_del (&fs_hash [slot].head, (WL)w);
2749    
2750     /* remove this watcher, if others are watching it, they will rearm */
2751     inotify_rm_watch (fs_fd, wd);
2752     }
2753    
2754     static void noinline
2755     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2756     {
2757     if (slot < 0)
2758 root 1.264 /* overflow, need to check for all hash slots */
2759 root 1.152 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2760     infy_wd (EV_A_ slot, wd, ev);
2761     else
2762     {
2763     WL w_;
2764    
2765     for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2766     {
2767     ev_stat *w = (ev_stat *)w_;
2768     w_ = w_->next; /* lets us remove this watcher and all before it */
2769    
2770     if (w->wd == wd || wd == -1)
2771     {
2772     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2773     {
2774 root 1.275 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2775 root 1.152 w->wd = -1;
2776     infy_add (EV_A_ w); /* re-add, no matter what */
2777     }
2778    
2779 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
2780 root 1.152 }
2781     }
2782     }
2783     }
2784    
2785     static void
2786     infy_cb (EV_P_ ev_io *w, int revents)
2787     {
2788     char buf [EV_INOTIFY_BUFSIZE];
2789     struct inotify_event *ev = (struct inotify_event *)buf;
2790     int ofs;
2791     int len = read (fs_fd, buf, sizeof (buf));
2792    
2793     for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2794     infy_wd (EV_A_ ev->wd, ev->wd, ev);
2795     }
2796    
2797 root 1.284 inline_size void
2798 root 1.273 check_2625 (EV_P)
2799 root 1.152 {
2800 root 1.264 /* kernels < 2.6.25 are borked
2801     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2802     */
2803 root 1.273 struct utsname buf;
2804     int major, minor, micro;
2805    
2806     if (uname (&buf))
2807     return;
2808    
2809     if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2810     return;
2811    
2812     if (major < 2
2813     || (major == 2 && minor < 6)
2814     || (major == 2 && minor == 6 && micro < 25))
2815     return;
2816 root 1.264
2817 root 1.273 fs_2625 = 1;
2818     }
2819 root 1.264
2820 root 1.284 inline_size void
2821 root 1.273 infy_init (EV_P)
2822     {
2823     if (fs_fd != -2)
2824     return;
2825 root 1.264
2826 root 1.273 fs_fd = -1;
2827 root 1.264
2828 root 1.273 check_2625 (EV_A);
2829 root 1.264
2830 root 1.152 fs_fd = inotify_init ();
2831    
2832     if (fs_fd >= 0)
2833     {
2834     ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2835     ev_set_priority (&fs_w, EV_MAXPRI);
2836     ev_io_start (EV_A_ &fs_w);
2837     }
2838     }
2839    
2840 root 1.284 inline_size void
2841 root 1.154 infy_fork (EV_P)
2842     {
2843     int slot;
2844    
2845     if (fs_fd < 0)
2846     return;
2847    
2848     close (fs_fd);
2849     fs_fd = inotify_init ();
2850    
2851     for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2852     {
2853     WL w_ = fs_hash [slot].head;
2854     fs_hash [slot].head = 0;
2855    
2856     while (w_)
2857     {
2858     ev_stat *w = (ev_stat *)w_;
2859     w_ = w_->next; /* lets us add this watcher */
2860    
2861     w->wd = -1;
2862    
2863     if (fs_fd >= 0)
2864     infy_add (EV_A_ w); /* re-add, no matter what */
2865     else
2866 root 1.273 ev_timer_again (EV_A_ &w->timer);
2867 root 1.154 }
2868     }
2869     }
2870    
2871 root 1.152 #endif
2872    
2873 root 1.255 #ifdef _WIN32
2874     # define EV_LSTAT(p,b) _stati64 (p, b)
2875     #else
2876     # define EV_LSTAT(p,b) lstat (p, b)
2877     #endif
2878    
2879 root 1.140 void
2880     ev_stat_stat (EV_P_ ev_stat *w)
2881     {
2882     if (lstat (w->path, &w->attr) < 0)
2883     w->attr.st_nlink = 0;
2884     else if (!w->attr.st_nlink)
2885     w->attr.st_nlink = 1;
2886     }
2887    
2888 root 1.157 static void noinline
2889 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2890     {
2891     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2892    
2893     /* we copy this here each the time so that */
2894     /* prev has the old value when the callback gets invoked */
2895     w->prev = w->attr;
2896     ev_stat_stat (EV_A_ w);
2897    
2898 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2899     if (
2900     w->prev.st_dev != w->attr.st_dev
2901     || w->prev.st_ino != w->attr.st_ino
2902     || w->prev.st_mode != w->attr.st_mode
2903     || w->prev.st_nlink != w->attr.st_nlink
2904     || w->prev.st_uid != w->attr.st_uid
2905     || w->prev.st_gid != w->attr.st_gid
2906     || w->prev.st_rdev != w->attr.st_rdev
2907     || w->prev.st_size != w->attr.st_size
2908     || w->prev.st_atime != w->attr.st_atime
2909     || w->prev.st_mtime != w->attr.st_mtime
2910     || w->prev.st_ctime != w->attr.st_ctime
2911     ) {
2912 root 1.152 #if EV_USE_INOTIFY
2913 root 1.264 if (fs_fd >= 0)
2914     {
2915     infy_del (EV_A_ w);
2916     infy_add (EV_A_ w);
2917     ev_stat_stat (EV_A_ w); /* avoid race... */
2918     }
2919 root 1.152 #endif
2920    
2921     ev_feed_event (EV_A_ w, EV_STAT);
2922     }
2923 root 1.140 }
2924    
2925     void
2926     ev_stat_start (EV_P_ ev_stat *w)
2927     {
2928     if (expect_false (ev_is_active (w)))
2929     return;
2930    
2931     ev_stat_stat (EV_A_ w);
2932    
2933 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2934     w->interval = MIN_STAT_INTERVAL;
2935 root 1.143
2936 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2937 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
2938 root 1.152
2939     #if EV_USE_INOTIFY
2940     infy_init (EV_A);
2941    
2942     if (fs_fd >= 0)
2943     infy_add (EV_A_ w);
2944     else
2945     #endif
2946 root 1.273 ev_timer_again (EV_A_ &w->timer);
2947 root 1.140
2948     ev_start (EV_A_ (W)w, 1);
2949 root 1.248
2950     EV_FREQUENT_CHECK;
2951 root 1.140 }
2952    
2953     void
2954     ev_stat_stop (EV_P_ ev_stat *w)
2955     {
2956 root 1.166 clear_pending (EV_A_ (W)w);
2957 root 1.140 if (expect_false (!ev_is_active (w)))
2958     return;
2959    
2960 root 1.248 EV_FREQUENT_CHECK;
2961    
2962 root 1.152 #if EV_USE_INOTIFY
2963     infy_del (EV_A_ w);
2964     #endif
2965 root 1.140 ev_timer_stop (EV_A_ &w->timer);
2966    
2967 root 1.134 ev_stop (EV_A_ (W)w);
2968 root 1.248
2969     EV_FREQUENT_CHECK;
2970 root 1.134 }
2971     #endif
2972    
2973 root 1.164 #if EV_IDLE_ENABLE
2974 root 1.144 void
2975     ev_idle_start (EV_P_ ev_idle *w)
2976     {
2977     if (expect_false (ev_is_active (w)))
2978     return;
2979    
2980 root 1.164 pri_adjust (EV_A_ (W)w);
2981    
2982 root 1.248 EV_FREQUENT_CHECK;
2983    
2984 root 1.164 {
2985     int active = ++idlecnt [ABSPRI (w)];
2986    
2987     ++idleall;
2988     ev_start (EV_A_ (W)w, active);
2989    
2990     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2991     idles [ABSPRI (w)][active - 1] = w;
2992     }
2993 root 1.248
2994     EV_FREQUENT_CHECK;
2995 root 1.144 }
2996    
2997     void
2998     ev_idle_stop (EV_P_ ev_idle *w)
2999     {
3000 root 1.166 clear_pending (EV_A_ (W)w);
3001 root 1.144 if (expect_false (!ev_is_active (w)))
3002     return;
3003    
3004 root 1.248 EV_FREQUENT_CHECK;
3005    
3006 root 1.144 {
3007 root 1.230 int active = ev_active (w);
3008 root 1.164
3009     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3010 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3011 root 1.164
3012     ev_stop (EV_A_ (W)w);
3013     --idleall;
3014 root 1.144 }
3015 root 1.248
3016     EV_FREQUENT_CHECK;
3017 root 1.144 }
3018 root 1.164 #endif
3019 root 1.144
3020     void
3021     ev_prepare_start (EV_P_ ev_prepare *w)
3022     {
3023     if (expect_false (ev_is_active (w)))
3024     return;
3025    
3026 root 1.248 EV_FREQUENT_CHECK;
3027    
3028 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3029     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3030     prepares [preparecnt - 1] = w;
3031 root 1.248
3032     EV_FREQUENT_CHECK;
3033 root 1.144 }
3034    
3035     void
3036     ev_prepare_stop (EV_P_ ev_prepare *w)
3037     {
3038 root 1.166 clear_pending (EV_A_ (W)w);
3039 root 1.144 if (expect_false (!ev_is_active (w)))
3040     return;
3041    
3042 root 1.248 EV_FREQUENT_CHECK;
3043    
3044 root 1.144 {
3045 root 1.230 int active = ev_active (w);
3046    
3047 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3048 root 1.230 ev_active (prepares [active - 1]) = active;
3049 root 1.144 }
3050    
3051     ev_stop (EV_A_ (W)w);
3052 root 1.248
3053     EV_FREQUENT_CHECK;
3054 root 1.144 }
3055    
3056     void
3057     ev_check_start (EV_P_ ev_check *w)
3058     {
3059     if (expect_false (ev_is_active (w)))
3060     return;
3061    
3062 root 1.248 EV_FREQUENT_CHECK;
3063    
3064 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3065     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3066     checks [checkcnt - 1] = w;
3067 root 1.248
3068     EV_FREQUENT_CHECK;
3069 root 1.144 }
3070    
3071     void
3072     ev_check_stop (EV_P_ ev_check *w)
3073     {
3074 root 1.166 clear_pending (EV_A_ (W)w);
3075 root 1.144 if (expect_false (!ev_is_active (w)))
3076     return;
3077    
3078 root 1.248 EV_FREQUENT_CHECK;
3079    
3080 root 1.144 {
3081 root 1.230 int active = ev_active (w);
3082    
3083 root 1.144 checks [active - 1] = checks [--checkcnt];
3084 root 1.230 ev_active (checks [active - 1]) = active;
3085 root 1.144 }
3086    
3087     ev_stop (EV_A_ (W)w);
3088 root 1.248
3089     EV_FREQUENT_CHECK;
3090 root 1.144 }
3091    
3092     #if EV_EMBED_ENABLE
3093     void noinline
3094     ev_embed_sweep (EV_P_ ev_embed *w)
3095     {
3096 root 1.188 ev_loop (w->other, EVLOOP_NONBLOCK);
3097 root 1.144 }
3098    
3099     static void
3100 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3101 root 1.144 {
3102     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3103    
3104     if (ev_cb (w))
3105     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3106     else
3107 root 1.195 ev_loop (w->other, EVLOOP_NONBLOCK);
3108 root 1.144 }
3109    
3110 root 1.189 static void
3111     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3112     {
3113     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3114    
3115 root 1.195 {
3116     struct ev_loop *loop = w->other;
3117    
3118     while (fdchangecnt)
3119     {
3120     fd_reify (EV_A);
3121     ev_loop (EV_A_ EVLOOP_NONBLOCK);
3122     }
3123     }
3124     }
3125    
3126 root 1.261 static void
3127     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3128     {
3129     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3130    
3131 root 1.277 ev_embed_stop (EV_A_ w);
3132    
3133 root 1.261 {
3134     struct ev_loop *loop = w->other;
3135    
3136     ev_loop_fork (EV_A);
3137 root 1.277 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3138 root 1.261 }
3139 root 1.277
3140     ev_embed_start (EV_A_ w);
3141 root 1.261 }
3142    
3143 root 1.195 #if 0
3144     static void
3145     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3146     {
3147     ev_idle_stop (EV_A_ idle);
3148 root 1.189 }
3149 root 1.195 #endif
3150 root 1.189
3151 root 1.144 void
3152     ev_embed_start (EV_P_ ev_embed *w)
3153     {
3154     if (expect_false (ev_is_active (w)))
3155     return;
3156    
3157     {
3158 root 1.188 struct ev_loop *loop = w->other;
3159 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3160 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3161 root 1.144 }
3162    
3163 root 1.248 EV_FREQUENT_CHECK;
3164    
3165 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3166     ev_io_start (EV_A_ &w->io);
3167    
3168 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3169     ev_set_priority (&w->prepare, EV_MINPRI);
3170     ev_prepare_start (EV_A_ &w->prepare);
3171    
3172 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3173     ev_fork_start (EV_A_ &w->fork);
3174    
3175 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3176    
3177 root 1.144 ev_start (EV_A_ (W)w, 1);
3178 root 1.248
3179     EV_FREQUENT_CHECK;
3180 root 1.144 }
3181    
3182     void
3183     ev_embed_stop (EV_P_ ev_embed *w)
3184     {
3185 root 1.166 clear_pending (EV_A_ (W)w);
3186 root 1.144 if (expect_false (!ev_is_active (w)))
3187     return;
3188    
3189 root 1.248 EV_FREQUENT_CHECK;
3190    
3191 root 1.261 ev_io_stop (EV_A_ &w->io);
3192 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3193 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3194 root 1.248
3195     EV_FREQUENT_CHECK;
3196 root 1.144 }
3197     #endif
3198    
3199 root 1.147 #if EV_FORK_ENABLE
3200     void
3201     ev_fork_start (EV_P_ ev_fork *w)
3202     {
3203     if (expect_false (ev_is_active (w)))
3204     return;
3205    
3206 root 1.248 EV_FREQUENT_CHECK;
3207    
3208 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3209     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3210     forks [forkcnt - 1] = w;
3211 root 1.248
3212     EV_FREQUENT_CHECK;
3213 root 1.147 }
3214    
3215     void
3216     ev_fork_stop (EV_P_ ev_fork *w)
3217     {
3218 root 1.166 clear_pending (EV_A_ (W)w);
3219 root 1.147 if (expect_false (!ev_is_active (w)))
3220     return;
3221    
3222 root 1.248 EV_FREQUENT_CHECK;
3223    
3224 root 1.147 {
3225 root 1.230 int active = ev_active (w);
3226    
3227 root 1.147 forks [active - 1] = forks [--forkcnt];
3228 root 1.230 ev_active (forks [active - 1]) = active;
3229 root 1.147 }
3230    
3231     ev_stop (EV_A_ (W)w);
3232 root 1.248
3233     EV_FREQUENT_CHECK;
3234 root 1.147 }
3235     #endif
3236    
3237 root 1.207 #if EV_ASYNC_ENABLE
3238     void
3239     ev_async_start (EV_P_ ev_async *w)
3240     {
3241     if (expect_false (ev_is_active (w)))
3242     return;
3243    
3244     evpipe_init (EV_A);
3245    
3246 root 1.248 EV_FREQUENT_CHECK;
3247    
3248 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3249     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3250     asyncs [asynccnt - 1] = w;
3251 root 1.248
3252     EV_FREQUENT_CHECK;
3253 root 1.207 }
3254    
3255     void
3256     ev_async_stop (EV_P_ ev_async *w)
3257     {
3258     clear_pending (EV_A_ (W)w);
3259     if (expect_false (!ev_is_active (w)))
3260     return;
3261    
3262 root 1.248 EV_FREQUENT_CHECK;
3263    
3264 root 1.207 {
3265 root 1.230 int active = ev_active (w);
3266    
3267 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3268 root 1.230 ev_active (asyncs [active - 1]) = active;
3269 root 1.207 }
3270    
3271     ev_stop (EV_A_ (W)w);
3272 root 1.248
3273     EV_FREQUENT_CHECK;
3274 root 1.207 }
3275    
3276     void
3277     ev_async_send (EV_P_ ev_async *w)
3278     {
3279     w->sent = 1;
3280 root 1.214 evpipe_write (EV_A_ &gotasync);
3281 root 1.207 }
3282     #endif
3283    
3284 root 1.1 /*****************************************************************************/
3285 root 1.10
3286 root 1.16 struct ev_once
3287     {
3288 root 1.136 ev_io io;
3289     ev_timer to;
3290 root 1.16 void (*cb)(int revents, void *arg);
3291     void *arg;
3292     };
3293    
3294     static void
3295 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3296 root 1.16 {
3297     void (*cb)(int revents, void *arg) = once->cb;
3298     void *arg = once->arg;
3299    
3300 root 1.259 ev_io_stop (EV_A_ &once->io);
3301 root 1.51 ev_timer_stop (EV_A_ &once->to);
3302 root 1.69 ev_free (once);
3303 root 1.16
3304     cb (revents, arg);
3305     }
3306    
3307     static void
3308 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3309 root 1.16 {
3310 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3311    
3312     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3313 root 1.16 }
3314    
3315     static void
3316 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3317 root 1.16 {
3318 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3319    
3320     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3321 root 1.16 }
3322    
3323     void
3324 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3325 root 1.16 {
3326 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3327 root 1.16
3328 root 1.123 if (expect_false (!once))
3329 root 1.16 {
3330 root 1.123 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3331     return;
3332     }
3333    
3334     once->cb = cb;
3335     once->arg = arg;
3336 root 1.16
3337 root 1.123 ev_init (&once->io, once_cb_io);
3338     if (fd >= 0)
3339     {
3340     ev_io_set (&once->io, fd, events);
3341     ev_io_start (EV_A_ &once->io);
3342     }
3343 root 1.16
3344 root 1.123 ev_init (&once->to, once_cb_to);
3345     if (timeout >= 0.)
3346     {
3347     ev_timer_set (&once->to, timeout, 0.);
3348     ev_timer_start (EV_A_ &once->to);
3349 root 1.16 }
3350     }
3351    
3352 root 1.282 /*****************************************************************************/
3353    
3354 root 1.288 #if EV_WALK_ENABLE
3355 root 1.282 void
3356     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3357     {
3358     int i, j;
3359     ev_watcher_list *wl, *wn;
3360    
3361     if (types & (EV_IO | EV_EMBED))
3362     for (i = 0; i < anfdmax; ++i)
3363     for (wl = anfds [i].head; wl; )
3364     {
3365     wn = wl->next;
3366    
3367     #if EV_EMBED_ENABLE
3368     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3369     {
3370     if (types & EV_EMBED)
3371     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3372     }
3373     else
3374     #endif
3375     #if EV_USE_INOTIFY
3376     if (ev_cb ((ev_io *)wl) == infy_cb)
3377     ;
3378     else
3379     #endif
3380 root 1.288 if ((ev_io *)wl != &pipe_w)
3381 root 1.282 if (types & EV_IO)
3382     cb (EV_A_ EV_IO, wl);
3383    
3384     wl = wn;
3385     }
3386    
3387     if (types & (EV_TIMER | EV_STAT))
3388     for (i = timercnt + HEAP0; i-- > HEAP0; )
3389     #if EV_STAT_ENABLE
3390     /*TODO: timer is not always active*/
3391     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3392     {
3393     if (types & EV_STAT)
3394     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3395     }
3396     else
3397     #endif
3398     if (types & EV_TIMER)
3399     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3400    
3401     #if EV_PERIODIC_ENABLE
3402     if (types & EV_PERIODIC)
3403     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3404     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3405     #endif
3406    
3407     #if EV_IDLE_ENABLE
3408     if (types & EV_IDLE)
3409     for (j = NUMPRI; i--; )
3410     for (i = idlecnt [j]; i--; )
3411     cb (EV_A_ EV_IDLE, idles [j][i]);
3412     #endif
3413    
3414     #if EV_FORK_ENABLE
3415     if (types & EV_FORK)
3416     for (i = forkcnt; i--; )
3417     if (ev_cb (forks [i]) != embed_fork_cb)
3418     cb (EV_A_ EV_FORK, forks [i]);
3419     #endif
3420    
3421     #if EV_ASYNC_ENABLE
3422     if (types & EV_ASYNC)
3423     for (i = asynccnt; i--; )
3424     cb (EV_A_ EV_ASYNC, asyncs [i]);
3425     #endif
3426    
3427     if (types & EV_PREPARE)
3428     for (i = preparecnt; i--; )
3429     #if EV_EMBED_ENABLE
3430     if (ev_cb (prepares [i]) != embed_prepare_cb)
3431     #endif
3432     cb (EV_A_ EV_PREPARE, prepares [i]);
3433    
3434     if (types & EV_CHECK)
3435     for (i = checkcnt; i--; )
3436     cb (EV_A_ EV_CHECK, checks [i]);
3437    
3438     if (types & EV_SIGNAL)
3439     for (i = 0; i < signalmax; ++i)
3440     for (wl = signals [i].head; wl; )
3441     {
3442     wn = wl->next;
3443     cb (EV_A_ EV_SIGNAL, wl);
3444     wl = wn;
3445     }
3446    
3447     if (types & EV_CHILD)
3448     for (i = EV_PID_HASHSIZE; i--; )
3449     for (wl = childs [i]; wl; )
3450     {
3451     wn = wl->next;
3452     cb (EV_A_ EV_CHILD, wl);
3453     wl = wn;
3454     }
3455     /* EV_STAT 0x00001000 /* stat data changed */
3456     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3457     }
3458     #endif
3459    
3460 root 1.188 #if EV_MULTIPLICITY
3461     #include "ev_wrap.h"
3462     #endif
3463    
3464 root 1.87 #ifdef __cplusplus
3465     }
3466     #endif
3467