ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.303
Committed: Sun Jul 19 01:36:34 2009 UTC (14 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.302: +121 -13 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.278 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40     #ifdef __cplusplus
41     extern "C" {
42     #endif
43    
44 root 1.220 /* this big block deduces configuration from config.h */
45 root 1.59 #ifndef EV_STANDALONE
46 root 1.133 # ifdef EV_CONFIG_H
47     # include EV_CONFIG_H
48     # else
49     # include "config.h"
50     # endif
51 root 1.60
52 root 1.274 # if HAVE_CLOCK_SYSCALL
53     # ifndef EV_USE_CLOCK_SYSCALL
54     # define EV_USE_CLOCK_SYSCALL 1
55     # ifndef EV_USE_REALTIME
56     # define EV_USE_REALTIME 0
57     # endif
58     # ifndef EV_USE_MONOTONIC
59     # define EV_USE_MONOTONIC 1
60     # endif
61     # endif
62 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
63     # define EV_USE_CLOCK_SYSCALL 0
64 root 1.274 # endif
65    
66 root 1.60 # if HAVE_CLOCK_GETTIME
67 root 1.97 # ifndef EV_USE_MONOTONIC
68     # define EV_USE_MONOTONIC 1
69     # endif
70     # ifndef EV_USE_REALTIME
71 root 1.279 # define EV_USE_REALTIME 0
72 root 1.97 # endif
73 root 1.126 # else
74     # ifndef EV_USE_MONOTONIC
75     # define EV_USE_MONOTONIC 0
76     # endif
77     # ifndef EV_USE_REALTIME
78     # define EV_USE_REALTIME 0
79     # endif
80 root 1.60 # endif
81    
82 root 1.193 # ifndef EV_USE_NANOSLEEP
83     # if HAVE_NANOSLEEP
84     # define EV_USE_NANOSLEEP 1
85     # else
86     # define EV_USE_NANOSLEEP 0
87     # endif
88     # endif
89    
90 root 1.127 # ifndef EV_USE_SELECT
91     # if HAVE_SELECT && HAVE_SYS_SELECT_H
92     # define EV_USE_SELECT 1
93     # else
94     # define EV_USE_SELECT 0
95     # endif
96 root 1.60 # endif
97    
98 root 1.127 # ifndef EV_USE_POLL
99     # if HAVE_POLL && HAVE_POLL_H
100     # define EV_USE_POLL 1
101     # else
102     # define EV_USE_POLL 0
103     # endif
104 root 1.60 # endif
105 root 1.127
106     # ifndef EV_USE_EPOLL
107     # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108     # define EV_USE_EPOLL 1
109     # else
110     # define EV_USE_EPOLL 0
111     # endif
112 root 1.60 # endif
113 root 1.127
114     # ifndef EV_USE_KQUEUE
115     # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116     # define EV_USE_KQUEUE 1
117     # else
118     # define EV_USE_KQUEUE 0
119     # endif
120 root 1.60 # endif
121 root 1.127
122     # ifndef EV_USE_PORT
123     # if HAVE_PORT_H && HAVE_PORT_CREATE
124     # define EV_USE_PORT 1
125     # else
126     # define EV_USE_PORT 0
127     # endif
128 root 1.118 # endif
129    
130 root 1.152 # ifndef EV_USE_INOTIFY
131     # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132     # define EV_USE_INOTIFY 1
133     # else
134     # define EV_USE_INOTIFY 0
135     # endif
136     # endif
137    
138 root 1.303 # ifndef EV_USE_SIGNALFD
139     # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140     # define EV_USE_SIGNALFD 1
141     # else
142     # define EV_USE_SIGNALFD 0
143     # endif
144     # endif
145    
146 root 1.220 # ifndef EV_USE_EVENTFD
147     # if HAVE_EVENTFD
148     # define EV_USE_EVENTFD 1
149     # else
150     # define EV_USE_EVENTFD 0
151     # endif
152     # endif
153 root 1.250
154 root 1.29 #endif
155 root 1.17
156 root 1.1 #include <math.h>
157     #include <stdlib.h>
158 root 1.7 #include <fcntl.h>
159 root 1.16 #include <stddef.h>
160 root 1.1
161     #include <stdio.h>
162    
163 root 1.4 #include <assert.h>
164 root 1.1 #include <errno.h>
165 root 1.22 #include <sys/types.h>
166 root 1.71 #include <time.h>
167    
168 root 1.72 #include <signal.h>
169 root 1.71
170 root 1.152 #ifdef EV_H
171     # include EV_H
172     #else
173     # include "ev.h"
174     #endif
175    
176 root 1.103 #ifndef _WIN32
177 root 1.71 # include <sys/time.h>
178 root 1.45 # include <sys/wait.h>
179 root 1.140 # include <unistd.h>
180 root 1.103 #else
181 root 1.256 # include <io.h>
182 root 1.103 # define WIN32_LEAN_AND_MEAN
183     # include <windows.h>
184     # ifndef EV_SELECT_IS_WINSOCKET
185     # define EV_SELECT_IS_WINSOCKET 1
186     # endif
187 root 1.45 #endif
188 root 1.103
189 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
190 root 1.40
191 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
192     # if __linux && __GLIBC__ >= 2
193     # define EV_USE_CLOCK_SYSCALL 1
194     # else
195     # define EV_USE_CLOCK_SYSCALL 0
196     # endif
197     #endif
198    
199 root 1.29 #ifndef EV_USE_MONOTONIC
200 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
201     # define EV_USE_MONOTONIC 1
202     # else
203     # define EV_USE_MONOTONIC 0
204     # endif
205 root 1.37 #endif
206    
207 root 1.118 #ifndef EV_USE_REALTIME
208 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
209 root 1.118 #endif
210    
211 root 1.193 #ifndef EV_USE_NANOSLEEP
212 root 1.253 # if _POSIX_C_SOURCE >= 199309L
213     # define EV_USE_NANOSLEEP 1
214     # else
215     # define EV_USE_NANOSLEEP 0
216     # endif
217 root 1.193 #endif
218    
219 root 1.29 #ifndef EV_USE_SELECT
220     # define EV_USE_SELECT 1
221 root 1.10 #endif
222    
223 root 1.59 #ifndef EV_USE_POLL
224 root 1.104 # ifdef _WIN32
225     # define EV_USE_POLL 0
226     # else
227     # define EV_USE_POLL 1
228     # endif
229 root 1.41 #endif
230    
231 root 1.29 #ifndef EV_USE_EPOLL
232 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
233     # define EV_USE_EPOLL 1
234     # else
235     # define EV_USE_EPOLL 0
236     # endif
237 root 1.10 #endif
238    
239 root 1.44 #ifndef EV_USE_KQUEUE
240     # define EV_USE_KQUEUE 0
241     #endif
242    
243 root 1.118 #ifndef EV_USE_PORT
244     # define EV_USE_PORT 0
245 root 1.40 #endif
246    
247 root 1.152 #ifndef EV_USE_INOTIFY
248 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
249     # define EV_USE_INOTIFY 1
250     # else
251     # define EV_USE_INOTIFY 0
252     # endif
253 root 1.152 #endif
254    
255 root 1.149 #ifndef EV_PID_HASHSIZE
256     # if EV_MINIMAL
257     # define EV_PID_HASHSIZE 1
258     # else
259     # define EV_PID_HASHSIZE 16
260     # endif
261     #endif
262    
263 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
264     # if EV_MINIMAL
265     # define EV_INOTIFY_HASHSIZE 1
266     # else
267     # define EV_INOTIFY_HASHSIZE 16
268     # endif
269     #endif
270    
271 root 1.220 #ifndef EV_USE_EVENTFD
272     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
273     # define EV_USE_EVENTFD 1
274     # else
275     # define EV_USE_EVENTFD 0
276     # endif
277     #endif
278    
279 root 1.303 #ifndef EV_USE_SIGNALFD
280     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281     # define EV_USE_SIGNALFD 1
282     # else
283     # define EV_USE_SIGNALFD 0
284     # endif
285     #endif
286    
287 root 1.249 #if 0 /* debugging */
288 root 1.250 # define EV_VERIFY 3
289 root 1.249 # define EV_USE_4HEAP 1
290     # define EV_HEAP_CACHE_AT 1
291     #endif
292    
293 root 1.250 #ifndef EV_VERIFY
294     # define EV_VERIFY !EV_MINIMAL
295     #endif
296    
297 root 1.243 #ifndef EV_USE_4HEAP
298     # define EV_USE_4HEAP !EV_MINIMAL
299     #endif
300    
301     #ifndef EV_HEAP_CACHE_AT
302     # define EV_HEAP_CACHE_AT !EV_MINIMAL
303     #endif
304    
305 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306     /* which makes programs even slower. might work on other unices, too. */
307     #if EV_USE_CLOCK_SYSCALL
308     # include <syscall.h>
309     # ifdef SYS_clock_gettime
310     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311     # undef EV_USE_MONOTONIC
312     # define EV_USE_MONOTONIC 1
313     # else
314     # undef EV_USE_CLOCK_SYSCALL
315     # define EV_USE_CLOCK_SYSCALL 0
316     # endif
317     #endif
318    
319 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
320 root 1.40
321     #ifndef CLOCK_MONOTONIC
322     # undef EV_USE_MONOTONIC
323     # define EV_USE_MONOTONIC 0
324     #endif
325    
326 root 1.31 #ifndef CLOCK_REALTIME
327 root 1.40 # undef EV_USE_REALTIME
328 root 1.31 # define EV_USE_REALTIME 0
329     #endif
330 root 1.40
331 root 1.152 #if !EV_STAT_ENABLE
332 root 1.185 # undef EV_USE_INOTIFY
333 root 1.152 # define EV_USE_INOTIFY 0
334     #endif
335    
336 root 1.193 #if !EV_USE_NANOSLEEP
337     # ifndef _WIN32
338     # include <sys/select.h>
339     # endif
340     #endif
341    
342 root 1.152 #if EV_USE_INOTIFY
343 root 1.264 # include <sys/utsname.h>
344 root 1.273 # include <sys/statfs.h>
345 root 1.152 # include <sys/inotify.h>
346 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
347     # ifndef IN_DONT_FOLLOW
348     # undef EV_USE_INOTIFY
349     # define EV_USE_INOTIFY 0
350     # endif
351 root 1.152 #endif
352    
353 root 1.185 #if EV_SELECT_IS_WINSOCKET
354     # include <winsock.h>
355     #endif
356    
357 root 1.220 #if EV_USE_EVENTFD
358     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
359 root 1.221 # include <stdint.h>
360 root 1.303 # ifndef EFD_NONBLOCK
361     # define EFD_NONBLOCK O_NONBLOCK
362     # endif
363     # ifndef EFD_CLOEXEC
364     # define EFD_CLOEXEC O_CLOEXEC
365     # endif
366 root 1.222 # ifdef __cplusplus
367     extern "C" {
368     # endif
369 root 1.220 int eventfd (unsigned int initval, int flags);
370 root 1.222 # ifdef __cplusplus
371     }
372     # endif
373 root 1.220 #endif
374    
375 root 1.303 #if EV_USE_SIGNALFD
376     # include <sys/signalfd.h>
377     #endif
378    
379 root 1.40 /**/
380 root 1.1
381 root 1.250 #if EV_VERIFY >= 3
382 root 1.248 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
383     #else
384     # define EV_FREQUENT_CHECK do { } while (0)
385     #endif
386    
387 root 1.176 /*
388     * This is used to avoid floating point rounding problems.
389     * It is added to ev_rt_now when scheduling periodics
390     * to ensure progress, time-wise, even when rounding
391     * errors are against us.
392 root 1.177 * This value is good at least till the year 4000.
393 root 1.176 * Better solutions welcome.
394     */
395     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
396    
397 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
398 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
399 root 1.176 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
400 root 1.1
401 root 1.185 #if __GNUC__ >= 4
402 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
403 root 1.169 # define noinline __attribute__ ((noinline))
404 root 1.40 #else
405     # define expect(expr,value) (expr)
406 root 1.140 # define noinline
407 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
408 root 1.169 # define inline
409     # endif
410 root 1.40 #endif
411    
412     #define expect_false(expr) expect ((expr) != 0, 0)
413     #define expect_true(expr) expect ((expr) != 0, 1)
414 root 1.169 #define inline_size static inline
415    
416     #if EV_MINIMAL
417     # define inline_speed static noinline
418     #else
419     # define inline_speed static inline
420     #endif
421 root 1.40
422 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423    
424     #if EV_MINPRI == EV_MAXPRI
425     # define ABSPRI(w) (((W)w), 0)
426     #else
427     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428     #endif
429 root 1.42
430 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
431 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
432 root 1.103
433 root 1.136 typedef ev_watcher *W;
434     typedef ev_watcher_list *WL;
435     typedef ev_watcher_time *WT;
436 root 1.10
437 root 1.229 #define ev_active(w) ((W)(w))->active
438 root 1.228 #define ev_at(w) ((WT)(w))->at
439    
440 root 1.279 #if EV_USE_REALTIME
441 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
442     /* giving it a reasonably high chance of working on typical architetcures */
443 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444     #endif
445    
446     #if EV_USE_MONOTONIC
447 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
448 root 1.198 #endif
449 root 1.54
450 root 1.103 #ifdef _WIN32
451 root 1.98 # include "ev_win32.c"
452     #endif
453 root 1.67
454 root 1.53 /*****************************************************************************/
455 root 1.1
456 root 1.70 static void (*syserr_cb)(const char *msg);
457 root 1.69
458 root 1.141 void
459     ev_set_syserr_cb (void (*cb)(const char *msg))
460 root 1.69 {
461     syserr_cb = cb;
462     }
463    
464 root 1.141 static void noinline
465 root 1.269 ev_syserr (const char *msg)
466 root 1.69 {
467 root 1.70 if (!msg)
468     msg = "(libev) system error";
469    
470 root 1.69 if (syserr_cb)
471 root 1.70 syserr_cb (msg);
472 root 1.69 else
473     {
474 root 1.70 perror (msg);
475 root 1.69 abort ();
476     }
477     }
478    
479 root 1.224 static void *
480     ev_realloc_emul (void *ptr, long size)
481     {
482     /* some systems, notably openbsd and darwin, fail to properly
483     * implement realloc (x, 0) (as required by both ansi c-98 and
484     * the single unix specification, so work around them here.
485     */
486    
487     if (size)
488     return realloc (ptr, size);
489    
490     free (ptr);
491     return 0;
492     }
493    
494     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
495 root 1.69
496 root 1.141 void
497 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
498 root 1.69 {
499     alloc = cb;
500     }
501    
502 root 1.150 inline_speed void *
503 root 1.155 ev_realloc (void *ptr, long size)
504 root 1.69 {
505 root 1.224 ptr = alloc (ptr, size);
506 root 1.69
507     if (!ptr && size)
508     {
509 root 1.155 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
510 root 1.69 abort ();
511     }
512    
513     return ptr;
514     }
515    
516     #define ev_malloc(size) ev_realloc (0, (size))
517     #define ev_free(ptr) ev_realloc ((ptr), 0)
518    
519     /*****************************************************************************/
520    
521 root 1.298 /* set in reify when reification needed */
522     #define EV_ANFD_REIFY 1
523    
524 root 1.288 /* file descriptor info structure */
525 root 1.53 typedef struct
526     {
527 root 1.68 WL head;
528 root 1.288 unsigned char events; /* the events watched for */
529 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
530 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
531 root 1.269 unsigned char unused;
532     #if EV_USE_EPOLL
533 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
534 root 1.269 #endif
535 root 1.103 #if EV_SELECT_IS_WINSOCKET
536     SOCKET handle;
537     #endif
538 root 1.53 } ANFD;
539 root 1.1
540 root 1.288 /* stores the pending event set for a given watcher */
541 root 1.53 typedef struct
542     {
543     W w;
544 root 1.288 int events; /* the pending event set for the given watcher */
545 root 1.53 } ANPENDING;
546 root 1.51
547 root 1.155 #if EV_USE_INOTIFY
548 root 1.241 /* hash table entry per inotify-id */
549 root 1.152 typedef struct
550     {
551     WL head;
552 root 1.155 } ANFS;
553 root 1.152 #endif
554    
555 root 1.241 /* Heap Entry */
556     #if EV_HEAP_CACHE_AT
557 root 1.288 /* a heap element */
558 root 1.241 typedef struct {
559 root 1.243 ev_tstamp at;
560 root 1.241 WT w;
561     } ANHE;
562    
563 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
564     #define ANHE_at(he) (he).at /* access cached at, read-only */
565     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
566 root 1.241 #else
567 root 1.288 /* a heap element */
568 root 1.241 typedef WT ANHE;
569    
570 root 1.248 #define ANHE_w(he) (he)
571     #define ANHE_at(he) (he)->at
572     #define ANHE_at_cache(he)
573 root 1.241 #endif
574    
575 root 1.55 #if EV_MULTIPLICITY
576 root 1.54
577 root 1.80 struct ev_loop
578     {
579 root 1.86 ev_tstamp ev_rt_now;
580 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
581 root 1.80 #define VAR(name,decl) decl;
582     #include "ev_vars.h"
583     #undef VAR
584     };
585     #include "ev_wrap.h"
586    
587 root 1.116 static struct ev_loop default_loop_struct;
588     struct ev_loop *ev_default_loop_ptr;
589 root 1.54
590 root 1.53 #else
591 root 1.54
592 root 1.86 ev_tstamp ev_rt_now;
593 root 1.80 #define VAR(name,decl) static decl;
594     #include "ev_vars.h"
595     #undef VAR
596    
597 root 1.116 static int ev_default_loop_ptr;
598 root 1.54
599 root 1.51 #endif
600 root 1.1
601 root 1.297 #if EV_MINIMAL < 2
602 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
605     #else
606 root 1.298 # define EV_RELEASE_CB (void)0
607     # define EV_ACQUIRE_CB (void)0
608 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609     #endif
610    
611 root 1.298 #define EVUNLOOP_RECURSE 0x80
612    
613 root 1.8 /*****************************************************************************/
614    
615 root 1.292 #ifndef EV_HAVE_EV_TIME
616 root 1.141 ev_tstamp
617 root 1.1 ev_time (void)
618     {
619 root 1.29 #if EV_USE_REALTIME
620 root 1.279 if (expect_true (have_realtime))
621     {
622     struct timespec ts;
623     clock_gettime (CLOCK_REALTIME, &ts);
624     return ts.tv_sec + ts.tv_nsec * 1e-9;
625     }
626     #endif
627    
628 root 1.1 struct timeval tv;
629     gettimeofday (&tv, 0);
630     return tv.tv_sec + tv.tv_usec * 1e-6;
631     }
632 root 1.292 #endif
633 root 1.1
634 root 1.284 inline_size ev_tstamp
635 root 1.1 get_clock (void)
636     {
637 root 1.29 #if EV_USE_MONOTONIC
638 root 1.40 if (expect_true (have_monotonic))
639 root 1.1 {
640     struct timespec ts;
641     clock_gettime (CLOCK_MONOTONIC, &ts);
642     return ts.tv_sec + ts.tv_nsec * 1e-9;
643     }
644     #endif
645    
646     return ev_time ();
647     }
648    
649 root 1.85 #if EV_MULTIPLICITY
650 root 1.51 ev_tstamp
651     ev_now (EV_P)
652     {
653 root 1.85 return ev_rt_now;
654 root 1.51 }
655 root 1.85 #endif
656 root 1.51
657 root 1.193 void
658     ev_sleep (ev_tstamp delay)
659     {
660     if (delay > 0.)
661     {
662     #if EV_USE_NANOSLEEP
663     struct timespec ts;
664    
665     ts.tv_sec = (time_t)delay;
666     ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
667    
668     nanosleep (&ts, 0);
669     #elif defined(_WIN32)
670 root 1.217 Sleep ((unsigned long)(delay * 1e3));
671 root 1.193 #else
672     struct timeval tv;
673    
674     tv.tv_sec = (time_t)delay;
675     tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
676    
677 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
678 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
679 root 1.257 /* by older ones */
680 root 1.193 select (0, 0, 0, 0, &tv);
681     #endif
682     }
683     }
684    
685     /*****************************************************************************/
686    
687 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
688 root 1.232
689 root 1.288 /* find a suitable new size for the given array, */
690     /* hopefully by rounding to a ncie-to-malloc size */
691 root 1.284 inline_size int
692 root 1.163 array_nextsize (int elem, int cur, int cnt)
693     {
694     int ncur = cur + 1;
695    
696     do
697     ncur <<= 1;
698     while (cnt > ncur);
699    
700 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
701     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
702 root 1.163 {
703     ncur *= elem;
704 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
705 root 1.163 ncur = ncur - sizeof (void *) * 4;
706     ncur /= elem;
707     }
708    
709     return ncur;
710     }
711    
712 root 1.171 static noinline void *
713 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
714     {
715     *cur = array_nextsize (elem, *cur, cnt);
716     return ev_realloc (base, elem * *cur);
717     }
718 root 1.29
719 root 1.265 #define array_init_zero(base,count) \
720     memset ((void *)(base), 0, sizeof (*(base)) * (count))
721    
722 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
723 root 1.163 if (expect_false ((cnt) > (cur))) \
724 root 1.69 { \
725 root 1.163 int ocur_ = (cur); \
726     (base) = (type *)array_realloc \
727     (sizeof (type), (base), &(cur), (cnt)); \
728     init ((base) + (ocur_), (cur) - ocur_); \
729 root 1.1 }
730    
731 root 1.163 #if 0
732 root 1.74 #define array_slim(type,stem) \
733 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
734     { \
735     stem ## max = array_roundsize (stem ## cnt >> 1); \
736 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
737 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
738     }
739 root 1.163 #endif
740 root 1.67
741 root 1.65 #define array_free(stem, idx) \
742 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
743 root 1.65
744 root 1.8 /*****************************************************************************/
745    
746 root 1.288 /* dummy callback for pending events */
747     static void noinline
748     pendingcb (EV_P_ ev_prepare *w, int revents)
749     {
750     }
751    
752 root 1.140 void noinline
753 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
754 root 1.1 {
755 root 1.78 W w_ = (W)w;
756 root 1.171 int pri = ABSPRI (w_);
757 root 1.78
758 root 1.123 if (expect_false (w_->pending))
759 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
760     else
761 root 1.32 {
762 root 1.171 w_->pending = ++pendingcnt [pri];
763     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
764     pendings [pri][w_->pending - 1].w = w_;
765     pendings [pri][w_->pending - 1].events = revents;
766 root 1.32 }
767 root 1.1 }
768    
769 root 1.284 inline_speed void
770     feed_reverse (EV_P_ W w)
771     {
772     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773     rfeeds [rfeedcnt++] = w;
774     }
775    
776     inline_size void
777     feed_reverse_done (EV_P_ int revents)
778     {
779     do
780     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781     while (rfeedcnt);
782     }
783    
784     inline_speed void
785 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
786 root 1.27 {
787     int i;
788    
789     for (i = 0; i < eventcnt; ++i)
790 root 1.78 ev_feed_event (EV_A_ events [i], type);
791 root 1.27 }
792    
793 root 1.141 /*****************************************************************************/
794    
795 root 1.284 inline_speed void
796 root 1.298 fd_event_nc (EV_P_ int fd, int revents)
797 root 1.1 {
798     ANFD *anfd = anfds + fd;
799 root 1.136 ev_io *w;
800 root 1.1
801 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
802 root 1.1 {
803 root 1.79 int ev = w->events & revents;
804 root 1.1
805     if (ev)
806 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
807 root 1.1 }
808     }
809    
810 root 1.298 /* do not submit kernel events for fds that have reify set */
811     /* because that means they changed while we were polling for new events */
812     inline_speed void
813     fd_event (EV_P_ int fd, int revents)
814     {
815     ANFD *anfd = anfds + fd;
816    
817     if (expect_true (!anfd->reify))
818     fd_event_nc (EV_A_ fd, revents);
819     }
820    
821 root 1.79 void
822     ev_feed_fd_event (EV_P_ int fd, int revents)
823     {
824 root 1.168 if (fd >= 0 && fd < anfdmax)
825 root 1.298 fd_event_nc (EV_A_ fd, revents);
826 root 1.79 }
827    
828 root 1.288 /* make sure the external fd watch events are in-sync */
829     /* with the kernel/libev internal state */
830 root 1.284 inline_size void
831 root 1.51 fd_reify (EV_P)
832 root 1.9 {
833     int i;
834    
835 root 1.27 for (i = 0; i < fdchangecnt; ++i)
836     {
837     int fd = fdchanges [i];
838     ANFD *anfd = anfds + fd;
839 root 1.136 ev_io *w;
840 root 1.27
841 root 1.184 unsigned char events = 0;
842 root 1.27
843 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
844 root 1.184 events |= (unsigned char)w->events;
845 root 1.27
846 root 1.103 #if EV_SELECT_IS_WINSOCKET
847     if (events)
848     {
849 root 1.254 unsigned long arg;
850 root 1.200 #ifdef EV_FD_TO_WIN32_HANDLE
851     anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
852     #else
853     anfd->handle = _get_osfhandle (fd);
854     #endif
855 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
856 root 1.103 }
857     #endif
858    
859 root 1.184 {
860     unsigned char o_events = anfd->events;
861     unsigned char o_reify = anfd->reify;
862    
863     anfd->reify = 0;
864     anfd->events = events;
865 root 1.27
866 root 1.281 if (o_events != events || o_reify & EV__IOFDSET)
867 root 1.184 backend_modify (EV_A_ fd, o_events, events);
868     }
869 root 1.27 }
870    
871     fdchangecnt = 0;
872     }
873    
874 root 1.288 /* something about the given fd changed */
875 root 1.284 inline_size void
876 root 1.183 fd_change (EV_P_ int fd, int flags)
877 root 1.27 {
878 root 1.183 unsigned char reify = anfds [fd].reify;
879 root 1.184 anfds [fd].reify |= flags;
880 root 1.27
881 root 1.183 if (expect_true (!reify))
882     {
883     ++fdchangecnt;
884     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
885     fdchanges [fdchangecnt - 1] = fd;
886     }
887 root 1.9 }
888    
889 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890 root 1.284 inline_speed void
891 root 1.51 fd_kill (EV_P_ int fd)
892 root 1.41 {
893 root 1.136 ev_io *w;
894 root 1.41
895 root 1.136 while ((w = (ev_io *)anfds [fd].head))
896 root 1.41 {
897 root 1.51 ev_io_stop (EV_A_ w);
898 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
899 root 1.41 }
900     }
901    
902 root 1.288 /* check whether the given fd is atcually valid, for error recovery */
903 root 1.284 inline_size int
904 root 1.71 fd_valid (int fd)
905     {
906 root 1.103 #ifdef _WIN32
907     return _get_osfhandle (fd) != -1;
908 root 1.71 #else
909     return fcntl (fd, F_GETFD) != -1;
910     #endif
911     }
912    
913 root 1.19 /* called on EBADF to verify fds */
914 root 1.140 static void noinline
915 root 1.51 fd_ebadf (EV_P)
916 root 1.19 {
917     int fd;
918    
919     for (fd = 0; fd < anfdmax; ++fd)
920 root 1.27 if (anfds [fd].events)
921 root 1.254 if (!fd_valid (fd) && errno == EBADF)
922 root 1.51 fd_kill (EV_A_ fd);
923 root 1.41 }
924    
925     /* called on ENOMEM in select/poll to kill some fds and retry */
926 root 1.140 static void noinline
927 root 1.51 fd_enomem (EV_P)
928 root 1.41 {
929 root 1.62 int fd;
930 root 1.41
931 root 1.62 for (fd = anfdmax; fd--; )
932 root 1.41 if (anfds [fd].events)
933     {
934 root 1.51 fd_kill (EV_A_ fd);
935 root 1.41 return;
936     }
937 root 1.19 }
938    
939 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
940 root 1.140 static void noinline
941 root 1.56 fd_rearm_all (EV_P)
942     {
943     int fd;
944    
945     for (fd = 0; fd < anfdmax; ++fd)
946     if (anfds [fd].events)
947     {
948     anfds [fd].events = 0;
949 root 1.268 anfds [fd].emask = 0;
950 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
951 root 1.56 }
952     }
953    
954 root 1.8 /*****************************************************************************/
955    
956 root 1.235 /*
957 root 1.241 * the heap functions want a real array index. array index 0 uis guaranteed to not
958     * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
959     * the branching factor of the d-tree.
960     */
961    
962     /*
963 root 1.235 * at the moment we allow libev the luxury of two heaps,
964     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
965     * which is more cache-efficient.
966     * the difference is about 5% with 50000+ watchers.
967     */
968 root 1.241 #if EV_USE_4HEAP
969 root 1.235
970 root 1.237 #define DHEAP 4
971     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
972 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
973 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
974 root 1.235
975     /* away from the root */
976 root 1.284 inline_speed void
977 root 1.241 downheap (ANHE *heap, int N, int k)
978 root 1.235 {
979 root 1.241 ANHE he = heap [k];
980     ANHE *E = heap + N + HEAP0;
981 root 1.235
982     for (;;)
983     {
984     ev_tstamp minat;
985 root 1.241 ANHE *minpos;
986 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
987 root 1.235
988 root 1.248 /* find minimum child */
989 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
990 root 1.235 {
991 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
992     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
993     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
994     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
995 root 1.235 }
996 root 1.240 else if (pos < E)
997 root 1.235 {
998 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
999     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1000     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1001     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1002 root 1.235 }
1003 root 1.240 else
1004     break;
1005 root 1.235
1006 root 1.241 if (ANHE_at (he) <= minat)
1007 root 1.235 break;
1008    
1009 root 1.247 heap [k] = *minpos;
1010 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1011 root 1.235
1012     k = minpos - heap;
1013     }
1014    
1015 root 1.247 heap [k] = he;
1016 root 1.241 ev_active (ANHE_w (he)) = k;
1017 root 1.235 }
1018    
1019 root 1.248 #else /* 4HEAP */
1020 root 1.235
1021     #define HEAP0 1
1022 root 1.247 #define HPARENT(k) ((k) >> 1)
1023 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1024 root 1.235
1025 root 1.248 /* away from the root */
1026 root 1.284 inline_speed void
1027 root 1.248 downheap (ANHE *heap, int N, int k)
1028 root 1.1 {
1029 root 1.241 ANHE he = heap [k];
1030 root 1.1
1031 root 1.228 for (;;)
1032 root 1.1 {
1033 root 1.248 int c = k << 1;
1034 root 1.179
1035 root 1.248 if (c > N + HEAP0 - 1)
1036 root 1.179 break;
1037    
1038 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1039     ? 1 : 0;
1040    
1041     if (ANHE_at (he) <= ANHE_at (heap [c]))
1042     break;
1043    
1044     heap [k] = heap [c];
1045 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1046 root 1.248
1047     k = c;
1048 root 1.1 }
1049    
1050 root 1.243 heap [k] = he;
1051 root 1.248 ev_active (ANHE_w (he)) = k;
1052 root 1.1 }
1053 root 1.248 #endif
1054 root 1.1
1055 root 1.248 /* towards the root */
1056 root 1.284 inline_speed void
1057 root 1.248 upheap (ANHE *heap, int k)
1058 root 1.1 {
1059 root 1.241 ANHE he = heap [k];
1060 root 1.1
1061 root 1.179 for (;;)
1062 root 1.1 {
1063 root 1.248 int p = HPARENT (k);
1064 root 1.179
1065 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1066 root 1.179 break;
1067 root 1.1
1068 root 1.248 heap [k] = heap [p];
1069 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1070 root 1.248 k = p;
1071 root 1.1 }
1072    
1073 root 1.241 heap [k] = he;
1074     ev_active (ANHE_w (he)) = k;
1075 root 1.1 }
1076    
1077 root 1.288 /* move an element suitably so it is in a correct place */
1078 root 1.284 inline_size void
1079 root 1.241 adjustheap (ANHE *heap, int N, int k)
1080 root 1.84 {
1081 root 1.247 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1082     upheap (heap, k);
1083     else
1084     downheap (heap, N, k);
1085 root 1.84 }
1086    
1087 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1088 root 1.284 inline_size void
1089 root 1.248 reheap (ANHE *heap, int N)
1090     {
1091     int i;
1092 root 1.251
1093 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1094     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1095     for (i = 0; i < N; ++i)
1096     upheap (heap, i + HEAP0);
1097     }
1098    
1099 root 1.8 /*****************************************************************************/
1100    
1101 root 1.288 /* associate signal watchers to a signal signal */
1102 root 1.7 typedef struct
1103     {
1104 root 1.68 WL head;
1105 root 1.207 EV_ATOMIC_T gotsig;
1106 root 1.7 } ANSIG;
1107    
1108     static ANSIG *signals;
1109 root 1.4 static int signalmax;
1110 root 1.1
1111 root 1.207 static EV_ATOMIC_T gotsig;
1112 root 1.7
1113 root 1.207 /*****************************************************************************/
1114    
1115 root 1.288 /* used to prepare libev internal fd's */
1116     /* this is not fork-safe */
1117 root 1.284 inline_speed void
1118 root 1.207 fd_intern (int fd)
1119     {
1120     #ifdef _WIN32
1121 root 1.254 unsigned long arg = 1;
1122 root 1.207 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1123     #else
1124     fcntl (fd, F_SETFD, FD_CLOEXEC);
1125     fcntl (fd, F_SETFL, O_NONBLOCK);
1126     #endif
1127     }
1128    
1129     static void noinline
1130     evpipe_init (EV_P)
1131     {
1132 root 1.288 if (!ev_is_active (&pipe_w))
1133 root 1.207 {
1134 root 1.220 #if EV_USE_EVENTFD
1135 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136     if (evfd < 0 && errno == EINVAL)
1137     evfd = eventfd (0, 0);
1138    
1139     if (evfd >= 0)
1140 root 1.220 {
1141     evpipe [0] = -1;
1142 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1143 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1144 root 1.220 }
1145     else
1146     #endif
1147     {
1148     while (pipe (evpipe))
1149 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1150 root 1.207
1151 root 1.220 fd_intern (evpipe [0]);
1152     fd_intern (evpipe [1]);
1153 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1154 root 1.220 }
1155 root 1.207
1156 root 1.288 ev_io_start (EV_A_ &pipe_w);
1157 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1158 root 1.207 }
1159     }
1160    
1161 root 1.284 inline_size void
1162 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1163 root 1.207 {
1164 root 1.214 if (!*flag)
1165 root 1.207 {
1166 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1167 root 1.214
1168     *flag = 1;
1169 root 1.220
1170     #if EV_USE_EVENTFD
1171     if (evfd >= 0)
1172     {
1173     uint64_t counter = 1;
1174     write (evfd, &counter, sizeof (uint64_t));
1175     }
1176     else
1177     #endif
1178     write (evpipe [1], &old_errno, 1);
1179 root 1.214
1180 root 1.207 errno = old_errno;
1181     }
1182     }
1183    
1184 root 1.288 /* called whenever the libev signal pipe */
1185     /* got some events (signal, async) */
1186 root 1.207 static void
1187     pipecb (EV_P_ ev_io *iow, int revents)
1188     {
1189 root 1.220 #if EV_USE_EVENTFD
1190     if (evfd >= 0)
1191     {
1192 root 1.232 uint64_t counter;
1193 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1194     }
1195     else
1196     #endif
1197     {
1198     char dummy;
1199     read (evpipe [0], &dummy, 1);
1200     }
1201 root 1.207
1202 root 1.211 if (gotsig && ev_is_default_loop (EV_A))
1203 root 1.207 {
1204     int signum;
1205     gotsig = 0;
1206    
1207     for (signum = signalmax; signum--; )
1208     if (signals [signum].gotsig)
1209     ev_feed_signal_event (EV_A_ signum + 1);
1210     }
1211    
1212 root 1.209 #if EV_ASYNC_ENABLE
1213 root 1.207 if (gotasync)
1214     {
1215     int i;
1216     gotasync = 0;
1217    
1218     for (i = asynccnt; i--; )
1219     if (asyncs [i]->sent)
1220     {
1221     asyncs [i]->sent = 0;
1222     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1223     }
1224     }
1225 root 1.209 #endif
1226 root 1.207 }
1227    
1228     /*****************************************************************************/
1229    
1230 root 1.7 static void
1231 root 1.218 ev_sighandler (int signum)
1232 root 1.7 {
1233 root 1.207 #if EV_MULTIPLICITY
1234     struct ev_loop *loop = &default_loop_struct;
1235     #endif
1236    
1237 root 1.103 #if _WIN32
1238 root 1.218 signal (signum, ev_sighandler);
1239 root 1.67 #endif
1240    
1241 root 1.7 signals [signum - 1].gotsig = 1;
1242 root 1.214 evpipe_write (EV_A_ &gotsig);
1243 root 1.7 }
1244    
1245 root 1.140 void noinline
1246 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1247     {
1248 root 1.80 WL w;
1249    
1250 root 1.79 #if EV_MULTIPLICITY
1251 root 1.278 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1252 root 1.79 #endif
1253    
1254     --signum;
1255    
1256     if (signum < 0 || signum >= signalmax)
1257     return;
1258    
1259     signals [signum].gotsig = 0;
1260    
1261     for (w = signals [signum].head; w; w = w->next)
1262     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1263     }
1264    
1265 root 1.303 #if EV_USE_SIGNALFD
1266     static void
1267     sigfdcb (EV_P_ ev_io *iow, int revents)
1268     {
1269     struct signalfd_siginfo si[4], *sip;
1270    
1271     for (;;)
1272     {
1273     ssize_t res = read (sigfd, si, sizeof (si));
1274    
1275     /* not ISO-C, as res might be -1, but works with SuS */
1276     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1277     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1278    
1279     if (res < (ssize_t)sizeof (si))
1280     break;
1281     }
1282     }
1283     #endif
1284    
1285 root 1.8 /*****************************************************************************/
1286    
1287 root 1.182 static WL childs [EV_PID_HASHSIZE];
1288 root 1.71
1289 root 1.103 #ifndef _WIN32
1290 root 1.45
1291 root 1.136 static ev_signal childev;
1292 root 1.59
1293 root 1.206 #ifndef WIFCONTINUED
1294     # define WIFCONTINUED(status) 0
1295     #endif
1296    
1297 root 1.288 /* handle a single child status event */
1298 root 1.284 inline_speed void
1299 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1300 root 1.47 {
1301 root 1.136 ev_child *w;
1302 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1303 root 1.47
1304 root 1.149 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1305 root 1.206 {
1306     if ((w->pid == pid || !w->pid)
1307     && (!traced || (w->flags & 1)))
1308     {
1309 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1310 root 1.206 w->rpid = pid;
1311     w->rstatus = status;
1312     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1313     }
1314     }
1315 root 1.47 }
1316    
1317 root 1.142 #ifndef WCONTINUED
1318     # define WCONTINUED 0
1319     #endif
1320    
1321 root 1.288 /* called on sigchld etc., calls waitpid */
1322 root 1.47 static void
1323 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1324 root 1.22 {
1325     int pid, status;
1326    
1327 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1328     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1329     if (!WCONTINUED
1330     || errno != EINVAL
1331     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1332     return;
1333    
1334 root 1.216 /* make sure we are called again until all children have been reaped */
1335 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1336     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1337 root 1.47
1338 root 1.216 child_reap (EV_A_ pid, pid, status);
1339 root 1.149 if (EV_PID_HASHSIZE > 1)
1340 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1341 root 1.22 }
1342    
1343 root 1.45 #endif
1344    
1345 root 1.22 /*****************************************************************************/
1346    
1347 root 1.118 #if EV_USE_PORT
1348     # include "ev_port.c"
1349     #endif
1350 root 1.44 #if EV_USE_KQUEUE
1351     # include "ev_kqueue.c"
1352     #endif
1353 root 1.29 #if EV_USE_EPOLL
1354 root 1.1 # include "ev_epoll.c"
1355     #endif
1356 root 1.59 #if EV_USE_POLL
1357 root 1.41 # include "ev_poll.c"
1358     #endif
1359 root 1.29 #if EV_USE_SELECT
1360 root 1.1 # include "ev_select.c"
1361     #endif
1362    
1363 root 1.24 int
1364     ev_version_major (void)
1365     {
1366     return EV_VERSION_MAJOR;
1367     }
1368    
1369     int
1370     ev_version_minor (void)
1371     {
1372     return EV_VERSION_MINOR;
1373     }
1374    
1375 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1376 root 1.140 int inline_size
1377 root 1.51 enable_secure (void)
1378 root 1.41 {
1379 root 1.103 #ifdef _WIN32
1380 root 1.49 return 0;
1381     #else
1382 root 1.41 return getuid () != geteuid ()
1383     || getgid () != getegid ();
1384 root 1.49 #endif
1385 root 1.41 }
1386    
1387 root 1.111 unsigned int
1388 root 1.129 ev_supported_backends (void)
1389     {
1390 root 1.130 unsigned int flags = 0;
1391 root 1.129
1392     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1393     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1394     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1395     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1396     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1397    
1398     return flags;
1399     }
1400    
1401     unsigned int
1402 root 1.130 ev_recommended_backends (void)
1403 root 1.1 {
1404 root 1.131 unsigned int flags = ev_supported_backends ();
1405 root 1.129
1406     #ifndef __NetBSD__
1407     /* kqueue is borked on everything but netbsd apparently */
1408     /* it usually doesn't work correctly on anything but sockets and pipes */
1409     flags &= ~EVBACKEND_KQUEUE;
1410     #endif
1411     #ifdef __APPLE__
1412 root 1.278 /* only select works correctly on that "unix-certified" platform */
1413     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1414     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1415 root 1.129 #endif
1416    
1417     return flags;
1418 root 1.51 }
1419    
1420 root 1.130 unsigned int
1421 root 1.134 ev_embeddable_backends (void)
1422     {
1423 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1424    
1425 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1426 root 1.196 /* please fix it and tell me how to detect the fix */
1427     flags &= ~EVBACKEND_EPOLL;
1428    
1429     return flags;
1430 root 1.134 }
1431    
1432     unsigned int
1433 root 1.130 ev_backend (EV_P)
1434     {
1435     return backend;
1436     }
1437    
1438 root 1.297 #if EV_MINIMAL < 2
1439 root 1.162 unsigned int
1440     ev_loop_count (EV_P)
1441     {
1442     return loop_count;
1443     }
1444    
1445 root 1.294 unsigned int
1446     ev_loop_depth (EV_P)
1447     {
1448     return loop_depth;
1449     }
1450    
1451 root 1.193 void
1452     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1453     {
1454     io_blocktime = interval;
1455     }
1456    
1457     void
1458     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1459     {
1460     timeout_blocktime = interval;
1461     }
1462    
1463 root 1.297 void
1464     ev_set_userdata (EV_P_ void *data)
1465     {
1466     userdata = data;
1467     }
1468    
1469     void *
1470     ev_userdata (EV_P)
1471     {
1472     return userdata;
1473     }
1474    
1475     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476     {
1477     invoke_cb = invoke_pending_cb;
1478     }
1479    
1480 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481 root 1.297 {
1482 root 1.298 release_cb = release;
1483     acquire_cb = acquire;
1484 root 1.297 }
1485     #endif
1486    
1487 root 1.288 /* initialise a loop structure, must be zero-initialised */
1488 root 1.151 static void noinline
1489 root 1.108 loop_init (EV_P_ unsigned int flags)
1490 root 1.51 {
1491 root 1.130 if (!backend)
1492 root 1.23 {
1493 root 1.279 #if EV_USE_REALTIME
1494     if (!have_realtime)
1495     {
1496     struct timespec ts;
1497    
1498     if (!clock_gettime (CLOCK_REALTIME, &ts))
1499     have_realtime = 1;
1500     }
1501     #endif
1502    
1503 root 1.29 #if EV_USE_MONOTONIC
1504 root 1.279 if (!have_monotonic)
1505     {
1506     struct timespec ts;
1507    
1508     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1509     have_monotonic = 1;
1510     }
1511 root 1.1 #endif
1512    
1513 root 1.209 ev_rt_now = ev_time ();
1514     mn_now = get_clock ();
1515     now_floor = mn_now;
1516     rtmn_diff = ev_rt_now - mn_now;
1517 root 1.297 #if EV_MINIMAL < 2
1518 root 1.296 invoke_cb = ev_invoke_pending;
1519 root 1.297 #endif
1520 root 1.1
1521 root 1.193 io_blocktime = 0.;
1522     timeout_blocktime = 0.;
1523 root 1.209 backend = 0;
1524     backend_fd = -1;
1525     gotasync = 0;
1526     #if EV_USE_INOTIFY
1527     fs_fd = -2;
1528     #endif
1529 root 1.303 #if EV_USE_SIGNALFD
1530     sigfd = -2;
1531     #endif
1532 root 1.193
1533 root 1.158 /* pid check not overridable via env */
1534     #ifndef _WIN32
1535     if (flags & EVFLAG_FORKCHECK)
1536     curpid = getpid ();
1537     #endif
1538    
1539 root 1.128 if (!(flags & EVFLAG_NOENV)
1540     && !enable_secure ()
1541     && getenv ("LIBEV_FLAGS"))
1542 root 1.108 flags = atoi (getenv ("LIBEV_FLAGS"));
1543    
1544 root 1.225 if (!(flags & 0x0000ffffU))
1545 root 1.129 flags |= ev_recommended_backends ();
1546 root 1.41
1547 root 1.118 #if EV_USE_PORT
1548 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1549 root 1.118 #endif
1550 root 1.44 #if EV_USE_KQUEUE
1551 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1552 root 1.44 #endif
1553 root 1.29 #if EV_USE_EPOLL
1554 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1555 root 1.41 #endif
1556 root 1.59 #if EV_USE_POLL
1557 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1558 root 1.1 #endif
1559 root 1.29 #if EV_USE_SELECT
1560 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1561 root 1.1 #endif
1562 root 1.70
1563 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1564    
1565     ev_init (&pipe_w, pipecb);
1566     ev_set_priority (&pipe_w, EV_MAXPRI);
1567 root 1.56 }
1568     }
1569    
1570 root 1.288 /* free up a loop structure */
1571 root 1.151 static void noinline
1572 root 1.56 loop_destroy (EV_P)
1573     {
1574 root 1.65 int i;
1575    
1576 root 1.288 if (ev_is_active (&pipe_w))
1577 root 1.207 {
1578 root 1.303 /*ev_ref (EV_A);*/
1579     /*ev_io_stop (EV_A_ &pipe_w);*/
1580 root 1.207
1581 root 1.220 #if EV_USE_EVENTFD
1582     if (evfd >= 0)
1583     close (evfd);
1584     #endif
1585    
1586     if (evpipe [0] >= 0)
1587     {
1588     close (evpipe [0]);
1589     close (evpipe [1]);
1590     }
1591 root 1.207 }
1592    
1593 root 1.303 #if EV_USE_SIGNALFD
1594     if (ev_is_active (&sigfd_w))
1595     {
1596     /*ev_ref (EV_A);*/
1597     /*ev_io_stop (EV_A_ &sigfd_w);*/
1598    
1599     close (sigfd);
1600     }
1601     #endif
1602    
1603 root 1.152 #if EV_USE_INOTIFY
1604     if (fs_fd >= 0)
1605     close (fs_fd);
1606     #endif
1607    
1608     if (backend_fd >= 0)
1609     close (backend_fd);
1610    
1611 root 1.118 #if EV_USE_PORT
1612 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1613 root 1.118 #endif
1614 root 1.56 #if EV_USE_KQUEUE
1615 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1616 root 1.56 #endif
1617     #if EV_USE_EPOLL
1618 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1619 root 1.56 #endif
1620 root 1.59 #if EV_USE_POLL
1621 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1622 root 1.56 #endif
1623     #if EV_USE_SELECT
1624 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1625 root 1.56 #endif
1626 root 1.1
1627 root 1.65 for (i = NUMPRI; i--; )
1628 root 1.164 {
1629     array_free (pending, [i]);
1630     #if EV_IDLE_ENABLE
1631     array_free (idle, [i]);
1632     #endif
1633     }
1634 root 1.65
1635 root 1.186 ev_free (anfds); anfdmax = 0;
1636    
1637 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1638 root 1.284 array_free (rfeed, EMPTY);
1639 root 1.164 array_free (fdchange, EMPTY);
1640     array_free (timer, EMPTY);
1641 root 1.140 #if EV_PERIODIC_ENABLE
1642 root 1.164 array_free (periodic, EMPTY);
1643 root 1.93 #endif
1644 root 1.187 #if EV_FORK_ENABLE
1645     array_free (fork, EMPTY);
1646     #endif
1647 root 1.164 array_free (prepare, EMPTY);
1648     array_free (check, EMPTY);
1649 root 1.209 #if EV_ASYNC_ENABLE
1650     array_free (async, EMPTY);
1651     #endif
1652 root 1.65
1653 root 1.130 backend = 0;
1654 root 1.56 }
1655 root 1.22
1656 root 1.226 #if EV_USE_INOTIFY
1657 root 1.284 inline_size void infy_fork (EV_P);
1658 root 1.226 #endif
1659 root 1.154
1660 root 1.284 inline_size void
1661 root 1.56 loop_fork (EV_P)
1662     {
1663 root 1.118 #if EV_USE_PORT
1664 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1665 root 1.56 #endif
1666     #if EV_USE_KQUEUE
1667 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1668 root 1.45 #endif
1669 root 1.118 #if EV_USE_EPOLL
1670 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1671 root 1.118 #endif
1672 root 1.154 #if EV_USE_INOTIFY
1673     infy_fork (EV_A);
1674     #endif
1675 root 1.70
1676 root 1.288 if (ev_is_active (&pipe_w))
1677 root 1.70 {
1678 root 1.207 /* this "locks" the handlers against writing to the pipe */
1679 root 1.212 /* while we modify the fd vars */
1680     gotsig = 1;
1681     #if EV_ASYNC_ENABLE
1682     gotasync = 1;
1683     #endif
1684 root 1.70
1685     ev_ref (EV_A);
1686 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1687 root 1.220
1688     #if EV_USE_EVENTFD
1689     if (evfd >= 0)
1690     close (evfd);
1691     #endif
1692    
1693     if (evpipe [0] >= 0)
1694     {
1695     close (evpipe [0]);
1696     close (evpipe [1]);
1697     }
1698 root 1.207
1699     evpipe_init (EV_A);
1700 root 1.208 /* now iterate over everything, in case we missed something */
1701 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1702 root 1.70 }
1703    
1704     postfork = 0;
1705 root 1.1 }
1706    
1707 root 1.55 #if EV_MULTIPLICITY
1708 root 1.250
1709 root 1.54 struct ev_loop *
1710 root 1.108 ev_loop_new (unsigned int flags)
1711 root 1.54 {
1712 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1713    
1714     memset (loop, 0, sizeof (struct ev_loop));
1715 root 1.108 loop_init (EV_A_ flags);
1716 root 1.56
1717 root 1.130 if (ev_backend (EV_A))
1718 root 1.55 return loop;
1719 root 1.54
1720 root 1.55 return 0;
1721 root 1.54 }
1722    
1723     void
1724 root 1.56 ev_loop_destroy (EV_P)
1725 root 1.54 {
1726 root 1.56 loop_destroy (EV_A);
1727 root 1.69 ev_free (loop);
1728 root 1.54 }
1729    
1730 root 1.56 void
1731     ev_loop_fork (EV_P)
1732     {
1733 root 1.205 postfork = 1; /* must be in line with ev_default_fork */
1734 root 1.56 }
1735 root 1.297 #endif /* multiplicity */
1736 root 1.248
1737     #if EV_VERIFY
1738 root 1.258 static void noinline
1739 root 1.251 verify_watcher (EV_P_ W w)
1740     {
1741 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1742 root 1.251
1743     if (w->pending)
1744 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1745 root 1.251 }
1746    
1747     static void noinline
1748     verify_heap (EV_P_ ANHE *heap, int N)
1749     {
1750     int i;
1751    
1752     for (i = HEAP0; i < N + HEAP0; ++i)
1753     {
1754 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1755     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1756     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1757 root 1.251
1758     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1759     }
1760     }
1761    
1762     static void noinline
1763     array_verify (EV_P_ W *ws, int cnt)
1764 root 1.248 {
1765     while (cnt--)
1766 root 1.251 {
1767 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1768 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1769     }
1770 root 1.248 }
1771 root 1.250 #endif
1772 root 1.248
1773 root 1.297 #if EV_MINIMAL < 2
1774 root 1.250 void
1775 root 1.248 ev_loop_verify (EV_P)
1776     {
1777 root 1.250 #if EV_VERIFY
1778 root 1.248 int i;
1779 root 1.251 WL w;
1780    
1781     assert (activecnt >= -1);
1782    
1783     assert (fdchangemax >= fdchangecnt);
1784     for (i = 0; i < fdchangecnt; ++i)
1785 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1786 root 1.251
1787     assert (anfdmax >= 0);
1788     for (i = 0; i < anfdmax; ++i)
1789     for (w = anfds [i].head; w; w = w->next)
1790     {
1791     verify_watcher (EV_A_ (W)w);
1792 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1793     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1794 root 1.251 }
1795    
1796     assert (timermax >= timercnt);
1797     verify_heap (EV_A_ timers, timercnt);
1798 root 1.248
1799     #if EV_PERIODIC_ENABLE
1800 root 1.251 assert (periodicmax >= periodiccnt);
1801     verify_heap (EV_A_ periodics, periodiccnt);
1802 root 1.248 #endif
1803    
1804 root 1.251 for (i = NUMPRI; i--; )
1805     {
1806     assert (pendingmax [i] >= pendingcnt [i]);
1807 root 1.248 #if EV_IDLE_ENABLE
1808 root 1.252 assert (idleall >= 0);
1809 root 1.251 assert (idlemax [i] >= idlecnt [i]);
1810     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1811 root 1.248 #endif
1812 root 1.251 }
1813    
1814 root 1.248 #if EV_FORK_ENABLE
1815 root 1.251 assert (forkmax >= forkcnt);
1816     array_verify (EV_A_ (W *)forks, forkcnt);
1817 root 1.248 #endif
1818 root 1.251
1819 root 1.250 #if EV_ASYNC_ENABLE
1820 root 1.251 assert (asyncmax >= asynccnt);
1821     array_verify (EV_A_ (W *)asyncs, asynccnt);
1822 root 1.250 #endif
1823 root 1.251
1824     assert (preparemax >= preparecnt);
1825     array_verify (EV_A_ (W *)prepares, preparecnt);
1826    
1827     assert (checkmax >= checkcnt);
1828     array_verify (EV_A_ (W *)checks, checkcnt);
1829    
1830     # if 0
1831     for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1832     for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1833     # endif
1834 root 1.248 #endif
1835     }
1836 root 1.297 #endif
1837 root 1.56
1838     #if EV_MULTIPLICITY
1839     struct ev_loop *
1840 root 1.125 ev_default_loop_init (unsigned int flags)
1841 root 1.54 #else
1842     int
1843 root 1.116 ev_default_loop (unsigned int flags)
1844 root 1.56 #endif
1845 root 1.54 {
1846 root 1.116 if (!ev_default_loop_ptr)
1847 root 1.56 {
1848     #if EV_MULTIPLICITY
1849 root 1.116 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1850 root 1.56 #else
1851 ayin 1.117 ev_default_loop_ptr = 1;
1852 root 1.54 #endif
1853    
1854 root 1.110 loop_init (EV_A_ flags);
1855 root 1.56
1856 root 1.130 if (ev_backend (EV_A))
1857 root 1.56 {
1858 root 1.103 #ifndef _WIN32
1859 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
1860     ev_set_priority (&childev, EV_MAXPRI);
1861     ev_signal_start (EV_A_ &childev);
1862     ev_unref (EV_A); /* child watcher should not keep loop alive */
1863     #endif
1864     }
1865     else
1866 root 1.116 ev_default_loop_ptr = 0;
1867 root 1.56 }
1868 root 1.8
1869 root 1.116 return ev_default_loop_ptr;
1870 root 1.1 }
1871    
1872 root 1.24 void
1873 root 1.56 ev_default_destroy (void)
1874 root 1.1 {
1875 root 1.57 #if EV_MULTIPLICITY
1876 root 1.116 struct ev_loop *loop = ev_default_loop_ptr;
1877 root 1.57 #endif
1878 root 1.56
1879 root 1.266 ev_default_loop_ptr = 0;
1880    
1881 root 1.103 #ifndef _WIN32
1882 root 1.56 ev_ref (EV_A); /* child watcher */
1883     ev_signal_stop (EV_A_ &childev);
1884 root 1.71 #endif
1885 root 1.56
1886     loop_destroy (EV_A);
1887 root 1.1 }
1888    
1889 root 1.24 void
1890 root 1.60 ev_default_fork (void)
1891 root 1.1 {
1892 root 1.60 #if EV_MULTIPLICITY
1893 root 1.116 struct ev_loop *loop = ev_default_loop_ptr;
1894 root 1.60 #endif
1895    
1896 root 1.270 postfork = 1; /* must be in line with ev_loop_fork */
1897 root 1.1 }
1898    
1899 root 1.8 /*****************************************************************************/
1900    
1901 root 1.168 void
1902     ev_invoke (EV_P_ void *w, int revents)
1903     {
1904     EV_CB_INVOKE ((W)w, revents);
1905     }
1906    
1907 root 1.300 unsigned int
1908     ev_pending_count (EV_P)
1909     {
1910     int pri;
1911     unsigned int count = 0;
1912    
1913     for (pri = NUMPRI; pri--; )
1914     count += pendingcnt [pri];
1915    
1916     return count;
1917     }
1918    
1919 root 1.297 void noinline
1920 root 1.296 ev_invoke_pending (EV_P)
1921 root 1.1 {
1922 root 1.42 int pri;
1923    
1924     for (pri = NUMPRI; pri--; )
1925     while (pendingcnt [pri])
1926     {
1927     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1928 root 1.1
1929 root 1.288 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1930     /* ^ this is no longer true, as pending_w could be here */
1931 root 1.139
1932 root 1.288 p->w->pending = 0;
1933     EV_CB_INVOKE (p->w, p->events);
1934     EV_FREQUENT_CHECK;
1935 root 1.42 }
1936 root 1.1 }
1937    
1938 root 1.234 #if EV_IDLE_ENABLE
1939 root 1.288 /* make idle watchers pending. this handles the "call-idle */
1940     /* only when higher priorities are idle" logic */
1941 root 1.284 inline_size void
1942 root 1.234 idle_reify (EV_P)
1943     {
1944     if (expect_false (idleall))
1945     {
1946     int pri;
1947    
1948     for (pri = NUMPRI; pri--; )
1949     {
1950     if (pendingcnt [pri])
1951     break;
1952    
1953     if (idlecnt [pri])
1954     {
1955     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1956     break;
1957     }
1958     }
1959     }
1960     }
1961     #endif
1962    
1963 root 1.288 /* make timers pending */
1964 root 1.284 inline_size void
1965 root 1.51 timers_reify (EV_P)
1966 root 1.1 {
1967 root 1.248 EV_FREQUENT_CHECK;
1968    
1969 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1970 root 1.1 {
1971 root 1.284 do
1972     {
1973     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974 root 1.1
1975 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976    
1977     /* first reschedule or stop timer */
1978     if (w->repeat)
1979     {
1980     ev_at (w) += w->repeat;
1981     if (ev_at (w) < mn_now)
1982     ev_at (w) = mn_now;
1983 root 1.61
1984 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1985 root 1.90
1986 root 1.284 ANHE_at_cache (timers [HEAP0]);
1987     downheap (timers, timercnt, HEAP0);
1988     }
1989     else
1990     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991 root 1.243
1992 root 1.284 EV_FREQUENT_CHECK;
1993     feed_reverse (EV_A_ (W)w);
1994 root 1.12 }
1995 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1996 root 1.30
1997 root 1.284 feed_reverse_done (EV_A_ EV_TIMEOUT);
1998 root 1.12 }
1999     }
2000 root 1.4
2001 root 1.140 #if EV_PERIODIC_ENABLE
2002 root 1.288 /* make periodics pending */
2003 root 1.284 inline_size void
2004 root 1.51 periodics_reify (EV_P)
2005 root 1.12 {
2006 root 1.248 EV_FREQUENT_CHECK;
2007 root 1.250
2008 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2009 root 1.12 {
2010 root 1.284 int feed_count = 0;
2011    
2012     do
2013     {
2014     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015 root 1.1
2016 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2017 root 1.61
2018 root 1.284 /* first reschedule or stop timer */
2019     if (w->reschedule_cb)
2020     {
2021     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2022 root 1.243
2023 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2024 root 1.243
2025 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2026     downheap (periodics, periodiccnt, HEAP0);
2027     }
2028     else if (w->interval)
2029 root 1.246 {
2030 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031     /* if next trigger time is not sufficiently in the future, put it there */
2032     /* this might happen because of floating point inexactness */
2033     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034     {
2035     ev_at (w) += w->interval;
2036    
2037     /* if interval is unreasonably low we might still have a time in the past */
2038     /* so correct this. this will make the periodic very inexact, but the user */
2039     /* has effectively asked to get triggered more often than possible */
2040     if (ev_at (w) < ev_rt_now)
2041     ev_at (w) = ev_rt_now;
2042     }
2043 root 1.243
2044 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2045     downheap (periodics, periodiccnt, HEAP0);
2046 root 1.246 }
2047 root 1.284 else
2048     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049 root 1.243
2050 root 1.284 EV_FREQUENT_CHECK;
2051     feed_reverse (EV_A_ (W)w);
2052 root 1.1 }
2053 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2054 root 1.12
2055 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2056 root 1.12 }
2057     }
2058    
2059 root 1.288 /* simply recalculate all periodics */
2060     /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2061 root 1.140 static void noinline
2062 root 1.54 periodics_reschedule (EV_P)
2063 root 1.12 {
2064     int i;
2065    
2066 root 1.13 /* adjust periodics after time jump */
2067 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2068 root 1.12 {
2069 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2070 root 1.12
2071 root 1.77 if (w->reschedule_cb)
2072 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2073 root 1.77 else if (w->interval)
2074 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075 root 1.242
2076 root 1.248 ANHE_at_cache (periodics [i]);
2077 root 1.77 }
2078 root 1.12
2079 root 1.248 reheap (periodics, periodiccnt);
2080 root 1.1 }
2081 root 1.93 #endif
2082 root 1.1
2083 root 1.288 /* adjust all timers by a given offset */
2084 root 1.285 static void noinline
2085     timers_reschedule (EV_P_ ev_tstamp adjust)
2086     {
2087     int i;
2088    
2089     for (i = 0; i < timercnt; ++i)
2090     {
2091     ANHE *he = timers + i + HEAP0;
2092     ANHE_w (*he)->at += adjust;
2093     ANHE_at_cache (*he);
2094     }
2095     }
2096    
2097 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2098     /* also detetc if there was a timejump, and act accordingly */
2099 root 1.284 inline_speed void
2100 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2101 root 1.4 {
2102 root 1.40 #if EV_USE_MONOTONIC
2103     if (expect_true (have_monotonic))
2104     {
2105 root 1.289 int i;
2106 root 1.178 ev_tstamp odiff = rtmn_diff;
2107    
2108     mn_now = get_clock ();
2109    
2110     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2111     /* interpolate in the meantime */
2112     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2113 root 1.40 {
2114 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2115     return;
2116     }
2117    
2118     now_floor = mn_now;
2119     ev_rt_now = ev_time ();
2120 root 1.4
2121 root 1.178 /* loop a few times, before making important decisions.
2122     * on the choice of "4": one iteration isn't enough,
2123     * in case we get preempted during the calls to
2124     * ev_time and get_clock. a second call is almost guaranteed
2125     * to succeed in that case, though. and looping a few more times
2126     * doesn't hurt either as we only do this on time-jumps or
2127     * in the unlikely event of having been preempted here.
2128     */
2129     for (i = 4; --i; )
2130     {
2131     rtmn_diff = ev_rt_now - mn_now;
2132 root 1.4
2133 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2134 root 1.178 return; /* all is well */
2135 root 1.4
2136 root 1.178 ev_rt_now = ev_time ();
2137     mn_now = get_clock ();
2138     now_floor = mn_now;
2139     }
2140 root 1.4
2141 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2142     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2143 root 1.140 # if EV_PERIODIC_ENABLE
2144 root 1.178 periodics_reschedule (EV_A);
2145 root 1.93 # endif
2146 root 1.4 }
2147     else
2148 root 1.40 #endif
2149 root 1.4 {
2150 root 1.85 ev_rt_now = ev_time ();
2151 root 1.40
2152 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2153 root 1.13 {
2154 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2155     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2156 root 1.140 #if EV_PERIODIC_ENABLE
2157 root 1.54 periodics_reschedule (EV_A);
2158 root 1.93 #endif
2159 root 1.13 }
2160 root 1.4
2161 root 1.85 mn_now = ev_rt_now;
2162 root 1.4 }
2163     }
2164    
2165 root 1.51 void
2166     ev_loop (EV_P_ int flags)
2167 root 1.1 {
2168 root 1.297 #if EV_MINIMAL < 2
2169 root 1.294 ++loop_depth;
2170 root 1.297 #endif
2171 root 1.294
2172 root 1.298 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173    
2174 root 1.219 loop_done = EVUNLOOP_CANCEL;
2175 root 1.1
2176 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2177 root 1.158
2178 root 1.161 do
2179 root 1.9 {
2180 root 1.250 #if EV_VERIFY >= 2
2181     ev_loop_verify (EV_A);
2182     #endif
2183    
2184 root 1.158 #ifndef _WIN32
2185     if (expect_false (curpid)) /* penalise the forking check even more */
2186     if (expect_false (getpid () != curpid))
2187     {
2188     curpid = getpid ();
2189     postfork = 1;
2190     }
2191     #endif
2192    
2193 root 1.157 #if EV_FORK_ENABLE
2194     /* we might have forked, so queue fork handlers */
2195     if (expect_false (postfork))
2196     if (forkcnt)
2197     {
2198     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2199 root 1.297 EV_INVOKE_PENDING;
2200 root 1.157 }
2201     #endif
2202 root 1.147
2203 root 1.170 /* queue prepare watchers (and execute them) */
2204 root 1.40 if (expect_false (preparecnt))
2205 root 1.20 {
2206 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2207 root 1.297 EV_INVOKE_PENDING;
2208 root 1.20 }
2209 root 1.9
2210 root 1.298 if (expect_false (loop_done))
2211     break;
2212    
2213 root 1.70 /* we might have forked, so reify kernel state if necessary */
2214     if (expect_false (postfork))
2215     loop_fork (EV_A);
2216    
2217 root 1.1 /* update fd-related kernel structures */
2218 root 1.51 fd_reify (EV_A);
2219 root 1.1
2220     /* calculate blocking time */
2221 root 1.135 {
2222 root 1.193 ev_tstamp waittime = 0.;
2223     ev_tstamp sleeptime = 0.;
2224 root 1.12
2225 root 1.193 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2226 root 1.135 {
2227 root 1.293 /* remember old timestamp for io_blocktime calculation */
2228     ev_tstamp prev_mn_now = mn_now;
2229    
2230 root 1.135 /* update time to cancel out callback processing overhead */
2231 root 1.178 time_update (EV_A_ 1e100);
2232 root 1.135
2233 root 1.287 waittime = MAX_BLOCKTIME;
2234    
2235 root 1.135 if (timercnt)
2236     {
2237 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2238 root 1.193 if (waittime > to) waittime = to;
2239 root 1.135 }
2240 root 1.4
2241 root 1.140 #if EV_PERIODIC_ENABLE
2242 root 1.135 if (periodiccnt)
2243     {
2244 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2245 root 1.193 if (waittime > to) waittime = to;
2246 root 1.135 }
2247 root 1.93 #endif
2248 root 1.4
2249 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2250 root 1.193 if (expect_false (waittime < timeout_blocktime))
2251     waittime = timeout_blocktime;
2252    
2253 root 1.293 /* extra check because io_blocktime is commonly 0 */
2254     if (expect_false (io_blocktime))
2255     {
2256     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257 root 1.193
2258 root 1.293 if (sleeptime > waittime - backend_fudge)
2259     sleeptime = waittime - backend_fudge;
2260 root 1.193
2261 root 1.293 if (expect_true (sleeptime > 0.))
2262     {
2263     ev_sleep (sleeptime);
2264     waittime -= sleeptime;
2265     }
2266 root 1.193 }
2267 root 1.135 }
2268 root 1.1
2269 root 1.297 #if EV_MINIMAL < 2
2270 root 1.162 ++loop_count;
2271 root 1.297 #endif
2272 root 1.298 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2273 root 1.193 backend_poll (EV_A_ waittime);
2274 root 1.298 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2275 root 1.178
2276     /* update ev_rt_now, do magic */
2277 root 1.193 time_update (EV_A_ waittime + sleeptime);
2278 root 1.135 }
2279 root 1.1
2280 root 1.9 /* queue pending timers and reschedule them */
2281 root 1.51 timers_reify (EV_A); /* relative timers called last */
2282 root 1.140 #if EV_PERIODIC_ENABLE
2283 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2284 root 1.93 #endif
2285 root 1.1
2286 root 1.164 #if EV_IDLE_ENABLE
2287 root 1.137 /* queue idle watchers unless other events are pending */
2288 root 1.164 idle_reify (EV_A);
2289     #endif
2290 root 1.9
2291 root 1.20 /* queue check watchers, to be executed first */
2292 root 1.123 if (expect_false (checkcnt))
2293 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2294 root 1.9
2295 root 1.297 EV_INVOKE_PENDING;
2296 root 1.1 }
2297 root 1.219 while (expect_true (
2298     activecnt
2299     && !loop_done
2300     && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2301     ));
2302 root 1.13
2303 root 1.135 if (loop_done == EVUNLOOP_ONE)
2304     loop_done = EVUNLOOP_CANCEL;
2305 root 1.294
2306 root 1.297 #if EV_MINIMAL < 2
2307 root 1.294 --loop_depth;
2308 root 1.297 #endif
2309 root 1.51 }
2310    
2311     void
2312     ev_unloop (EV_P_ int how)
2313     {
2314     loop_done = how;
2315 root 1.1 }
2316    
2317 root 1.285 void
2318     ev_ref (EV_P)
2319     {
2320     ++activecnt;
2321     }
2322    
2323     void
2324     ev_unref (EV_P)
2325     {
2326     --activecnt;
2327     }
2328    
2329     void
2330     ev_now_update (EV_P)
2331     {
2332     time_update (EV_A_ 1e100);
2333     }
2334    
2335     void
2336     ev_suspend (EV_P)
2337     {
2338     ev_now_update (EV_A);
2339     }
2340    
2341     void
2342     ev_resume (EV_P)
2343     {
2344     ev_tstamp mn_prev = mn_now;
2345    
2346     ev_now_update (EV_A);
2347     timers_reschedule (EV_A_ mn_now - mn_prev);
2348 root 1.286 #if EV_PERIODIC_ENABLE
2349 root 1.288 /* TODO: really do this? */
2350 root 1.285 periodics_reschedule (EV_A);
2351 root 1.286 #endif
2352 root 1.285 }
2353    
2354 root 1.8 /*****************************************************************************/
2355 root 1.288 /* singly-linked list management, used when the expected list length is short */
2356 root 1.8
2357 root 1.284 inline_size void
2358 root 1.10 wlist_add (WL *head, WL elem)
2359 root 1.1 {
2360     elem->next = *head;
2361     *head = elem;
2362     }
2363    
2364 root 1.284 inline_size void
2365 root 1.10 wlist_del (WL *head, WL elem)
2366 root 1.1 {
2367     while (*head)
2368     {
2369     if (*head == elem)
2370     {
2371     *head = elem->next;
2372     return;
2373     }
2374    
2375     head = &(*head)->next;
2376     }
2377     }
2378    
2379 root 1.288 /* internal, faster, version of ev_clear_pending */
2380 root 1.284 inline_speed void
2381 root 1.166 clear_pending (EV_P_ W w)
2382 root 1.16 {
2383     if (w->pending)
2384     {
2385 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2386 root 1.16 w->pending = 0;
2387     }
2388     }
2389    
2390 root 1.167 int
2391     ev_clear_pending (EV_P_ void *w)
2392 root 1.166 {
2393     W w_ = (W)w;
2394     int pending = w_->pending;
2395    
2396 root 1.172 if (expect_true (pending))
2397     {
2398     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 root 1.288 p->w = (W)&pending_w;
2400 root 1.172 w_->pending = 0;
2401     return p->events;
2402     }
2403     else
2404 root 1.167 return 0;
2405 root 1.166 }
2406    
2407 root 1.284 inline_size void
2408 root 1.164 pri_adjust (EV_P_ W w)
2409     {
2410 root 1.295 int pri = ev_priority (w);
2411 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2412     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2413 root 1.295 ev_set_priority (w, pri);
2414 root 1.164 }
2415    
2416 root 1.284 inline_speed void
2417 root 1.51 ev_start (EV_P_ W w, int active)
2418 root 1.1 {
2419 root 1.164 pri_adjust (EV_A_ w);
2420 root 1.1 w->active = active;
2421 root 1.51 ev_ref (EV_A);
2422 root 1.1 }
2423    
2424 root 1.284 inline_size void
2425 root 1.51 ev_stop (EV_P_ W w)
2426 root 1.1 {
2427 root 1.51 ev_unref (EV_A);
2428 root 1.1 w->active = 0;
2429     }
2430    
2431 root 1.8 /*****************************************************************************/
2432    
2433 root 1.171 void noinline
2434 root 1.136 ev_io_start (EV_P_ ev_io *w)
2435 root 1.1 {
2436 root 1.37 int fd = w->fd;
2437    
2438 root 1.123 if (expect_false (ev_is_active (w)))
2439 root 1.1 return;
2440    
2441 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2442 root 1.281 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2443 root 1.33
2444 root 1.248 EV_FREQUENT_CHECK;
2445    
2446 root 1.51 ev_start (EV_A_ (W)w, 1);
2447 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2448 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2449 root 1.1
2450 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2451 root 1.281 w->events &= ~EV__IOFDSET;
2452 root 1.248
2453     EV_FREQUENT_CHECK;
2454 root 1.1 }
2455    
2456 root 1.171 void noinline
2457 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2458 root 1.1 {
2459 root 1.166 clear_pending (EV_A_ (W)w);
2460 root 1.123 if (expect_false (!ev_is_active (w)))
2461 root 1.1 return;
2462    
2463 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2464 root 1.89
2465 root 1.248 EV_FREQUENT_CHECK;
2466    
2467 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2468 root 1.51 ev_stop (EV_A_ (W)w);
2469 root 1.1
2470 root 1.184 fd_change (EV_A_ w->fd, 1);
2471 root 1.248
2472     EV_FREQUENT_CHECK;
2473 root 1.1 }
2474    
2475 root 1.171 void noinline
2476 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2477 root 1.1 {
2478 root 1.123 if (expect_false (ev_is_active (w)))
2479 root 1.1 return;
2480    
2481 root 1.228 ev_at (w) += mn_now;
2482 root 1.12
2483 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2484 root 1.13
2485 root 1.248 EV_FREQUENT_CHECK;
2486    
2487     ++timercnt;
2488     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2489 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2490     ANHE_w (timers [ev_active (w)]) = (WT)w;
2491 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2492 root 1.235 upheap (timers, ev_active (w));
2493 root 1.62
2494 root 1.248 EV_FREQUENT_CHECK;
2495    
2496 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2497 root 1.12 }
2498    
2499 root 1.171 void noinline
2500 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2501 root 1.12 {
2502 root 1.166 clear_pending (EV_A_ (W)w);
2503 root 1.123 if (expect_false (!ev_is_active (w)))
2504 root 1.12 return;
2505    
2506 root 1.248 EV_FREQUENT_CHECK;
2507    
2508 root 1.230 {
2509     int active = ev_active (w);
2510 root 1.62
2511 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2512 root 1.151
2513 root 1.248 --timercnt;
2514    
2515     if (expect_true (active < timercnt + HEAP0))
2516 root 1.151 {
2517 root 1.248 timers [active] = timers [timercnt + HEAP0];
2518 root 1.181 adjustheap (timers, timercnt, active);
2519 root 1.151 }
2520 root 1.248 }
2521 root 1.228
2522 root 1.248 EV_FREQUENT_CHECK;
2523 root 1.4
2524 root 1.228 ev_at (w) -= mn_now;
2525 root 1.14
2526 root 1.51 ev_stop (EV_A_ (W)w);
2527 root 1.12 }
2528 root 1.4
2529 root 1.171 void noinline
2530 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2531 root 1.14 {
2532 root 1.248 EV_FREQUENT_CHECK;
2533    
2534 root 1.14 if (ev_is_active (w))
2535     {
2536     if (w->repeat)
2537 root 1.99 {
2538 root 1.228 ev_at (w) = mn_now + w->repeat;
2539 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2540 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2541 root 1.99 }
2542 root 1.14 else
2543 root 1.51 ev_timer_stop (EV_A_ w);
2544 root 1.14 }
2545     else if (w->repeat)
2546 root 1.112 {
2547 root 1.229 ev_at (w) = w->repeat;
2548 root 1.112 ev_timer_start (EV_A_ w);
2549     }
2550 root 1.248
2551     EV_FREQUENT_CHECK;
2552 root 1.14 }
2553    
2554 root 1.301 ev_tstamp
2555     ev_timer_remaining (EV_P_ ev_timer *w)
2556     {
2557     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2558     }
2559    
2560 root 1.140 #if EV_PERIODIC_ENABLE
2561 root 1.171 void noinline
2562 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2563 root 1.12 {
2564 root 1.123 if (expect_false (ev_is_active (w)))
2565 root 1.12 return;
2566 root 1.1
2567 root 1.77 if (w->reschedule_cb)
2568 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2569 root 1.77 else if (w->interval)
2570     {
2571 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2572 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2573 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2574 root 1.77 }
2575 root 1.173 else
2576 root 1.228 ev_at (w) = w->offset;
2577 root 1.12
2578 root 1.248 EV_FREQUENT_CHECK;
2579    
2580     ++periodiccnt;
2581     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2582 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2583     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2584 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2585 root 1.235 upheap (periodics, ev_active (w));
2586 root 1.62
2587 root 1.248 EV_FREQUENT_CHECK;
2588    
2589 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2590 root 1.1 }
2591    
2592 root 1.171 void noinline
2593 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2594 root 1.1 {
2595 root 1.166 clear_pending (EV_A_ (W)w);
2596 root 1.123 if (expect_false (!ev_is_active (w)))
2597 root 1.1 return;
2598    
2599 root 1.248 EV_FREQUENT_CHECK;
2600    
2601 root 1.230 {
2602     int active = ev_active (w);
2603 root 1.62
2604 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2605 root 1.151
2606 root 1.248 --periodiccnt;
2607    
2608     if (expect_true (active < periodiccnt + HEAP0))
2609 root 1.151 {
2610 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2611 root 1.181 adjustheap (periodics, periodiccnt, active);
2612 root 1.151 }
2613 root 1.248 }
2614 root 1.228
2615 root 1.248 EV_FREQUENT_CHECK;
2616 root 1.2
2617 root 1.51 ev_stop (EV_A_ (W)w);
2618 root 1.1 }
2619    
2620 root 1.171 void noinline
2621 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2622 root 1.77 {
2623 root 1.84 /* TODO: use adjustheap and recalculation */
2624 root 1.77 ev_periodic_stop (EV_A_ w);
2625     ev_periodic_start (EV_A_ w);
2626     }
2627 root 1.93 #endif
2628 root 1.77
2629 root 1.56 #ifndef SA_RESTART
2630     # define SA_RESTART 0
2631     #endif
2632    
2633 root 1.171 void noinline
2634 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2635 root 1.56 {
2636     #if EV_MULTIPLICITY
2637 root 1.278 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2638 root 1.56 #endif
2639 root 1.123 if (expect_false (ev_is_active (w)))
2640 root 1.56 return;
2641    
2642 root 1.278 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2643 root 1.56
2644 root 1.303 EV_FREQUENT_CHECK;
2645    
2646     #if EV_USE_SIGNALFD
2647     if (sigfd == -2)
2648     {
2649     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650     if (sigfd < 0 && errno == EINVAL)
2651     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652    
2653     if (sigfd >= 0)
2654     {
2655     fd_intern (sigfd); /* doing it twice will not hurt */
2656    
2657     sigemptyset (&sigfd_set);
2658    
2659     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660     ev_set_priority (&sigfd_w, EV_MAXPRI);
2661     ev_io_start (EV_A_ &sigfd_w);
2662     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663     }
2664     }
2665    
2666     if (sigfd >= 0)
2667     {
2668     /* TODO: check .head */
2669     sigaddset (&sigfd_set, w->signum);
2670     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671 root 1.207
2672 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2673     }
2674     else
2675     #endif
2676     evpipe_init (EV_A);
2677 root 1.248
2678 root 1.180 {
2679     #ifndef _WIN32
2680     sigset_t full, prev;
2681     sigfillset (&full);
2682     sigprocmask (SIG_SETMASK, &full, &prev);
2683     #endif
2684    
2685 root 1.265 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2686 root 1.180
2687     #ifndef _WIN32
2688 root 1.303 if (sigfd < 0)/*TODO*/
2689     sigdelset (&prev, w->signum);
2690 root 1.180 sigprocmask (SIG_SETMASK, &prev, 0);
2691     #endif
2692     }
2693    
2694 root 1.56 ev_start (EV_A_ (W)w, 1);
2695 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2696 root 1.56
2697 root 1.63 if (!((WL)w)->next)
2698 root 1.56 {
2699 root 1.103 #if _WIN32
2700 root 1.218 signal (w->signum, ev_sighandler);
2701 root 1.67 #else
2702 root 1.303 if (sigfd < 0) /*TODO*/
2703     {
2704     struct sigaction sa = { };
2705     sa.sa_handler = ev_sighandler;
2706     sigfillset (&sa.sa_mask);
2707     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2708     sigaction (w->signum, &sa, 0);
2709     }
2710 root 1.67 #endif
2711 root 1.56 }
2712 root 1.248
2713     EV_FREQUENT_CHECK;
2714 root 1.56 }
2715    
2716 root 1.171 void noinline
2717 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2718 root 1.56 {
2719 root 1.166 clear_pending (EV_A_ (W)w);
2720 root 1.123 if (expect_false (!ev_is_active (w)))
2721 root 1.56 return;
2722    
2723 root 1.248 EV_FREQUENT_CHECK;
2724    
2725 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2726 root 1.56 ev_stop (EV_A_ (W)w);
2727    
2728     if (!signals [w->signum - 1].head)
2729 root 1.303 #if EV_USE_SIGNALFD
2730     if (sigfd >= 0)
2731     {
2732     sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2733     sigdelset (&sigfd_set, w->signum);
2734     signalfd (sigfd, &sigfd_set, 0);
2735     sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2736     /*TODO: maybe unblock signal? */
2737     }
2738     else
2739     #endif
2740     signal (w->signum, SIG_DFL);
2741 root 1.248
2742     EV_FREQUENT_CHECK;
2743 root 1.56 }
2744    
2745 root 1.28 void
2746 root 1.136 ev_child_start (EV_P_ ev_child *w)
2747 root 1.22 {
2748 root 1.56 #if EV_MULTIPLICITY
2749 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2750 root 1.56 #endif
2751 root 1.123 if (expect_false (ev_is_active (w)))
2752 root 1.22 return;
2753    
2754 root 1.248 EV_FREQUENT_CHECK;
2755    
2756 root 1.51 ev_start (EV_A_ (W)w, 1);
2757 root 1.182 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2758 root 1.248
2759     EV_FREQUENT_CHECK;
2760 root 1.22 }
2761    
2762 root 1.28 void
2763 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2764 root 1.22 {
2765 root 1.166 clear_pending (EV_A_ (W)w);
2766 root 1.123 if (expect_false (!ev_is_active (w)))
2767 root 1.22 return;
2768    
2769 root 1.248 EV_FREQUENT_CHECK;
2770    
2771 root 1.182 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2772 root 1.51 ev_stop (EV_A_ (W)w);
2773 root 1.248
2774     EV_FREQUENT_CHECK;
2775 root 1.22 }
2776    
2777 root 1.140 #if EV_STAT_ENABLE
2778    
2779     # ifdef _WIN32
2780 root 1.146 # undef lstat
2781     # define lstat(a,b) _stati64 (a,b)
2782 root 1.140 # endif
2783    
2784 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2785     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2786     #define MIN_STAT_INTERVAL 0.1074891
2787 root 1.143
2788 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2789 root 1.152
2790     #if EV_USE_INOTIFY
2791 root 1.153 # define EV_INOTIFY_BUFSIZE 8192
2792 root 1.152
2793     static void noinline
2794     infy_add (EV_P_ ev_stat *w)
2795     {
2796     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2797    
2798     if (w->wd < 0)
2799     {
2800 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2801     ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2802 root 1.152
2803     /* monitor some parent directory for speedup hints */
2804 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2805 root 1.233 /* but an efficiency issue only */
2806 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2807 root 1.152 {
2808 root 1.153 char path [4096];
2809 root 1.152 strcpy (path, w->path);
2810    
2811     do
2812     {
2813     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2814     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2815    
2816     char *pend = strrchr (path, '/');
2817    
2818 root 1.275 if (!pend || pend == path)
2819     break;
2820 root 1.152
2821     *pend = 0;
2822 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
2823 root 1.152 }
2824     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2825     }
2826     }
2827 root 1.275
2828     if (w->wd >= 0)
2829 root 1.273 {
2830     wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2831    
2832     /* now local changes will be tracked by inotify, but remote changes won't */
2833     /* unless the filesystem it known to be local, we therefore still poll */
2834     /* also do poll on <2.6.25, but with normal frequency */
2835     struct statfs sfs;
2836    
2837     if (fs_2625 && !statfs (w->path, &sfs))
2838     if (sfs.f_type == 0x1373 /* devfs */
2839     || sfs.f_type == 0xEF53 /* ext2/3 */
2840     || sfs.f_type == 0x3153464a /* jfs */
2841     || sfs.f_type == 0x52654973 /* reiser3 */
2842     || sfs.f_type == 0x01021994 /* tempfs */
2843     || sfs.f_type == 0x58465342 /* xfs */)
2844     return;
2845 root 1.152
2846 root 1.273 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2847     ev_timer_again (EV_A_ &w->timer);
2848     }
2849 root 1.152 }
2850    
2851     static void noinline
2852     infy_del (EV_P_ ev_stat *w)
2853     {
2854     int slot;
2855     int wd = w->wd;
2856    
2857     if (wd < 0)
2858     return;
2859    
2860     w->wd = -2;
2861     slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2862     wlist_del (&fs_hash [slot].head, (WL)w);
2863    
2864     /* remove this watcher, if others are watching it, they will rearm */
2865     inotify_rm_watch (fs_fd, wd);
2866     }
2867    
2868     static void noinline
2869     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2870     {
2871     if (slot < 0)
2872 root 1.264 /* overflow, need to check for all hash slots */
2873 root 1.152 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2874     infy_wd (EV_A_ slot, wd, ev);
2875     else
2876     {
2877     WL w_;
2878    
2879     for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2880     {
2881     ev_stat *w = (ev_stat *)w_;
2882     w_ = w_->next; /* lets us remove this watcher and all before it */
2883    
2884     if (w->wd == wd || wd == -1)
2885     {
2886     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2887     {
2888 root 1.275 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2889 root 1.152 w->wd = -1;
2890     infy_add (EV_A_ w); /* re-add, no matter what */
2891     }
2892    
2893 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
2894 root 1.152 }
2895     }
2896     }
2897     }
2898    
2899     static void
2900     infy_cb (EV_P_ ev_io *w, int revents)
2901     {
2902     char buf [EV_INOTIFY_BUFSIZE];
2903     struct inotify_event *ev = (struct inotify_event *)buf;
2904     int ofs;
2905     int len = read (fs_fd, buf, sizeof (buf));
2906    
2907     for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2908     infy_wd (EV_A_ ev->wd, ev->wd, ev);
2909     }
2910    
2911 root 1.284 inline_size void
2912 root 1.273 check_2625 (EV_P)
2913 root 1.152 {
2914 root 1.264 /* kernels < 2.6.25 are borked
2915     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2916     */
2917 root 1.273 struct utsname buf;
2918     int major, minor, micro;
2919    
2920     if (uname (&buf))
2921     return;
2922    
2923     if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2924     return;
2925    
2926     if (major < 2
2927     || (major == 2 && minor < 6)
2928     || (major == 2 && minor == 6 && micro < 25))
2929     return;
2930 root 1.264
2931 root 1.273 fs_2625 = 1;
2932     }
2933 root 1.264
2934 root 1.284 inline_size void
2935 root 1.273 infy_init (EV_P)
2936     {
2937     if (fs_fd != -2)
2938     return;
2939 root 1.264
2940 root 1.273 fs_fd = -1;
2941 root 1.264
2942 root 1.273 check_2625 (EV_A);
2943 root 1.264
2944 root 1.152 fs_fd = inotify_init ();
2945    
2946     if (fs_fd >= 0)
2947     {
2948     ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2949     ev_set_priority (&fs_w, EV_MAXPRI);
2950     ev_io_start (EV_A_ &fs_w);
2951     }
2952     }
2953    
2954 root 1.284 inline_size void
2955 root 1.154 infy_fork (EV_P)
2956     {
2957     int slot;
2958    
2959     if (fs_fd < 0)
2960     return;
2961    
2962     close (fs_fd);
2963     fs_fd = inotify_init ();
2964    
2965     for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2966     {
2967     WL w_ = fs_hash [slot].head;
2968     fs_hash [slot].head = 0;
2969    
2970     while (w_)
2971     {
2972     ev_stat *w = (ev_stat *)w_;
2973     w_ = w_->next; /* lets us add this watcher */
2974    
2975     w->wd = -1;
2976    
2977     if (fs_fd >= 0)
2978     infy_add (EV_A_ w); /* re-add, no matter what */
2979     else
2980 root 1.273 ev_timer_again (EV_A_ &w->timer);
2981 root 1.154 }
2982     }
2983     }
2984    
2985 root 1.152 #endif
2986    
2987 root 1.255 #ifdef _WIN32
2988     # define EV_LSTAT(p,b) _stati64 (p, b)
2989     #else
2990     # define EV_LSTAT(p,b) lstat (p, b)
2991     #endif
2992    
2993 root 1.140 void
2994     ev_stat_stat (EV_P_ ev_stat *w)
2995     {
2996     if (lstat (w->path, &w->attr) < 0)
2997     w->attr.st_nlink = 0;
2998     else if (!w->attr.st_nlink)
2999     w->attr.st_nlink = 1;
3000     }
3001    
3002 root 1.157 static void noinline
3003 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3004     {
3005     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3006    
3007     /* we copy this here each the time so that */
3008     /* prev has the old value when the callback gets invoked */
3009     w->prev = w->attr;
3010     ev_stat_stat (EV_A_ w);
3011    
3012 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3013     if (
3014     w->prev.st_dev != w->attr.st_dev
3015     || w->prev.st_ino != w->attr.st_ino
3016     || w->prev.st_mode != w->attr.st_mode
3017     || w->prev.st_nlink != w->attr.st_nlink
3018     || w->prev.st_uid != w->attr.st_uid
3019     || w->prev.st_gid != w->attr.st_gid
3020     || w->prev.st_rdev != w->attr.st_rdev
3021     || w->prev.st_size != w->attr.st_size
3022     || w->prev.st_atime != w->attr.st_atime
3023     || w->prev.st_mtime != w->attr.st_mtime
3024     || w->prev.st_ctime != w->attr.st_ctime
3025     ) {
3026 root 1.152 #if EV_USE_INOTIFY
3027 root 1.264 if (fs_fd >= 0)
3028     {
3029     infy_del (EV_A_ w);
3030     infy_add (EV_A_ w);
3031     ev_stat_stat (EV_A_ w); /* avoid race... */
3032     }
3033 root 1.152 #endif
3034    
3035     ev_feed_event (EV_A_ w, EV_STAT);
3036     }
3037 root 1.140 }
3038    
3039     void
3040     ev_stat_start (EV_P_ ev_stat *w)
3041     {
3042     if (expect_false (ev_is_active (w)))
3043     return;
3044    
3045     ev_stat_stat (EV_A_ w);
3046    
3047 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3048     w->interval = MIN_STAT_INTERVAL;
3049 root 1.143
3050 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3051 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3052 root 1.152
3053     #if EV_USE_INOTIFY
3054     infy_init (EV_A);
3055    
3056     if (fs_fd >= 0)
3057     infy_add (EV_A_ w);
3058     else
3059     #endif
3060 root 1.273 ev_timer_again (EV_A_ &w->timer);
3061 root 1.140
3062     ev_start (EV_A_ (W)w, 1);
3063 root 1.248
3064     EV_FREQUENT_CHECK;
3065 root 1.140 }
3066    
3067     void
3068     ev_stat_stop (EV_P_ ev_stat *w)
3069     {
3070 root 1.166 clear_pending (EV_A_ (W)w);
3071 root 1.140 if (expect_false (!ev_is_active (w)))
3072     return;
3073    
3074 root 1.248 EV_FREQUENT_CHECK;
3075    
3076 root 1.152 #if EV_USE_INOTIFY
3077     infy_del (EV_A_ w);
3078     #endif
3079 root 1.140 ev_timer_stop (EV_A_ &w->timer);
3080    
3081 root 1.134 ev_stop (EV_A_ (W)w);
3082 root 1.248
3083     EV_FREQUENT_CHECK;
3084 root 1.134 }
3085     #endif
3086    
3087 root 1.164 #if EV_IDLE_ENABLE
3088 root 1.144 void
3089     ev_idle_start (EV_P_ ev_idle *w)
3090     {
3091     if (expect_false (ev_is_active (w)))
3092     return;
3093    
3094 root 1.164 pri_adjust (EV_A_ (W)w);
3095    
3096 root 1.248 EV_FREQUENT_CHECK;
3097    
3098 root 1.164 {
3099     int active = ++idlecnt [ABSPRI (w)];
3100    
3101     ++idleall;
3102     ev_start (EV_A_ (W)w, active);
3103    
3104     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3105     idles [ABSPRI (w)][active - 1] = w;
3106     }
3107 root 1.248
3108     EV_FREQUENT_CHECK;
3109 root 1.144 }
3110    
3111     void
3112     ev_idle_stop (EV_P_ ev_idle *w)
3113     {
3114 root 1.166 clear_pending (EV_A_ (W)w);
3115 root 1.144 if (expect_false (!ev_is_active (w)))
3116     return;
3117    
3118 root 1.248 EV_FREQUENT_CHECK;
3119    
3120 root 1.144 {
3121 root 1.230 int active = ev_active (w);
3122 root 1.164
3123     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3124 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3125 root 1.164
3126     ev_stop (EV_A_ (W)w);
3127     --idleall;
3128 root 1.144 }
3129 root 1.248
3130     EV_FREQUENT_CHECK;
3131 root 1.144 }
3132 root 1.164 #endif
3133 root 1.144
3134     void
3135     ev_prepare_start (EV_P_ ev_prepare *w)
3136     {
3137     if (expect_false (ev_is_active (w)))
3138     return;
3139    
3140 root 1.248 EV_FREQUENT_CHECK;
3141    
3142 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3143     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3144     prepares [preparecnt - 1] = w;
3145 root 1.248
3146     EV_FREQUENT_CHECK;
3147 root 1.144 }
3148    
3149     void
3150     ev_prepare_stop (EV_P_ ev_prepare *w)
3151     {
3152 root 1.166 clear_pending (EV_A_ (W)w);
3153 root 1.144 if (expect_false (!ev_is_active (w)))
3154     return;
3155    
3156 root 1.248 EV_FREQUENT_CHECK;
3157    
3158 root 1.144 {
3159 root 1.230 int active = ev_active (w);
3160    
3161 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3162 root 1.230 ev_active (prepares [active - 1]) = active;
3163 root 1.144 }
3164    
3165     ev_stop (EV_A_ (W)w);
3166 root 1.248
3167     EV_FREQUENT_CHECK;
3168 root 1.144 }
3169    
3170     void
3171     ev_check_start (EV_P_ ev_check *w)
3172     {
3173     if (expect_false (ev_is_active (w)))
3174     return;
3175    
3176 root 1.248 EV_FREQUENT_CHECK;
3177    
3178 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3179     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3180     checks [checkcnt - 1] = w;
3181 root 1.248
3182     EV_FREQUENT_CHECK;
3183 root 1.144 }
3184    
3185     void
3186     ev_check_stop (EV_P_ ev_check *w)
3187     {
3188 root 1.166 clear_pending (EV_A_ (W)w);
3189 root 1.144 if (expect_false (!ev_is_active (w)))
3190     return;
3191    
3192 root 1.248 EV_FREQUENT_CHECK;
3193    
3194 root 1.144 {
3195 root 1.230 int active = ev_active (w);
3196    
3197 root 1.144 checks [active - 1] = checks [--checkcnt];
3198 root 1.230 ev_active (checks [active - 1]) = active;
3199 root 1.144 }
3200    
3201     ev_stop (EV_A_ (W)w);
3202 root 1.248
3203     EV_FREQUENT_CHECK;
3204 root 1.144 }
3205    
3206     #if EV_EMBED_ENABLE
3207     void noinline
3208     ev_embed_sweep (EV_P_ ev_embed *w)
3209     {
3210 root 1.188 ev_loop (w->other, EVLOOP_NONBLOCK);
3211 root 1.144 }
3212    
3213     static void
3214 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3215 root 1.144 {
3216     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3217    
3218     if (ev_cb (w))
3219     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3220     else
3221 root 1.195 ev_loop (w->other, EVLOOP_NONBLOCK);
3222 root 1.144 }
3223    
3224 root 1.189 static void
3225     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3226     {
3227     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3228    
3229 root 1.195 {
3230     struct ev_loop *loop = w->other;
3231    
3232     while (fdchangecnt)
3233     {
3234     fd_reify (EV_A);
3235     ev_loop (EV_A_ EVLOOP_NONBLOCK);
3236     }
3237     }
3238     }
3239    
3240 root 1.261 static void
3241     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3242     {
3243     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3244    
3245 root 1.277 ev_embed_stop (EV_A_ w);
3246    
3247 root 1.261 {
3248     struct ev_loop *loop = w->other;
3249    
3250     ev_loop_fork (EV_A);
3251 root 1.277 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3252 root 1.261 }
3253 root 1.277
3254     ev_embed_start (EV_A_ w);
3255 root 1.261 }
3256    
3257 root 1.195 #if 0
3258     static void
3259     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3260     {
3261     ev_idle_stop (EV_A_ idle);
3262 root 1.189 }
3263 root 1.195 #endif
3264 root 1.189
3265 root 1.144 void
3266     ev_embed_start (EV_P_ ev_embed *w)
3267     {
3268     if (expect_false (ev_is_active (w)))
3269     return;
3270    
3271     {
3272 root 1.188 struct ev_loop *loop = w->other;
3273 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3274 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3275 root 1.144 }
3276    
3277 root 1.248 EV_FREQUENT_CHECK;
3278    
3279 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3280     ev_io_start (EV_A_ &w->io);
3281    
3282 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3283     ev_set_priority (&w->prepare, EV_MINPRI);
3284     ev_prepare_start (EV_A_ &w->prepare);
3285    
3286 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3287     ev_fork_start (EV_A_ &w->fork);
3288    
3289 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3290    
3291 root 1.144 ev_start (EV_A_ (W)w, 1);
3292 root 1.248
3293     EV_FREQUENT_CHECK;
3294 root 1.144 }
3295    
3296     void
3297     ev_embed_stop (EV_P_ ev_embed *w)
3298     {
3299 root 1.166 clear_pending (EV_A_ (W)w);
3300 root 1.144 if (expect_false (!ev_is_active (w)))
3301     return;
3302    
3303 root 1.248 EV_FREQUENT_CHECK;
3304    
3305 root 1.261 ev_io_stop (EV_A_ &w->io);
3306 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3307 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3308 root 1.248
3309     EV_FREQUENT_CHECK;
3310 root 1.144 }
3311     #endif
3312    
3313 root 1.147 #if EV_FORK_ENABLE
3314     void
3315     ev_fork_start (EV_P_ ev_fork *w)
3316     {
3317     if (expect_false (ev_is_active (w)))
3318     return;
3319    
3320 root 1.248 EV_FREQUENT_CHECK;
3321    
3322 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3323     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3324     forks [forkcnt - 1] = w;
3325 root 1.248
3326     EV_FREQUENT_CHECK;
3327 root 1.147 }
3328    
3329     void
3330     ev_fork_stop (EV_P_ ev_fork *w)
3331     {
3332 root 1.166 clear_pending (EV_A_ (W)w);
3333 root 1.147 if (expect_false (!ev_is_active (w)))
3334     return;
3335    
3336 root 1.248 EV_FREQUENT_CHECK;
3337    
3338 root 1.147 {
3339 root 1.230 int active = ev_active (w);
3340    
3341 root 1.147 forks [active - 1] = forks [--forkcnt];
3342 root 1.230 ev_active (forks [active - 1]) = active;
3343 root 1.147 }
3344    
3345     ev_stop (EV_A_ (W)w);
3346 root 1.248
3347     EV_FREQUENT_CHECK;
3348 root 1.147 }
3349     #endif
3350    
3351 root 1.207 #if EV_ASYNC_ENABLE
3352     void
3353     ev_async_start (EV_P_ ev_async *w)
3354     {
3355     if (expect_false (ev_is_active (w)))
3356     return;
3357    
3358     evpipe_init (EV_A);
3359    
3360 root 1.248 EV_FREQUENT_CHECK;
3361    
3362 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3363     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3364     asyncs [asynccnt - 1] = w;
3365 root 1.248
3366     EV_FREQUENT_CHECK;
3367 root 1.207 }
3368    
3369     void
3370     ev_async_stop (EV_P_ ev_async *w)
3371     {
3372     clear_pending (EV_A_ (W)w);
3373     if (expect_false (!ev_is_active (w)))
3374     return;
3375    
3376 root 1.248 EV_FREQUENT_CHECK;
3377    
3378 root 1.207 {
3379 root 1.230 int active = ev_active (w);
3380    
3381 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3382 root 1.230 ev_active (asyncs [active - 1]) = active;
3383 root 1.207 }
3384    
3385     ev_stop (EV_A_ (W)w);
3386 root 1.248
3387     EV_FREQUENT_CHECK;
3388 root 1.207 }
3389    
3390     void
3391     ev_async_send (EV_P_ ev_async *w)
3392     {
3393     w->sent = 1;
3394 root 1.214 evpipe_write (EV_A_ &gotasync);
3395 root 1.207 }
3396     #endif
3397    
3398 root 1.1 /*****************************************************************************/
3399 root 1.10
3400 root 1.16 struct ev_once
3401     {
3402 root 1.136 ev_io io;
3403     ev_timer to;
3404 root 1.16 void (*cb)(int revents, void *arg);
3405     void *arg;
3406     };
3407    
3408     static void
3409 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3410 root 1.16 {
3411     void (*cb)(int revents, void *arg) = once->cb;
3412     void *arg = once->arg;
3413    
3414 root 1.259 ev_io_stop (EV_A_ &once->io);
3415 root 1.51 ev_timer_stop (EV_A_ &once->to);
3416 root 1.69 ev_free (once);
3417 root 1.16
3418     cb (revents, arg);
3419     }
3420    
3421     static void
3422 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3423 root 1.16 {
3424 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3425    
3426     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3427 root 1.16 }
3428    
3429     static void
3430 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3431 root 1.16 {
3432 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3433    
3434     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3435 root 1.16 }
3436    
3437     void
3438 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3439 root 1.16 {
3440 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3441 root 1.16
3442 root 1.123 if (expect_false (!once))
3443 root 1.16 {
3444 root 1.123 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3445     return;
3446     }
3447    
3448     once->cb = cb;
3449     once->arg = arg;
3450 root 1.16
3451 root 1.123 ev_init (&once->io, once_cb_io);
3452     if (fd >= 0)
3453     {
3454     ev_io_set (&once->io, fd, events);
3455     ev_io_start (EV_A_ &once->io);
3456     }
3457 root 1.16
3458 root 1.123 ev_init (&once->to, once_cb_to);
3459     if (timeout >= 0.)
3460     {
3461     ev_timer_set (&once->to, timeout, 0.);
3462     ev_timer_start (EV_A_ &once->to);
3463 root 1.16 }
3464     }
3465    
3466 root 1.282 /*****************************************************************************/
3467    
3468 root 1.288 #if EV_WALK_ENABLE
3469 root 1.282 void
3470     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3471     {
3472     int i, j;
3473     ev_watcher_list *wl, *wn;
3474    
3475     if (types & (EV_IO | EV_EMBED))
3476     for (i = 0; i < anfdmax; ++i)
3477     for (wl = anfds [i].head; wl; )
3478     {
3479     wn = wl->next;
3480    
3481     #if EV_EMBED_ENABLE
3482     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3483     {
3484     if (types & EV_EMBED)
3485     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3486     }
3487     else
3488     #endif
3489     #if EV_USE_INOTIFY
3490     if (ev_cb ((ev_io *)wl) == infy_cb)
3491     ;
3492     else
3493     #endif
3494 root 1.288 if ((ev_io *)wl != &pipe_w)
3495 root 1.282 if (types & EV_IO)
3496     cb (EV_A_ EV_IO, wl);
3497    
3498     wl = wn;
3499     }
3500    
3501     if (types & (EV_TIMER | EV_STAT))
3502     for (i = timercnt + HEAP0; i-- > HEAP0; )
3503     #if EV_STAT_ENABLE
3504     /*TODO: timer is not always active*/
3505     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3506     {
3507     if (types & EV_STAT)
3508     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3509     }
3510     else
3511     #endif
3512     if (types & EV_TIMER)
3513     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3514    
3515     #if EV_PERIODIC_ENABLE
3516     if (types & EV_PERIODIC)
3517     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3518     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3519     #endif
3520    
3521     #if EV_IDLE_ENABLE
3522     if (types & EV_IDLE)
3523     for (j = NUMPRI; i--; )
3524     for (i = idlecnt [j]; i--; )
3525     cb (EV_A_ EV_IDLE, idles [j][i]);
3526     #endif
3527    
3528     #if EV_FORK_ENABLE
3529     if (types & EV_FORK)
3530     for (i = forkcnt; i--; )
3531     if (ev_cb (forks [i]) != embed_fork_cb)
3532     cb (EV_A_ EV_FORK, forks [i]);
3533     #endif
3534    
3535     #if EV_ASYNC_ENABLE
3536     if (types & EV_ASYNC)
3537     for (i = asynccnt; i--; )
3538     cb (EV_A_ EV_ASYNC, asyncs [i]);
3539     #endif
3540    
3541     if (types & EV_PREPARE)
3542     for (i = preparecnt; i--; )
3543     #if EV_EMBED_ENABLE
3544     if (ev_cb (prepares [i]) != embed_prepare_cb)
3545     #endif
3546     cb (EV_A_ EV_PREPARE, prepares [i]);
3547    
3548     if (types & EV_CHECK)
3549     for (i = checkcnt; i--; )
3550     cb (EV_A_ EV_CHECK, checks [i]);
3551    
3552     if (types & EV_SIGNAL)
3553     for (i = 0; i < signalmax; ++i)
3554     for (wl = signals [i].head; wl; )
3555     {
3556     wn = wl->next;
3557     cb (EV_A_ EV_SIGNAL, wl);
3558     wl = wn;
3559     }
3560    
3561     if (types & EV_CHILD)
3562     for (i = EV_PID_HASHSIZE; i--; )
3563     for (wl = childs [i]; wl; )
3564     {
3565     wn = wl->next;
3566     cb (EV_A_ EV_CHILD, wl);
3567     wl = wn;
3568     }
3569     /* EV_STAT 0x00001000 /* stat data changed */
3570     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3571     }
3572     #endif
3573    
3574 root 1.188 #if EV_MULTIPLICITY
3575     #include "ev_wrap.h"
3576     #endif
3577    
3578 root 1.87 #ifdef __cplusplus
3579     }
3580     #endif
3581