ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.305
Committed: Sun Jul 19 03:49:04 2009 UTC (14 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.304: +35 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.278 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40     #ifdef __cplusplus
41     extern "C" {
42     #endif
43    
44 root 1.220 /* this big block deduces configuration from config.h */
45 root 1.59 #ifndef EV_STANDALONE
46 root 1.133 # ifdef EV_CONFIG_H
47     # include EV_CONFIG_H
48     # else
49     # include "config.h"
50     # endif
51 root 1.60
52 root 1.274 # if HAVE_CLOCK_SYSCALL
53     # ifndef EV_USE_CLOCK_SYSCALL
54     # define EV_USE_CLOCK_SYSCALL 1
55     # ifndef EV_USE_REALTIME
56     # define EV_USE_REALTIME 0
57     # endif
58     # ifndef EV_USE_MONOTONIC
59     # define EV_USE_MONOTONIC 1
60     # endif
61     # endif
62 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
63     # define EV_USE_CLOCK_SYSCALL 0
64 root 1.274 # endif
65    
66 root 1.60 # if HAVE_CLOCK_GETTIME
67 root 1.97 # ifndef EV_USE_MONOTONIC
68     # define EV_USE_MONOTONIC 1
69     # endif
70     # ifndef EV_USE_REALTIME
71 root 1.279 # define EV_USE_REALTIME 0
72 root 1.97 # endif
73 root 1.126 # else
74     # ifndef EV_USE_MONOTONIC
75     # define EV_USE_MONOTONIC 0
76     # endif
77     # ifndef EV_USE_REALTIME
78     # define EV_USE_REALTIME 0
79     # endif
80 root 1.60 # endif
81    
82 root 1.193 # ifndef EV_USE_NANOSLEEP
83     # if HAVE_NANOSLEEP
84     # define EV_USE_NANOSLEEP 1
85     # else
86     # define EV_USE_NANOSLEEP 0
87     # endif
88     # endif
89    
90 root 1.127 # ifndef EV_USE_SELECT
91     # if HAVE_SELECT && HAVE_SYS_SELECT_H
92     # define EV_USE_SELECT 1
93     # else
94     # define EV_USE_SELECT 0
95     # endif
96 root 1.60 # endif
97    
98 root 1.127 # ifndef EV_USE_POLL
99     # if HAVE_POLL && HAVE_POLL_H
100     # define EV_USE_POLL 1
101     # else
102     # define EV_USE_POLL 0
103     # endif
104 root 1.60 # endif
105 root 1.127
106     # ifndef EV_USE_EPOLL
107     # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108     # define EV_USE_EPOLL 1
109     # else
110     # define EV_USE_EPOLL 0
111     # endif
112 root 1.60 # endif
113 root 1.127
114     # ifndef EV_USE_KQUEUE
115     # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116     # define EV_USE_KQUEUE 1
117     # else
118     # define EV_USE_KQUEUE 0
119     # endif
120 root 1.60 # endif
121 root 1.127
122     # ifndef EV_USE_PORT
123     # if HAVE_PORT_H && HAVE_PORT_CREATE
124     # define EV_USE_PORT 1
125     # else
126     # define EV_USE_PORT 0
127     # endif
128 root 1.118 # endif
129    
130 root 1.152 # ifndef EV_USE_INOTIFY
131     # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132     # define EV_USE_INOTIFY 1
133     # else
134     # define EV_USE_INOTIFY 0
135     # endif
136     # endif
137    
138 root 1.303 # ifndef EV_USE_SIGNALFD
139     # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140     # define EV_USE_SIGNALFD 1
141     # else
142     # define EV_USE_SIGNALFD 0
143     # endif
144     # endif
145    
146 root 1.220 # ifndef EV_USE_EVENTFD
147     # if HAVE_EVENTFD
148     # define EV_USE_EVENTFD 1
149     # else
150     # define EV_USE_EVENTFD 0
151     # endif
152     # endif
153 root 1.250
154 root 1.29 #endif
155 root 1.17
156 root 1.1 #include <math.h>
157     #include <stdlib.h>
158 root 1.7 #include <fcntl.h>
159 root 1.16 #include <stddef.h>
160 root 1.1
161     #include <stdio.h>
162    
163 root 1.4 #include <assert.h>
164 root 1.1 #include <errno.h>
165 root 1.22 #include <sys/types.h>
166 root 1.71 #include <time.h>
167    
168 root 1.72 #include <signal.h>
169 root 1.71
170 root 1.152 #ifdef EV_H
171     # include EV_H
172     #else
173     # include "ev.h"
174     #endif
175    
176 root 1.103 #ifndef _WIN32
177 root 1.71 # include <sys/time.h>
178 root 1.45 # include <sys/wait.h>
179 root 1.140 # include <unistd.h>
180 root 1.103 #else
181 root 1.256 # include <io.h>
182 root 1.103 # define WIN32_LEAN_AND_MEAN
183     # include <windows.h>
184     # ifndef EV_SELECT_IS_WINSOCKET
185     # define EV_SELECT_IS_WINSOCKET 1
186     # endif
187 root 1.45 #endif
188 root 1.103
189 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
190 root 1.40
191 root 1.305 /* try to deduce the maximum number of signals on this platform */
192     #if defined (EV_NSIG)
193     /* use what's provided */
194     #elif defined (NSIG)
195     # define EV_NSIG (NSIG)
196     #elif defined(_NSIG)
197     # define EV_NSIG (_NSIG)
198     #elif defined (SIGMAX)
199     # define EV_NSIG (SIGMAX+1)
200     #elif defined (SIG_MAX)
201     # define EV_NSIG (SIG_MAX+1)
202     #elif defined (_SIG_MAX)
203     # define EV_NSIG (_SIG_MAX+1)
204     #elif defined (MAXSIG)
205     # define EV_NSIG (MAXSIG+1)
206     #elif defined (MAX_SIG)
207     # define EV_NSIG (MAX_SIG+1)
208     #elif defined (SIGARRAYSIZE)
209     # define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210     #elif defined (_sys_nsig)
211     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212     #else
213     # error "unable to find value for NSIG, please report"
214     /* to make it compile regardless, just remove the above line */
215     # define EV_NSIG 64
216     #endif
217    
218     /* Default to some arbitrary number that's big enough to get most
219     of the common signals.
220     */
221     #ifndef NSIG
222     # define NSIG 50
223     #endif
224     /* <-- NSIG logic from Configure */
225 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
226     # if __linux && __GLIBC__ >= 2
227     # define EV_USE_CLOCK_SYSCALL 1
228     # else
229     # define EV_USE_CLOCK_SYSCALL 0
230     # endif
231     #endif
232    
233 root 1.29 #ifndef EV_USE_MONOTONIC
234 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
235     # define EV_USE_MONOTONIC 1
236     # else
237     # define EV_USE_MONOTONIC 0
238     # endif
239 root 1.37 #endif
240    
241 root 1.118 #ifndef EV_USE_REALTIME
242 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
243 root 1.118 #endif
244    
245 root 1.193 #ifndef EV_USE_NANOSLEEP
246 root 1.253 # if _POSIX_C_SOURCE >= 199309L
247     # define EV_USE_NANOSLEEP 1
248     # else
249     # define EV_USE_NANOSLEEP 0
250     # endif
251 root 1.193 #endif
252    
253 root 1.29 #ifndef EV_USE_SELECT
254     # define EV_USE_SELECT 1
255 root 1.10 #endif
256    
257 root 1.59 #ifndef EV_USE_POLL
258 root 1.104 # ifdef _WIN32
259     # define EV_USE_POLL 0
260     # else
261     # define EV_USE_POLL 1
262     # endif
263 root 1.41 #endif
264    
265 root 1.29 #ifndef EV_USE_EPOLL
266 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
267     # define EV_USE_EPOLL 1
268     # else
269     # define EV_USE_EPOLL 0
270     # endif
271 root 1.10 #endif
272    
273 root 1.44 #ifndef EV_USE_KQUEUE
274     # define EV_USE_KQUEUE 0
275     #endif
276    
277 root 1.118 #ifndef EV_USE_PORT
278     # define EV_USE_PORT 0
279 root 1.40 #endif
280    
281 root 1.152 #ifndef EV_USE_INOTIFY
282 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
283     # define EV_USE_INOTIFY 1
284     # else
285     # define EV_USE_INOTIFY 0
286     # endif
287 root 1.152 #endif
288    
289 root 1.149 #ifndef EV_PID_HASHSIZE
290     # if EV_MINIMAL
291     # define EV_PID_HASHSIZE 1
292     # else
293     # define EV_PID_HASHSIZE 16
294     # endif
295     #endif
296    
297 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
298     # if EV_MINIMAL
299     # define EV_INOTIFY_HASHSIZE 1
300     # else
301     # define EV_INOTIFY_HASHSIZE 16
302     # endif
303     #endif
304    
305 root 1.220 #ifndef EV_USE_EVENTFD
306     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
307     # define EV_USE_EVENTFD 1
308     # else
309     # define EV_USE_EVENTFD 0
310     # endif
311     #endif
312    
313 root 1.303 #ifndef EV_USE_SIGNALFD
314     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
315     # define EV_USE_SIGNALFD 1
316     # else
317     # define EV_USE_SIGNALFD 0
318     # endif
319     #endif
320    
321 root 1.249 #if 0 /* debugging */
322 root 1.250 # define EV_VERIFY 3
323 root 1.249 # define EV_USE_4HEAP 1
324     # define EV_HEAP_CACHE_AT 1
325     #endif
326    
327 root 1.250 #ifndef EV_VERIFY
328     # define EV_VERIFY !EV_MINIMAL
329     #endif
330    
331 root 1.243 #ifndef EV_USE_4HEAP
332     # define EV_USE_4HEAP !EV_MINIMAL
333     #endif
334    
335     #ifndef EV_HEAP_CACHE_AT
336     # define EV_HEAP_CACHE_AT !EV_MINIMAL
337     #endif
338    
339 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
340     /* which makes programs even slower. might work on other unices, too. */
341     #if EV_USE_CLOCK_SYSCALL
342     # include <syscall.h>
343     # ifdef SYS_clock_gettime
344     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
345     # undef EV_USE_MONOTONIC
346     # define EV_USE_MONOTONIC 1
347     # else
348     # undef EV_USE_CLOCK_SYSCALL
349     # define EV_USE_CLOCK_SYSCALL 0
350     # endif
351     #endif
352    
353 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
354 root 1.40
355     #ifndef CLOCK_MONOTONIC
356     # undef EV_USE_MONOTONIC
357     # define EV_USE_MONOTONIC 0
358     #endif
359    
360 root 1.31 #ifndef CLOCK_REALTIME
361 root 1.40 # undef EV_USE_REALTIME
362 root 1.31 # define EV_USE_REALTIME 0
363     #endif
364 root 1.40
365 root 1.152 #if !EV_STAT_ENABLE
366 root 1.185 # undef EV_USE_INOTIFY
367 root 1.152 # define EV_USE_INOTIFY 0
368     #endif
369    
370 root 1.193 #if !EV_USE_NANOSLEEP
371     # ifndef _WIN32
372     # include <sys/select.h>
373     # endif
374     #endif
375    
376 root 1.152 #if EV_USE_INOTIFY
377 root 1.264 # include <sys/utsname.h>
378 root 1.273 # include <sys/statfs.h>
379 root 1.152 # include <sys/inotify.h>
380 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381     # ifndef IN_DONT_FOLLOW
382     # undef EV_USE_INOTIFY
383     # define EV_USE_INOTIFY 0
384     # endif
385 root 1.152 #endif
386    
387 root 1.185 #if EV_SELECT_IS_WINSOCKET
388     # include <winsock.h>
389     #endif
390    
391 root 1.220 #if EV_USE_EVENTFD
392     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
393 root 1.221 # include <stdint.h>
394 root 1.303 # ifndef EFD_NONBLOCK
395     # define EFD_NONBLOCK O_NONBLOCK
396     # endif
397     # ifndef EFD_CLOEXEC
398     # define EFD_CLOEXEC O_CLOEXEC
399     # endif
400 root 1.222 # ifdef __cplusplus
401     extern "C" {
402     # endif
403 root 1.220 int eventfd (unsigned int initval, int flags);
404 root 1.222 # ifdef __cplusplus
405     }
406     # endif
407 root 1.220 #endif
408    
409 root 1.303 #if EV_USE_SIGNALFD
410     # include <sys/signalfd.h>
411     #endif
412    
413 root 1.40 /**/
414 root 1.1
415 root 1.250 #if EV_VERIFY >= 3
416 root 1.248 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
417     #else
418     # define EV_FREQUENT_CHECK do { } while (0)
419     #endif
420    
421 root 1.176 /*
422     * This is used to avoid floating point rounding problems.
423     * It is added to ev_rt_now when scheduling periodics
424     * to ensure progress, time-wise, even when rounding
425     * errors are against us.
426 root 1.177 * This value is good at least till the year 4000.
427 root 1.176 * Better solutions welcome.
428     */
429     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
430    
431 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
432 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
433 root 1.176 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
434 root 1.1
435 root 1.185 #if __GNUC__ >= 4
436 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
437 root 1.169 # define noinline __attribute__ ((noinline))
438 root 1.40 #else
439     # define expect(expr,value) (expr)
440 root 1.140 # define noinline
441 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
442 root 1.169 # define inline
443     # endif
444 root 1.40 #endif
445    
446     #define expect_false(expr) expect ((expr) != 0, 0)
447     #define expect_true(expr) expect ((expr) != 0, 1)
448 root 1.169 #define inline_size static inline
449    
450     #if EV_MINIMAL
451     # define inline_speed static noinline
452     #else
453     # define inline_speed static inline
454     #endif
455 root 1.40
456 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
457    
458     #if EV_MINPRI == EV_MAXPRI
459     # define ABSPRI(w) (((W)w), 0)
460     #else
461     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
462     #endif
463 root 1.42
464 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
465 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
466 root 1.103
467 root 1.136 typedef ev_watcher *W;
468     typedef ev_watcher_list *WL;
469     typedef ev_watcher_time *WT;
470 root 1.10
471 root 1.229 #define ev_active(w) ((W)(w))->active
472 root 1.228 #define ev_at(w) ((WT)(w))->at
473    
474 root 1.279 #if EV_USE_REALTIME
475 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
476     /* giving it a reasonably high chance of working on typical architetcures */
477 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
478     #endif
479    
480     #if EV_USE_MONOTONIC
481 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
482 root 1.198 #endif
483 root 1.54
484 root 1.103 #ifdef _WIN32
485 root 1.98 # include "ev_win32.c"
486     #endif
487 root 1.67
488 root 1.53 /*****************************************************************************/
489 root 1.1
490 root 1.70 static void (*syserr_cb)(const char *msg);
491 root 1.69
492 root 1.141 void
493     ev_set_syserr_cb (void (*cb)(const char *msg))
494 root 1.69 {
495     syserr_cb = cb;
496     }
497    
498 root 1.141 static void noinline
499 root 1.269 ev_syserr (const char *msg)
500 root 1.69 {
501 root 1.70 if (!msg)
502     msg = "(libev) system error";
503    
504 root 1.69 if (syserr_cb)
505 root 1.70 syserr_cb (msg);
506 root 1.69 else
507     {
508 root 1.70 perror (msg);
509 root 1.69 abort ();
510     }
511     }
512    
513 root 1.224 static void *
514     ev_realloc_emul (void *ptr, long size)
515     {
516     /* some systems, notably openbsd and darwin, fail to properly
517     * implement realloc (x, 0) (as required by both ansi c-98 and
518     * the single unix specification, so work around them here.
519     */
520    
521     if (size)
522     return realloc (ptr, size);
523    
524     free (ptr);
525     return 0;
526     }
527    
528     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
529 root 1.69
530 root 1.141 void
531 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
532 root 1.69 {
533     alloc = cb;
534     }
535    
536 root 1.150 inline_speed void *
537 root 1.155 ev_realloc (void *ptr, long size)
538 root 1.69 {
539 root 1.224 ptr = alloc (ptr, size);
540 root 1.69
541     if (!ptr && size)
542     {
543 root 1.155 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
544 root 1.69 abort ();
545     }
546    
547     return ptr;
548     }
549    
550     #define ev_malloc(size) ev_realloc (0, (size))
551     #define ev_free(ptr) ev_realloc ((ptr), 0)
552    
553     /*****************************************************************************/
554    
555 root 1.298 /* set in reify when reification needed */
556     #define EV_ANFD_REIFY 1
557    
558 root 1.288 /* file descriptor info structure */
559 root 1.53 typedef struct
560     {
561 root 1.68 WL head;
562 root 1.288 unsigned char events; /* the events watched for */
563 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
564 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
565 root 1.269 unsigned char unused;
566     #if EV_USE_EPOLL
567 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
568 root 1.269 #endif
569 root 1.103 #if EV_SELECT_IS_WINSOCKET
570     SOCKET handle;
571     #endif
572 root 1.53 } ANFD;
573 root 1.1
574 root 1.288 /* stores the pending event set for a given watcher */
575 root 1.53 typedef struct
576     {
577     W w;
578 root 1.288 int events; /* the pending event set for the given watcher */
579 root 1.53 } ANPENDING;
580 root 1.51
581 root 1.155 #if EV_USE_INOTIFY
582 root 1.241 /* hash table entry per inotify-id */
583 root 1.152 typedef struct
584     {
585     WL head;
586 root 1.155 } ANFS;
587 root 1.152 #endif
588    
589 root 1.241 /* Heap Entry */
590     #if EV_HEAP_CACHE_AT
591 root 1.288 /* a heap element */
592 root 1.241 typedef struct {
593 root 1.243 ev_tstamp at;
594 root 1.241 WT w;
595     } ANHE;
596    
597 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
598     #define ANHE_at(he) (he).at /* access cached at, read-only */
599     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
600 root 1.241 #else
601 root 1.288 /* a heap element */
602 root 1.241 typedef WT ANHE;
603    
604 root 1.248 #define ANHE_w(he) (he)
605     #define ANHE_at(he) (he)->at
606     #define ANHE_at_cache(he)
607 root 1.241 #endif
608    
609 root 1.55 #if EV_MULTIPLICITY
610 root 1.54
611 root 1.80 struct ev_loop
612     {
613 root 1.86 ev_tstamp ev_rt_now;
614 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
615 root 1.80 #define VAR(name,decl) decl;
616     #include "ev_vars.h"
617     #undef VAR
618     };
619     #include "ev_wrap.h"
620    
621 root 1.116 static struct ev_loop default_loop_struct;
622     struct ev_loop *ev_default_loop_ptr;
623 root 1.54
624 root 1.53 #else
625 root 1.54
626 root 1.86 ev_tstamp ev_rt_now;
627 root 1.80 #define VAR(name,decl) static decl;
628     #include "ev_vars.h"
629     #undef VAR
630    
631 root 1.116 static int ev_default_loop_ptr;
632 root 1.54
633 root 1.51 #endif
634 root 1.1
635 root 1.297 #if EV_MINIMAL < 2
636 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
637     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
638 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
639     #else
640 root 1.298 # define EV_RELEASE_CB (void)0
641     # define EV_ACQUIRE_CB (void)0
642 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
643     #endif
644    
645 root 1.298 #define EVUNLOOP_RECURSE 0x80
646    
647 root 1.8 /*****************************************************************************/
648    
649 root 1.292 #ifndef EV_HAVE_EV_TIME
650 root 1.141 ev_tstamp
651 root 1.1 ev_time (void)
652     {
653 root 1.29 #if EV_USE_REALTIME
654 root 1.279 if (expect_true (have_realtime))
655     {
656     struct timespec ts;
657     clock_gettime (CLOCK_REALTIME, &ts);
658     return ts.tv_sec + ts.tv_nsec * 1e-9;
659     }
660     #endif
661    
662 root 1.1 struct timeval tv;
663     gettimeofday (&tv, 0);
664     return tv.tv_sec + tv.tv_usec * 1e-6;
665     }
666 root 1.292 #endif
667 root 1.1
668 root 1.284 inline_size ev_tstamp
669 root 1.1 get_clock (void)
670     {
671 root 1.29 #if EV_USE_MONOTONIC
672 root 1.40 if (expect_true (have_monotonic))
673 root 1.1 {
674     struct timespec ts;
675     clock_gettime (CLOCK_MONOTONIC, &ts);
676     return ts.tv_sec + ts.tv_nsec * 1e-9;
677     }
678     #endif
679    
680     return ev_time ();
681     }
682    
683 root 1.85 #if EV_MULTIPLICITY
684 root 1.51 ev_tstamp
685     ev_now (EV_P)
686     {
687 root 1.85 return ev_rt_now;
688 root 1.51 }
689 root 1.85 #endif
690 root 1.51
691 root 1.193 void
692     ev_sleep (ev_tstamp delay)
693     {
694     if (delay > 0.)
695     {
696     #if EV_USE_NANOSLEEP
697     struct timespec ts;
698    
699     ts.tv_sec = (time_t)delay;
700     ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
701    
702     nanosleep (&ts, 0);
703     #elif defined(_WIN32)
704 root 1.217 Sleep ((unsigned long)(delay * 1e3));
705 root 1.193 #else
706     struct timeval tv;
707    
708     tv.tv_sec = (time_t)delay;
709     tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
710    
711 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
712 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
713 root 1.257 /* by older ones */
714 root 1.193 select (0, 0, 0, 0, &tv);
715     #endif
716     }
717     }
718    
719     /*****************************************************************************/
720    
721 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
722 root 1.232
723 root 1.288 /* find a suitable new size for the given array, */
724     /* hopefully by rounding to a ncie-to-malloc size */
725 root 1.284 inline_size int
726 root 1.163 array_nextsize (int elem, int cur, int cnt)
727     {
728     int ncur = cur + 1;
729    
730     do
731     ncur <<= 1;
732     while (cnt > ncur);
733    
734 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
735     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
736 root 1.163 {
737     ncur *= elem;
738 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
739 root 1.163 ncur = ncur - sizeof (void *) * 4;
740     ncur /= elem;
741     }
742    
743     return ncur;
744     }
745    
746 root 1.171 static noinline void *
747 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
748     {
749     *cur = array_nextsize (elem, *cur, cnt);
750     return ev_realloc (base, elem * *cur);
751     }
752 root 1.29
753 root 1.265 #define array_init_zero(base,count) \
754     memset ((void *)(base), 0, sizeof (*(base)) * (count))
755    
756 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
757 root 1.163 if (expect_false ((cnt) > (cur))) \
758 root 1.69 { \
759 root 1.163 int ocur_ = (cur); \
760     (base) = (type *)array_realloc \
761     (sizeof (type), (base), &(cur), (cnt)); \
762     init ((base) + (ocur_), (cur) - ocur_); \
763 root 1.1 }
764    
765 root 1.163 #if 0
766 root 1.74 #define array_slim(type,stem) \
767 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
768     { \
769     stem ## max = array_roundsize (stem ## cnt >> 1); \
770 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
771 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
772     }
773 root 1.163 #endif
774 root 1.67
775 root 1.65 #define array_free(stem, idx) \
776 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
777 root 1.65
778 root 1.8 /*****************************************************************************/
779    
780 root 1.288 /* dummy callback for pending events */
781     static void noinline
782     pendingcb (EV_P_ ev_prepare *w, int revents)
783     {
784     }
785    
786 root 1.140 void noinline
787 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
788 root 1.1 {
789 root 1.78 W w_ = (W)w;
790 root 1.171 int pri = ABSPRI (w_);
791 root 1.78
792 root 1.123 if (expect_false (w_->pending))
793 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
794     else
795 root 1.32 {
796 root 1.171 w_->pending = ++pendingcnt [pri];
797     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
798     pendings [pri][w_->pending - 1].w = w_;
799     pendings [pri][w_->pending - 1].events = revents;
800 root 1.32 }
801 root 1.1 }
802    
803 root 1.284 inline_speed void
804     feed_reverse (EV_P_ W w)
805     {
806     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
807     rfeeds [rfeedcnt++] = w;
808     }
809    
810     inline_size void
811     feed_reverse_done (EV_P_ int revents)
812     {
813     do
814     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
815     while (rfeedcnt);
816     }
817    
818     inline_speed void
819 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
820 root 1.27 {
821     int i;
822    
823     for (i = 0; i < eventcnt; ++i)
824 root 1.78 ev_feed_event (EV_A_ events [i], type);
825 root 1.27 }
826    
827 root 1.141 /*****************************************************************************/
828    
829 root 1.284 inline_speed void
830 root 1.298 fd_event_nc (EV_P_ int fd, int revents)
831 root 1.1 {
832     ANFD *anfd = anfds + fd;
833 root 1.136 ev_io *w;
834 root 1.1
835 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
836 root 1.1 {
837 root 1.79 int ev = w->events & revents;
838 root 1.1
839     if (ev)
840 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
841 root 1.1 }
842     }
843    
844 root 1.298 /* do not submit kernel events for fds that have reify set */
845     /* because that means they changed while we were polling for new events */
846     inline_speed void
847     fd_event (EV_P_ int fd, int revents)
848     {
849     ANFD *anfd = anfds + fd;
850    
851     if (expect_true (!anfd->reify))
852     fd_event_nc (EV_A_ fd, revents);
853     }
854    
855 root 1.79 void
856     ev_feed_fd_event (EV_P_ int fd, int revents)
857     {
858 root 1.168 if (fd >= 0 && fd < anfdmax)
859 root 1.298 fd_event_nc (EV_A_ fd, revents);
860 root 1.79 }
861    
862 root 1.288 /* make sure the external fd watch events are in-sync */
863     /* with the kernel/libev internal state */
864 root 1.284 inline_size void
865 root 1.51 fd_reify (EV_P)
866 root 1.9 {
867     int i;
868    
869 root 1.27 for (i = 0; i < fdchangecnt; ++i)
870     {
871     int fd = fdchanges [i];
872     ANFD *anfd = anfds + fd;
873 root 1.136 ev_io *w;
874 root 1.27
875 root 1.184 unsigned char events = 0;
876 root 1.27
877 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
878 root 1.184 events |= (unsigned char)w->events;
879 root 1.27
880 root 1.103 #if EV_SELECT_IS_WINSOCKET
881     if (events)
882     {
883 root 1.254 unsigned long arg;
884 root 1.200 #ifdef EV_FD_TO_WIN32_HANDLE
885     anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
886     #else
887     anfd->handle = _get_osfhandle (fd);
888     #endif
889 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
890 root 1.103 }
891     #endif
892    
893 root 1.184 {
894     unsigned char o_events = anfd->events;
895     unsigned char o_reify = anfd->reify;
896    
897     anfd->reify = 0;
898     anfd->events = events;
899 root 1.27
900 root 1.281 if (o_events != events || o_reify & EV__IOFDSET)
901 root 1.184 backend_modify (EV_A_ fd, o_events, events);
902     }
903 root 1.27 }
904    
905     fdchangecnt = 0;
906     }
907    
908 root 1.288 /* something about the given fd changed */
909 root 1.284 inline_size void
910 root 1.183 fd_change (EV_P_ int fd, int flags)
911 root 1.27 {
912 root 1.183 unsigned char reify = anfds [fd].reify;
913 root 1.184 anfds [fd].reify |= flags;
914 root 1.27
915 root 1.183 if (expect_true (!reify))
916     {
917     ++fdchangecnt;
918     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
919     fdchanges [fdchangecnt - 1] = fd;
920     }
921 root 1.9 }
922    
923 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
924 root 1.284 inline_speed void
925 root 1.51 fd_kill (EV_P_ int fd)
926 root 1.41 {
927 root 1.136 ev_io *w;
928 root 1.41
929 root 1.136 while ((w = (ev_io *)anfds [fd].head))
930 root 1.41 {
931 root 1.51 ev_io_stop (EV_A_ w);
932 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
933 root 1.41 }
934     }
935    
936 root 1.288 /* check whether the given fd is atcually valid, for error recovery */
937 root 1.284 inline_size int
938 root 1.71 fd_valid (int fd)
939     {
940 root 1.103 #ifdef _WIN32
941     return _get_osfhandle (fd) != -1;
942 root 1.71 #else
943     return fcntl (fd, F_GETFD) != -1;
944     #endif
945     }
946    
947 root 1.19 /* called on EBADF to verify fds */
948 root 1.140 static void noinline
949 root 1.51 fd_ebadf (EV_P)
950 root 1.19 {
951     int fd;
952    
953     for (fd = 0; fd < anfdmax; ++fd)
954 root 1.27 if (anfds [fd].events)
955 root 1.254 if (!fd_valid (fd) && errno == EBADF)
956 root 1.51 fd_kill (EV_A_ fd);
957 root 1.41 }
958    
959     /* called on ENOMEM in select/poll to kill some fds and retry */
960 root 1.140 static void noinline
961 root 1.51 fd_enomem (EV_P)
962 root 1.41 {
963 root 1.62 int fd;
964 root 1.41
965 root 1.62 for (fd = anfdmax; fd--; )
966 root 1.41 if (anfds [fd].events)
967     {
968 root 1.51 fd_kill (EV_A_ fd);
969 root 1.41 return;
970     }
971 root 1.19 }
972    
973 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
974 root 1.140 static void noinline
975 root 1.56 fd_rearm_all (EV_P)
976     {
977     int fd;
978    
979     for (fd = 0; fd < anfdmax; ++fd)
980     if (anfds [fd].events)
981     {
982     anfds [fd].events = 0;
983 root 1.268 anfds [fd].emask = 0;
984 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
985 root 1.56 }
986     }
987    
988 root 1.8 /*****************************************************************************/
989    
990 root 1.235 /*
991 root 1.241 * the heap functions want a real array index. array index 0 uis guaranteed to not
992     * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
993     * the branching factor of the d-tree.
994     */
995    
996     /*
997 root 1.235 * at the moment we allow libev the luxury of two heaps,
998     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
999     * which is more cache-efficient.
1000     * the difference is about 5% with 50000+ watchers.
1001     */
1002 root 1.241 #if EV_USE_4HEAP
1003 root 1.235
1004 root 1.237 #define DHEAP 4
1005     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1006 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1007 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1008 root 1.235
1009     /* away from the root */
1010 root 1.284 inline_speed void
1011 root 1.241 downheap (ANHE *heap, int N, int k)
1012 root 1.235 {
1013 root 1.241 ANHE he = heap [k];
1014     ANHE *E = heap + N + HEAP0;
1015 root 1.235
1016     for (;;)
1017     {
1018     ev_tstamp minat;
1019 root 1.241 ANHE *minpos;
1020 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1021 root 1.235
1022 root 1.248 /* find minimum child */
1023 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1024 root 1.235 {
1025 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1026     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1029 root 1.235 }
1030 root 1.240 else if (pos < E)
1031 root 1.235 {
1032 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1033     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1034     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1035     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1036 root 1.235 }
1037 root 1.240 else
1038     break;
1039 root 1.235
1040 root 1.241 if (ANHE_at (he) <= minat)
1041 root 1.235 break;
1042    
1043 root 1.247 heap [k] = *minpos;
1044 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1045 root 1.235
1046     k = minpos - heap;
1047     }
1048    
1049 root 1.247 heap [k] = he;
1050 root 1.241 ev_active (ANHE_w (he)) = k;
1051 root 1.235 }
1052    
1053 root 1.248 #else /* 4HEAP */
1054 root 1.235
1055     #define HEAP0 1
1056 root 1.247 #define HPARENT(k) ((k) >> 1)
1057 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1058 root 1.235
1059 root 1.248 /* away from the root */
1060 root 1.284 inline_speed void
1061 root 1.248 downheap (ANHE *heap, int N, int k)
1062 root 1.1 {
1063 root 1.241 ANHE he = heap [k];
1064 root 1.1
1065 root 1.228 for (;;)
1066 root 1.1 {
1067 root 1.248 int c = k << 1;
1068 root 1.179
1069 root 1.248 if (c > N + HEAP0 - 1)
1070 root 1.179 break;
1071    
1072 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1073     ? 1 : 0;
1074    
1075     if (ANHE_at (he) <= ANHE_at (heap [c]))
1076     break;
1077    
1078     heap [k] = heap [c];
1079 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1080 root 1.248
1081     k = c;
1082 root 1.1 }
1083    
1084 root 1.243 heap [k] = he;
1085 root 1.248 ev_active (ANHE_w (he)) = k;
1086 root 1.1 }
1087 root 1.248 #endif
1088 root 1.1
1089 root 1.248 /* towards the root */
1090 root 1.284 inline_speed void
1091 root 1.248 upheap (ANHE *heap, int k)
1092 root 1.1 {
1093 root 1.241 ANHE he = heap [k];
1094 root 1.1
1095 root 1.179 for (;;)
1096 root 1.1 {
1097 root 1.248 int p = HPARENT (k);
1098 root 1.179
1099 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1100 root 1.179 break;
1101 root 1.1
1102 root 1.248 heap [k] = heap [p];
1103 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1104 root 1.248 k = p;
1105 root 1.1 }
1106    
1107 root 1.241 heap [k] = he;
1108     ev_active (ANHE_w (he)) = k;
1109 root 1.1 }
1110    
1111 root 1.288 /* move an element suitably so it is in a correct place */
1112 root 1.284 inline_size void
1113 root 1.241 adjustheap (ANHE *heap, int N, int k)
1114 root 1.84 {
1115 root 1.247 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1116     upheap (heap, k);
1117     else
1118     downheap (heap, N, k);
1119 root 1.84 }
1120    
1121 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1122 root 1.284 inline_size void
1123 root 1.248 reheap (ANHE *heap, int N)
1124     {
1125     int i;
1126 root 1.251
1127 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1128     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1129     for (i = 0; i < N; ++i)
1130     upheap (heap, i + HEAP0);
1131     }
1132    
1133 root 1.8 /*****************************************************************************/
1134    
1135 root 1.288 /* associate signal watchers to a signal signal */
1136 root 1.7 typedef struct
1137     {
1138 root 1.68 WL head;
1139 root 1.207 EV_ATOMIC_T gotsig;
1140 root 1.7 } ANSIG;
1141    
1142     static ANSIG *signals;
1143 root 1.4 static int signalmax;
1144 root 1.1
1145 root 1.207 static EV_ATOMIC_T gotsig;
1146 root 1.7
1147 root 1.207 /*****************************************************************************/
1148    
1149 root 1.288 /* used to prepare libev internal fd's */
1150     /* this is not fork-safe */
1151 root 1.284 inline_speed void
1152 root 1.207 fd_intern (int fd)
1153     {
1154     #ifdef _WIN32
1155 root 1.254 unsigned long arg = 1;
1156 root 1.207 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1157     #else
1158     fcntl (fd, F_SETFD, FD_CLOEXEC);
1159     fcntl (fd, F_SETFL, O_NONBLOCK);
1160     #endif
1161     }
1162    
1163     static void noinline
1164     evpipe_init (EV_P)
1165     {
1166 root 1.288 if (!ev_is_active (&pipe_w))
1167 root 1.207 {
1168 root 1.220 #if EV_USE_EVENTFD
1169 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1170     if (evfd < 0 && errno == EINVAL)
1171     evfd = eventfd (0, 0);
1172    
1173     if (evfd >= 0)
1174 root 1.220 {
1175     evpipe [0] = -1;
1176 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1177 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1178 root 1.220 }
1179     else
1180     #endif
1181     {
1182     while (pipe (evpipe))
1183 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1184 root 1.207
1185 root 1.220 fd_intern (evpipe [0]);
1186     fd_intern (evpipe [1]);
1187 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1188 root 1.220 }
1189 root 1.207
1190 root 1.288 ev_io_start (EV_A_ &pipe_w);
1191 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1192 root 1.207 }
1193     }
1194    
1195 root 1.284 inline_size void
1196 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1197 root 1.207 {
1198 root 1.214 if (!*flag)
1199 root 1.207 {
1200 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1201 root 1.214
1202     *flag = 1;
1203 root 1.220
1204     #if EV_USE_EVENTFD
1205     if (evfd >= 0)
1206     {
1207     uint64_t counter = 1;
1208     write (evfd, &counter, sizeof (uint64_t));
1209     }
1210     else
1211     #endif
1212     write (evpipe [1], &old_errno, 1);
1213 root 1.214
1214 root 1.207 errno = old_errno;
1215     }
1216     }
1217    
1218 root 1.288 /* called whenever the libev signal pipe */
1219     /* got some events (signal, async) */
1220 root 1.207 static void
1221     pipecb (EV_P_ ev_io *iow, int revents)
1222     {
1223 root 1.220 #if EV_USE_EVENTFD
1224     if (evfd >= 0)
1225     {
1226 root 1.232 uint64_t counter;
1227 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1228     }
1229     else
1230     #endif
1231     {
1232     char dummy;
1233     read (evpipe [0], &dummy, 1);
1234     }
1235 root 1.207
1236 root 1.211 if (gotsig && ev_is_default_loop (EV_A))
1237 root 1.207 {
1238     int signum;
1239     gotsig = 0;
1240    
1241     for (signum = signalmax; signum--; )
1242     if (signals [signum].gotsig)
1243     ev_feed_signal_event (EV_A_ signum + 1);
1244     }
1245    
1246 root 1.209 #if EV_ASYNC_ENABLE
1247 root 1.207 if (gotasync)
1248     {
1249     int i;
1250     gotasync = 0;
1251    
1252     for (i = asynccnt; i--; )
1253     if (asyncs [i]->sent)
1254     {
1255     asyncs [i]->sent = 0;
1256     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1257     }
1258     }
1259 root 1.209 #endif
1260 root 1.207 }
1261    
1262     /*****************************************************************************/
1263    
1264 root 1.7 static void
1265 root 1.218 ev_sighandler (int signum)
1266 root 1.7 {
1267 root 1.207 #if EV_MULTIPLICITY
1268     struct ev_loop *loop = &default_loop_struct;
1269     #endif
1270    
1271 root 1.103 #if _WIN32
1272 root 1.218 signal (signum, ev_sighandler);
1273 root 1.67 #endif
1274    
1275 root 1.7 signals [signum - 1].gotsig = 1;
1276 root 1.214 evpipe_write (EV_A_ &gotsig);
1277 root 1.7 }
1278    
1279 root 1.140 void noinline
1280 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1281     {
1282 root 1.80 WL w;
1283    
1284 root 1.79 #if EV_MULTIPLICITY
1285 root 1.278 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1286 root 1.79 #endif
1287    
1288     --signum;
1289    
1290     if (signum < 0 || signum >= signalmax)
1291     return;
1292    
1293     signals [signum].gotsig = 0;
1294    
1295     for (w = signals [signum].head; w; w = w->next)
1296     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1297     }
1298    
1299 root 1.303 #if EV_USE_SIGNALFD
1300     static void
1301     sigfdcb (EV_P_ ev_io *iow, int revents)
1302     {
1303     struct signalfd_siginfo si[4], *sip;
1304    
1305     for (;;)
1306     {
1307     ssize_t res = read (sigfd, si, sizeof (si));
1308    
1309     /* not ISO-C, as res might be -1, but works with SuS */
1310     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1311     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1312    
1313     if (res < (ssize_t)sizeof (si))
1314     break;
1315     }
1316     }
1317     #endif
1318    
1319 root 1.8 /*****************************************************************************/
1320    
1321 root 1.182 static WL childs [EV_PID_HASHSIZE];
1322 root 1.71
1323 root 1.103 #ifndef _WIN32
1324 root 1.45
1325 root 1.136 static ev_signal childev;
1326 root 1.59
1327 root 1.206 #ifndef WIFCONTINUED
1328     # define WIFCONTINUED(status) 0
1329     #endif
1330    
1331 root 1.288 /* handle a single child status event */
1332 root 1.284 inline_speed void
1333 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1334 root 1.47 {
1335 root 1.136 ev_child *w;
1336 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1337 root 1.47
1338 root 1.149 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1339 root 1.206 {
1340     if ((w->pid == pid || !w->pid)
1341     && (!traced || (w->flags & 1)))
1342     {
1343 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1344 root 1.206 w->rpid = pid;
1345     w->rstatus = status;
1346     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1347     }
1348     }
1349 root 1.47 }
1350    
1351 root 1.142 #ifndef WCONTINUED
1352     # define WCONTINUED 0
1353     #endif
1354    
1355 root 1.288 /* called on sigchld etc., calls waitpid */
1356 root 1.47 static void
1357 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1358 root 1.22 {
1359     int pid, status;
1360    
1361 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1362     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1363     if (!WCONTINUED
1364     || errno != EINVAL
1365     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1366     return;
1367    
1368 root 1.216 /* make sure we are called again until all children have been reaped */
1369 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1370     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1371 root 1.47
1372 root 1.216 child_reap (EV_A_ pid, pid, status);
1373 root 1.149 if (EV_PID_HASHSIZE > 1)
1374 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1375 root 1.22 }
1376    
1377 root 1.45 #endif
1378    
1379 root 1.22 /*****************************************************************************/
1380    
1381 root 1.118 #if EV_USE_PORT
1382     # include "ev_port.c"
1383     #endif
1384 root 1.44 #if EV_USE_KQUEUE
1385     # include "ev_kqueue.c"
1386     #endif
1387 root 1.29 #if EV_USE_EPOLL
1388 root 1.1 # include "ev_epoll.c"
1389     #endif
1390 root 1.59 #if EV_USE_POLL
1391 root 1.41 # include "ev_poll.c"
1392     #endif
1393 root 1.29 #if EV_USE_SELECT
1394 root 1.1 # include "ev_select.c"
1395     #endif
1396    
1397 root 1.24 int
1398     ev_version_major (void)
1399     {
1400     return EV_VERSION_MAJOR;
1401     }
1402    
1403     int
1404     ev_version_minor (void)
1405     {
1406     return EV_VERSION_MINOR;
1407     }
1408    
1409 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1410 root 1.140 int inline_size
1411 root 1.51 enable_secure (void)
1412 root 1.41 {
1413 root 1.103 #ifdef _WIN32
1414 root 1.49 return 0;
1415     #else
1416 root 1.41 return getuid () != geteuid ()
1417     || getgid () != getegid ();
1418 root 1.49 #endif
1419 root 1.41 }
1420    
1421 root 1.111 unsigned int
1422 root 1.129 ev_supported_backends (void)
1423     {
1424 root 1.130 unsigned int flags = 0;
1425 root 1.129
1426     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1427     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1428     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1429     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1430     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1431    
1432     return flags;
1433     }
1434    
1435     unsigned int
1436 root 1.130 ev_recommended_backends (void)
1437 root 1.1 {
1438 root 1.131 unsigned int flags = ev_supported_backends ();
1439 root 1.129
1440     #ifndef __NetBSD__
1441     /* kqueue is borked on everything but netbsd apparently */
1442     /* it usually doesn't work correctly on anything but sockets and pipes */
1443     flags &= ~EVBACKEND_KQUEUE;
1444     #endif
1445     #ifdef __APPLE__
1446 root 1.278 /* only select works correctly on that "unix-certified" platform */
1447     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1448     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1449 root 1.129 #endif
1450    
1451     return flags;
1452 root 1.51 }
1453    
1454 root 1.130 unsigned int
1455 root 1.134 ev_embeddable_backends (void)
1456     {
1457 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1458    
1459 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1460 root 1.196 /* please fix it and tell me how to detect the fix */
1461     flags &= ~EVBACKEND_EPOLL;
1462    
1463     return flags;
1464 root 1.134 }
1465    
1466     unsigned int
1467 root 1.130 ev_backend (EV_P)
1468     {
1469     return backend;
1470     }
1471    
1472 root 1.297 #if EV_MINIMAL < 2
1473 root 1.162 unsigned int
1474     ev_loop_count (EV_P)
1475     {
1476     return loop_count;
1477     }
1478    
1479 root 1.294 unsigned int
1480     ev_loop_depth (EV_P)
1481     {
1482     return loop_depth;
1483     }
1484    
1485 root 1.193 void
1486     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1487     {
1488     io_blocktime = interval;
1489     }
1490    
1491     void
1492     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1493     {
1494     timeout_blocktime = interval;
1495     }
1496    
1497 root 1.297 void
1498     ev_set_userdata (EV_P_ void *data)
1499     {
1500     userdata = data;
1501     }
1502    
1503     void *
1504     ev_userdata (EV_P)
1505     {
1506     return userdata;
1507     }
1508    
1509     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1510     {
1511     invoke_cb = invoke_pending_cb;
1512     }
1513    
1514 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1515 root 1.297 {
1516 root 1.298 release_cb = release;
1517     acquire_cb = acquire;
1518 root 1.297 }
1519     #endif
1520    
1521 root 1.288 /* initialise a loop structure, must be zero-initialised */
1522 root 1.151 static void noinline
1523 root 1.108 loop_init (EV_P_ unsigned int flags)
1524 root 1.51 {
1525 root 1.130 if (!backend)
1526 root 1.23 {
1527 root 1.279 #if EV_USE_REALTIME
1528     if (!have_realtime)
1529     {
1530     struct timespec ts;
1531    
1532     if (!clock_gettime (CLOCK_REALTIME, &ts))
1533     have_realtime = 1;
1534     }
1535     #endif
1536    
1537 root 1.29 #if EV_USE_MONOTONIC
1538 root 1.279 if (!have_monotonic)
1539     {
1540     struct timespec ts;
1541    
1542     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1543     have_monotonic = 1;
1544     }
1545 root 1.1 #endif
1546    
1547 root 1.209 ev_rt_now = ev_time ();
1548     mn_now = get_clock ();
1549     now_floor = mn_now;
1550     rtmn_diff = ev_rt_now - mn_now;
1551 root 1.297 #if EV_MINIMAL < 2
1552 root 1.296 invoke_cb = ev_invoke_pending;
1553 root 1.297 #endif
1554 root 1.1
1555 root 1.193 io_blocktime = 0.;
1556     timeout_blocktime = 0.;
1557 root 1.209 backend = 0;
1558     backend_fd = -1;
1559     gotasync = 0;
1560     #if EV_USE_INOTIFY
1561     fs_fd = -2;
1562     #endif
1563 root 1.303 #if EV_USE_SIGNALFD
1564     sigfd = -2;
1565     #endif
1566 root 1.193
1567 root 1.158 /* pid check not overridable via env */
1568     #ifndef _WIN32
1569     if (flags & EVFLAG_FORKCHECK)
1570     curpid = getpid ();
1571     #endif
1572    
1573 root 1.128 if (!(flags & EVFLAG_NOENV)
1574     && !enable_secure ()
1575     && getenv ("LIBEV_FLAGS"))
1576 root 1.108 flags = atoi (getenv ("LIBEV_FLAGS"));
1577    
1578 root 1.225 if (!(flags & 0x0000ffffU))
1579 root 1.129 flags |= ev_recommended_backends ();
1580 root 1.41
1581 root 1.118 #if EV_USE_PORT
1582 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1583 root 1.118 #endif
1584 root 1.44 #if EV_USE_KQUEUE
1585 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1586 root 1.44 #endif
1587 root 1.29 #if EV_USE_EPOLL
1588 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1589 root 1.41 #endif
1590 root 1.59 #if EV_USE_POLL
1591 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1592 root 1.1 #endif
1593 root 1.29 #if EV_USE_SELECT
1594 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1595 root 1.1 #endif
1596 root 1.70
1597 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1598    
1599     ev_init (&pipe_w, pipecb);
1600     ev_set_priority (&pipe_w, EV_MAXPRI);
1601 root 1.56 }
1602     }
1603    
1604 root 1.288 /* free up a loop structure */
1605 root 1.151 static void noinline
1606 root 1.56 loop_destroy (EV_P)
1607     {
1608 root 1.65 int i;
1609    
1610 root 1.288 if (ev_is_active (&pipe_w))
1611 root 1.207 {
1612 root 1.303 /*ev_ref (EV_A);*/
1613     /*ev_io_stop (EV_A_ &pipe_w);*/
1614 root 1.207
1615 root 1.220 #if EV_USE_EVENTFD
1616     if (evfd >= 0)
1617     close (evfd);
1618     #endif
1619    
1620     if (evpipe [0] >= 0)
1621     {
1622     close (evpipe [0]);
1623     close (evpipe [1]);
1624     }
1625 root 1.207 }
1626    
1627 root 1.303 #if EV_USE_SIGNALFD
1628     if (ev_is_active (&sigfd_w))
1629     {
1630     /*ev_ref (EV_A);*/
1631     /*ev_io_stop (EV_A_ &sigfd_w);*/
1632    
1633     close (sigfd);
1634     }
1635     #endif
1636    
1637 root 1.152 #if EV_USE_INOTIFY
1638     if (fs_fd >= 0)
1639     close (fs_fd);
1640     #endif
1641    
1642     if (backend_fd >= 0)
1643     close (backend_fd);
1644    
1645 root 1.118 #if EV_USE_PORT
1646 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1647 root 1.118 #endif
1648 root 1.56 #if EV_USE_KQUEUE
1649 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1650 root 1.56 #endif
1651     #if EV_USE_EPOLL
1652 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1653 root 1.56 #endif
1654 root 1.59 #if EV_USE_POLL
1655 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1656 root 1.56 #endif
1657     #if EV_USE_SELECT
1658 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1659 root 1.56 #endif
1660 root 1.1
1661 root 1.65 for (i = NUMPRI; i--; )
1662 root 1.164 {
1663     array_free (pending, [i]);
1664     #if EV_IDLE_ENABLE
1665     array_free (idle, [i]);
1666     #endif
1667     }
1668 root 1.65
1669 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
1670 root 1.186
1671 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1672 root 1.284 array_free (rfeed, EMPTY);
1673 root 1.164 array_free (fdchange, EMPTY);
1674     array_free (timer, EMPTY);
1675 root 1.140 #if EV_PERIODIC_ENABLE
1676 root 1.164 array_free (periodic, EMPTY);
1677 root 1.93 #endif
1678 root 1.187 #if EV_FORK_ENABLE
1679     array_free (fork, EMPTY);
1680     #endif
1681 root 1.164 array_free (prepare, EMPTY);
1682     array_free (check, EMPTY);
1683 root 1.209 #if EV_ASYNC_ENABLE
1684     array_free (async, EMPTY);
1685     #endif
1686 root 1.65
1687 root 1.130 backend = 0;
1688 root 1.56 }
1689 root 1.22
1690 root 1.226 #if EV_USE_INOTIFY
1691 root 1.284 inline_size void infy_fork (EV_P);
1692 root 1.226 #endif
1693 root 1.154
1694 root 1.284 inline_size void
1695 root 1.56 loop_fork (EV_P)
1696     {
1697 root 1.118 #if EV_USE_PORT
1698 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1699 root 1.56 #endif
1700     #if EV_USE_KQUEUE
1701 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1702 root 1.45 #endif
1703 root 1.118 #if EV_USE_EPOLL
1704 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1705 root 1.118 #endif
1706 root 1.154 #if EV_USE_INOTIFY
1707     infy_fork (EV_A);
1708     #endif
1709 root 1.70
1710 root 1.288 if (ev_is_active (&pipe_w))
1711 root 1.70 {
1712 root 1.207 /* this "locks" the handlers against writing to the pipe */
1713 root 1.212 /* while we modify the fd vars */
1714     gotsig = 1;
1715     #if EV_ASYNC_ENABLE
1716     gotasync = 1;
1717     #endif
1718 root 1.70
1719     ev_ref (EV_A);
1720 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1721 root 1.220
1722     #if EV_USE_EVENTFD
1723     if (evfd >= 0)
1724     close (evfd);
1725     #endif
1726    
1727     if (evpipe [0] >= 0)
1728     {
1729     close (evpipe [0]);
1730     close (evpipe [1]);
1731     }
1732 root 1.207
1733     evpipe_init (EV_A);
1734 root 1.208 /* now iterate over everything, in case we missed something */
1735 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1736 root 1.70 }
1737    
1738     postfork = 0;
1739 root 1.1 }
1740    
1741 root 1.55 #if EV_MULTIPLICITY
1742 root 1.250
1743 root 1.54 struct ev_loop *
1744 root 1.108 ev_loop_new (unsigned int flags)
1745 root 1.54 {
1746 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1747    
1748     memset (loop, 0, sizeof (struct ev_loop));
1749 root 1.108 loop_init (EV_A_ flags);
1750 root 1.56
1751 root 1.130 if (ev_backend (EV_A))
1752 root 1.55 return loop;
1753 root 1.54
1754 root 1.55 return 0;
1755 root 1.54 }
1756    
1757     void
1758 root 1.56 ev_loop_destroy (EV_P)
1759 root 1.54 {
1760 root 1.56 loop_destroy (EV_A);
1761 root 1.69 ev_free (loop);
1762 root 1.54 }
1763    
1764 root 1.56 void
1765     ev_loop_fork (EV_P)
1766     {
1767 root 1.205 postfork = 1; /* must be in line with ev_default_fork */
1768 root 1.56 }
1769 root 1.297 #endif /* multiplicity */
1770 root 1.248
1771     #if EV_VERIFY
1772 root 1.258 static void noinline
1773 root 1.251 verify_watcher (EV_P_ W w)
1774     {
1775 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776 root 1.251
1777     if (w->pending)
1778 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779 root 1.251 }
1780    
1781     static void noinline
1782     verify_heap (EV_P_ ANHE *heap, int N)
1783     {
1784     int i;
1785    
1786     for (i = HEAP0; i < N + HEAP0; ++i)
1787     {
1788 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791 root 1.251
1792     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793     }
1794     }
1795    
1796     static void noinline
1797     array_verify (EV_P_ W *ws, int cnt)
1798 root 1.248 {
1799     while (cnt--)
1800 root 1.251 {
1801 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1803     }
1804 root 1.248 }
1805 root 1.250 #endif
1806 root 1.248
1807 root 1.297 #if EV_MINIMAL < 2
1808 root 1.250 void
1809 root 1.248 ev_loop_verify (EV_P)
1810     {
1811 root 1.250 #if EV_VERIFY
1812 root 1.248 int i;
1813 root 1.251 WL w;
1814    
1815     assert (activecnt >= -1);
1816    
1817     assert (fdchangemax >= fdchangecnt);
1818     for (i = 0; i < fdchangecnt; ++i)
1819 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820 root 1.251
1821     assert (anfdmax >= 0);
1822     for (i = 0; i < anfdmax; ++i)
1823     for (w = anfds [i].head; w; w = w->next)
1824     {
1825     verify_watcher (EV_A_ (W)w);
1826 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1827     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1828 root 1.251 }
1829    
1830     assert (timermax >= timercnt);
1831     verify_heap (EV_A_ timers, timercnt);
1832 root 1.248
1833     #if EV_PERIODIC_ENABLE
1834 root 1.251 assert (periodicmax >= periodiccnt);
1835     verify_heap (EV_A_ periodics, periodiccnt);
1836 root 1.248 #endif
1837    
1838 root 1.251 for (i = NUMPRI; i--; )
1839     {
1840     assert (pendingmax [i] >= pendingcnt [i]);
1841 root 1.248 #if EV_IDLE_ENABLE
1842 root 1.252 assert (idleall >= 0);
1843 root 1.251 assert (idlemax [i] >= idlecnt [i]);
1844     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845 root 1.248 #endif
1846 root 1.251 }
1847    
1848 root 1.248 #if EV_FORK_ENABLE
1849 root 1.251 assert (forkmax >= forkcnt);
1850     array_verify (EV_A_ (W *)forks, forkcnt);
1851 root 1.248 #endif
1852 root 1.251
1853 root 1.250 #if EV_ASYNC_ENABLE
1854 root 1.251 assert (asyncmax >= asynccnt);
1855     array_verify (EV_A_ (W *)asyncs, asynccnt);
1856 root 1.250 #endif
1857 root 1.251
1858     assert (preparemax >= preparecnt);
1859     array_verify (EV_A_ (W *)prepares, preparecnt);
1860    
1861     assert (checkmax >= checkcnt);
1862     array_verify (EV_A_ (W *)checks, checkcnt);
1863    
1864     # if 0
1865     for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866     for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1867     # endif
1868 root 1.248 #endif
1869     }
1870 root 1.297 #endif
1871 root 1.56
1872     #if EV_MULTIPLICITY
1873     struct ev_loop *
1874 root 1.125 ev_default_loop_init (unsigned int flags)
1875 root 1.54 #else
1876     int
1877 root 1.116 ev_default_loop (unsigned int flags)
1878 root 1.56 #endif
1879 root 1.54 {
1880 root 1.116 if (!ev_default_loop_ptr)
1881 root 1.56 {
1882     #if EV_MULTIPLICITY
1883 root 1.116 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1884 root 1.56 #else
1885 ayin 1.117 ev_default_loop_ptr = 1;
1886 root 1.54 #endif
1887    
1888 root 1.110 loop_init (EV_A_ flags);
1889 root 1.56
1890 root 1.130 if (ev_backend (EV_A))
1891 root 1.56 {
1892 root 1.103 #ifndef _WIN32
1893 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
1894     ev_set_priority (&childev, EV_MAXPRI);
1895     ev_signal_start (EV_A_ &childev);
1896     ev_unref (EV_A); /* child watcher should not keep loop alive */
1897     #endif
1898     }
1899     else
1900 root 1.116 ev_default_loop_ptr = 0;
1901 root 1.56 }
1902 root 1.8
1903 root 1.116 return ev_default_loop_ptr;
1904 root 1.1 }
1905    
1906 root 1.24 void
1907 root 1.56 ev_default_destroy (void)
1908 root 1.1 {
1909 root 1.57 #if EV_MULTIPLICITY
1910 root 1.116 struct ev_loop *loop = ev_default_loop_ptr;
1911 root 1.57 #endif
1912 root 1.56
1913 root 1.266 ev_default_loop_ptr = 0;
1914    
1915 root 1.103 #ifndef _WIN32
1916 root 1.56 ev_ref (EV_A); /* child watcher */
1917     ev_signal_stop (EV_A_ &childev);
1918 root 1.71 #endif
1919 root 1.56
1920     loop_destroy (EV_A);
1921 root 1.1 }
1922    
1923 root 1.24 void
1924 root 1.60 ev_default_fork (void)
1925 root 1.1 {
1926 root 1.60 #if EV_MULTIPLICITY
1927 root 1.116 struct ev_loop *loop = ev_default_loop_ptr;
1928 root 1.60 #endif
1929    
1930 root 1.270 postfork = 1; /* must be in line with ev_loop_fork */
1931 root 1.1 }
1932    
1933 root 1.8 /*****************************************************************************/
1934    
1935 root 1.168 void
1936     ev_invoke (EV_P_ void *w, int revents)
1937     {
1938     EV_CB_INVOKE ((W)w, revents);
1939     }
1940    
1941 root 1.300 unsigned int
1942     ev_pending_count (EV_P)
1943     {
1944     int pri;
1945     unsigned int count = 0;
1946    
1947     for (pri = NUMPRI; pri--; )
1948     count += pendingcnt [pri];
1949    
1950     return count;
1951     }
1952    
1953 root 1.297 void noinline
1954 root 1.296 ev_invoke_pending (EV_P)
1955 root 1.1 {
1956 root 1.42 int pri;
1957    
1958     for (pri = NUMPRI; pri--; )
1959     while (pendingcnt [pri])
1960     {
1961     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1962 root 1.1
1963 root 1.288 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964     /* ^ this is no longer true, as pending_w could be here */
1965 root 1.139
1966 root 1.288 p->w->pending = 0;
1967     EV_CB_INVOKE (p->w, p->events);
1968     EV_FREQUENT_CHECK;
1969 root 1.42 }
1970 root 1.1 }
1971    
1972 root 1.234 #if EV_IDLE_ENABLE
1973 root 1.288 /* make idle watchers pending. this handles the "call-idle */
1974     /* only when higher priorities are idle" logic */
1975 root 1.284 inline_size void
1976 root 1.234 idle_reify (EV_P)
1977     {
1978     if (expect_false (idleall))
1979     {
1980     int pri;
1981    
1982     for (pri = NUMPRI; pri--; )
1983     {
1984     if (pendingcnt [pri])
1985     break;
1986    
1987     if (idlecnt [pri])
1988     {
1989     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1990     break;
1991     }
1992     }
1993     }
1994     }
1995     #endif
1996    
1997 root 1.288 /* make timers pending */
1998 root 1.284 inline_size void
1999 root 1.51 timers_reify (EV_P)
2000 root 1.1 {
2001 root 1.248 EV_FREQUENT_CHECK;
2002    
2003 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2004 root 1.1 {
2005 root 1.284 do
2006     {
2007     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008 root 1.1
2009 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010    
2011     /* first reschedule or stop timer */
2012     if (w->repeat)
2013     {
2014     ev_at (w) += w->repeat;
2015     if (ev_at (w) < mn_now)
2016     ev_at (w) = mn_now;
2017 root 1.61
2018 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2019 root 1.90
2020 root 1.284 ANHE_at_cache (timers [HEAP0]);
2021     downheap (timers, timercnt, HEAP0);
2022     }
2023     else
2024     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025 root 1.243
2026 root 1.284 EV_FREQUENT_CHECK;
2027     feed_reverse (EV_A_ (W)w);
2028 root 1.12 }
2029 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2030 root 1.30
2031 root 1.284 feed_reverse_done (EV_A_ EV_TIMEOUT);
2032 root 1.12 }
2033     }
2034 root 1.4
2035 root 1.140 #if EV_PERIODIC_ENABLE
2036 root 1.288 /* make periodics pending */
2037 root 1.284 inline_size void
2038 root 1.51 periodics_reify (EV_P)
2039 root 1.12 {
2040 root 1.248 EV_FREQUENT_CHECK;
2041 root 1.250
2042 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2043 root 1.12 {
2044 root 1.284 int feed_count = 0;
2045    
2046     do
2047     {
2048     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049 root 1.1
2050 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051 root 1.61
2052 root 1.284 /* first reschedule or stop timer */
2053     if (w->reschedule_cb)
2054     {
2055     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056 root 1.243
2057 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058 root 1.243
2059 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2060     downheap (periodics, periodiccnt, HEAP0);
2061     }
2062     else if (w->interval)
2063 root 1.246 {
2064 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065     /* if next trigger time is not sufficiently in the future, put it there */
2066     /* this might happen because of floating point inexactness */
2067     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068     {
2069     ev_at (w) += w->interval;
2070    
2071     /* if interval is unreasonably low we might still have a time in the past */
2072     /* so correct this. this will make the periodic very inexact, but the user */
2073     /* has effectively asked to get triggered more often than possible */
2074     if (ev_at (w) < ev_rt_now)
2075     ev_at (w) = ev_rt_now;
2076     }
2077 root 1.243
2078 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2079     downheap (periodics, periodiccnt, HEAP0);
2080 root 1.246 }
2081 root 1.284 else
2082     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083 root 1.243
2084 root 1.284 EV_FREQUENT_CHECK;
2085     feed_reverse (EV_A_ (W)w);
2086 root 1.1 }
2087 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2088 root 1.12
2089 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 root 1.12 }
2091     }
2092    
2093 root 1.288 /* simply recalculate all periodics */
2094     /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2095 root 1.140 static void noinline
2096 root 1.54 periodics_reschedule (EV_P)
2097 root 1.12 {
2098     int i;
2099    
2100 root 1.13 /* adjust periodics after time jump */
2101 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2102 root 1.12 {
2103 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2104 root 1.12
2105 root 1.77 if (w->reschedule_cb)
2106 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2107 root 1.77 else if (w->interval)
2108 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2109 root 1.242
2110 root 1.248 ANHE_at_cache (periodics [i]);
2111 root 1.77 }
2112 root 1.12
2113 root 1.248 reheap (periodics, periodiccnt);
2114 root 1.1 }
2115 root 1.93 #endif
2116 root 1.1
2117 root 1.288 /* adjust all timers by a given offset */
2118 root 1.285 static void noinline
2119     timers_reschedule (EV_P_ ev_tstamp adjust)
2120     {
2121     int i;
2122    
2123     for (i = 0; i < timercnt; ++i)
2124     {
2125     ANHE *he = timers + i + HEAP0;
2126     ANHE_w (*he)->at += adjust;
2127     ANHE_at_cache (*he);
2128     }
2129     }
2130    
2131 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2132     /* also detetc if there was a timejump, and act accordingly */
2133 root 1.284 inline_speed void
2134 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2135 root 1.4 {
2136 root 1.40 #if EV_USE_MONOTONIC
2137     if (expect_true (have_monotonic))
2138     {
2139 root 1.289 int i;
2140 root 1.178 ev_tstamp odiff = rtmn_diff;
2141    
2142     mn_now = get_clock ();
2143    
2144     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2145     /* interpolate in the meantime */
2146     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2147 root 1.40 {
2148 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2149     return;
2150     }
2151    
2152     now_floor = mn_now;
2153     ev_rt_now = ev_time ();
2154 root 1.4
2155 root 1.178 /* loop a few times, before making important decisions.
2156     * on the choice of "4": one iteration isn't enough,
2157     * in case we get preempted during the calls to
2158     * ev_time and get_clock. a second call is almost guaranteed
2159     * to succeed in that case, though. and looping a few more times
2160     * doesn't hurt either as we only do this on time-jumps or
2161     * in the unlikely event of having been preempted here.
2162     */
2163     for (i = 4; --i; )
2164     {
2165     rtmn_diff = ev_rt_now - mn_now;
2166 root 1.4
2167 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2168 root 1.178 return; /* all is well */
2169 root 1.4
2170 root 1.178 ev_rt_now = ev_time ();
2171     mn_now = get_clock ();
2172     now_floor = mn_now;
2173     }
2174 root 1.4
2175 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2176     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2177 root 1.140 # if EV_PERIODIC_ENABLE
2178 root 1.178 periodics_reschedule (EV_A);
2179 root 1.93 # endif
2180 root 1.4 }
2181     else
2182 root 1.40 #endif
2183 root 1.4 {
2184 root 1.85 ev_rt_now = ev_time ();
2185 root 1.40
2186 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2187 root 1.13 {
2188 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2189     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2190 root 1.140 #if EV_PERIODIC_ENABLE
2191 root 1.54 periodics_reschedule (EV_A);
2192 root 1.93 #endif
2193 root 1.13 }
2194 root 1.4
2195 root 1.85 mn_now = ev_rt_now;
2196 root 1.4 }
2197     }
2198    
2199 root 1.51 void
2200     ev_loop (EV_P_ int flags)
2201 root 1.1 {
2202 root 1.297 #if EV_MINIMAL < 2
2203 root 1.294 ++loop_depth;
2204 root 1.297 #endif
2205 root 1.294
2206 root 1.298 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207    
2208 root 1.219 loop_done = EVUNLOOP_CANCEL;
2209 root 1.1
2210 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2211 root 1.158
2212 root 1.161 do
2213 root 1.9 {
2214 root 1.250 #if EV_VERIFY >= 2
2215     ev_loop_verify (EV_A);
2216     #endif
2217    
2218 root 1.158 #ifndef _WIN32
2219     if (expect_false (curpid)) /* penalise the forking check even more */
2220     if (expect_false (getpid () != curpid))
2221     {
2222     curpid = getpid ();
2223     postfork = 1;
2224     }
2225     #endif
2226    
2227 root 1.157 #if EV_FORK_ENABLE
2228     /* we might have forked, so queue fork handlers */
2229     if (expect_false (postfork))
2230     if (forkcnt)
2231     {
2232     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2233 root 1.297 EV_INVOKE_PENDING;
2234 root 1.157 }
2235     #endif
2236 root 1.147
2237 root 1.170 /* queue prepare watchers (and execute them) */
2238 root 1.40 if (expect_false (preparecnt))
2239 root 1.20 {
2240 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2241 root 1.297 EV_INVOKE_PENDING;
2242 root 1.20 }
2243 root 1.9
2244 root 1.298 if (expect_false (loop_done))
2245     break;
2246    
2247 root 1.70 /* we might have forked, so reify kernel state if necessary */
2248     if (expect_false (postfork))
2249     loop_fork (EV_A);
2250    
2251 root 1.1 /* update fd-related kernel structures */
2252 root 1.51 fd_reify (EV_A);
2253 root 1.1
2254     /* calculate blocking time */
2255 root 1.135 {
2256 root 1.193 ev_tstamp waittime = 0.;
2257     ev_tstamp sleeptime = 0.;
2258 root 1.12
2259 root 1.193 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2260 root 1.135 {
2261 root 1.293 /* remember old timestamp for io_blocktime calculation */
2262     ev_tstamp prev_mn_now = mn_now;
2263    
2264 root 1.135 /* update time to cancel out callback processing overhead */
2265 root 1.178 time_update (EV_A_ 1e100);
2266 root 1.135
2267 root 1.287 waittime = MAX_BLOCKTIME;
2268    
2269 root 1.135 if (timercnt)
2270     {
2271 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2272 root 1.193 if (waittime > to) waittime = to;
2273 root 1.135 }
2274 root 1.4
2275 root 1.140 #if EV_PERIODIC_ENABLE
2276 root 1.135 if (periodiccnt)
2277     {
2278 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2279 root 1.193 if (waittime > to) waittime = to;
2280 root 1.135 }
2281 root 1.93 #endif
2282 root 1.4
2283 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2284 root 1.193 if (expect_false (waittime < timeout_blocktime))
2285     waittime = timeout_blocktime;
2286    
2287 root 1.293 /* extra check because io_blocktime is commonly 0 */
2288     if (expect_false (io_blocktime))
2289     {
2290     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291 root 1.193
2292 root 1.293 if (sleeptime > waittime - backend_fudge)
2293     sleeptime = waittime - backend_fudge;
2294 root 1.193
2295 root 1.293 if (expect_true (sleeptime > 0.))
2296     {
2297     ev_sleep (sleeptime);
2298     waittime -= sleeptime;
2299     }
2300 root 1.193 }
2301 root 1.135 }
2302 root 1.1
2303 root 1.297 #if EV_MINIMAL < 2
2304 root 1.162 ++loop_count;
2305 root 1.297 #endif
2306 root 1.298 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2307 root 1.193 backend_poll (EV_A_ waittime);
2308 root 1.298 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2309 root 1.178
2310     /* update ev_rt_now, do magic */
2311 root 1.193 time_update (EV_A_ waittime + sleeptime);
2312 root 1.135 }
2313 root 1.1
2314 root 1.9 /* queue pending timers and reschedule them */
2315 root 1.51 timers_reify (EV_A); /* relative timers called last */
2316 root 1.140 #if EV_PERIODIC_ENABLE
2317 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2318 root 1.93 #endif
2319 root 1.1
2320 root 1.164 #if EV_IDLE_ENABLE
2321 root 1.137 /* queue idle watchers unless other events are pending */
2322 root 1.164 idle_reify (EV_A);
2323     #endif
2324 root 1.9
2325 root 1.20 /* queue check watchers, to be executed first */
2326 root 1.123 if (expect_false (checkcnt))
2327 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2328 root 1.9
2329 root 1.297 EV_INVOKE_PENDING;
2330 root 1.1 }
2331 root 1.219 while (expect_true (
2332     activecnt
2333     && !loop_done
2334     && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2335     ));
2336 root 1.13
2337 root 1.135 if (loop_done == EVUNLOOP_ONE)
2338     loop_done = EVUNLOOP_CANCEL;
2339 root 1.294
2340 root 1.297 #if EV_MINIMAL < 2
2341 root 1.294 --loop_depth;
2342 root 1.297 #endif
2343 root 1.51 }
2344    
2345     void
2346     ev_unloop (EV_P_ int how)
2347     {
2348     loop_done = how;
2349 root 1.1 }
2350    
2351 root 1.285 void
2352     ev_ref (EV_P)
2353     {
2354     ++activecnt;
2355     }
2356    
2357     void
2358     ev_unref (EV_P)
2359     {
2360     --activecnt;
2361     }
2362    
2363     void
2364     ev_now_update (EV_P)
2365     {
2366     time_update (EV_A_ 1e100);
2367     }
2368    
2369     void
2370     ev_suspend (EV_P)
2371     {
2372     ev_now_update (EV_A);
2373     }
2374    
2375     void
2376     ev_resume (EV_P)
2377     {
2378     ev_tstamp mn_prev = mn_now;
2379    
2380     ev_now_update (EV_A);
2381     timers_reschedule (EV_A_ mn_now - mn_prev);
2382 root 1.286 #if EV_PERIODIC_ENABLE
2383 root 1.288 /* TODO: really do this? */
2384 root 1.285 periodics_reschedule (EV_A);
2385 root 1.286 #endif
2386 root 1.285 }
2387    
2388 root 1.8 /*****************************************************************************/
2389 root 1.288 /* singly-linked list management, used when the expected list length is short */
2390 root 1.8
2391 root 1.284 inline_size void
2392 root 1.10 wlist_add (WL *head, WL elem)
2393 root 1.1 {
2394     elem->next = *head;
2395     *head = elem;
2396     }
2397    
2398 root 1.284 inline_size void
2399 root 1.10 wlist_del (WL *head, WL elem)
2400 root 1.1 {
2401     while (*head)
2402     {
2403     if (*head == elem)
2404     {
2405     *head = elem->next;
2406     return;
2407     }
2408    
2409     head = &(*head)->next;
2410     }
2411     }
2412    
2413 root 1.288 /* internal, faster, version of ev_clear_pending */
2414 root 1.284 inline_speed void
2415 root 1.166 clear_pending (EV_P_ W w)
2416 root 1.16 {
2417     if (w->pending)
2418     {
2419 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2420 root 1.16 w->pending = 0;
2421     }
2422     }
2423    
2424 root 1.167 int
2425     ev_clear_pending (EV_P_ void *w)
2426 root 1.166 {
2427     W w_ = (W)w;
2428     int pending = w_->pending;
2429    
2430 root 1.172 if (expect_true (pending))
2431     {
2432     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 root 1.288 p->w = (W)&pending_w;
2434 root 1.172 w_->pending = 0;
2435     return p->events;
2436     }
2437     else
2438 root 1.167 return 0;
2439 root 1.166 }
2440    
2441 root 1.284 inline_size void
2442 root 1.164 pri_adjust (EV_P_ W w)
2443     {
2444 root 1.295 int pri = ev_priority (w);
2445 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2446     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2447 root 1.295 ev_set_priority (w, pri);
2448 root 1.164 }
2449    
2450 root 1.284 inline_speed void
2451 root 1.51 ev_start (EV_P_ W w, int active)
2452 root 1.1 {
2453 root 1.164 pri_adjust (EV_A_ w);
2454 root 1.1 w->active = active;
2455 root 1.51 ev_ref (EV_A);
2456 root 1.1 }
2457    
2458 root 1.284 inline_size void
2459 root 1.51 ev_stop (EV_P_ W w)
2460 root 1.1 {
2461 root 1.51 ev_unref (EV_A);
2462 root 1.1 w->active = 0;
2463     }
2464    
2465 root 1.8 /*****************************************************************************/
2466    
2467 root 1.171 void noinline
2468 root 1.136 ev_io_start (EV_P_ ev_io *w)
2469 root 1.1 {
2470 root 1.37 int fd = w->fd;
2471    
2472 root 1.123 if (expect_false (ev_is_active (w)))
2473 root 1.1 return;
2474    
2475 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 root 1.281 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477 root 1.33
2478 root 1.248 EV_FREQUENT_CHECK;
2479    
2480 root 1.51 ev_start (EV_A_ (W)w, 1);
2481 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2482 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2483 root 1.1
2484 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2485 root 1.281 w->events &= ~EV__IOFDSET;
2486 root 1.248
2487     EV_FREQUENT_CHECK;
2488 root 1.1 }
2489    
2490 root 1.171 void noinline
2491 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2492 root 1.1 {
2493 root 1.166 clear_pending (EV_A_ (W)w);
2494 root 1.123 if (expect_false (!ev_is_active (w)))
2495 root 1.1 return;
2496    
2497 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2498 root 1.89
2499 root 1.248 EV_FREQUENT_CHECK;
2500    
2501 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2502 root 1.51 ev_stop (EV_A_ (W)w);
2503 root 1.1
2504 root 1.184 fd_change (EV_A_ w->fd, 1);
2505 root 1.248
2506     EV_FREQUENT_CHECK;
2507 root 1.1 }
2508    
2509 root 1.171 void noinline
2510 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2511 root 1.1 {
2512 root 1.123 if (expect_false (ev_is_active (w)))
2513 root 1.1 return;
2514    
2515 root 1.228 ev_at (w) += mn_now;
2516 root 1.12
2517 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2518 root 1.13
2519 root 1.248 EV_FREQUENT_CHECK;
2520    
2521     ++timercnt;
2522     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2523 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2524     ANHE_w (timers [ev_active (w)]) = (WT)w;
2525 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2526 root 1.235 upheap (timers, ev_active (w));
2527 root 1.62
2528 root 1.248 EV_FREQUENT_CHECK;
2529    
2530 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2531 root 1.12 }
2532    
2533 root 1.171 void noinline
2534 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2535 root 1.12 {
2536 root 1.166 clear_pending (EV_A_ (W)w);
2537 root 1.123 if (expect_false (!ev_is_active (w)))
2538 root 1.12 return;
2539    
2540 root 1.248 EV_FREQUENT_CHECK;
2541    
2542 root 1.230 {
2543     int active = ev_active (w);
2544 root 1.62
2545 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2546 root 1.151
2547 root 1.248 --timercnt;
2548    
2549     if (expect_true (active < timercnt + HEAP0))
2550 root 1.151 {
2551 root 1.248 timers [active] = timers [timercnt + HEAP0];
2552 root 1.181 adjustheap (timers, timercnt, active);
2553 root 1.151 }
2554 root 1.248 }
2555 root 1.228
2556 root 1.248 EV_FREQUENT_CHECK;
2557 root 1.4
2558 root 1.228 ev_at (w) -= mn_now;
2559 root 1.14
2560 root 1.51 ev_stop (EV_A_ (W)w);
2561 root 1.12 }
2562 root 1.4
2563 root 1.171 void noinline
2564 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2565 root 1.14 {
2566 root 1.248 EV_FREQUENT_CHECK;
2567    
2568 root 1.14 if (ev_is_active (w))
2569     {
2570     if (w->repeat)
2571 root 1.99 {
2572 root 1.228 ev_at (w) = mn_now + w->repeat;
2573 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2574 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2575 root 1.99 }
2576 root 1.14 else
2577 root 1.51 ev_timer_stop (EV_A_ w);
2578 root 1.14 }
2579     else if (w->repeat)
2580 root 1.112 {
2581 root 1.229 ev_at (w) = w->repeat;
2582 root 1.112 ev_timer_start (EV_A_ w);
2583     }
2584 root 1.248
2585     EV_FREQUENT_CHECK;
2586 root 1.14 }
2587    
2588 root 1.301 ev_tstamp
2589     ev_timer_remaining (EV_P_ ev_timer *w)
2590     {
2591     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2592     }
2593    
2594 root 1.140 #if EV_PERIODIC_ENABLE
2595 root 1.171 void noinline
2596 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2597 root 1.12 {
2598 root 1.123 if (expect_false (ev_is_active (w)))
2599 root 1.12 return;
2600 root 1.1
2601 root 1.77 if (w->reschedule_cb)
2602 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2603 root 1.77 else if (w->interval)
2604     {
2605 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2606 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2607 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2608 root 1.77 }
2609 root 1.173 else
2610 root 1.228 ev_at (w) = w->offset;
2611 root 1.12
2612 root 1.248 EV_FREQUENT_CHECK;
2613    
2614     ++periodiccnt;
2615     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2616 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2617     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2618 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2619 root 1.235 upheap (periodics, ev_active (w));
2620 root 1.62
2621 root 1.248 EV_FREQUENT_CHECK;
2622    
2623 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2624 root 1.1 }
2625    
2626 root 1.171 void noinline
2627 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2628 root 1.1 {
2629 root 1.166 clear_pending (EV_A_ (W)w);
2630 root 1.123 if (expect_false (!ev_is_active (w)))
2631 root 1.1 return;
2632    
2633 root 1.248 EV_FREQUENT_CHECK;
2634    
2635 root 1.230 {
2636     int active = ev_active (w);
2637 root 1.62
2638 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2639 root 1.151
2640 root 1.248 --periodiccnt;
2641    
2642     if (expect_true (active < periodiccnt + HEAP0))
2643 root 1.151 {
2644 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2645 root 1.181 adjustheap (periodics, periodiccnt, active);
2646 root 1.151 }
2647 root 1.248 }
2648 root 1.228
2649 root 1.248 EV_FREQUENT_CHECK;
2650 root 1.2
2651 root 1.51 ev_stop (EV_A_ (W)w);
2652 root 1.1 }
2653    
2654 root 1.171 void noinline
2655 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2656 root 1.77 {
2657 root 1.84 /* TODO: use adjustheap and recalculation */
2658 root 1.77 ev_periodic_stop (EV_A_ w);
2659     ev_periodic_start (EV_A_ w);
2660     }
2661 root 1.93 #endif
2662 root 1.77
2663 root 1.56 #ifndef SA_RESTART
2664     # define SA_RESTART 0
2665     #endif
2666    
2667 root 1.171 void noinline
2668 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2669 root 1.56 {
2670     #if EV_MULTIPLICITY
2671 root 1.278 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2672 root 1.56 #endif
2673 root 1.123 if (expect_false (ev_is_active (w)))
2674 root 1.56 return;
2675    
2676 root 1.278 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2677 root 1.56
2678 root 1.303 EV_FREQUENT_CHECK;
2679    
2680     #if EV_USE_SIGNALFD
2681     if (sigfd == -2)
2682     {
2683     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2684     if (sigfd < 0 && errno == EINVAL)
2685     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2686    
2687     if (sigfd >= 0)
2688     {
2689     fd_intern (sigfd); /* doing it twice will not hurt */
2690    
2691     sigemptyset (&sigfd_set);
2692    
2693     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2694     ev_set_priority (&sigfd_w, EV_MAXPRI);
2695     ev_io_start (EV_A_ &sigfd_w);
2696     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2697     }
2698     }
2699    
2700     if (sigfd >= 0)
2701     {
2702     /* TODO: check .head */
2703     sigaddset (&sigfd_set, w->signum);
2704     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2705 root 1.207
2706 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2707     }
2708     else
2709     #endif
2710     evpipe_init (EV_A);
2711 root 1.248
2712 root 1.180 {
2713     #ifndef _WIN32
2714     sigset_t full, prev;
2715     sigfillset (&full);
2716     sigprocmask (SIG_SETMASK, &full, &prev);
2717     #endif
2718    
2719 root 1.265 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2720 root 1.180
2721     #ifndef _WIN32
2722 root 1.304 # if EV_USE_SIGNALFD
2723 root 1.303 if (sigfd < 0)/*TODO*/
2724 root 1.304 # endif
2725 root 1.303 sigdelset (&prev, w->signum);
2726 root 1.180 sigprocmask (SIG_SETMASK, &prev, 0);
2727     #endif
2728     }
2729    
2730 root 1.56 ev_start (EV_A_ (W)w, 1);
2731 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2732 root 1.56
2733 root 1.63 if (!((WL)w)->next)
2734 root 1.56 {
2735 root 1.103 #if _WIN32
2736 root 1.218 signal (w->signum, ev_sighandler);
2737 root 1.67 #else
2738 root 1.304 # if EV_USE_SIGNALFD
2739 root 1.303 if (sigfd < 0) /*TODO*/
2740 root 1.304 # endif
2741 root 1.303 {
2742     struct sigaction sa = { };
2743     sa.sa_handler = ev_sighandler;
2744     sigfillset (&sa.sa_mask);
2745     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2746     sigaction (w->signum, &sa, 0);
2747     }
2748 root 1.67 #endif
2749 root 1.56 }
2750 root 1.248
2751     EV_FREQUENT_CHECK;
2752 root 1.56 }
2753    
2754 root 1.171 void noinline
2755 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2756 root 1.56 {
2757 root 1.166 clear_pending (EV_A_ (W)w);
2758 root 1.123 if (expect_false (!ev_is_active (w)))
2759 root 1.56 return;
2760    
2761 root 1.248 EV_FREQUENT_CHECK;
2762    
2763 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2764 root 1.56 ev_stop (EV_A_ (W)w);
2765    
2766     if (!signals [w->signum - 1].head)
2767 root 1.303 #if EV_USE_SIGNALFD
2768     if (sigfd >= 0)
2769     {
2770     sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2771     sigdelset (&sigfd_set, w->signum);
2772     signalfd (sigfd, &sigfd_set, 0);
2773     sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2774     /*TODO: maybe unblock signal? */
2775     }
2776     else
2777     #endif
2778     signal (w->signum, SIG_DFL);
2779 root 1.248
2780     EV_FREQUENT_CHECK;
2781 root 1.56 }
2782    
2783 root 1.28 void
2784 root 1.136 ev_child_start (EV_P_ ev_child *w)
2785 root 1.22 {
2786 root 1.56 #if EV_MULTIPLICITY
2787 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2788 root 1.56 #endif
2789 root 1.123 if (expect_false (ev_is_active (w)))
2790 root 1.22 return;
2791    
2792 root 1.248 EV_FREQUENT_CHECK;
2793    
2794 root 1.51 ev_start (EV_A_ (W)w, 1);
2795 root 1.182 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2796 root 1.248
2797     EV_FREQUENT_CHECK;
2798 root 1.22 }
2799    
2800 root 1.28 void
2801 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2802 root 1.22 {
2803 root 1.166 clear_pending (EV_A_ (W)w);
2804 root 1.123 if (expect_false (!ev_is_active (w)))
2805 root 1.22 return;
2806    
2807 root 1.248 EV_FREQUENT_CHECK;
2808    
2809 root 1.182 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2810 root 1.51 ev_stop (EV_A_ (W)w);
2811 root 1.248
2812     EV_FREQUENT_CHECK;
2813 root 1.22 }
2814    
2815 root 1.140 #if EV_STAT_ENABLE
2816    
2817     # ifdef _WIN32
2818 root 1.146 # undef lstat
2819     # define lstat(a,b) _stati64 (a,b)
2820 root 1.140 # endif
2821    
2822 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2823     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2824     #define MIN_STAT_INTERVAL 0.1074891
2825 root 1.143
2826 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2827 root 1.152
2828     #if EV_USE_INOTIFY
2829 root 1.153 # define EV_INOTIFY_BUFSIZE 8192
2830 root 1.152
2831     static void noinline
2832     infy_add (EV_P_ ev_stat *w)
2833     {
2834     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2835    
2836     if (w->wd < 0)
2837     {
2838 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2839     ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2840 root 1.152
2841     /* monitor some parent directory for speedup hints */
2842 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2843 root 1.233 /* but an efficiency issue only */
2844 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2845 root 1.152 {
2846 root 1.153 char path [4096];
2847 root 1.152 strcpy (path, w->path);
2848    
2849     do
2850     {
2851     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2852     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2853    
2854     char *pend = strrchr (path, '/');
2855    
2856 root 1.275 if (!pend || pend == path)
2857     break;
2858 root 1.152
2859     *pend = 0;
2860 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
2861 root 1.152 }
2862     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2863     }
2864     }
2865 root 1.275
2866     if (w->wd >= 0)
2867 root 1.273 {
2868     wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2869    
2870     /* now local changes will be tracked by inotify, but remote changes won't */
2871     /* unless the filesystem it known to be local, we therefore still poll */
2872     /* also do poll on <2.6.25, but with normal frequency */
2873     struct statfs sfs;
2874    
2875     if (fs_2625 && !statfs (w->path, &sfs))
2876     if (sfs.f_type == 0x1373 /* devfs */
2877     || sfs.f_type == 0xEF53 /* ext2/3 */
2878     || sfs.f_type == 0x3153464a /* jfs */
2879     || sfs.f_type == 0x52654973 /* reiser3 */
2880     || sfs.f_type == 0x01021994 /* tempfs */
2881     || sfs.f_type == 0x58465342 /* xfs */)
2882     return;
2883 root 1.152
2884 root 1.273 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2885     ev_timer_again (EV_A_ &w->timer);
2886     }
2887 root 1.152 }
2888    
2889     static void noinline
2890     infy_del (EV_P_ ev_stat *w)
2891     {
2892     int slot;
2893     int wd = w->wd;
2894    
2895     if (wd < 0)
2896     return;
2897    
2898     w->wd = -2;
2899     slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2900     wlist_del (&fs_hash [slot].head, (WL)w);
2901    
2902     /* remove this watcher, if others are watching it, they will rearm */
2903     inotify_rm_watch (fs_fd, wd);
2904     }
2905    
2906     static void noinline
2907     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2908     {
2909     if (slot < 0)
2910 root 1.264 /* overflow, need to check for all hash slots */
2911 root 1.152 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2912     infy_wd (EV_A_ slot, wd, ev);
2913     else
2914     {
2915     WL w_;
2916    
2917     for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2918     {
2919     ev_stat *w = (ev_stat *)w_;
2920     w_ = w_->next; /* lets us remove this watcher and all before it */
2921    
2922     if (w->wd == wd || wd == -1)
2923     {
2924     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2925     {
2926 root 1.275 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2927 root 1.152 w->wd = -1;
2928     infy_add (EV_A_ w); /* re-add, no matter what */
2929     }
2930    
2931 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
2932 root 1.152 }
2933     }
2934     }
2935     }
2936    
2937     static void
2938     infy_cb (EV_P_ ev_io *w, int revents)
2939     {
2940     char buf [EV_INOTIFY_BUFSIZE];
2941     struct inotify_event *ev = (struct inotify_event *)buf;
2942     int ofs;
2943     int len = read (fs_fd, buf, sizeof (buf));
2944    
2945     for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2946     infy_wd (EV_A_ ev->wd, ev->wd, ev);
2947     }
2948    
2949 root 1.284 inline_size void
2950 root 1.273 check_2625 (EV_P)
2951 root 1.152 {
2952 root 1.264 /* kernels < 2.6.25 are borked
2953     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2954     */
2955 root 1.273 struct utsname buf;
2956     int major, minor, micro;
2957    
2958     if (uname (&buf))
2959     return;
2960    
2961     if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2962     return;
2963    
2964     if (major < 2
2965     || (major == 2 && minor < 6)
2966     || (major == 2 && minor == 6 && micro < 25))
2967     return;
2968 root 1.264
2969 root 1.273 fs_2625 = 1;
2970     }
2971 root 1.264
2972 root 1.284 inline_size void
2973 root 1.273 infy_init (EV_P)
2974     {
2975     if (fs_fd != -2)
2976     return;
2977 root 1.264
2978 root 1.273 fs_fd = -1;
2979 root 1.264
2980 root 1.273 check_2625 (EV_A);
2981 root 1.264
2982 root 1.152 fs_fd = inotify_init ();
2983    
2984     if (fs_fd >= 0)
2985     {
2986     ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2987     ev_set_priority (&fs_w, EV_MAXPRI);
2988     ev_io_start (EV_A_ &fs_w);
2989     }
2990     }
2991    
2992 root 1.284 inline_size void
2993 root 1.154 infy_fork (EV_P)
2994     {
2995     int slot;
2996    
2997     if (fs_fd < 0)
2998     return;
2999    
3000     close (fs_fd);
3001     fs_fd = inotify_init ();
3002    
3003     for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3004     {
3005     WL w_ = fs_hash [slot].head;
3006     fs_hash [slot].head = 0;
3007    
3008     while (w_)
3009     {
3010     ev_stat *w = (ev_stat *)w_;
3011     w_ = w_->next; /* lets us add this watcher */
3012    
3013     w->wd = -1;
3014    
3015     if (fs_fd >= 0)
3016     infy_add (EV_A_ w); /* re-add, no matter what */
3017     else
3018 root 1.273 ev_timer_again (EV_A_ &w->timer);
3019 root 1.154 }
3020     }
3021     }
3022    
3023 root 1.152 #endif
3024    
3025 root 1.255 #ifdef _WIN32
3026     # define EV_LSTAT(p,b) _stati64 (p, b)
3027     #else
3028     # define EV_LSTAT(p,b) lstat (p, b)
3029     #endif
3030    
3031 root 1.140 void
3032     ev_stat_stat (EV_P_ ev_stat *w)
3033     {
3034     if (lstat (w->path, &w->attr) < 0)
3035     w->attr.st_nlink = 0;
3036     else if (!w->attr.st_nlink)
3037     w->attr.st_nlink = 1;
3038     }
3039    
3040 root 1.157 static void noinline
3041 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3042     {
3043     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3044    
3045     /* we copy this here each the time so that */
3046     /* prev has the old value when the callback gets invoked */
3047     w->prev = w->attr;
3048     ev_stat_stat (EV_A_ w);
3049    
3050 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3051     if (
3052     w->prev.st_dev != w->attr.st_dev
3053     || w->prev.st_ino != w->attr.st_ino
3054     || w->prev.st_mode != w->attr.st_mode
3055     || w->prev.st_nlink != w->attr.st_nlink
3056     || w->prev.st_uid != w->attr.st_uid
3057     || w->prev.st_gid != w->attr.st_gid
3058     || w->prev.st_rdev != w->attr.st_rdev
3059     || w->prev.st_size != w->attr.st_size
3060     || w->prev.st_atime != w->attr.st_atime
3061     || w->prev.st_mtime != w->attr.st_mtime
3062     || w->prev.st_ctime != w->attr.st_ctime
3063     ) {
3064 root 1.152 #if EV_USE_INOTIFY
3065 root 1.264 if (fs_fd >= 0)
3066     {
3067     infy_del (EV_A_ w);
3068     infy_add (EV_A_ w);
3069     ev_stat_stat (EV_A_ w); /* avoid race... */
3070     }
3071 root 1.152 #endif
3072    
3073     ev_feed_event (EV_A_ w, EV_STAT);
3074     }
3075 root 1.140 }
3076    
3077     void
3078     ev_stat_start (EV_P_ ev_stat *w)
3079     {
3080     if (expect_false (ev_is_active (w)))
3081     return;
3082    
3083     ev_stat_stat (EV_A_ w);
3084    
3085 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3086     w->interval = MIN_STAT_INTERVAL;
3087 root 1.143
3088 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3089 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3090 root 1.152
3091     #if EV_USE_INOTIFY
3092     infy_init (EV_A);
3093    
3094     if (fs_fd >= 0)
3095     infy_add (EV_A_ w);
3096     else
3097     #endif
3098 root 1.273 ev_timer_again (EV_A_ &w->timer);
3099 root 1.140
3100     ev_start (EV_A_ (W)w, 1);
3101 root 1.248
3102     EV_FREQUENT_CHECK;
3103 root 1.140 }
3104    
3105     void
3106     ev_stat_stop (EV_P_ ev_stat *w)
3107     {
3108 root 1.166 clear_pending (EV_A_ (W)w);
3109 root 1.140 if (expect_false (!ev_is_active (w)))
3110     return;
3111    
3112 root 1.248 EV_FREQUENT_CHECK;
3113    
3114 root 1.152 #if EV_USE_INOTIFY
3115     infy_del (EV_A_ w);
3116     #endif
3117 root 1.140 ev_timer_stop (EV_A_ &w->timer);
3118    
3119 root 1.134 ev_stop (EV_A_ (W)w);
3120 root 1.248
3121     EV_FREQUENT_CHECK;
3122 root 1.134 }
3123     #endif
3124    
3125 root 1.164 #if EV_IDLE_ENABLE
3126 root 1.144 void
3127     ev_idle_start (EV_P_ ev_idle *w)
3128     {
3129     if (expect_false (ev_is_active (w)))
3130     return;
3131    
3132 root 1.164 pri_adjust (EV_A_ (W)w);
3133    
3134 root 1.248 EV_FREQUENT_CHECK;
3135    
3136 root 1.164 {
3137     int active = ++idlecnt [ABSPRI (w)];
3138    
3139     ++idleall;
3140     ev_start (EV_A_ (W)w, active);
3141    
3142     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3143     idles [ABSPRI (w)][active - 1] = w;
3144     }
3145 root 1.248
3146     EV_FREQUENT_CHECK;
3147 root 1.144 }
3148    
3149     void
3150     ev_idle_stop (EV_P_ ev_idle *w)
3151     {
3152 root 1.166 clear_pending (EV_A_ (W)w);
3153 root 1.144 if (expect_false (!ev_is_active (w)))
3154     return;
3155    
3156 root 1.248 EV_FREQUENT_CHECK;
3157    
3158 root 1.144 {
3159 root 1.230 int active = ev_active (w);
3160 root 1.164
3161     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3162 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3163 root 1.164
3164     ev_stop (EV_A_ (W)w);
3165     --idleall;
3166 root 1.144 }
3167 root 1.248
3168     EV_FREQUENT_CHECK;
3169 root 1.144 }
3170 root 1.164 #endif
3171 root 1.144
3172     void
3173     ev_prepare_start (EV_P_ ev_prepare *w)
3174     {
3175     if (expect_false (ev_is_active (w)))
3176     return;
3177    
3178 root 1.248 EV_FREQUENT_CHECK;
3179    
3180 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3181     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3182     prepares [preparecnt - 1] = w;
3183 root 1.248
3184     EV_FREQUENT_CHECK;
3185 root 1.144 }
3186    
3187     void
3188     ev_prepare_stop (EV_P_ ev_prepare *w)
3189     {
3190 root 1.166 clear_pending (EV_A_ (W)w);
3191 root 1.144 if (expect_false (!ev_is_active (w)))
3192     return;
3193    
3194 root 1.248 EV_FREQUENT_CHECK;
3195    
3196 root 1.144 {
3197 root 1.230 int active = ev_active (w);
3198    
3199 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3200 root 1.230 ev_active (prepares [active - 1]) = active;
3201 root 1.144 }
3202    
3203     ev_stop (EV_A_ (W)w);
3204 root 1.248
3205     EV_FREQUENT_CHECK;
3206 root 1.144 }
3207    
3208     void
3209     ev_check_start (EV_P_ ev_check *w)
3210     {
3211     if (expect_false (ev_is_active (w)))
3212     return;
3213    
3214 root 1.248 EV_FREQUENT_CHECK;
3215    
3216 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3217     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3218     checks [checkcnt - 1] = w;
3219 root 1.248
3220     EV_FREQUENT_CHECK;
3221 root 1.144 }
3222    
3223     void
3224     ev_check_stop (EV_P_ ev_check *w)
3225     {
3226 root 1.166 clear_pending (EV_A_ (W)w);
3227 root 1.144 if (expect_false (!ev_is_active (w)))
3228     return;
3229    
3230 root 1.248 EV_FREQUENT_CHECK;
3231    
3232 root 1.144 {
3233 root 1.230 int active = ev_active (w);
3234    
3235 root 1.144 checks [active - 1] = checks [--checkcnt];
3236 root 1.230 ev_active (checks [active - 1]) = active;
3237 root 1.144 }
3238    
3239     ev_stop (EV_A_ (W)w);
3240 root 1.248
3241     EV_FREQUENT_CHECK;
3242 root 1.144 }
3243    
3244     #if EV_EMBED_ENABLE
3245     void noinline
3246     ev_embed_sweep (EV_P_ ev_embed *w)
3247     {
3248 root 1.188 ev_loop (w->other, EVLOOP_NONBLOCK);
3249 root 1.144 }
3250    
3251     static void
3252 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3253 root 1.144 {
3254     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3255    
3256     if (ev_cb (w))
3257     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3258     else
3259 root 1.195 ev_loop (w->other, EVLOOP_NONBLOCK);
3260 root 1.144 }
3261    
3262 root 1.189 static void
3263     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3264     {
3265     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3266    
3267 root 1.195 {
3268     struct ev_loop *loop = w->other;
3269    
3270     while (fdchangecnt)
3271     {
3272     fd_reify (EV_A);
3273     ev_loop (EV_A_ EVLOOP_NONBLOCK);
3274     }
3275     }
3276     }
3277    
3278 root 1.261 static void
3279     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3280     {
3281     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3282    
3283 root 1.277 ev_embed_stop (EV_A_ w);
3284    
3285 root 1.261 {
3286     struct ev_loop *loop = w->other;
3287    
3288     ev_loop_fork (EV_A);
3289 root 1.277 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3290 root 1.261 }
3291 root 1.277
3292     ev_embed_start (EV_A_ w);
3293 root 1.261 }
3294    
3295 root 1.195 #if 0
3296     static void
3297     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3298     {
3299     ev_idle_stop (EV_A_ idle);
3300 root 1.189 }
3301 root 1.195 #endif
3302 root 1.189
3303 root 1.144 void
3304     ev_embed_start (EV_P_ ev_embed *w)
3305     {
3306     if (expect_false (ev_is_active (w)))
3307     return;
3308    
3309     {
3310 root 1.188 struct ev_loop *loop = w->other;
3311 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3312 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3313 root 1.144 }
3314    
3315 root 1.248 EV_FREQUENT_CHECK;
3316    
3317 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3318     ev_io_start (EV_A_ &w->io);
3319    
3320 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3321     ev_set_priority (&w->prepare, EV_MINPRI);
3322     ev_prepare_start (EV_A_ &w->prepare);
3323    
3324 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3325     ev_fork_start (EV_A_ &w->fork);
3326    
3327 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3328    
3329 root 1.144 ev_start (EV_A_ (W)w, 1);
3330 root 1.248
3331     EV_FREQUENT_CHECK;
3332 root 1.144 }
3333    
3334     void
3335     ev_embed_stop (EV_P_ ev_embed *w)
3336     {
3337 root 1.166 clear_pending (EV_A_ (W)w);
3338 root 1.144 if (expect_false (!ev_is_active (w)))
3339     return;
3340    
3341 root 1.248 EV_FREQUENT_CHECK;
3342    
3343 root 1.261 ev_io_stop (EV_A_ &w->io);
3344 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3345 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3346 root 1.248
3347     EV_FREQUENT_CHECK;
3348 root 1.144 }
3349     #endif
3350    
3351 root 1.147 #if EV_FORK_ENABLE
3352     void
3353     ev_fork_start (EV_P_ ev_fork *w)
3354     {
3355     if (expect_false (ev_is_active (w)))
3356     return;
3357    
3358 root 1.248 EV_FREQUENT_CHECK;
3359    
3360 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3361     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3362     forks [forkcnt - 1] = w;
3363 root 1.248
3364     EV_FREQUENT_CHECK;
3365 root 1.147 }
3366    
3367     void
3368     ev_fork_stop (EV_P_ ev_fork *w)
3369     {
3370 root 1.166 clear_pending (EV_A_ (W)w);
3371 root 1.147 if (expect_false (!ev_is_active (w)))
3372     return;
3373    
3374 root 1.248 EV_FREQUENT_CHECK;
3375    
3376 root 1.147 {
3377 root 1.230 int active = ev_active (w);
3378    
3379 root 1.147 forks [active - 1] = forks [--forkcnt];
3380 root 1.230 ev_active (forks [active - 1]) = active;
3381 root 1.147 }
3382    
3383     ev_stop (EV_A_ (W)w);
3384 root 1.248
3385     EV_FREQUENT_CHECK;
3386 root 1.147 }
3387     #endif
3388    
3389 root 1.207 #if EV_ASYNC_ENABLE
3390     void
3391     ev_async_start (EV_P_ ev_async *w)
3392     {
3393     if (expect_false (ev_is_active (w)))
3394     return;
3395    
3396     evpipe_init (EV_A);
3397    
3398 root 1.248 EV_FREQUENT_CHECK;
3399    
3400 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3401     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3402     asyncs [asynccnt - 1] = w;
3403 root 1.248
3404     EV_FREQUENT_CHECK;
3405 root 1.207 }
3406    
3407     void
3408     ev_async_stop (EV_P_ ev_async *w)
3409     {
3410     clear_pending (EV_A_ (W)w);
3411     if (expect_false (!ev_is_active (w)))
3412     return;
3413    
3414 root 1.248 EV_FREQUENT_CHECK;
3415    
3416 root 1.207 {
3417 root 1.230 int active = ev_active (w);
3418    
3419 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3420 root 1.230 ev_active (asyncs [active - 1]) = active;
3421 root 1.207 }
3422    
3423     ev_stop (EV_A_ (W)w);
3424 root 1.248
3425     EV_FREQUENT_CHECK;
3426 root 1.207 }
3427    
3428     void
3429     ev_async_send (EV_P_ ev_async *w)
3430     {
3431     w->sent = 1;
3432 root 1.214 evpipe_write (EV_A_ &gotasync);
3433 root 1.207 }
3434     #endif
3435    
3436 root 1.1 /*****************************************************************************/
3437 root 1.10
3438 root 1.16 struct ev_once
3439     {
3440 root 1.136 ev_io io;
3441     ev_timer to;
3442 root 1.16 void (*cb)(int revents, void *arg);
3443     void *arg;
3444     };
3445    
3446     static void
3447 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3448 root 1.16 {
3449     void (*cb)(int revents, void *arg) = once->cb;
3450     void *arg = once->arg;
3451    
3452 root 1.259 ev_io_stop (EV_A_ &once->io);
3453 root 1.51 ev_timer_stop (EV_A_ &once->to);
3454 root 1.69 ev_free (once);
3455 root 1.16
3456     cb (revents, arg);
3457     }
3458    
3459     static void
3460 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3461 root 1.16 {
3462 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3463    
3464     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3465 root 1.16 }
3466    
3467     static void
3468 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3469 root 1.16 {
3470 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3471    
3472     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3473 root 1.16 }
3474    
3475     void
3476 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3477 root 1.16 {
3478 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3479 root 1.16
3480 root 1.123 if (expect_false (!once))
3481 root 1.16 {
3482 root 1.123 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3483     return;
3484     }
3485    
3486     once->cb = cb;
3487     once->arg = arg;
3488 root 1.16
3489 root 1.123 ev_init (&once->io, once_cb_io);
3490     if (fd >= 0)
3491     {
3492     ev_io_set (&once->io, fd, events);
3493     ev_io_start (EV_A_ &once->io);
3494     }
3495 root 1.16
3496 root 1.123 ev_init (&once->to, once_cb_to);
3497     if (timeout >= 0.)
3498     {
3499     ev_timer_set (&once->to, timeout, 0.);
3500     ev_timer_start (EV_A_ &once->to);
3501 root 1.16 }
3502     }
3503    
3504 root 1.282 /*****************************************************************************/
3505    
3506 root 1.288 #if EV_WALK_ENABLE
3507 root 1.282 void
3508     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3509     {
3510     int i, j;
3511     ev_watcher_list *wl, *wn;
3512    
3513     if (types & (EV_IO | EV_EMBED))
3514     for (i = 0; i < anfdmax; ++i)
3515     for (wl = anfds [i].head; wl; )
3516     {
3517     wn = wl->next;
3518    
3519     #if EV_EMBED_ENABLE
3520     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3521     {
3522     if (types & EV_EMBED)
3523     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3524     }
3525     else
3526     #endif
3527     #if EV_USE_INOTIFY
3528     if (ev_cb ((ev_io *)wl) == infy_cb)
3529     ;
3530     else
3531     #endif
3532 root 1.288 if ((ev_io *)wl != &pipe_w)
3533 root 1.282 if (types & EV_IO)
3534     cb (EV_A_ EV_IO, wl);
3535    
3536     wl = wn;
3537     }
3538    
3539     if (types & (EV_TIMER | EV_STAT))
3540     for (i = timercnt + HEAP0; i-- > HEAP0; )
3541     #if EV_STAT_ENABLE
3542     /*TODO: timer is not always active*/
3543     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3544     {
3545     if (types & EV_STAT)
3546     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3547     }
3548     else
3549     #endif
3550     if (types & EV_TIMER)
3551     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3552    
3553     #if EV_PERIODIC_ENABLE
3554     if (types & EV_PERIODIC)
3555     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3556     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3557     #endif
3558    
3559     #if EV_IDLE_ENABLE
3560     if (types & EV_IDLE)
3561     for (j = NUMPRI; i--; )
3562     for (i = idlecnt [j]; i--; )
3563     cb (EV_A_ EV_IDLE, idles [j][i]);
3564     #endif
3565    
3566     #if EV_FORK_ENABLE
3567     if (types & EV_FORK)
3568     for (i = forkcnt; i--; )
3569     if (ev_cb (forks [i]) != embed_fork_cb)
3570     cb (EV_A_ EV_FORK, forks [i]);
3571     #endif
3572    
3573     #if EV_ASYNC_ENABLE
3574     if (types & EV_ASYNC)
3575     for (i = asynccnt; i--; )
3576     cb (EV_A_ EV_ASYNC, asyncs [i]);
3577     #endif
3578    
3579     if (types & EV_PREPARE)
3580     for (i = preparecnt; i--; )
3581     #if EV_EMBED_ENABLE
3582     if (ev_cb (prepares [i]) != embed_prepare_cb)
3583     #endif
3584     cb (EV_A_ EV_PREPARE, prepares [i]);
3585    
3586     if (types & EV_CHECK)
3587     for (i = checkcnt; i--; )
3588     cb (EV_A_ EV_CHECK, checks [i]);
3589    
3590     if (types & EV_SIGNAL)
3591     for (i = 0; i < signalmax; ++i)
3592     for (wl = signals [i].head; wl; )
3593     {
3594     wn = wl->next;
3595     cb (EV_A_ EV_SIGNAL, wl);
3596     wl = wn;
3597     }
3598    
3599     if (types & EV_CHILD)
3600     for (i = EV_PID_HASHSIZE; i--; )
3601     for (wl = childs [i]; wl; )
3602     {
3603     wn = wl->next;
3604     cb (EV_A_ EV_CHILD, wl);
3605     wl = wn;
3606     }
3607     /* EV_STAT 0x00001000 /* stat data changed */
3608     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3609     }
3610     #endif
3611    
3612 root 1.188 #if EV_MULTIPLICITY
3613     #include "ev_wrap.h"
3614     #endif
3615    
3616 root 1.87 #ifdef __cplusplus
3617     }
3618     #endif
3619