ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.317
Committed: Sat Nov 14 00:15:21 2009 UTC (14 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.316: +7 -7 lines
Log Message:
inotify should not keep a reference

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.278 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40     #ifdef __cplusplus
41     extern "C" {
42     #endif
43    
44 root 1.220 /* this big block deduces configuration from config.h */
45 root 1.59 #ifndef EV_STANDALONE
46 root 1.133 # ifdef EV_CONFIG_H
47     # include EV_CONFIG_H
48     # else
49     # include "config.h"
50     # endif
51 root 1.60
52 root 1.274 # if HAVE_CLOCK_SYSCALL
53     # ifndef EV_USE_CLOCK_SYSCALL
54     # define EV_USE_CLOCK_SYSCALL 1
55     # ifndef EV_USE_REALTIME
56     # define EV_USE_REALTIME 0
57     # endif
58     # ifndef EV_USE_MONOTONIC
59     # define EV_USE_MONOTONIC 1
60     # endif
61     # endif
62 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
63     # define EV_USE_CLOCK_SYSCALL 0
64 root 1.274 # endif
65    
66 root 1.60 # if HAVE_CLOCK_GETTIME
67 root 1.97 # ifndef EV_USE_MONOTONIC
68     # define EV_USE_MONOTONIC 1
69     # endif
70     # ifndef EV_USE_REALTIME
71 root 1.279 # define EV_USE_REALTIME 0
72 root 1.97 # endif
73 root 1.126 # else
74     # ifndef EV_USE_MONOTONIC
75     # define EV_USE_MONOTONIC 0
76     # endif
77     # ifndef EV_USE_REALTIME
78     # define EV_USE_REALTIME 0
79     # endif
80 root 1.60 # endif
81    
82 root 1.193 # ifndef EV_USE_NANOSLEEP
83     # if HAVE_NANOSLEEP
84     # define EV_USE_NANOSLEEP 1
85     # else
86     # define EV_USE_NANOSLEEP 0
87     # endif
88     # endif
89    
90 root 1.127 # ifndef EV_USE_SELECT
91     # if HAVE_SELECT && HAVE_SYS_SELECT_H
92     # define EV_USE_SELECT 1
93     # else
94     # define EV_USE_SELECT 0
95     # endif
96 root 1.60 # endif
97    
98 root 1.127 # ifndef EV_USE_POLL
99     # if HAVE_POLL && HAVE_POLL_H
100     # define EV_USE_POLL 1
101     # else
102     # define EV_USE_POLL 0
103     # endif
104 root 1.60 # endif
105 root 1.127
106     # ifndef EV_USE_EPOLL
107     # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108     # define EV_USE_EPOLL 1
109     # else
110     # define EV_USE_EPOLL 0
111     # endif
112 root 1.60 # endif
113 root 1.127
114     # ifndef EV_USE_KQUEUE
115     # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116     # define EV_USE_KQUEUE 1
117     # else
118     # define EV_USE_KQUEUE 0
119     # endif
120 root 1.60 # endif
121 root 1.127
122     # ifndef EV_USE_PORT
123     # if HAVE_PORT_H && HAVE_PORT_CREATE
124     # define EV_USE_PORT 1
125     # else
126     # define EV_USE_PORT 0
127     # endif
128 root 1.118 # endif
129    
130 root 1.152 # ifndef EV_USE_INOTIFY
131     # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132     # define EV_USE_INOTIFY 1
133     # else
134     # define EV_USE_INOTIFY 0
135     # endif
136     # endif
137    
138 root 1.303 # ifndef EV_USE_SIGNALFD
139     # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140     # define EV_USE_SIGNALFD 1
141     # else
142     # define EV_USE_SIGNALFD 0
143     # endif
144     # endif
145    
146 root 1.220 # ifndef EV_USE_EVENTFD
147     # if HAVE_EVENTFD
148     # define EV_USE_EVENTFD 1
149     # else
150     # define EV_USE_EVENTFD 0
151     # endif
152     # endif
153 root 1.250
154 root 1.29 #endif
155 root 1.17
156 root 1.1 #include <math.h>
157     #include <stdlib.h>
158 root 1.7 #include <fcntl.h>
159 root 1.16 #include <stddef.h>
160 root 1.1
161     #include <stdio.h>
162    
163 root 1.4 #include <assert.h>
164 root 1.1 #include <errno.h>
165 root 1.22 #include <sys/types.h>
166 root 1.71 #include <time.h>
167    
168 root 1.72 #include <signal.h>
169 root 1.71
170 root 1.152 #ifdef EV_H
171     # include EV_H
172     #else
173     # include "ev.h"
174     #endif
175    
176 root 1.103 #ifndef _WIN32
177 root 1.71 # include <sys/time.h>
178 root 1.45 # include <sys/wait.h>
179 root 1.140 # include <unistd.h>
180 root 1.103 #else
181 root 1.256 # include <io.h>
182 root 1.103 # define WIN32_LEAN_AND_MEAN
183     # include <windows.h>
184     # ifndef EV_SELECT_IS_WINSOCKET
185     # define EV_SELECT_IS_WINSOCKET 1
186     # endif
187 root 1.45 #endif
188 root 1.103
189 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
190 root 1.40
191 root 1.305 /* try to deduce the maximum number of signals on this platform */
192     #if defined (EV_NSIG)
193     /* use what's provided */
194     #elif defined (NSIG)
195     # define EV_NSIG (NSIG)
196     #elif defined(_NSIG)
197     # define EV_NSIG (_NSIG)
198     #elif defined (SIGMAX)
199     # define EV_NSIG (SIGMAX+1)
200     #elif defined (SIG_MAX)
201     # define EV_NSIG (SIG_MAX+1)
202     #elif defined (_SIG_MAX)
203     # define EV_NSIG (_SIG_MAX+1)
204     #elif defined (MAXSIG)
205     # define EV_NSIG (MAXSIG+1)
206     #elif defined (MAX_SIG)
207     # define EV_NSIG (MAX_SIG+1)
208     #elif defined (SIGARRAYSIZE)
209     # define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210     #elif defined (_sys_nsig)
211     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212     #else
213     # error "unable to find value for NSIG, please report"
214     /* to make it compile regardless, just remove the above line */
215 root 1.306 # define EV_NSIG 65
216 root 1.305 #endif
217    
218 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
219     # if __linux && __GLIBC__ >= 2
220     # define EV_USE_CLOCK_SYSCALL 1
221     # else
222     # define EV_USE_CLOCK_SYSCALL 0
223     # endif
224     #endif
225    
226 root 1.29 #ifndef EV_USE_MONOTONIC
227 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228     # define EV_USE_MONOTONIC 1
229     # else
230     # define EV_USE_MONOTONIC 0
231     # endif
232 root 1.37 #endif
233    
234 root 1.118 #ifndef EV_USE_REALTIME
235 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236 root 1.118 #endif
237    
238 root 1.193 #ifndef EV_USE_NANOSLEEP
239 root 1.253 # if _POSIX_C_SOURCE >= 199309L
240     # define EV_USE_NANOSLEEP 1
241     # else
242     # define EV_USE_NANOSLEEP 0
243     # endif
244 root 1.193 #endif
245    
246 root 1.29 #ifndef EV_USE_SELECT
247     # define EV_USE_SELECT 1
248 root 1.10 #endif
249    
250 root 1.59 #ifndef EV_USE_POLL
251 root 1.104 # ifdef _WIN32
252     # define EV_USE_POLL 0
253     # else
254     # define EV_USE_POLL 1
255     # endif
256 root 1.41 #endif
257    
258 root 1.29 #ifndef EV_USE_EPOLL
259 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260     # define EV_USE_EPOLL 1
261     # else
262     # define EV_USE_EPOLL 0
263     # endif
264 root 1.10 #endif
265    
266 root 1.44 #ifndef EV_USE_KQUEUE
267     # define EV_USE_KQUEUE 0
268     #endif
269    
270 root 1.118 #ifndef EV_USE_PORT
271     # define EV_USE_PORT 0
272 root 1.40 #endif
273    
274 root 1.152 #ifndef EV_USE_INOTIFY
275 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276     # define EV_USE_INOTIFY 1
277     # else
278     # define EV_USE_INOTIFY 0
279     # endif
280 root 1.152 #endif
281    
282 root 1.149 #ifndef EV_PID_HASHSIZE
283     # if EV_MINIMAL
284     # define EV_PID_HASHSIZE 1
285     # else
286     # define EV_PID_HASHSIZE 16
287     # endif
288     #endif
289    
290 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
291     # if EV_MINIMAL
292     # define EV_INOTIFY_HASHSIZE 1
293     # else
294     # define EV_INOTIFY_HASHSIZE 16
295     # endif
296     #endif
297    
298 root 1.220 #ifndef EV_USE_EVENTFD
299     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300     # define EV_USE_EVENTFD 1
301     # else
302     # define EV_USE_EVENTFD 0
303     # endif
304     #endif
305    
306 root 1.303 #ifndef EV_USE_SIGNALFD
307 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308 root 1.303 # define EV_USE_SIGNALFD 1
309     # else
310     # define EV_USE_SIGNALFD 0
311     # endif
312     #endif
313    
314 root 1.249 #if 0 /* debugging */
315 root 1.250 # define EV_VERIFY 3
316 root 1.249 # define EV_USE_4HEAP 1
317     # define EV_HEAP_CACHE_AT 1
318     #endif
319    
320 root 1.250 #ifndef EV_VERIFY
321     # define EV_VERIFY !EV_MINIMAL
322     #endif
323    
324 root 1.243 #ifndef EV_USE_4HEAP
325     # define EV_USE_4HEAP !EV_MINIMAL
326     #endif
327    
328     #ifndef EV_HEAP_CACHE_AT
329     # define EV_HEAP_CACHE_AT !EV_MINIMAL
330     #endif
331    
332 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333     /* which makes programs even slower. might work on other unices, too. */
334     #if EV_USE_CLOCK_SYSCALL
335     # include <syscall.h>
336     # ifdef SYS_clock_gettime
337     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338     # undef EV_USE_MONOTONIC
339     # define EV_USE_MONOTONIC 1
340     # else
341     # undef EV_USE_CLOCK_SYSCALL
342     # define EV_USE_CLOCK_SYSCALL 0
343     # endif
344     #endif
345    
346 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
347 root 1.40
348     #ifndef CLOCK_MONOTONIC
349     # undef EV_USE_MONOTONIC
350     # define EV_USE_MONOTONIC 0
351     #endif
352    
353 root 1.31 #ifndef CLOCK_REALTIME
354 root 1.40 # undef EV_USE_REALTIME
355 root 1.31 # define EV_USE_REALTIME 0
356     #endif
357 root 1.40
358 root 1.152 #if !EV_STAT_ENABLE
359 root 1.185 # undef EV_USE_INOTIFY
360 root 1.152 # define EV_USE_INOTIFY 0
361     #endif
362    
363 root 1.193 #if !EV_USE_NANOSLEEP
364     # ifndef _WIN32
365     # include <sys/select.h>
366     # endif
367     #endif
368    
369 root 1.152 #if EV_USE_INOTIFY
370 root 1.264 # include <sys/utsname.h>
371 root 1.273 # include <sys/statfs.h>
372 root 1.152 # include <sys/inotify.h>
373 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374     # ifndef IN_DONT_FOLLOW
375     # undef EV_USE_INOTIFY
376     # define EV_USE_INOTIFY 0
377     # endif
378 root 1.152 #endif
379    
380 root 1.185 #if EV_SELECT_IS_WINSOCKET
381     # include <winsock.h>
382     #endif
383    
384 root 1.220 #if EV_USE_EVENTFD
385     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386 root 1.221 # include <stdint.h>
387 root 1.303 # ifndef EFD_NONBLOCK
388     # define EFD_NONBLOCK O_NONBLOCK
389     # endif
390     # ifndef EFD_CLOEXEC
391 root 1.311 # ifdef O_CLOEXEC
392     # define EFD_CLOEXEC O_CLOEXEC
393     # else
394     # define EFD_CLOEXEC 02000000
395     # endif
396 root 1.303 # endif
397 root 1.222 # ifdef __cplusplus
398     extern "C" {
399     # endif
400 root 1.220 int eventfd (unsigned int initval, int flags);
401 root 1.222 # ifdef __cplusplus
402     }
403     # endif
404 root 1.220 #endif
405    
406 root 1.303 #if EV_USE_SIGNALFD
407 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408     # include <stdint.h>
409     # ifndef SFD_NONBLOCK
410     # define SFD_NONBLOCK O_NONBLOCK
411     # endif
412     # ifndef SFD_CLOEXEC
413     # ifdef O_CLOEXEC
414     # define SFD_CLOEXEC O_CLOEXEC
415     # else
416     # define SFD_CLOEXEC 02000000
417     # endif
418     # endif
419     # ifdef __cplusplus
420     extern "C" {
421     # endif
422     int signalfd (int fd, const sigset_t *mask, int flags);
423    
424     struct signalfd_siginfo
425     {
426     uint32_t ssi_signo;
427     char pad[128 - sizeof (uint32_t)];
428     };
429     # ifdef __cplusplus
430     }
431     # endif
432 root 1.303 #endif
433    
434 root 1.314
435 root 1.40 /**/
436 root 1.1
437 root 1.250 #if EV_VERIFY >= 3
438 root 1.248 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439     #else
440     # define EV_FREQUENT_CHECK do { } while (0)
441     #endif
442    
443 root 1.176 /*
444     * This is used to avoid floating point rounding problems.
445     * It is added to ev_rt_now when scheduling periodics
446     * to ensure progress, time-wise, even when rounding
447     * errors are against us.
448 root 1.177 * This value is good at least till the year 4000.
449 root 1.176 * Better solutions welcome.
450     */
451     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
452    
453 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
454 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
455 root 1.1
456 root 1.185 #if __GNUC__ >= 4
457 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
458 root 1.169 # define noinline __attribute__ ((noinline))
459 root 1.40 #else
460     # define expect(expr,value) (expr)
461 root 1.140 # define noinline
462 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
463 root 1.169 # define inline
464     # endif
465 root 1.40 #endif
466    
467     #define expect_false(expr) expect ((expr) != 0, 0)
468     #define expect_true(expr) expect ((expr) != 0, 1)
469 root 1.169 #define inline_size static inline
470    
471     #if EV_MINIMAL
472     # define inline_speed static noinline
473     #else
474     # define inline_speed static inline
475     #endif
476 root 1.40
477 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478    
479     #if EV_MINPRI == EV_MAXPRI
480     # define ABSPRI(w) (((W)w), 0)
481     #else
482     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483     #endif
484 root 1.42
485 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
486 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
487 root 1.103
488 root 1.136 typedef ev_watcher *W;
489     typedef ev_watcher_list *WL;
490     typedef ev_watcher_time *WT;
491 root 1.10
492 root 1.229 #define ev_active(w) ((W)(w))->active
493 root 1.228 #define ev_at(w) ((WT)(w))->at
494    
495 root 1.279 #if EV_USE_REALTIME
496 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
497     /* giving it a reasonably high chance of working on typical architetcures */
498 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499     #endif
500    
501     #if EV_USE_MONOTONIC
502 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503 root 1.198 #endif
504 root 1.54
505 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
506     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507     #endif
508     #ifndef EV_WIN32_HANDLE_TO_FD
509     # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510     #endif
511     #ifndef EV_WIN32_CLOSE_FD
512     # define EV_WIN32_CLOSE_FD(fd) close (fd)
513     #endif
514    
515 root 1.103 #ifdef _WIN32
516 root 1.98 # include "ev_win32.c"
517     #endif
518 root 1.67
519 root 1.53 /*****************************************************************************/
520 root 1.1
521 root 1.70 static void (*syserr_cb)(const char *msg);
522 root 1.69
523 root 1.141 void
524     ev_set_syserr_cb (void (*cb)(const char *msg))
525 root 1.69 {
526     syserr_cb = cb;
527     }
528    
529 root 1.141 static void noinline
530 root 1.269 ev_syserr (const char *msg)
531 root 1.69 {
532 root 1.70 if (!msg)
533     msg = "(libev) system error";
534    
535 root 1.69 if (syserr_cb)
536 root 1.70 syserr_cb (msg);
537 root 1.69 else
538     {
539 root 1.70 perror (msg);
540 root 1.69 abort ();
541     }
542     }
543    
544 root 1.224 static void *
545     ev_realloc_emul (void *ptr, long size)
546     {
547     /* some systems, notably openbsd and darwin, fail to properly
548     * implement realloc (x, 0) (as required by both ansi c-98 and
549     * the single unix specification, so work around them here.
550     */
551    
552     if (size)
553     return realloc (ptr, size);
554    
555     free (ptr);
556     return 0;
557     }
558    
559     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
560 root 1.69
561 root 1.141 void
562 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
563 root 1.69 {
564     alloc = cb;
565     }
566    
567 root 1.150 inline_speed void *
568 root 1.155 ev_realloc (void *ptr, long size)
569 root 1.69 {
570 root 1.224 ptr = alloc (ptr, size);
571 root 1.69
572     if (!ptr && size)
573     {
574 root 1.155 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
575 root 1.69 abort ();
576     }
577    
578     return ptr;
579     }
580    
581     #define ev_malloc(size) ev_realloc (0, (size))
582     #define ev_free(ptr) ev_realloc ((ptr), 0)
583    
584     /*****************************************************************************/
585    
586 root 1.298 /* set in reify when reification needed */
587     #define EV_ANFD_REIFY 1
588    
589 root 1.288 /* file descriptor info structure */
590 root 1.53 typedef struct
591     {
592 root 1.68 WL head;
593 root 1.288 unsigned char events; /* the events watched for */
594 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
596 root 1.269 unsigned char unused;
597     #if EV_USE_EPOLL
598 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
599 root 1.269 #endif
600 root 1.103 #if EV_SELECT_IS_WINSOCKET
601     SOCKET handle;
602     #endif
603 root 1.53 } ANFD;
604 root 1.1
605 root 1.288 /* stores the pending event set for a given watcher */
606 root 1.53 typedef struct
607     {
608     W w;
609 root 1.288 int events; /* the pending event set for the given watcher */
610 root 1.53 } ANPENDING;
611 root 1.51
612 root 1.155 #if EV_USE_INOTIFY
613 root 1.241 /* hash table entry per inotify-id */
614 root 1.152 typedef struct
615     {
616     WL head;
617 root 1.155 } ANFS;
618 root 1.152 #endif
619    
620 root 1.241 /* Heap Entry */
621     #if EV_HEAP_CACHE_AT
622 root 1.288 /* a heap element */
623 root 1.241 typedef struct {
624 root 1.243 ev_tstamp at;
625 root 1.241 WT w;
626     } ANHE;
627    
628 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
629     #define ANHE_at(he) (he).at /* access cached at, read-only */
630     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
631 root 1.241 #else
632 root 1.288 /* a heap element */
633 root 1.241 typedef WT ANHE;
634    
635 root 1.248 #define ANHE_w(he) (he)
636     #define ANHE_at(he) (he)->at
637     #define ANHE_at_cache(he)
638 root 1.241 #endif
639    
640 root 1.55 #if EV_MULTIPLICITY
641 root 1.54
642 root 1.80 struct ev_loop
643     {
644 root 1.86 ev_tstamp ev_rt_now;
645 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
646 root 1.80 #define VAR(name,decl) decl;
647     #include "ev_vars.h"
648     #undef VAR
649     };
650     #include "ev_wrap.h"
651    
652 root 1.116 static struct ev_loop default_loop_struct;
653     struct ev_loop *ev_default_loop_ptr;
654 root 1.54
655 root 1.53 #else
656 root 1.54
657 root 1.86 ev_tstamp ev_rt_now;
658 root 1.80 #define VAR(name,decl) static decl;
659     #include "ev_vars.h"
660     #undef VAR
661    
662 root 1.116 static int ev_default_loop_ptr;
663 root 1.54
664 root 1.51 #endif
665 root 1.1
666 root 1.297 #if EV_MINIMAL < 2
667 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
670     #else
671 root 1.298 # define EV_RELEASE_CB (void)0
672     # define EV_ACQUIRE_CB (void)0
673 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674     #endif
675    
676 root 1.298 #define EVUNLOOP_RECURSE 0x80
677    
678 root 1.8 /*****************************************************************************/
679    
680 root 1.292 #ifndef EV_HAVE_EV_TIME
681 root 1.141 ev_tstamp
682 root 1.1 ev_time (void)
683     {
684 root 1.29 #if EV_USE_REALTIME
685 root 1.279 if (expect_true (have_realtime))
686     {
687     struct timespec ts;
688     clock_gettime (CLOCK_REALTIME, &ts);
689     return ts.tv_sec + ts.tv_nsec * 1e-9;
690     }
691     #endif
692    
693 root 1.1 struct timeval tv;
694     gettimeofday (&tv, 0);
695     return tv.tv_sec + tv.tv_usec * 1e-6;
696     }
697 root 1.292 #endif
698 root 1.1
699 root 1.284 inline_size ev_tstamp
700 root 1.1 get_clock (void)
701     {
702 root 1.29 #if EV_USE_MONOTONIC
703 root 1.40 if (expect_true (have_monotonic))
704 root 1.1 {
705     struct timespec ts;
706     clock_gettime (CLOCK_MONOTONIC, &ts);
707     return ts.tv_sec + ts.tv_nsec * 1e-9;
708     }
709     #endif
710    
711     return ev_time ();
712     }
713    
714 root 1.85 #if EV_MULTIPLICITY
715 root 1.51 ev_tstamp
716     ev_now (EV_P)
717     {
718 root 1.85 return ev_rt_now;
719 root 1.51 }
720 root 1.85 #endif
721 root 1.51
722 root 1.193 void
723     ev_sleep (ev_tstamp delay)
724     {
725     if (delay > 0.)
726     {
727     #if EV_USE_NANOSLEEP
728     struct timespec ts;
729    
730     ts.tv_sec = (time_t)delay;
731     ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
732    
733     nanosleep (&ts, 0);
734     #elif defined(_WIN32)
735 root 1.217 Sleep ((unsigned long)(delay * 1e3));
736 root 1.193 #else
737     struct timeval tv;
738    
739     tv.tv_sec = (time_t)delay;
740     tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
741    
742 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
744 root 1.257 /* by older ones */
745 root 1.193 select (0, 0, 0, 0, &tv);
746     #endif
747     }
748     }
749    
750     /*****************************************************************************/
751    
752 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
753 root 1.232
754 root 1.288 /* find a suitable new size for the given array, */
755     /* hopefully by rounding to a ncie-to-malloc size */
756 root 1.284 inline_size int
757 root 1.163 array_nextsize (int elem, int cur, int cnt)
758     {
759     int ncur = cur + 1;
760    
761     do
762     ncur <<= 1;
763     while (cnt > ncur);
764    
765 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
766     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
767 root 1.163 {
768     ncur *= elem;
769 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
770 root 1.163 ncur = ncur - sizeof (void *) * 4;
771     ncur /= elem;
772     }
773    
774     return ncur;
775     }
776    
777 root 1.171 static noinline void *
778 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
779     {
780     *cur = array_nextsize (elem, *cur, cnt);
781     return ev_realloc (base, elem * *cur);
782     }
783 root 1.29
784 root 1.265 #define array_init_zero(base,count) \
785     memset ((void *)(base), 0, sizeof (*(base)) * (count))
786    
787 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
788 root 1.163 if (expect_false ((cnt) > (cur))) \
789 root 1.69 { \
790 root 1.163 int ocur_ = (cur); \
791     (base) = (type *)array_realloc \
792     (sizeof (type), (base), &(cur), (cnt)); \
793     init ((base) + (ocur_), (cur) - ocur_); \
794 root 1.1 }
795    
796 root 1.163 #if 0
797 root 1.74 #define array_slim(type,stem) \
798 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
799     { \
800     stem ## max = array_roundsize (stem ## cnt >> 1); \
801 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
802 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
803     }
804 root 1.163 #endif
805 root 1.67
806 root 1.65 #define array_free(stem, idx) \
807 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
808 root 1.65
809 root 1.8 /*****************************************************************************/
810    
811 root 1.288 /* dummy callback for pending events */
812     static void noinline
813     pendingcb (EV_P_ ev_prepare *w, int revents)
814     {
815     }
816    
817 root 1.140 void noinline
818 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
819 root 1.1 {
820 root 1.78 W w_ = (W)w;
821 root 1.171 int pri = ABSPRI (w_);
822 root 1.78
823 root 1.123 if (expect_false (w_->pending))
824 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
825     else
826 root 1.32 {
827 root 1.171 w_->pending = ++pendingcnt [pri];
828     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
829     pendings [pri][w_->pending - 1].w = w_;
830     pendings [pri][w_->pending - 1].events = revents;
831 root 1.32 }
832 root 1.1 }
833    
834 root 1.284 inline_speed void
835     feed_reverse (EV_P_ W w)
836     {
837     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838     rfeeds [rfeedcnt++] = w;
839     }
840    
841     inline_size void
842     feed_reverse_done (EV_P_ int revents)
843     {
844     do
845     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846     while (rfeedcnt);
847     }
848    
849     inline_speed void
850 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
851 root 1.27 {
852     int i;
853    
854     for (i = 0; i < eventcnt; ++i)
855 root 1.78 ev_feed_event (EV_A_ events [i], type);
856 root 1.27 }
857    
858 root 1.141 /*****************************************************************************/
859    
860 root 1.284 inline_speed void
861 root 1.298 fd_event_nc (EV_P_ int fd, int revents)
862 root 1.1 {
863     ANFD *anfd = anfds + fd;
864 root 1.136 ev_io *w;
865 root 1.1
866 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
867 root 1.1 {
868 root 1.79 int ev = w->events & revents;
869 root 1.1
870     if (ev)
871 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
872 root 1.1 }
873     }
874    
875 root 1.298 /* do not submit kernel events for fds that have reify set */
876     /* because that means they changed while we were polling for new events */
877     inline_speed void
878     fd_event (EV_P_ int fd, int revents)
879     {
880     ANFD *anfd = anfds + fd;
881    
882     if (expect_true (!anfd->reify))
883     fd_event_nc (EV_A_ fd, revents);
884     }
885    
886 root 1.79 void
887     ev_feed_fd_event (EV_P_ int fd, int revents)
888     {
889 root 1.168 if (fd >= 0 && fd < anfdmax)
890 root 1.298 fd_event_nc (EV_A_ fd, revents);
891 root 1.79 }
892    
893 root 1.288 /* make sure the external fd watch events are in-sync */
894     /* with the kernel/libev internal state */
895 root 1.284 inline_size void
896 root 1.51 fd_reify (EV_P)
897 root 1.9 {
898     int i;
899    
900 root 1.27 for (i = 0; i < fdchangecnt; ++i)
901     {
902     int fd = fdchanges [i];
903     ANFD *anfd = anfds + fd;
904 root 1.136 ev_io *w;
905 root 1.27
906 root 1.184 unsigned char events = 0;
907 root 1.27
908 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
909 root 1.184 events |= (unsigned char)w->events;
910 root 1.27
911 root 1.103 #if EV_SELECT_IS_WINSOCKET
912     if (events)
913     {
914 root 1.254 unsigned long arg;
915 root 1.313 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
916 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
917 root 1.103 }
918     #endif
919    
920 root 1.184 {
921     unsigned char o_events = anfd->events;
922     unsigned char o_reify = anfd->reify;
923    
924     anfd->reify = 0;
925     anfd->events = events;
926 root 1.27
927 root 1.281 if (o_events != events || o_reify & EV__IOFDSET)
928 root 1.184 backend_modify (EV_A_ fd, o_events, events);
929     }
930 root 1.27 }
931    
932     fdchangecnt = 0;
933     }
934    
935 root 1.288 /* something about the given fd changed */
936 root 1.284 inline_size void
937 root 1.183 fd_change (EV_P_ int fd, int flags)
938 root 1.27 {
939 root 1.183 unsigned char reify = anfds [fd].reify;
940 root 1.184 anfds [fd].reify |= flags;
941 root 1.27
942 root 1.183 if (expect_true (!reify))
943     {
944     ++fdchangecnt;
945     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
946     fdchanges [fdchangecnt - 1] = fd;
947     }
948 root 1.9 }
949    
950 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951 root 1.284 inline_speed void
952 root 1.51 fd_kill (EV_P_ int fd)
953 root 1.41 {
954 root 1.136 ev_io *w;
955 root 1.41
956 root 1.136 while ((w = (ev_io *)anfds [fd].head))
957 root 1.41 {
958 root 1.51 ev_io_stop (EV_A_ w);
959 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
960 root 1.41 }
961     }
962    
963 root 1.288 /* check whether the given fd is atcually valid, for error recovery */
964 root 1.284 inline_size int
965 root 1.71 fd_valid (int fd)
966     {
967 root 1.103 #ifdef _WIN32
968     return _get_osfhandle (fd) != -1;
969 root 1.71 #else
970     return fcntl (fd, F_GETFD) != -1;
971     #endif
972     }
973    
974 root 1.19 /* called on EBADF to verify fds */
975 root 1.140 static void noinline
976 root 1.51 fd_ebadf (EV_P)
977 root 1.19 {
978     int fd;
979    
980     for (fd = 0; fd < anfdmax; ++fd)
981 root 1.27 if (anfds [fd].events)
982 root 1.254 if (!fd_valid (fd) && errno == EBADF)
983 root 1.51 fd_kill (EV_A_ fd);
984 root 1.41 }
985    
986     /* called on ENOMEM in select/poll to kill some fds and retry */
987 root 1.140 static void noinline
988 root 1.51 fd_enomem (EV_P)
989 root 1.41 {
990 root 1.62 int fd;
991 root 1.41
992 root 1.62 for (fd = anfdmax; fd--; )
993 root 1.41 if (anfds [fd].events)
994     {
995 root 1.51 fd_kill (EV_A_ fd);
996 root 1.307 break;
997 root 1.41 }
998 root 1.19 }
999    
1000 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1001 root 1.140 static void noinline
1002 root 1.56 fd_rearm_all (EV_P)
1003     {
1004     int fd;
1005    
1006     for (fd = 0; fd < anfdmax; ++fd)
1007     if (anfds [fd].events)
1008     {
1009     anfds [fd].events = 0;
1010 root 1.268 anfds [fd].emask = 0;
1011 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1012 root 1.56 }
1013     }
1014    
1015 root 1.8 /*****************************************************************************/
1016    
1017 root 1.235 /*
1018 root 1.241 * the heap functions want a real array index. array index 0 uis guaranteed to not
1019     * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1020     * the branching factor of the d-tree.
1021     */
1022    
1023     /*
1024 root 1.235 * at the moment we allow libev the luxury of two heaps,
1025     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1026     * which is more cache-efficient.
1027     * the difference is about 5% with 50000+ watchers.
1028     */
1029 root 1.241 #if EV_USE_4HEAP
1030 root 1.235
1031 root 1.237 #define DHEAP 4
1032     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1033 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1034 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1035 root 1.235
1036     /* away from the root */
1037 root 1.284 inline_speed void
1038 root 1.241 downheap (ANHE *heap, int N, int k)
1039 root 1.235 {
1040 root 1.241 ANHE he = heap [k];
1041     ANHE *E = heap + N + HEAP0;
1042 root 1.235
1043     for (;;)
1044     {
1045     ev_tstamp minat;
1046 root 1.241 ANHE *minpos;
1047 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1048 root 1.235
1049 root 1.248 /* find minimum child */
1050 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1051 root 1.235 {
1052 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1053     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1054     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1055     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1056 root 1.235 }
1057 root 1.240 else if (pos < E)
1058 root 1.235 {
1059 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 root 1.235 }
1064 root 1.240 else
1065     break;
1066 root 1.235
1067 root 1.241 if (ANHE_at (he) <= minat)
1068 root 1.235 break;
1069    
1070 root 1.247 heap [k] = *minpos;
1071 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1072 root 1.235
1073     k = minpos - heap;
1074     }
1075    
1076 root 1.247 heap [k] = he;
1077 root 1.241 ev_active (ANHE_w (he)) = k;
1078 root 1.235 }
1079    
1080 root 1.248 #else /* 4HEAP */
1081 root 1.235
1082     #define HEAP0 1
1083 root 1.247 #define HPARENT(k) ((k) >> 1)
1084 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1085 root 1.235
1086 root 1.248 /* away from the root */
1087 root 1.284 inline_speed void
1088 root 1.248 downheap (ANHE *heap, int N, int k)
1089 root 1.1 {
1090 root 1.241 ANHE he = heap [k];
1091 root 1.1
1092 root 1.228 for (;;)
1093 root 1.1 {
1094 root 1.248 int c = k << 1;
1095 root 1.179
1096 root 1.309 if (c >= N + HEAP0)
1097 root 1.179 break;
1098    
1099 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1100     ? 1 : 0;
1101    
1102     if (ANHE_at (he) <= ANHE_at (heap [c]))
1103     break;
1104    
1105     heap [k] = heap [c];
1106 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1107 root 1.248
1108     k = c;
1109 root 1.1 }
1110    
1111 root 1.243 heap [k] = he;
1112 root 1.248 ev_active (ANHE_w (he)) = k;
1113 root 1.1 }
1114 root 1.248 #endif
1115 root 1.1
1116 root 1.248 /* towards the root */
1117 root 1.284 inline_speed void
1118 root 1.248 upheap (ANHE *heap, int k)
1119 root 1.1 {
1120 root 1.241 ANHE he = heap [k];
1121 root 1.1
1122 root 1.179 for (;;)
1123 root 1.1 {
1124 root 1.248 int p = HPARENT (k);
1125 root 1.179
1126 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1127 root 1.179 break;
1128 root 1.1
1129 root 1.248 heap [k] = heap [p];
1130 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1131 root 1.248 k = p;
1132 root 1.1 }
1133    
1134 root 1.241 heap [k] = he;
1135     ev_active (ANHE_w (he)) = k;
1136 root 1.1 }
1137    
1138 root 1.288 /* move an element suitably so it is in a correct place */
1139 root 1.284 inline_size void
1140 root 1.241 adjustheap (ANHE *heap, int N, int k)
1141 root 1.84 {
1142 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1143 root 1.247 upheap (heap, k);
1144     else
1145     downheap (heap, N, k);
1146 root 1.84 }
1147    
1148 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1149 root 1.284 inline_size void
1150 root 1.248 reheap (ANHE *heap, int N)
1151     {
1152     int i;
1153 root 1.251
1154 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156     for (i = 0; i < N; ++i)
1157     upheap (heap, i + HEAP0);
1158     }
1159    
1160 root 1.8 /*****************************************************************************/
1161    
1162 root 1.288 /* associate signal watchers to a signal signal */
1163 root 1.7 typedef struct
1164     {
1165 root 1.307 EV_ATOMIC_T pending;
1166 root 1.306 #if EV_MULTIPLICITY
1167     EV_P;
1168     #endif
1169 root 1.68 WL head;
1170 root 1.7 } ANSIG;
1171    
1172 root 1.306 static ANSIG signals [EV_NSIG - 1];
1173 root 1.7
1174 root 1.207 /*****************************************************************************/
1175    
1176 root 1.288 /* used to prepare libev internal fd's */
1177     /* this is not fork-safe */
1178 root 1.284 inline_speed void
1179 root 1.207 fd_intern (int fd)
1180     {
1181     #ifdef _WIN32
1182 root 1.254 unsigned long arg = 1;
1183 root 1.207 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1184     #else
1185     fcntl (fd, F_SETFD, FD_CLOEXEC);
1186     fcntl (fd, F_SETFL, O_NONBLOCK);
1187     #endif
1188     }
1189    
1190     static void noinline
1191     evpipe_init (EV_P)
1192     {
1193 root 1.288 if (!ev_is_active (&pipe_w))
1194 root 1.207 {
1195 root 1.220 #if EV_USE_EVENTFD
1196 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197     if (evfd < 0 && errno == EINVAL)
1198     evfd = eventfd (0, 0);
1199    
1200     if (evfd >= 0)
1201 root 1.220 {
1202     evpipe [0] = -1;
1203 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1204 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1205 root 1.220 }
1206     else
1207     #endif
1208     {
1209     while (pipe (evpipe))
1210 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1211 root 1.207
1212 root 1.220 fd_intern (evpipe [0]);
1213     fd_intern (evpipe [1]);
1214 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1215 root 1.220 }
1216 root 1.207
1217 root 1.288 ev_io_start (EV_A_ &pipe_w);
1218 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1219 root 1.207 }
1220     }
1221    
1222 root 1.284 inline_size void
1223 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1224 root 1.207 {
1225 root 1.214 if (!*flag)
1226 root 1.207 {
1227 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1228 root 1.214
1229     *flag = 1;
1230 root 1.220
1231     #if EV_USE_EVENTFD
1232     if (evfd >= 0)
1233     {
1234     uint64_t counter = 1;
1235     write (evfd, &counter, sizeof (uint64_t));
1236     }
1237     else
1238     #endif
1239     write (evpipe [1], &old_errno, 1);
1240 root 1.214
1241 root 1.207 errno = old_errno;
1242     }
1243     }
1244    
1245 root 1.288 /* called whenever the libev signal pipe */
1246     /* got some events (signal, async) */
1247 root 1.207 static void
1248     pipecb (EV_P_ ev_io *iow, int revents)
1249     {
1250 root 1.307 int i;
1251    
1252 root 1.220 #if EV_USE_EVENTFD
1253     if (evfd >= 0)
1254     {
1255 root 1.232 uint64_t counter;
1256 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1257     }
1258     else
1259     #endif
1260     {
1261     char dummy;
1262     read (evpipe [0], &dummy, 1);
1263     }
1264 root 1.207
1265 root 1.307 if (sig_pending)
1266 root 1.207 {
1267 root 1.307 sig_pending = 0;
1268 root 1.207
1269 root 1.307 for (i = EV_NSIG - 1; i--; )
1270     if (expect_false (signals [i].pending))
1271     ev_feed_signal_event (EV_A_ i + 1);
1272 root 1.207 }
1273    
1274 root 1.209 #if EV_ASYNC_ENABLE
1275 root 1.307 if (async_pending)
1276 root 1.207 {
1277 root 1.307 async_pending = 0;
1278 root 1.207
1279     for (i = asynccnt; i--; )
1280     if (asyncs [i]->sent)
1281     {
1282     asyncs [i]->sent = 0;
1283     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1284     }
1285     }
1286 root 1.209 #endif
1287 root 1.207 }
1288    
1289     /*****************************************************************************/
1290    
1291 root 1.7 static void
1292 root 1.218 ev_sighandler (int signum)
1293 root 1.7 {
1294 root 1.207 #if EV_MULTIPLICITY
1295 root 1.306 EV_P = signals [signum - 1].loop;
1296 root 1.207 #endif
1297    
1298 root 1.103 #if _WIN32
1299 root 1.218 signal (signum, ev_sighandler);
1300 root 1.67 #endif
1301    
1302 root 1.307 signals [signum - 1].pending = 1;
1303     evpipe_write (EV_A_ &sig_pending);
1304 root 1.7 }
1305    
1306 root 1.140 void noinline
1307 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1308     {
1309 root 1.80 WL w;
1310    
1311 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312     return;
1313    
1314     --signum;
1315    
1316 root 1.79 #if EV_MULTIPLICITY
1317 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1318     /* or, likely more useful, feeding a signal nobody is waiting for */
1319 root 1.79
1320 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1321 root 1.306 return;
1322 root 1.307 #endif
1323 root 1.306
1324 root 1.307 signals [signum].pending = 0;
1325 root 1.79
1326     for (w = signals [signum].head; w; w = w->next)
1327     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1328     }
1329    
1330 root 1.303 #if EV_USE_SIGNALFD
1331     static void
1332     sigfdcb (EV_P_ ev_io *iow, int revents)
1333     {
1334 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335 root 1.303
1336     for (;;)
1337     {
1338     ssize_t res = read (sigfd, si, sizeof (si));
1339    
1340     /* not ISO-C, as res might be -1, but works with SuS */
1341     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343    
1344     if (res < (ssize_t)sizeof (si))
1345     break;
1346     }
1347     }
1348     #endif
1349    
1350 root 1.8 /*****************************************************************************/
1351    
1352 root 1.182 static WL childs [EV_PID_HASHSIZE];
1353 root 1.71
1354 root 1.103 #ifndef _WIN32
1355 root 1.45
1356 root 1.136 static ev_signal childev;
1357 root 1.59
1358 root 1.206 #ifndef WIFCONTINUED
1359     # define WIFCONTINUED(status) 0
1360     #endif
1361    
1362 root 1.288 /* handle a single child status event */
1363 root 1.284 inline_speed void
1364 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1365 root 1.47 {
1366 root 1.136 ev_child *w;
1367 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1368 root 1.47
1369 root 1.149 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1370 root 1.206 {
1371     if ((w->pid == pid || !w->pid)
1372     && (!traced || (w->flags & 1)))
1373     {
1374 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1375 root 1.206 w->rpid = pid;
1376     w->rstatus = status;
1377     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1378     }
1379     }
1380 root 1.47 }
1381    
1382 root 1.142 #ifndef WCONTINUED
1383     # define WCONTINUED 0
1384     #endif
1385    
1386 root 1.288 /* called on sigchld etc., calls waitpid */
1387 root 1.47 static void
1388 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1389 root 1.22 {
1390     int pid, status;
1391    
1392 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1393     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1394     if (!WCONTINUED
1395     || errno != EINVAL
1396     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1397     return;
1398    
1399 root 1.216 /* make sure we are called again until all children have been reaped */
1400 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1401     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1402 root 1.47
1403 root 1.216 child_reap (EV_A_ pid, pid, status);
1404 root 1.149 if (EV_PID_HASHSIZE > 1)
1405 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1406 root 1.22 }
1407    
1408 root 1.45 #endif
1409    
1410 root 1.22 /*****************************************************************************/
1411    
1412 root 1.118 #if EV_USE_PORT
1413     # include "ev_port.c"
1414     #endif
1415 root 1.44 #if EV_USE_KQUEUE
1416     # include "ev_kqueue.c"
1417     #endif
1418 root 1.29 #if EV_USE_EPOLL
1419 root 1.1 # include "ev_epoll.c"
1420     #endif
1421 root 1.59 #if EV_USE_POLL
1422 root 1.41 # include "ev_poll.c"
1423     #endif
1424 root 1.29 #if EV_USE_SELECT
1425 root 1.1 # include "ev_select.c"
1426     #endif
1427    
1428 root 1.24 int
1429     ev_version_major (void)
1430     {
1431     return EV_VERSION_MAJOR;
1432     }
1433    
1434     int
1435     ev_version_minor (void)
1436     {
1437     return EV_VERSION_MINOR;
1438     }
1439    
1440 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1441 root 1.140 int inline_size
1442 root 1.51 enable_secure (void)
1443 root 1.41 {
1444 root 1.103 #ifdef _WIN32
1445 root 1.49 return 0;
1446     #else
1447 root 1.41 return getuid () != geteuid ()
1448     || getgid () != getegid ();
1449 root 1.49 #endif
1450 root 1.41 }
1451    
1452 root 1.111 unsigned int
1453 root 1.129 ev_supported_backends (void)
1454     {
1455 root 1.130 unsigned int flags = 0;
1456 root 1.129
1457     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1458     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1459     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1460     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1461     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1462    
1463     return flags;
1464     }
1465    
1466     unsigned int
1467 root 1.130 ev_recommended_backends (void)
1468 root 1.1 {
1469 root 1.131 unsigned int flags = ev_supported_backends ();
1470 root 1.129
1471     #ifndef __NetBSD__
1472     /* kqueue is borked on everything but netbsd apparently */
1473     /* it usually doesn't work correctly on anything but sockets and pipes */
1474     flags &= ~EVBACKEND_KQUEUE;
1475     #endif
1476     #ifdef __APPLE__
1477 root 1.278 /* only select works correctly on that "unix-certified" platform */
1478     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1480 root 1.129 #endif
1481    
1482     return flags;
1483 root 1.51 }
1484    
1485 root 1.130 unsigned int
1486 root 1.134 ev_embeddable_backends (void)
1487     {
1488 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1489    
1490 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1491 root 1.196 /* please fix it and tell me how to detect the fix */
1492     flags &= ~EVBACKEND_EPOLL;
1493    
1494     return flags;
1495 root 1.134 }
1496    
1497     unsigned int
1498 root 1.130 ev_backend (EV_P)
1499     {
1500     return backend;
1501     }
1502    
1503 root 1.297 #if EV_MINIMAL < 2
1504 root 1.162 unsigned int
1505     ev_loop_count (EV_P)
1506     {
1507     return loop_count;
1508     }
1509    
1510 root 1.294 unsigned int
1511     ev_loop_depth (EV_P)
1512     {
1513     return loop_depth;
1514     }
1515    
1516 root 1.193 void
1517     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1518     {
1519     io_blocktime = interval;
1520     }
1521    
1522     void
1523     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1524     {
1525     timeout_blocktime = interval;
1526     }
1527    
1528 root 1.297 void
1529     ev_set_userdata (EV_P_ void *data)
1530     {
1531     userdata = data;
1532     }
1533    
1534     void *
1535     ev_userdata (EV_P)
1536     {
1537     return userdata;
1538     }
1539    
1540     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541     {
1542     invoke_cb = invoke_pending_cb;
1543     }
1544    
1545 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546 root 1.297 {
1547 root 1.298 release_cb = release;
1548     acquire_cb = acquire;
1549 root 1.297 }
1550     #endif
1551    
1552 root 1.288 /* initialise a loop structure, must be zero-initialised */
1553 root 1.151 static void noinline
1554 root 1.108 loop_init (EV_P_ unsigned int flags)
1555 root 1.51 {
1556 root 1.130 if (!backend)
1557 root 1.23 {
1558 root 1.279 #if EV_USE_REALTIME
1559     if (!have_realtime)
1560     {
1561     struct timespec ts;
1562    
1563     if (!clock_gettime (CLOCK_REALTIME, &ts))
1564     have_realtime = 1;
1565     }
1566     #endif
1567    
1568 root 1.29 #if EV_USE_MONOTONIC
1569 root 1.279 if (!have_monotonic)
1570     {
1571     struct timespec ts;
1572    
1573     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1574     have_monotonic = 1;
1575     }
1576 root 1.1 #endif
1577    
1578 root 1.306 /* pid check not overridable via env */
1579     #ifndef _WIN32
1580     if (flags & EVFLAG_FORKCHECK)
1581     curpid = getpid ();
1582     #endif
1583    
1584     if (!(flags & EVFLAG_NOENV)
1585     && !enable_secure ()
1586     && getenv ("LIBEV_FLAGS"))
1587     flags = atoi (getenv ("LIBEV_FLAGS"));
1588    
1589 root 1.209 ev_rt_now = ev_time ();
1590     mn_now = get_clock ();
1591     now_floor = mn_now;
1592     rtmn_diff = ev_rt_now - mn_now;
1593 root 1.297 #if EV_MINIMAL < 2
1594 root 1.296 invoke_cb = ev_invoke_pending;
1595 root 1.297 #endif
1596 root 1.1
1597 root 1.193 io_blocktime = 0.;
1598     timeout_blocktime = 0.;
1599 root 1.209 backend = 0;
1600     backend_fd = -1;
1601 root 1.307 sig_pending = 0;
1602     #if EV_ASYNC_ENABLE
1603     async_pending = 0;
1604     #endif
1605 root 1.209 #if EV_USE_INOTIFY
1606 root 1.306 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1607 root 1.209 #endif
1608 root 1.303 #if EV_USE_SIGNALFD
1609 root 1.306 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1610 root 1.303 #endif
1611 root 1.193
1612 root 1.225 if (!(flags & 0x0000ffffU))
1613 root 1.129 flags |= ev_recommended_backends ();
1614 root 1.41
1615 root 1.118 #if EV_USE_PORT
1616 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1617 root 1.118 #endif
1618 root 1.44 #if EV_USE_KQUEUE
1619 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1620 root 1.44 #endif
1621 root 1.29 #if EV_USE_EPOLL
1622 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1623 root 1.41 #endif
1624 root 1.59 #if EV_USE_POLL
1625 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1626 root 1.1 #endif
1627 root 1.29 #if EV_USE_SELECT
1628 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1629 root 1.1 #endif
1630 root 1.70
1631 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1632    
1633     ev_init (&pipe_w, pipecb);
1634     ev_set_priority (&pipe_w, EV_MAXPRI);
1635 root 1.56 }
1636     }
1637    
1638 root 1.288 /* free up a loop structure */
1639 root 1.151 static void noinline
1640 root 1.56 loop_destroy (EV_P)
1641     {
1642 root 1.65 int i;
1643    
1644 root 1.288 if (ev_is_active (&pipe_w))
1645 root 1.207 {
1646 root 1.303 /*ev_ref (EV_A);*/
1647     /*ev_io_stop (EV_A_ &pipe_w);*/
1648 root 1.207
1649 root 1.220 #if EV_USE_EVENTFD
1650     if (evfd >= 0)
1651     close (evfd);
1652     #endif
1653    
1654     if (evpipe [0] >= 0)
1655     {
1656 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1657     EV_WIN32_CLOSE_FD (evpipe [1]);
1658 root 1.220 }
1659 root 1.207 }
1660    
1661 root 1.303 #if EV_USE_SIGNALFD
1662     if (ev_is_active (&sigfd_w))
1663 root 1.317 close (sigfd);
1664 root 1.303 #endif
1665    
1666 root 1.152 #if EV_USE_INOTIFY
1667     if (fs_fd >= 0)
1668     close (fs_fd);
1669     #endif
1670    
1671     if (backend_fd >= 0)
1672     close (backend_fd);
1673    
1674 root 1.118 #if EV_USE_PORT
1675 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1676 root 1.118 #endif
1677 root 1.56 #if EV_USE_KQUEUE
1678 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1679 root 1.56 #endif
1680     #if EV_USE_EPOLL
1681 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1682 root 1.56 #endif
1683 root 1.59 #if EV_USE_POLL
1684 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1685 root 1.56 #endif
1686     #if EV_USE_SELECT
1687 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1688 root 1.56 #endif
1689 root 1.1
1690 root 1.65 for (i = NUMPRI; i--; )
1691 root 1.164 {
1692     array_free (pending, [i]);
1693     #if EV_IDLE_ENABLE
1694     array_free (idle, [i]);
1695     #endif
1696     }
1697 root 1.65
1698 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
1699 root 1.186
1700 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1701 root 1.284 array_free (rfeed, EMPTY);
1702 root 1.164 array_free (fdchange, EMPTY);
1703     array_free (timer, EMPTY);
1704 root 1.140 #if EV_PERIODIC_ENABLE
1705 root 1.164 array_free (periodic, EMPTY);
1706 root 1.93 #endif
1707 root 1.187 #if EV_FORK_ENABLE
1708     array_free (fork, EMPTY);
1709     #endif
1710 root 1.164 array_free (prepare, EMPTY);
1711     array_free (check, EMPTY);
1712 root 1.209 #if EV_ASYNC_ENABLE
1713     array_free (async, EMPTY);
1714     #endif
1715 root 1.65
1716 root 1.130 backend = 0;
1717 root 1.56 }
1718 root 1.22
1719 root 1.226 #if EV_USE_INOTIFY
1720 root 1.284 inline_size void infy_fork (EV_P);
1721 root 1.226 #endif
1722 root 1.154
1723 root 1.284 inline_size void
1724 root 1.56 loop_fork (EV_P)
1725     {
1726 root 1.118 #if EV_USE_PORT
1727 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1728 root 1.56 #endif
1729     #if EV_USE_KQUEUE
1730 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1731 root 1.45 #endif
1732 root 1.118 #if EV_USE_EPOLL
1733 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1734 root 1.118 #endif
1735 root 1.154 #if EV_USE_INOTIFY
1736     infy_fork (EV_A);
1737     #endif
1738 root 1.70
1739 root 1.288 if (ev_is_active (&pipe_w))
1740 root 1.70 {
1741 root 1.207 /* this "locks" the handlers against writing to the pipe */
1742 root 1.212 /* while we modify the fd vars */
1743 root 1.307 sig_pending = 1;
1744 root 1.212 #if EV_ASYNC_ENABLE
1745 root 1.307 async_pending = 1;
1746 root 1.212 #endif
1747 root 1.70
1748     ev_ref (EV_A);
1749 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1750 root 1.220
1751     #if EV_USE_EVENTFD
1752     if (evfd >= 0)
1753     close (evfd);
1754     #endif
1755    
1756     if (evpipe [0] >= 0)
1757     {
1758 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1759     EV_WIN32_CLOSE_FD (evpipe [1]);
1760 root 1.220 }
1761 root 1.207
1762     evpipe_init (EV_A);
1763 root 1.208 /* now iterate over everything, in case we missed something */
1764 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1765 root 1.70 }
1766    
1767     postfork = 0;
1768 root 1.1 }
1769    
1770 root 1.55 #if EV_MULTIPLICITY
1771 root 1.250
1772 root 1.54 struct ev_loop *
1773 root 1.108 ev_loop_new (unsigned int flags)
1774 root 1.54 {
1775 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1776 root 1.69
1777 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
1778 root 1.108 loop_init (EV_A_ flags);
1779 root 1.56
1780 root 1.130 if (ev_backend (EV_A))
1781 root 1.306 return EV_A;
1782 root 1.54
1783 root 1.55 return 0;
1784 root 1.54 }
1785    
1786     void
1787 root 1.56 ev_loop_destroy (EV_P)
1788 root 1.54 {
1789 root 1.56 loop_destroy (EV_A);
1790 root 1.69 ev_free (loop);
1791 root 1.54 }
1792    
1793 root 1.56 void
1794     ev_loop_fork (EV_P)
1795     {
1796 root 1.205 postfork = 1; /* must be in line with ev_default_fork */
1797 root 1.56 }
1798 root 1.297 #endif /* multiplicity */
1799 root 1.248
1800     #if EV_VERIFY
1801 root 1.258 static void noinline
1802 root 1.251 verify_watcher (EV_P_ W w)
1803     {
1804 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1805 root 1.251
1806     if (w->pending)
1807 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1808 root 1.251 }
1809    
1810     static void noinline
1811     verify_heap (EV_P_ ANHE *heap, int N)
1812     {
1813     int i;
1814    
1815     for (i = HEAP0; i < N + HEAP0; ++i)
1816     {
1817 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1818     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1819     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1820 root 1.251
1821     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1822     }
1823     }
1824    
1825     static void noinline
1826     array_verify (EV_P_ W *ws, int cnt)
1827 root 1.248 {
1828     while (cnt--)
1829 root 1.251 {
1830 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1831 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1832     }
1833 root 1.248 }
1834 root 1.250 #endif
1835 root 1.248
1836 root 1.297 #if EV_MINIMAL < 2
1837 root 1.250 void
1838 root 1.248 ev_loop_verify (EV_P)
1839     {
1840 root 1.250 #if EV_VERIFY
1841 root 1.248 int i;
1842 root 1.251 WL w;
1843    
1844     assert (activecnt >= -1);
1845    
1846     assert (fdchangemax >= fdchangecnt);
1847     for (i = 0; i < fdchangecnt; ++i)
1848 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1849 root 1.251
1850     assert (anfdmax >= 0);
1851     for (i = 0; i < anfdmax; ++i)
1852     for (w = anfds [i].head; w; w = w->next)
1853     {
1854     verify_watcher (EV_A_ (W)w);
1855 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1856     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1857 root 1.251 }
1858    
1859     assert (timermax >= timercnt);
1860     verify_heap (EV_A_ timers, timercnt);
1861 root 1.248
1862     #if EV_PERIODIC_ENABLE
1863 root 1.251 assert (periodicmax >= periodiccnt);
1864     verify_heap (EV_A_ periodics, periodiccnt);
1865 root 1.248 #endif
1866    
1867 root 1.251 for (i = NUMPRI; i--; )
1868     {
1869     assert (pendingmax [i] >= pendingcnt [i]);
1870 root 1.248 #if EV_IDLE_ENABLE
1871 root 1.252 assert (idleall >= 0);
1872 root 1.251 assert (idlemax [i] >= idlecnt [i]);
1873     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1874 root 1.248 #endif
1875 root 1.251 }
1876    
1877 root 1.248 #if EV_FORK_ENABLE
1878 root 1.251 assert (forkmax >= forkcnt);
1879     array_verify (EV_A_ (W *)forks, forkcnt);
1880 root 1.248 #endif
1881 root 1.251
1882 root 1.250 #if EV_ASYNC_ENABLE
1883 root 1.251 assert (asyncmax >= asynccnt);
1884     array_verify (EV_A_ (W *)asyncs, asynccnt);
1885 root 1.250 #endif
1886 root 1.251
1887     assert (preparemax >= preparecnt);
1888     array_verify (EV_A_ (W *)prepares, preparecnt);
1889    
1890     assert (checkmax >= checkcnt);
1891     array_verify (EV_A_ (W *)checks, checkcnt);
1892    
1893     # if 0
1894     for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1895 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1896 root 1.251 # endif
1897 root 1.248 #endif
1898     }
1899 root 1.297 #endif
1900 root 1.56
1901     #if EV_MULTIPLICITY
1902     struct ev_loop *
1903 root 1.125 ev_default_loop_init (unsigned int flags)
1904 root 1.54 #else
1905     int
1906 root 1.116 ev_default_loop (unsigned int flags)
1907 root 1.56 #endif
1908 root 1.54 {
1909 root 1.116 if (!ev_default_loop_ptr)
1910 root 1.56 {
1911     #if EV_MULTIPLICITY
1912 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
1913 root 1.56 #else
1914 ayin 1.117 ev_default_loop_ptr = 1;
1915 root 1.54 #endif
1916    
1917 root 1.110 loop_init (EV_A_ flags);
1918 root 1.56
1919 root 1.130 if (ev_backend (EV_A))
1920 root 1.56 {
1921 root 1.103 #ifndef _WIN32
1922 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
1923     ev_set_priority (&childev, EV_MAXPRI);
1924     ev_signal_start (EV_A_ &childev);
1925     ev_unref (EV_A); /* child watcher should not keep loop alive */
1926     #endif
1927     }
1928     else
1929 root 1.116 ev_default_loop_ptr = 0;
1930 root 1.56 }
1931 root 1.8
1932 root 1.116 return ev_default_loop_ptr;
1933 root 1.1 }
1934    
1935 root 1.24 void
1936 root 1.56 ev_default_destroy (void)
1937 root 1.1 {
1938 root 1.57 #if EV_MULTIPLICITY
1939 root 1.306 EV_P = ev_default_loop_ptr;
1940 root 1.57 #endif
1941 root 1.56
1942 root 1.266 ev_default_loop_ptr = 0;
1943    
1944 root 1.103 #ifndef _WIN32
1945 root 1.56 ev_ref (EV_A); /* child watcher */
1946     ev_signal_stop (EV_A_ &childev);
1947 root 1.71 #endif
1948 root 1.56
1949     loop_destroy (EV_A);
1950 root 1.1 }
1951    
1952 root 1.24 void
1953 root 1.60 ev_default_fork (void)
1954 root 1.1 {
1955 root 1.60 #if EV_MULTIPLICITY
1956 root 1.306 EV_P = ev_default_loop_ptr;
1957 root 1.60 #endif
1958    
1959 root 1.270 postfork = 1; /* must be in line with ev_loop_fork */
1960 root 1.1 }
1961    
1962 root 1.8 /*****************************************************************************/
1963    
1964 root 1.168 void
1965     ev_invoke (EV_P_ void *w, int revents)
1966     {
1967     EV_CB_INVOKE ((W)w, revents);
1968     }
1969    
1970 root 1.300 unsigned int
1971     ev_pending_count (EV_P)
1972     {
1973     int pri;
1974     unsigned int count = 0;
1975    
1976     for (pri = NUMPRI; pri--; )
1977     count += pendingcnt [pri];
1978    
1979     return count;
1980     }
1981    
1982 root 1.297 void noinline
1983 root 1.296 ev_invoke_pending (EV_P)
1984 root 1.1 {
1985 root 1.42 int pri;
1986    
1987     for (pri = NUMPRI; pri--; )
1988     while (pendingcnt [pri])
1989     {
1990     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1991 root 1.1
1992 root 1.288 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1993     /* ^ this is no longer true, as pending_w could be here */
1994 root 1.139
1995 root 1.288 p->w->pending = 0;
1996     EV_CB_INVOKE (p->w, p->events);
1997     EV_FREQUENT_CHECK;
1998 root 1.42 }
1999 root 1.1 }
2000    
2001 root 1.234 #if EV_IDLE_ENABLE
2002 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2003     /* only when higher priorities are idle" logic */
2004 root 1.284 inline_size void
2005 root 1.234 idle_reify (EV_P)
2006     {
2007     if (expect_false (idleall))
2008     {
2009     int pri;
2010    
2011     for (pri = NUMPRI; pri--; )
2012     {
2013     if (pendingcnt [pri])
2014     break;
2015    
2016     if (idlecnt [pri])
2017     {
2018     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2019     break;
2020     }
2021     }
2022     }
2023     }
2024     #endif
2025    
2026 root 1.288 /* make timers pending */
2027 root 1.284 inline_size void
2028 root 1.51 timers_reify (EV_P)
2029 root 1.1 {
2030 root 1.248 EV_FREQUENT_CHECK;
2031    
2032 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2033 root 1.1 {
2034 root 1.284 do
2035     {
2036     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2037 root 1.1
2038 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2039    
2040     /* first reschedule or stop timer */
2041     if (w->repeat)
2042     {
2043     ev_at (w) += w->repeat;
2044     if (ev_at (w) < mn_now)
2045     ev_at (w) = mn_now;
2046 root 1.61
2047 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2048 root 1.90
2049 root 1.284 ANHE_at_cache (timers [HEAP0]);
2050     downheap (timers, timercnt, HEAP0);
2051     }
2052     else
2053     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2054 root 1.243
2055 root 1.284 EV_FREQUENT_CHECK;
2056     feed_reverse (EV_A_ (W)w);
2057 root 1.12 }
2058 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2059 root 1.30
2060 root 1.284 feed_reverse_done (EV_A_ EV_TIMEOUT);
2061 root 1.12 }
2062     }
2063 root 1.4
2064 root 1.140 #if EV_PERIODIC_ENABLE
2065 root 1.288 /* make periodics pending */
2066 root 1.284 inline_size void
2067 root 1.51 periodics_reify (EV_P)
2068 root 1.12 {
2069 root 1.248 EV_FREQUENT_CHECK;
2070 root 1.250
2071 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2072 root 1.12 {
2073 root 1.284 int feed_count = 0;
2074    
2075     do
2076     {
2077     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2078 root 1.1
2079 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2080 root 1.61
2081 root 1.284 /* first reschedule or stop timer */
2082     if (w->reschedule_cb)
2083     {
2084     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2085 root 1.243
2086 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2087 root 1.243
2088 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2089     downheap (periodics, periodiccnt, HEAP0);
2090     }
2091     else if (w->interval)
2092 root 1.246 {
2093 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2094     /* if next trigger time is not sufficiently in the future, put it there */
2095     /* this might happen because of floating point inexactness */
2096     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2097     {
2098     ev_at (w) += w->interval;
2099    
2100     /* if interval is unreasonably low we might still have a time in the past */
2101     /* so correct this. this will make the periodic very inexact, but the user */
2102     /* has effectively asked to get triggered more often than possible */
2103     if (ev_at (w) < ev_rt_now)
2104     ev_at (w) = ev_rt_now;
2105     }
2106 root 1.243
2107 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2108     downheap (periodics, periodiccnt, HEAP0);
2109 root 1.246 }
2110 root 1.284 else
2111     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2112 root 1.243
2113 root 1.284 EV_FREQUENT_CHECK;
2114     feed_reverse (EV_A_ (W)w);
2115 root 1.1 }
2116 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2117 root 1.12
2118 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2119 root 1.12 }
2120     }
2121    
2122 root 1.288 /* simply recalculate all periodics */
2123     /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2124 root 1.140 static void noinline
2125 root 1.54 periodics_reschedule (EV_P)
2126 root 1.12 {
2127     int i;
2128    
2129 root 1.13 /* adjust periodics after time jump */
2130 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2131 root 1.12 {
2132 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2133 root 1.12
2134 root 1.77 if (w->reschedule_cb)
2135 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2136 root 1.77 else if (w->interval)
2137 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2138 root 1.242
2139 root 1.248 ANHE_at_cache (periodics [i]);
2140 root 1.77 }
2141 root 1.12
2142 root 1.248 reheap (periodics, periodiccnt);
2143 root 1.1 }
2144 root 1.93 #endif
2145 root 1.1
2146 root 1.288 /* adjust all timers by a given offset */
2147 root 1.285 static void noinline
2148     timers_reschedule (EV_P_ ev_tstamp adjust)
2149     {
2150     int i;
2151    
2152     for (i = 0; i < timercnt; ++i)
2153     {
2154     ANHE *he = timers + i + HEAP0;
2155     ANHE_w (*he)->at += adjust;
2156     ANHE_at_cache (*he);
2157     }
2158     }
2159    
2160 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2161     /* also detetc if there was a timejump, and act accordingly */
2162 root 1.284 inline_speed void
2163 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2164 root 1.4 {
2165 root 1.40 #if EV_USE_MONOTONIC
2166     if (expect_true (have_monotonic))
2167     {
2168 root 1.289 int i;
2169 root 1.178 ev_tstamp odiff = rtmn_diff;
2170    
2171     mn_now = get_clock ();
2172    
2173     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2174     /* interpolate in the meantime */
2175     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2176 root 1.40 {
2177 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2178     return;
2179     }
2180    
2181     now_floor = mn_now;
2182     ev_rt_now = ev_time ();
2183 root 1.4
2184 root 1.178 /* loop a few times, before making important decisions.
2185     * on the choice of "4": one iteration isn't enough,
2186     * in case we get preempted during the calls to
2187     * ev_time and get_clock. a second call is almost guaranteed
2188     * to succeed in that case, though. and looping a few more times
2189     * doesn't hurt either as we only do this on time-jumps or
2190     * in the unlikely event of having been preempted here.
2191     */
2192     for (i = 4; --i; )
2193     {
2194     rtmn_diff = ev_rt_now - mn_now;
2195 root 1.4
2196 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2197 root 1.178 return; /* all is well */
2198 root 1.4
2199 root 1.178 ev_rt_now = ev_time ();
2200     mn_now = get_clock ();
2201     now_floor = mn_now;
2202     }
2203 root 1.4
2204 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2205     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2206 root 1.140 # if EV_PERIODIC_ENABLE
2207 root 1.178 periodics_reschedule (EV_A);
2208 root 1.93 # endif
2209 root 1.4 }
2210     else
2211 root 1.40 #endif
2212 root 1.4 {
2213 root 1.85 ev_rt_now = ev_time ();
2214 root 1.40
2215 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2216 root 1.13 {
2217 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2218     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2219 root 1.140 #if EV_PERIODIC_ENABLE
2220 root 1.54 periodics_reschedule (EV_A);
2221 root 1.93 #endif
2222 root 1.13 }
2223 root 1.4
2224 root 1.85 mn_now = ev_rt_now;
2225 root 1.4 }
2226     }
2227    
2228 root 1.51 void
2229     ev_loop (EV_P_ int flags)
2230 root 1.1 {
2231 root 1.297 #if EV_MINIMAL < 2
2232 root 1.294 ++loop_depth;
2233 root 1.297 #endif
2234 root 1.294
2235 root 1.298 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2236    
2237 root 1.219 loop_done = EVUNLOOP_CANCEL;
2238 root 1.1
2239 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2240 root 1.158
2241 root 1.161 do
2242 root 1.9 {
2243 root 1.250 #if EV_VERIFY >= 2
2244     ev_loop_verify (EV_A);
2245     #endif
2246    
2247 root 1.158 #ifndef _WIN32
2248     if (expect_false (curpid)) /* penalise the forking check even more */
2249     if (expect_false (getpid () != curpid))
2250     {
2251     curpid = getpid ();
2252     postfork = 1;
2253     }
2254     #endif
2255    
2256 root 1.157 #if EV_FORK_ENABLE
2257     /* we might have forked, so queue fork handlers */
2258     if (expect_false (postfork))
2259     if (forkcnt)
2260     {
2261     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2262 root 1.297 EV_INVOKE_PENDING;
2263 root 1.157 }
2264     #endif
2265 root 1.147
2266 root 1.170 /* queue prepare watchers (and execute them) */
2267 root 1.40 if (expect_false (preparecnt))
2268 root 1.20 {
2269 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2270 root 1.297 EV_INVOKE_PENDING;
2271 root 1.20 }
2272 root 1.9
2273 root 1.298 if (expect_false (loop_done))
2274     break;
2275    
2276 root 1.70 /* we might have forked, so reify kernel state if necessary */
2277     if (expect_false (postfork))
2278     loop_fork (EV_A);
2279    
2280 root 1.1 /* update fd-related kernel structures */
2281 root 1.51 fd_reify (EV_A);
2282 root 1.1
2283     /* calculate blocking time */
2284 root 1.135 {
2285 root 1.193 ev_tstamp waittime = 0.;
2286     ev_tstamp sleeptime = 0.;
2287 root 1.12
2288 root 1.193 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2289 root 1.135 {
2290 root 1.293 /* remember old timestamp for io_blocktime calculation */
2291     ev_tstamp prev_mn_now = mn_now;
2292    
2293 root 1.135 /* update time to cancel out callback processing overhead */
2294 root 1.178 time_update (EV_A_ 1e100);
2295 root 1.135
2296 root 1.287 waittime = MAX_BLOCKTIME;
2297    
2298 root 1.135 if (timercnt)
2299     {
2300 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2301 root 1.193 if (waittime > to) waittime = to;
2302 root 1.135 }
2303 root 1.4
2304 root 1.140 #if EV_PERIODIC_ENABLE
2305 root 1.135 if (periodiccnt)
2306     {
2307 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2308 root 1.193 if (waittime > to) waittime = to;
2309 root 1.135 }
2310 root 1.93 #endif
2311 root 1.4
2312 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2313 root 1.193 if (expect_false (waittime < timeout_blocktime))
2314     waittime = timeout_blocktime;
2315    
2316 root 1.293 /* extra check because io_blocktime is commonly 0 */
2317     if (expect_false (io_blocktime))
2318     {
2319     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2320 root 1.193
2321 root 1.293 if (sleeptime > waittime - backend_fudge)
2322     sleeptime = waittime - backend_fudge;
2323 root 1.193
2324 root 1.293 if (expect_true (sleeptime > 0.))
2325     {
2326     ev_sleep (sleeptime);
2327     waittime -= sleeptime;
2328     }
2329 root 1.193 }
2330 root 1.135 }
2331 root 1.1
2332 root 1.297 #if EV_MINIMAL < 2
2333 root 1.162 ++loop_count;
2334 root 1.297 #endif
2335 root 1.298 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2336 root 1.193 backend_poll (EV_A_ waittime);
2337 root 1.298 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2338 root 1.178
2339     /* update ev_rt_now, do magic */
2340 root 1.193 time_update (EV_A_ waittime + sleeptime);
2341 root 1.135 }
2342 root 1.1
2343 root 1.9 /* queue pending timers and reschedule them */
2344 root 1.51 timers_reify (EV_A); /* relative timers called last */
2345 root 1.140 #if EV_PERIODIC_ENABLE
2346 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2347 root 1.93 #endif
2348 root 1.1
2349 root 1.164 #if EV_IDLE_ENABLE
2350 root 1.137 /* queue idle watchers unless other events are pending */
2351 root 1.164 idle_reify (EV_A);
2352     #endif
2353 root 1.9
2354 root 1.20 /* queue check watchers, to be executed first */
2355 root 1.123 if (expect_false (checkcnt))
2356 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2357 root 1.9
2358 root 1.297 EV_INVOKE_PENDING;
2359 root 1.1 }
2360 root 1.219 while (expect_true (
2361     activecnt
2362     && !loop_done
2363     && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2364     ));
2365 root 1.13
2366 root 1.135 if (loop_done == EVUNLOOP_ONE)
2367     loop_done = EVUNLOOP_CANCEL;
2368 root 1.294
2369 root 1.297 #if EV_MINIMAL < 2
2370 root 1.294 --loop_depth;
2371 root 1.297 #endif
2372 root 1.51 }
2373    
2374     void
2375     ev_unloop (EV_P_ int how)
2376     {
2377     loop_done = how;
2378 root 1.1 }
2379    
2380 root 1.285 void
2381     ev_ref (EV_P)
2382     {
2383     ++activecnt;
2384     }
2385    
2386     void
2387     ev_unref (EV_P)
2388     {
2389     --activecnt;
2390     }
2391    
2392     void
2393     ev_now_update (EV_P)
2394     {
2395     time_update (EV_A_ 1e100);
2396     }
2397    
2398     void
2399     ev_suspend (EV_P)
2400     {
2401     ev_now_update (EV_A);
2402     }
2403    
2404     void
2405     ev_resume (EV_P)
2406     {
2407     ev_tstamp mn_prev = mn_now;
2408    
2409     ev_now_update (EV_A);
2410     timers_reschedule (EV_A_ mn_now - mn_prev);
2411 root 1.286 #if EV_PERIODIC_ENABLE
2412 root 1.288 /* TODO: really do this? */
2413 root 1.285 periodics_reschedule (EV_A);
2414 root 1.286 #endif
2415 root 1.285 }
2416    
2417 root 1.8 /*****************************************************************************/
2418 root 1.288 /* singly-linked list management, used when the expected list length is short */
2419 root 1.8
2420 root 1.284 inline_size void
2421 root 1.10 wlist_add (WL *head, WL elem)
2422 root 1.1 {
2423     elem->next = *head;
2424     *head = elem;
2425     }
2426    
2427 root 1.284 inline_size void
2428 root 1.10 wlist_del (WL *head, WL elem)
2429 root 1.1 {
2430     while (*head)
2431     {
2432 root 1.307 if (expect_true (*head == elem))
2433 root 1.1 {
2434     *head = elem->next;
2435 root 1.307 break;
2436 root 1.1 }
2437    
2438     head = &(*head)->next;
2439     }
2440     }
2441    
2442 root 1.288 /* internal, faster, version of ev_clear_pending */
2443 root 1.284 inline_speed void
2444 root 1.166 clear_pending (EV_P_ W w)
2445 root 1.16 {
2446     if (w->pending)
2447     {
2448 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2449 root 1.16 w->pending = 0;
2450     }
2451     }
2452    
2453 root 1.167 int
2454     ev_clear_pending (EV_P_ void *w)
2455 root 1.166 {
2456     W w_ = (W)w;
2457     int pending = w_->pending;
2458    
2459 root 1.172 if (expect_true (pending))
2460     {
2461     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2462 root 1.288 p->w = (W)&pending_w;
2463 root 1.172 w_->pending = 0;
2464     return p->events;
2465     }
2466     else
2467 root 1.167 return 0;
2468 root 1.166 }
2469    
2470 root 1.284 inline_size void
2471 root 1.164 pri_adjust (EV_P_ W w)
2472     {
2473 root 1.295 int pri = ev_priority (w);
2474 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2475     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2476 root 1.295 ev_set_priority (w, pri);
2477 root 1.164 }
2478    
2479 root 1.284 inline_speed void
2480 root 1.51 ev_start (EV_P_ W w, int active)
2481 root 1.1 {
2482 root 1.164 pri_adjust (EV_A_ w);
2483 root 1.1 w->active = active;
2484 root 1.51 ev_ref (EV_A);
2485 root 1.1 }
2486    
2487 root 1.284 inline_size void
2488 root 1.51 ev_stop (EV_P_ W w)
2489 root 1.1 {
2490 root 1.51 ev_unref (EV_A);
2491 root 1.1 w->active = 0;
2492     }
2493    
2494 root 1.8 /*****************************************************************************/
2495    
2496 root 1.171 void noinline
2497 root 1.136 ev_io_start (EV_P_ ev_io *w)
2498 root 1.1 {
2499 root 1.37 int fd = w->fd;
2500    
2501 root 1.123 if (expect_false (ev_is_active (w)))
2502 root 1.1 return;
2503    
2504 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2505 root 1.281 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2506 root 1.33
2507 root 1.248 EV_FREQUENT_CHECK;
2508    
2509 root 1.51 ev_start (EV_A_ (W)w, 1);
2510 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2511 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2512 root 1.1
2513 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2514 root 1.281 w->events &= ~EV__IOFDSET;
2515 root 1.248
2516     EV_FREQUENT_CHECK;
2517 root 1.1 }
2518    
2519 root 1.171 void noinline
2520 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2521 root 1.1 {
2522 root 1.166 clear_pending (EV_A_ (W)w);
2523 root 1.123 if (expect_false (!ev_is_active (w)))
2524 root 1.1 return;
2525    
2526 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2527 root 1.89
2528 root 1.248 EV_FREQUENT_CHECK;
2529    
2530 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2531 root 1.51 ev_stop (EV_A_ (W)w);
2532 root 1.1
2533 root 1.184 fd_change (EV_A_ w->fd, 1);
2534 root 1.248
2535     EV_FREQUENT_CHECK;
2536 root 1.1 }
2537    
2538 root 1.171 void noinline
2539 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2540 root 1.1 {
2541 root 1.123 if (expect_false (ev_is_active (w)))
2542 root 1.1 return;
2543    
2544 root 1.228 ev_at (w) += mn_now;
2545 root 1.12
2546 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2547 root 1.13
2548 root 1.248 EV_FREQUENT_CHECK;
2549    
2550     ++timercnt;
2551     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2552 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2553     ANHE_w (timers [ev_active (w)]) = (WT)w;
2554 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2555 root 1.235 upheap (timers, ev_active (w));
2556 root 1.62
2557 root 1.248 EV_FREQUENT_CHECK;
2558    
2559 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2560 root 1.12 }
2561    
2562 root 1.171 void noinline
2563 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2564 root 1.12 {
2565 root 1.166 clear_pending (EV_A_ (W)w);
2566 root 1.123 if (expect_false (!ev_is_active (w)))
2567 root 1.12 return;
2568    
2569 root 1.248 EV_FREQUENT_CHECK;
2570    
2571 root 1.230 {
2572     int active = ev_active (w);
2573 root 1.62
2574 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2575 root 1.151
2576 root 1.248 --timercnt;
2577    
2578     if (expect_true (active < timercnt + HEAP0))
2579 root 1.151 {
2580 root 1.248 timers [active] = timers [timercnt + HEAP0];
2581 root 1.181 adjustheap (timers, timercnt, active);
2582 root 1.151 }
2583 root 1.248 }
2584 root 1.228
2585 root 1.248 EV_FREQUENT_CHECK;
2586 root 1.4
2587 root 1.228 ev_at (w) -= mn_now;
2588 root 1.14
2589 root 1.51 ev_stop (EV_A_ (W)w);
2590 root 1.12 }
2591 root 1.4
2592 root 1.171 void noinline
2593 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2594 root 1.14 {
2595 root 1.248 EV_FREQUENT_CHECK;
2596    
2597 root 1.14 if (ev_is_active (w))
2598     {
2599     if (w->repeat)
2600 root 1.99 {
2601 root 1.228 ev_at (w) = mn_now + w->repeat;
2602 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2603 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2604 root 1.99 }
2605 root 1.14 else
2606 root 1.51 ev_timer_stop (EV_A_ w);
2607 root 1.14 }
2608     else if (w->repeat)
2609 root 1.112 {
2610 root 1.229 ev_at (w) = w->repeat;
2611 root 1.112 ev_timer_start (EV_A_ w);
2612     }
2613 root 1.248
2614     EV_FREQUENT_CHECK;
2615 root 1.14 }
2616    
2617 root 1.301 ev_tstamp
2618     ev_timer_remaining (EV_P_ ev_timer *w)
2619     {
2620     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2621     }
2622    
2623 root 1.140 #if EV_PERIODIC_ENABLE
2624 root 1.171 void noinline
2625 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2626 root 1.12 {
2627 root 1.123 if (expect_false (ev_is_active (w)))
2628 root 1.12 return;
2629 root 1.1
2630 root 1.77 if (w->reschedule_cb)
2631 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2632 root 1.77 else if (w->interval)
2633     {
2634 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2635 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2636 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2637 root 1.77 }
2638 root 1.173 else
2639 root 1.228 ev_at (w) = w->offset;
2640 root 1.12
2641 root 1.248 EV_FREQUENT_CHECK;
2642    
2643     ++periodiccnt;
2644     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2645 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2646     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2647 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2648 root 1.235 upheap (periodics, ev_active (w));
2649 root 1.62
2650 root 1.248 EV_FREQUENT_CHECK;
2651    
2652 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2653 root 1.1 }
2654    
2655 root 1.171 void noinline
2656 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2657 root 1.1 {
2658 root 1.166 clear_pending (EV_A_ (W)w);
2659 root 1.123 if (expect_false (!ev_is_active (w)))
2660 root 1.1 return;
2661    
2662 root 1.248 EV_FREQUENT_CHECK;
2663    
2664 root 1.230 {
2665     int active = ev_active (w);
2666 root 1.62
2667 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2668 root 1.151
2669 root 1.248 --periodiccnt;
2670    
2671     if (expect_true (active < periodiccnt + HEAP0))
2672 root 1.151 {
2673 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2674 root 1.181 adjustheap (periodics, periodiccnt, active);
2675 root 1.151 }
2676 root 1.248 }
2677 root 1.228
2678 root 1.248 EV_FREQUENT_CHECK;
2679 root 1.2
2680 root 1.51 ev_stop (EV_A_ (W)w);
2681 root 1.1 }
2682    
2683 root 1.171 void noinline
2684 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2685 root 1.77 {
2686 root 1.84 /* TODO: use adjustheap and recalculation */
2687 root 1.77 ev_periodic_stop (EV_A_ w);
2688     ev_periodic_start (EV_A_ w);
2689     }
2690 root 1.93 #endif
2691 root 1.77
2692 root 1.56 #ifndef SA_RESTART
2693     # define SA_RESTART 0
2694     #endif
2695    
2696 root 1.171 void noinline
2697 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2698 root 1.56 {
2699 root 1.123 if (expect_false (ev_is_active (w)))
2700 root 1.56 return;
2701    
2702 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2703    
2704     #if EV_MULTIPLICITY
2705 root 1.308 assert (("libev: a signal must not be attached to two different loops",
2706 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2707    
2708     signals [w->signum - 1].loop = EV_A;
2709     #endif
2710 root 1.56
2711 root 1.303 EV_FREQUENT_CHECK;
2712    
2713     #if EV_USE_SIGNALFD
2714     if (sigfd == -2)
2715     {
2716     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2717     if (sigfd < 0 && errno == EINVAL)
2718     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2719    
2720     if (sigfd >= 0)
2721     {
2722     fd_intern (sigfd); /* doing it twice will not hurt */
2723    
2724     sigemptyset (&sigfd_set);
2725    
2726     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2727     ev_set_priority (&sigfd_w, EV_MAXPRI);
2728     ev_io_start (EV_A_ &sigfd_w);
2729     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2730     }
2731     }
2732    
2733     if (sigfd >= 0)
2734     {
2735     /* TODO: check .head */
2736     sigaddset (&sigfd_set, w->signum);
2737     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2738 root 1.207
2739 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2740     }
2741 root 1.180 #endif
2742    
2743 root 1.56 ev_start (EV_A_ (W)w, 1);
2744 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2745 root 1.56
2746 root 1.63 if (!((WL)w)->next)
2747 root 1.304 # if EV_USE_SIGNALFD
2748 root 1.306 if (sigfd < 0) /*TODO*/
2749 root 1.304 # endif
2750 root 1.306 {
2751     # if _WIN32
2752 root 1.317 evpipe_init (EV_A);
2753    
2754 root 1.306 signal (w->signum, ev_sighandler);
2755     # else
2756     struct sigaction sa;
2757    
2758     evpipe_init (EV_A);
2759    
2760     sa.sa_handler = ev_sighandler;
2761     sigfillset (&sa.sa_mask);
2762     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2763     sigaction (w->signum, &sa, 0);
2764    
2765     sigemptyset (&sa.sa_mask);
2766     sigaddset (&sa.sa_mask, w->signum);
2767     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2768 root 1.67 #endif
2769 root 1.306 }
2770 root 1.248
2771     EV_FREQUENT_CHECK;
2772 root 1.56 }
2773    
2774 root 1.171 void noinline
2775 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2776 root 1.56 {
2777 root 1.166 clear_pending (EV_A_ (W)w);
2778 root 1.123 if (expect_false (!ev_is_active (w)))
2779 root 1.56 return;
2780    
2781 root 1.248 EV_FREQUENT_CHECK;
2782    
2783 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2784 root 1.56 ev_stop (EV_A_ (W)w);
2785    
2786     if (!signals [w->signum - 1].head)
2787 root 1.306 {
2788 root 1.307 #if EV_MULTIPLICITY
2789 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
2790 root 1.307 #endif
2791     #if EV_USE_SIGNALFD
2792 root 1.306 if (sigfd >= 0)
2793     {
2794     sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2795     sigdelset (&sigfd_set, w->signum);
2796     signalfd (sigfd, &sigfd_set, 0);
2797     sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2798     /*TODO: maybe unblock signal? */
2799     }
2800     else
2801 root 1.307 #endif
2802 root 1.306 signal (w->signum, SIG_DFL);
2803     }
2804 root 1.248
2805     EV_FREQUENT_CHECK;
2806 root 1.56 }
2807    
2808 root 1.28 void
2809 root 1.136 ev_child_start (EV_P_ ev_child *w)
2810 root 1.22 {
2811 root 1.56 #if EV_MULTIPLICITY
2812 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2813 root 1.56 #endif
2814 root 1.123 if (expect_false (ev_is_active (w)))
2815 root 1.22 return;
2816    
2817 root 1.248 EV_FREQUENT_CHECK;
2818    
2819 root 1.51 ev_start (EV_A_ (W)w, 1);
2820 root 1.182 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2821 root 1.248
2822     EV_FREQUENT_CHECK;
2823 root 1.22 }
2824    
2825 root 1.28 void
2826 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2827 root 1.22 {
2828 root 1.166 clear_pending (EV_A_ (W)w);
2829 root 1.123 if (expect_false (!ev_is_active (w)))
2830 root 1.22 return;
2831    
2832 root 1.248 EV_FREQUENT_CHECK;
2833    
2834 root 1.182 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2835 root 1.51 ev_stop (EV_A_ (W)w);
2836 root 1.248
2837     EV_FREQUENT_CHECK;
2838 root 1.22 }
2839    
2840 root 1.140 #if EV_STAT_ENABLE
2841    
2842     # ifdef _WIN32
2843 root 1.146 # undef lstat
2844     # define lstat(a,b) _stati64 (a,b)
2845 root 1.140 # endif
2846    
2847 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2848     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2849     #define MIN_STAT_INTERVAL 0.1074891
2850 root 1.143
2851 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2852 root 1.152
2853     #if EV_USE_INOTIFY
2854 root 1.153 # define EV_INOTIFY_BUFSIZE 8192
2855 root 1.152
2856     static void noinline
2857     infy_add (EV_P_ ev_stat *w)
2858     {
2859     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2860    
2861     if (w->wd < 0)
2862     {
2863 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2864     ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2865 root 1.152
2866     /* monitor some parent directory for speedup hints */
2867 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2868 root 1.233 /* but an efficiency issue only */
2869 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2870 root 1.152 {
2871 root 1.153 char path [4096];
2872 root 1.152 strcpy (path, w->path);
2873    
2874     do
2875     {
2876     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2877     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2878    
2879     char *pend = strrchr (path, '/');
2880    
2881 root 1.275 if (!pend || pend == path)
2882     break;
2883 root 1.152
2884     *pend = 0;
2885 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
2886 root 1.152 }
2887     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2888     }
2889     }
2890 root 1.275
2891     if (w->wd >= 0)
2892 root 1.273 {
2893 root 1.312 struct statfs sfs;
2894    
2895 root 1.273 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2896    
2897     /* now local changes will be tracked by inotify, but remote changes won't */
2898 root 1.317 /* unless the filesystem is known to be local, we therefore still poll */
2899 root 1.273 /* also do poll on <2.6.25, but with normal frequency */
2900    
2901     if (fs_2625 && !statfs (w->path, &sfs))
2902     if (sfs.f_type == 0x1373 /* devfs */
2903     || sfs.f_type == 0xEF53 /* ext2/3 */
2904     || sfs.f_type == 0x3153464a /* jfs */
2905     || sfs.f_type == 0x52654973 /* reiser3 */
2906     || sfs.f_type == 0x01021994 /* tempfs */
2907     || sfs.f_type == 0x58465342 /* xfs */)
2908     return;
2909 root 1.152
2910 root 1.273 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2911     ev_timer_again (EV_A_ &w->timer);
2912     }
2913 root 1.152 }
2914    
2915     static void noinline
2916     infy_del (EV_P_ ev_stat *w)
2917     {
2918     int slot;
2919     int wd = w->wd;
2920    
2921     if (wd < 0)
2922     return;
2923    
2924     w->wd = -2;
2925     slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2926     wlist_del (&fs_hash [slot].head, (WL)w);
2927    
2928     /* remove this watcher, if others are watching it, they will rearm */
2929     inotify_rm_watch (fs_fd, wd);
2930     }
2931    
2932     static void noinline
2933     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2934     {
2935     if (slot < 0)
2936 root 1.264 /* overflow, need to check for all hash slots */
2937 root 1.152 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2938     infy_wd (EV_A_ slot, wd, ev);
2939     else
2940     {
2941     WL w_;
2942    
2943     for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2944     {
2945     ev_stat *w = (ev_stat *)w_;
2946     w_ = w_->next; /* lets us remove this watcher and all before it */
2947    
2948     if (w->wd == wd || wd == -1)
2949     {
2950     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2951     {
2952 root 1.275 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2953 root 1.152 w->wd = -1;
2954     infy_add (EV_A_ w); /* re-add, no matter what */
2955     }
2956    
2957 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
2958 root 1.152 }
2959     }
2960     }
2961     }
2962    
2963     static void
2964     infy_cb (EV_P_ ev_io *w, int revents)
2965     {
2966     char buf [EV_INOTIFY_BUFSIZE];
2967     struct inotify_event *ev = (struct inotify_event *)buf;
2968     int ofs;
2969     int len = read (fs_fd, buf, sizeof (buf));
2970    
2971     for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2972     infy_wd (EV_A_ ev->wd, ev->wd, ev);
2973     }
2974    
2975 root 1.284 inline_size void
2976 root 1.273 check_2625 (EV_P)
2977 root 1.152 {
2978 root 1.264 /* kernels < 2.6.25 are borked
2979     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2980     */
2981 root 1.273 struct utsname buf;
2982     int major, minor, micro;
2983    
2984     if (uname (&buf))
2985     return;
2986    
2987     if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2988     return;
2989    
2990     if (major < 2
2991     || (major == 2 && minor < 6)
2992     || (major == 2 && minor == 6 && micro < 25))
2993     return;
2994 root 1.264
2995 root 1.273 fs_2625 = 1;
2996     }
2997 root 1.264
2998 root 1.315 inline_size int
2999     infy_newfd (void)
3000     {
3001     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3002     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3003     if (fd >= 0)
3004     return fd;
3005     #endif
3006     return inotify_init ();
3007     }
3008    
3009 root 1.284 inline_size void
3010 root 1.273 infy_init (EV_P)
3011     {
3012     if (fs_fd != -2)
3013     return;
3014 root 1.264
3015 root 1.273 fs_fd = -1;
3016 root 1.264
3017 root 1.273 check_2625 (EV_A);
3018 root 1.264
3019 root 1.315 fs_fd = infy_newfd ();
3020 root 1.152
3021     if (fs_fd >= 0)
3022     {
3023 root 1.315 fd_intern (fs_fd);
3024 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3025     ev_set_priority (&fs_w, EV_MAXPRI);
3026     ev_io_start (EV_A_ &fs_w);
3027 root 1.317 ev_unref (EV_A);
3028 root 1.152 }
3029     }
3030    
3031 root 1.284 inline_size void
3032 root 1.154 infy_fork (EV_P)
3033     {
3034     int slot;
3035    
3036     if (fs_fd < 0)
3037     return;
3038    
3039 root 1.317 ev_ref (EV_A);
3040 root 1.315 ev_io_stop (EV_A_ &fs_w);
3041 root 1.154 close (fs_fd);
3042 root 1.315 fs_fd = infy_newfd ();
3043    
3044     if (fs_fd >= 0)
3045     {
3046     fd_intern (fs_fd);
3047     ev_io_set (&fs_w, fs_fd, EV_READ);
3048     ev_io_start (EV_A_ &fs_w);
3049 root 1.317 ev_unref (EV_A);
3050 root 1.315 }
3051 root 1.154
3052     for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3053     {
3054     WL w_ = fs_hash [slot].head;
3055     fs_hash [slot].head = 0;
3056    
3057     while (w_)
3058     {
3059     ev_stat *w = (ev_stat *)w_;
3060     w_ = w_->next; /* lets us add this watcher */
3061    
3062     w->wd = -1;
3063    
3064     if (fs_fd >= 0)
3065     infy_add (EV_A_ w); /* re-add, no matter what */
3066     else
3067 root 1.273 ev_timer_again (EV_A_ &w->timer);
3068 root 1.154 }
3069     }
3070     }
3071    
3072 root 1.152 #endif
3073    
3074 root 1.255 #ifdef _WIN32
3075     # define EV_LSTAT(p,b) _stati64 (p, b)
3076     #else
3077     # define EV_LSTAT(p,b) lstat (p, b)
3078     #endif
3079    
3080 root 1.140 void
3081     ev_stat_stat (EV_P_ ev_stat *w)
3082     {
3083     if (lstat (w->path, &w->attr) < 0)
3084     w->attr.st_nlink = 0;
3085     else if (!w->attr.st_nlink)
3086     w->attr.st_nlink = 1;
3087     }
3088    
3089 root 1.157 static void noinline
3090 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3091     {
3092     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3093    
3094     /* we copy this here each the time so that */
3095     /* prev has the old value when the callback gets invoked */
3096     w->prev = w->attr;
3097     ev_stat_stat (EV_A_ w);
3098    
3099 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3100     if (
3101     w->prev.st_dev != w->attr.st_dev
3102     || w->prev.st_ino != w->attr.st_ino
3103     || w->prev.st_mode != w->attr.st_mode
3104     || w->prev.st_nlink != w->attr.st_nlink
3105     || w->prev.st_uid != w->attr.st_uid
3106     || w->prev.st_gid != w->attr.st_gid
3107     || w->prev.st_rdev != w->attr.st_rdev
3108     || w->prev.st_size != w->attr.st_size
3109     || w->prev.st_atime != w->attr.st_atime
3110     || w->prev.st_mtime != w->attr.st_mtime
3111     || w->prev.st_ctime != w->attr.st_ctime
3112     ) {
3113 root 1.152 #if EV_USE_INOTIFY
3114 root 1.264 if (fs_fd >= 0)
3115     {
3116     infy_del (EV_A_ w);
3117     infy_add (EV_A_ w);
3118     ev_stat_stat (EV_A_ w); /* avoid race... */
3119     }
3120 root 1.152 #endif
3121    
3122     ev_feed_event (EV_A_ w, EV_STAT);
3123     }
3124 root 1.140 }
3125    
3126     void
3127     ev_stat_start (EV_P_ ev_stat *w)
3128     {
3129     if (expect_false (ev_is_active (w)))
3130     return;
3131    
3132     ev_stat_stat (EV_A_ w);
3133    
3134 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3135     w->interval = MIN_STAT_INTERVAL;
3136 root 1.143
3137 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3138 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3139 root 1.152
3140     #if EV_USE_INOTIFY
3141     infy_init (EV_A);
3142    
3143     if (fs_fd >= 0)
3144     infy_add (EV_A_ w);
3145     else
3146     #endif
3147 root 1.273 ev_timer_again (EV_A_ &w->timer);
3148 root 1.140
3149     ev_start (EV_A_ (W)w, 1);
3150 root 1.248
3151     EV_FREQUENT_CHECK;
3152 root 1.140 }
3153    
3154     void
3155     ev_stat_stop (EV_P_ ev_stat *w)
3156     {
3157 root 1.166 clear_pending (EV_A_ (W)w);
3158 root 1.140 if (expect_false (!ev_is_active (w)))
3159     return;
3160    
3161 root 1.248 EV_FREQUENT_CHECK;
3162    
3163 root 1.152 #if EV_USE_INOTIFY
3164     infy_del (EV_A_ w);
3165     #endif
3166 root 1.140 ev_timer_stop (EV_A_ &w->timer);
3167    
3168 root 1.134 ev_stop (EV_A_ (W)w);
3169 root 1.248
3170     EV_FREQUENT_CHECK;
3171 root 1.134 }
3172     #endif
3173    
3174 root 1.164 #if EV_IDLE_ENABLE
3175 root 1.144 void
3176     ev_idle_start (EV_P_ ev_idle *w)
3177     {
3178     if (expect_false (ev_is_active (w)))
3179     return;
3180    
3181 root 1.164 pri_adjust (EV_A_ (W)w);
3182    
3183 root 1.248 EV_FREQUENT_CHECK;
3184    
3185 root 1.164 {
3186     int active = ++idlecnt [ABSPRI (w)];
3187    
3188     ++idleall;
3189     ev_start (EV_A_ (W)w, active);
3190    
3191     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3192     idles [ABSPRI (w)][active - 1] = w;
3193     }
3194 root 1.248
3195     EV_FREQUENT_CHECK;
3196 root 1.144 }
3197    
3198     void
3199     ev_idle_stop (EV_P_ ev_idle *w)
3200     {
3201 root 1.166 clear_pending (EV_A_ (W)w);
3202 root 1.144 if (expect_false (!ev_is_active (w)))
3203     return;
3204    
3205 root 1.248 EV_FREQUENT_CHECK;
3206    
3207 root 1.144 {
3208 root 1.230 int active = ev_active (w);
3209 root 1.164
3210     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3211 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3212 root 1.164
3213     ev_stop (EV_A_ (W)w);
3214     --idleall;
3215 root 1.144 }
3216 root 1.248
3217     EV_FREQUENT_CHECK;
3218 root 1.144 }
3219 root 1.164 #endif
3220 root 1.144
3221     void
3222     ev_prepare_start (EV_P_ ev_prepare *w)
3223     {
3224     if (expect_false (ev_is_active (w)))
3225     return;
3226    
3227 root 1.248 EV_FREQUENT_CHECK;
3228    
3229 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3230     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3231     prepares [preparecnt - 1] = w;
3232 root 1.248
3233     EV_FREQUENT_CHECK;
3234 root 1.144 }
3235    
3236     void
3237     ev_prepare_stop (EV_P_ ev_prepare *w)
3238     {
3239 root 1.166 clear_pending (EV_A_ (W)w);
3240 root 1.144 if (expect_false (!ev_is_active (w)))
3241     return;
3242    
3243 root 1.248 EV_FREQUENT_CHECK;
3244    
3245 root 1.144 {
3246 root 1.230 int active = ev_active (w);
3247    
3248 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3249 root 1.230 ev_active (prepares [active - 1]) = active;
3250 root 1.144 }
3251    
3252     ev_stop (EV_A_ (W)w);
3253 root 1.248
3254     EV_FREQUENT_CHECK;
3255 root 1.144 }
3256    
3257     void
3258     ev_check_start (EV_P_ ev_check *w)
3259     {
3260     if (expect_false (ev_is_active (w)))
3261     return;
3262    
3263 root 1.248 EV_FREQUENT_CHECK;
3264    
3265 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3266     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3267     checks [checkcnt - 1] = w;
3268 root 1.248
3269     EV_FREQUENT_CHECK;
3270 root 1.144 }
3271    
3272     void
3273     ev_check_stop (EV_P_ ev_check *w)
3274     {
3275 root 1.166 clear_pending (EV_A_ (W)w);
3276 root 1.144 if (expect_false (!ev_is_active (w)))
3277     return;
3278    
3279 root 1.248 EV_FREQUENT_CHECK;
3280    
3281 root 1.144 {
3282 root 1.230 int active = ev_active (w);
3283    
3284 root 1.144 checks [active - 1] = checks [--checkcnt];
3285 root 1.230 ev_active (checks [active - 1]) = active;
3286 root 1.144 }
3287    
3288     ev_stop (EV_A_ (W)w);
3289 root 1.248
3290     EV_FREQUENT_CHECK;
3291 root 1.144 }
3292    
3293     #if EV_EMBED_ENABLE
3294     void noinline
3295     ev_embed_sweep (EV_P_ ev_embed *w)
3296     {
3297 root 1.188 ev_loop (w->other, EVLOOP_NONBLOCK);
3298 root 1.144 }
3299    
3300     static void
3301 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3302 root 1.144 {
3303     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3304    
3305     if (ev_cb (w))
3306     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3307     else
3308 root 1.195 ev_loop (w->other, EVLOOP_NONBLOCK);
3309 root 1.144 }
3310    
3311 root 1.189 static void
3312     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3313     {
3314     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3315    
3316 root 1.195 {
3317 root 1.306 EV_P = w->other;
3318 root 1.195
3319     while (fdchangecnt)
3320     {
3321     fd_reify (EV_A);
3322     ev_loop (EV_A_ EVLOOP_NONBLOCK);
3323     }
3324     }
3325     }
3326    
3327 root 1.261 static void
3328     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3329     {
3330     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3331    
3332 root 1.277 ev_embed_stop (EV_A_ w);
3333    
3334 root 1.261 {
3335 root 1.306 EV_P = w->other;
3336 root 1.261
3337     ev_loop_fork (EV_A);
3338 root 1.277 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3339 root 1.261 }
3340 root 1.277
3341     ev_embed_start (EV_A_ w);
3342 root 1.261 }
3343    
3344 root 1.195 #if 0
3345     static void
3346     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3347     {
3348     ev_idle_stop (EV_A_ idle);
3349 root 1.189 }
3350 root 1.195 #endif
3351 root 1.189
3352 root 1.144 void
3353     ev_embed_start (EV_P_ ev_embed *w)
3354     {
3355     if (expect_false (ev_is_active (w)))
3356     return;
3357    
3358     {
3359 root 1.306 EV_P = w->other;
3360 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3361 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3362 root 1.144 }
3363    
3364 root 1.248 EV_FREQUENT_CHECK;
3365    
3366 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3367     ev_io_start (EV_A_ &w->io);
3368    
3369 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3370     ev_set_priority (&w->prepare, EV_MINPRI);
3371     ev_prepare_start (EV_A_ &w->prepare);
3372    
3373 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3374     ev_fork_start (EV_A_ &w->fork);
3375    
3376 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3377    
3378 root 1.144 ev_start (EV_A_ (W)w, 1);
3379 root 1.248
3380     EV_FREQUENT_CHECK;
3381 root 1.144 }
3382    
3383     void
3384     ev_embed_stop (EV_P_ ev_embed *w)
3385     {
3386 root 1.166 clear_pending (EV_A_ (W)w);
3387 root 1.144 if (expect_false (!ev_is_active (w)))
3388     return;
3389    
3390 root 1.248 EV_FREQUENT_CHECK;
3391    
3392 root 1.261 ev_io_stop (EV_A_ &w->io);
3393 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3394 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3395 root 1.248
3396     EV_FREQUENT_CHECK;
3397 root 1.144 }
3398     #endif
3399    
3400 root 1.147 #if EV_FORK_ENABLE
3401     void
3402     ev_fork_start (EV_P_ ev_fork *w)
3403     {
3404     if (expect_false (ev_is_active (w)))
3405     return;
3406    
3407 root 1.248 EV_FREQUENT_CHECK;
3408    
3409 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3410     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3411     forks [forkcnt - 1] = w;
3412 root 1.248
3413     EV_FREQUENT_CHECK;
3414 root 1.147 }
3415    
3416     void
3417     ev_fork_stop (EV_P_ ev_fork *w)
3418     {
3419 root 1.166 clear_pending (EV_A_ (W)w);
3420 root 1.147 if (expect_false (!ev_is_active (w)))
3421     return;
3422    
3423 root 1.248 EV_FREQUENT_CHECK;
3424    
3425 root 1.147 {
3426 root 1.230 int active = ev_active (w);
3427    
3428 root 1.147 forks [active - 1] = forks [--forkcnt];
3429 root 1.230 ev_active (forks [active - 1]) = active;
3430 root 1.147 }
3431    
3432     ev_stop (EV_A_ (W)w);
3433 root 1.248
3434     EV_FREQUENT_CHECK;
3435 root 1.147 }
3436     #endif
3437    
3438 root 1.207 #if EV_ASYNC_ENABLE
3439     void
3440     ev_async_start (EV_P_ ev_async *w)
3441     {
3442     if (expect_false (ev_is_active (w)))
3443     return;
3444    
3445     evpipe_init (EV_A);
3446    
3447 root 1.248 EV_FREQUENT_CHECK;
3448    
3449 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3450     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3451     asyncs [asynccnt - 1] = w;
3452 root 1.248
3453     EV_FREQUENT_CHECK;
3454 root 1.207 }
3455    
3456     void
3457     ev_async_stop (EV_P_ ev_async *w)
3458     {
3459     clear_pending (EV_A_ (W)w);
3460     if (expect_false (!ev_is_active (w)))
3461     return;
3462    
3463 root 1.248 EV_FREQUENT_CHECK;
3464    
3465 root 1.207 {
3466 root 1.230 int active = ev_active (w);
3467    
3468 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3469 root 1.230 ev_active (asyncs [active - 1]) = active;
3470 root 1.207 }
3471    
3472     ev_stop (EV_A_ (W)w);
3473 root 1.248
3474     EV_FREQUENT_CHECK;
3475 root 1.207 }
3476    
3477     void
3478     ev_async_send (EV_P_ ev_async *w)
3479     {
3480     w->sent = 1;
3481 root 1.307 evpipe_write (EV_A_ &async_pending);
3482 root 1.207 }
3483     #endif
3484    
3485 root 1.1 /*****************************************************************************/
3486 root 1.10
3487 root 1.16 struct ev_once
3488     {
3489 root 1.136 ev_io io;
3490     ev_timer to;
3491 root 1.16 void (*cb)(int revents, void *arg);
3492     void *arg;
3493     };
3494    
3495     static void
3496 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3497 root 1.16 {
3498     void (*cb)(int revents, void *arg) = once->cb;
3499     void *arg = once->arg;
3500    
3501 root 1.259 ev_io_stop (EV_A_ &once->io);
3502 root 1.51 ev_timer_stop (EV_A_ &once->to);
3503 root 1.69 ev_free (once);
3504 root 1.16
3505     cb (revents, arg);
3506     }
3507    
3508     static void
3509 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3510 root 1.16 {
3511 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3512    
3513     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3514 root 1.16 }
3515    
3516     static void
3517 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3518 root 1.16 {
3519 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3520    
3521     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3522 root 1.16 }
3523    
3524     void
3525 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3526 root 1.16 {
3527 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3528 root 1.16
3529 root 1.123 if (expect_false (!once))
3530 root 1.16 {
3531 root 1.123 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3532     return;
3533     }
3534    
3535     once->cb = cb;
3536     once->arg = arg;
3537 root 1.16
3538 root 1.123 ev_init (&once->io, once_cb_io);
3539     if (fd >= 0)
3540     {
3541     ev_io_set (&once->io, fd, events);
3542     ev_io_start (EV_A_ &once->io);
3543     }
3544 root 1.16
3545 root 1.123 ev_init (&once->to, once_cb_to);
3546     if (timeout >= 0.)
3547     {
3548     ev_timer_set (&once->to, timeout, 0.);
3549     ev_timer_start (EV_A_ &once->to);
3550 root 1.16 }
3551     }
3552    
3553 root 1.282 /*****************************************************************************/
3554    
3555 root 1.288 #if EV_WALK_ENABLE
3556 root 1.282 void
3557     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3558     {
3559     int i, j;
3560     ev_watcher_list *wl, *wn;
3561    
3562     if (types & (EV_IO | EV_EMBED))
3563     for (i = 0; i < anfdmax; ++i)
3564     for (wl = anfds [i].head; wl; )
3565     {
3566     wn = wl->next;
3567    
3568     #if EV_EMBED_ENABLE
3569     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3570     {
3571     if (types & EV_EMBED)
3572     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3573     }
3574     else
3575     #endif
3576     #if EV_USE_INOTIFY
3577     if (ev_cb ((ev_io *)wl) == infy_cb)
3578     ;
3579     else
3580     #endif
3581 root 1.288 if ((ev_io *)wl != &pipe_w)
3582 root 1.282 if (types & EV_IO)
3583     cb (EV_A_ EV_IO, wl);
3584    
3585     wl = wn;
3586     }
3587    
3588     if (types & (EV_TIMER | EV_STAT))
3589     for (i = timercnt + HEAP0; i-- > HEAP0; )
3590     #if EV_STAT_ENABLE
3591     /*TODO: timer is not always active*/
3592     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3593     {
3594     if (types & EV_STAT)
3595     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3596     }
3597     else
3598     #endif
3599     if (types & EV_TIMER)
3600     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3601    
3602     #if EV_PERIODIC_ENABLE
3603     if (types & EV_PERIODIC)
3604     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3605     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3606     #endif
3607    
3608     #if EV_IDLE_ENABLE
3609     if (types & EV_IDLE)
3610     for (j = NUMPRI; i--; )
3611     for (i = idlecnt [j]; i--; )
3612     cb (EV_A_ EV_IDLE, idles [j][i]);
3613     #endif
3614    
3615     #if EV_FORK_ENABLE
3616     if (types & EV_FORK)
3617     for (i = forkcnt; i--; )
3618     if (ev_cb (forks [i]) != embed_fork_cb)
3619     cb (EV_A_ EV_FORK, forks [i]);
3620     #endif
3621    
3622     #if EV_ASYNC_ENABLE
3623     if (types & EV_ASYNC)
3624     for (i = asynccnt; i--; )
3625     cb (EV_A_ EV_ASYNC, asyncs [i]);
3626     #endif
3627    
3628     if (types & EV_PREPARE)
3629     for (i = preparecnt; i--; )
3630     #if EV_EMBED_ENABLE
3631     if (ev_cb (prepares [i]) != embed_prepare_cb)
3632     #endif
3633     cb (EV_A_ EV_PREPARE, prepares [i]);
3634    
3635     if (types & EV_CHECK)
3636     for (i = checkcnt; i--; )
3637     cb (EV_A_ EV_CHECK, checks [i]);
3638    
3639     if (types & EV_SIGNAL)
3640 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
3641 root 1.282 for (wl = signals [i].head; wl; )
3642     {
3643     wn = wl->next;
3644     cb (EV_A_ EV_SIGNAL, wl);
3645     wl = wn;
3646     }
3647    
3648     if (types & EV_CHILD)
3649     for (i = EV_PID_HASHSIZE; i--; )
3650     for (wl = childs [i]; wl; )
3651     {
3652     wn = wl->next;
3653     cb (EV_A_ EV_CHILD, wl);
3654     wl = wn;
3655     }
3656     /* EV_STAT 0x00001000 /* stat data changed */
3657     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3658     }
3659     #endif
3660    
3661 root 1.188 #if EV_MULTIPLICITY
3662     #include "ev_wrap.h"
3663     #endif
3664    
3665 root 1.87 #ifdef __cplusplus
3666     }
3667     #endif
3668