ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.336
Committed: Wed Mar 10 08:19:38 2010 UTC (14 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.335: +40 -23 lines
Log Message:
more minimal tuning, add truly minimal example

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.326 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40     #ifdef __cplusplus
41     extern "C" {
42     #endif
43    
44 root 1.220 /* this big block deduces configuration from config.h */
45 root 1.59 #ifndef EV_STANDALONE
46 root 1.133 # ifdef EV_CONFIG_H
47     # include EV_CONFIG_H
48     # else
49     # include "config.h"
50     # endif
51 root 1.60
52 root 1.274 # if HAVE_CLOCK_SYSCALL
53     # ifndef EV_USE_CLOCK_SYSCALL
54     # define EV_USE_CLOCK_SYSCALL 1
55     # ifndef EV_USE_REALTIME
56     # define EV_USE_REALTIME 0
57     # endif
58     # ifndef EV_USE_MONOTONIC
59     # define EV_USE_MONOTONIC 1
60     # endif
61     # endif
62 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
63     # define EV_USE_CLOCK_SYSCALL 0
64 root 1.274 # endif
65    
66 root 1.60 # if HAVE_CLOCK_GETTIME
67 root 1.97 # ifndef EV_USE_MONOTONIC
68     # define EV_USE_MONOTONIC 1
69     # endif
70     # ifndef EV_USE_REALTIME
71 root 1.279 # define EV_USE_REALTIME 0
72 root 1.97 # endif
73 root 1.126 # else
74     # ifndef EV_USE_MONOTONIC
75     # define EV_USE_MONOTONIC 0
76     # endif
77     # ifndef EV_USE_REALTIME
78     # define EV_USE_REALTIME 0
79     # endif
80 root 1.60 # endif
81    
82 root 1.193 # ifndef EV_USE_NANOSLEEP
83     # if HAVE_NANOSLEEP
84     # define EV_USE_NANOSLEEP 1
85     # else
86     # define EV_USE_NANOSLEEP 0
87     # endif
88     # endif
89    
90 root 1.127 # ifndef EV_USE_SELECT
91     # if HAVE_SELECT && HAVE_SYS_SELECT_H
92     # define EV_USE_SELECT 1
93     # else
94     # define EV_USE_SELECT 0
95     # endif
96 root 1.60 # endif
97    
98 root 1.127 # ifndef EV_USE_POLL
99     # if HAVE_POLL && HAVE_POLL_H
100     # define EV_USE_POLL 1
101     # else
102     # define EV_USE_POLL 0
103     # endif
104 root 1.60 # endif
105 root 1.127
106     # ifndef EV_USE_EPOLL
107     # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108     # define EV_USE_EPOLL 1
109     # else
110     # define EV_USE_EPOLL 0
111     # endif
112 root 1.60 # endif
113 root 1.127
114     # ifndef EV_USE_KQUEUE
115 root 1.323 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
116 root 1.127 # define EV_USE_KQUEUE 1
117     # else
118     # define EV_USE_KQUEUE 0
119     # endif
120 root 1.60 # endif
121 root 1.127
122     # ifndef EV_USE_PORT
123     # if HAVE_PORT_H && HAVE_PORT_CREATE
124     # define EV_USE_PORT 1
125     # else
126     # define EV_USE_PORT 0
127     # endif
128 root 1.118 # endif
129    
130 root 1.152 # ifndef EV_USE_INOTIFY
131     # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132     # define EV_USE_INOTIFY 1
133     # else
134     # define EV_USE_INOTIFY 0
135     # endif
136     # endif
137    
138 root 1.303 # ifndef EV_USE_SIGNALFD
139     # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140     # define EV_USE_SIGNALFD 1
141     # else
142     # define EV_USE_SIGNALFD 0
143     # endif
144     # endif
145    
146 root 1.220 # ifndef EV_USE_EVENTFD
147     # if HAVE_EVENTFD
148     # define EV_USE_EVENTFD 1
149     # else
150     # define EV_USE_EVENTFD 0
151     # endif
152     # endif
153 root 1.250
154 root 1.29 #endif
155 root 1.17
156 root 1.1 #include <math.h>
157     #include <stdlib.h>
158 root 1.319 #include <string.h>
159 root 1.7 #include <fcntl.h>
160 root 1.16 #include <stddef.h>
161 root 1.1
162     #include <stdio.h>
163    
164 root 1.4 #include <assert.h>
165 root 1.1 #include <errno.h>
166 root 1.22 #include <sys/types.h>
167 root 1.71 #include <time.h>
168 root 1.326 #include <limits.h>
169 root 1.71
170 root 1.72 #include <signal.h>
171 root 1.71
172 root 1.152 #ifdef EV_H
173     # include EV_H
174     #else
175     # include "ev.h"
176     #endif
177    
178 root 1.103 #ifndef _WIN32
179 root 1.71 # include <sys/time.h>
180 root 1.45 # include <sys/wait.h>
181 root 1.140 # include <unistd.h>
182 root 1.103 #else
183 root 1.256 # include <io.h>
184 root 1.103 # define WIN32_LEAN_AND_MEAN
185     # include <windows.h>
186     # ifndef EV_SELECT_IS_WINSOCKET
187     # define EV_SELECT_IS_WINSOCKET 1
188     # endif
189 root 1.331 # undef EV_AVOID_STDIO
190 root 1.45 #endif
191 root 1.103
192 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
193 root 1.40
194 root 1.305 /* try to deduce the maximum number of signals on this platform */
195     #if defined (EV_NSIG)
196     /* use what's provided */
197     #elif defined (NSIG)
198     # define EV_NSIG (NSIG)
199     #elif defined(_NSIG)
200     # define EV_NSIG (_NSIG)
201     #elif defined (SIGMAX)
202     # define EV_NSIG (SIGMAX+1)
203     #elif defined (SIG_MAX)
204     # define EV_NSIG (SIG_MAX+1)
205     #elif defined (_SIG_MAX)
206     # define EV_NSIG (_SIG_MAX+1)
207     #elif defined (MAXSIG)
208     # define EV_NSIG (MAXSIG+1)
209     #elif defined (MAX_SIG)
210     # define EV_NSIG (MAX_SIG+1)
211     #elif defined (SIGARRAYSIZE)
212 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213 root 1.305 #elif defined (_sys_nsig)
214     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215     #else
216     # error "unable to find value for NSIG, please report"
217 root 1.336 /* to make it compile regardless, just remove the above line, */
218     /* but consider reporting it, too! :) */
219 root 1.306 # define EV_NSIG 65
220 root 1.305 #endif
221    
222 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
223     # if __linux && __GLIBC__ >= 2
224     # define EV_USE_CLOCK_SYSCALL 1
225     # else
226     # define EV_USE_CLOCK_SYSCALL 0
227     # endif
228     #endif
229    
230 root 1.29 #ifndef EV_USE_MONOTONIC
231 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232     # define EV_USE_MONOTONIC 1
233     # else
234     # define EV_USE_MONOTONIC 0
235     # endif
236 root 1.37 #endif
237    
238 root 1.118 #ifndef EV_USE_REALTIME
239 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
240 root 1.118 #endif
241    
242 root 1.193 #ifndef EV_USE_NANOSLEEP
243 root 1.253 # if _POSIX_C_SOURCE >= 199309L
244     # define EV_USE_NANOSLEEP 1
245     # else
246     # define EV_USE_NANOSLEEP 0
247     # endif
248 root 1.193 #endif
249    
250 root 1.29 #ifndef EV_USE_SELECT
251     # define EV_USE_SELECT 1
252 root 1.10 #endif
253    
254 root 1.59 #ifndef EV_USE_POLL
255 root 1.104 # ifdef _WIN32
256     # define EV_USE_POLL 0
257     # else
258     # define EV_USE_POLL 1
259     # endif
260 root 1.41 #endif
261    
262 root 1.29 #ifndef EV_USE_EPOLL
263 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264     # define EV_USE_EPOLL 1
265     # else
266     # define EV_USE_EPOLL 0
267     # endif
268 root 1.10 #endif
269    
270 root 1.44 #ifndef EV_USE_KQUEUE
271     # define EV_USE_KQUEUE 0
272     #endif
273    
274 root 1.118 #ifndef EV_USE_PORT
275     # define EV_USE_PORT 0
276 root 1.40 #endif
277    
278 root 1.152 #ifndef EV_USE_INOTIFY
279 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280     # define EV_USE_INOTIFY 1
281     # else
282     # define EV_USE_INOTIFY 0
283     # endif
284 root 1.152 #endif
285    
286 root 1.149 #ifndef EV_PID_HASHSIZE
287     # if EV_MINIMAL
288     # define EV_PID_HASHSIZE 1
289     # else
290     # define EV_PID_HASHSIZE 16
291     # endif
292     #endif
293    
294 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
295     # if EV_MINIMAL
296     # define EV_INOTIFY_HASHSIZE 1
297     # else
298     # define EV_INOTIFY_HASHSIZE 16
299     # endif
300     #endif
301    
302 root 1.220 #ifndef EV_USE_EVENTFD
303     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
304     # define EV_USE_EVENTFD 1
305     # else
306     # define EV_USE_EVENTFD 0
307     # endif
308     #endif
309    
310 root 1.303 #ifndef EV_USE_SIGNALFD
311 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
312 root 1.303 # define EV_USE_SIGNALFD 1
313     # else
314     # define EV_USE_SIGNALFD 0
315     # endif
316     #endif
317    
318 root 1.249 #if 0 /* debugging */
319 root 1.250 # define EV_VERIFY 3
320 root 1.249 # define EV_USE_4HEAP 1
321     # define EV_HEAP_CACHE_AT 1
322     #endif
323    
324 root 1.250 #ifndef EV_VERIFY
325     # define EV_VERIFY !EV_MINIMAL
326     #endif
327    
328 root 1.243 #ifndef EV_USE_4HEAP
329     # define EV_USE_4HEAP !EV_MINIMAL
330     #endif
331    
332     #ifndef EV_HEAP_CACHE_AT
333     # define EV_HEAP_CACHE_AT !EV_MINIMAL
334     #endif
335    
336 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
337     /* which makes programs even slower. might work on other unices, too. */
338     #if EV_USE_CLOCK_SYSCALL
339     # include <syscall.h>
340     # ifdef SYS_clock_gettime
341     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
342     # undef EV_USE_MONOTONIC
343     # define EV_USE_MONOTONIC 1
344     # else
345     # undef EV_USE_CLOCK_SYSCALL
346     # define EV_USE_CLOCK_SYSCALL 0
347     # endif
348     #endif
349    
350 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
351 root 1.40
352 root 1.325 #ifdef _AIX
353     /* AIX has a completely broken poll.h header */
354     # undef EV_USE_POLL
355     # define EV_USE_POLL 0
356     #endif
357    
358 root 1.40 #ifndef CLOCK_MONOTONIC
359     # undef EV_USE_MONOTONIC
360     # define EV_USE_MONOTONIC 0
361     #endif
362    
363 root 1.31 #ifndef CLOCK_REALTIME
364 root 1.40 # undef EV_USE_REALTIME
365 root 1.31 # define EV_USE_REALTIME 0
366     #endif
367 root 1.40
368 root 1.152 #if !EV_STAT_ENABLE
369 root 1.185 # undef EV_USE_INOTIFY
370 root 1.152 # define EV_USE_INOTIFY 0
371     #endif
372    
373 root 1.193 #if !EV_USE_NANOSLEEP
374     # ifndef _WIN32
375     # include <sys/select.h>
376     # endif
377     #endif
378    
379 root 1.152 #if EV_USE_INOTIFY
380 root 1.264 # include <sys/utsname.h>
381 root 1.273 # include <sys/statfs.h>
382 root 1.152 # include <sys/inotify.h>
383 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
384     # ifndef IN_DONT_FOLLOW
385     # undef EV_USE_INOTIFY
386     # define EV_USE_INOTIFY 0
387     # endif
388 root 1.152 #endif
389    
390 root 1.185 #if EV_SELECT_IS_WINSOCKET
391     # include <winsock.h>
392     #endif
393    
394 root 1.220 #if EV_USE_EVENTFD
395     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
396 root 1.221 # include <stdint.h>
397 root 1.303 # ifndef EFD_NONBLOCK
398     # define EFD_NONBLOCK O_NONBLOCK
399     # endif
400     # ifndef EFD_CLOEXEC
401 root 1.311 # ifdef O_CLOEXEC
402     # define EFD_CLOEXEC O_CLOEXEC
403     # else
404     # define EFD_CLOEXEC 02000000
405     # endif
406 root 1.303 # endif
407 root 1.222 # ifdef __cplusplus
408     extern "C" {
409     # endif
410 root 1.329 int (eventfd) (unsigned int initval, int flags);
411 root 1.222 # ifdef __cplusplus
412     }
413     # endif
414 root 1.220 #endif
415    
416 root 1.303 #if EV_USE_SIGNALFD
417 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418     # include <stdint.h>
419     # ifndef SFD_NONBLOCK
420     # define SFD_NONBLOCK O_NONBLOCK
421     # endif
422     # ifndef SFD_CLOEXEC
423     # ifdef O_CLOEXEC
424     # define SFD_CLOEXEC O_CLOEXEC
425     # else
426     # define SFD_CLOEXEC 02000000
427     # endif
428     # endif
429     # ifdef __cplusplus
430     extern "C" {
431     # endif
432     int signalfd (int fd, const sigset_t *mask, int flags);
433    
434     struct signalfd_siginfo
435     {
436     uint32_t ssi_signo;
437     char pad[128 - sizeof (uint32_t)];
438     };
439     # ifdef __cplusplus
440     }
441     # endif
442 root 1.303 #endif
443    
444 root 1.314
445 root 1.40 /**/
446 root 1.1
447 root 1.250 #if EV_VERIFY >= 3
448 root 1.248 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
449     #else
450     # define EV_FREQUENT_CHECK do { } while (0)
451     #endif
452    
453 root 1.176 /*
454     * This is used to avoid floating point rounding problems.
455     * It is added to ev_rt_now when scheduling periodics
456     * to ensure progress, time-wise, even when rounding
457     * errors are against us.
458 root 1.177 * This value is good at least till the year 4000.
459 root 1.176 * Better solutions welcome.
460     */
461     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
462    
463 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
464 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465 root 1.1
466 root 1.185 #if __GNUC__ >= 4
467 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
468 root 1.169 # define noinline __attribute__ ((noinline))
469 root 1.40 #else
470     # define expect(expr,value) (expr)
471 root 1.140 # define noinline
472 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
473 root 1.169 # define inline
474     # endif
475 root 1.40 #endif
476    
477     #define expect_false(expr) expect ((expr) != 0, 0)
478     #define expect_true(expr) expect ((expr) != 0, 1)
479 root 1.169 #define inline_size static inline
480    
481     #if EV_MINIMAL
482     # define inline_speed static noinline
483     #else
484     # define inline_speed static inline
485     #endif
486 root 1.40
487 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
488    
489     #if EV_MINPRI == EV_MAXPRI
490     # define ABSPRI(w) (((W)w), 0)
491     #else
492     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
493     #endif
494 root 1.42
495 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
496 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
497 root 1.103
498 root 1.136 typedef ev_watcher *W;
499     typedef ev_watcher_list *WL;
500     typedef ev_watcher_time *WT;
501 root 1.10
502 root 1.229 #define ev_active(w) ((W)(w))->active
503 root 1.228 #define ev_at(w) ((WT)(w))->at
504    
505 root 1.279 #if EV_USE_REALTIME
506 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
507     /* giving it a reasonably high chance of working on typical architetcures */
508 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
509     #endif
510    
511     #if EV_USE_MONOTONIC
512 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
513 root 1.198 #endif
514 root 1.54
515 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
516     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
517     #endif
518     #ifndef EV_WIN32_HANDLE_TO_FD
519 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
520 root 1.313 #endif
521     #ifndef EV_WIN32_CLOSE_FD
522     # define EV_WIN32_CLOSE_FD(fd) close (fd)
523     #endif
524    
525 root 1.103 #ifdef _WIN32
526 root 1.98 # include "ev_win32.c"
527     #endif
528 root 1.67
529 root 1.53 /*****************************************************************************/
530 root 1.1
531 root 1.331 #if EV_AVOID_STDIO
532     static void noinline
533     ev_printerr (const char *msg)
534     {
535     write (STDERR_FILENO, msg, strlen (msg));
536     }
537     #endif
538    
539 root 1.70 static void (*syserr_cb)(const char *msg);
540 root 1.69
541 root 1.141 void
542     ev_set_syserr_cb (void (*cb)(const char *msg))
543 root 1.69 {
544     syserr_cb = cb;
545     }
546    
547 root 1.141 static void noinline
548 root 1.269 ev_syserr (const char *msg)
549 root 1.69 {
550 root 1.70 if (!msg)
551     msg = "(libev) system error";
552    
553 root 1.69 if (syserr_cb)
554 root 1.70 syserr_cb (msg);
555 root 1.69 else
556     {
557 root 1.330 #if EV_AVOID_STDIO
558 root 1.331 const char *err = strerror (errno);
559    
560     ev_printerr (msg);
561     ev_printerr (": ");
562     ev_printerr (err);
563     ev_printerr ("\n");
564 root 1.330 #else
565 root 1.70 perror (msg);
566 root 1.330 #endif
567 root 1.69 abort ();
568     }
569     }
570    
571 root 1.224 static void *
572     ev_realloc_emul (void *ptr, long size)
573     {
574 root 1.334 #if __GLIBC__
575     return realloc (ptr, size);
576     #else
577 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
578 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
579 root 1.224 * the single unix specification, so work around them here.
580     */
581 root 1.333
582 root 1.224 if (size)
583     return realloc (ptr, size);
584    
585     free (ptr);
586     return 0;
587 root 1.334 #endif
588 root 1.224 }
589    
590     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
591 root 1.69
592 root 1.141 void
593 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
594 root 1.69 {
595     alloc = cb;
596     }
597    
598 root 1.150 inline_speed void *
599 root 1.155 ev_realloc (void *ptr, long size)
600 root 1.69 {
601 root 1.224 ptr = alloc (ptr, size);
602 root 1.69
603     if (!ptr && size)
604     {
605 root 1.330 #if EV_AVOID_STDIO
606 root 1.331 ev_printerr ("libev: memory allocation failed, aborting.\n");
607 root 1.330 #else
608 root 1.155 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
609 root 1.330 #endif
610 root 1.69 abort ();
611     }
612    
613     return ptr;
614     }
615    
616     #define ev_malloc(size) ev_realloc (0, (size))
617     #define ev_free(ptr) ev_realloc ((ptr), 0)
618    
619     /*****************************************************************************/
620    
621 root 1.298 /* set in reify when reification needed */
622     #define EV_ANFD_REIFY 1
623    
624 root 1.288 /* file descriptor info structure */
625 root 1.53 typedef struct
626     {
627 root 1.68 WL head;
628 root 1.288 unsigned char events; /* the events watched for */
629 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
630 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
631 root 1.269 unsigned char unused;
632     #if EV_USE_EPOLL
633 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
634 root 1.269 #endif
635 root 1.103 #if EV_SELECT_IS_WINSOCKET
636     SOCKET handle;
637     #endif
638 root 1.53 } ANFD;
639 root 1.1
640 root 1.288 /* stores the pending event set for a given watcher */
641 root 1.53 typedef struct
642     {
643     W w;
644 root 1.288 int events; /* the pending event set for the given watcher */
645 root 1.53 } ANPENDING;
646 root 1.51
647 root 1.155 #if EV_USE_INOTIFY
648 root 1.241 /* hash table entry per inotify-id */
649 root 1.152 typedef struct
650     {
651     WL head;
652 root 1.155 } ANFS;
653 root 1.152 #endif
654    
655 root 1.241 /* Heap Entry */
656     #if EV_HEAP_CACHE_AT
657 root 1.288 /* a heap element */
658 root 1.241 typedef struct {
659 root 1.243 ev_tstamp at;
660 root 1.241 WT w;
661     } ANHE;
662    
663 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
664     #define ANHE_at(he) (he).at /* access cached at, read-only */
665     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
666 root 1.241 #else
667 root 1.288 /* a heap element */
668 root 1.241 typedef WT ANHE;
669    
670 root 1.248 #define ANHE_w(he) (he)
671     #define ANHE_at(he) (he)->at
672     #define ANHE_at_cache(he)
673 root 1.241 #endif
674    
675 root 1.55 #if EV_MULTIPLICITY
676 root 1.54
677 root 1.80 struct ev_loop
678     {
679 root 1.86 ev_tstamp ev_rt_now;
680 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
681 root 1.80 #define VAR(name,decl) decl;
682     #include "ev_vars.h"
683     #undef VAR
684     };
685     #include "ev_wrap.h"
686    
687 root 1.116 static struct ev_loop default_loop_struct;
688     struct ev_loop *ev_default_loop_ptr;
689 root 1.54
690 root 1.53 #else
691 root 1.54
692 root 1.86 ev_tstamp ev_rt_now;
693 root 1.80 #define VAR(name,decl) static decl;
694     #include "ev_vars.h"
695     #undef VAR
696    
697 root 1.116 static int ev_default_loop_ptr;
698 root 1.54
699 root 1.51 #endif
700 root 1.1
701 root 1.297 #if EV_MINIMAL < 2
702 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
703     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
704 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
705     #else
706 root 1.298 # define EV_RELEASE_CB (void)0
707     # define EV_ACQUIRE_CB (void)0
708 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
709     #endif
710    
711 root 1.298 #define EVUNLOOP_RECURSE 0x80
712    
713 root 1.8 /*****************************************************************************/
714    
715 root 1.292 #ifndef EV_HAVE_EV_TIME
716 root 1.141 ev_tstamp
717 root 1.1 ev_time (void)
718     {
719 root 1.29 #if EV_USE_REALTIME
720 root 1.279 if (expect_true (have_realtime))
721     {
722     struct timespec ts;
723     clock_gettime (CLOCK_REALTIME, &ts);
724     return ts.tv_sec + ts.tv_nsec * 1e-9;
725     }
726     #endif
727    
728 root 1.1 struct timeval tv;
729     gettimeofday (&tv, 0);
730     return tv.tv_sec + tv.tv_usec * 1e-6;
731     }
732 root 1.292 #endif
733 root 1.1
734 root 1.284 inline_size ev_tstamp
735 root 1.1 get_clock (void)
736     {
737 root 1.29 #if EV_USE_MONOTONIC
738 root 1.40 if (expect_true (have_monotonic))
739 root 1.1 {
740     struct timespec ts;
741     clock_gettime (CLOCK_MONOTONIC, &ts);
742     return ts.tv_sec + ts.tv_nsec * 1e-9;
743     }
744     #endif
745    
746     return ev_time ();
747     }
748    
749 root 1.85 #if EV_MULTIPLICITY
750 root 1.51 ev_tstamp
751     ev_now (EV_P)
752     {
753 root 1.85 return ev_rt_now;
754 root 1.51 }
755 root 1.85 #endif
756 root 1.51
757 root 1.193 void
758     ev_sleep (ev_tstamp delay)
759     {
760     if (delay > 0.)
761     {
762     #if EV_USE_NANOSLEEP
763     struct timespec ts;
764    
765     ts.tv_sec = (time_t)delay;
766     ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
767    
768     nanosleep (&ts, 0);
769     #elif defined(_WIN32)
770 root 1.217 Sleep ((unsigned long)(delay * 1e3));
771 root 1.193 #else
772     struct timeval tv;
773    
774     tv.tv_sec = (time_t)delay;
775     tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
776    
777 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
778 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
779 root 1.257 /* by older ones */
780 root 1.193 select (0, 0, 0, 0, &tv);
781     #endif
782     }
783     }
784    
785     /*****************************************************************************/
786    
787 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
788 root 1.232
789 root 1.288 /* find a suitable new size for the given array, */
790     /* hopefully by rounding to a ncie-to-malloc size */
791 root 1.284 inline_size int
792 root 1.163 array_nextsize (int elem, int cur, int cnt)
793     {
794     int ncur = cur + 1;
795    
796     do
797     ncur <<= 1;
798     while (cnt > ncur);
799    
800 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
801     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
802 root 1.163 {
803     ncur *= elem;
804 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
805 root 1.163 ncur = ncur - sizeof (void *) * 4;
806     ncur /= elem;
807     }
808    
809     return ncur;
810     }
811    
812 root 1.171 static noinline void *
813 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
814     {
815     *cur = array_nextsize (elem, *cur, cnt);
816     return ev_realloc (base, elem * *cur);
817     }
818 root 1.29
819 root 1.265 #define array_init_zero(base,count) \
820     memset ((void *)(base), 0, sizeof (*(base)) * (count))
821    
822 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
823 root 1.163 if (expect_false ((cnt) > (cur))) \
824 root 1.69 { \
825 root 1.163 int ocur_ = (cur); \
826     (base) = (type *)array_realloc \
827     (sizeof (type), (base), &(cur), (cnt)); \
828     init ((base) + (ocur_), (cur) - ocur_); \
829 root 1.1 }
830    
831 root 1.163 #if 0
832 root 1.74 #define array_slim(type,stem) \
833 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
834     { \
835     stem ## max = array_roundsize (stem ## cnt >> 1); \
836 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
837 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
838     }
839 root 1.163 #endif
840 root 1.67
841 root 1.65 #define array_free(stem, idx) \
842 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
843 root 1.65
844 root 1.8 /*****************************************************************************/
845    
846 root 1.288 /* dummy callback for pending events */
847     static void noinline
848     pendingcb (EV_P_ ev_prepare *w, int revents)
849     {
850     }
851    
852 root 1.140 void noinline
853 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
854 root 1.1 {
855 root 1.78 W w_ = (W)w;
856 root 1.171 int pri = ABSPRI (w_);
857 root 1.78
858 root 1.123 if (expect_false (w_->pending))
859 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
860     else
861 root 1.32 {
862 root 1.171 w_->pending = ++pendingcnt [pri];
863     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
864     pendings [pri][w_->pending - 1].w = w_;
865     pendings [pri][w_->pending - 1].events = revents;
866 root 1.32 }
867 root 1.1 }
868    
869 root 1.284 inline_speed void
870     feed_reverse (EV_P_ W w)
871     {
872     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
873     rfeeds [rfeedcnt++] = w;
874     }
875    
876     inline_size void
877     feed_reverse_done (EV_P_ int revents)
878     {
879     do
880     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
881     while (rfeedcnt);
882     }
883    
884     inline_speed void
885 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
886 root 1.27 {
887     int i;
888    
889     for (i = 0; i < eventcnt; ++i)
890 root 1.78 ev_feed_event (EV_A_ events [i], type);
891 root 1.27 }
892    
893 root 1.141 /*****************************************************************************/
894    
895 root 1.284 inline_speed void
896 root 1.298 fd_event_nc (EV_P_ int fd, int revents)
897 root 1.1 {
898     ANFD *anfd = anfds + fd;
899 root 1.136 ev_io *w;
900 root 1.1
901 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
902 root 1.1 {
903 root 1.79 int ev = w->events & revents;
904 root 1.1
905     if (ev)
906 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
907 root 1.1 }
908     }
909    
910 root 1.298 /* do not submit kernel events for fds that have reify set */
911     /* because that means they changed while we were polling for new events */
912     inline_speed void
913     fd_event (EV_P_ int fd, int revents)
914     {
915     ANFD *anfd = anfds + fd;
916    
917     if (expect_true (!anfd->reify))
918     fd_event_nc (EV_A_ fd, revents);
919     }
920    
921 root 1.79 void
922     ev_feed_fd_event (EV_P_ int fd, int revents)
923     {
924 root 1.168 if (fd >= 0 && fd < anfdmax)
925 root 1.298 fd_event_nc (EV_A_ fd, revents);
926 root 1.79 }
927    
928 root 1.288 /* make sure the external fd watch events are in-sync */
929     /* with the kernel/libev internal state */
930 root 1.284 inline_size void
931 root 1.51 fd_reify (EV_P)
932 root 1.9 {
933     int i;
934    
935 root 1.27 for (i = 0; i < fdchangecnt; ++i)
936     {
937     int fd = fdchanges [i];
938     ANFD *anfd = anfds + fd;
939 root 1.136 ev_io *w;
940 root 1.27
941 root 1.184 unsigned char events = 0;
942 root 1.27
943 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
944 root 1.184 events |= (unsigned char)w->events;
945 root 1.27
946 root 1.103 #if EV_SELECT_IS_WINSOCKET
947     if (events)
948     {
949 root 1.254 unsigned long arg;
950 root 1.313 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
951 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
952 root 1.103 }
953     #endif
954    
955 root 1.184 {
956     unsigned char o_events = anfd->events;
957     unsigned char o_reify = anfd->reify;
958    
959     anfd->reify = 0;
960     anfd->events = events;
961 root 1.27
962 root 1.281 if (o_events != events || o_reify & EV__IOFDSET)
963 root 1.184 backend_modify (EV_A_ fd, o_events, events);
964     }
965 root 1.27 }
966    
967     fdchangecnt = 0;
968     }
969    
970 root 1.288 /* something about the given fd changed */
971 root 1.284 inline_size void
972 root 1.183 fd_change (EV_P_ int fd, int flags)
973 root 1.27 {
974 root 1.183 unsigned char reify = anfds [fd].reify;
975 root 1.184 anfds [fd].reify |= flags;
976 root 1.27
977 root 1.183 if (expect_true (!reify))
978     {
979     ++fdchangecnt;
980     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
981     fdchanges [fdchangecnt - 1] = fd;
982     }
983 root 1.9 }
984    
985 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
986 root 1.284 inline_speed void
987 root 1.51 fd_kill (EV_P_ int fd)
988 root 1.41 {
989 root 1.136 ev_io *w;
990 root 1.41
991 root 1.136 while ((w = (ev_io *)anfds [fd].head))
992 root 1.41 {
993 root 1.51 ev_io_stop (EV_A_ w);
994 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
995 root 1.41 }
996     }
997    
998 root 1.336 /* check whether the given fd is actually valid, for error recovery */
999 root 1.284 inline_size int
1000 root 1.71 fd_valid (int fd)
1001     {
1002 root 1.103 #ifdef _WIN32
1003 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1004 root 1.71 #else
1005     return fcntl (fd, F_GETFD) != -1;
1006     #endif
1007     }
1008    
1009 root 1.19 /* called on EBADF to verify fds */
1010 root 1.140 static void noinline
1011 root 1.51 fd_ebadf (EV_P)
1012 root 1.19 {
1013     int fd;
1014    
1015     for (fd = 0; fd < anfdmax; ++fd)
1016 root 1.27 if (anfds [fd].events)
1017 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1018 root 1.51 fd_kill (EV_A_ fd);
1019 root 1.41 }
1020    
1021     /* called on ENOMEM in select/poll to kill some fds and retry */
1022 root 1.140 static void noinline
1023 root 1.51 fd_enomem (EV_P)
1024 root 1.41 {
1025 root 1.62 int fd;
1026 root 1.41
1027 root 1.62 for (fd = anfdmax; fd--; )
1028 root 1.41 if (anfds [fd].events)
1029     {
1030 root 1.51 fd_kill (EV_A_ fd);
1031 root 1.307 break;
1032 root 1.41 }
1033 root 1.19 }
1034    
1035 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1036 root 1.140 static void noinline
1037 root 1.56 fd_rearm_all (EV_P)
1038     {
1039     int fd;
1040    
1041     for (fd = 0; fd < anfdmax; ++fd)
1042     if (anfds [fd].events)
1043     {
1044     anfds [fd].events = 0;
1045 root 1.268 anfds [fd].emask = 0;
1046 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1047 root 1.56 }
1048     }
1049    
1050 root 1.336 /* used to prepare libev internal fd's */
1051     /* this is not fork-safe */
1052     inline_speed void
1053     fd_intern (int fd)
1054     {
1055     #ifdef _WIN32
1056     unsigned long arg = 1;
1057     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1058     #else
1059     fcntl (fd, F_SETFD, FD_CLOEXEC);
1060     fcntl (fd, F_SETFL, O_NONBLOCK);
1061     #endif
1062     }
1063    
1064 root 1.8 /*****************************************************************************/
1065    
1066 root 1.235 /*
1067 root 1.241 * the heap functions want a real array index. array index 0 uis guaranteed to not
1068     * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1069     * the branching factor of the d-tree.
1070     */
1071    
1072     /*
1073 root 1.235 * at the moment we allow libev the luxury of two heaps,
1074     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1075     * which is more cache-efficient.
1076     * the difference is about 5% with 50000+ watchers.
1077     */
1078 root 1.241 #if EV_USE_4HEAP
1079 root 1.235
1080 root 1.237 #define DHEAP 4
1081     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1082 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1083 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1084 root 1.235
1085     /* away from the root */
1086 root 1.284 inline_speed void
1087 root 1.241 downheap (ANHE *heap, int N, int k)
1088 root 1.235 {
1089 root 1.241 ANHE he = heap [k];
1090     ANHE *E = heap + N + HEAP0;
1091 root 1.235
1092     for (;;)
1093     {
1094     ev_tstamp minat;
1095 root 1.241 ANHE *minpos;
1096 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1097 root 1.235
1098 root 1.248 /* find minimum child */
1099 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1100 root 1.235 {
1101 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1102     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1103     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1104     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1105 root 1.235 }
1106 root 1.240 else if (pos < E)
1107 root 1.235 {
1108 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1109     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1110     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1111     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1112 root 1.235 }
1113 root 1.240 else
1114     break;
1115 root 1.235
1116 root 1.241 if (ANHE_at (he) <= minat)
1117 root 1.235 break;
1118    
1119 root 1.247 heap [k] = *minpos;
1120 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1121 root 1.235
1122     k = minpos - heap;
1123     }
1124    
1125 root 1.247 heap [k] = he;
1126 root 1.241 ev_active (ANHE_w (he)) = k;
1127 root 1.235 }
1128    
1129 root 1.248 #else /* 4HEAP */
1130 root 1.235
1131     #define HEAP0 1
1132 root 1.247 #define HPARENT(k) ((k) >> 1)
1133 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1134 root 1.235
1135 root 1.248 /* away from the root */
1136 root 1.284 inline_speed void
1137 root 1.248 downheap (ANHE *heap, int N, int k)
1138 root 1.1 {
1139 root 1.241 ANHE he = heap [k];
1140 root 1.1
1141 root 1.228 for (;;)
1142 root 1.1 {
1143 root 1.248 int c = k << 1;
1144 root 1.179
1145 root 1.309 if (c >= N + HEAP0)
1146 root 1.179 break;
1147    
1148 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1149     ? 1 : 0;
1150    
1151     if (ANHE_at (he) <= ANHE_at (heap [c]))
1152     break;
1153    
1154     heap [k] = heap [c];
1155 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1156 root 1.248
1157     k = c;
1158 root 1.1 }
1159    
1160 root 1.243 heap [k] = he;
1161 root 1.248 ev_active (ANHE_w (he)) = k;
1162 root 1.1 }
1163 root 1.248 #endif
1164 root 1.1
1165 root 1.248 /* towards the root */
1166 root 1.284 inline_speed void
1167 root 1.248 upheap (ANHE *heap, int k)
1168 root 1.1 {
1169 root 1.241 ANHE he = heap [k];
1170 root 1.1
1171 root 1.179 for (;;)
1172 root 1.1 {
1173 root 1.248 int p = HPARENT (k);
1174 root 1.179
1175 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1176 root 1.179 break;
1177 root 1.1
1178 root 1.248 heap [k] = heap [p];
1179 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1180 root 1.248 k = p;
1181 root 1.1 }
1182    
1183 root 1.241 heap [k] = he;
1184     ev_active (ANHE_w (he)) = k;
1185 root 1.1 }
1186    
1187 root 1.288 /* move an element suitably so it is in a correct place */
1188 root 1.284 inline_size void
1189 root 1.241 adjustheap (ANHE *heap, int N, int k)
1190 root 1.84 {
1191 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1192 root 1.247 upheap (heap, k);
1193     else
1194     downheap (heap, N, k);
1195 root 1.84 }
1196    
1197 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1198 root 1.284 inline_size void
1199 root 1.248 reheap (ANHE *heap, int N)
1200     {
1201     int i;
1202 root 1.251
1203 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1204     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1205     for (i = 0; i < N; ++i)
1206     upheap (heap, i + HEAP0);
1207     }
1208    
1209 root 1.8 /*****************************************************************************/
1210    
1211 root 1.288 /* associate signal watchers to a signal signal */
1212 root 1.7 typedef struct
1213     {
1214 root 1.307 EV_ATOMIC_T pending;
1215 root 1.306 #if EV_MULTIPLICITY
1216     EV_P;
1217     #endif
1218 root 1.68 WL head;
1219 root 1.7 } ANSIG;
1220    
1221 root 1.306 static ANSIG signals [EV_NSIG - 1];
1222 root 1.7
1223 root 1.207 /*****************************************************************************/
1224    
1225 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1226 root 1.207
1227     static void noinline
1228     evpipe_init (EV_P)
1229     {
1230 root 1.288 if (!ev_is_active (&pipe_w))
1231 root 1.207 {
1232 root 1.336 # if EV_USE_EVENTFD
1233 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1234     if (evfd < 0 && errno == EINVAL)
1235     evfd = eventfd (0, 0);
1236    
1237     if (evfd >= 0)
1238 root 1.220 {
1239     evpipe [0] = -1;
1240 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1241 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1242 root 1.220 }
1243     else
1244 root 1.336 # endif
1245 root 1.220 {
1246     while (pipe (evpipe))
1247 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1248 root 1.207
1249 root 1.220 fd_intern (evpipe [0]);
1250     fd_intern (evpipe [1]);
1251 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1252 root 1.220 }
1253 root 1.207
1254 root 1.288 ev_io_start (EV_A_ &pipe_w);
1255 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1256 root 1.207 }
1257     }
1258    
1259 root 1.284 inline_size void
1260 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1261 root 1.207 {
1262 root 1.214 if (!*flag)
1263 root 1.207 {
1264 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1265 root 1.336 char dummy;
1266 root 1.214
1267     *flag = 1;
1268 root 1.220
1269     #if EV_USE_EVENTFD
1270     if (evfd >= 0)
1271     {
1272     uint64_t counter = 1;
1273     write (evfd, &counter, sizeof (uint64_t));
1274     }
1275     else
1276     #endif
1277 root 1.336 write (evpipe [1], &dummy, 1);
1278 root 1.214
1279 root 1.207 errno = old_errno;
1280     }
1281     }
1282    
1283 root 1.288 /* called whenever the libev signal pipe */
1284     /* got some events (signal, async) */
1285 root 1.207 static void
1286     pipecb (EV_P_ ev_io *iow, int revents)
1287     {
1288 root 1.307 int i;
1289    
1290 root 1.220 #if EV_USE_EVENTFD
1291     if (evfd >= 0)
1292     {
1293 root 1.232 uint64_t counter;
1294 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1295     }
1296     else
1297     #endif
1298     {
1299     char dummy;
1300     read (evpipe [0], &dummy, 1);
1301     }
1302 root 1.207
1303 root 1.307 if (sig_pending)
1304 root 1.207 {
1305 root 1.307 sig_pending = 0;
1306 root 1.207
1307 root 1.307 for (i = EV_NSIG - 1; i--; )
1308     if (expect_false (signals [i].pending))
1309     ev_feed_signal_event (EV_A_ i + 1);
1310 root 1.207 }
1311    
1312 root 1.209 #if EV_ASYNC_ENABLE
1313 root 1.307 if (async_pending)
1314 root 1.207 {
1315 root 1.307 async_pending = 0;
1316 root 1.207
1317     for (i = asynccnt; i--; )
1318     if (asyncs [i]->sent)
1319     {
1320     asyncs [i]->sent = 0;
1321     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1322     }
1323     }
1324 root 1.209 #endif
1325 root 1.207 }
1326    
1327     /*****************************************************************************/
1328    
1329 root 1.7 static void
1330 root 1.218 ev_sighandler (int signum)
1331 root 1.7 {
1332 root 1.207 #if EV_MULTIPLICITY
1333 root 1.306 EV_P = signals [signum - 1].loop;
1334 root 1.207 #endif
1335    
1336 root 1.322 #ifdef _WIN32
1337 root 1.218 signal (signum, ev_sighandler);
1338 root 1.67 #endif
1339    
1340 root 1.307 signals [signum - 1].pending = 1;
1341     evpipe_write (EV_A_ &sig_pending);
1342 root 1.7 }
1343    
1344 root 1.140 void noinline
1345 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1346     {
1347 root 1.80 WL w;
1348    
1349 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1350     return;
1351    
1352     --signum;
1353    
1354 root 1.79 #if EV_MULTIPLICITY
1355 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1356     /* or, likely more useful, feeding a signal nobody is waiting for */
1357 root 1.79
1358 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1359 root 1.306 return;
1360 root 1.307 #endif
1361 root 1.306
1362 root 1.307 signals [signum].pending = 0;
1363 root 1.79
1364     for (w = signals [signum].head; w; w = w->next)
1365     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1366     }
1367    
1368 root 1.303 #if EV_USE_SIGNALFD
1369     static void
1370     sigfdcb (EV_P_ ev_io *iow, int revents)
1371     {
1372 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1373 root 1.303
1374     for (;;)
1375     {
1376     ssize_t res = read (sigfd, si, sizeof (si));
1377    
1378     /* not ISO-C, as res might be -1, but works with SuS */
1379     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1380     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1381    
1382     if (res < (ssize_t)sizeof (si))
1383     break;
1384     }
1385     }
1386     #endif
1387    
1388 root 1.336 #endif
1389    
1390 root 1.8 /*****************************************************************************/
1391    
1392 root 1.336 #if EV_CHILD_ENABLE
1393 root 1.182 static WL childs [EV_PID_HASHSIZE];
1394 root 1.71
1395 root 1.136 static ev_signal childev;
1396 root 1.59
1397 root 1.206 #ifndef WIFCONTINUED
1398     # define WIFCONTINUED(status) 0
1399     #endif
1400    
1401 root 1.288 /* handle a single child status event */
1402 root 1.284 inline_speed void
1403 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1404 root 1.47 {
1405 root 1.136 ev_child *w;
1406 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1407 root 1.47
1408 root 1.149 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1409 root 1.206 {
1410     if ((w->pid == pid || !w->pid)
1411     && (!traced || (w->flags & 1)))
1412     {
1413 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1414 root 1.206 w->rpid = pid;
1415     w->rstatus = status;
1416     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1417     }
1418     }
1419 root 1.47 }
1420    
1421 root 1.142 #ifndef WCONTINUED
1422     # define WCONTINUED 0
1423     #endif
1424    
1425 root 1.288 /* called on sigchld etc., calls waitpid */
1426 root 1.47 static void
1427 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1428 root 1.22 {
1429     int pid, status;
1430    
1431 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1432     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1433     if (!WCONTINUED
1434     || errno != EINVAL
1435     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1436     return;
1437    
1438 root 1.216 /* make sure we are called again until all children have been reaped */
1439 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1440     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1441 root 1.47
1442 root 1.216 child_reap (EV_A_ pid, pid, status);
1443 root 1.149 if (EV_PID_HASHSIZE > 1)
1444 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1445 root 1.22 }
1446    
1447 root 1.45 #endif
1448    
1449 root 1.22 /*****************************************************************************/
1450    
1451 root 1.118 #if EV_USE_PORT
1452     # include "ev_port.c"
1453     #endif
1454 root 1.44 #if EV_USE_KQUEUE
1455     # include "ev_kqueue.c"
1456     #endif
1457 root 1.29 #if EV_USE_EPOLL
1458 root 1.1 # include "ev_epoll.c"
1459     #endif
1460 root 1.59 #if EV_USE_POLL
1461 root 1.41 # include "ev_poll.c"
1462     #endif
1463 root 1.29 #if EV_USE_SELECT
1464 root 1.1 # include "ev_select.c"
1465     #endif
1466    
1467 root 1.24 int
1468     ev_version_major (void)
1469     {
1470     return EV_VERSION_MAJOR;
1471     }
1472    
1473     int
1474     ev_version_minor (void)
1475     {
1476     return EV_VERSION_MINOR;
1477     }
1478    
1479 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1480 root 1.140 int inline_size
1481 root 1.51 enable_secure (void)
1482 root 1.41 {
1483 root 1.103 #ifdef _WIN32
1484 root 1.49 return 0;
1485     #else
1486 root 1.41 return getuid () != geteuid ()
1487     || getgid () != getegid ();
1488 root 1.49 #endif
1489 root 1.41 }
1490    
1491 root 1.111 unsigned int
1492 root 1.129 ev_supported_backends (void)
1493     {
1494 root 1.130 unsigned int flags = 0;
1495 root 1.129
1496     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1497     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1498     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1499     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1500     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1501    
1502     return flags;
1503     }
1504    
1505     unsigned int
1506 root 1.130 ev_recommended_backends (void)
1507 root 1.1 {
1508 root 1.131 unsigned int flags = ev_supported_backends ();
1509 root 1.129
1510     #ifndef __NetBSD__
1511     /* kqueue is borked on everything but netbsd apparently */
1512     /* it usually doesn't work correctly on anything but sockets and pipes */
1513     flags &= ~EVBACKEND_KQUEUE;
1514     #endif
1515     #ifdef __APPLE__
1516 root 1.278 /* only select works correctly on that "unix-certified" platform */
1517     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1518     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1519 root 1.129 #endif
1520    
1521     return flags;
1522 root 1.51 }
1523    
1524 root 1.130 unsigned int
1525 root 1.134 ev_embeddable_backends (void)
1526     {
1527 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1528    
1529 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1530 root 1.196 /* please fix it and tell me how to detect the fix */
1531     flags &= ~EVBACKEND_EPOLL;
1532    
1533     return flags;
1534 root 1.134 }
1535    
1536     unsigned int
1537 root 1.130 ev_backend (EV_P)
1538     {
1539     return backend;
1540     }
1541    
1542 root 1.297 #if EV_MINIMAL < 2
1543 root 1.162 unsigned int
1544     ev_loop_count (EV_P)
1545     {
1546     return loop_count;
1547     }
1548    
1549 root 1.294 unsigned int
1550     ev_loop_depth (EV_P)
1551     {
1552     return loop_depth;
1553     }
1554    
1555 root 1.193 void
1556     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1557     {
1558     io_blocktime = interval;
1559     }
1560    
1561     void
1562     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1563     {
1564     timeout_blocktime = interval;
1565     }
1566    
1567 root 1.297 void
1568     ev_set_userdata (EV_P_ void *data)
1569     {
1570     userdata = data;
1571     }
1572    
1573     void *
1574     ev_userdata (EV_P)
1575     {
1576     return userdata;
1577     }
1578    
1579     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1580     {
1581     invoke_cb = invoke_pending_cb;
1582     }
1583    
1584 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1585 root 1.297 {
1586 root 1.298 release_cb = release;
1587     acquire_cb = acquire;
1588 root 1.297 }
1589     #endif
1590    
1591 root 1.288 /* initialise a loop structure, must be zero-initialised */
1592 root 1.151 static void noinline
1593 root 1.108 loop_init (EV_P_ unsigned int flags)
1594 root 1.51 {
1595 root 1.130 if (!backend)
1596 root 1.23 {
1597 root 1.279 #if EV_USE_REALTIME
1598     if (!have_realtime)
1599     {
1600     struct timespec ts;
1601    
1602     if (!clock_gettime (CLOCK_REALTIME, &ts))
1603     have_realtime = 1;
1604     }
1605     #endif
1606    
1607 root 1.29 #if EV_USE_MONOTONIC
1608 root 1.279 if (!have_monotonic)
1609     {
1610     struct timespec ts;
1611    
1612     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1613     have_monotonic = 1;
1614     }
1615 root 1.1 #endif
1616    
1617 root 1.306 /* pid check not overridable via env */
1618     #ifndef _WIN32
1619     if (flags & EVFLAG_FORKCHECK)
1620     curpid = getpid ();
1621     #endif
1622    
1623     if (!(flags & EVFLAG_NOENV)
1624     && !enable_secure ()
1625     && getenv ("LIBEV_FLAGS"))
1626     flags = atoi (getenv ("LIBEV_FLAGS"));
1627    
1628 root 1.209 ev_rt_now = ev_time ();
1629     mn_now = get_clock ();
1630     now_floor = mn_now;
1631     rtmn_diff = ev_rt_now - mn_now;
1632 root 1.297 #if EV_MINIMAL < 2
1633 root 1.296 invoke_cb = ev_invoke_pending;
1634 root 1.297 #endif
1635 root 1.1
1636 root 1.193 io_blocktime = 0.;
1637     timeout_blocktime = 0.;
1638 root 1.209 backend = 0;
1639     backend_fd = -1;
1640 root 1.307 sig_pending = 0;
1641     #if EV_ASYNC_ENABLE
1642     async_pending = 0;
1643     #endif
1644 root 1.209 #if EV_USE_INOTIFY
1645 root 1.306 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1646 root 1.209 #endif
1647 root 1.303 #if EV_USE_SIGNALFD
1648 root 1.321 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1649 root 1.303 #endif
1650 root 1.193
1651 root 1.225 if (!(flags & 0x0000ffffU))
1652 root 1.129 flags |= ev_recommended_backends ();
1653 root 1.41
1654 root 1.118 #if EV_USE_PORT
1655 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1656 root 1.118 #endif
1657 root 1.44 #if EV_USE_KQUEUE
1658 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1659 root 1.44 #endif
1660 root 1.29 #if EV_USE_EPOLL
1661 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1662 root 1.41 #endif
1663 root 1.59 #if EV_USE_POLL
1664 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1665 root 1.1 #endif
1666 root 1.29 #if EV_USE_SELECT
1667 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1668 root 1.1 #endif
1669 root 1.70
1670 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1671    
1672 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1673 root 1.288 ev_init (&pipe_w, pipecb);
1674     ev_set_priority (&pipe_w, EV_MAXPRI);
1675 root 1.336 #endif
1676 root 1.56 }
1677     }
1678    
1679 root 1.288 /* free up a loop structure */
1680 root 1.151 static void noinline
1681 root 1.56 loop_destroy (EV_P)
1682     {
1683 root 1.65 int i;
1684    
1685 root 1.288 if (ev_is_active (&pipe_w))
1686 root 1.207 {
1687 root 1.303 /*ev_ref (EV_A);*/
1688     /*ev_io_stop (EV_A_ &pipe_w);*/
1689 root 1.207
1690 root 1.220 #if EV_USE_EVENTFD
1691     if (evfd >= 0)
1692     close (evfd);
1693     #endif
1694    
1695     if (evpipe [0] >= 0)
1696     {
1697 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1698     EV_WIN32_CLOSE_FD (evpipe [1]);
1699 root 1.220 }
1700 root 1.207 }
1701    
1702 root 1.303 #if EV_USE_SIGNALFD
1703     if (ev_is_active (&sigfd_w))
1704 root 1.317 close (sigfd);
1705 root 1.303 #endif
1706    
1707 root 1.152 #if EV_USE_INOTIFY
1708     if (fs_fd >= 0)
1709     close (fs_fd);
1710     #endif
1711    
1712     if (backend_fd >= 0)
1713     close (backend_fd);
1714    
1715 root 1.118 #if EV_USE_PORT
1716 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1717 root 1.118 #endif
1718 root 1.56 #if EV_USE_KQUEUE
1719 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1720 root 1.56 #endif
1721     #if EV_USE_EPOLL
1722 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1723 root 1.56 #endif
1724 root 1.59 #if EV_USE_POLL
1725 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1726 root 1.56 #endif
1727     #if EV_USE_SELECT
1728 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1729 root 1.56 #endif
1730 root 1.1
1731 root 1.65 for (i = NUMPRI; i--; )
1732 root 1.164 {
1733     array_free (pending, [i]);
1734     #if EV_IDLE_ENABLE
1735     array_free (idle, [i]);
1736     #endif
1737     }
1738 root 1.65
1739 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
1740 root 1.186
1741 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1742 root 1.284 array_free (rfeed, EMPTY);
1743 root 1.164 array_free (fdchange, EMPTY);
1744     array_free (timer, EMPTY);
1745 root 1.140 #if EV_PERIODIC_ENABLE
1746 root 1.164 array_free (periodic, EMPTY);
1747 root 1.93 #endif
1748 root 1.187 #if EV_FORK_ENABLE
1749     array_free (fork, EMPTY);
1750     #endif
1751 root 1.164 array_free (prepare, EMPTY);
1752     array_free (check, EMPTY);
1753 root 1.209 #if EV_ASYNC_ENABLE
1754     array_free (async, EMPTY);
1755     #endif
1756 root 1.65
1757 root 1.130 backend = 0;
1758 root 1.56 }
1759 root 1.22
1760 root 1.226 #if EV_USE_INOTIFY
1761 root 1.284 inline_size void infy_fork (EV_P);
1762 root 1.226 #endif
1763 root 1.154
1764 root 1.284 inline_size void
1765 root 1.56 loop_fork (EV_P)
1766     {
1767 root 1.118 #if EV_USE_PORT
1768 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1769 root 1.56 #endif
1770     #if EV_USE_KQUEUE
1771 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1772 root 1.45 #endif
1773 root 1.118 #if EV_USE_EPOLL
1774 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1775 root 1.118 #endif
1776 root 1.154 #if EV_USE_INOTIFY
1777     infy_fork (EV_A);
1778     #endif
1779 root 1.70
1780 root 1.288 if (ev_is_active (&pipe_w))
1781 root 1.70 {
1782 root 1.207 /* this "locks" the handlers against writing to the pipe */
1783 root 1.212 /* while we modify the fd vars */
1784 root 1.307 sig_pending = 1;
1785 root 1.212 #if EV_ASYNC_ENABLE
1786 root 1.307 async_pending = 1;
1787 root 1.212 #endif
1788 root 1.70
1789     ev_ref (EV_A);
1790 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1791 root 1.220
1792     #if EV_USE_EVENTFD
1793     if (evfd >= 0)
1794     close (evfd);
1795     #endif
1796    
1797     if (evpipe [0] >= 0)
1798     {
1799 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1800     EV_WIN32_CLOSE_FD (evpipe [1]);
1801 root 1.220 }
1802 root 1.207
1803     evpipe_init (EV_A);
1804 root 1.208 /* now iterate over everything, in case we missed something */
1805 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1806 root 1.70 }
1807    
1808     postfork = 0;
1809 root 1.1 }
1810    
1811 root 1.55 #if EV_MULTIPLICITY
1812 root 1.250
1813 root 1.54 struct ev_loop *
1814 root 1.108 ev_loop_new (unsigned int flags)
1815 root 1.54 {
1816 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1817 root 1.69
1818 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
1819 root 1.108 loop_init (EV_A_ flags);
1820 root 1.56
1821 root 1.130 if (ev_backend (EV_A))
1822 root 1.306 return EV_A;
1823 root 1.54
1824 root 1.55 return 0;
1825 root 1.54 }
1826    
1827     void
1828 root 1.56 ev_loop_destroy (EV_P)
1829 root 1.54 {
1830 root 1.56 loop_destroy (EV_A);
1831 root 1.69 ev_free (loop);
1832 root 1.54 }
1833    
1834 root 1.56 void
1835     ev_loop_fork (EV_P)
1836     {
1837 root 1.205 postfork = 1; /* must be in line with ev_default_fork */
1838 root 1.56 }
1839 root 1.297 #endif /* multiplicity */
1840 root 1.248
1841     #if EV_VERIFY
1842 root 1.258 static void noinline
1843 root 1.251 verify_watcher (EV_P_ W w)
1844     {
1845 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1846 root 1.251
1847     if (w->pending)
1848 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1849 root 1.251 }
1850    
1851     static void noinline
1852     verify_heap (EV_P_ ANHE *heap, int N)
1853     {
1854     int i;
1855    
1856     for (i = HEAP0; i < N + HEAP0; ++i)
1857     {
1858 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1859     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1860     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1861 root 1.251
1862     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1863     }
1864     }
1865    
1866     static void noinline
1867     array_verify (EV_P_ W *ws, int cnt)
1868 root 1.248 {
1869     while (cnt--)
1870 root 1.251 {
1871 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1872 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1873     }
1874 root 1.248 }
1875 root 1.250 #endif
1876 root 1.248
1877 root 1.297 #if EV_MINIMAL < 2
1878 root 1.250 void
1879 root 1.248 ev_loop_verify (EV_P)
1880     {
1881 root 1.250 #if EV_VERIFY
1882 root 1.248 int i;
1883 root 1.251 WL w;
1884    
1885     assert (activecnt >= -1);
1886    
1887     assert (fdchangemax >= fdchangecnt);
1888     for (i = 0; i < fdchangecnt; ++i)
1889 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1890 root 1.251
1891     assert (anfdmax >= 0);
1892     for (i = 0; i < anfdmax; ++i)
1893     for (w = anfds [i].head; w; w = w->next)
1894     {
1895     verify_watcher (EV_A_ (W)w);
1896 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1897     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1898 root 1.251 }
1899    
1900     assert (timermax >= timercnt);
1901     verify_heap (EV_A_ timers, timercnt);
1902 root 1.248
1903     #if EV_PERIODIC_ENABLE
1904 root 1.251 assert (periodicmax >= periodiccnt);
1905     verify_heap (EV_A_ periodics, periodiccnt);
1906 root 1.248 #endif
1907    
1908 root 1.251 for (i = NUMPRI; i--; )
1909     {
1910     assert (pendingmax [i] >= pendingcnt [i]);
1911 root 1.248 #if EV_IDLE_ENABLE
1912 root 1.252 assert (idleall >= 0);
1913 root 1.251 assert (idlemax [i] >= idlecnt [i]);
1914     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1915 root 1.248 #endif
1916 root 1.251 }
1917    
1918 root 1.248 #if EV_FORK_ENABLE
1919 root 1.251 assert (forkmax >= forkcnt);
1920     array_verify (EV_A_ (W *)forks, forkcnt);
1921 root 1.248 #endif
1922 root 1.251
1923 root 1.250 #if EV_ASYNC_ENABLE
1924 root 1.251 assert (asyncmax >= asynccnt);
1925     array_verify (EV_A_ (W *)asyncs, asynccnt);
1926 root 1.250 #endif
1927 root 1.251
1928     assert (preparemax >= preparecnt);
1929     array_verify (EV_A_ (W *)prepares, preparecnt);
1930    
1931     assert (checkmax >= checkcnt);
1932     array_verify (EV_A_ (W *)checks, checkcnt);
1933    
1934     # if 0
1935 root 1.336 #if EV_CHILD_ENABLE
1936 root 1.251 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1937 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1938 root 1.336 #endif
1939 root 1.251 # endif
1940 root 1.248 #endif
1941     }
1942 root 1.297 #endif
1943 root 1.56
1944     #if EV_MULTIPLICITY
1945     struct ev_loop *
1946 root 1.125 ev_default_loop_init (unsigned int flags)
1947 root 1.54 #else
1948     int
1949 root 1.116 ev_default_loop (unsigned int flags)
1950 root 1.56 #endif
1951 root 1.54 {
1952 root 1.116 if (!ev_default_loop_ptr)
1953 root 1.56 {
1954     #if EV_MULTIPLICITY
1955 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
1956 root 1.56 #else
1957 ayin 1.117 ev_default_loop_ptr = 1;
1958 root 1.54 #endif
1959    
1960 root 1.110 loop_init (EV_A_ flags);
1961 root 1.56
1962 root 1.130 if (ev_backend (EV_A))
1963 root 1.56 {
1964 root 1.336 #if EV_CHILD_ENABLE
1965 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
1966     ev_set_priority (&childev, EV_MAXPRI);
1967     ev_signal_start (EV_A_ &childev);
1968     ev_unref (EV_A); /* child watcher should not keep loop alive */
1969     #endif
1970     }
1971     else
1972 root 1.116 ev_default_loop_ptr = 0;
1973 root 1.56 }
1974 root 1.8
1975 root 1.116 return ev_default_loop_ptr;
1976 root 1.1 }
1977    
1978 root 1.24 void
1979 root 1.56 ev_default_destroy (void)
1980 root 1.1 {
1981 root 1.57 #if EV_MULTIPLICITY
1982 root 1.306 EV_P = ev_default_loop_ptr;
1983 root 1.57 #endif
1984 root 1.56
1985 root 1.266 ev_default_loop_ptr = 0;
1986    
1987 root 1.336 #if EV_CHILD_ENABLE
1988 root 1.56 ev_ref (EV_A); /* child watcher */
1989     ev_signal_stop (EV_A_ &childev);
1990 root 1.71 #endif
1991 root 1.56
1992     loop_destroy (EV_A);
1993 root 1.1 }
1994    
1995 root 1.24 void
1996 root 1.60 ev_default_fork (void)
1997 root 1.1 {
1998 root 1.60 #if EV_MULTIPLICITY
1999 root 1.306 EV_P = ev_default_loop_ptr;
2000 root 1.60 #endif
2001    
2002 root 1.270 postfork = 1; /* must be in line with ev_loop_fork */
2003 root 1.1 }
2004    
2005 root 1.8 /*****************************************************************************/
2006    
2007 root 1.168 void
2008     ev_invoke (EV_P_ void *w, int revents)
2009     {
2010     EV_CB_INVOKE ((W)w, revents);
2011     }
2012    
2013 root 1.300 unsigned int
2014     ev_pending_count (EV_P)
2015     {
2016     int pri;
2017     unsigned int count = 0;
2018    
2019     for (pri = NUMPRI; pri--; )
2020     count += pendingcnt [pri];
2021    
2022     return count;
2023     }
2024    
2025 root 1.297 void noinline
2026 root 1.296 ev_invoke_pending (EV_P)
2027 root 1.1 {
2028 root 1.42 int pri;
2029    
2030     for (pri = NUMPRI; pri--; )
2031     while (pendingcnt [pri])
2032     {
2033     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2034 root 1.1
2035 root 1.288 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2036     /* ^ this is no longer true, as pending_w could be here */
2037 root 1.139
2038 root 1.288 p->w->pending = 0;
2039     EV_CB_INVOKE (p->w, p->events);
2040     EV_FREQUENT_CHECK;
2041 root 1.42 }
2042 root 1.1 }
2043    
2044 root 1.234 #if EV_IDLE_ENABLE
2045 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2046     /* only when higher priorities are idle" logic */
2047 root 1.284 inline_size void
2048 root 1.234 idle_reify (EV_P)
2049     {
2050     if (expect_false (idleall))
2051     {
2052     int pri;
2053    
2054     for (pri = NUMPRI; pri--; )
2055     {
2056     if (pendingcnt [pri])
2057     break;
2058    
2059     if (idlecnt [pri])
2060     {
2061     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2062     break;
2063     }
2064     }
2065     }
2066     }
2067     #endif
2068    
2069 root 1.288 /* make timers pending */
2070 root 1.284 inline_size void
2071 root 1.51 timers_reify (EV_P)
2072 root 1.1 {
2073 root 1.248 EV_FREQUENT_CHECK;
2074    
2075 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2076 root 1.1 {
2077 root 1.284 do
2078     {
2079     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2080 root 1.1
2081 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2082    
2083     /* first reschedule or stop timer */
2084     if (w->repeat)
2085     {
2086     ev_at (w) += w->repeat;
2087     if (ev_at (w) < mn_now)
2088     ev_at (w) = mn_now;
2089 root 1.61
2090 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2091 root 1.90
2092 root 1.284 ANHE_at_cache (timers [HEAP0]);
2093     downheap (timers, timercnt, HEAP0);
2094     }
2095     else
2096     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2097 root 1.243
2098 root 1.284 EV_FREQUENT_CHECK;
2099     feed_reverse (EV_A_ (W)w);
2100 root 1.12 }
2101 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2102 root 1.30
2103 root 1.284 feed_reverse_done (EV_A_ EV_TIMEOUT);
2104 root 1.12 }
2105     }
2106 root 1.4
2107 root 1.140 #if EV_PERIODIC_ENABLE
2108 root 1.288 /* make periodics pending */
2109 root 1.284 inline_size void
2110 root 1.51 periodics_reify (EV_P)
2111 root 1.12 {
2112 root 1.248 EV_FREQUENT_CHECK;
2113 root 1.250
2114 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2115 root 1.12 {
2116 root 1.284 int feed_count = 0;
2117    
2118     do
2119     {
2120     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2121 root 1.1
2122 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2123 root 1.61
2124 root 1.284 /* first reschedule or stop timer */
2125     if (w->reschedule_cb)
2126     {
2127     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2128 root 1.243
2129 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2130 root 1.243
2131 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2132     downheap (periodics, periodiccnt, HEAP0);
2133     }
2134     else if (w->interval)
2135 root 1.246 {
2136 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2137     /* if next trigger time is not sufficiently in the future, put it there */
2138     /* this might happen because of floating point inexactness */
2139     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2140     {
2141     ev_at (w) += w->interval;
2142    
2143     /* if interval is unreasonably low we might still have a time in the past */
2144     /* so correct this. this will make the periodic very inexact, but the user */
2145     /* has effectively asked to get triggered more often than possible */
2146     if (ev_at (w) < ev_rt_now)
2147     ev_at (w) = ev_rt_now;
2148     }
2149 root 1.243
2150 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2151     downheap (periodics, periodiccnt, HEAP0);
2152 root 1.246 }
2153 root 1.284 else
2154     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2155 root 1.243
2156 root 1.284 EV_FREQUENT_CHECK;
2157     feed_reverse (EV_A_ (W)w);
2158 root 1.1 }
2159 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2160 root 1.12
2161 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2162 root 1.12 }
2163     }
2164    
2165 root 1.288 /* simply recalculate all periodics */
2166     /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2167 root 1.140 static void noinline
2168 root 1.54 periodics_reschedule (EV_P)
2169 root 1.12 {
2170     int i;
2171    
2172 root 1.13 /* adjust periodics after time jump */
2173 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2174 root 1.12 {
2175 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2176 root 1.12
2177 root 1.77 if (w->reschedule_cb)
2178 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2179 root 1.77 else if (w->interval)
2180 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2181 root 1.242
2182 root 1.248 ANHE_at_cache (periodics [i]);
2183 root 1.77 }
2184 root 1.12
2185 root 1.248 reheap (periodics, periodiccnt);
2186 root 1.1 }
2187 root 1.93 #endif
2188 root 1.1
2189 root 1.288 /* adjust all timers by a given offset */
2190 root 1.285 static void noinline
2191     timers_reschedule (EV_P_ ev_tstamp adjust)
2192     {
2193     int i;
2194    
2195     for (i = 0; i < timercnt; ++i)
2196     {
2197     ANHE *he = timers + i + HEAP0;
2198     ANHE_w (*he)->at += adjust;
2199     ANHE_at_cache (*he);
2200     }
2201     }
2202    
2203 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2204 root 1.324 /* also detect if there was a timejump, and act accordingly */
2205 root 1.284 inline_speed void
2206 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2207 root 1.4 {
2208 root 1.40 #if EV_USE_MONOTONIC
2209     if (expect_true (have_monotonic))
2210     {
2211 root 1.289 int i;
2212 root 1.178 ev_tstamp odiff = rtmn_diff;
2213    
2214     mn_now = get_clock ();
2215    
2216     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2217     /* interpolate in the meantime */
2218     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2219 root 1.40 {
2220 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2221     return;
2222     }
2223    
2224     now_floor = mn_now;
2225     ev_rt_now = ev_time ();
2226 root 1.4
2227 root 1.178 /* loop a few times, before making important decisions.
2228     * on the choice of "4": one iteration isn't enough,
2229     * in case we get preempted during the calls to
2230     * ev_time and get_clock. a second call is almost guaranteed
2231     * to succeed in that case, though. and looping a few more times
2232     * doesn't hurt either as we only do this on time-jumps or
2233     * in the unlikely event of having been preempted here.
2234     */
2235     for (i = 4; --i; )
2236     {
2237     rtmn_diff = ev_rt_now - mn_now;
2238 root 1.4
2239 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2240 root 1.178 return; /* all is well */
2241 root 1.4
2242 root 1.178 ev_rt_now = ev_time ();
2243     mn_now = get_clock ();
2244     now_floor = mn_now;
2245     }
2246 root 1.4
2247 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2248     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2249 root 1.140 # if EV_PERIODIC_ENABLE
2250 root 1.178 periodics_reschedule (EV_A);
2251 root 1.93 # endif
2252 root 1.4 }
2253     else
2254 root 1.40 #endif
2255 root 1.4 {
2256 root 1.85 ev_rt_now = ev_time ();
2257 root 1.40
2258 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2259 root 1.13 {
2260 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2261     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2262 root 1.140 #if EV_PERIODIC_ENABLE
2263 root 1.54 periodics_reschedule (EV_A);
2264 root 1.93 #endif
2265 root 1.13 }
2266 root 1.4
2267 root 1.85 mn_now = ev_rt_now;
2268 root 1.4 }
2269     }
2270    
2271 root 1.51 void
2272     ev_loop (EV_P_ int flags)
2273 root 1.1 {
2274 root 1.297 #if EV_MINIMAL < 2
2275 root 1.294 ++loop_depth;
2276 root 1.297 #endif
2277 root 1.294
2278 root 1.298 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2279    
2280 root 1.219 loop_done = EVUNLOOP_CANCEL;
2281 root 1.1
2282 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2283 root 1.158
2284 root 1.161 do
2285 root 1.9 {
2286 root 1.250 #if EV_VERIFY >= 2
2287     ev_loop_verify (EV_A);
2288     #endif
2289    
2290 root 1.158 #ifndef _WIN32
2291     if (expect_false (curpid)) /* penalise the forking check even more */
2292     if (expect_false (getpid () != curpid))
2293     {
2294     curpid = getpid ();
2295     postfork = 1;
2296     }
2297     #endif
2298    
2299 root 1.157 #if EV_FORK_ENABLE
2300     /* we might have forked, so queue fork handlers */
2301     if (expect_false (postfork))
2302     if (forkcnt)
2303     {
2304     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2305 root 1.297 EV_INVOKE_PENDING;
2306 root 1.157 }
2307     #endif
2308 root 1.147
2309 root 1.170 /* queue prepare watchers (and execute them) */
2310 root 1.40 if (expect_false (preparecnt))
2311 root 1.20 {
2312 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2313 root 1.297 EV_INVOKE_PENDING;
2314 root 1.20 }
2315 root 1.9
2316 root 1.298 if (expect_false (loop_done))
2317     break;
2318    
2319 root 1.70 /* we might have forked, so reify kernel state if necessary */
2320     if (expect_false (postfork))
2321     loop_fork (EV_A);
2322    
2323 root 1.1 /* update fd-related kernel structures */
2324 root 1.51 fd_reify (EV_A);
2325 root 1.1
2326     /* calculate blocking time */
2327 root 1.135 {
2328 root 1.193 ev_tstamp waittime = 0.;
2329     ev_tstamp sleeptime = 0.;
2330 root 1.12
2331 root 1.193 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2332 root 1.135 {
2333 root 1.293 /* remember old timestamp for io_blocktime calculation */
2334     ev_tstamp prev_mn_now = mn_now;
2335    
2336 root 1.135 /* update time to cancel out callback processing overhead */
2337 root 1.178 time_update (EV_A_ 1e100);
2338 root 1.135
2339 root 1.287 waittime = MAX_BLOCKTIME;
2340    
2341 root 1.135 if (timercnt)
2342     {
2343 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2344 root 1.193 if (waittime > to) waittime = to;
2345 root 1.135 }
2346 root 1.4
2347 root 1.140 #if EV_PERIODIC_ENABLE
2348 root 1.135 if (periodiccnt)
2349     {
2350 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2351 root 1.193 if (waittime > to) waittime = to;
2352 root 1.135 }
2353 root 1.93 #endif
2354 root 1.4
2355 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2356 root 1.193 if (expect_false (waittime < timeout_blocktime))
2357     waittime = timeout_blocktime;
2358    
2359 root 1.293 /* extra check because io_blocktime is commonly 0 */
2360     if (expect_false (io_blocktime))
2361     {
2362     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2363 root 1.193
2364 root 1.293 if (sleeptime > waittime - backend_fudge)
2365     sleeptime = waittime - backend_fudge;
2366 root 1.193
2367 root 1.293 if (expect_true (sleeptime > 0.))
2368     {
2369     ev_sleep (sleeptime);
2370     waittime -= sleeptime;
2371     }
2372 root 1.193 }
2373 root 1.135 }
2374 root 1.1
2375 root 1.297 #if EV_MINIMAL < 2
2376 root 1.162 ++loop_count;
2377 root 1.297 #endif
2378 root 1.298 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2379 root 1.193 backend_poll (EV_A_ waittime);
2380 root 1.298 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2381 root 1.178
2382     /* update ev_rt_now, do magic */
2383 root 1.193 time_update (EV_A_ waittime + sleeptime);
2384 root 1.135 }
2385 root 1.1
2386 root 1.9 /* queue pending timers and reschedule them */
2387 root 1.51 timers_reify (EV_A); /* relative timers called last */
2388 root 1.140 #if EV_PERIODIC_ENABLE
2389 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2390 root 1.93 #endif
2391 root 1.1
2392 root 1.164 #if EV_IDLE_ENABLE
2393 root 1.137 /* queue idle watchers unless other events are pending */
2394 root 1.164 idle_reify (EV_A);
2395     #endif
2396 root 1.9
2397 root 1.20 /* queue check watchers, to be executed first */
2398 root 1.123 if (expect_false (checkcnt))
2399 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2400 root 1.9
2401 root 1.297 EV_INVOKE_PENDING;
2402 root 1.1 }
2403 root 1.219 while (expect_true (
2404     activecnt
2405     && !loop_done
2406     && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2407     ));
2408 root 1.13
2409 root 1.135 if (loop_done == EVUNLOOP_ONE)
2410     loop_done = EVUNLOOP_CANCEL;
2411 root 1.294
2412 root 1.297 #if EV_MINIMAL < 2
2413 root 1.294 --loop_depth;
2414 root 1.297 #endif
2415 root 1.51 }
2416    
2417     void
2418     ev_unloop (EV_P_ int how)
2419     {
2420     loop_done = how;
2421 root 1.1 }
2422    
2423 root 1.285 void
2424     ev_ref (EV_P)
2425     {
2426     ++activecnt;
2427     }
2428    
2429     void
2430     ev_unref (EV_P)
2431     {
2432     --activecnt;
2433     }
2434    
2435     void
2436     ev_now_update (EV_P)
2437     {
2438     time_update (EV_A_ 1e100);
2439     }
2440    
2441     void
2442     ev_suspend (EV_P)
2443     {
2444     ev_now_update (EV_A);
2445     }
2446    
2447     void
2448     ev_resume (EV_P)
2449     {
2450     ev_tstamp mn_prev = mn_now;
2451    
2452     ev_now_update (EV_A);
2453     timers_reschedule (EV_A_ mn_now - mn_prev);
2454 root 1.286 #if EV_PERIODIC_ENABLE
2455 root 1.288 /* TODO: really do this? */
2456 root 1.285 periodics_reschedule (EV_A);
2457 root 1.286 #endif
2458 root 1.285 }
2459    
2460 root 1.8 /*****************************************************************************/
2461 root 1.288 /* singly-linked list management, used when the expected list length is short */
2462 root 1.8
2463 root 1.284 inline_size void
2464 root 1.10 wlist_add (WL *head, WL elem)
2465 root 1.1 {
2466     elem->next = *head;
2467     *head = elem;
2468     }
2469    
2470 root 1.284 inline_size void
2471 root 1.10 wlist_del (WL *head, WL elem)
2472 root 1.1 {
2473     while (*head)
2474     {
2475 root 1.307 if (expect_true (*head == elem))
2476 root 1.1 {
2477     *head = elem->next;
2478 root 1.307 break;
2479 root 1.1 }
2480    
2481     head = &(*head)->next;
2482     }
2483     }
2484    
2485 root 1.288 /* internal, faster, version of ev_clear_pending */
2486 root 1.284 inline_speed void
2487 root 1.166 clear_pending (EV_P_ W w)
2488 root 1.16 {
2489     if (w->pending)
2490     {
2491 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2492 root 1.16 w->pending = 0;
2493     }
2494     }
2495    
2496 root 1.167 int
2497     ev_clear_pending (EV_P_ void *w)
2498 root 1.166 {
2499     W w_ = (W)w;
2500     int pending = w_->pending;
2501    
2502 root 1.172 if (expect_true (pending))
2503     {
2504     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2505 root 1.288 p->w = (W)&pending_w;
2506 root 1.172 w_->pending = 0;
2507     return p->events;
2508     }
2509     else
2510 root 1.167 return 0;
2511 root 1.166 }
2512    
2513 root 1.284 inline_size void
2514 root 1.164 pri_adjust (EV_P_ W w)
2515     {
2516 root 1.295 int pri = ev_priority (w);
2517 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2518     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2519 root 1.295 ev_set_priority (w, pri);
2520 root 1.164 }
2521    
2522 root 1.284 inline_speed void
2523 root 1.51 ev_start (EV_P_ W w, int active)
2524 root 1.1 {
2525 root 1.164 pri_adjust (EV_A_ w);
2526 root 1.1 w->active = active;
2527 root 1.51 ev_ref (EV_A);
2528 root 1.1 }
2529    
2530 root 1.284 inline_size void
2531 root 1.51 ev_stop (EV_P_ W w)
2532 root 1.1 {
2533 root 1.51 ev_unref (EV_A);
2534 root 1.1 w->active = 0;
2535     }
2536    
2537 root 1.8 /*****************************************************************************/
2538    
2539 root 1.171 void noinline
2540 root 1.136 ev_io_start (EV_P_ ev_io *w)
2541 root 1.1 {
2542 root 1.37 int fd = w->fd;
2543    
2544 root 1.123 if (expect_false (ev_is_active (w)))
2545 root 1.1 return;
2546    
2547 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2548 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2549 root 1.33
2550 root 1.248 EV_FREQUENT_CHECK;
2551    
2552 root 1.51 ev_start (EV_A_ (W)w, 1);
2553 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2554 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2555 root 1.1
2556 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2557 root 1.281 w->events &= ~EV__IOFDSET;
2558 root 1.248
2559     EV_FREQUENT_CHECK;
2560 root 1.1 }
2561    
2562 root 1.171 void noinline
2563 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2564 root 1.1 {
2565 root 1.166 clear_pending (EV_A_ (W)w);
2566 root 1.123 if (expect_false (!ev_is_active (w)))
2567 root 1.1 return;
2568    
2569 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2570 root 1.89
2571 root 1.248 EV_FREQUENT_CHECK;
2572    
2573 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2574 root 1.51 ev_stop (EV_A_ (W)w);
2575 root 1.1
2576 root 1.184 fd_change (EV_A_ w->fd, 1);
2577 root 1.248
2578     EV_FREQUENT_CHECK;
2579 root 1.1 }
2580    
2581 root 1.171 void noinline
2582 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2583 root 1.1 {
2584 root 1.123 if (expect_false (ev_is_active (w)))
2585 root 1.1 return;
2586    
2587 root 1.228 ev_at (w) += mn_now;
2588 root 1.12
2589 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2590 root 1.13
2591 root 1.248 EV_FREQUENT_CHECK;
2592    
2593     ++timercnt;
2594     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2595 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2596     ANHE_w (timers [ev_active (w)]) = (WT)w;
2597 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2598 root 1.235 upheap (timers, ev_active (w));
2599 root 1.62
2600 root 1.248 EV_FREQUENT_CHECK;
2601    
2602 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2603 root 1.12 }
2604    
2605 root 1.171 void noinline
2606 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2607 root 1.12 {
2608 root 1.166 clear_pending (EV_A_ (W)w);
2609 root 1.123 if (expect_false (!ev_is_active (w)))
2610 root 1.12 return;
2611    
2612 root 1.248 EV_FREQUENT_CHECK;
2613    
2614 root 1.230 {
2615     int active = ev_active (w);
2616 root 1.62
2617 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2618 root 1.151
2619 root 1.248 --timercnt;
2620    
2621     if (expect_true (active < timercnt + HEAP0))
2622 root 1.151 {
2623 root 1.248 timers [active] = timers [timercnt + HEAP0];
2624 root 1.181 adjustheap (timers, timercnt, active);
2625 root 1.151 }
2626 root 1.248 }
2627 root 1.228
2628     ev_at (w) -= mn_now;
2629 root 1.14
2630 root 1.51 ev_stop (EV_A_ (W)w);
2631 root 1.328
2632     EV_FREQUENT_CHECK;
2633 root 1.12 }
2634 root 1.4
2635 root 1.171 void noinline
2636 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2637 root 1.14 {
2638 root 1.248 EV_FREQUENT_CHECK;
2639    
2640 root 1.14 if (ev_is_active (w))
2641     {
2642     if (w->repeat)
2643 root 1.99 {
2644 root 1.228 ev_at (w) = mn_now + w->repeat;
2645 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2646 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2647 root 1.99 }
2648 root 1.14 else
2649 root 1.51 ev_timer_stop (EV_A_ w);
2650 root 1.14 }
2651     else if (w->repeat)
2652 root 1.112 {
2653 root 1.229 ev_at (w) = w->repeat;
2654 root 1.112 ev_timer_start (EV_A_ w);
2655     }
2656 root 1.248
2657     EV_FREQUENT_CHECK;
2658 root 1.14 }
2659    
2660 root 1.301 ev_tstamp
2661     ev_timer_remaining (EV_P_ ev_timer *w)
2662     {
2663     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2664     }
2665    
2666 root 1.140 #if EV_PERIODIC_ENABLE
2667 root 1.171 void noinline
2668 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2669 root 1.12 {
2670 root 1.123 if (expect_false (ev_is_active (w)))
2671 root 1.12 return;
2672 root 1.1
2673 root 1.77 if (w->reschedule_cb)
2674 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2675 root 1.77 else if (w->interval)
2676     {
2677 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2678 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2679 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2680 root 1.77 }
2681 root 1.173 else
2682 root 1.228 ev_at (w) = w->offset;
2683 root 1.12
2684 root 1.248 EV_FREQUENT_CHECK;
2685    
2686     ++periodiccnt;
2687     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2688 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2689     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2690 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2691 root 1.235 upheap (periodics, ev_active (w));
2692 root 1.62
2693 root 1.248 EV_FREQUENT_CHECK;
2694    
2695 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2696 root 1.1 }
2697    
2698 root 1.171 void noinline
2699 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2700 root 1.1 {
2701 root 1.166 clear_pending (EV_A_ (W)w);
2702 root 1.123 if (expect_false (!ev_is_active (w)))
2703 root 1.1 return;
2704    
2705 root 1.248 EV_FREQUENT_CHECK;
2706    
2707 root 1.230 {
2708     int active = ev_active (w);
2709 root 1.62
2710 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2711 root 1.151
2712 root 1.248 --periodiccnt;
2713    
2714     if (expect_true (active < periodiccnt + HEAP0))
2715 root 1.151 {
2716 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2717 root 1.181 adjustheap (periodics, periodiccnt, active);
2718 root 1.151 }
2719 root 1.248 }
2720 root 1.228
2721 root 1.328 ev_stop (EV_A_ (W)w);
2722    
2723 root 1.248 EV_FREQUENT_CHECK;
2724 root 1.1 }
2725    
2726 root 1.171 void noinline
2727 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2728 root 1.77 {
2729 root 1.84 /* TODO: use adjustheap and recalculation */
2730 root 1.77 ev_periodic_stop (EV_A_ w);
2731     ev_periodic_start (EV_A_ w);
2732     }
2733 root 1.93 #endif
2734 root 1.77
2735 root 1.56 #ifndef SA_RESTART
2736     # define SA_RESTART 0
2737     #endif
2738    
2739 root 1.336 #if EV_SIGNAL_ENABLE
2740    
2741 root 1.171 void noinline
2742 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2743 root 1.56 {
2744 root 1.123 if (expect_false (ev_is_active (w)))
2745 root 1.56 return;
2746    
2747 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2748    
2749     #if EV_MULTIPLICITY
2750 root 1.308 assert (("libev: a signal must not be attached to two different loops",
2751 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2752    
2753     signals [w->signum - 1].loop = EV_A;
2754     #endif
2755 root 1.56
2756 root 1.303 EV_FREQUENT_CHECK;
2757    
2758     #if EV_USE_SIGNALFD
2759     if (sigfd == -2)
2760     {
2761     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2762     if (sigfd < 0 && errno == EINVAL)
2763     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2764    
2765     if (sigfd >= 0)
2766     {
2767     fd_intern (sigfd); /* doing it twice will not hurt */
2768    
2769     sigemptyset (&sigfd_set);
2770    
2771     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2772     ev_set_priority (&sigfd_w, EV_MAXPRI);
2773     ev_io_start (EV_A_ &sigfd_w);
2774     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2775     }
2776     }
2777    
2778     if (sigfd >= 0)
2779     {
2780     /* TODO: check .head */
2781     sigaddset (&sigfd_set, w->signum);
2782     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2783 root 1.207
2784 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2785     }
2786 root 1.180 #endif
2787    
2788 root 1.56 ev_start (EV_A_ (W)w, 1);
2789 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2790 root 1.56
2791 root 1.63 if (!((WL)w)->next)
2792 root 1.304 # if EV_USE_SIGNALFD
2793 root 1.306 if (sigfd < 0) /*TODO*/
2794 root 1.304 # endif
2795 root 1.306 {
2796 root 1.322 # ifdef _WIN32
2797 root 1.317 evpipe_init (EV_A);
2798    
2799 root 1.306 signal (w->signum, ev_sighandler);
2800     # else
2801     struct sigaction sa;
2802    
2803     evpipe_init (EV_A);
2804    
2805     sa.sa_handler = ev_sighandler;
2806     sigfillset (&sa.sa_mask);
2807     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2808     sigaction (w->signum, &sa, 0);
2809    
2810     sigemptyset (&sa.sa_mask);
2811     sigaddset (&sa.sa_mask, w->signum);
2812     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2813 root 1.67 #endif
2814 root 1.306 }
2815 root 1.248
2816     EV_FREQUENT_CHECK;
2817 root 1.56 }
2818    
2819 root 1.171 void noinline
2820 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2821 root 1.56 {
2822 root 1.166 clear_pending (EV_A_ (W)w);
2823 root 1.123 if (expect_false (!ev_is_active (w)))
2824 root 1.56 return;
2825    
2826 root 1.248 EV_FREQUENT_CHECK;
2827    
2828 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2829 root 1.56 ev_stop (EV_A_ (W)w);
2830    
2831     if (!signals [w->signum - 1].head)
2832 root 1.306 {
2833 root 1.307 #if EV_MULTIPLICITY
2834 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
2835 root 1.307 #endif
2836     #if EV_USE_SIGNALFD
2837 root 1.306 if (sigfd >= 0)
2838     {
2839 root 1.321 sigset_t ss;
2840    
2841     sigemptyset (&ss);
2842     sigaddset (&ss, w->signum);
2843 root 1.306 sigdelset (&sigfd_set, w->signum);
2844 root 1.321
2845 root 1.306 signalfd (sigfd, &sigfd_set, 0);
2846 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
2847 root 1.306 }
2848     else
2849 root 1.307 #endif
2850 root 1.306 signal (w->signum, SIG_DFL);
2851     }
2852 root 1.248
2853     EV_FREQUENT_CHECK;
2854 root 1.56 }
2855    
2856 root 1.336 #endif
2857    
2858     #if EV_CHILD_ENABLE
2859    
2860 root 1.28 void
2861 root 1.136 ev_child_start (EV_P_ ev_child *w)
2862 root 1.22 {
2863 root 1.56 #if EV_MULTIPLICITY
2864 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2865 root 1.56 #endif
2866 root 1.123 if (expect_false (ev_is_active (w)))
2867 root 1.22 return;
2868    
2869 root 1.248 EV_FREQUENT_CHECK;
2870    
2871 root 1.51 ev_start (EV_A_ (W)w, 1);
2872 root 1.182 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2873 root 1.248
2874     EV_FREQUENT_CHECK;
2875 root 1.22 }
2876    
2877 root 1.28 void
2878 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2879 root 1.22 {
2880 root 1.166 clear_pending (EV_A_ (W)w);
2881 root 1.123 if (expect_false (!ev_is_active (w)))
2882 root 1.22 return;
2883    
2884 root 1.248 EV_FREQUENT_CHECK;
2885    
2886 root 1.182 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2887 root 1.51 ev_stop (EV_A_ (W)w);
2888 root 1.248
2889     EV_FREQUENT_CHECK;
2890 root 1.22 }
2891    
2892 root 1.336 #endif
2893    
2894 root 1.140 #if EV_STAT_ENABLE
2895    
2896     # ifdef _WIN32
2897 root 1.146 # undef lstat
2898     # define lstat(a,b) _stati64 (a,b)
2899 root 1.140 # endif
2900    
2901 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2902     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2903     #define MIN_STAT_INTERVAL 0.1074891
2904 root 1.143
2905 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2906 root 1.152
2907     #if EV_USE_INOTIFY
2908 root 1.326
2909     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2910     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2911 root 1.152
2912     static void noinline
2913     infy_add (EV_P_ ev_stat *w)
2914     {
2915     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2916    
2917 root 1.318 if (w->wd >= 0)
2918 root 1.152 {
2919 root 1.318 struct statfs sfs;
2920    
2921     /* now local changes will be tracked by inotify, but remote changes won't */
2922     /* unless the filesystem is known to be local, we therefore still poll */
2923     /* also do poll on <2.6.25, but with normal frequency */
2924    
2925     if (!fs_2625)
2926     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2927     else if (!statfs (w->path, &sfs)
2928     && (sfs.f_type == 0x1373 /* devfs */
2929     || sfs.f_type == 0xEF53 /* ext2/3 */
2930     || sfs.f_type == 0x3153464a /* jfs */
2931     || sfs.f_type == 0x52654973 /* reiser3 */
2932     || sfs.f_type == 0x01021994 /* tempfs */
2933     || sfs.f_type == 0x58465342 /* xfs */))
2934     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2935     else
2936     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2937     }
2938     else
2939     {
2940     /* can't use inotify, continue to stat */
2941 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2942 root 1.152
2943 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
2944 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2945 root 1.233 /* but an efficiency issue only */
2946 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2947 root 1.152 {
2948 root 1.153 char path [4096];
2949 root 1.152 strcpy (path, w->path);
2950    
2951     do
2952     {
2953     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2954     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2955    
2956     char *pend = strrchr (path, '/');
2957    
2958 root 1.275 if (!pend || pend == path)
2959     break;
2960 root 1.152
2961     *pend = 0;
2962 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
2963 root 1.152 }
2964     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2965     }
2966     }
2967 root 1.275
2968     if (w->wd >= 0)
2969 root 1.318 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2970 root 1.152
2971 root 1.318 /* now re-arm timer, if required */
2972     if (ev_is_active (&w->timer)) ev_ref (EV_A);
2973     ev_timer_again (EV_A_ &w->timer);
2974     if (ev_is_active (&w->timer)) ev_unref (EV_A);
2975 root 1.152 }
2976    
2977     static void noinline
2978     infy_del (EV_P_ ev_stat *w)
2979     {
2980     int slot;
2981     int wd = w->wd;
2982    
2983     if (wd < 0)
2984     return;
2985    
2986     w->wd = -2;
2987     slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2988     wlist_del (&fs_hash [slot].head, (WL)w);
2989    
2990     /* remove this watcher, if others are watching it, they will rearm */
2991     inotify_rm_watch (fs_fd, wd);
2992     }
2993    
2994     static void noinline
2995     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2996     {
2997     if (slot < 0)
2998 root 1.264 /* overflow, need to check for all hash slots */
2999 root 1.152 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3000     infy_wd (EV_A_ slot, wd, ev);
3001     else
3002     {
3003     WL w_;
3004    
3005     for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
3006     {
3007     ev_stat *w = (ev_stat *)w_;
3008     w_ = w_->next; /* lets us remove this watcher and all before it */
3009    
3010     if (w->wd == wd || wd == -1)
3011     {
3012     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3013     {
3014 root 1.275 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
3015 root 1.152 w->wd = -1;
3016     infy_add (EV_A_ w); /* re-add, no matter what */
3017     }
3018    
3019 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3020 root 1.152 }
3021     }
3022     }
3023     }
3024    
3025     static void
3026     infy_cb (EV_P_ ev_io *w, int revents)
3027     {
3028     char buf [EV_INOTIFY_BUFSIZE];
3029     int ofs;
3030     int len = read (fs_fd, buf, sizeof (buf));
3031    
3032 root 1.326 for (ofs = 0; ofs < len; )
3033     {
3034     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3035     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3036     ofs += sizeof (struct inotify_event) + ev->len;
3037     }
3038 root 1.152 }
3039    
3040 root 1.330 inline_size unsigned int
3041     ev_linux_version (void)
3042 root 1.152 {
3043 root 1.273 struct utsname buf;
3044 root 1.330 unsigned int v;
3045     int i;
3046     char *p = buf.release;
3047 root 1.273
3048     if (uname (&buf))
3049 root 1.330 return 0;
3050    
3051     for (i = 3+1; --i; )
3052     {
3053     unsigned int c = 0;
3054    
3055     for (;;)
3056     {
3057     if (*p >= '0' && *p <= '9')
3058     c = c * 10 + *p++ - '0';
3059     else
3060     {
3061     p += *p == '.';
3062     break;
3063     }
3064     }
3065    
3066     v = (v << 8) | c;
3067     }
3068 root 1.273
3069 root 1.330 return v;
3070     }
3071 root 1.273
3072 root 1.330 inline_size void
3073     ev_check_2625 (EV_P)
3074     {
3075     /* kernels < 2.6.25 are borked
3076     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3077     */
3078     if (ev_linux_version () < 0x020619)
3079 root 1.273 return;
3080 root 1.264
3081 root 1.273 fs_2625 = 1;
3082     }
3083 root 1.264
3084 root 1.315 inline_size int
3085     infy_newfd (void)
3086     {
3087     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3088     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3089     if (fd >= 0)
3090     return fd;
3091     #endif
3092     return inotify_init ();
3093     }
3094    
3095 root 1.284 inline_size void
3096 root 1.273 infy_init (EV_P)
3097     {
3098     if (fs_fd != -2)
3099     return;
3100 root 1.264
3101 root 1.273 fs_fd = -1;
3102 root 1.264
3103 root 1.330 ev_check_2625 (EV_A);
3104 root 1.264
3105 root 1.315 fs_fd = infy_newfd ();
3106 root 1.152
3107     if (fs_fd >= 0)
3108     {
3109 root 1.315 fd_intern (fs_fd);
3110 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3111     ev_set_priority (&fs_w, EV_MAXPRI);
3112     ev_io_start (EV_A_ &fs_w);
3113 root 1.317 ev_unref (EV_A);
3114 root 1.152 }
3115     }
3116    
3117 root 1.284 inline_size void
3118 root 1.154 infy_fork (EV_P)
3119     {
3120     int slot;
3121    
3122     if (fs_fd < 0)
3123     return;
3124    
3125 root 1.317 ev_ref (EV_A);
3126 root 1.315 ev_io_stop (EV_A_ &fs_w);
3127 root 1.154 close (fs_fd);
3128 root 1.315 fs_fd = infy_newfd ();
3129    
3130     if (fs_fd >= 0)
3131     {
3132     fd_intern (fs_fd);
3133     ev_io_set (&fs_w, fs_fd, EV_READ);
3134     ev_io_start (EV_A_ &fs_w);
3135 root 1.317 ev_unref (EV_A);
3136 root 1.315 }
3137 root 1.154
3138     for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3139     {
3140     WL w_ = fs_hash [slot].head;
3141     fs_hash [slot].head = 0;
3142    
3143     while (w_)
3144     {
3145     ev_stat *w = (ev_stat *)w_;
3146     w_ = w_->next; /* lets us add this watcher */
3147    
3148     w->wd = -1;
3149    
3150     if (fs_fd >= 0)
3151     infy_add (EV_A_ w); /* re-add, no matter what */
3152     else
3153 root 1.318 {
3154     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3155     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3156     ev_timer_again (EV_A_ &w->timer);
3157     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3158     }
3159 root 1.154 }
3160     }
3161     }
3162    
3163 root 1.152 #endif
3164    
3165 root 1.255 #ifdef _WIN32
3166     # define EV_LSTAT(p,b) _stati64 (p, b)
3167     #else
3168     # define EV_LSTAT(p,b) lstat (p, b)
3169     #endif
3170    
3171 root 1.140 void
3172     ev_stat_stat (EV_P_ ev_stat *w)
3173     {
3174     if (lstat (w->path, &w->attr) < 0)
3175     w->attr.st_nlink = 0;
3176     else if (!w->attr.st_nlink)
3177     w->attr.st_nlink = 1;
3178     }
3179    
3180 root 1.157 static void noinline
3181 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3182     {
3183     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3184    
3185 root 1.320 ev_statdata prev = w->attr;
3186 root 1.140 ev_stat_stat (EV_A_ w);
3187    
3188 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3189     if (
3190 root 1.320 prev.st_dev != w->attr.st_dev
3191     || prev.st_ino != w->attr.st_ino
3192     || prev.st_mode != w->attr.st_mode
3193     || prev.st_nlink != w->attr.st_nlink
3194     || prev.st_uid != w->attr.st_uid
3195     || prev.st_gid != w->attr.st_gid
3196     || prev.st_rdev != w->attr.st_rdev
3197     || prev.st_size != w->attr.st_size
3198     || prev.st_atime != w->attr.st_atime
3199     || prev.st_mtime != w->attr.st_mtime
3200     || prev.st_ctime != w->attr.st_ctime
3201 root 1.156 ) {
3202 root 1.320 /* we only update w->prev on actual differences */
3203     /* in case we test more often than invoke the callback, */
3204     /* to ensure that prev is always different to attr */
3205     w->prev = prev;
3206    
3207 root 1.152 #if EV_USE_INOTIFY
3208 root 1.264 if (fs_fd >= 0)
3209     {
3210     infy_del (EV_A_ w);
3211     infy_add (EV_A_ w);
3212     ev_stat_stat (EV_A_ w); /* avoid race... */
3213     }
3214 root 1.152 #endif
3215    
3216     ev_feed_event (EV_A_ w, EV_STAT);
3217     }
3218 root 1.140 }
3219    
3220     void
3221     ev_stat_start (EV_P_ ev_stat *w)
3222     {
3223     if (expect_false (ev_is_active (w)))
3224     return;
3225    
3226     ev_stat_stat (EV_A_ w);
3227    
3228 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3229     w->interval = MIN_STAT_INTERVAL;
3230 root 1.143
3231 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3232 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3233 root 1.152
3234     #if EV_USE_INOTIFY
3235     infy_init (EV_A);
3236    
3237     if (fs_fd >= 0)
3238     infy_add (EV_A_ w);
3239     else
3240     #endif
3241 root 1.318 {
3242     ev_timer_again (EV_A_ &w->timer);
3243     ev_unref (EV_A);
3244     }
3245 root 1.140
3246     ev_start (EV_A_ (W)w, 1);
3247 root 1.248
3248     EV_FREQUENT_CHECK;
3249 root 1.140 }
3250    
3251     void
3252     ev_stat_stop (EV_P_ ev_stat *w)
3253     {
3254 root 1.166 clear_pending (EV_A_ (W)w);
3255 root 1.140 if (expect_false (!ev_is_active (w)))
3256     return;
3257    
3258 root 1.248 EV_FREQUENT_CHECK;
3259    
3260 root 1.152 #if EV_USE_INOTIFY
3261     infy_del (EV_A_ w);
3262     #endif
3263 root 1.318
3264     if (ev_is_active (&w->timer))
3265     {
3266     ev_ref (EV_A);
3267     ev_timer_stop (EV_A_ &w->timer);
3268     }
3269 root 1.140
3270 root 1.134 ev_stop (EV_A_ (W)w);
3271 root 1.248
3272     EV_FREQUENT_CHECK;
3273 root 1.134 }
3274     #endif
3275    
3276 root 1.164 #if EV_IDLE_ENABLE
3277 root 1.144 void
3278     ev_idle_start (EV_P_ ev_idle *w)
3279     {
3280     if (expect_false (ev_is_active (w)))
3281     return;
3282    
3283 root 1.164 pri_adjust (EV_A_ (W)w);
3284    
3285 root 1.248 EV_FREQUENT_CHECK;
3286    
3287 root 1.164 {
3288     int active = ++idlecnt [ABSPRI (w)];
3289    
3290     ++idleall;
3291     ev_start (EV_A_ (W)w, active);
3292    
3293     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3294     idles [ABSPRI (w)][active - 1] = w;
3295     }
3296 root 1.248
3297     EV_FREQUENT_CHECK;
3298 root 1.144 }
3299    
3300     void
3301     ev_idle_stop (EV_P_ ev_idle *w)
3302     {
3303 root 1.166 clear_pending (EV_A_ (W)w);
3304 root 1.144 if (expect_false (!ev_is_active (w)))
3305     return;
3306    
3307 root 1.248 EV_FREQUENT_CHECK;
3308    
3309 root 1.144 {
3310 root 1.230 int active = ev_active (w);
3311 root 1.164
3312     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3313 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3314 root 1.164
3315     ev_stop (EV_A_ (W)w);
3316     --idleall;
3317 root 1.144 }
3318 root 1.248
3319     EV_FREQUENT_CHECK;
3320 root 1.144 }
3321 root 1.164 #endif
3322 root 1.144
3323     void
3324     ev_prepare_start (EV_P_ ev_prepare *w)
3325     {
3326     if (expect_false (ev_is_active (w)))
3327     return;
3328    
3329 root 1.248 EV_FREQUENT_CHECK;
3330    
3331 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3332     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3333     prepares [preparecnt - 1] = w;
3334 root 1.248
3335     EV_FREQUENT_CHECK;
3336 root 1.144 }
3337    
3338     void
3339     ev_prepare_stop (EV_P_ ev_prepare *w)
3340     {
3341 root 1.166 clear_pending (EV_A_ (W)w);
3342 root 1.144 if (expect_false (!ev_is_active (w)))
3343     return;
3344    
3345 root 1.248 EV_FREQUENT_CHECK;
3346    
3347 root 1.144 {
3348 root 1.230 int active = ev_active (w);
3349    
3350 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3351 root 1.230 ev_active (prepares [active - 1]) = active;
3352 root 1.144 }
3353    
3354     ev_stop (EV_A_ (W)w);
3355 root 1.248
3356     EV_FREQUENT_CHECK;
3357 root 1.144 }
3358    
3359     void
3360     ev_check_start (EV_P_ ev_check *w)
3361     {
3362     if (expect_false (ev_is_active (w)))
3363     return;
3364    
3365 root 1.248 EV_FREQUENT_CHECK;
3366    
3367 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3368     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3369     checks [checkcnt - 1] = w;
3370 root 1.248
3371     EV_FREQUENT_CHECK;
3372 root 1.144 }
3373    
3374     void
3375     ev_check_stop (EV_P_ ev_check *w)
3376     {
3377 root 1.166 clear_pending (EV_A_ (W)w);
3378 root 1.144 if (expect_false (!ev_is_active (w)))
3379     return;
3380    
3381 root 1.248 EV_FREQUENT_CHECK;
3382    
3383 root 1.144 {
3384 root 1.230 int active = ev_active (w);
3385    
3386 root 1.144 checks [active - 1] = checks [--checkcnt];
3387 root 1.230 ev_active (checks [active - 1]) = active;
3388 root 1.144 }
3389    
3390     ev_stop (EV_A_ (W)w);
3391 root 1.248
3392     EV_FREQUENT_CHECK;
3393 root 1.144 }
3394    
3395     #if EV_EMBED_ENABLE
3396     void noinline
3397     ev_embed_sweep (EV_P_ ev_embed *w)
3398     {
3399 root 1.188 ev_loop (w->other, EVLOOP_NONBLOCK);
3400 root 1.144 }
3401    
3402     static void
3403 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3404 root 1.144 {
3405     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3406    
3407     if (ev_cb (w))
3408     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3409     else
3410 root 1.195 ev_loop (w->other, EVLOOP_NONBLOCK);
3411 root 1.144 }
3412    
3413 root 1.189 static void
3414     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3415     {
3416     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3417    
3418 root 1.195 {
3419 root 1.306 EV_P = w->other;
3420 root 1.195
3421     while (fdchangecnt)
3422     {
3423     fd_reify (EV_A);
3424     ev_loop (EV_A_ EVLOOP_NONBLOCK);
3425     }
3426     }
3427     }
3428    
3429 root 1.261 static void
3430     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3431     {
3432     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3433    
3434 root 1.277 ev_embed_stop (EV_A_ w);
3435    
3436 root 1.261 {
3437 root 1.306 EV_P = w->other;
3438 root 1.261
3439     ev_loop_fork (EV_A);
3440 root 1.277 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3441 root 1.261 }
3442 root 1.277
3443     ev_embed_start (EV_A_ w);
3444 root 1.261 }
3445    
3446 root 1.195 #if 0
3447     static void
3448     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3449     {
3450     ev_idle_stop (EV_A_ idle);
3451 root 1.189 }
3452 root 1.195 #endif
3453 root 1.189
3454 root 1.144 void
3455     ev_embed_start (EV_P_ ev_embed *w)
3456     {
3457     if (expect_false (ev_is_active (w)))
3458     return;
3459    
3460     {
3461 root 1.306 EV_P = w->other;
3462 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3463 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3464 root 1.144 }
3465    
3466 root 1.248 EV_FREQUENT_CHECK;
3467    
3468 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3469     ev_io_start (EV_A_ &w->io);
3470    
3471 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3472     ev_set_priority (&w->prepare, EV_MINPRI);
3473     ev_prepare_start (EV_A_ &w->prepare);
3474    
3475 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3476     ev_fork_start (EV_A_ &w->fork);
3477    
3478 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3479    
3480 root 1.144 ev_start (EV_A_ (W)w, 1);
3481 root 1.248
3482     EV_FREQUENT_CHECK;
3483 root 1.144 }
3484    
3485     void
3486     ev_embed_stop (EV_P_ ev_embed *w)
3487     {
3488 root 1.166 clear_pending (EV_A_ (W)w);
3489 root 1.144 if (expect_false (!ev_is_active (w)))
3490     return;
3491    
3492 root 1.248 EV_FREQUENT_CHECK;
3493    
3494 root 1.261 ev_io_stop (EV_A_ &w->io);
3495 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3496 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3497 root 1.248
3498 root 1.328 ev_stop (EV_A_ (W)w);
3499    
3500 root 1.248 EV_FREQUENT_CHECK;
3501 root 1.144 }
3502     #endif
3503    
3504 root 1.147 #if EV_FORK_ENABLE
3505     void
3506     ev_fork_start (EV_P_ ev_fork *w)
3507     {
3508     if (expect_false (ev_is_active (w)))
3509     return;
3510    
3511 root 1.248 EV_FREQUENT_CHECK;
3512    
3513 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3514     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3515     forks [forkcnt - 1] = w;
3516 root 1.248
3517     EV_FREQUENT_CHECK;
3518 root 1.147 }
3519    
3520     void
3521     ev_fork_stop (EV_P_ ev_fork *w)
3522     {
3523 root 1.166 clear_pending (EV_A_ (W)w);
3524 root 1.147 if (expect_false (!ev_is_active (w)))
3525     return;
3526    
3527 root 1.248 EV_FREQUENT_CHECK;
3528    
3529 root 1.147 {
3530 root 1.230 int active = ev_active (w);
3531    
3532 root 1.147 forks [active - 1] = forks [--forkcnt];
3533 root 1.230 ev_active (forks [active - 1]) = active;
3534 root 1.147 }
3535    
3536     ev_stop (EV_A_ (W)w);
3537 root 1.248
3538     EV_FREQUENT_CHECK;
3539 root 1.147 }
3540     #endif
3541    
3542 root 1.207 #if EV_ASYNC_ENABLE
3543     void
3544     ev_async_start (EV_P_ ev_async *w)
3545     {
3546     if (expect_false (ev_is_active (w)))
3547     return;
3548    
3549     evpipe_init (EV_A);
3550    
3551 root 1.248 EV_FREQUENT_CHECK;
3552    
3553 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3554     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3555     asyncs [asynccnt - 1] = w;
3556 root 1.248
3557     EV_FREQUENT_CHECK;
3558 root 1.207 }
3559    
3560     void
3561     ev_async_stop (EV_P_ ev_async *w)
3562     {
3563     clear_pending (EV_A_ (W)w);
3564     if (expect_false (!ev_is_active (w)))
3565     return;
3566    
3567 root 1.248 EV_FREQUENT_CHECK;
3568    
3569 root 1.207 {
3570 root 1.230 int active = ev_active (w);
3571    
3572 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3573 root 1.230 ev_active (asyncs [active - 1]) = active;
3574 root 1.207 }
3575    
3576     ev_stop (EV_A_ (W)w);
3577 root 1.248
3578     EV_FREQUENT_CHECK;
3579 root 1.207 }
3580    
3581     void
3582     ev_async_send (EV_P_ ev_async *w)
3583     {
3584     w->sent = 1;
3585 root 1.307 evpipe_write (EV_A_ &async_pending);
3586 root 1.207 }
3587     #endif
3588    
3589 root 1.1 /*****************************************************************************/
3590 root 1.10
3591 root 1.16 struct ev_once
3592     {
3593 root 1.136 ev_io io;
3594     ev_timer to;
3595 root 1.16 void (*cb)(int revents, void *arg);
3596     void *arg;
3597     };
3598    
3599     static void
3600 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3601 root 1.16 {
3602     void (*cb)(int revents, void *arg) = once->cb;
3603     void *arg = once->arg;
3604    
3605 root 1.259 ev_io_stop (EV_A_ &once->io);
3606 root 1.51 ev_timer_stop (EV_A_ &once->to);
3607 root 1.69 ev_free (once);
3608 root 1.16
3609     cb (revents, arg);
3610     }
3611    
3612     static void
3613 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3614 root 1.16 {
3615 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3616    
3617     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3618 root 1.16 }
3619    
3620     static void
3621 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3622 root 1.16 {
3623 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3624    
3625     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3626 root 1.16 }
3627    
3628     void
3629 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3630 root 1.16 {
3631 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3632 root 1.16
3633 root 1.123 if (expect_false (!once))
3634 root 1.16 {
3635 root 1.123 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3636     return;
3637     }
3638    
3639     once->cb = cb;
3640     once->arg = arg;
3641 root 1.16
3642 root 1.123 ev_init (&once->io, once_cb_io);
3643     if (fd >= 0)
3644     {
3645     ev_io_set (&once->io, fd, events);
3646     ev_io_start (EV_A_ &once->io);
3647     }
3648 root 1.16
3649 root 1.123 ev_init (&once->to, once_cb_to);
3650     if (timeout >= 0.)
3651     {
3652     ev_timer_set (&once->to, timeout, 0.);
3653     ev_timer_start (EV_A_ &once->to);
3654 root 1.16 }
3655     }
3656    
3657 root 1.282 /*****************************************************************************/
3658    
3659 root 1.288 #if EV_WALK_ENABLE
3660 root 1.282 void
3661     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3662     {
3663     int i, j;
3664     ev_watcher_list *wl, *wn;
3665    
3666     if (types & (EV_IO | EV_EMBED))
3667     for (i = 0; i < anfdmax; ++i)
3668     for (wl = anfds [i].head; wl; )
3669     {
3670     wn = wl->next;
3671    
3672     #if EV_EMBED_ENABLE
3673     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3674     {
3675     if (types & EV_EMBED)
3676     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3677     }
3678     else
3679     #endif
3680     #if EV_USE_INOTIFY
3681     if (ev_cb ((ev_io *)wl) == infy_cb)
3682     ;
3683     else
3684     #endif
3685 root 1.288 if ((ev_io *)wl != &pipe_w)
3686 root 1.282 if (types & EV_IO)
3687     cb (EV_A_ EV_IO, wl);
3688    
3689     wl = wn;
3690     }
3691    
3692     if (types & (EV_TIMER | EV_STAT))
3693     for (i = timercnt + HEAP0; i-- > HEAP0; )
3694     #if EV_STAT_ENABLE
3695     /*TODO: timer is not always active*/
3696     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3697     {
3698     if (types & EV_STAT)
3699     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3700     }
3701     else
3702     #endif
3703     if (types & EV_TIMER)
3704     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3705    
3706     #if EV_PERIODIC_ENABLE
3707     if (types & EV_PERIODIC)
3708     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3709     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3710     #endif
3711    
3712     #if EV_IDLE_ENABLE
3713     if (types & EV_IDLE)
3714     for (j = NUMPRI; i--; )
3715     for (i = idlecnt [j]; i--; )
3716     cb (EV_A_ EV_IDLE, idles [j][i]);
3717     #endif
3718    
3719     #if EV_FORK_ENABLE
3720     if (types & EV_FORK)
3721     for (i = forkcnt; i--; )
3722     if (ev_cb (forks [i]) != embed_fork_cb)
3723     cb (EV_A_ EV_FORK, forks [i]);
3724     #endif
3725    
3726     #if EV_ASYNC_ENABLE
3727     if (types & EV_ASYNC)
3728     for (i = asynccnt; i--; )
3729     cb (EV_A_ EV_ASYNC, asyncs [i]);
3730     #endif
3731    
3732     if (types & EV_PREPARE)
3733     for (i = preparecnt; i--; )
3734     #if EV_EMBED_ENABLE
3735     if (ev_cb (prepares [i]) != embed_prepare_cb)
3736     #endif
3737     cb (EV_A_ EV_PREPARE, prepares [i]);
3738    
3739     if (types & EV_CHECK)
3740     for (i = checkcnt; i--; )
3741     cb (EV_A_ EV_CHECK, checks [i]);
3742    
3743     if (types & EV_SIGNAL)
3744 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
3745 root 1.282 for (wl = signals [i].head; wl; )
3746     {
3747     wn = wl->next;
3748     cb (EV_A_ EV_SIGNAL, wl);
3749     wl = wn;
3750     }
3751    
3752     if (types & EV_CHILD)
3753     for (i = EV_PID_HASHSIZE; i--; )
3754     for (wl = childs [i]; wl; )
3755     {
3756     wn = wl->next;
3757     cb (EV_A_ EV_CHILD, wl);
3758     wl = wn;
3759     }
3760     /* EV_STAT 0x00001000 /* stat data changed */
3761     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3762     }
3763     #endif
3764    
3765 root 1.188 #if EV_MULTIPLICITY
3766     #include "ev_wrap.h"
3767     #endif
3768    
3769 root 1.87 #ifdef __cplusplus
3770     }
3771     #endif
3772