ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.337
Committed: Wed Mar 10 09:18:24 2010 UTC (14 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.336: +27 -5 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.326 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40     #ifdef __cplusplus
41     extern "C" {
42     #endif
43    
44 root 1.220 /* this big block deduces configuration from config.h */
45 root 1.59 #ifndef EV_STANDALONE
46 root 1.133 # ifdef EV_CONFIG_H
47     # include EV_CONFIG_H
48     # else
49     # include "config.h"
50     # endif
51 root 1.60
52 root 1.274 # if HAVE_CLOCK_SYSCALL
53     # ifndef EV_USE_CLOCK_SYSCALL
54     # define EV_USE_CLOCK_SYSCALL 1
55     # ifndef EV_USE_REALTIME
56     # define EV_USE_REALTIME 0
57     # endif
58     # ifndef EV_USE_MONOTONIC
59     # define EV_USE_MONOTONIC 1
60     # endif
61     # endif
62 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
63     # define EV_USE_CLOCK_SYSCALL 0
64 root 1.274 # endif
65    
66 root 1.60 # if HAVE_CLOCK_GETTIME
67 root 1.97 # ifndef EV_USE_MONOTONIC
68     # define EV_USE_MONOTONIC 1
69     # endif
70     # ifndef EV_USE_REALTIME
71 root 1.279 # define EV_USE_REALTIME 0
72 root 1.97 # endif
73 root 1.126 # else
74     # ifndef EV_USE_MONOTONIC
75     # define EV_USE_MONOTONIC 0
76     # endif
77     # ifndef EV_USE_REALTIME
78     # define EV_USE_REALTIME 0
79     # endif
80 root 1.60 # endif
81    
82 root 1.193 # ifndef EV_USE_NANOSLEEP
83     # if HAVE_NANOSLEEP
84     # define EV_USE_NANOSLEEP 1
85     # else
86     # define EV_USE_NANOSLEEP 0
87     # endif
88     # endif
89    
90 root 1.127 # ifndef EV_USE_SELECT
91     # if HAVE_SELECT && HAVE_SYS_SELECT_H
92     # define EV_USE_SELECT 1
93     # else
94     # define EV_USE_SELECT 0
95     # endif
96 root 1.60 # endif
97    
98 root 1.127 # ifndef EV_USE_POLL
99     # if HAVE_POLL && HAVE_POLL_H
100     # define EV_USE_POLL 1
101     # else
102     # define EV_USE_POLL 0
103     # endif
104 root 1.60 # endif
105 root 1.127
106     # ifndef EV_USE_EPOLL
107     # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108     # define EV_USE_EPOLL 1
109     # else
110     # define EV_USE_EPOLL 0
111     # endif
112 root 1.60 # endif
113 root 1.127
114     # ifndef EV_USE_KQUEUE
115 root 1.323 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
116 root 1.127 # define EV_USE_KQUEUE 1
117     # else
118     # define EV_USE_KQUEUE 0
119     # endif
120 root 1.60 # endif
121 root 1.127
122     # ifndef EV_USE_PORT
123     # if HAVE_PORT_H && HAVE_PORT_CREATE
124     # define EV_USE_PORT 1
125     # else
126     # define EV_USE_PORT 0
127     # endif
128 root 1.118 # endif
129    
130 root 1.152 # ifndef EV_USE_INOTIFY
131     # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132     # define EV_USE_INOTIFY 1
133     # else
134     # define EV_USE_INOTIFY 0
135     # endif
136     # endif
137    
138 root 1.303 # ifndef EV_USE_SIGNALFD
139     # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140     # define EV_USE_SIGNALFD 1
141     # else
142     # define EV_USE_SIGNALFD 0
143     # endif
144     # endif
145    
146 root 1.220 # ifndef EV_USE_EVENTFD
147     # if HAVE_EVENTFD
148     # define EV_USE_EVENTFD 1
149     # else
150     # define EV_USE_EVENTFD 0
151     # endif
152     # endif
153 root 1.250
154 root 1.29 #endif
155 root 1.17
156 root 1.1 #include <math.h>
157     #include <stdlib.h>
158 root 1.319 #include <string.h>
159 root 1.7 #include <fcntl.h>
160 root 1.16 #include <stddef.h>
161 root 1.1
162     #include <stdio.h>
163    
164 root 1.4 #include <assert.h>
165 root 1.1 #include <errno.h>
166 root 1.22 #include <sys/types.h>
167 root 1.71 #include <time.h>
168 root 1.326 #include <limits.h>
169 root 1.71
170 root 1.72 #include <signal.h>
171 root 1.71
172 root 1.152 #ifdef EV_H
173     # include EV_H
174     #else
175     # include "ev.h"
176     #endif
177    
178 root 1.103 #ifndef _WIN32
179 root 1.71 # include <sys/time.h>
180 root 1.45 # include <sys/wait.h>
181 root 1.140 # include <unistd.h>
182 root 1.103 #else
183 root 1.256 # include <io.h>
184 root 1.103 # define WIN32_LEAN_AND_MEAN
185     # include <windows.h>
186     # ifndef EV_SELECT_IS_WINSOCKET
187     # define EV_SELECT_IS_WINSOCKET 1
188     # endif
189 root 1.331 # undef EV_AVOID_STDIO
190 root 1.45 #endif
191 root 1.103
192 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
193 root 1.40
194 root 1.305 /* try to deduce the maximum number of signals on this platform */
195     #if defined (EV_NSIG)
196     /* use what's provided */
197     #elif defined (NSIG)
198     # define EV_NSIG (NSIG)
199     #elif defined(_NSIG)
200     # define EV_NSIG (_NSIG)
201     #elif defined (SIGMAX)
202     # define EV_NSIG (SIGMAX+1)
203     #elif defined (SIG_MAX)
204     # define EV_NSIG (SIG_MAX+1)
205     #elif defined (_SIG_MAX)
206     # define EV_NSIG (_SIG_MAX+1)
207     #elif defined (MAXSIG)
208     # define EV_NSIG (MAXSIG+1)
209     #elif defined (MAX_SIG)
210     # define EV_NSIG (MAX_SIG+1)
211     #elif defined (SIGARRAYSIZE)
212 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213 root 1.305 #elif defined (_sys_nsig)
214     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215     #else
216     # error "unable to find value for NSIG, please report"
217 root 1.336 /* to make it compile regardless, just remove the above line, */
218     /* but consider reporting it, too! :) */
219 root 1.306 # define EV_NSIG 65
220 root 1.305 #endif
221    
222 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
223     # if __linux && __GLIBC__ >= 2
224     # define EV_USE_CLOCK_SYSCALL 1
225     # else
226     # define EV_USE_CLOCK_SYSCALL 0
227     # endif
228     #endif
229    
230 root 1.29 #ifndef EV_USE_MONOTONIC
231 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232     # define EV_USE_MONOTONIC 1
233     # else
234     # define EV_USE_MONOTONIC 0
235     # endif
236 root 1.37 #endif
237    
238 root 1.118 #ifndef EV_USE_REALTIME
239 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
240 root 1.118 #endif
241    
242 root 1.193 #ifndef EV_USE_NANOSLEEP
243 root 1.253 # if _POSIX_C_SOURCE >= 199309L
244     # define EV_USE_NANOSLEEP 1
245     # else
246     # define EV_USE_NANOSLEEP 0
247     # endif
248 root 1.193 #endif
249    
250 root 1.29 #ifndef EV_USE_SELECT
251     # define EV_USE_SELECT 1
252 root 1.10 #endif
253    
254 root 1.59 #ifndef EV_USE_POLL
255 root 1.104 # ifdef _WIN32
256     # define EV_USE_POLL 0
257     # else
258     # define EV_USE_POLL 1
259     # endif
260 root 1.41 #endif
261    
262 root 1.29 #ifndef EV_USE_EPOLL
263 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264     # define EV_USE_EPOLL 1
265     # else
266     # define EV_USE_EPOLL 0
267     # endif
268 root 1.10 #endif
269    
270 root 1.44 #ifndef EV_USE_KQUEUE
271     # define EV_USE_KQUEUE 0
272     #endif
273    
274 root 1.118 #ifndef EV_USE_PORT
275     # define EV_USE_PORT 0
276 root 1.40 #endif
277    
278 root 1.152 #ifndef EV_USE_INOTIFY
279 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280     # define EV_USE_INOTIFY 1
281     # else
282     # define EV_USE_INOTIFY 0
283     # endif
284 root 1.152 #endif
285    
286 root 1.149 #ifndef EV_PID_HASHSIZE
287     # if EV_MINIMAL
288     # define EV_PID_HASHSIZE 1
289     # else
290     # define EV_PID_HASHSIZE 16
291     # endif
292     #endif
293    
294 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
295     # if EV_MINIMAL
296     # define EV_INOTIFY_HASHSIZE 1
297     # else
298     # define EV_INOTIFY_HASHSIZE 16
299     # endif
300     #endif
301    
302 root 1.220 #ifndef EV_USE_EVENTFD
303     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
304     # define EV_USE_EVENTFD 1
305     # else
306     # define EV_USE_EVENTFD 0
307     # endif
308     #endif
309    
310 root 1.303 #ifndef EV_USE_SIGNALFD
311 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
312 root 1.303 # define EV_USE_SIGNALFD 1
313     # else
314     # define EV_USE_SIGNALFD 0
315     # endif
316     #endif
317    
318 root 1.249 #if 0 /* debugging */
319 root 1.250 # define EV_VERIFY 3
320 root 1.249 # define EV_USE_4HEAP 1
321     # define EV_HEAP_CACHE_AT 1
322     #endif
323    
324 root 1.250 #ifndef EV_VERIFY
325     # define EV_VERIFY !EV_MINIMAL
326     #endif
327    
328 root 1.243 #ifndef EV_USE_4HEAP
329     # define EV_USE_4HEAP !EV_MINIMAL
330     #endif
331    
332     #ifndef EV_HEAP_CACHE_AT
333     # define EV_HEAP_CACHE_AT !EV_MINIMAL
334     #endif
335    
336 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
337     /* which makes programs even slower. might work on other unices, too. */
338     #if EV_USE_CLOCK_SYSCALL
339     # include <syscall.h>
340     # ifdef SYS_clock_gettime
341     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
342     # undef EV_USE_MONOTONIC
343     # define EV_USE_MONOTONIC 1
344     # else
345     # undef EV_USE_CLOCK_SYSCALL
346     # define EV_USE_CLOCK_SYSCALL 0
347     # endif
348     #endif
349    
350 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
351 root 1.40
352 root 1.325 #ifdef _AIX
353     /* AIX has a completely broken poll.h header */
354     # undef EV_USE_POLL
355     # define EV_USE_POLL 0
356     #endif
357    
358 root 1.40 #ifndef CLOCK_MONOTONIC
359     # undef EV_USE_MONOTONIC
360     # define EV_USE_MONOTONIC 0
361     #endif
362    
363 root 1.31 #ifndef CLOCK_REALTIME
364 root 1.40 # undef EV_USE_REALTIME
365 root 1.31 # define EV_USE_REALTIME 0
366     #endif
367 root 1.40
368 root 1.152 #if !EV_STAT_ENABLE
369 root 1.185 # undef EV_USE_INOTIFY
370 root 1.152 # define EV_USE_INOTIFY 0
371     #endif
372    
373 root 1.193 #if !EV_USE_NANOSLEEP
374     # ifndef _WIN32
375     # include <sys/select.h>
376     # endif
377     #endif
378    
379 root 1.152 #if EV_USE_INOTIFY
380 root 1.264 # include <sys/utsname.h>
381 root 1.273 # include <sys/statfs.h>
382 root 1.152 # include <sys/inotify.h>
383 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
384     # ifndef IN_DONT_FOLLOW
385     # undef EV_USE_INOTIFY
386     # define EV_USE_INOTIFY 0
387     # endif
388 root 1.152 #endif
389    
390 root 1.185 #if EV_SELECT_IS_WINSOCKET
391     # include <winsock.h>
392     #endif
393    
394 root 1.220 #if EV_USE_EVENTFD
395     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
396 root 1.221 # include <stdint.h>
397 root 1.303 # ifndef EFD_NONBLOCK
398     # define EFD_NONBLOCK O_NONBLOCK
399     # endif
400     # ifndef EFD_CLOEXEC
401 root 1.311 # ifdef O_CLOEXEC
402     # define EFD_CLOEXEC O_CLOEXEC
403     # else
404     # define EFD_CLOEXEC 02000000
405     # endif
406 root 1.303 # endif
407 root 1.222 # ifdef __cplusplus
408     extern "C" {
409     # endif
410 root 1.329 int (eventfd) (unsigned int initval, int flags);
411 root 1.222 # ifdef __cplusplus
412     }
413     # endif
414 root 1.220 #endif
415    
416 root 1.303 #if EV_USE_SIGNALFD
417 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418     # include <stdint.h>
419     # ifndef SFD_NONBLOCK
420     # define SFD_NONBLOCK O_NONBLOCK
421     # endif
422     # ifndef SFD_CLOEXEC
423     # ifdef O_CLOEXEC
424     # define SFD_CLOEXEC O_CLOEXEC
425     # else
426     # define SFD_CLOEXEC 02000000
427     # endif
428     # endif
429     # ifdef __cplusplus
430     extern "C" {
431     # endif
432     int signalfd (int fd, const sigset_t *mask, int flags);
433    
434     struct signalfd_siginfo
435     {
436     uint32_t ssi_signo;
437     char pad[128 - sizeof (uint32_t)];
438     };
439     # ifdef __cplusplus
440     }
441     # endif
442 root 1.303 #endif
443    
444 root 1.314
445 root 1.40 /**/
446 root 1.1
447 root 1.250 #if EV_VERIFY >= 3
448 root 1.248 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
449     #else
450     # define EV_FREQUENT_CHECK do { } while (0)
451     #endif
452    
453 root 1.176 /*
454     * This is used to avoid floating point rounding problems.
455     * It is added to ev_rt_now when scheduling periodics
456     * to ensure progress, time-wise, even when rounding
457     * errors are against us.
458 root 1.177 * This value is good at least till the year 4000.
459 root 1.176 * Better solutions welcome.
460     */
461     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
462    
463 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
464 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465 root 1.1
466 root 1.185 #if __GNUC__ >= 4
467 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
468 root 1.169 # define noinline __attribute__ ((noinline))
469 root 1.40 #else
470     # define expect(expr,value) (expr)
471 root 1.140 # define noinline
472 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
473 root 1.169 # define inline
474     # endif
475 root 1.40 #endif
476    
477     #define expect_false(expr) expect ((expr) != 0, 0)
478     #define expect_true(expr) expect ((expr) != 0, 1)
479 root 1.169 #define inline_size static inline
480    
481     #if EV_MINIMAL
482     # define inline_speed static noinline
483     #else
484     # define inline_speed static inline
485     #endif
486 root 1.40
487 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
488    
489     #if EV_MINPRI == EV_MAXPRI
490     # define ABSPRI(w) (((W)w), 0)
491     #else
492     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
493     #endif
494 root 1.42
495 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
496 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
497 root 1.103
498 root 1.136 typedef ev_watcher *W;
499     typedef ev_watcher_list *WL;
500     typedef ev_watcher_time *WT;
501 root 1.10
502 root 1.229 #define ev_active(w) ((W)(w))->active
503 root 1.228 #define ev_at(w) ((WT)(w))->at
504    
505 root 1.279 #if EV_USE_REALTIME
506 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
507     /* giving it a reasonably high chance of working on typical architetcures */
508 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
509     #endif
510    
511     #if EV_USE_MONOTONIC
512 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
513 root 1.198 #endif
514 root 1.54
515 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
516     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
517     #endif
518     #ifndef EV_WIN32_HANDLE_TO_FD
519 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
520 root 1.313 #endif
521     #ifndef EV_WIN32_CLOSE_FD
522     # define EV_WIN32_CLOSE_FD(fd) close (fd)
523     #endif
524    
525 root 1.103 #ifdef _WIN32
526 root 1.98 # include "ev_win32.c"
527     #endif
528 root 1.67
529 root 1.53 /*****************************************************************************/
530 root 1.1
531 root 1.331 #if EV_AVOID_STDIO
532     static void noinline
533     ev_printerr (const char *msg)
534     {
535     write (STDERR_FILENO, msg, strlen (msg));
536     }
537     #endif
538    
539 root 1.70 static void (*syserr_cb)(const char *msg);
540 root 1.69
541 root 1.141 void
542     ev_set_syserr_cb (void (*cb)(const char *msg))
543 root 1.69 {
544     syserr_cb = cb;
545     }
546    
547 root 1.141 static void noinline
548 root 1.269 ev_syserr (const char *msg)
549 root 1.69 {
550 root 1.70 if (!msg)
551     msg = "(libev) system error";
552    
553 root 1.69 if (syserr_cb)
554 root 1.70 syserr_cb (msg);
555 root 1.69 else
556     {
557 root 1.330 #if EV_AVOID_STDIO
558 root 1.331 const char *err = strerror (errno);
559    
560     ev_printerr (msg);
561     ev_printerr (": ");
562     ev_printerr (err);
563     ev_printerr ("\n");
564 root 1.330 #else
565 root 1.70 perror (msg);
566 root 1.330 #endif
567 root 1.69 abort ();
568     }
569     }
570    
571 root 1.224 static void *
572     ev_realloc_emul (void *ptr, long size)
573     {
574 root 1.334 #if __GLIBC__
575     return realloc (ptr, size);
576     #else
577 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
578 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
579 root 1.224 * the single unix specification, so work around them here.
580     */
581 root 1.333
582 root 1.224 if (size)
583     return realloc (ptr, size);
584    
585     free (ptr);
586     return 0;
587 root 1.334 #endif
588 root 1.224 }
589    
590     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
591 root 1.69
592 root 1.141 void
593 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
594 root 1.69 {
595     alloc = cb;
596     }
597    
598 root 1.150 inline_speed void *
599 root 1.155 ev_realloc (void *ptr, long size)
600 root 1.69 {
601 root 1.224 ptr = alloc (ptr, size);
602 root 1.69
603     if (!ptr && size)
604     {
605 root 1.330 #if EV_AVOID_STDIO
606 root 1.331 ev_printerr ("libev: memory allocation failed, aborting.\n");
607 root 1.330 #else
608 root 1.155 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
609 root 1.330 #endif
610 root 1.69 abort ();
611     }
612    
613     return ptr;
614     }
615    
616     #define ev_malloc(size) ev_realloc (0, (size))
617     #define ev_free(ptr) ev_realloc ((ptr), 0)
618    
619     /*****************************************************************************/
620    
621 root 1.298 /* set in reify when reification needed */
622     #define EV_ANFD_REIFY 1
623    
624 root 1.288 /* file descriptor info structure */
625 root 1.53 typedef struct
626     {
627 root 1.68 WL head;
628 root 1.288 unsigned char events; /* the events watched for */
629 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
630 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
631 root 1.269 unsigned char unused;
632     #if EV_USE_EPOLL
633 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
634 root 1.269 #endif
635 root 1.103 #if EV_SELECT_IS_WINSOCKET
636     SOCKET handle;
637     #endif
638 root 1.53 } ANFD;
639 root 1.1
640 root 1.288 /* stores the pending event set for a given watcher */
641 root 1.53 typedef struct
642     {
643     W w;
644 root 1.288 int events; /* the pending event set for the given watcher */
645 root 1.53 } ANPENDING;
646 root 1.51
647 root 1.155 #if EV_USE_INOTIFY
648 root 1.241 /* hash table entry per inotify-id */
649 root 1.152 typedef struct
650     {
651     WL head;
652 root 1.155 } ANFS;
653 root 1.152 #endif
654    
655 root 1.241 /* Heap Entry */
656     #if EV_HEAP_CACHE_AT
657 root 1.288 /* a heap element */
658 root 1.241 typedef struct {
659 root 1.243 ev_tstamp at;
660 root 1.241 WT w;
661     } ANHE;
662    
663 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
664     #define ANHE_at(he) (he).at /* access cached at, read-only */
665     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
666 root 1.241 #else
667 root 1.288 /* a heap element */
668 root 1.241 typedef WT ANHE;
669    
670 root 1.248 #define ANHE_w(he) (he)
671     #define ANHE_at(he) (he)->at
672     #define ANHE_at_cache(he)
673 root 1.241 #endif
674    
675 root 1.55 #if EV_MULTIPLICITY
676 root 1.54
677 root 1.80 struct ev_loop
678     {
679 root 1.86 ev_tstamp ev_rt_now;
680 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
681 root 1.80 #define VAR(name,decl) decl;
682     #include "ev_vars.h"
683     #undef VAR
684     };
685     #include "ev_wrap.h"
686    
687 root 1.116 static struct ev_loop default_loop_struct;
688     struct ev_loop *ev_default_loop_ptr;
689 root 1.54
690 root 1.53 #else
691 root 1.54
692 root 1.86 ev_tstamp ev_rt_now;
693 root 1.80 #define VAR(name,decl) static decl;
694     #include "ev_vars.h"
695     #undef VAR
696    
697 root 1.116 static int ev_default_loop_ptr;
698 root 1.54
699 root 1.51 #endif
700 root 1.1
701 root 1.297 #if EV_MINIMAL < 2
702 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
703     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
704 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
705     #else
706 root 1.298 # define EV_RELEASE_CB (void)0
707     # define EV_ACQUIRE_CB (void)0
708 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
709     #endif
710    
711 root 1.298 #define EVUNLOOP_RECURSE 0x80
712    
713 root 1.8 /*****************************************************************************/
714    
715 root 1.292 #ifndef EV_HAVE_EV_TIME
716 root 1.141 ev_tstamp
717 root 1.1 ev_time (void)
718     {
719 root 1.29 #if EV_USE_REALTIME
720 root 1.279 if (expect_true (have_realtime))
721     {
722     struct timespec ts;
723     clock_gettime (CLOCK_REALTIME, &ts);
724     return ts.tv_sec + ts.tv_nsec * 1e-9;
725     }
726     #endif
727    
728 root 1.1 struct timeval tv;
729     gettimeofday (&tv, 0);
730     return tv.tv_sec + tv.tv_usec * 1e-6;
731     }
732 root 1.292 #endif
733 root 1.1
734 root 1.284 inline_size ev_tstamp
735 root 1.1 get_clock (void)
736     {
737 root 1.29 #if EV_USE_MONOTONIC
738 root 1.40 if (expect_true (have_monotonic))
739 root 1.1 {
740     struct timespec ts;
741     clock_gettime (CLOCK_MONOTONIC, &ts);
742     return ts.tv_sec + ts.tv_nsec * 1e-9;
743     }
744     #endif
745    
746     return ev_time ();
747     }
748    
749 root 1.85 #if EV_MULTIPLICITY
750 root 1.51 ev_tstamp
751     ev_now (EV_P)
752     {
753 root 1.85 return ev_rt_now;
754 root 1.51 }
755 root 1.85 #endif
756 root 1.51
757 root 1.193 void
758     ev_sleep (ev_tstamp delay)
759     {
760     if (delay > 0.)
761     {
762     #if EV_USE_NANOSLEEP
763     struct timespec ts;
764    
765     ts.tv_sec = (time_t)delay;
766     ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
767    
768     nanosleep (&ts, 0);
769     #elif defined(_WIN32)
770 root 1.217 Sleep ((unsigned long)(delay * 1e3));
771 root 1.193 #else
772     struct timeval tv;
773    
774     tv.tv_sec = (time_t)delay;
775     tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
776    
777 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
778 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
779 root 1.257 /* by older ones */
780 root 1.193 select (0, 0, 0, 0, &tv);
781     #endif
782     }
783     }
784    
785     /*****************************************************************************/
786    
787 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
788 root 1.232
789 root 1.288 /* find a suitable new size for the given array, */
790     /* hopefully by rounding to a ncie-to-malloc size */
791 root 1.284 inline_size int
792 root 1.163 array_nextsize (int elem, int cur, int cnt)
793     {
794     int ncur = cur + 1;
795    
796     do
797     ncur <<= 1;
798     while (cnt > ncur);
799    
800 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
801     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
802 root 1.163 {
803     ncur *= elem;
804 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
805 root 1.163 ncur = ncur - sizeof (void *) * 4;
806     ncur /= elem;
807     }
808    
809     return ncur;
810     }
811    
812 root 1.171 static noinline void *
813 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
814     {
815     *cur = array_nextsize (elem, *cur, cnt);
816     return ev_realloc (base, elem * *cur);
817     }
818 root 1.29
819 root 1.265 #define array_init_zero(base,count) \
820     memset ((void *)(base), 0, sizeof (*(base)) * (count))
821    
822 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
823 root 1.163 if (expect_false ((cnt) > (cur))) \
824 root 1.69 { \
825 root 1.163 int ocur_ = (cur); \
826     (base) = (type *)array_realloc \
827     (sizeof (type), (base), &(cur), (cnt)); \
828     init ((base) + (ocur_), (cur) - ocur_); \
829 root 1.1 }
830    
831 root 1.163 #if 0
832 root 1.74 #define array_slim(type,stem) \
833 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
834     { \
835     stem ## max = array_roundsize (stem ## cnt >> 1); \
836 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
837 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
838     }
839 root 1.163 #endif
840 root 1.67
841 root 1.65 #define array_free(stem, idx) \
842 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
843 root 1.65
844 root 1.8 /*****************************************************************************/
845    
846 root 1.288 /* dummy callback for pending events */
847     static void noinline
848     pendingcb (EV_P_ ev_prepare *w, int revents)
849     {
850     }
851    
852 root 1.140 void noinline
853 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
854 root 1.1 {
855 root 1.78 W w_ = (W)w;
856 root 1.171 int pri = ABSPRI (w_);
857 root 1.78
858 root 1.123 if (expect_false (w_->pending))
859 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
860     else
861 root 1.32 {
862 root 1.171 w_->pending = ++pendingcnt [pri];
863     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
864     pendings [pri][w_->pending - 1].w = w_;
865     pendings [pri][w_->pending - 1].events = revents;
866 root 1.32 }
867 root 1.1 }
868    
869 root 1.284 inline_speed void
870     feed_reverse (EV_P_ W w)
871     {
872     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
873     rfeeds [rfeedcnt++] = w;
874     }
875    
876     inline_size void
877     feed_reverse_done (EV_P_ int revents)
878     {
879     do
880     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
881     while (rfeedcnt);
882     }
883    
884     inline_speed void
885 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
886 root 1.27 {
887     int i;
888    
889     for (i = 0; i < eventcnt; ++i)
890 root 1.78 ev_feed_event (EV_A_ events [i], type);
891 root 1.27 }
892    
893 root 1.141 /*****************************************************************************/
894    
895 root 1.284 inline_speed void
896 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
897 root 1.1 {
898     ANFD *anfd = anfds + fd;
899 root 1.136 ev_io *w;
900 root 1.1
901 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
902 root 1.1 {
903 root 1.79 int ev = w->events & revents;
904 root 1.1
905     if (ev)
906 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
907 root 1.1 }
908     }
909    
910 root 1.298 /* do not submit kernel events for fds that have reify set */
911     /* because that means they changed while we were polling for new events */
912     inline_speed void
913     fd_event (EV_P_ int fd, int revents)
914     {
915     ANFD *anfd = anfds + fd;
916    
917     if (expect_true (!anfd->reify))
918 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
919 root 1.298 }
920    
921 root 1.79 void
922     ev_feed_fd_event (EV_P_ int fd, int revents)
923     {
924 root 1.168 if (fd >= 0 && fd < anfdmax)
925 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
926 root 1.79 }
927    
928 root 1.288 /* make sure the external fd watch events are in-sync */
929     /* with the kernel/libev internal state */
930 root 1.284 inline_size void
931 root 1.51 fd_reify (EV_P)
932 root 1.9 {
933     int i;
934    
935 root 1.27 for (i = 0; i < fdchangecnt; ++i)
936     {
937     int fd = fdchanges [i];
938     ANFD *anfd = anfds + fd;
939 root 1.136 ev_io *w;
940 root 1.27
941 root 1.184 unsigned char events = 0;
942 root 1.27
943 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
944 root 1.184 events |= (unsigned char)w->events;
945 root 1.27
946 root 1.103 #if EV_SELECT_IS_WINSOCKET
947     if (events)
948     {
949 root 1.254 unsigned long arg;
950 root 1.313 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
951 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
952 root 1.103 }
953     #endif
954    
955 root 1.184 {
956     unsigned char o_events = anfd->events;
957     unsigned char o_reify = anfd->reify;
958    
959     anfd->reify = 0;
960     anfd->events = events;
961 root 1.27
962 root 1.281 if (o_events != events || o_reify & EV__IOFDSET)
963 root 1.184 backend_modify (EV_A_ fd, o_events, events);
964     }
965 root 1.27 }
966    
967     fdchangecnt = 0;
968     }
969    
970 root 1.288 /* something about the given fd changed */
971 root 1.284 inline_size void
972 root 1.183 fd_change (EV_P_ int fd, int flags)
973 root 1.27 {
974 root 1.183 unsigned char reify = anfds [fd].reify;
975 root 1.184 anfds [fd].reify |= flags;
976 root 1.27
977 root 1.183 if (expect_true (!reify))
978     {
979     ++fdchangecnt;
980     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
981     fdchanges [fdchangecnt - 1] = fd;
982     }
983 root 1.9 }
984    
985 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
986 root 1.284 inline_speed void
987 root 1.51 fd_kill (EV_P_ int fd)
988 root 1.41 {
989 root 1.136 ev_io *w;
990 root 1.41
991 root 1.136 while ((w = (ev_io *)anfds [fd].head))
992 root 1.41 {
993 root 1.51 ev_io_stop (EV_A_ w);
994 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
995 root 1.41 }
996     }
997    
998 root 1.336 /* check whether the given fd is actually valid, for error recovery */
999 root 1.284 inline_size int
1000 root 1.71 fd_valid (int fd)
1001     {
1002 root 1.103 #ifdef _WIN32
1003 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1004 root 1.71 #else
1005     return fcntl (fd, F_GETFD) != -1;
1006     #endif
1007     }
1008    
1009 root 1.19 /* called on EBADF to verify fds */
1010 root 1.140 static void noinline
1011 root 1.51 fd_ebadf (EV_P)
1012 root 1.19 {
1013     int fd;
1014    
1015     for (fd = 0; fd < anfdmax; ++fd)
1016 root 1.27 if (anfds [fd].events)
1017 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1018 root 1.51 fd_kill (EV_A_ fd);
1019 root 1.41 }
1020    
1021     /* called on ENOMEM in select/poll to kill some fds and retry */
1022 root 1.140 static void noinline
1023 root 1.51 fd_enomem (EV_P)
1024 root 1.41 {
1025 root 1.62 int fd;
1026 root 1.41
1027 root 1.62 for (fd = anfdmax; fd--; )
1028 root 1.41 if (anfds [fd].events)
1029     {
1030 root 1.51 fd_kill (EV_A_ fd);
1031 root 1.307 break;
1032 root 1.41 }
1033 root 1.19 }
1034    
1035 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1036 root 1.140 static void noinline
1037 root 1.56 fd_rearm_all (EV_P)
1038     {
1039     int fd;
1040    
1041     for (fd = 0; fd < anfdmax; ++fd)
1042     if (anfds [fd].events)
1043     {
1044     anfds [fd].events = 0;
1045 root 1.268 anfds [fd].emask = 0;
1046 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1047 root 1.56 }
1048     }
1049    
1050 root 1.336 /* used to prepare libev internal fd's */
1051     /* this is not fork-safe */
1052     inline_speed void
1053     fd_intern (int fd)
1054     {
1055     #ifdef _WIN32
1056     unsigned long arg = 1;
1057     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1058     #else
1059     fcntl (fd, F_SETFD, FD_CLOEXEC);
1060     fcntl (fd, F_SETFL, O_NONBLOCK);
1061     #endif
1062     }
1063    
1064 root 1.8 /*****************************************************************************/
1065    
1066 root 1.235 /*
1067 root 1.241 * the heap functions want a real array index. array index 0 uis guaranteed to not
1068     * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1069     * the branching factor of the d-tree.
1070     */
1071    
1072     /*
1073 root 1.235 * at the moment we allow libev the luxury of two heaps,
1074     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1075     * which is more cache-efficient.
1076     * the difference is about 5% with 50000+ watchers.
1077     */
1078 root 1.241 #if EV_USE_4HEAP
1079 root 1.235
1080 root 1.237 #define DHEAP 4
1081     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1082 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1083 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1084 root 1.235
1085     /* away from the root */
1086 root 1.284 inline_speed void
1087 root 1.241 downheap (ANHE *heap, int N, int k)
1088 root 1.235 {
1089 root 1.241 ANHE he = heap [k];
1090     ANHE *E = heap + N + HEAP0;
1091 root 1.235
1092     for (;;)
1093     {
1094     ev_tstamp minat;
1095 root 1.241 ANHE *minpos;
1096 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1097 root 1.235
1098 root 1.248 /* find minimum child */
1099 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1100 root 1.235 {
1101 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1102     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1103     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1104     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1105 root 1.235 }
1106 root 1.240 else if (pos < E)
1107 root 1.235 {
1108 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1109     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1110     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1111     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1112 root 1.235 }
1113 root 1.240 else
1114     break;
1115 root 1.235
1116 root 1.241 if (ANHE_at (he) <= minat)
1117 root 1.235 break;
1118    
1119 root 1.247 heap [k] = *minpos;
1120 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1121 root 1.235
1122     k = minpos - heap;
1123     }
1124    
1125 root 1.247 heap [k] = he;
1126 root 1.241 ev_active (ANHE_w (he)) = k;
1127 root 1.235 }
1128    
1129 root 1.248 #else /* 4HEAP */
1130 root 1.235
1131     #define HEAP0 1
1132 root 1.247 #define HPARENT(k) ((k) >> 1)
1133 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1134 root 1.235
1135 root 1.248 /* away from the root */
1136 root 1.284 inline_speed void
1137 root 1.248 downheap (ANHE *heap, int N, int k)
1138 root 1.1 {
1139 root 1.241 ANHE he = heap [k];
1140 root 1.1
1141 root 1.228 for (;;)
1142 root 1.1 {
1143 root 1.248 int c = k << 1;
1144 root 1.179
1145 root 1.309 if (c >= N + HEAP0)
1146 root 1.179 break;
1147    
1148 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1149     ? 1 : 0;
1150    
1151     if (ANHE_at (he) <= ANHE_at (heap [c]))
1152     break;
1153    
1154     heap [k] = heap [c];
1155 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1156 root 1.248
1157     k = c;
1158 root 1.1 }
1159    
1160 root 1.243 heap [k] = he;
1161 root 1.248 ev_active (ANHE_w (he)) = k;
1162 root 1.1 }
1163 root 1.248 #endif
1164 root 1.1
1165 root 1.248 /* towards the root */
1166 root 1.284 inline_speed void
1167 root 1.248 upheap (ANHE *heap, int k)
1168 root 1.1 {
1169 root 1.241 ANHE he = heap [k];
1170 root 1.1
1171 root 1.179 for (;;)
1172 root 1.1 {
1173 root 1.248 int p = HPARENT (k);
1174 root 1.179
1175 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1176 root 1.179 break;
1177 root 1.1
1178 root 1.248 heap [k] = heap [p];
1179 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1180 root 1.248 k = p;
1181 root 1.1 }
1182    
1183 root 1.241 heap [k] = he;
1184     ev_active (ANHE_w (he)) = k;
1185 root 1.1 }
1186    
1187 root 1.288 /* move an element suitably so it is in a correct place */
1188 root 1.284 inline_size void
1189 root 1.241 adjustheap (ANHE *heap, int N, int k)
1190 root 1.84 {
1191 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1192 root 1.247 upheap (heap, k);
1193     else
1194     downheap (heap, N, k);
1195 root 1.84 }
1196    
1197 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1198 root 1.284 inline_size void
1199 root 1.248 reheap (ANHE *heap, int N)
1200     {
1201     int i;
1202 root 1.251
1203 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1204     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1205     for (i = 0; i < N; ++i)
1206     upheap (heap, i + HEAP0);
1207     }
1208    
1209 root 1.8 /*****************************************************************************/
1210    
1211 root 1.288 /* associate signal watchers to a signal signal */
1212 root 1.7 typedef struct
1213     {
1214 root 1.307 EV_ATOMIC_T pending;
1215 root 1.306 #if EV_MULTIPLICITY
1216     EV_P;
1217     #endif
1218 root 1.68 WL head;
1219 root 1.7 } ANSIG;
1220    
1221 root 1.306 static ANSIG signals [EV_NSIG - 1];
1222 root 1.7
1223 root 1.207 /*****************************************************************************/
1224    
1225 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1226 root 1.207
1227     static void noinline
1228     evpipe_init (EV_P)
1229     {
1230 root 1.288 if (!ev_is_active (&pipe_w))
1231 root 1.207 {
1232 root 1.336 # if EV_USE_EVENTFD
1233 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1234     if (evfd < 0 && errno == EINVAL)
1235     evfd = eventfd (0, 0);
1236    
1237     if (evfd >= 0)
1238 root 1.220 {
1239     evpipe [0] = -1;
1240 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1241 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1242 root 1.220 }
1243     else
1244 root 1.336 # endif
1245 root 1.220 {
1246     while (pipe (evpipe))
1247 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1248 root 1.207
1249 root 1.220 fd_intern (evpipe [0]);
1250     fd_intern (evpipe [1]);
1251 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1252 root 1.220 }
1253 root 1.207
1254 root 1.288 ev_io_start (EV_A_ &pipe_w);
1255 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1256 root 1.207 }
1257     }
1258    
1259 root 1.284 inline_size void
1260 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1261 root 1.207 {
1262 root 1.214 if (!*flag)
1263 root 1.207 {
1264 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1265 root 1.336 char dummy;
1266 root 1.214
1267     *flag = 1;
1268 root 1.220
1269     #if EV_USE_EVENTFD
1270     if (evfd >= 0)
1271     {
1272     uint64_t counter = 1;
1273     write (evfd, &counter, sizeof (uint64_t));
1274     }
1275     else
1276     #endif
1277 root 1.336 write (evpipe [1], &dummy, 1);
1278 root 1.214
1279 root 1.207 errno = old_errno;
1280     }
1281     }
1282    
1283 root 1.288 /* called whenever the libev signal pipe */
1284     /* got some events (signal, async) */
1285 root 1.207 static void
1286     pipecb (EV_P_ ev_io *iow, int revents)
1287     {
1288 root 1.307 int i;
1289    
1290 root 1.220 #if EV_USE_EVENTFD
1291     if (evfd >= 0)
1292     {
1293 root 1.232 uint64_t counter;
1294 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1295     }
1296     else
1297     #endif
1298     {
1299     char dummy;
1300     read (evpipe [0], &dummy, 1);
1301     }
1302 root 1.207
1303 root 1.307 if (sig_pending)
1304 root 1.207 {
1305 root 1.307 sig_pending = 0;
1306 root 1.207
1307 root 1.307 for (i = EV_NSIG - 1; i--; )
1308     if (expect_false (signals [i].pending))
1309     ev_feed_signal_event (EV_A_ i + 1);
1310 root 1.207 }
1311    
1312 root 1.209 #if EV_ASYNC_ENABLE
1313 root 1.307 if (async_pending)
1314 root 1.207 {
1315 root 1.307 async_pending = 0;
1316 root 1.207
1317     for (i = asynccnt; i--; )
1318     if (asyncs [i]->sent)
1319     {
1320     asyncs [i]->sent = 0;
1321     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1322     }
1323     }
1324 root 1.209 #endif
1325 root 1.207 }
1326    
1327     /*****************************************************************************/
1328    
1329 root 1.7 static void
1330 root 1.218 ev_sighandler (int signum)
1331 root 1.7 {
1332 root 1.207 #if EV_MULTIPLICITY
1333 root 1.306 EV_P = signals [signum - 1].loop;
1334 root 1.207 #endif
1335    
1336 root 1.322 #ifdef _WIN32
1337 root 1.218 signal (signum, ev_sighandler);
1338 root 1.67 #endif
1339    
1340 root 1.307 signals [signum - 1].pending = 1;
1341     evpipe_write (EV_A_ &sig_pending);
1342 root 1.7 }
1343    
1344 root 1.140 void noinline
1345 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1346     {
1347 root 1.80 WL w;
1348    
1349 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1350     return;
1351    
1352     --signum;
1353    
1354 root 1.79 #if EV_MULTIPLICITY
1355 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1356     /* or, likely more useful, feeding a signal nobody is waiting for */
1357 root 1.79
1358 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1359 root 1.306 return;
1360 root 1.307 #endif
1361 root 1.306
1362 root 1.307 signals [signum].pending = 0;
1363 root 1.79
1364     for (w = signals [signum].head; w; w = w->next)
1365     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1366     }
1367    
1368 root 1.303 #if EV_USE_SIGNALFD
1369     static void
1370     sigfdcb (EV_P_ ev_io *iow, int revents)
1371     {
1372 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1373 root 1.303
1374     for (;;)
1375     {
1376     ssize_t res = read (sigfd, si, sizeof (si));
1377    
1378     /* not ISO-C, as res might be -1, but works with SuS */
1379     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1380     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1381    
1382     if (res < (ssize_t)sizeof (si))
1383     break;
1384     }
1385     }
1386     #endif
1387    
1388 root 1.336 #endif
1389    
1390 root 1.8 /*****************************************************************************/
1391    
1392 root 1.336 #if EV_CHILD_ENABLE
1393 root 1.182 static WL childs [EV_PID_HASHSIZE];
1394 root 1.71
1395 root 1.136 static ev_signal childev;
1396 root 1.59
1397 root 1.206 #ifndef WIFCONTINUED
1398     # define WIFCONTINUED(status) 0
1399     #endif
1400    
1401 root 1.288 /* handle a single child status event */
1402 root 1.284 inline_speed void
1403 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1404 root 1.47 {
1405 root 1.136 ev_child *w;
1406 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1407 root 1.47
1408 root 1.149 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1409 root 1.206 {
1410     if ((w->pid == pid || !w->pid)
1411     && (!traced || (w->flags & 1)))
1412     {
1413 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1414 root 1.206 w->rpid = pid;
1415     w->rstatus = status;
1416     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1417     }
1418     }
1419 root 1.47 }
1420    
1421 root 1.142 #ifndef WCONTINUED
1422     # define WCONTINUED 0
1423     #endif
1424    
1425 root 1.288 /* called on sigchld etc., calls waitpid */
1426 root 1.47 static void
1427 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1428 root 1.22 {
1429     int pid, status;
1430    
1431 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1432     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1433     if (!WCONTINUED
1434     || errno != EINVAL
1435     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1436     return;
1437    
1438 root 1.216 /* make sure we are called again until all children have been reaped */
1439 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1440     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1441 root 1.47
1442 root 1.216 child_reap (EV_A_ pid, pid, status);
1443 root 1.149 if (EV_PID_HASHSIZE > 1)
1444 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1445 root 1.22 }
1446    
1447 root 1.45 #endif
1448    
1449 root 1.22 /*****************************************************************************/
1450    
1451 root 1.118 #if EV_USE_PORT
1452     # include "ev_port.c"
1453     #endif
1454 root 1.44 #if EV_USE_KQUEUE
1455     # include "ev_kqueue.c"
1456     #endif
1457 root 1.29 #if EV_USE_EPOLL
1458 root 1.1 # include "ev_epoll.c"
1459     #endif
1460 root 1.59 #if EV_USE_POLL
1461 root 1.41 # include "ev_poll.c"
1462     #endif
1463 root 1.29 #if EV_USE_SELECT
1464 root 1.1 # include "ev_select.c"
1465     #endif
1466    
1467 root 1.24 int
1468     ev_version_major (void)
1469     {
1470     return EV_VERSION_MAJOR;
1471     }
1472    
1473     int
1474     ev_version_minor (void)
1475     {
1476     return EV_VERSION_MINOR;
1477     }
1478    
1479 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1480 root 1.140 int inline_size
1481 root 1.51 enable_secure (void)
1482 root 1.41 {
1483 root 1.103 #ifdef _WIN32
1484 root 1.49 return 0;
1485     #else
1486 root 1.41 return getuid () != geteuid ()
1487     || getgid () != getegid ();
1488 root 1.49 #endif
1489 root 1.41 }
1490    
1491 root 1.111 unsigned int
1492 root 1.129 ev_supported_backends (void)
1493     {
1494 root 1.130 unsigned int flags = 0;
1495 root 1.129
1496     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1497     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1498     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1499     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1500     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1501    
1502     return flags;
1503     }
1504    
1505     unsigned int
1506 root 1.130 ev_recommended_backends (void)
1507 root 1.1 {
1508 root 1.131 unsigned int flags = ev_supported_backends ();
1509 root 1.129
1510     #ifndef __NetBSD__
1511     /* kqueue is borked on everything but netbsd apparently */
1512     /* it usually doesn't work correctly on anything but sockets and pipes */
1513     flags &= ~EVBACKEND_KQUEUE;
1514     #endif
1515     #ifdef __APPLE__
1516 root 1.278 /* only select works correctly on that "unix-certified" platform */
1517     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1518     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1519 root 1.129 #endif
1520    
1521     return flags;
1522 root 1.51 }
1523    
1524 root 1.130 unsigned int
1525 root 1.134 ev_embeddable_backends (void)
1526     {
1527 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1528    
1529 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1530 root 1.196 /* please fix it and tell me how to detect the fix */
1531     flags &= ~EVBACKEND_EPOLL;
1532    
1533     return flags;
1534 root 1.134 }
1535    
1536     unsigned int
1537 root 1.130 ev_backend (EV_P)
1538     {
1539     return backend;
1540     }
1541    
1542 root 1.297 #if EV_MINIMAL < 2
1543 root 1.162 unsigned int
1544     ev_loop_count (EV_P)
1545     {
1546     return loop_count;
1547     }
1548    
1549 root 1.294 unsigned int
1550     ev_loop_depth (EV_P)
1551     {
1552     return loop_depth;
1553     }
1554    
1555 root 1.193 void
1556     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1557     {
1558     io_blocktime = interval;
1559     }
1560    
1561     void
1562     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1563     {
1564     timeout_blocktime = interval;
1565     }
1566    
1567 root 1.297 void
1568     ev_set_userdata (EV_P_ void *data)
1569     {
1570     userdata = data;
1571     }
1572    
1573     void *
1574     ev_userdata (EV_P)
1575     {
1576     return userdata;
1577     }
1578    
1579     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1580     {
1581     invoke_cb = invoke_pending_cb;
1582     }
1583    
1584 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1585 root 1.297 {
1586 root 1.298 release_cb = release;
1587     acquire_cb = acquire;
1588 root 1.297 }
1589     #endif
1590    
1591 root 1.288 /* initialise a loop structure, must be zero-initialised */
1592 root 1.151 static void noinline
1593 root 1.108 loop_init (EV_P_ unsigned int flags)
1594 root 1.51 {
1595 root 1.130 if (!backend)
1596 root 1.23 {
1597 root 1.279 #if EV_USE_REALTIME
1598     if (!have_realtime)
1599     {
1600     struct timespec ts;
1601    
1602     if (!clock_gettime (CLOCK_REALTIME, &ts))
1603     have_realtime = 1;
1604     }
1605     #endif
1606    
1607 root 1.29 #if EV_USE_MONOTONIC
1608 root 1.279 if (!have_monotonic)
1609     {
1610     struct timespec ts;
1611    
1612     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1613     have_monotonic = 1;
1614     }
1615 root 1.1 #endif
1616    
1617 root 1.306 /* pid check not overridable via env */
1618     #ifndef _WIN32
1619     if (flags & EVFLAG_FORKCHECK)
1620     curpid = getpid ();
1621     #endif
1622    
1623     if (!(flags & EVFLAG_NOENV)
1624     && !enable_secure ()
1625     && getenv ("LIBEV_FLAGS"))
1626     flags = atoi (getenv ("LIBEV_FLAGS"));
1627    
1628 root 1.209 ev_rt_now = ev_time ();
1629     mn_now = get_clock ();
1630     now_floor = mn_now;
1631     rtmn_diff = ev_rt_now - mn_now;
1632 root 1.297 #if EV_MINIMAL < 2
1633 root 1.296 invoke_cb = ev_invoke_pending;
1634 root 1.297 #endif
1635 root 1.1
1636 root 1.193 io_blocktime = 0.;
1637     timeout_blocktime = 0.;
1638 root 1.209 backend = 0;
1639     backend_fd = -1;
1640 root 1.307 sig_pending = 0;
1641     #if EV_ASYNC_ENABLE
1642     async_pending = 0;
1643     #endif
1644 root 1.209 #if EV_USE_INOTIFY
1645 root 1.306 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1646 root 1.209 #endif
1647 root 1.303 #if EV_USE_SIGNALFD
1648 root 1.321 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1649 root 1.303 #endif
1650 root 1.193
1651 root 1.225 if (!(flags & 0x0000ffffU))
1652 root 1.129 flags |= ev_recommended_backends ();
1653 root 1.41
1654 root 1.118 #if EV_USE_PORT
1655 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1656 root 1.118 #endif
1657 root 1.44 #if EV_USE_KQUEUE
1658 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1659 root 1.44 #endif
1660 root 1.29 #if EV_USE_EPOLL
1661 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1662 root 1.41 #endif
1663 root 1.59 #if EV_USE_POLL
1664 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1665 root 1.1 #endif
1666 root 1.29 #if EV_USE_SELECT
1667 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1668 root 1.1 #endif
1669 root 1.70
1670 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1671    
1672 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1673 root 1.288 ev_init (&pipe_w, pipecb);
1674     ev_set_priority (&pipe_w, EV_MAXPRI);
1675 root 1.336 #endif
1676 root 1.56 }
1677     }
1678    
1679 root 1.288 /* free up a loop structure */
1680 root 1.151 static void noinline
1681 root 1.56 loop_destroy (EV_P)
1682     {
1683 root 1.65 int i;
1684    
1685 root 1.288 if (ev_is_active (&pipe_w))
1686 root 1.207 {
1687 root 1.303 /*ev_ref (EV_A);*/
1688     /*ev_io_stop (EV_A_ &pipe_w);*/
1689 root 1.207
1690 root 1.220 #if EV_USE_EVENTFD
1691     if (evfd >= 0)
1692     close (evfd);
1693     #endif
1694    
1695     if (evpipe [0] >= 0)
1696     {
1697 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1698     EV_WIN32_CLOSE_FD (evpipe [1]);
1699 root 1.220 }
1700 root 1.207 }
1701    
1702 root 1.303 #if EV_USE_SIGNALFD
1703     if (ev_is_active (&sigfd_w))
1704 root 1.317 close (sigfd);
1705 root 1.303 #endif
1706    
1707 root 1.152 #if EV_USE_INOTIFY
1708     if (fs_fd >= 0)
1709     close (fs_fd);
1710     #endif
1711    
1712     if (backend_fd >= 0)
1713     close (backend_fd);
1714    
1715 root 1.118 #if EV_USE_PORT
1716 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1717 root 1.118 #endif
1718 root 1.56 #if EV_USE_KQUEUE
1719 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1720 root 1.56 #endif
1721     #if EV_USE_EPOLL
1722 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1723 root 1.56 #endif
1724 root 1.59 #if EV_USE_POLL
1725 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1726 root 1.56 #endif
1727     #if EV_USE_SELECT
1728 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1729 root 1.56 #endif
1730 root 1.1
1731 root 1.65 for (i = NUMPRI; i--; )
1732 root 1.164 {
1733     array_free (pending, [i]);
1734     #if EV_IDLE_ENABLE
1735     array_free (idle, [i]);
1736     #endif
1737     }
1738 root 1.65
1739 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
1740 root 1.186
1741 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1742 root 1.284 array_free (rfeed, EMPTY);
1743 root 1.164 array_free (fdchange, EMPTY);
1744     array_free (timer, EMPTY);
1745 root 1.140 #if EV_PERIODIC_ENABLE
1746 root 1.164 array_free (periodic, EMPTY);
1747 root 1.93 #endif
1748 root 1.187 #if EV_FORK_ENABLE
1749     array_free (fork, EMPTY);
1750     #endif
1751 root 1.164 array_free (prepare, EMPTY);
1752     array_free (check, EMPTY);
1753 root 1.209 #if EV_ASYNC_ENABLE
1754     array_free (async, EMPTY);
1755     #endif
1756 root 1.65
1757 root 1.130 backend = 0;
1758 root 1.56 }
1759 root 1.22
1760 root 1.226 #if EV_USE_INOTIFY
1761 root 1.284 inline_size void infy_fork (EV_P);
1762 root 1.226 #endif
1763 root 1.154
1764 root 1.284 inline_size void
1765 root 1.56 loop_fork (EV_P)
1766     {
1767 root 1.118 #if EV_USE_PORT
1768 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1769 root 1.56 #endif
1770     #if EV_USE_KQUEUE
1771 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1772 root 1.45 #endif
1773 root 1.118 #if EV_USE_EPOLL
1774 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1775 root 1.118 #endif
1776 root 1.154 #if EV_USE_INOTIFY
1777     infy_fork (EV_A);
1778     #endif
1779 root 1.70
1780 root 1.288 if (ev_is_active (&pipe_w))
1781 root 1.70 {
1782 root 1.207 /* this "locks" the handlers against writing to the pipe */
1783 root 1.212 /* while we modify the fd vars */
1784 root 1.307 sig_pending = 1;
1785 root 1.212 #if EV_ASYNC_ENABLE
1786 root 1.307 async_pending = 1;
1787 root 1.212 #endif
1788 root 1.70
1789     ev_ref (EV_A);
1790 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1791 root 1.220
1792     #if EV_USE_EVENTFD
1793     if (evfd >= 0)
1794     close (evfd);
1795     #endif
1796    
1797     if (evpipe [0] >= 0)
1798     {
1799 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1800     EV_WIN32_CLOSE_FD (evpipe [1]);
1801 root 1.220 }
1802 root 1.207
1803 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1804 root 1.207 evpipe_init (EV_A);
1805 root 1.208 /* now iterate over everything, in case we missed something */
1806 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1807 root 1.337 #endif
1808 root 1.70 }
1809    
1810     postfork = 0;
1811 root 1.1 }
1812    
1813 root 1.55 #if EV_MULTIPLICITY
1814 root 1.250
1815 root 1.54 struct ev_loop *
1816 root 1.108 ev_loop_new (unsigned int flags)
1817 root 1.54 {
1818 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1819 root 1.69
1820 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
1821 root 1.108 loop_init (EV_A_ flags);
1822 root 1.56
1823 root 1.130 if (ev_backend (EV_A))
1824 root 1.306 return EV_A;
1825 root 1.54
1826 root 1.55 return 0;
1827 root 1.54 }
1828    
1829     void
1830 root 1.56 ev_loop_destroy (EV_P)
1831 root 1.54 {
1832 root 1.56 loop_destroy (EV_A);
1833 root 1.69 ev_free (loop);
1834 root 1.54 }
1835    
1836 root 1.56 void
1837     ev_loop_fork (EV_P)
1838     {
1839 root 1.205 postfork = 1; /* must be in line with ev_default_fork */
1840 root 1.56 }
1841 root 1.297 #endif /* multiplicity */
1842 root 1.248
1843     #if EV_VERIFY
1844 root 1.258 static void noinline
1845 root 1.251 verify_watcher (EV_P_ W w)
1846     {
1847 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1848 root 1.251
1849     if (w->pending)
1850 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1851 root 1.251 }
1852    
1853     static void noinline
1854     verify_heap (EV_P_ ANHE *heap, int N)
1855     {
1856     int i;
1857    
1858     for (i = HEAP0; i < N + HEAP0; ++i)
1859     {
1860 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1861     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1862     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1863 root 1.251
1864     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1865     }
1866     }
1867    
1868     static void noinline
1869     array_verify (EV_P_ W *ws, int cnt)
1870 root 1.248 {
1871     while (cnt--)
1872 root 1.251 {
1873 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1874 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1875     }
1876 root 1.248 }
1877 root 1.250 #endif
1878 root 1.248
1879 root 1.297 #if EV_MINIMAL < 2
1880 root 1.250 void
1881 root 1.248 ev_loop_verify (EV_P)
1882     {
1883 root 1.250 #if EV_VERIFY
1884 root 1.248 int i;
1885 root 1.251 WL w;
1886    
1887     assert (activecnt >= -1);
1888    
1889     assert (fdchangemax >= fdchangecnt);
1890     for (i = 0; i < fdchangecnt; ++i)
1891 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1892 root 1.251
1893     assert (anfdmax >= 0);
1894     for (i = 0; i < anfdmax; ++i)
1895     for (w = anfds [i].head; w; w = w->next)
1896     {
1897     verify_watcher (EV_A_ (W)w);
1898 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1899     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1900 root 1.251 }
1901    
1902     assert (timermax >= timercnt);
1903     verify_heap (EV_A_ timers, timercnt);
1904 root 1.248
1905     #if EV_PERIODIC_ENABLE
1906 root 1.251 assert (periodicmax >= periodiccnt);
1907     verify_heap (EV_A_ periodics, periodiccnt);
1908 root 1.248 #endif
1909    
1910 root 1.251 for (i = NUMPRI; i--; )
1911     {
1912     assert (pendingmax [i] >= pendingcnt [i]);
1913 root 1.248 #if EV_IDLE_ENABLE
1914 root 1.252 assert (idleall >= 0);
1915 root 1.251 assert (idlemax [i] >= idlecnt [i]);
1916     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1917 root 1.248 #endif
1918 root 1.251 }
1919    
1920 root 1.248 #if EV_FORK_ENABLE
1921 root 1.251 assert (forkmax >= forkcnt);
1922     array_verify (EV_A_ (W *)forks, forkcnt);
1923 root 1.248 #endif
1924 root 1.251
1925 root 1.250 #if EV_ASYNC_ENABLE
1926 root 1.251 assert (asyncmax >= asynccnt);
1927     array_verify (EV_A_ (W *)asyncs, asynccnt);
1928 root 1.250 #endif
1929 root 1.251
1930 root 1.337 #if EV_PREPARE_ENABLE
1931 root 1.251 assert (preparemax >= preparecnt);
1932     array_verify (EV_A_ (W *)prepares, preparecnt);
1933 root 1.337 #endif
1934 root 1.251
1935 root 1.337 #if EV_CHECK_ENABLE
1936 root 1.251 assert (checkmax >= checkcnt);
1937     array_verify (EV_A_ (W *)checks, checkcnt);
1938 root 1.337 #endif
1939 root 1.251
1940     # if 0
1941 root 1.336 #if EV_CHILD_ENABLE
1942 root 1.251 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1943 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1944 root 1.336 #endif
1945 root 1.251 # endif
1946 root 1.248 #endif
1947     }
1948 root 1.297 #endif
1949 root 1.56
1950     #if EV_MULTIPLICITY
1951     struct ev_loop *
1952 root 1.125 ev_default_loop_init (unsigned int flags)
1953 root 1.54 #else
1954     int
1955 root 1.116 ev_default_loop (unsigned int flags)
1956 root 1.56 #endif
1957 root 1.54 {
1958 root 1.116 if (!ev_default_loop_ptr)
1959 root 1.56 {
1960     #if EV_MULTIPLICITY
1961 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
1962 root 1.56 #else
1963 ayin 1.117 ev_default_loop_ptr = 1;
1964 root 1.54 #endif
1965    
1966 root 1.110 loop_init (EV_A_ flags);
1967 root 1.56
1968 root 1.130 if (ev_backend (EV_A))
1969 root 1.56 {
1970 root 1.336 #if EV_CHILD_ENABLE
1971 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
1972     ev_set_priority (&childev, EV_MAXPRI);
1973     ev_signal_start (EV_A_ &childev);
1974     ev_unref (EV_A); /* child watcher should not keep loop alive */
1975     #endif
1976     }
1977     else
1978 root 1.116 ev_default_loop_ptr = 0;
1979 root 1.56 }
1980 root 1.8
1981 root 1.116 return ev_default_loop_ptr;
1982 root 1.1 }
1983    
1984 root 1.24 void
1985 root 1.56 ev_default_destroy (void)
1986 root 1.1 {
1987 root 1.57 #if EV_MULTIPLICITY
1988 root 1.306 EV_P = ev_default_loop_ptr;
1989 root 1.57 #endif
1990 root 1.56
1991 root 1.266 ev_default_loop_ptr = 0;
1992    
1993 root 1.336 #if EV_CHILD_ENABLE
1994 root 1.56 ev_ref (EV_A); /* child watcher */
1995     ev_signal_stop (EV_A_ &childev);
1996 root 1.71 #endif
1997 root 1.56
1998     loop_destroy (EV_A);
1999 root 1.1 }
2000    
2001 root 1.24 void
2002 root 1.60 ev_default_fork (void)
2003 root 1.1 {
2004 root 1.60 #if EV_MULTIPLICITY
2005 root 1.306 EV_P = ev_default_loop_ptr;
2006 root 1.60 #endif
2007    
2008 root 1.270 postfork = 1; /* must be in line with ev_loop_fork */
2009 root 1.1 }
2010    
2011 root 1.8 /*****************************************************************************/
2012    
2013 root 1.168 void
2014     ev_invoke (EV_P_ void *w, int revents)
2015     {
2016     EV_CB_INVOKE ((W)w, revents);
2017     }
2018    
2019 root 1.300 unsigned int
2020     ev_pending_count (EV_P)
2021     {
2022     int pri;
2023     unsigned int count = 0;
2024    
2025     for (pri = NUMPRI; pri--; )
2026     count += pendingcnt [pri];
2027    
2028     return count;
2029     }
2030    
2031 root 1.297 void noinline
2032 root 1.296 ev_invoke_pending (EV_P)
2033 root 1.1 {
2034 root 1.42 int pri;
2035    
2036     for (pri = NUMPRI; pri--; )
2037     while (pendingcnt [pri])
2038     {
2039     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2040 root 1.1
2041 root 1.288 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2042     /* ^ this is no longer true, as pending_w could be here */
2043 root 1.139
2044 root 1.288 p->w->pending = 0;
2045     EV_CB_INVOKE (p->w, p->events);
2046     EV_FREQUENT_CHECK;
2047 root 1.42 }
2048 root 1.1 }
2049    
2050 root 1.234 #if EV_IDLE_ENABLE
2051 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2052     /* only when higher priorities are idle" logic */
2053 root 1.284 inline_size void
2054 root 1.234 idle_reify (EV_P)
2055     {
2056     if (expect_false (idleall))
2057     {
2058     int pri;
2059    
2060     for (pri = NUMPRI; pri--; )
2061     {
2062     if (pendingcnt [pri])
2063     break;
2064    
2065     if (idlecnt [pri])
2066     {
2067     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2068     break;
2069     }
2070     }
2071     }
2072     }
2073     #endif
2074    
2075 root 1.288 /* make timers pending */
2076 root 1.284 inline_size void
2077 root 1.51 timers_reify (EV_P)
2078 root 1.1 {
2079 root 1.248 EV_FREQUENT_CHECK;
2080    
2081 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2082 root 1.1 {
2083 root 1.284 do
2084     {
2085     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2086 root 1.1
2087 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2088    
2089     /* first reschedule or stop timer */
2090     if (w->repeat)
2091     {
2092     ev_at (w) += w->repeat;
2093     if (ev_at (w) < mn_now)
2094     ev_at (w) = mn_now;
2095 root 1.61
2096 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2097 root 1.90
2098 root 1.284 ANHE_at_cache (timers [HEAP0]);
2099     downheap (timers, timercnt, HEAP0);
2100     }
2101     else
2102     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2103 root 1.243
2104 root 1.284 EV_FREQUENT_CHECK;
2105     feed_reverse (EV_A_ (W)w);
2106 root 1.12 }
2107 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2108 root 1.30
2109 root 1.284 feed_reverse_done (EV_A_ EV_TIMEOUT);
2110 root 1.12 }
2111     }
2112 root 1.4
2113 root 1.140 #if EV_PERIODIC_ENABLE
2114 root 1.288 /* make periodics pending */
2115 root 1.284 inline_size void
2116 root 1.51 periodics_reify (EV_P)
2117 root 1.12 {
2118 root 1.248 EV_FREQUENT_CHECK;
2119 root 1.250
2120 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2121 root 1.12 {
2122 root 1.284 int feed_count = 0;
2123    
2124     do
2125     {
2126     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2127 root 1.1
2128 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2129 root 1.61
2130 root 1.284 /* first reschedule or stop timer */
2131     if (w->reschedule_cb)
2132     {
2133     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2134 root 1.243
2135 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2136 root 1.243
2137 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2138     downheap (periodics, periodiccnt, HEAP0);
2139     }
2140     else if (w->interval)
2141 root 1.246 {
2142 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2143     /* if next trigger time is not sufficiently in the future, put it there */
2144     /* this might happen because of floating point inexactness */
2145     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2146     {
2147     ev_at (w) += w->interval;
2148    
2149     /* if interval is unreasonably low we might still have a time in the past */
2150     /* so correct this. this will make the periodic very inexact, but the user */
2151     /* has effectively asked to get triggered more often than possible */
2152     if (ev_at (w) < ev_rt_now)
2153     ev_at (w) = ev_rt_now;
2154     }
2155 root 1.243
2156 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2157     downheap (periodics, periodiccnt, HEAP0);
2158 root 1.246 }
2159 root 1.284 else
2160     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2161 root 1.243
2162 root 1.284 EV_FREQUENT_CHECK;
2163     feed_reverse (EV_A_ (W)w);
2164 root 1.1 }
2165 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2166 root 1.12
2167 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2168 root 1.12 }
2169     }
2170    
2171 root 1.288 /* simply recalculate all periodics */
2172     /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2173 root 1.140 static void noinline
2174 root 1.54 periodics_reschedule (EV_P)
2175 root 1.12 {
2176     int i;
2177    
2178 root 1.13 /* adjust periodics after time jump */
2179 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2180 root 1.12 {
2181 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2182 root 1.12
2183 root 1.77 if (w->reschedule_cb)
2184 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2185 root 1.77 else if (w->interval)
2186 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2187 root 1.242
2188 root 1.248 ANHE_at_cache (periodics [i]);
2189 root 1.77 }
2190 root 1.12
2191 root 1.248 reheap (periodics, periodiccnt);
2192 root 1.1 }
2193 root 1.93 #endif
2194 root 1.1
2195 root 1.288 /* adjust all timers by a given offset */
2196 root 1.285 static void noinline
2197     timers_reschedule (EV_P_ ev_tstamp adjust)
2198     {
2199     int i;
2200    
2201     for (i = 0; i < timercnt; ++i)
2202     {
2203     ANHE *he = timers + i + HEAP0;
2204     ANHE_w (*he)->at += adjust;
2205     ANHE_at_cache (*he);
2206     }
2207     }
2208    
2209 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2210 root 1.324 /* also detect if there was a timejump, and act accordingly */
2211 root 1.284 inline_speed void
2212 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2213 root 1.4 {
2214 root 1.40 #if EV_USE_MONOTONIC
2215     if (expect_true (have_monotonic))
2216     {
2217 root 1.289 int i;
2218 root 1.178 ev_tstamp odiff = rtmn_diff;
2219    
2220     mn_now = get_clock ();
2221    
2222     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2223     /* interpolate in the meantime */
2224     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2225 root 1.40 {
2226 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2227     return;
2228     }
2229    
2230     now_floor = mn_now;
2231     ev_rt_now = ev_time ();
2232 root 1.4
2233 root 1.178 /* loop a few times, before making important decisions.
2234     * on the choice of "4": one iteration isn't enough,
2235     * in case we get preempted during the calls to
2236     * ev_time and get_clock. a second call is almost guaranteed
2237     * to succeed in that case, though. and looping a few more times
2238     * doesn't hurt either as we only do this on time-jumps or
2239     * in the unlikely event of having been preempted here.
2240     */
2241     for (i = 4; --i; )
2242     {
2243     rtmn_diff = ev_rt_now - mn_now;
2244 root 1.4
2245 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2246 root 1.178 return; /* all is well */
2247 root 1.4
2248 root 1.178 ev_rt_now = ev_time ();
2249     mn_now = get_clock ();
2250     now_floor = mn_now;
2251     }
2252 root 1.4
2253 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2254     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2255 root 1.140 # if EV_PERIODIC_ENABLE
2256 root 1.178 periodics_reschedule (EV_A);
2257 root 1.93 # endif
2258 root 1.4 }
2259     else
2260 root 1.40 #endif
2261 root 1.4 {
2262 root 1.85 ev_rt_now = ev_time ();
2263 root 1.40
2264 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2265 root 1.13 {
2266 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2267     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2268 root 1.140 #if EV_PERIODIC_ENABLE
2269 root 1.54 periodics_reschedule (EV_A);
2270 root 1.93 #endif
2271 root 1.13 }
2272 root 1.4
2273 root 1.85 mn_now = ev_rt_now;
2274 root 1.4 }
2275     }
2276    
2277 root 1.51 void
2278     ev_loop (EV_P_ int flags)
2279 root 1.1 {
2280 root 1.297 #if EV_MINIMAL < 2
2281 root 1.294 ++loop_depth;
2282 root 1.297 #endif
2283 root 1.294
2284 root 1.298 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2285    
2286 root 1.219 loop_done = EVUNLOOP_CANCEL;
2287 root 1.1
2288 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2289 root 1.158
2290 root 1.161 do
2291 root 1.9 {
2292 root 1.250 #if EV_VERIFY >= 2
2293     ev_loop_verify (EV_A);
2294     #endif
2295    
2296 root 1.158 #ifndef _WIN32
2297     if (expect_false (curpid)) /* penalise the forking check even more */
2298     if (expect_false (getpid () != curpid))
2299     {
2300     curpid = getpid ();
2301     postfork = 1;
2302     }
2303     #endif
2304    
2305 root 1.157 #if EV_FORK_ENABLE
2306     /* we might have forked, so queue fork handlers */
2307     if (expect_false (postfork))
2308     if (forkcnt)
2309     {
2310     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2311 root 1.297 EV_INVOKE_PENDING;
2312 root 1.157 }
2313     #endif
2314 root 1.147
2315 root 1.337 #if EV_PREPARE_ENABLE
2316 root 1.170 /* queue prepare watchers (and execute them) */
2317 root 1.40 if (expect_false (preparecnt))
2318 root 1.20 {
2319 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2320 root 1.297 EV_INVOKE_PENDING;
2321 root 1.20 }
2322 root 1.337 #endif
2323 root 1.9
2324 root 1.298 if (expect_false (loop_done))
2325     break;
2326    
2327 root 1.70 /* we might have forked, so reify kernel state if necessary */
2328     if (expect_false (postfork))
2329     loop_fork (EV_A);
2330    
2331 root 1.1 /* update fd-related kernel structures */
2332 root 1.51 fd_reify (EV_A);
2333 root 1.1
2334     /* calculate blocking time */
2335 root 1.135 {
2336 root 1.193 ev_tstamp waittime = 0.;
2337     ev_tstamp sleeptime = 0.;
2338 root 1.12
2339 root 1.193 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2340 root 1.135 {
2341 root 1.293 /* remember old timestamp for io_blocktime calculation */
2342     ev_tstamp prev_mn_now = mn_now;
2343    
2344 root 1.135 /* update time to cancel out callback processing overhead */
2345 root 1.178 time_update (EV_A_ 1e100);
2346 root 1.135
2347 root 1.287 waittime = MAX_BLOCKTIME;
2348    
2349 root 1.135 if (timercnt)
2350     {
2351 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2352 root 1.193 if (waittime > to) waittime = to;
2353 root 1.135 }
2354 root 1.4
2355 root 1.140 #if EV_PERIODIC_ENABLE
2356 root 1.135 if (periodiccnt)
2357     {
2358 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2359 root 1.193 if (waittime > to) waittime = to;
2360 root 1.135 }
2361 root 1.93 #endif
2362 root 1.4
2363 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2364 root 1.193 if (expect_false (waittime < timeout_blocktime))
2365     waittime = timeout_blocktime;
2366    
2367 root 1.293 /* extra check because io_blocktime is commonly 0 */
2368     if (expect_false (io_blocktime))
2369     {
2370     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2371 root 1.193
2372 root 1.293 if (sleeptime > waittime - backend_fudge)
2373     sleeptime = waittime - backend_fudge;
2374 root 1.193
2375 root 1.293 if (expect_true (sleeptime > 0.))
2376     {
2377     ev_sleep (sleeptime);
2378     waittime -= sleeptime;
2379     }
2380 root 1.193 }
2381 root 1.135 }
2382 root 1.1
2383 root 1.297 #if EV_MINIMAL < 2
2384 root 1.162 ++loop_count;
2385 root 1.297 #endif
2386 root 1.298 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2387 root 1.193 backend_poll (EV_A_ waittime);
2388 root 1.298 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2389 root 1.178
2390     /* update ev_rt_now, do magic */
2391 root 1.193 time_update (EV_A_ waittime + sleeptime);
2392 root 1.135 }
2393 root 1.1
2394 root 1.9 /* queue pending timers and reschedule them */
2395 root 1.51 timers_reify (EV_A); /* relative timers called last */
2396 root 1.140 #if EV_PERIODIC_ENABLE
2397 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2398 root 1.93 #endif
2399 root 1.1
2400 root 1.164 #if EV_IDLE_ENABLE
2401 root 1.137 /* queue idle watchers unless other events are pending */
2402 root 1.164 idle_reify (EV_A);
2403     #endif
2404 root 1.9
2405 root 1.337 #if EV_CHECK_ENABLE
2406 root 1.20 /* queue check watchers, to be executed first */
2407 root 1.123 if (expect_false (checkcnt))
2408 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2409 root 1.337 #endif
2410 root 1.9
2411 root 1.297 EV_INVOKE_PENDING;
2412 root 1.1 }
2413 root 1.219 while (expect_true (
2414     activecnt
2415     && !loop_done
2416     && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2417     ));
2418 root 1.13
2419 root 1.135 if (loop_done == EVUNLOOP_ONE)
2420     loop_done = EVUNLOOP_CANCEL;
2421 root 1.294
2422 root 1.297 #if EV_MINIMAL < 2
2423 root 1.294 --loop_depth;
2424 root 1.297 #endif
2425 root 1.51 }
2426    
2427     void
2428     ev_unloop (EV_P_ int how)
2429     {
2430     loop_done = how;
2431 root 1.1 }
2432    
2433 root 1.285 void
2434     ev_ref (EV_P)
2435     {
2436     ++activecnt;
2437     }
2438    
2439     void
2440     ev_unref (EV_P)
2441     {
2442     --activecnt;
2443     }
2444    
2445     void
2446     ev_now_update (EV_P)
2447     {
2448     time_update (EV_A_ 1e100);
2449     }
2450    
2451     void
2452     ev_suspend (EV_P)
2453     {
2454     ev_now_update (EV_A);
2455     }
2456    
2457     void
2458     ev_resume (EV_P)
2459     {
2460     ev_tstamp mn_prev = mn_now;
2461    
2462     ev_now_update (EV_A);
2463     timers_reschedule (EV_A_ mn_now - mn_prev);
2464 root 1.286 #if EV_PERIODIC_ENABLE
2465 root 1.288 /* TODO: really do this? */
2466 root 1.285 periodics_reschedule (EV_A);
2467 root 1.286 #endif
2468 root 1.285 }
2469    
2470 root 1.8 /*****************************************************************************/
2471 root 1.288 /* singly-linked list management, used when the expected list length is short */
2472 root 1.8
2473 root 1.284 inline_size void
2474 root 1.10 wlist_add (WL *head, WL elem)
2475 root 1.1 {
2476     elem->next = *head;
2477     *head = elem;
2478     }
2479    
2480 root 1.284 inline_size void
2481 root 1.10 wlist_del (WL *head, WL elem)
2482 root 1.1 {
2483     while (*head)
2484     {
2485 root 1.307 if (expect_true (*head == elem))
2486 root 1.1 {
2487     *head = elem->next;
2488 root 1.307 break;
2489 root 1.1 }
2490    
2491     head = &(*head)->next;
2492     }
2493     }
2494    
2495 root 1.288 /* internal, faster, version of ev_clear_pending */
2496 root 1.284 inline_speed void
2497 root 1.166 clear_pending (EV_P_ W w)
2498 root 1.16 {
2499     if (w->pending)
2500     {
2501 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2502 root 1.16 w->pending = 0;
2503     }
2504     }
2505    
2506 root 1.167 int
2507     ev_clear_pending (EV_P_ void *w)
2508 root 1.166 {
2509     W w_ = (W)w;
2510     int pending = w_->pending;
2511    
2512 root 1.172 if (expect_true (pending))
2513     {
2514     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2515 root 1.288 p->w = (W)&pending_w;
2516 root 1.172 w_->pending = 0;
2517     return p->events;
2518     }
2519     else
2520 root 1.167 return 0;
2521 root 1.166 }
2522    
2523 root 1.284 inline_size void
2524 root 1.164 pri_adjust (EV_P_ W w)
2525     {
2526 root 1.295 int pri = ev_priority (w);
2527 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2528     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2529 root 1.295 ev_set_priority (w, pri);
2530 root 1.164 }
2531    
2532 root 1.284 inline_speed void
2533 root 1.51 ev_start (EV_P_ W w, int active)
2534 root 1.1 {
2535 root 1.164 pri_adjust (EV_A_ w);
2536 root 1.1 w->active = active;
2537 root 1.51 ev_ref (EV_A);
2538 root 1.1 }
2539    
2540 root 1.284 inline_size void
2541 root 1.51 ev_stop (EV_P_ W w)
2542 root 1.1 {
2543 root 1.51 ev_unref (EV_A);
2544 root 1.1 w->active = 0;
2545     }
2546    
2547 root 1.8 /*****************************************************************************/
2548    
2549 root 1.171 void noinline
2550 root 1.136 ev_io_start (EV_P_ ev_io *w)
2551 root 1.1 {
2552 root 1.37 int fd = w->fd;
2553    
2554 root 1.123 if (expect_false (ev_is_active (w)))
2555 root 1.1 return;
2556    
2557 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2558 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2559 root 1.33
2560 root 1.248 EV_FREQUENT_CHECK;
2561    
2562 root 1.51 ev_start (EV_A_ (W)w, 1);
2563 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2564 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2565 root 1.1
2566 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2567 root 1.281 w->events &= ~EV__IOFDSET;
2568 root 1.248
2569     EV_FREQUENT_CHECK;
2570 root 1.1 }
2571    
2572 root 1.171 void noinline
2573 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2574 root 1.1 {
2575 root 1.166 clear_pending (EV_A_ (W)w);
2576 root 1.123 if (expect_false (!ev_is_active (w)))
2577 root 1.1 return;
2578    
2579 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2580 root 1.89
2581 root 1.248 EV_FREQUENT_CHECK;
2582    
2583 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2584 root 1.51 ev_stop (EV_A_ (W)w);
2585 root 1.1
2586 root 1.184 fd_change (EV_A_ w->fd, 1);
2587 root 1.248
2588     EV_FREQUENT_CHECK;
2589 root 1.1 }
2590    
2591 root 1.171 void noinline
2592 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2593 root 1.1 {
2594 root 1.123 if (expect_false (ev_is_active (w)))
2595 root 1.1 return;
2596    
2597 root 1.228 ev_at (w) += mn_now;
2598 root 1.12
2599 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2600 root 1.13
2601 root 1.248 EV_FREQUENT_CHECK;
2602    
2603     ++timercnt;
2604     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2605 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2606     ANHE_w (timers [ev_active (w)]) = (WT)w;
2607 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2608 root 1.235 upheap (timers, ev_active (w));
2609 root 1.62
2610 root 1.248 EV_FREQUENT_CHECK;
2611    
2612 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2613 root 1.12 }
2614    
2615 root 1.171 void noinline
2616 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2617 root 1.12 {
2618 root 1.166 clear_pending (EV_A_ (W)w);
2619 root 1.123 if (expect_false (!ev_is_active (w)))
2620 root 1.12 return;
2621    
2622 root 1.248 EV_FREQUENT_CHECK;
2623    
2624 root 1.230 {
2625     int active = ev_active (w);
2626 root 1.62
2627 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2628 root 1.151
2629 root 1.248 --timercnt;
2630    
2631     if (expect_true (active < timercnt + HEAP0))
2632 root 1.151 {
2633 root 1.248 timers [active] = timers [timercnt + HEAP0];
2634 root 1.181 adjustheap (timers, timercnt, active);
2635 root 1.151 }
2636 root 1.248 }
2637 root 1.228
2638     ev_at (w) -= mn_now;
2639 root 1.14
2640 root 1.51 ev_stop (EV_A_ (W)w);
2641 root 1.328
2642     EV_FREQUENT_CHECK;
2643 root 1.12 }
2644 root 1.4
2645 root 1.171 void noinline
2646 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2647 root 1.14 {
2648 root 1.248 EV_FREQUENT_CHECK;
2649    
2650 root 1.14 if (ev_is_active (w))
2651     {
2652     if (w->repeat)
2653 root 1.99 {
2654 root 1.228 ev_at (w) = mn_now + w->repeat;
2655 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2656 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2657 root 1.99 }
2658 root 1.14 else
2659 root 1.51 ev_timer_stop (EV_A_ w);
2660 root 1.14 }
2661     else if (w->repeat)
2662 root 1.112 {
2663 root 1.229 ev_at (w) = w->repeat;
2664 root 1.112 ev_timer_start (EV_A_ w);
2665     }
2666 root 1.248
2667     EV_FREQUENT_CHECK;
2668 root 1.14 }
2669    
2670 root 1.301 ev_tstamp
2671     ev_timer_remaining (EV_P_ ev_timer *w)
2672     {
2673     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2674     }
2675    
2676 root 1.140 #if EV_PERIODIC_ENABLE
2677 root 1.171 void noinline
2678 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2679 root 1.12 {
2680 root 1.123 if (expect_false (ev_is_active (w)))
2681 root 1.12 return;
2682 root 1.1
2683 root 1.77 if (w->reschedule_cb)
2684 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2685 root 1.77 else if (w->interval)
2686     {
2687 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2688 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2689 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2690 root 1.77 }
2691 root 1.173 else
2692 root 1.228 ev_at (w) = w->offset;
2693 root 1.12
2694 root 1.248 EV_FREQUENT_CHECK;
2695    
2696     ++periodiccnt;
2697     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2698 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2699     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2700 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2701 root 1.235 upheap (periodics, ev_active (w));
2702 root 1.62
2703 root 1.248 EV_FREQUENT_CHECK;
2704    
2705 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2706 root 1.1 }
2707    
2708 root 1.171 void noinline
2709 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2710 root 1.1 {
2711 root 1.166 clear_pending (EV_A_ (W)w);
2712 root 1.123 if (expect_false (!ev_is_active (w)))
2713 root 1.1 return;
2714    
2715 root 1.248 EV_FREQUENT_CHECK;
2716    
2717 root 1.230 {
2718     int active = ev_active (w);
2719 root 1.62
2720 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2721 root 1.151
2722 root 1.248 --periodiccnt;
2723    
2724     if (expect_true (active < periodiccnt + HEAP0))
2725 root 1.151 {
2726 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2727 root 1.181 adjustheap (periodics, periodiccnt, active);
2728 root 1.151 }
2729 root 1.248 }
2730 root 1.228
2731 root 1.328 ev_stop (EV_A_ (W)w);
2732    
2733 root 1.248 EV_FREQUENT_CHECK;
2734 root 1.1 }
2735    
2736 root 1.171 void noinline
2737 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2738 root 1.77 {
2739 root 1.84 /* TODO: use adjustheap and recalculation */
2740 root 1.77 ev_periodic_stop (EV_A_ w);
2741     ev_periodic_start (EV_A_ w);
2742     }
2743 root 1.93 #endif
2744 root 1.77
2745 root 1.56 #ifndef SA_RESTART
2746     # define SA_RESTART 0
2747     #endif
2748    
2749 root 1.336 #if EV_SIGNAL_ENABLE
2750    
2751 root 1.171 void noinline
2752 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2753 root 1.56 {
2754 root 1.123 if (expect_false (ev_is_active (w)))
2755 root 1.56 return;
2756    
2757 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2758    
2759     #if EV_MULTIPLICITY
2760 root 1.308 assert (("libev: a signal must not be attached to two different loops",
2761 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2762    
2763     signals [w->signum - 1].loop = EV_A;
2764     #endif
2765 root 1.56
2766 root 1.303 EV_FREQUENT_CHECK;
2767    
2768     #if EV_USE_SIGNALFD
2769     if (sigfd == -2)
2770     {
2771     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2772     if (sigfd < 0 && errno == EINVAL)
2773     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2774    
2775     if (sigfd >= 0)
2776     {
2777     fd_intern (sigfd); /* doing it twice will not hurt */
2778    
2779     sigemptyset (&sigfd_set);
2780    
2781     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2782     ev_set_priority (&sigfd_w, EV_MAXPRI);
2783     ev_io_start (EV_A_ &sigfd_w);
2784     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2785     }
2786     }
2787    
2788     if (sigfd >= 0)
2789     {
2790     /* TODO: check .head */
2791     sigaddset (&sigfd_set, w->signum);
2792     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2793 root 1.207
2794 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2795     }
2796 root 1.180 #endif
2797    
2798 root 1.56 ev_start (EV_A_ (W)w, 1);
2799 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2800 root 1.56
2801 root 1.63 if (!((WL)w)->next)
2802 root 1.304 # if EV_USE_SIGNALFD
2803 root 1.306 if (sigfd < 0) /*TODO*/
2804 root 1.304 # endif
2805 root 1.306 {
2806 root 1.322 # ifdef _WIN32
2807 root 1.317 evpipe_init (EV_A);
2808    
2809 root 1.306 signal (w->signum, ev_sighandler);
2810     # else
2811     struct sigaction sa;
2812    
2813     evpipe_init (EV_A);
2814    
2815     sa.sa_handler = ev_sighandler;
2816     sigfillset (&sa.sa_mask);
2817     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2818     sigaction (w->signum, &sa, 0);
2819    
2820     sigemptyset (&sa.sa_mask);
2821     sigaddset (&sa.sa_mask, w->signum);
2822     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2823 root 1.67 #endif
2824 root 1.306 }
2825 root 1.248
2826     EV_FREQUENT_CHECK;
2827 root 1.56 }
2828    
2829 root 1.171 void noinline
2830 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2831 root 1.56 {
2832 root 1.166 clear_pending (EV_A_ (W)w);
2833 root 1.123 if (expect_false (!ev_is_active (w)))
2834 root 1.56 return;
2835    
2836 root 1.248 EV_FREQUENT_CHECK;
2837    
2838 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2839 root 1.56 ev_stop (EV_A_ (W)w);
2840    
2841     if (!signals [w->signum - 1].head)
2842 root 1.306 {
2843 root 1.307 #if EV_MULTIPLICITY
2844 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
2845 root 1.307 #endif
2846     #if EV_USE_SIGNALFD
2847 root 1.306 if (sigfd >= 0)
2848     {
2849 root 1.321 sigset_t ss;
2850    
2851     sigemptyset (&ss);
2852     sigaddset (&ss, w->signum);
2853 root 1.306 sigdelset (&sigfd_set, w->signum);
2854 root 1.321
2855 root 1.306 signalfd (sigfd, &sigfd_set, 0);
2856 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
2857 root 1.306 }
2858     else
2859 root 1.307 #endif
2860 root 1.306 signal (w->signum, SIG_DFL);
2861     }
2862 root 1.248
2863     EV_FREQUENT_CHECK;
2864 root 1.56 }
2865    
2866 root 1.336 #endif
2867    
2868     #if EV_CHILD_ENABLE
2869    
2870 root 1.28 void
2871 root 1.136 ev_child_start (EV_P_ ev_child *w)
2872 root 1.22 {
2873 root 1.56 #if EV_MULTIPLICITY
2874 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2875 root 1.56 #endif
2876 root 1.123 if (expect_false (ev_is_active (w)))
2877 root 1.22 return;
2878    
2879 root 1.248 EV_FREQUENT_CHECK;
2880    
2881 root 1.51 ev_start (EV_A_ (W)w, 1);
2882 root 1.182 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2883 root 1.248
2884     EV_FREQUENT_CHECK;
2885 root 1.22 }
2886    
2887 root 1.28 void
2888 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2889 root 1.22 {
2890 root 1.166 clear_pending (EV_A_ (W)w);
2891 root 1.123 if (expect_false (!ev_is_active (w)))
2892 root 1.22 return;
2893    
2894 root 1.248 EV_FREQUENT_CHECK;
2895    
2896 root 1.182 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2897 root 1.51 ev_stop (EV_A_ (W)w);
2898 root 1.248
2899     EV_FREQUENT_CHECK;
2900 root 1.22 }
2901    
2902 root 1.336 #endif
2903    
2904 root 1.140 #if EV_STAT_ENABLE
2905    
2906     # ifdef _WIN32
2907 root 1.146 # undef lstat
2908     # define lstat(a,b) _stati64 (a,b)
2909 root 1.140 # endif
2910    
2911 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2912     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2913     #define MIN_STAT_INTERVAL 0.1074891
2914 root 1.143
2915 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2916 root 1.152
2917     #if EV_USE_INOTIFY
2918 root 1.326
2919     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2920     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2921 root 1.152
2922     static void noinline
2923     infy_add (EV_P_ ev_stat *w)
2924     {
2925     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2926    
2927 root 1.318 if (w->wd >= 0)
2928 root 1.152 {
2929 root 1.318 struct statfs sfs;
2930    
2931     /* now local changes will be tracked by inotify, but remote changes won't */
2932     /* unless the filesystem is known to be local, we therefore still poll */
2933     /* also do poll on <2.6.25, but with normal frequency */
2934    
2935     if (!fs_2625)
2936     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2937     else if (!statfs (w->path, &sfs)
2938     && (sfs.f_type == 0x1373 /* devfs */
2939     || sfs.f_type == 0xEF53 /* ext2/3 */
2940     || sfs.f_type == 0x3153464a /* jfs */
2941     || sfs.f_type == 0x52654973 /* reiser3 */
2942     || sfs.f_type == 0x01021994 /* tempfs */
2943     || sfs.f_type == 0x58465342 /* xfs */))
2944     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2945     else
2946     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2947     }
2948     else
2949     {
2950     /* can't use inotify, continue to stat */
2951 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2952 root 1.152
2953 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
2954 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2955 root 1.233 /* but an efficiency issue only */
2956 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2957 root 1.152 {
2958 root 1.153 char path [4096];
2959 root 1.152 strcpy (path, w->path);
2960    
2961     do
2962     {
2963     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2964     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2965    
2966     char *pend = strrchr (path, '/');
2967    
2968 root 1.275 if (!pend || pend == path)
2969     break;
2970 root 1.152
2971     *pend = 0;
2972 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
2973 root 1.152 }
2974     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2975     }
2976     }
2977 root 1.275
2978     if (w->wd >= 0)
2979 root 1.318 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2980 root 1.152
2981 root 1.318 /* now re-arm timer, if required */
2982     if (ev_is_active (&w->timer)) ev_ref (EV_A);
2983     ev_timer_again (EV_A_ &w->timer);
2984     if (ev_is_active (&w->timer)) ev_unref (EV_A);
2985 root 1.152 }
2986    
2987     static void noinline
2988     infy_del (EV_P_ ev_stat *w)
2989     {
2990     int slot;
2991     int wd = w->wd;
2992    
2993     if (wd < 0)
2994     return;
2995    
2996     w->wd = -2;
2997     slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2998     wlist_del (&fs_hash [slot].head, (WL)w);
2999    
3000     /* remove this watcher, if others are watching it, they will rearm */
3001     inotify_rm_watch (fs_fd, wd);
3002     }
3003    
3004     static void noinline
3005     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3006     {
3007     if (slot < 0)
3008 root 1.264 /* overflow, need to check for all hash slots */
3009 root 1.152 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3010     infy_wd (EV_A_ slot, wd, ev);
3011     else
3012     {
3013     WL w_;
3014    
3015     for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
3016     {
3017     ev_stat *w = (ev_stat *)w_;
3018     w_ = w_->next; /* lets us remove this watcher and all before it */
3019    
3020     if (w->wd == wd || wd == -1)
3021     {
3022     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3023     {
3024 root 1.275 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
3025 root 1.152 w->wd = -1;
3026     infy_add (EV_A_ w); /* re-add, no matter what */
3027     }
3028    
3029 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3030 root 1.152 }
3031     }
3032     }
3033     }
3034    
3035     static void
3036     infy_cb (EV_P_ ev_io *w, int revents)
3037     {
3038     char buf [EV_INOTIFY_BUFSIZE];
3039     int ofs;
3040     int len = read (fs_fd, buf, sizeof (buf));
3041    
3042 root 1.326 for (ofs = 0; ofs < len; )
3043     {
3044     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3045     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3046     ofs += sizeof (struct inotify_event) + ev->len;
3047     }
3048 root 1.152 }
3049    
3050 root 1.330 inline_size unsigned int
3051     ev_linux_version (void)
3052 root 1.152 {
3053 root 1.273 struct utsname buf;
3054 root 1.330 unsigned int v;
3055     int i;
3056     char *p = buf.release;
3057 root 1.273
3058     if (uname (&buf))
3059 root 1.330 return 0;
3060    
3061     for (i = 3+1; --i; )
3062     {
3063     unsigned int c = 0;
3064    
3065     for (;;)
3066     {
3067     if (*p >= '0' && *p <= '9')
3068     c = c * 10 + *p++ - '0';
3069     else
3070     {
3071     p += *p == '.';
3072     break;
3073     }
3074     }
3075    
3076     v = (v << 8) | c;
3077     }
3078 root 1.273
3079 root 1.330 return v;
3080     }
3081 root 1.273
3082 root 1.330 inline_size void
3083     ev_check_2625 (EV_P)
3084     {
3085     /* kernels < 2.6.25 are borked
3086     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3087     */
3088     if (ev_linux_version () < 0x020619)
3089 root 1.273 return;
3090 root 1.264
3091 root 1.273 fs_2625 = 1;
3092     }
3093 root 1.264
3094 root 1.315 inline_size int
3095     infy_newfd (void)
3096     {
3097     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3098     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3099     if (fd >= 0)
3100     return fd;
3101     #endif
3102     return inotify_init ();
3103     }
3104    
3105 root 1.284 inline_size void
3106 root 1.273 infy_init (EV_P)
3107     {
3108     if (fs_fd != -2)
3109     return;
3110 root 1.264
3111 root 1.273 fs_fd = -1;
3112 root 1.264
3113 root 1.330 ev_check_2625 (EV_A);
3114 root 1.264
3115 root 1.315 fs_fd = infy_newfd ();
3116 root 1.152
3117     if (fs_fd >= 0)
3118     {
3119 root 1.315 fd_intern (fs_fd);
3120 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3121     ev_set_priority (&fs_w, EV_MAXPRI);
3122     ev_io_start (EV_A_ &fs_w);
3123 root 1.317 ev_unref (EV_A);
3124 root 1.152 }
3125     }
3126    
3127 root 1.284 inline_size void
3128 root 1.154 infy_fork (EV_P)
3129     {
3130     int slot;
3131    
3132     if (fs_fd < 0)
3133     return;
3134    
3135 root 1.317 ev_ref (EV_A);
3136 root 1.315 ev_io_stop (EV_A_ &fs_w);
3137 root 1.154 close (fs_fd);
3138 root 1.315 fs_fd = infy_newfd ();
3139    
3140     if (fs_fd >= 0)
3141     {
3142     fd_intern (fs_fd);
3143     ev_io_set (&fs_w, fs_fd, EV_READ);
3144     ev_io_start (EV_A_ &fs_w);
3145 root 1.317 ev_unref (EV_A);
3146 root 1.315 }
3147 root 1.154
3148     for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3149     {
3150     WL w_ = fs_hash [slot].head;
3151     fs_hash [slot].head = 0;
3152    
3153     while (w_)
3154     {
3155     ev_stat *w = (ev_stat *)w_;
3156     w_ = w_->next; /* lets us add this watcher */
3157    
3158     w->wd = -1;
3159    
3160     if (fs_fd >= 0)
3161     infy_add (EV_A_ w); /* re-add, no matter what */
3162     else
3163 root 1.318 {
3164     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3165     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3166     ev_timer_again (EV_A_ &w->timer);
3167     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3168     }
3169 root 1.154 }
3170     }
3171     }
3172    
3173 root 1.152 #endif
3174    
3175 root 1.255 #ifdef _WIN32
3176     # define EV_LSTAT(p,b) _stati64 (p, b)
3177     #else
3178     # define EV_LSTAT(p,b) lstat (p, b)
3179     #endif
3180    
3181 root 1.140 void
3182     ev_stat_stat (EV_P_ ev_stat *w)
3183     {
3184     if (lstat (w->path, &w->attr) < 0)
3185     w->attr.st_nlink = 0;
3186     else if (!w->attr.st_nlink)
3187     w->attr.st_nlink = 1;
3188     }
3189    
3190 root 1.157 static void noinline
3191 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3192     {
3193     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3194    
3195 root 1.320 ev_statdata prev = w->attr;
3196 root 1.140 ev_stat_stat (EV_A_ w);
3197    
3198 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3199     if (
3200 root 1.320 prev.st_dev != w->attr.st_dev
3201     || prev.st_ino != w->attr.st_ino
3202     || prev.st_mode != w->attr.st_mode
3203     || prev.st_nlink != w->attr.st_nlink
3204     || prev.st_uid != w->attr.st_uid
3205     || prev.st_gid != w->attr.st_gid
3206     || prev.st_rdev != w->attr.st_rdev
3207     || prev.st_size != w->attr.st_size
3208     || prev.st_atime != w->attr.st_atime
3209     || prev.st_mtime != w->attr.st_mtime
3210     || prev.st_ctime != w->attr.st_ctime
3211 root 1.156 ) {
3212 root 1.320 /* we only update w->prev on actual differences */
3213     /* in case we test more often than invoke the callback, */
3214     /* to ensure that prev is always different to attr */
3215     w->prev = prev;
3216    
3217 root 1.152 #if EV_USE_INOTIFY
3218 root 1.264 if (fs_fd >= 0)
3219     {
3220     infy_del (EV_A_ w);
3221     infy_add (EV_A_ w);
3222     ev_stat_stat (EV_A_ w); /* avoid race... */
3223     }
3224 root 1.152 #endif
3225    
3226     ev_feed_event (EV_A_ w, EV_STAT);
3227     }
3228 root 1.140 }
3229    
3230     void
3231     ev_stat_start (EV_P_ ev_stat *w)
3232     {
3233     if (expect_false (ev_is_active (w)))
3234     return;
3235    
3236     ev_stat_stat (EV_A_ w);
3237    
3238 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3239     w->interval = MIN_STAT_INTERVAL;
3240 root 1.143
3241 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3242 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3243 root 1.152
3244     #if EV_USE_INOTIFY
3245     infy_init (EV_A);
3246    
3247     if (fs_fd >= 0)
3248     infy_add (EV_A_ w);
3249     else
3250     #endif
3251 root 1.318 {
3252     ev_timer_again (EV_A_ &w->timer);
3253     ev_unref (EV_A);
3254     }
3255 root 1.140
3256     ev_start (EV_A_ (W)w, 1);
3257 root 1.248
3258     EV_FREQUENT_CHECK;
3259 root 1.140 }
3260    
3261     void
3262     ev_stat_stop (EV_P_ ev_stat *w)
3263     {
3264 root 1.166 clear_pending (EV_A_ (W)w);
3265 root 1.140 if (expect_false (!ev_is_active (w)))
3266     return;
3267    
3268 root 1.248 EV_FREQUENT_CHECK;
3269    
3270 root 1.152 #if EV_USE_INOTIFY
3271     infy_del (EV_A_ w);
3272     #endif
3273 root 1.318
3274     if (ev_is_active (&w->timer))
3275     {
3276     ev_ref (EV_A);
3277     ev_timer_stop (EV_A_ &w->timer);
3278     }
3279 root 1.140
3280 root 1.134 ev_stop (EV_A_ (W)w);
3281 root 1.248
3282     EV_FREQUENT_CHECK;
3283 root 1.134 }
3284     #endif
3285    
3286 root 1.164 #if EV_IDLE_ENABLE
3287 root 1.144 void
3288     ev_idle_start (EV_P_ ev_idle *w)
3289     {
3290     if (expect_false (ev_is_active (w)))
3291     return;
3292    
3293 root 1.164 pri_adjust (EV_A_ (W)w);
3294    
3295 root 1.248 EV_FREQUENT_CHECK;
3296    
3297 root 1.164 {
3298     int active = ++idlecnt [ABSPRI (w)];
3299    
3300     ++idleall;
3301     ev_start (EV_A_ (W)w, active);
3302    
3303     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3304     idles [ABSPRI (w)][active - 1] = w;
3305     }
3306 root 1.248
3307     EV_FREQUENT_CHECK;
3308 root 1.144 }
3309    
3310     void
3311     ev_idle_stop (EV_P_ ev_idle *w)
3312     {
3313 root 1.166 clear_pending (EV_A_ (W)w);
3314 root 1.144 if (expect_false (!ev_is_active (w)))
3315     return;
3316    
3317 root 1.248 EV_FREQUENT_CHECK;
3318    
3319 root 1.144 {
3320 root 1.230 int active = ev_active (w);
3321 root 1.164
3322     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3323 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3324 root 1.164
3325     ev_stop (EV_A_ (W)w);
3326     --idleall;
3327 root 1.144 }
3328 root 1.248
3329     EV_FREQUENT_CHECK;
3330 root 1.144 }
3331 root 1.164 #endif
3332 root 1.144
3333 root 1.337 #if EV_PREPARE_ENABLE
3334 root 1.144 void
3335     ev_prepare_start (EV_P_ ev_prepare *w)
3336     {
3337     if (expect_false (ev_is_active (w)))
3338     return;
3339    
3340 root 1.248 EV_FREQUENT_CHECK;
3341    
3342 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3343     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3344     prepares [preparecnt - 1] = w;
3345 root 1.248
3346     EV_FREQUENT_CHECK;
3347 root 1.144 }
3348    
3349     void
3350     ev_prepare_stop (EV_P_ ev_prepare *w)
3351     {
3352 root 1.166 clear_pending (EV_A_ (W)w);
3353 root 1.144 if (expect_false (!ev_is_active (w)))
3354     return;
3355    
3356 root 1.248 EV_FREQUENT_CHECK;
3357    
3358 root 1.144 {
3359 root 1.230 int active = ev_active (w);
3360    
3361 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3362 root 1.230 ev_active (prepares [active - 1]) = active;
3363 root 1.144 }
3364    
3365     ev_stop (EV_A_ (W)w);
3366 root 1.248
3367     EV_FREQUENT_CHECK;
3368 root 1.144 }
3369 root 1.337 #endif
3370 root 1.144
3371 root 1.337 #if EV_CHECK_ENABLE
3372 root 1.144 void
3373     ev_check_start (EV_P_ ev_check *w)
3374     {
3375     if (expect_false (ev_is_active (w)))
3376     return;
3377    
3378 root 1.248 EV_FREQUENT_CHECK;
3379    
3380 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3381     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3382     checks [checkcnt - 1] = w;
3383 root 1.248
3384     EV_FREQUENT_CHECK;
3385 root 1.144 }
3386    
3387     void
3388     ev_check_stop (EV_P_ ev_check *w)
3389     {
3390 root 1.166 clear_pending (EV_A_ (W)w);
3391 root 1.144 if (expect_false (!ev_is_active (w)))
3392     return;
3393    
3394 root 1.248 EV_FREQUENT_CHECK;
3395    
3396 root 1.144 {
3397 root 1.230 int active = ev_active (w);
3398    
3399 root 1.144 checks [active - 1] = checks [--checkcnt];
3400 root 1.230 ev_active (checks [active - 1]) = active;
3401 root 1.144 }
3402    
3403     ev_stop (EV_A_ (W)w);
3404 root 1.248
3405     EV_FREQUENT_CHECK;
3406 root 1.144 }
3407 root 1.337 #endif
3408 root 1.144
3409     #if EV_EMBED_ENABLE
3410     void noinline
3411     ev_embed_sweep (EV_P_ ev_embed *w)
3412     {
3413 root 1.188 ev_loop (w->other, EVLOOP_NONBLOCK);
3414 root 1.144 }
3415    
3416     static void
3417 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3418 root 1.144 {
3419     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3420    
3421     if (ev_cb (w))
3422     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3423     else
3424 root 1.195 ev_loop (w->other, EVLOOP_NONBLOCK);
3425 root 1.144 }
3426    
3427 root 1.189 static void
3428     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3429     {
3430     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3431    
3432 root 1.195 {
3433 root 1.306 EV_P = w->other;
3434 root 1.195
3435     while (fdchangecnt)
3436     {
3437     fd_reify (EV_A);
3438     ev_loop (EV_A_ EVLOOP_NONBLOCK);
3439     }
3440     }
3441     }
3442    
3443 root 1.261 static void
3444     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3445     {
3446     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3447    
3448 root 1.277 ev_embed_stop (EV_A_ w);
3449    
3450 root 1.261 {
3451 root 1.306 EV_P = w->other;
3452 root 1.261
3453     ev_loop_fork (EV_A);
3454 root 1.277 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3455 root 1.261 }
3456 root 1.277
3457     ev_embed_start (EV_A_ w);
3458 root 1.261 }
3459    
3460 root 1.195 #if 0
3461     static void
3462     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3463     {
3464     ev_idle_stop (EV_A_ idle);
3465 root 1.189 }
3466 root 1.195 #endif
3467 root 1.189
3468 root 1.144 void
3469     ev_embed_start (EV_P_ ev_embed *w)
3470     {
3471     if (expect_false (ev_is_active (w)))
3472     return;
3473    
3474     {
3475 root 1.306 EV_P = w->other;
3476 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3477 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3478 root 1.144 }
3479    
3480 root 1.248 EV_FREQUENT_CHECK;
3481    
3482 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3483     ev_io_start (EV_A_ &w->io);
3484    
3485 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3486     ev_set_priority (&w->prepare, EV_MINPRI);
3487     ev_prepare_start (EV_A_ &w->prepare);
3488    
3489 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3490     ev_fork_start (EV_A_ &w->fork);
3491    
3492 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3493    
3494 root 1.144 ev_start (EV_A_ (W)w, 1);
3495 root 1.248
3496     EV_FREQUENT_CHECK;
3497 root 1.144 }
3498    
3499     void
3500     ev_embed_stop (EV_P_ ev_embed *w)
3501     {
3502 root 1.166 clear_pending (EV_A_ (W)w);
3503 root 1.144 if (expect_false (!ev_is_active (w)))
3504     return;
3505    
3506 root 1.248 EV_FREQUENT_CHECK;
3507    
3508 root 1.261 ev_io_stop (EV_A_ &w->io);
3509 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3510 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3511 root 1.248
3512 root 1.328 ev_stop (EV_A_ (W)w);
3513    
3514 root 1.248 EV_FREQUENT_CHECK;
3515 root 1.144 }
3516     #endif
3517    
3518 root 1.147 #if EV_FORK_ENABLE
3519     void
3520     ev_fork_start (EV_P_ ev_fork *w)
3521     {
3522     if (expect_false (ev_is_active (w)))
3523     return;
3524    
3525 root 1.248 EV_FREQUENT_CHECK;
3526    
3527 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3528     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3529     forks [forkcnt - 1] = w;
3530 root 1.248
3531     EV_FREQUENT_CHECK;
3532 root 1.147 }
3533    
3534     void
3535     ev_fork_stop (EV_P_ ev_fork *w)
3536     {
3537 root 1.166 clear_pending (EV_A_ (W)w);
3538 root 1.147 if (expect_false (!ev_is_active (w)))
3539     return;
3540    
3541 root 1.248 EV_FREQUENT_CHECK;
3542    
3543 root 1.147 {
3544 root 1.230 int active = ev_active (w);
3545    
3546 root 1.147 forks [active - 1] = forks [--forkcnt];
3547 root 1.230 ev_active (forks [active - 1]) = active;
3548 root 1.147 }
3549    
3550     ev_stop (EV_A_ (W)w);
3551 root 1.248
3552     EV_FREQUENT_CHECK;
3553 root 1.147 }
3554     #endif
3555    
3556 root 1.207 #if EV_ASYNC_ENABLE
3557     void
3558     ev_async_start (EV_P_ ev_async *w)
3559     {
3560     if (expect_false (ev_is_active (w)))
3561     return;
3562    
3563     evpipe_init (EV_A);
3564    
3565 root 1.248 EV_FREQUENT_CHECK;
3566    
3567 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3568     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3569     asyncs [asynccnt - 1] = w;
3570 root 1.248
3571     EV_FREQUENT_CHECK;
3572 root 1.207 }
3573    
3574     void
3575     ev_async_stop (EV_P_ ev_async *w)
3576     {
3577     clear_pending (EV_A_ (W)w);
3578     if (expect_false (!ev_is_active (w)))
3579     return;
3580    
3581 root 1.248 EV_FREQUENT_CHECK;
3582    
3583 root 1.207 {
3584 root 1.230 int active = ev_active (w);
3585    
3586 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3587 root 1.230 ev_active (asyncs [active - 1]) = active;
3588 root 1.207 }
3589    
3590     ev_stop (EV_A_ (W)w);
3591 root 1.248
3592     EV_FREQUENT_CHECK;
3593 root 1.207 }
3594    
3595     void
3596     ev_async_send (EV_P_ ev_async *w)
3597     {
3598     w->sent = 1;
3599 root 1.307 evpipe_write (EV_A_ &async_pending);
3600 root 1.207 }
3601     #endif
3602    
3603 root 1.1 /*****************************************************************************/
3604 root 1.10
3605 root 1.16 struct ev_once
3606     {
3607 root 1.136 ev_io io;
3608     ev_timer to;
3609 root 1.16 void (*cb)(int revents, void *arg);
3610     void *arg;
3611     };
3612    
3613     static void
3614 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3615 root 1.16 {
3616     void (*cb)(int revents, void *arg) = once->cb;
3617     void *arg = once->arg;
3618    
3619 root 1.259 ev_io_stop (EV_A_ &once->io);
3620 root 1.51 ev_timer_stop (EV_A_ &once->to);
3621 root 1.69 ev_free (once);
3622 root 1.16
3623     cb (revents, arg);
3624     }
3625    
3626     static void
3627 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3628 root 1.16 {
3629 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3630    
3631     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3632 root 1.16 }
3633    
3634     static void
3635 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3636 root 1.16 {
3637 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3638    
3639     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3640 root 1.16 }
3641    
3642     void
3643 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3644 root 1.16 {
3645 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3646 root 1.16
3647 root 1.123 if (expect_false (!once))
3648 root 1.16 {
3649 root 1.123 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3650     return;
3651     }
3652    
3653     once->cb = cb;
3654     once->arg = arg;
3655 root 1.16
3656 root 1.123 ev_init (&once->io, once_cb_io);
3657     if (fd >= 0)
3658     {
3659     ev_io_set (&once->io, fd, events);
3660     ev_io_start (EV_A_ &once->io);
3661     }
3662 root 1.16
3663 root 1.123 ev_init (&once->to, once_cb_to);
3664     if (timeout >= 0.)
3665     {
3666     ev_timer_set (&once->to, timeout, 0.);
3667     ev_timer_start (EV_A_ &once->to);
3668 root 1.16 }
3669     }
3670    
3671 root 1.282 /*****************************************************************************/
3672    
3673 root 1.288 #if EV_WALK_ENABLE
3674 root 1.282 void
3675     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3676     {
3677     int i, j;
3678     ev_watcher_list *wl, *wn;
3679    
3680     if (types & (EV_IO | EV_EMBED))
3681     for (i = 0; i < anfdmax; ++i)
3682     for (wl = anfds [i].head; wl; )
3683     {
3684     wn = wl->next;
3685    
3686     #if EV_EMBED_ENABLE
3687     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3688     {
3689     if (types & EV_EMBED)
3690     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3691     }
3692     else
3693     #endif
3694     #if EV_USE_INOTIFY
3695     if (ev_cb ((ev_io *)wl) == infy_cb)
3696     ;
3697     else
3698     #endif
3699 root 1.288 if ((ev_io *)wl != &pipe_w)
3700 root 1.282 if (types & EV_IO)
3701     cb (EV_A_ EV_IO, wl);
3702    
3703     wl = wn;
3704     }
3705    
3706     if (types & (EV_TIMER | EV_STAT))
3707     for (i = timercnt + HEAP0; i-- > HEAP0; )
3708     #if EV_STAT_ENABLE
3709     /*TODO: timer is not always active*/
3710     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3711     {
3712     if (types & EV_STAT)
3713     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3714     }
3715     else
3716     #endif
3717     if (types & EV_TIMER)
3718     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3719    
3720     #if EV_PERIODIC_ENABLE
3721     if (types & EV_PERIODIC)
3722     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3723     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3724     #endif
3725    
3726     #if EV_IDLE_ENABLE
3727     if (types & EV_IDLE)
3728     for (j = NUMPRI; i--; )
3729     for (i = idlecnt [j]; i--; )
3730     cb (EV_A_ EV_IDLE, idles [j][i]);
3731     #endif
3732    
3733     #if EV_FORK_ENABLE
3734     if (types & EV_FORK)
3735     for (i = forkcnt; i--; )
3736     if (ev_cb (forks [i]) != embed_fork_cb)
3737     cb (EV_A_ EV_FORK, forks [i]);
3738     #endif
3739    
3740     #if EV_ASYNC_ENABLE
3741     if (types & EV_ASYNC)
3742     for (i = asynccnt; i--; )
3743     cb (EV_A_ EV_ASYNC, asyncs [i]);
3744     #endif
3745    
3746 root 1.337 #if EV_PREPARE_ENABLE
3747 root 1.282 if (types & EV_PREPARE)
3748     for (i = preparecnt; i--; )
3749 root 1.337 # if EV_EMBED_ENABLE
3750 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3751 root 1.337 # endif
3752     cb (EV_A_ EV_PREPARE, prepares [i]);
3753 root 1.282 #endif
3754    
3755 root 1.337 #if EV_CHECK_ENABLE
3756 root 1.282 if (types & EV_CHECK)
3757     for (i = checkcnt; i--; )
3758     cb (EV_A_ EV_CHECK, checks [i]);
3759 root 1.337 #endif
3760 root 1.282
3761 root 1.337 #if EV_SIGNAL_ENABLE
3762 root 1.282 if (types & EV_SIGNAL)
3763 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
3764 root 1.282 for (wl = signals [i].head; wl; )
3765     {
3766     wn = wl->next;
3767     cb (EV_A_ EV_SIGNAL, wl);
3768     wl = wn;
3769     }
3770 root 1.337 #endif
3771 root 1.282
3772 root 1.337 #if EV_CHILD_ENABLE
3773 root 1.282 if (types & EV_CHILD)
3774     for (i = EV_PID_HASHSIZE; i--; )
3775     for (wl = childs [i]; wl; )
3776     {
3777     wn = wl->next;
3778     cb (EV_A_ EV_CHILD, wl);
3779     wl = wn;
3780     }
3781 root 1.337 #endif
3782 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
3783     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3784     }
3785     #endif
3786    
3787 root 1.188 #if EV_MULTIPLICITY
3788     #include "ev_wrap.h"
3789     #endif
3790    
3791 root 1.87 #ifdef __cplusplus
3792     }
3793     #endif
3794