ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.340
Committed: Tue Mar 16 20:39:29 2010 UTC (14 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.339: +5 -5 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.326 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40     #ifdef __cplusplus
41     extern "C" {
42     #endif
43    
44 root 1.220 /* this big block deduces configuration from config.h */
45 root 1.59 #ifndef EV_STANDALONE
46 root 1.133 # ifdef EV_CONFIG_H
47     # include EV_CONFIG_H
48     # else
49     # include "config.h"
50     # endif
51 root 1.60
52 root 1.274 # if HAVE_CLOCK_SYSCALL
53     # ifndef EV_USE_CLOCK_SYSCALL
54     # define EV_USE_CLOCK_SYSCALL 1
55     # ifndef EV_USE_REALTIME
56     # define EV_USE_REALTIME 0
57     # endif
58     # ifndef EV_USE_MONOTONIC
59     # define EV_USE_MONOTONIC 1
60     # endif
61     # endif
62 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
63     # define EV_USE_CLOCK_SYSCALL 0
64 root 1.274 # endif
65    
66 root 1.60 # if HAVE_CLOCK_GETTIME
67 root 1.97 # ifndef EV_USE_MONOTONIC
68     # define EV_USE_MONOTONIC 1
69     # endif
70     # ifndef EV_USE_REALTIME
71 root 1.279 # define EV_USE_REALTIME 0
72 root 1.97 # endif
73 root 1.126 # else
74     # ifndef EV_USE_MONOTONIC
75     # define EV_USE_MONOTONIC 0
76     # endif
77     # ifndef EV_USE_REALTIME
78     # define EV_USE_REALTIME 0
79     # endif
80 root 1.60 # endif
81    
82 root 1.193 # ifndef EV_USE_NANOSLEEP
83     # if HAVE_NANOSLEEP
84 root 1.339 # define EV_USE_NANOSLEEP EV_FEATURE_OS
85 root 1.193 # else
86     # define EV_USE_NANOSLEEP 0
87     # endif
88     # endif
89    
90 root 1.127 # ifndef EV_USE_SELECT
91     # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
93 root 1.127 # else
94     # define EV_USE_SELECT 0
95     # endif
96 root 1.60 # endif
97    
98 root 1.127 # ifndef EV_USE_POLL
99     # if HAVE_POLL && HAVE_POLL_H
100 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
101 root 1.127 # else
102     # define EV_USE_POLL 0
103     # endif
104 root 1.60 # endif
105 root 1.127
106     # ifndef EV_USE_EPOLL
107     # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
109 root 1.127 # else
110     # define EV_USE_EPOLL 0
111     # endif
112 root 1.60 # endif
113 root 1.127
114     # ifndef EV_USE_KQUEUE
115 root 1.323 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
116 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117 root 1.127 # else
118     # define EV_USE_KQUEUE 0
119     # endif
120 root 1.60 # endif
121 root 1.127
122     # ifndef EV_USE_PORT
123     # if HAVE_PORT_H && HAVE_PORT_CREATE
124 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
125 root 1.127 # else
126     # define EV_USE_PORT 0
127     # endif
128 root 1.118 # endif
129    
130 root 1.152 # ifndef EV_USE_INOTIFY
131     # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
133 root 1.152 # else
134     # define EV_USE_INOTIFY 0
135     # endif
136     # endif
137    
138 root 1.303 # ifndef EV_USE_SIGNALFD
139     # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
141 root 1.303 # else
142     # define EV_USE_SIGNALFD 0
143     # endif
144     # endif
145    
146 root 1.220 # ifndef EV_USE_EVENTFD
147     # if HAVE_EVENTFD
148 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
149 root 1.220 # else
150     # define EV_USE_EVENTFD 0
151     # endif
152     # endif
153 root 1.250
154 root 1.29 #endif
155 root 1.17
156 root 1.1 #include <math.h>
157     #include <stdlib.h>
158 root 1.319 #include <string.h>
159 root 1.7 #include <fcntl.h>
160 root 1.16 #include <stddef.h>
161 root 1.1
162     #include <stdio.h>
163    
164 root 1.4 #include <assert.h>
165 root 1.1 #include <errno.h>
166 root 1.22 #include <sys/types.h>
167 root 1.71 #include <time.h>
168 root 1.326 #include <limits.h>
169 root 1.71
170 root 1.72 #include <signal.h>
171 root 1.71
172 root 1.152 #ifdef EV_H
173     # include EV_H
174     #else
175     # include "ev.h"
176     #endif
177    
178 root 1.103 #ifndef _WIN32
179 root 1.71 # include <sys/time.h>
180 root 1.45 # include <sys/wait.h>
181 root 1.140 # include <unistd.h>
182 root 1.103 #else
183 root 1.256 # include <io.h>
184 root 1.103 # define WIN32_LEAN_AND_MEAN
185     # include <windows.h>
186     # ifndef EV_SELECT_IS_WINSOCKET
187     # define EV_SELECT_IS_WINSOCKET 1
188     # endif
189 root 1.331 # undef EV_AVOID_STDIO
190 root 1.45 #endif
191 root 1.103
192 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
193 root 1.40
194 root 1.305 /* try to deduce the maximum number of signals on this platform */
195     #if defined (EV_NSIG)
196     /* use what's provided */
197     #elif defined (NSIG)
198     # define EV_NSIG (NSIG)
199     #elif defined(_NSIG)
200     # define EV_NSIG (_NSIG)
201     #elif defined (SIGMAX)
202     # define EV_NSIG (SIGMAX+1)
203     #elif defined (SIG_MAX)
204     # define EV_NSIG (SIG_MAX+1)
205     #elif defined (_SIG_MAX)
206     # define EV_NSIG (_SIG_MAX+1)
207     #elif defined (MAXSIG)
208     # define EV_NSIG (MAXSIG+1)
209     #elif defined (MAX_SIG)
210     # define EV_NSIG (MAX_SIG+1)
211     #elif defined (SIGARRAYSIZE)
212 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213 root 1.305 #elif defined (_sys_nsig)
214     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215     #else
216     # error "unable to find value for NSIG, please report"
217 root 1.336 /* to make it compile regardless, just remove the above line, */
218     /* but consider reporting it, too! :) */
219 root 1.306 # define EV_NSIG 65
220 root 1.305 #endif
221    
222 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
223     # if __linux && __GLIBC__ >= 2
224 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
225 root 1.274 # else
226     # define EV_USE_CLOCK_SYSCALL 0
227     # endif
228     #endif
229    
230 root 1.29 #ifndef EV_USE_MONOTONIC
231 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
233 root 1.253 # else
234     # define EV_USE_MONOTONIC 0
235     # endif
236 root 1.37 #endif
237    
238 root 1.118 #ifndef EV_USE_REALTIME
239 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
240 root 1.118 #endif
241    
242 root 1.193 #ifndef EV_USE_NANOSLEEP
243 root 1.253 # if _POSIX_C_SOURCE >= 199309L
244 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
245 root 1.253 # else
246     # define EV_USE_NANOSLEEP 0
247     # endif
248 root 1.193 #endif
249    
250 root 1.29 #ifndef EV_USE_SELECT
251 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
252 root 1.10 #endif
253    
254 root 1.59 #ifndef EV_USE_POLL
255 root 1.104 # ifdef _WIN32
256     # define EV_USE_POLL 0
257     # else
258 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
259 root 1.104 # endif
260 root 1.41 #endif
261    
262 root 1.29 #ifndef EV_USE_EPOLL
263 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
265 root 1.220 # else
266     # define EV_USE_EPOLL 0
267     # endif
268 root 1.10 #endif
269    
270 root 1.44 #ifndef EV_USE_KQUEUE
271     # define EV_USE_KQUEUE 0
272     #endif
273    
274 root 1.118 #ifndef EV_USE_PORT
275     # define EV_USE_PORT 0
276 root 1.40 #endif
277    
278 root 1.152 #ifndef EV_USE_INOTIFY
279 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
281 root 1.220 # else
282     # define EV_USE_INOTIFY 0
283     # endif
284 root 1.152 #endif
285    
286 root 1.149 #ifndef EV_PID_HASHSIZE
287 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
288 root 1.149 #endif
289    
290 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
291 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
292 root 1.152 #endif
293    
294 root 1.220 #ifndef EV_USE_EVENTFD
295     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
296 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
297 root 1.220 # else
298     # define EV_USE_EVENTFD 0
299     # endif
300     #endif
301    
302 root 1.303 #ifndef EV_USE_SIGNALFD
303 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
304 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
305 root 1.303 # else
306     # define EV_USE_SIGNALFD 0
307     # endif
308     #endif
309    
310 root 1.249 #if 0 /* debugging */
311 root 1.250 # define EV_VERIFY 3
312 root 1.249 # define EV_USE_4HEAP 1
313     # define EV_HEAP_CACHE_AT 1
314     #endif
315    
316 root 1.250 #ifndef EV_VERIFY
317 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
318 root 1.250 #endif
319    
320 root 1.243 #ifndef EV_USE_4HEAP
321 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
322 root 1.243 #endif
323    
324     #ifndef EV_HEAP_CACHE_AT
325 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
326 root 1.243 #endif
327    
328 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
329     /* which makes programs even slower. might work on other unices, too. */
330     #if EV_USE_CLOCK_SYSCALL
331     # include <syscall.h>
332     # ifdef SYS_clock_gettime
333     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
334     # undef EV_USE_MONOTONIC
335     # define EV_USE_MONOTONIC 1
336     # else
337     # undef EV_USE_CLOCK_SYSCALL
338     # define EV_USE_CLOCK_SYSCALL 0
339     # endif
340     #endif
341    
342 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
343 root 1.40
344 root 1.325 #ifdef _AIX
345     /* AIX has a completely broken poll.h header */
346     # undef EV_USE_POLL
347     # define EV_USE_POLL 0
348     #endif
349    
350 root 1.40 #ifndef CLOCK_MONOTONIC
351     # undef EV_USE_MONOTONIC
352     # define EV_USE_MONOTONIC 0
353     #endif
354    
355 root 1.31 #ifndef CLOCK_REALTIME
356 root 1.40 # undef EV_USE_REALTIME
357 root 1.31 # define EV_USE_REALTIME 0
358     #endif
359 root 1.40
360 root 1.152 #if !EV_STAT_ENABLE
361 root 1.185 # undef EV_USE_INOTIFY
362 root 1.152 # define EV_USE_INOTIFY 0
363     #endif
364    
365 root 1.193 #if !EV_USE_NANOSLEEP
366     # ifndef _WIN32
367     # include <sys/select.h>
368     # endif
369     #endif
370    
371 root 1.152 #if EV_USE_INOTIFY
372 root 1.264 # include <sys/utsname.h>
373 root 1.273 # include <sys/statfs.h>
374 root 1.152 # include <sys/inotify.h>
375 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
376     # ifndef IN_DONT_FOLLOW
377     # undef EV_USE_INOTIFY
378     # define EV_USE_INOTIFY 0
379     # endif
380 root 1.152 #endif
381    
382 root 1.185 #if EV_SELECT_IS_WINSOCKET
383     # include <winsock.h>
384     #endif
385    
386 root 1.220 #if EV_USE_EVENTFD
387     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
388 root 1.221 # include <stdint.h>
389 root 1.303 # ifndef EFD_NONBLOCK
390     # define EFD_NONBLOCK O_NONBLOCK
391     # endif
392     # ifndef EFD_CLOEXEC
393 root 1.311 # ifdef O_CLOEXEC
394     # define EFD_CLOEXEC O_CLOEXEC
395     # else
396     # define EFD_CLOEXEC 02000000
397     # endif
398 root 1.303 # endif
399 root 1.222 # ifdef __cplusplus
400     extern "C" {
401     # endif
402 root 1.329 int (eventfd) (unsigned int initval, int flags);
403 root 1.222 # ifdef __cplusplus
404     }
405     # endif
406 root 1.220 #endif
407    
408 root 1.303 #if EV_USE_SIGNALFD
409 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410     # include <stdint.h>
411     # ifndef SFD_NONBLOCK
412     # define SFD_NONBLOCK O_NONBLOCK
413     # endif
414     # ifndef SFD_CLOEXEC
415     # ifdef O_CLOEXEC
416     # define SFD_CLOEXEC O_CLOEXEC
417     # else
418     # define SFD_CLOEXEC 02000000
419     # endif
420     # endif
421     # ifdef __cplusplus
422     extern "C" {
423     # endif
424     int signalfd (int fd, const sigset_t *mask, int flags);
425    
426     struct signalfd_siginfo
427     {
428     uint32_t ssi_signo;
429     char pad[128 - sizeof (uint32_t)];
430     };
431     # ifdef __cplusplus
432     }
433     # endif
434 root 1.303 #endif
435    
436 root 1.314
437 root 1.40 /**/
438 root 1.1
439 root 1.250 #if EV_VERIFY >= 3
440 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
441 root 1.248 #else
442     # define EV_FREQUENT_CHECK do { } while (0)
443     #endif
444    
445 root 1.176 /*
446     * This is used to avoid floating point rounding problems.
447     * It is added to ev_rt_now when scheduling periodics
448     * to ensure progress, time-wise, even when rounding
449     * errors are against us.
450 root 1.177 * This value is good at least till the year 4000.
451 root 1.176 * Better solutions welcome.
452     */
453     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
454    
455 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
456 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
457 root 1.1
458 root 1.185 #if __GNUC__ >= 4
459 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
460 root 1.169 # define noinline __attribute__ ((noinline))
461 root 1.40 #else
462     # define expect(expr,value) (expr)
463 root 1.140 # define noinline
464 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
465 root 1.169 # define inline
466     # endif
467 root 1.40 #endif
468    
469     #define expect_false(expr) expect ((expr) != 0, 0)
470     #define expect_true(expr) expect ((expr) != 0, 1)
471 root 1.169 #define inline_size static inline
472    
473 root 1.338 #if EV_FEATURE_CODE
474     # define inline_speed static inline
475     #else
476 root 1.169 # define inline_speed static noinline
477     #endif
478 root 1.40
479 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
480    
481     #if EV_MINPRI == EV_MAXPRI
482     # define ABSPRI(w) (((W)w), 0)
483     #else
484     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
485     #endif
486 root 1.42
487 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
488 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
489 root 1.103
490 root 1.136 typedef ev_watcher *W;
491     typedef ev_watcher_list *WL;
492     typedef ev_watcher_time *WT;
493 root 1.10
494 root 1.229 #define ev_active(w) ((W)(w))->active
495 root 1.228 #define ev_at(w) ((WT)(w))->at
496    
497 root 1.279 #if EV_USE_REALTIME
498 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
499     /* giving it a reasonably high chance of working on typical architetcures */
500 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
501     #endif
502    
503     #if EV_USE_MONOTONIC
504 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
505 root 1.198 #endif
506 root 1.54
507 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
508     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
509     #endif
510     #ifndef EV_WIN32_HANDLE_TO_FD
511 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
512 root 1.313 #endif
513     #ifndef EV_WIN32_CLOSE_FD
514     # define EV_WIN32_CLOSE_FD(fd) close (fd)
515     #endif
516    
517 root 1.103 #ifdef _WIN32
518 root 1.98 # include "ev_win32.c"
519     #endif
520 root 1.67
521 root 1.53 /*****************************************************************************/
522 root 1.1
523 root 1.331 #if EV_AVOID_STDIO
524     static void noinline
525     ev_printerr (const char *msg)
526     {
527     write (STDERR_FILENO, msg, strlen (msg));
528     }
529     #endif
530    
531 root 1.70 static void (*syserr_cb)(const char *msg);
532 root 1.69
533 root 1.141 void
534     ev_set_syserr_cb (void (*cb)(const char *msg))
535 root 1.69 {
536     syserr_cb = cb;
537     }
538    
539 root 1.141 static void noinline
540 root 1.269 ev_syserr (const char *msg)
541 root 1.69 {
542 root 1.70 if (!msg)
543     msg = "(libev) system error";
544    
545 root 1.69 if (syserr_cb)
546 root 1.70 syserr_cb (msg);
547 root 1.69 else
548     {
549 root 1.330 #if EV_AVOID_STDIO
550 root 1.331 const char *err = strerror (errno);
551    
552     ev_printerr (msg);
553     ev_printerr (": ");
554     ev_printerr (err);
555     ev_printerr ("\n");
556 root 1.330 #else
557 root 1.70 perror (msg);
558 root 1.330 #endif
559 root 1.69 abort ();
560     }
561     }
562    
563 root 1.224 static void *
564     ev_realloc_emul (void *ptr, long size)
565     {
566 root 1.334 #if __GLIBC__
567     return realloc (ptr, size);
568     #else
569 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
570 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
571 root 1.224 * the single unix specification, so work around them here.
572     */
573 root 1.333
574 root 1.224 if (size)
575     return realloc (ptr, size);
576    
577     free (ptr);
578     return 0;
579 root 1.334 #endif
580 root 1.224 }
581    
582     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
583 root 1.69
584 root 1.141 void
585 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
586 root 1.69 {
587     alloc = cb;
588     }
589    
590 root 1.150 inline_speed void *
591 root 1.155 ev_realloc (void *ptr, long size)
592 root 1.69 {
593 root 1.224 ptr = alloc (ptr, size);
594 root 1.69
595     if (!ptr && size)
596     {
597 root 1.330 #if EV_AVOID_STDIO
598 root 1.331 ev_printerr ("libev: memory allocation failed, aborting.\n");
599 root 1.330 #else
600 root 1.155 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
601 root 1.330 #endif
602 root 1.69 abort ();
603     }
604    
605     return ptr;
606     }
607    
608     #define ev_malloc(size) ev_realloc (0, (size))
609     #define ev_free(ptr) ev_realloc ((ptr), 0)
610    
611     /*****************************************************************************/
612    
613 root 1.298 /* set in reify when reification needed */
614     #define EV_ANFD_REIFY 1
615    
616 root 1.288 /* file descriptor info structure */
617 root 1.53 typedef struct
618     {
619 root 1.68 WL head;
620 root 1.288 unsigned char events; /* the events watched for */
621 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
622 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
623 root 1.269 unsigned char unused;
624     #if EV_USE_EPOLL
625 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
626 root 1.269 #endif
627 root 1.103 #if EV_SELECT_IS_WINSOCKET
628     SOCKET handle;
629     #endif
630 root 1.53 } ANFD;
631 root 1.1
632 root 1.288 /* stores the pending event set for a given watcher */
633 root 1.53 typedef struct
634     {
635     W w;
636 root 1.288 int events; /* the pending event set for the given watcher */
637 root 1.53 } ANPENDING;
638 root 1.51
639 root 1.155 #if EV_USE_INOTIFY
640 root 1.241 /* hash table entry per inotify-id */
641 root 1.152 typedef struct
642     {
643     WL head;
644 root 1.155 } ANFS;
645 root 1.152 #endif
646    
647 root 1.241 /* Heap Entry */
648     #if EV_HEAP_CACHE_AT
649 root 1.288 /* a heap element */
650 root 1.241 typedef struct {
651 root 1.243 ev_tstamp at;
652 root 1.241 WT w;
653     } ANHE;
654    
655 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
656     #define ANHE_at(he) (he).at /* access cached at, read-only */
657     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
658 root 1.241 #else
659 root 1.288 /* a heap element */
660 root 1.241 typedef WT ANHE;
661    
662 root 1.248 #define ANHE_w(he) (he)
663     #define ANHE_at(he) (he)->at
664     #define ANHE_at_cache(he)
665 root 1.241 #endif
666    
667 root 1.55 #if EV_MULTIPLICITY
668 root 1.54
669 root 1.80 struct ev_loop
670     {
671 root 1.86 ev_tstamp ev_rt_now;
672 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
673 root 1.80 #define VAR(name,decl) decl;
674     #include "ev_vars.h"
675     #undef VAR
676     };
677     #include "ev_wrap.h"
678    
679 root 1.116 static struct ev_loop default_loop_struct;
680     struct ev_loop *ev_default_loop_ptr;
681 root 1.54
682 root 1.53 #else
683 root 1.54
684 root 1.86 ev_tstamp ev_rt_now;
685 root 1.80 #define VAR(name,decl) static decl;
686     #include "ev_vars.h"
687     #undef VAR
688    
689 root 1.116 static int ev_default_loop_ptr;
690 root 1.54
691 root 1.51 #endif
692 root 1.1
693 root 1.338 #if EV_FEATURE_API
694 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
695     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
696 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
697     #else
698 root 1.298 # define EV_RELEASE_CB (void)0
699     # define EV_ACQUIRE_CB (void)0
700 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
701     #endif
702    
703 root 1.298 #define EVUNLOOP_RECURSE 0x80
704    
705 root 1.8 /*****************************************************************************/
706    
707 root 1.292 #ifndef EV_HAVE_EV_TIME
708 root 1.141 ev_tstamp
709 root 1.1 ev_time (void)
710     {
711 root 1.29 #if EV_USE_REALTIME
712 root 1.279 if (expect_true (have_realtime))
713     {
714     struct timespec ts;
715     clock_gettime (CLOCK_REALTIME, &ts);
716     return ts.tv_sec + ts.tv_nsec * 1e-9;
717     }
718     #endif
719    
720 root 1.1 struct timeval tv;
721     gettimeofday (&tv, 0);
722     return tv.tv_sec + tv.tv_usec * 1e-6;
723     }
724 root 1.292 #endif
725 root 1.1
726 root 1.284 inline_size ev_tstamp
727 root 1.1 get_clock (void)
728     {
729 root 1.29 #if EV_USE_MONOTONIC
730 root 1.40 if (expect_true (have_monotonic))
731 root 1.1 {
732     struct timespec ts;
733     clock_gettime (CLOCK_MONOTONIC, &ts);
734     return ts.tv_sec + ts.tv_nsec * 1e-9;
735     }
736     #endif
737    
738     return ev_time ();
739     }
740    
741 root 1.85 #if EV_MULTIPLICITY
742 root 1.51 ev_tstamp
743     ev_now (EV_P)
744     {
745 root 1.85 return ev_rt_now;
746 root 1.51 }
747 root 1.85 #endif
748 root 1.51
749 root 1.193 void
750     ev_sleep (ev_tstamp delay)
751     {
752     if (delay > 0.)
753     {
754     #if EV_USE_NANOSLEEP
755     struct timespec ts;
756    
757     ts.tv_sec = (time_t)delay;
758     ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
759    
760     nanosleep (&ts, 0);
761     #elif defined(_WIN32)
762 root 1.217 Sleep ((unsigned long)(delay * 1e3));
763 root 1.193 #else
764     struct timeval tv;
765    
766     tv.tv_sec = (time_t)delay;
767     tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
768    
769 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
770 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
771 root 1.257 /* by older ones */
772 root 1.193 select (0, 0, 0, 0, &tv);
773     #endif
774     }
775     }
776    
777     /*****************************************************************************/
778    
779 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
780 root 1.232
781 root 1.288 /* find a suitable new size for the given array, */
782     /* hopefully by rounding to a ncie-to-malloc size */
783 root 1.284 inline_size int
784 root 1.163 array_nextsize (int elem, int cur, int cnt)
785     {
786     int ncur = cur + 1;
787    
788     do
789     ncur <<= 1;
790     while (cnt > ncur);
791    
792 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
793     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
794 root 1.163 {
795     ncur *= elem;
796 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
797 root 1.163 ncur = ncur - sizeof (void *) * 4;
798     ncur /= elem;
799     }
800    
801     return ncur;
802     }
803    
804 root 1.171 static noinline void *
805 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
806     {
807     *cur = array_nextsize (elem, *cur, cnt);
808     return ev_realloc (base, elem * *cur);
809     }
810 root 1.29
811 root 1.265 #define array_init_zero(base,count) \
812     memset ((void *)(base), 0, sizeof (*(base)) * (count))
813    
814 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
815 root 1.163 if (expect_false ((cnt) > (cur))) \
816 root 1.69 { \
817 root 1.163 int ocur_ = (cur); \
818     (base) = (type *)array_realloc \
819     (sizeof (type), (base), &(cur), (cnt)); \
820     init ((base) + (ocur_), (cur) - ocur_); \
821 root 1.1 }
822    
823 root 1.163 #if 0
824 root 1.74 #define array_slim(type,stem) \
825 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
826     { \
827     stem ## max = array_roundsize (stem ## cnt >> 1); \
828 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
829 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
830     }
831 root 1.163 #endif
832 root 1.67
833 root 1.65 #define array_free(stem, idx) \
834 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
835 root 1.65
836 root 1.8 /*****************************************************************************/
837    
838 root 1.288 /* dummy callback for pending events */
839     static void noinline
840     pendingcb (EV_P_ ev_prepare *w, int revents)
841     {
842     }
843    
844 root 1.140 void noinline
845 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
846 root 1.1 {
847 root 1.78 W w_ = (W)w;
848 root 1.171 int pri = ABSPRI (w_);
849 root 1.78
850 root 1.123 if (expect_false (w_->pending))
851 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
852     else
853 root 1.32 {
854 root 1.171 w_->pending = ++pendingcnt [pri];
855     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
856     pendings [pri][w_->pending - 1].w = w_;
857     pendings [pri][w_->pending - 1].events = revents;
858 root 1.32 }
859 root 1.1 }
860    
861 root 1.284 inline_speed void
862     feed_reverse (EV_P_ W w)
863     {
864     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
865     rfeeds [rfeedcnt++] = w;
866     }
867    
868     inline_size void
869     feed_reverse_done (EV_P_ int revents)
870     {
871     do
872     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
873     while (rfeedcnt);
874     }
875    
876     inline_speed void
877 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
878 root 1.27 {
879     int i;
880    
881     for (i = 0; i < eventcnt; ++i)
882 root 1.78 ev_feed_event (EV_A_ events [i], type);
883 root 1.27 }
884    
885 root 1.141 /*****************************************************************************/
886    
887 root 1.284 inline_speed void
888 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
889 root 1.1 {
890     ANFD *anfd = anfds + fd;
891 root 1.136 ev_io *w;
892 root 1.1
893 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
894 root 1.1 {
895 root 1.79 int ev = w->events & revents;
896 root 1.1
897     if (ev)
898 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
899 root 1.1 }
900     }
901    
902 root 1.298 /* do not submit kernel events for fds that have reify set */
903     /* because that means they changed while we were polling for new events */
904     inline_speed void
905     fd_event (EV_P_ int fd, int revents)
906     {
907     ANFD *anfd = anfds + fd;
908    
909     if (expect_true (!anfd->reify))
910 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
911 root 1.298 }
912    
913 root 1.79 void
914     ev_feed_fd_event (EV_P_ int fd, int revents)
915     {
916 root 1.168 if (fd >= 0 && fd < anfdmax)
917 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
918 root 1.79 }
919    
920 root 1.288 /* make sure the external fd watch events are in-sync */
921     /* with the kernel/libev internal state */
922 root 1.284 inline_size void
923 root 1.51 fd_reify (EV_P)
924 root 1.9 {
925     int i;
926    
927 root 1.27 for (i = 0; i < fdchangecnt; ++i)
928     {
929     int fd = fdchanges [i];
930     ANFD *anfd = anfds + fd;
931 root 1.136 ev_io *w;
932 root 1.27
933 root 1.184 unsigned char events = 0;
934 root 1.27
935 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
936 root 1.184 events |= (unsigned char)w->events;
937 root 1.27
938 root 1.103 #if EV_SELECT_IS_WINSOCKET
939     if (events)
940     {
941 root 1.254 unsigned long arg;
942 root 1.313 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
943 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
944 root 1.103 }
945     #endif
946    
947 root 1.184 {
948     unsigned char o_events = anfd->events;
949     unsigned char o_reify = anfd->reify;
950    
951     anfd->reify = 0;
952     anfd->events = events;
953 root 1.27
954 root 1.281 if (o_events != events || o_reify & EV__IOFDSET)
955 root 1.184 backend_modify (EV_A_ fd, o_events, events);
956     }
957 root 1.27 }
958    
959     fdchangecnt = 0;
960     }
961    
962 root 1.288 /* something about the given fd changed */
963 root 1.284 inline_size void
964 root 1.183 fd_change (EV_P_ int fd, int flags)
965 root 1.27 {
966 root 1.183 unsigned char reify = anfds [fd].reify;
967 root 1.184 anfds [fd].reify |= flags;
968 root 1.27
969 root 1.183 if (expect_true (!reify))
970     {
971     ++fdchangecnt;
972     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
973     fdchanges [fdchangecnt - 1] = fd;
974     }
975 root 1.9 }
976    
977 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
978 root 1.284 inline_speed void
979 root 1.51 fd_kill (EV_P_ int fd)
980 root 1.41 {
981 root 1.136 ev_io *w;
982 root 1.41
983 root 1.136 while ((w = (ev_io *)anfds [fd].head))
984 root 1.41 {
985 root 1.51 ev_io_stop (EV_A_ w);
986 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
987 root 1.41 }
988     }
989    
990 root 1.336 /* check whether the given fd is actually valid, for error recovery */
991 root 1.284 inline_size int
992 root 1.71 fd_valid (int fd)
993     {
994 root 1.103 #ifdef _WIN32
995 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
996 root 1.71 #else
997     return fcntl (fd, F_GETFD) != -1;
998     #endif
999     }
1000    
1001 root 1.19 /* called on EBADF to verify fds */
1002 root 1.140 static void noinline
1003 root 1.51 fd_ebadf (EV_P)
1004 root 1.19 {
1005     int fd;
1006    
1007     for (fd = 0; fd < anfdmax; ++fd)
1008 root 1.27 if (anfds [fd].events)
1009 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1010 root 1.51 fd_kill (EV_A_ fd);
1011 root 1.41 }
1012    
1013     /* called on ENOMEM in select/poll to kill some fds and retry */
1014 root 1.140 static void noinline
1015 root 1.51 fd_enomem (EV_P)
1016 root 1.41 {
1017 root 1.62 int fd;
1018 root 1.41
1019 root 1.62 for (fd = anfdmax; fd--; )
1020 root 1.41 if (anfds [fd].events)
1021     {
1022 root 1.51 fd_kill (EV_A_ fd);
1023 root 1.307 break;
1024 root 1.41 }
1025 root 1.19 }
1026    
1027 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1028 root 1.140 static void noinline
1029 root 1.56 fd_rearm_all (EV_P)
1030     {
1031     int fd;
1032    
1033     for (fd = 0; fd < anfdmax; ++fd)
1034     if (anfds [fd].events)
1035     {
1036     anfds [fd].events = 0;
1037 root 1.268 anfds [fd].emask = 0;
1038 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1039 root 1.56 }
1040     }
1041    
1042 root 1.336 /* used to prepare libev internal fd's */
1043     /* this is not fork-safe */
1044     inline_speed void
1045     fd_intern (int fd)
1046     {
1047     #ifdef _WIN32
1048     unsigned long arg = 1;
1049     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1050     #else
1051     fcntl (fd, F_SETFD, FD_CLOEXEC);
1052     fcntl (fd, F_SETFL, O_NONBLOCK);
1053     #endif
1054     }
1055    
1056 root 1.8 /*****************************************************************************/
1057    
1058 root 1.235 /*
1059 root 1.241 * the heap functions want a real array index. array index 0 uis guaranteed to not
1060     * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1061     * the branching factor of the d-tree.
1062     */
1063    
1064     /*
1065 root 1.235 * at the moment we allow libev the luxury of two heaps,
1066     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1067     * which is more cache-efficient.
1068     * the difference is about 5% with 50000+ watchers.
1069     */
1070 root 1.241 #if EV_USE_4HEAP
1071 root 1.235
1072 root 1.237 #define DHEAP 4
1073     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1074 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1075 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1076 root 1.235
1077     /* away from the root */
1078 root 1.284 inline_speed void
1079 root 1.241 downheap (ANHE *heap, int N, int k)
1080 root 1.235 {
1081 root 1.241 ANHE he = heap [k];
1082     ANHE *E = heap + N + HEAP0;
1083 root 1.235
1084     for (;;)
1085     {
1086     ev_tstamp minat;
1087 root 1.241 ANHE *minpos;
1088 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1089 root 1.235
1090 root 1.248 /* find minimum child */
1091 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1092 root 1.235 {
1093 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 root 1.235 }
1098 root 1.240 else if (pos < E)
1099 root 1.235 {
1100 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1101     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1102     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1103     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1104 root 1.235 }
1105 root 1.240 else
1106     break;
1107 root 1.235
1108 root 1.241 if (ANHE_at (he) <= minat)
1109 root 1.235 break;
1110    
1111 root 1.247 heap [k] = *minpos;
1112 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1113 root 1.235
1114     k = minpos - heap;
1115     }
1116    
1117 root 1.247 heap [k] = he;
1118 root 1.241 ev_active (ANHE_w (he)) = k;
1119 root 1.235 }
1120    
1121 root 1.248 #else /* 4HEAP */
1122 root 1.235
1123     #define HEAP0 1
1124 root 1.247 #define HPARENT(k) ((k) >> 1)
1125 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1126 root 1.235
1127 root 1.248 /* away from the root */
1128 root 1.284 inline_speed void
1129 root 1.248 downheap (ANHE *heap, int N, int k)
1130 root 1.1 {
1131 root 1.241 ANHE he = heap [k];
1132 root 1.1
1133 root 1.228 for (;;)
1134 root 1.1 {
1135 root 1.248 int c = k << 1;
1136 root 1.179
1137 root 1.309 if (c >= N + HEAP0)
1138 root 1.179 break;
1139    
1140 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1141     ? 1 : 0;
1142    
1143     if (ANHE_at (he) <= ANHE_at (heap [c]))
1144     break;
1145    
1146     heap [k] = heap [c];
1147 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1148 root 1.248
1149     k = c;
1150 root 1.1 }
1151    
1152 root 1.243 heap [k] = he;
1153 root 1.248 ev_active (ANHE_w (he)) = k;
1154 root 1.1 }
1155 root 1.248 #endif
1156 root 1.1
1157 root 1.248 /* towards the root */
1158 root 1.284 inline_speed void
1159 root 1.248 upheap (ANHE *heap, int k)
1160 root 1.1 {
1161 root 1.241 ANHE he = heap [k];
1162 root 1.1
1163 root 1.179 for (;;)
1164 root 1.1 {
1165 root 1.248 int p = HPARENT (k);
1166 root 1.179
1167 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1168 root 1.179 break;
1169 root 1.1
1170 root 1.248 heap [k] = heap [p];
1171 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1172 root 1.248 k = p;
1173 root 1.1 }
1174    
1175 root 1.241 heap [k] = he;
1176     ev_active (ANHE_w (he)) = k;
1177 root 1.1 }
1178    
1179 root 1.288 /* move an element suitably so it is in a correct place */
1180 root 1.284 inline_size void
1181 root 1.241 adjustheap (ANHE *heap, int N, int k)
1182 root 1.84 {
1183 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1184 root 1.247 upheap (heap, k);
1185     else
1186     downheap (heap, N, k);
1187 root 1.84 }
1188    
1189 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1190 root 1.284 inline_size void
1191 root 1.248 reheap (ANHE *heap, int N)
1192     {
1193     int i;
1194 root 1.251
1195 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1196     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1197     for (i = 0; i < N; ++i)
1198     upheap (heap, i + HEAP0);
1199     }
1200    
1201 root 1.8 /*****************************************************************************/
1202    
1203 root 1.288 /* associate signal watchers to a signal signal */
1204 root 1.7 typedef struct
1205     {
1206 root 1.307 EV_ATOMIC_T pending;
1207 root 1.306 #if EV_MULTIPLICITY
1208     EV_P;
1209     #endif
1210 root 1.68 WL head;
1211 root 1.7 } ANSIG;
1212    
1213 root 1.306 static ANSIG signals [EV_NSIG - 1];
1214 root 1.7
1215 root 1.207 /*****************************************************************************/
1216    
1217 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218 root 1.207
1219     static void noinline
1220     evpipe_init (EV_P)
1221     {
1222 root 1.288 if (!ev_is_active (&pipe_w))
1223 root 1.207 {
1224 root 1.336 # if EV_USE_EVENTFD
1225 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226     if (evfd < 0 && errno == EINVAL)
1227     evfd = eventfd (0, 0);
1228    
1229     if (evfd >= 0)
1230 root 1.220 {
1231     evpipe [0] = -1;
1232 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1233 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1234 root 1.220 }
1235     else
1236 root 1.336 # endif
1237 root 1.220 {
1238     while (pipe (evpipe))
1239 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1240 root 1.207
1241 root 1.220 fd_intern (evpipe [0]);
1242     fd_intern (evpipe [1]);
1243 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1244 root 1.220 }
1245 root 1.207
1246 root 1.288 ev_io_start (EV_A_ &pipe_w);
1247 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1248 root 1.207 }
1249     }
1250    
1251 root 1.284 inline_size void
1252 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1253 root 1.207 {
1254 root 1.214 if (!*flag)
1255 root 1.207 {
1256 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1257 root 1.336 char dummy;
1258 root 1.214
1259     *flag = 1;
1260 root 1.220
1261     #if EV_USE_EVENTFD
1262     if (evfd >= 0)
1263     {
1264     uint64_t counter = 1;
1265     write (evfd, &counter, sizeof (uint64_t));
1266     }
1267     else
1268     #endif
1269 root 1.336 write (evpipe [1], &dummy, 1);
1270 root 1.214
1271 root 1.207 errno = old_errno;
1272     }
1273     }
1274    
1275 root 1.288 /* called whenever the libev signal pipe */
1276     /* got some events (signal, async) */
1277 root 1.207 static void
1278     pipecb (EV_P_ ev_io *iow, int revents)
1279     {
1280 root 1.307 int i;
1281    
1282 root 1.220 #if EV_USE_EVENTFD
1283     if (evfd >= 0)
1284     {
1285 root 1.232 uint64_t counter;
1286 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1287     }
1288     else
1289     #endif
1290     {
1291     char dummy;
1292     read (evpipe [0], &dummy, 1);
1293     }
1294 root 1.207
1295 root 1.307 if (sig_pending)
1296 root 1.207 {
1297 root 1.307 sig_pending = 0;
1298 root 1.207
1299 root 1.307 for (i = EV_NSIG - 1; i--; )
1300     if (expect_false (signals [i].pending))
1301     ev_feed_signal_event (EV_A_ i + 1);
1302 root 1.207 }
1303    
1304 root 1.209 #if EV_ASYNC_ENABLE
1305 root 1.307 if (async_pending)
1306 root 1.207 {
1307 root 1.307 async_pending = 0;
1308 root 1.207
1309     for (i = asynccnt; i--; )
1310     if (asyncs [i]->sent)
1311     {
1312     asyncs [i]->sent = 0;
1313     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1314     }
1315     }
1316 root 1.209 #endif
1317 root 1.207 }
1318    
1319     /*****************************************************************************/
1320    
1321 root 1.7 static void
1322 root 1.218 ev_sighandler (int signum)
1323 root 1.7 {
1324 root 1.207 #if EV_MULTIPLICITY
1325 root 1.306 EV_P = signals [signum - 1].loop;
1326 root 1.207 #endif
1327    
1328 root 1.322 #ifdef _WIN32
1329 root 1.218 signal (signum, ev_sighandler);
1330 root 1.67 #endif
1331    
1332 root 1.307 signals [signum - 1].pending = 1;
1333     evpipe_write (EV_A_ &sig_pending);
1334 root 1.7 }
1335    
1336 root 1.140 void noinline
1337 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1338     {
1339 root 1.80 WL w;
1340    
1341 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342     return;
1343    
1344     --signum;
1345    
1346 root 1.79 #if EV_MULTIPLICITY
1347 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1348     /* or, likely more useful, feeding a signal nobody is waiting for */
1349 root 1.79
1350 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1351 root 1.306 return;
1352 root 1.307 #endif
1353 root 1.306
1354 root 1.307 signals [signum].pending = 0;
1355 root 1.79
1356     for (w = signals [signum].head; w; w = w->next)
1357     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1358     }
1359    
1360 root 1.303 #if EV_USE_SIGNALFD
1361     static void
1362     sigfdcb (EV_P_ ev_io *iow, int revents)
1363     {
1364 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365 root 1.303
1366     for (;;)
1367     {
1368     ssize_t res = read (sigfd, si, sizeof (si));
1369    
1370     /* not ISO-C, as res might be -1, but works with SuS */
1371     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373    
1374     if (res < (ssize_t)sizeof (si))
1375     break;
1376     }
1377     }
1378     #endif
1379    
1380 root 1.336 #endif
1381    
1382 root 1.8 /*****************************************************************************/
1383    
1384 root 1.336 #if EV_CHILD_ENABLE
1385 root 1.182 static WL childs [EV_PID_HASHSIZE];
1386 root 1.71
1387 root 1.136 static ev_signal childev;
1388 root 1.59
1389 root 1.206 #ifndef WIFCONTINUED
1390     # define WIFCONTINUED(status) 0
1391     #endif
1392    
1393 root 1.288 /* handle a single child status event */
1394 root 1.284 inline_speed void
1395 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1396 root 1.47 {
1397 root 1.136 ev_child *w;
1398 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1399 root 1.47
1400 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1401 root 1.206 {
1402     if ((w->pid == pid || !w->pid)
1403     && (!traced || (w->flags & 1)))
1404     {
1405 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1406 root 1.206 w->rpid = pid;
1407     w->rstatus = status;
1408     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1409     }
1410     }
1411 root 1.47 }
1412    
1413 root 1.142 #ifndef WCONTINUED
1414     # define WCONTINUED 0
1415     #endif
1416    
1417 root 1.288 /* called on sigchld etc., calls waitpid */
1418 root 1.47 static void
1419 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1420 root 1.22 {
1421     int pid, status;
1422    
1423 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1424     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1425     if (!WCONTINUED
1426     || errno != EINVAL
1427     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1428     return;
1429    
1430 root 1.216 /* make sure we are called again until all children have been reaped */
1431 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1432     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1433 root 1.47
1434 root 1.216 child_reap (EV_A_ pid, pid, status);
1435 root 1.338 if ((EV_PID_HASHSIZE) > 1)
1436 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1437 root 1.22 }
1438    
1439 root 1.45 #endif
1440    
1441 root 1.22 /*****************************************************************************/
1442    
1443 root 1.118 #if EV_USE_PORT
1444     # include "ev_port.c"
1445     #endif
1446 root 1.44 #if EV_USE_KQUEUE
1447     # include "ev_kqueue.c"
1448     #endif
1449 root 1.29 #if EV_USE_EPOLL
1450 root 1.1 # include "ev_epoll.c"
1451     #endif
1452 root 1.59 #if EV_USE_POLL
1453 root 1.41 # include "ev_poll.c"
1454     #endif
1455 root 1.29 #if EV_USE_SELECT
1456 root 1.1 # include "ev_select.c"
1457     #endif
1458    
1459 root 1.24 int
1460     ev_version_major (void)
1461     {
1462     return EV_VERSION_MAJOR;
1463     }
1464    
1465     int
1466     ev_version_minor (void)
1467     {
1468     return EV_VERSION_MINOR;
1469     }
1470    
1471 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1472 root 1.140 int inline_size
1473 root 1.51 enable_secure (void)
1474 root 1.41 {
1475 root 1.103 #ifdef _WIN32
1476 root 1.49 return 0;
1477     #else
1478 root 1.41 return getuid () != geteuid ()
1479     || getgid () != getegid ();
1480 root 1.49 #endif
1481 root 1.41 }
1482    
1483 root 1.111 unsigned int
1484 root 1.129 ev_supported_backends (void)
1485     {
1486 root 1.130 unsigned int flags = 0;
1487 root 1.129
1488     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1489     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1490     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1491     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1492     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1493    
1494     return flags;
1495     }
1496    
1497     unsigned int
1498 root 1.130 ev_recommended_backends (void)
1499 root 1.1 {
1500 root 1.131 unsigned int flags = ev_supported_backends ();
1501 root 1.129
1502     #ifndef __NetBSD__
1503     /* kqueue is borked on everything but netbsd apparently */
1504     /* it usually doesn't work correctly on anything but sockets and pipes */
1505     flags &= ~EVBACKEND_KQUEUE;
1506     #endif
1507     #ifdef __APPLE__
1508 root 1.278 /* only select works correctly on that "unix-certified" platform */
1509     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1510     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1511 root 1.129 #endif
1512    
1513     return flags;
1514 root 1.51 }
1515    
1516 root 1.130 unsigned int
1517 root 1.134 ev_embeddable_backends (void)
1518     {
1519 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1520    
1521 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1522 root 1.196 /* please fix it and tell me how to detect the fix */
1523     flags &= ~EVBACKEND_EPOLL;
1524    
1525     return flags;
1526 root 1.134 }
1527    
1528     unsigned int
1529 root 1.130 ev_backend (EV_P)
1530     {
1531     return backend;
1532     }
1533    
1534 root 1.338 #if EV_FEATURE_API
1535 root 1.162 unsigned int
1536 root 1.340 ev_iteration (EV_P)
1537 root 1.162 {
1538     return loop_count;
1539     }
1540    
1541 root 1.294 unsigned int
1542 root 1.340 ev_depth (EV_P)
1543 root 1.294 {
1544     return loop_depth;
1545     }
1546    
1547 root 1.193 void
1548     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1549     {
1550     io_blocktime = interval;
1551     }
1552    
1553     void
1554     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1555     {
1556     timeout_blocktime = interval;
1557     }
1558    
1559 root 1.297 void
1560     ev_set_userdata (EV_P_ void *data)
1561     {
1562     userdata = data;
1563     }
1564    
1565     void *
1566     ev_userdata (EV_P)
1567     {
1568     return userdata;
1569     }
1570    
1571     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1572     {
1573     invoke_cb = invoke_pending_cb;
1574     }
1575    
1576 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1577 root 1.297 {
1578 root 1.298 release_cb = release;
1579     acquire_cb = acquire;
1580 root 1.297 }
1581     #endif
1582    
1583 root 1.288 /* initialise a loop structure, must be zero-initialised */
1584 root 1.151 static void noinline
1585 root 1.108 loop_init (EV_P_ unsigned int flags)
1586 root 1.51 {
1587 root 1.130 if (!backend)
1588 root 1.23 {
1589 root 1.279 #if EV_USE_REALTIME
1590     if (!have_realtime)
1591     {
1592     struct timespec ts;
1593    
1594     if (!clock_gettime (CLOCK_REALTIME, &ts))
1595     have_realtime = 1;
1596     }
1597     #endif
1598    
1599 root 1.29 #if EV_USE_MONOTONIC
1600 root 1.279 if (!have_monotonic)
1601     {
1602     struct timespec ts;
1603    
1604     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1605     have_monotonic = 1;
1606     }
1607 root 1.1 #endif
1608    
1609 root 1.306 /* pid check not overridable via env */
1610     #ifndef _WIN32
1611     if (flags & EVFLAG_FORKCHECK)
1612     curpid = getpid ();
1613     #endif
1614    
1615     if (!(flags & EVFLAG_NOENV)
1616     && !enable_secure ()
1617     && getenv ("LIBEV_FLAGS"))
1618     flags = atoi (getenv ("LIBEV_FLAGS"));
1619    
1620 root 1.209 ev_rt_now = ev_time ();
1621     mn_now = get_clock ();
1622     now_floor = mn_now;
1623     rtmn_diff = ev_rt_now - mn_now;
1624 root 1.338 #if EV_FEATURE_API
1625 root 1.296 invoke_cb = ev_invoke_pending;
1626 root 1.297 #endif
1627 root 1.1
1628 root 1.193 io_blocktime = 0.;
1629     timeout_blocktime = 0.;
1630 root 1.209 backend = 0;
1631     backend_fd = -1;
1632 root 1.307 sig_pending = 0;
1633     #if EV_ASYNC_ENABLE
1634     async_pending = 0;
1635     #endif
1636 root 1.209 #if EV_USE_INOTIFY
1637 root 1.306 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1638 root 1.209 #endif
1639 root 1.303 #if EV_USE_SIGNALFD
1640 root 1.321 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1641 root 1.303 #endif
1642 root 1.193
1643 root 1.225 if (!(flags & 0x0000ffffU))
1644 root 1.129 flags |= ev_recommended_backends ();
1645 root 1.41
1646 root 1.118 #if EV_USE_PORT
1647 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1648 root 1.118 #endif
1649 root 1.44 #if EV_USE_KQUEUE
1650 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1651 root 1.44 #endif
1652 root 1.29 #if EV_USE_EPOLL
1653 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1654 root 1.41 #endif
1655 root 1.59 #if EV_USE_POLL
1656 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1657 root 1.1 #endif
1658 root 1.29 #if EV_USE_SELECT
1659 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1660 root 1.1 #endif
1661 root 1.70
1662 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1663    
1664 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1665 root 1.288 ev_init (&pipe_w, pipecb);
1666     ev_set_priority (&pipe_w, EV_MAXPRI);
1667 root 1.336 #endif
1668 root 1.56 }
1669     }
1670    
1671 root 1.288 /* free up a loop structure */
1672 root 1.151 static void noinline
1673 root 1.56 loop_destroy (EV_P)
1674     {
1675 root 1.65 int i;
1676    
1677 root 1.288 if (ev_is_active (&pipe_w))
1678 root 1.207 {
1679 root 1.303 /*ev_ref (EV_A);*/
1680     /*ev_io_stop (EV_A_ &pipe_w);*/
1681 root 1.207
1682 root 1.220 #if EV_USE_EVENTFD
1683     if (evfd >= 0)
1684     close (evfd);
1685     #endif
1686    
1687     if (evpipe [0] >= 0)
1688     {
1689 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1690     EV_WIN32_CLOSE_FD (evpipe [1]);
1691 root 1.220 }
1692 root 1.207 }
1693    
1694 root 1.303 #if EV_USE_SIGNALFD
1695     if (ev_is_active (&sigfd_w))
1696 root 1.317 close (sigfd);
1697 root 1.303 #endif
1698    
1699 root 1.152 #if EV_USE_INOTIFY
1700     if (fs_fd >= 0)
1701     close (fs_fd);
1702     #endif
1703    
1704     if (backend_fd >= 0)
1705     close (backend_fd);
1706    
1707 root 1.118 #if EV_USE_PORT
1708 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1709 root 1.118 #endif
1710 root 1.56 #if EV_USE_KQUEUE
1711 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1712 root 1.56 #endif
1713     #if EV_USE_EPOLL
1714 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1715 root 1.56 #endif
1716 root 1.59 #if EV_USE_POLL
1717 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1718 root 1.56 #endif
1719     #if EV_USE_SELECT
1720 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1721 root 1.56 #endif
1722 root 1.1
1723 root 1.65 for (i = NUMPRI; i--; )
1724 root 1.164 {
1725     array_free (pending, [i]);
1726     #if EV_IDLE_ENABLE
1727     array_free (idle, [i]);
1728     #endif
1729     }
1730 root 1.65
1731 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
1732 root 1.186
1733 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1734 root 1.284 array_free (rfeed, EMPTY);
1735 root 1.164 array_free (fdchange, EMPTY);
1736     array_free (timer, EMPTY);
1737 root 1.140 #if EV_PERIODIC_ENABLE
1738 root 1.164 array_free (periodic, EMPTY);
1739 root 1.93 #endif
1740 root 1.187 #if EV_FORK_ENABLE
1741     array_free (fork, EMPTY);
1742     #endif
1743 root 1.164 array_free (prepare, EMPTY);
1744     array_free (check, EMPTY);
1745 root 1.209 #if EV_ASYNC_ENABLE
1746     array_free (async, EMPTY);
1747     #endif
1748 root 1.65
1749 root 1.130 backend = 0;
1750 root 1.56 }
1751 root 1.22
1752 root 1.226 #if EV_USE_INOTIFY
1753 root 1.284 inline_size void infy_fork (EV_P);
1754 root 1.226 #endif
1755 root 1.154
1756 root 1.284 inline_size void
1757 root 1.56 loop_fork (EV_P)
1758     {
1759 root 1.118 #if EV_USE_PORT
1760 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1761 root 1.56 #endif
1762     #if EV_USE_KQUEUE
1763 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1764 root 1.45 #endif
1765 root 1.118 #if EV_USE_EPOLL
1766 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1767 root 1.118 #endif
1768 root 1.154 #if EV_USE_INOTIFY
1769     infy_fork (EV_A);
1770     #endif
1771 root 1.70
1772 root 1.288 if (ev_is_active (&pipe_w))
1773 root 1.70 {
1774 root 1.207 /* this "locks" the handlers against writing to the pipe */
1775 root 1.212 /* while we modify the fd vars */
1776 root 1.307 sig_pending = 1;
1777 root 1.212 #if EV_ASYNC_ENABLE
1778 root 1.307 async_pending = 1;
1779 root 1.212 #endif
1780 root 1.70
1781     ev_ref (EV_A);
1782 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1783 root 1.220
1784     #if EV_USE_EVENTFD
1785     if (evfd >= 0)
1786     close (evfd);
1787     #endif
1788    
1789     if (evpipe [0] >= 0)
1790     {
1791 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1792     EV_WIN32_CLOSE_FD (evpipe [1]);
1793 root 1.220 }
1794 root 1.207
1795 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1796 root 1.207 evpipe_init (EV_A);
1797 root 1.208 /* now iterate over everything, in case we missed something */
1798 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1799 root 1.337 #endif
1800 root 1.70 }
1801    
1802     postfork = 0;
1803 root 1.1 }
1804    
1805 root 1.55 #if EV_MULTIPLICITY
1806 root 1.250
1807 root 1.54 struct ev_loop *
1808 root 1.108 ev_loop_new (unsigned int flags)
1809 root 1.54 {
1810 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1811 root 1.69
1812 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
1813 root 1.108 loop_init (EV_A_ flags);
1814 root 1.56
1815 root 1.130 if (ev_backend (EV_A))
1816 root 1.306 return EV_A;
1817 root 1.54
1818 root 1.55 return 0;
1819 root 1.54 }
1820    
1821     void
1822 root 1.56 ev_loop_destroy (EV_P)
1823 root 1.54 {
1824 root 1.56 loop_destroy (EV_A);
1825 root 1.69 ev_free (loop);
1826 root 1.54 }
1827    
1828 root 1.56 void
1829     ev_loop_fork (EV_P)
1830     {
1831 root 1.205 postfork = 1; /* must be in line with ev_default_fork */
1832 root 1.56 }
1833 root 1.297 #endif /* multiplicity */
1834 root 1.248
1835     #if EV_VERIFY
1836 root 1.258 static void noinline
1837 root 1.251 verify_watcher (EV_P_ W w)
1838     {
1839 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1840 root 1.251
1841     if (w->pending)
1842 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1843 root 1.251 }
1844    
1845     static void noinline
1846     verify_heap (EV_P_ ANHE *heap, int N)
1847     {
1848     int i;
1849    
1850     for (i = HEAP0; i < N + HEAP0; ++i)
1851     {
1852 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1853     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1854     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1855 root 1.251
1856     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1857     }
1858     }
1859    
1860     static void noinline
1861     array_verify (EV_P_ W *ws, int cnt)
1862 root 1.248 {
1863     while (cnt--)
1864 root 1.251 {
1865 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1866 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1867     }
1868 root 1.248 }
1869 root 1.250 #endif
1870 root 1.248
1871 root 1.338 #if EV_FEATURE_API
1872 root 1.250 void
1873 root 1.340 ev_verify (EV_P)
1874 root 1.248 {
1875 root 1.250 #if EV_VERIFY
1876 root 1.248 int i;
1877 root 1.251 WL w;
1878    
1879     assert (activecnt >= -1);
1880    
1881     assert (fdchangemax >= fdchangecnt);
1882     for (i = 0; i < fdchangecnt; ++i)
1883 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1884 root 1.251
1885     assert (anfdmax >= 0);
1886     for (i = 0; i < anfdmax; ++i)
1887     for (w = anfds [i].head; w; w = w->next)
1888     {
1889     verify_watcher (EV_A_ (W)w);
1890 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1891     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1892 root 1.251 }
1893    
1894     assert (timermax >= timercnt);
1895     verify_heap (EV_A_ timers, timercnt);
1896 root 1.248
1897     #if EV_PERIODIC_ENABLE
1898 root 1.251 assert (periodicmax >= periodiccnt);
1899     verify_heap (EV_A_ periodics, periodiccnt);
1900 root 1.248 #endif
1901    
1902 root 1.251 for (i = NUMPRI; i--; )
1903     {
1904     assert (pendingmax [i] >= pendingcnt [i]);
1905 root 1.248 #if EV_IDLE_ENABLE
1906 root 1.252 assert (idleall >= 0);
1907 root 1.251 assert (idlemax [i] >= idlecnt [i]);
1908     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1909 root 1.248 #endif
1910 root 1.251 }
1911    
1912 root 1.248 #if EV_FORK_ENABLE
1913 root 1.251 assert (forkmax >= forkcnt);
1914     array_verify (EV_A_ (W *)forks, forkcnt);
1915 root 1.248 #endif
1916 root 1.251
1917 root 1.250 #if EV_ASYNC_ENABLE
1918 root 1.251 assert (asyncmax >= asynccnt);
1919     array_verify (EV_A_ (W *)asyncs, asynccnt);
1920 root 1.250 #endif
1921 root 1.251
1922 root 1.337 #if EV_PREPARE_ENABLE
1923 root 1.251 assert (preparemax >= preparecnt);
1924     array_verify (EV_A_ (W *)prepares, preparecnt);
1925 root 1.337 #endif
1926 root 1.251
1927 root 1.337 #if EV_CHECK_ENABLE
1928 root 1.251 assert (checkmax >= checkcnt);
1929     array_verify (EV_A_ (W *)checks, checkcnt);
1930 root 1.337 #endif
1931 root 1.251
1932     # if 0
1933 root 1.336 #if EV_CHILD_ENABLE
1934 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1935 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1936 root 1.336 #endif
1937 root 1.251 # endif
1938 root 1.248 #endif
1939     }
1940 root 1.297 #endif
1941 root 1.56
1942     #if EV_MULTIPLICITY
1943     struct ev_loop *
1944 root 1.125 ev_default_loop_init (unsigned int flags)
1945 root 1.54 #else
1946     int
1947 root 1.116 ev_default_loop (unsigned int flags)
1948 root 1.56 #endif
1949 root 1.54 {
1950 root 1.116 if (!ev_default_loop_ptr)
1951 root 1.56 {
1952     #if EV_MULTIPLICITY
1953 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
1954 root 1.56 #else
1955 ayin 1.117 ev_default_loop_ptr = 1;
1956 root 1.54 #endif
1957    
1958 root 1.110 loop_init (EV_A_ flags);
1959 root 1.56
1960 root 1.130 if (ev_backend (EV_A))
1961 root 1.56 {
1962 root 1.336 #if EV_CHILD_ENABLE
1963 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
1964     ev_set_priority (&childev, EV_MAXPRI);
1965     ev_signal_start (EV_A_ &childev);
1966     ev_unref (EV_A); /* child watcher should not keep loop alive */
1967     #endif
1968     }
1969     else
1970 root 1.116 ev_default_loop_ptr = 0;
1971 root 1.56 }
1972 root 1.8
1973 root 1.116 return ev_default_loop_ptr;
1974 root 1.1 }
1975    
1976 root 1.24 void
1977 root 1.56 ev_default_destroy (void)
1978 root 1.1 {
1979 root 1.57 #if EV_MULTIPLICITY
1980 root 1.306 EV_P = ev_default_loop_ptr;
1981 root 1.57 #endif
1982 root 1.56
1983 root 1.266 ev_default_loop_ptr = 0;
1984    
1985 root 1.336 #if EV_CHILD_ENABLE
1986 root 1.56 ev_ref (EV_A); /* child watcher */
1987     ev_signal_stop (EV_A_ &childev);
1988 root 1.71 #endif
1989 root 1.56
1990     loop_destroy (EV_A);
1991 root 1.1 }
1992    
1993 root 1.24 void
1994 root 1.60 ev_default_fork (void)
1995 root 1.1 {
1996 root 1.60 #if EV_MULTIPLICITY
1997 root 1.306 EV_P = ev_default_loop_ptr;
1998 root 1.60 #endif
1999    
2000 root 1.270 postfork = 1; /* must be in line with ev_loop_fork */
2001 root 1.1 }
2002    
2003 root 1.8 /*****************************************************************************/
2004    
2005 root 1.168 void
2006     ev_invoke (EV_P_ void *w, int revents)
2007     {
2008     EV_CB_INVOKE ((W)w, revents);
2009     }
2010    
2011 root 1.300 unsigned int
2012     ev_pending_count (EV_P)
2013     {
2014     int pri;
2015     unsigned int count = 0;
2016    
2017     for (pri = NUMPRI; pri--; )
2018     count += pendingcnt [pri];
2019    
2020     return count;
2021     }
2022    
2023 root 1.297 void noinline
2024 root 1.296 ev_invoke_pending (EV_P)
2025 root 1.1 {
2026 root 1.42 int pri;
2027    
2028     for (pri = NUMPRI; pri--; )
2029     while (pendingcnt [pri])
2030     {
2031     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2032 root 1.1
2033 root 1.288 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2034     /* ^ this is no longer true, as pending_w could be here */
2035 root 1.139
2036 root 1.288 p->w->pending = 0;
2037     EV_CB_INVOKE (p->w, p->events);
2038     EV_FREQUENT_CHECK;
2039 root 1.42 }
2040 root 1.1 }
2041    
2042 root 1.234 #if EV_IDLE_ENABLE
2043 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2044     /* only when higher priorities are idle" logic */
2045 root 1.284 inline_size void
2046 root 1.234 idle_reify (EV_P)
2047     {
2048     if (expect_false (idleall))
2049     {
2050     int pri;
2051    
2052     for (pri = NUMPRI; pri--; )
2053     {
2054     if (pendingcnt [pri])
2055     break;
2056    
2057     if (idlecnt [pri])
2058     {
2059     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2060     break;
2061     }
2062     }
2063     }
2064     }
2065     #endif
2066    
2067 root 1.288 /* make timers pending */
2068 root 1.284 inline_size void
2069 root 1.51 timers_reify (EV_P)
2070 root 1.1 {
2071 root 1.248 EV_FREQUENT_CHECK;
2072    
2073 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2074 root 1.1 {
2075 root 1.284 do
2076     {
2077     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2078 root 1.1
2079 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2080    
2081     /* first reschedule or stop timer */
2082     if (w->repeat)
2083     {
2084     ev_at (w) += w->repeat;
2085     if (ev_at (w) < mn_now)
2086     ev_at (w) = mn_now;
2087 root 1.61
2088 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2089 root 1.90
2090 root 1.284 ANHE_at_cache (timers [HEAP0]);
2091     downheap (timers, timercnt, HEAP0);
2092     }
2093     else
2094     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2095 root 1.243
2096 root 1.284 EV_FREQUENT_CHECK;
2097     feed_reverse (EV_A_ (W)w);
2098 root 1.12 }
2099 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2100 root 1.30
2101 root 1.284 feed_reverse_done (EV_A_ EV_TIMEOUT);
2102 root 1.12 }
2103     }
2104 root 1.4
2105 root 1.140 #if EV_PERIODIC_ENABLE
2106 root 1.288 /* make periodics pending */
2107 root 1.284 inline_size void
2108 root 1.51 periodics_reify (EV_P)
2109 root 1.12 {
2110 root 1.248 EV_FREQUENT_CHECK;
2111 root 1.250
2112 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2113 root 1.12 {
2114 root 1.284 int feed_count = 0;
2115    
2116     do
2117     {
2118     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2119 root 1.1
2120 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2121 root 1.61
2122 root 1.284 /* first reschedule or stop timer */
2123     if (w->reschedule_cb)
2124     {
2125     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2126 root 1.243
2127 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2128 root 1.243
2129 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2130     downheap (periodics, periodiccnt, HEAP0);
2131     }
2132     else if (w->interval)
2133 root 1.246 {
2134 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2135     /* if next trigger time is not sufficiently in the future, put it there */
2136     /* this might happen because of floating point inexactness */
2137     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2138     {
2139     ev_at (w) += w->interval;
2140    
2141     /* if interval is unreasonably low we might still have a time in the past */
2142     /* so correct this. this will make the periodic very inexact, but the user */
2143     /* has effectively asked to get triggered more often than possible */
2144     if (ev_at (w) < ev_rt_now)
2145     ev_at (w) = ev_rt_now;
2146     }
2147 root 1.243
2148 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2149     downheap (periodics, periodiccnt, HEAP0);
2150 root 1.246 }
2151 root 1.284 else
2152     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2153 root 1.243
2154 root 1.284 EV_FREQUENT_CHECK;
2155     feed_reverse (EV_A_ (W)w);
2156 root 1.1 }
2157 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2158 root 1.12
2159 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2160 root 1.12 }
2161     }
2162    
2163 root 1.288 /* simply recalculate all periodics */
2164     /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2165 root 1.140 static void noinline
2166 root 1.54 periodics_reschedule (EV_P)
2167 root 1.12 {
2168     int i;
2169    
2170 root 1.13 /* adjust periodics after time jump */
2171 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2172 root 1.12 {
2173 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2174 root 1.12
2175 root 1.77 if (w->reschedule_cb)
2176 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2177 root 1.77 else if (w->interval)
2178 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2179 root 1.242
2180 root 1.248 ANHE_at_cache (periodics [i]);
2181 root 1.77 }
2182 root 1.12
2183 root 1.248 reheap (periodics, periodiccnt);
2184 root 1.1 }
2185 root 1.93 #endif
2186 root 1.1
2187 root 1.288 /* adjust all timers by a given offset */
2188 root 1.285 static void noinline
2189     timers_reschedule (EV_P_ ev_tstamp adjust)
2190     {
2191     int i;
2192    
2193     for (i = 0; i < timercnt; ++i)
2194     {
2195     ANHE *he = timers + i + HEAP0;
2196     ANHE_w (*he)->at += adjust;
2197     ANHE_at_cache (*he);
2198     }
2199     }
2200    
2201 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2202 root 1.324 /* also detect if there was a timejump, and act accordingly */
2203 root 1.284 inline_speed void
2204 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2205 root 1.4 {
2206 root 1.40 #if EV_USE_MONOTONIC
2207     if (expect_true (have_monotonic))
2208     {
2209 root 1.289 int i;
2210 root 1.178 ev_tstamp odiff = rtmn_diff;
2211    
2212     mn_now = get_clock ();
2213    
2214     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2215     /* interpolate in the meantime */
2216     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2217 root 1.40 {
2218 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2219     return;
2220     }
2221    
2222     now_floor = mn_now;
2223     ev_rt_now = ev_time ();
2224 root 1.4
2225 root 1.178 /* loop a few times, before making important decisions.
2226     * on the choice of "4": one iteration isn't enough,
2227     * in case we get preempted during the calls to
2228     * ev_time and get_clock. a second call is almost guaranteed
2229     * to succeed in that case, though. and looping a few more times
2230     * doesn't hurt either as we only do this on time-jumps or
2231     * in the unlikely event of having been preempted here.
2232     */
2233     for (i = 4; --i; )
2234     {
2235     rtmn_diff = ev_rt_now - mn_now;
2236 root 1.4
2237 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2238 root 1.178 return; /* all is well */
2239 root 1.4
2240 root 1.178 ev_rt_now = ev_time ();
2241     mn_now = get_clock ();
2242     now_floor = mn_now;
2243     }
2244 root 1.4
2245 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2246     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2247 root 1.140 # if EV_PERIODIC_ENABLE
2248 root 1.178 periodics_reschedule (EV_A);
2249 root 1.93 # endif
2250 root 1.4 }
2251     else
2252 root 1.40 #endif
2253 root 1.4 {
2254 root 1.85 ev_rt_now = ev_time ();
2255 root 1.40
2256 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2257 root 1.13 {
2258 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2259     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2260 root 1.140 #if EV_PERIODIC_ENABLE
2261 root 1.54 periodics_reschedule (EV_A);
2262 root 1.93 #endif
2263 root 1.13 }
2264 root 1.4
2265 root 1.85 mn_now = ev_rt_now;
2266 root 1.4 }
2267     }
2268    
2269 root 1.51 void
2270     ev_loop (EV_P_ int flags)
2271 root 1.1 {
2272 root 1.338 #if EV_FEATURE_API
2273 root 1.294 ++loop_depth;
2274 root 1.297 #endif
2275 root 1.294
2276 root 1.298 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2277    
2278 root 1.219 loop_done = EVUNLOOP_CANCEL;
2279 root 1.1
2280 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2281 root 1.158
2282 root 1.161 do
2283 root 1.9 {
2284 root 1.250 #if EV_VERIFY >= 2
2285 root 1.340 ev_verify (EV_A);
2286 root 1.250 #endif
2287    
2288 root 1.158 #ifndef _WIN32
2289     if (expect_false (curpid)) /* penalise the forking check even more */
2290     if (expect_false (getpid () != curpid))
2291     {
2292     curpid = getpid ();
2293     postfork = 1;
2294     }
2295     #endif
2296    
2297 root 1.157 #if EV_FORK_ENABLE
2298     /* we might have forked, so queue fork handlers */
2299     if (expect_false (postfork))
2300     if (forkcnt)
2301     {
2302     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2303 root 1.297 EV_INVOKE_PENDING;
2304 root 1.157 }
2305     #endif
2306 root 1.147
2307 root 1.337 #if EV_PREPARE_ENABLE
2308 root 1.170 /* queue prepare watchers (and execute them) */
2309 root 1.40 if (expect_false (preparecnt))
2310 root 1.20 {
2311 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2312 root 1.297 EV_INVOKE_PENDING;
2313 root 1.20 }
2314 root 1.337 #endif
2315 root 1.9
2316 root 1.298 if (expect_false (loop_done))
2317     break;
2318    
2319 root 1.70 /* we might have forked, so reify kernel state if necessary */
2320     if (expect_false (postfork))
2321     loop_fork (EV_A);
2322    
2323 root 1.1 /* update fd-related kernel structures */
2324 root 1.51 fd_reify (EV_A);
2325 root 1.1
2326     /* calculate blocking time */
2327 root 1.135 {
2328 root 1.193 ev_tstamp waittime = 0.;
2329     ev_tstamp sleeptime = 0.;
2330 root 1.12
2331 root 1.193 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2332 root 1.135 {
2333 root 1.293 /* remember old timestamp for io_blocktime calculation */
2334     ev_tstamp prev_mn_now = mn_now;
2335    
2336 root 1.135 /* update time to cancel out callback processing overhead */
2337 root 1.178 time_update (EV_A_ 1e100);
2338 root 1.135
2339 root 1.287 waittime = MAX_BLOCKTIME;
2340    
2341 root 1.135 if (timercnt)
2342     {
2343 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2344 root 1.193 if (waittime > to) waittime = to;
2345 root 1.135 }
2346 root 1.4
2347 root 1.140 #if EV_PERIODIC_ENABLE
2348 root 1.135 if (periodiccnt)
2349     {
2350 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2351 root 1.193 if (waittime > to) waittime = to;
2352 root 1.135 }
2353 root 1.93 #endif
2354 root 1.4
2355 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2356 root 1.193 if (expect_false (waittime < timeout_blocktime))
2357     waittime = timeout_blocktime;
2358    
2359 root 1.293 /* extra check because io_blocktime is commonly 0 */
2360     if (expect_false (io_blocktime))
2361     {
2362     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2363 root 1.193
2364 root 1.293 if (sleeptime > waittime - backend_fudge)
2365     sleeptime = waittime - backend_fudge;
2366 root 1.193
2367 root 1.293 if (expect_true (sleeptime > 0.))
2368     {
2369     ev_sleep (sleeptime);
2370     waittime -= sleeptime;
2371     }
2372 root 1.193 }
2373 root 1.135 }
2374 root 1.1
2375 root 1.338 #if EV_FEATURE_API
2376 root 1.162 ++loop_count;
2377 root 1.297 #endif
2378 root 1.298 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2379 root 1.193 backend_poll (EV_A_ waittime);
2380 root 1.298 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2381 root 1.178
2382     /* update ev_rt_now, do magic */
2383 root 1.193 time_update (EV_A_ waittime + sleeptime);
2384 root 1.135 }
2385 root 1.1
2386 root 1.9 /* queue pending timers and reschedule them */
2387 root 1.51 timers_reify (EV_A); /* relative timers called last */
2388 root 1.140 #if EV_PERIODIC_ENABLE
2389 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2390 root 1.93 #endif
2391 root 1.1
2392 root 1.164 #if EV_IDLE_ENABLE
2393 root 1.137 /* queue idle watchers unless other events are pending */
2394 root 1.164 idle_reify (EV_A);
2395     #endif
2396 root 1.9
2397 root 1.337 #if EV_CHECK_ENABLE
2398 root 1.20 /* queue check watchers, to be executed first */
2399 root 1.123 if (expect_false (checkcnt))
2400 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2401 root 1.337 #endif
2402 root 1.9
2403 root 1.297 EV_INVOKE_PENDING;
2404 root 1.1 }
2405 root 1.219 while (expect_true (
2406     activecnt
2407     && !loop_done
2408     && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2409     ));
2410 root 1.13
2411 root 1.135 if (loop_done == EVUNLOOP_ONE)
2412     loop_done = EVUNLOOP_CANCEL;
2413 root 1.294
2414 root 1.338 #if EV_FEATURE_API
2415 root 1.294 --loop_depth;
2416 root 1.297 #endif
2417 root 1.51 }
2418    
2419     void
2420     ev_unloop (EV_P_ int how)
2421     {
2422     loop_done = how;
2423 root 1.1 }
2424    
2425 root 1.285 void
2426     ev_ref (EV_P)
2427     {
2428     ++activecnt;
2429     }
2430    
2431     void
2432     ev_unref (EV_P)
2433     {
2434     --activecnt;
2435     }
2436    
2437     void
2438     ev_now_update (EV_P)
2439     {
2440     time_update (EV_A_ 1e100);
2441     }
2442    
2443     void
2444     ev_suspend (EV_P)
2445     {
2446     ev_now_update (EV_A);
2447     }
2448    
2449     void
2450     ev_resume (EV_P)
2451     {
2452     ev_tstamp mn_prev = mn_now;
2453    
2454     ev_now_update (EV_A);
2455     timers_reschedule (EV_A_ mn_now - mn_prev);
2456 root 1.286 #if EV_PERIODIC_ENABLE
2457 root 1.288 /* TODO: really do this? */
2458 root 1.285 periodics_reschedule (EV_A);
2459 root 1.286 #endif
2460 root 1.285 }
2461    
2462 root 1.8 /*****************************************************************************/
2463 root 1.288 /* singly-linked list management, used when the expected list length is short */
2464 root 1.8
2465 root 1.284 inline_size void
2466 root 1.10 wlist_add (WL *head, WL elem)
2467 root 1.1 {
2468     elem->next = *head;
2469     *head = elem;
2470     }
2471    
2472 root 1.284 inline_size void
2473 root 1.10 wlist_del (WL *head, WL elem)
2474 root 1.1 {
2475     while (*head)
2476     {
2477 root 1.307 if (expect_true (*head == elem))
2478 root 1.1 {
2479     *head = elem->next;
2480 root 1.307 break;
2481 root 1.1 }
2482    
2483     head = &(*head)->next;
2484     }
2485     }
2486    
2487 root 1.288 /* internal, faster, version of ev_clear_pending */
2488 root 1.284 inline_speed void
2489 root 1.166 clear_pending (EV_P_ W w)
2490 root 1.16 {
2491     if (w->pending)
2492     {
2493 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2494 root 1.16 w->pending = 0;
2495     }
2496     }
2497    
2498 root 1.167 int
2499     ev_clear_pending (EV_P_ void *w)
2500 root 1.166 {
2501     W w_ = (W)w;
2502     int pending = w_->pending;
2503    
2504 root 1.172 if (expect_true (pending))
2505     {
2506     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2507 root 1.288 p->w = (W)&pending_w;
2508 root 1.172 w_->pending = 0;
2509     return p->events;
2510     }
2511     else
2512 root 1.167 return 0;
2513 root 1.166 }
2514    
2515 root 1.284 inline_size void
2516 root 1.164 pri_adjust (EV_P_ W w)
2517     {
2518 root 1.295 int pri = ev_priority (w);
2519 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2520     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2521 root 1.295 ev_set_priority (w, pri);
2522 root 1.164 }
2523    
2524 root 1.284 inline_speed void
2525 root 1.51 ev_start (EV_P_ W w, int active)
2526 root 1.1 {
2527 root 1.164 pri_adjust (EV_A_ w);
2528 root 1.1 w->active = active;
2529 root 1.51 ev_ref (EV_A);
2530 root 1.1 }
2531    
2532 root 1.284 inline_size void
2533 root 1.51 ev_stop (EV_P_ W w)
2534 root 1.1 {
2535 root 1.51 ev_unref (EV_A);
2536 root 1.1 w->active = 0;
2537     }
2538    
2539 root 1.8 /*****************************************************************************/
2540    
2541 root 1.171 void noinline
2542 root 1.136 ev_io_start (EV_P_ ev_io *w)
2543 root 1.1 {
2544 root 1.37 int fd = w->fd;
2545    
2546 root 1.123 if (expect_false (ev_is_active (w)))
2547 root 1.1 return;
2548    
2549 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2550 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2551 root 1.33
2552 root 1.248 EV_FREQUENT_CHECK;
2553    
2554 root 1.51 ev_start (EV_A_ (W)w, 1);
2555 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2556 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2557 root 1.1
2558 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2559 root 1.281 w->events &= ~EV__IOFDSET;
2560 root 1.248
2561     EV_FREQUENT_CHECK;
2562 root 1.1 }
2563    
2564 root 1.171 void noinline
2565 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2566 root 1.1 {
2567 root 1.166 clear_pending (EV_A_ (W)w);
2568 root 1.123 if (expect_false (!ev_is_active (w)))
2569 root 1.1 return;
2570    
2571 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2572 root 1.89
2573 root 1.248 EV_FREQUENT_CHECK;
2574    
2575 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2576 root 1.51 ev_stop (EV_A_ (W)w);
2577 root 1.1
2578 root 1.184 fd_change (EV_A_ w->fd, 1);
2579 root 1.248
2580     EV_FREQUENT_CHECK;
2581 root 1.1 }
2582    
2583 root 1.171 void noinline
2584 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2585 root 1.1 {
2586 root 1.123 if (expect_false (ev_is_active (w)))
2587 root 1.1 return;
2588    
2589 root 1.228 ev_at (w) += mn_now;
2590 root 1.12
2591 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2592 root 1.13
2593 root 1.248 EV_FREQUENT_CHECK;
2594    
2595     ++timercnt;
2596     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2597 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2598     ANHE_w (timers [ev_active (w)]) = (WT)w;
2599 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2600 root 1.235 upheap (timers, ev_active (w));
2601 root 1.62
2602 root 1.248 EV_FREQUENT_CHECK;
2603    
2604 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2605 root 1.12 }
2606    
2607 root 1.171 void noinline
2608 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2609 root 1.12 {
2610 root 1.166 clear_pending (EV_A_ (W)w);
2611 root 1.123 if (expect_false (!ev_is_active (w)))
2612 root 1.12 return;
2613    
2614 root 1.248 EV_FREQUENT_CHECK;
2615    
2616 root 1.230 {
2617     int active = ev_active (w);
2618 root 1.62
2619 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2620 root 1.151
2621 root 1.248 --timercnt;
2622    
2623     if (expect_true (active < timercnt + HEAP0))
2624 root 1.151 {
2625 root 1.248 timers [active] = timers [timercnt + HEAP0];
2626 root 1.181 adjustheap (timers, timercnt, active);
2627 root 1.151 }
2628 root 1.248 }
2629 root 1.228
2630     ev_at (w) -= mn_now;
2631 root 1.14
2632 root 1.51 ev_stop (EV_A_ (W)w);
2633 root 1.328
2634     EV_FREQUENT_CHECK;
2635 root 1.12 }
2636 root 1.4
2637 root 1.171 void noinline
2638 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2639 root 1.14 {
2640 root 1.248 EV_FREQUENT_CHECK;
2641    
2642 root 1.14 if (ev_is_active (w))
2643     {
2644     if (w->repeat)
2645 root 1.99 {
2646 root 1.228 ev_at (w) = mn_now + w->repeat;
2647 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2648 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2649 root 1.99 }
2650 root 1.14 else
2651 root 1.51 ev_timer_stop (EV_A_ w);
2652 root 1.14 }
2653     else if (w->repeat)
2654 root 1.112 {
2655 root 1.229 ev_at (w) = w->repeat;
2656 root 1.112 ev_timer_start (EV_A_ w);
2657     }
2658 root 1.248
2659     EV_FREQUENT_CHECK;
2660 root 1.14 }
2661    
2662 root 1.301 ev_tstamp
2663     ev_timer_remaining (EV_P_ ev_timer *w)
2664     {
2665     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2666     }
2667    
2668 root 1.140 #if EV_PERIODIC_ENABLE
2669 root 1.171 void noinline
2670 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2671 root 1.12 {
2672 root 1.123 if (expect_false (ev_is_active (w)))
2673 root 1.12 return;
2674 root 1.1
2675 root 1.77 if (w->reschedule_cb)
2676 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2677 root 1.77 else if (w->interval)
2678     {
2679 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2680 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2681 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2682 root 1.77 }
2683 root 1.173 else
2684 root 1.228 ev_at (w) = w->offset;
2685 root 1.12
2686 root 1.248 EV_FREQUENT_CHECK;
2687    
2688     ++periodiccnt;
2689     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2690 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2691     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2692 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2693 root 1.235 upheap (periodics, ev_active (w));
2694 root 1.62
2695 root 1.248 EV_FREQUENT_CHECK;
2696    
2697 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2698 root 1.1 }
2699    
2700 root 1.171 void noinline
2701 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2702 root 1.1 {
2703 root 1.166 clear_pending (EV_A_ (W)w);
2704 root 1.123 if (expect_false (!ev_is_active (w)))
2705 root 1.1 return;
2706    
2707 root 1.248 EV_FREQUENT_CHECK;
2708    
2709 root 1.230 {
2710     int active = ev_active (w);
2711 root 1.62
2712 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2713 root 1.151
2714 root 1.248 --periodiccnt;
2715    
2716     if (expect_true (active < periodiccnt + HEAP0))
2717 root 1.151 {
2718 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2719 root 1.181 adjustheap (periodics, periodiccnt, active);
2720 root 1.151 }
2721 root 1.248 }
2722 root 1.228
2723 root 1.328 ev_stop (EV_A_ (W)w);
2724    
2725 root 1.248 EV_FREQUENT_CHECK;
2726 root 1.1 }
2727    
2728 root 1.171 void noinline
2729 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2730 root 1.77 {
2731 root 1.84 /* TODO: use adjustheap and recalculation */
2732 root 1.77 ev_periodic_stop (EV_A_ w);
2733     ev_periodic_start (EV_A_ w);
2734     }
2735 root 1.93 #endif
2736 root 1.77
2737 root 1.56 #ifndef SA_RESTART
2738     # define SA_RESTART 0
2739     #endif
2740    
2741 root 1.336 #if EV_SIGNAL_ENABLE
2742    
2743 root 1.171 void noinline
2744 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2745 root 1.56 {
2746 root 1.123 if (expect_false (ev_is_active (w)))
2747 root 1.56 return;
2748    
2749 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2750    
2751     #if EV_MULTIPLICITY
2752 root 1.308 assert (("libev: a signal must not be attached to two different loops",
2753 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2754    
2755     signals [w->signum - 1].loop = EV_A;
2756     #endif
2757 root 1.56
2758 root 1.303 EV_FREQUENT_CHECK;
2759    
2760     #if EV_USE_SIGNALFD
2761     if (sigfd == -2)
2762     {
2763     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2764     if (sigfd < 0 && errno == EINVAL)
2765     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2766    
2767     if (sigfd >= 0)
2768     {
2769     fd_intern (sigfd); /* doing it twice will not hurt */
2770    
2771     sigemptyset (&sigfd_set);
2772    
2773     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2774     ev_set_priority (&sigfd_w, EV_MAXPRI);
2775     ev_io_start (EV_A_ &sigfd_w);
2776     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2777     }
2778     }
2779    
2780     if (sigfd >= 0)
2781     {
2782     /* TODO: check .head */
2783     sigaddset (&sigfd_set, w->signum);
2784     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2785 root 1.207
2786 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2787     }
2788 root 1.180 #endif
2789    
2790 root 1.56 ev_start (EV_A_ (W)w, 1);
2791 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2792 root 1.56
2793 root 1.63 if (!((WL)w)->next)
2794 root 1.304 # if EV_USE_SIGNALFD
2795 root 1.306 if (sigfd < 0) /*TODO*/
2796 root 1.304 # endif
2797 root 1.306 {
2798 root 1.322 # ifdef _WIN32
2799 root 1.317 evpipe_init (EV_A);
2800    
2801 root 1.306 signal (w->signum, ev_sighandler);
2802     # else
2803     struct sigaction sa;
2804    
2805     evpipe_init (EV_A);
2806    
2807     sa.sa_handler = ev_sighandler;
2808     sigfillset (&sa.sa_mask);
2809     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2810     sigaction (w->signum, &sa, 0);
2811    
2812     sigemptyset (&sa.sa_mask);
2813     sigaddset (&sa.sa_mask, w->signum);
2814     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2815 root 1.67 #endif
2816 root 1.306 }
2817 root 1.248
2818     EV_FREQUENT_CHECK;
2819 root 1.56 }
2820    
2821 root 1.171 void noinline
2822 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2823 root 1.56 {
2824 root 1.166 clear_pending (EV_A_ (W)w);
2825 root 1.123 if (expect_false (!ev_is_active (w)))
2826 root 1.56 return;
2827    
2828 root 1.248 EV_FREQUENT_CHECK;
2829    
2830 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2831 root 1.56 ev_stop (EV_A_ (W)w);
2832    
2833     if (!signals [w->signum - 1].head)
2834 root 1.306 {
2835 root 1.307 #if EV_MULTIPLICITY
2836 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
2837 root 1.307 #endif
2838     #if EV_USE_SIGNALFD
2839 root 1.306 if (sigfd >= 0)
2840     {
2841 root 1.321 sigset_t ss;
2842    
2843     sigemptyset (&ss);
2844     sigaddset (&ss, w->signum);
2845 root 1.306 sigdelset (&sigfd_set, w->signum);
2846 root 1.321
2847 root 1.306 signalfd (sigfd, &sigfd_set, 0);
2848 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
2849 root 1.306 }
2850     else
2851 root 1.307 #endif
2852 root 1.306 signal (w->signum, SIG_DFL);
2853     }
2854 root 1.248
2855     EV_FREQUENT_CHECK;
2856 root 1.56 }
2857    
2858 root 1.336 #endif
2859    
2860     #if EV_CHILD_ENABLE
2861    
2862 root 1.28 void
2863 root 1.136 ev_child_start (EV_P_ ev_child *w)
2864 root 1.22 {
2865 root 1.56 #if EV_MULTIPLICITY
2866 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2867 root 1.56 #endif
2868 root 1.123 if (expect_false (ev_is_active (w)))
2869 root 1.22 return;
2870    
2871 root 1.248 EV_FREQUENT_CHECK;
2872    
2873 root 1.51 ev_start (EV_A_ (W)w, 1);
2874 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2875 root 1.248
2876     EV_FREQUENT_CHECK;
2877 root 1.22 }
2878    
2879 root 1.28 void
2880 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2881 root 1.22 {
2882 root 1.166 clear_pending (EV_A_ (W)w);
2883 root 1.123 if (expect_false (!ev_is_active (w)))
2884 root 1.22 return;
2885    
2886 root 1.248 EV_FREQUENT_CHECK;
2887    
2888 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2889 root 1.51 ev_stop (EV_A_ (W)w);
2890 root 1.248
2891     EV_FREQUENT_CHECK;
2892 root 1.22 }
2893    
2894 root 1.336 #endif
2895    
2896 root 1.140 #if EV_STAT_ENABLE
2897    
2898     # ifdef _WIN32
2899 root 1.146 # undef lstat
2900     # define lstat(a,b) _stati64 (a,b)
2901 root 1.140 # endif
2902    
2903 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2904     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2905     #define MIN_STAT_INTERVAL 0.1074891
2906 root 1.143
2907 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2908 root 1.152
2909     #if EV_USE_INOTIFY
2910 root 1.326
2911     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2912     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2913 root 1.152
2914     static void noinline
2915     infy_add (EV_P_ ev_stat *w)
2916     {
2917     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2918    
2919 root 1.318 if (w->wd >= 0)
2920 root 1.152 {
2921 root 1.318 struct statfs sfs;
2922    
2923     /* now local changes will be tracked by inotify, but remote changes won't */
2924     /* unless the filesystem is known to be local, we therefore still poll */
2925     /* also do poll on <2.6.25, but with normal frequency */
2926    
2927     if (!fs_2625)
2928     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2929     else if (!statfs (w->path, &sfs)
2930     && (sfs.f_type == 0x1373 /* devfs */
2931     || sfs.f_type == 0xEF53 /* ext2/3 */
2932     || sfs.f_type == 0x3153464a /* jfs */
2933     || sfs.f_type == 0x52654973 /* reiser3 */
2934     || sfs.f_type == 0x01021994 /* tempfs */
2935     || sfs.f_type == 0x58465342 /* xfs */))
2936     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2937     else
2938     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2939     }
2940     else
2941     {
2942     /* can't use inotify, continue to stat */
2943 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2944 root 1.152
2945 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
2946 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2947 root 1.233 /* but an efficiency issue only */
2948 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2949 root 1.152 {
2950 root 1.153 char path [4096];
2951 root 1.152 strcpy (path, w->path);
2952    
2953     do
2954     {
2955     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2956     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2957    
2958     char *pend = strrchr (path, '/');
2959    
2960 root 1.275 if (!pend || pend == path)
2961     break;
2962 root 1.152
2963     *pend = 0;
2964 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
2965 root 1.152 }
2966     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2967     }
2968     }
2969 root 1.275
2970     if (w->wd >= 0)
2971 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2972 root 1.152
2973 root 1.318 /* now re-arm timer, if required */
2974     if (ev_is_active (&w->timer)) ev_ref (EV_A);
2975     ev_timer_again (EV_A_ &w->timer);
2976     if (ev_is_active (&w->timer)) ev_unref (EV_A);
2977 root 1.152 }
2978    
2979     static void noinline
2980     infy_del (EV_P_ ev_stat *w)
2981     {
2982     int slot;
2983     int wd = w->wd;
2984    
2985     if (wd < 0)
2986     return;
2987    
2988     w->wd = -2;
2989 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2990 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
2991    
2992     /* remove this watcher, if others are watching it, they will rearm */
2993     inotify_rm_watch (fs_fd, wd);
2994     }
2995    
2996     static void noinline
2997     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2998     {
2999     if (slot < 0)
3000 root 1.264 /* overflow, need to check for all hash slots */
3001 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3002 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3003     else
3004     {
3005     WL w_;
3006    
3007 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3008 root 1.152 {
3009     ev_stat *w = (ev_stat *)w_;
3010     w_ = w_->next; /* lets us remove this watcher and all before it */
3011    
3012     if (w->wd == wd || wd == -1)
3013     {
3014     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3015     {
3016 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3017 root 1.152 w->wd = -1;
3018     infy_add (EV_A_ w); /* re-add, no matter what */
3019     }
3020    
3021 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3022 root 1.152 }
3023     }
3024     }
3025     }
3026    
3027     static void
3028     infy_cb (EV_P_ ev_io *w, int revents)
3029     {
3030     char buf [EV_INOTIFY_BUFSIZE];
3031     int ofs;
3032     int len = read (fs_fd, buf, sizeof (buf));
3033    
3034 root 1.326 for (ofs = 0; ofs < len; )
3035     {
3036     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3037     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3038     ofs += sizeof (struct inotify_event) + ev->len;
3039     }
3040 root 1.152 }
3041    
3042 root 1.330 inline_size unsigned int
3043     ev_linux_version (void)
3044 root 1.152 {
3045 root 1.273 struct utsname buf;
3046 root 1.330 unsigned int v;
3047     int i;
3048     char *p = buf.release;
3049 root 1.273
3050     if (uname (&buf))
3051 root 1.330 return 0;
3052    
3053     for (i = 3+1; --i; )
3054     {
3055     unsigned int c = 0;
3056    
3057     for (;;)
3058     {
3059     if (*p >= '0' && *p <= '9')
3060     c = c * 10 + *p++ - '0';
3061     else
3062     {
3063     p += *p == '.';
3064     break;
3065     }
3066     }
3067    
3068     v = (v << 8) | c;
3069     }
3070 root 1.273
3071 root 1.330 return v;
3072     }
3073 root 1.273
3074 root 1.330 inline_size void
3075     ev_check_2625 (EV_P)
3076     {
3077     /* kernels < 2.6.25 are borked
3078     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3079     */
3080     if (ev_linux_version () < 0x020619)
3081 root 1.273 return;
3082 root 1.264
3083 root 1.273 fs_2625 = 1;
3084     }
3085 root 1.264
3086 root 1.315 inline_size int
3087     infy_newfd (void)
3088     {
3089     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3090     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3091     if (fd >= 0)
3092     return fd;
3093     #endif
3094     return inotify_init ();
3095     }
3096    
3097 root 1.284 inline_size void
3098 root 1.273 infy_init (EV_P)
3099     {
3100     if (fs_fd != -2)
3101     return;
3102 root 1.264
3103 root 1.273 fs_fd = -1;
3104 root 1.264
3105 root 1.330 ev_check_2625 (EV_A);
3106 root 1.264
3107 root 1.315 fs_fd = infy_newfd ();
3108 root 1.152
3109     if (fs_fd >= 0)
3110     {
3111 root 1.315 fd_intern (fs_fd);
3112 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3113     ev_set_priority (&fs_w, EV_MAXPRI);
3114     ev_io_start (EV_A_ &fs_w);
3115 root 1.317 ev_unref (EV_A);
3116 root 1.152 }
3117     }
3118    
3119 root 1.284 inline_size void
3120 root 1.154 infy_fork (EV_P)
3121     {
3122     int slot;
3123    
3124     if (fs_fd < 0)
3125     return;
3126    
3127 root 1.317 ev_ref (EV_A);
3128 root 1.315 ev_io_stop (EV_A_ &fs_w);
3129 root 1.154 close (fs_fd);
3130 root 1.315 fs_fd = infy_newfd ();
3131    
3132     if (fs_fd >= 0)
3133     {
3134     fd_intern (fs_fd);
3135     ev_io_set (&fs_w, fs_fd, EV_READ);
3136     ev_io_start (EV_A_ &fs_w);
3137 root 1.317 ev_unref (EV_A);
3138 root 1.315 }
3139 root 1.154
3140 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3141 root 1.154 {
3142     WL w_ = fs_hash [slot].head;
3143     fs_hash [slot].head = 0;
3144    
3145     while (w_)
3146     {
3147     ev_stat *w = (ev_stat *)w_;
3148     w_ = w_->next; /* lets us add this watcher */
3149    
3150     w->wd = -1;
3151    
3152     if (fs_fd >= 0)
3153     infy_add (EV_A_ w); /* re-add, no matter what */
3154     else
3155 root 1.318 {
3156     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3157     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3158     ev_timer_again (EV_A_ &w->timer);
3159     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3160     }
3161 root 1.154 }
3162     }
3163     }
3164    
3165 root 1.152 #endif
3166    
3167 root 1.255 #ifdef _WIN32
3168     # define EV_LSTAT(p,b) _stati64 (p, b)
3169     #else
3170     # define EV_LSTAT(p,b) lstat (p, b)
3171     #endif
3172    
3173 root 1.140 void
3174     ev_stat_stat (EV_P_ ev_stat *w)
3175     {
3176     if (lstat (w->path, &w->attr) < 0)
3177     w->attr.st_nlink = 0;
3178     else if (!w->attr.st_nlink)
3179     w->attr.st_nlink = 1;
3180     }
3181    
3182 root 1.157 static void noinline
3183 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3184     {
3185     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3186    
3187 root 1.320 ev_statdata prev = w->attr;
3188 root 1.140 ev_stat_stat (EV_A_ w);
3189    
3190 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3191     if (
3192 root 1.320 prev.st_dev != w->attr.st_dev
3193     || prev.st_ino != w->attr.st_ino
3194     || prev.st_mode != w->attr.st_mode
3195     || prev.st_nlink != w->attr.st_nlink
3196     || prev.st_uid != w->attr.st_uid
3197     || prev.st_gid != w->attr.st_gid
3198     || prev.st_rdev != w->attr.st_rdev
3199     || prev.st_size != w->attr.st_size
3200     || prev.st_atime != w->attr.st_atime
3201     || prev.st_mtime != w->attr.st_mtime
3202     || prev.st_ctime != w->attr.st_ctime
3203 root 1.156 ) {
3204 root 1.320 /* we only update w->prev on actual differences */
3205     /* in case we test more often than invoke the callback, */
3206     /* to ensure that prev is always different to attr */
3207     w->prev = prev;
3208    
3209 root 1.152 #if EV_USE_INOTIFY
3210 root 1.264 if (fs_fd >= 0)
3211     {
3212     infy_del (EV_A_ w);
3213     infy_add (EV_A_ w);
3214     ev_stat_stat (EV_A_ w); /* avoid race... */
3215     }
3216 root 1.152 #endif
3217    
3218     ev_feed_event (EV_A_ w, EV_STAT);
3219     }
3220 root 1.140 }
3221    
3222     void
3223     ev_stat_start (EV_P_ ev_stat *w)
3224     {
3225     if (expect_false (ev_is_active (w)))
3226     return;
3227    
3228     ev_stat_stat (EV_A_ w);
3229    
3230 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3231     w->interval = MIN_STAT_INTERVAL;
3232 root 1.143
3233 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3234 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3235 root 1.152
3236     #if EV_USE_INOTIFY
3237     infy_init (EV_A);
3238    
3239     if (fs_fd >= 0)
3240     infy_add (EV_A_ w);
3241     else
3242     #endif
3243 root 1.318 {
3244     ev_timer_again (EV_A_ &w->timer);
3245     ev_unref (EV_A);
3246     }
3247 root 1.140
3248     ev_start (EV_A_ (W)w, 1);
3249 root 1.248
3250     EV_FREQUENT_CHECK;
3251 root 1.140 }
3252    
3253     void
3254     ev_stat_stop (EV_P_ ev_stat *w)
3255     {
3256 root 1.166 clear_pending (EV_A_ (W)w);
3257 root 1.140 if (expect_false (!ev_is_active (w)))
3258     return;
3259    
3260 root 1.248 EV_FREQUENT_CHECK;
3261    
3262 root 1.152 #if EV_USE_INOTIFY
3263     infy_del (EV_A_ w);
3264     #endif
3265 root 1.318
3266     if (ev_is_active (&w->timer))
3267     {
3268     ev_ref (EV_A);
3269     ev_timer_stop (EV_A_ &w->timer);
3270     }
3271 root 1.140
3272 root 1.134 ev_stop (EV_A_ (W)w);
3273 root 1.248
3274     EV_FREQUENT_CHECK;
3275 root 1.134 }
3276     #endif
3277    
3278 root 1.164 #if EV_IDLE_ENABLE
3279 root 1.144 void
3280     ev_idle_start (EV_P_ ev_idle *w)
3281     {
3282     if (expect_false (ev_is_active (w)))
3283     return;
3284    
3285 root 1.164 pri_adjust (EV_A_ (W)w);
3286    
3287 root 1.248 EV_FREQUENT_CHECK;
3288    
3289 root 1.164 {
3290     int active = ++idlecnt [ABSPRI (w)];
3291    
3292     ++idleall;
3293     ev_start (EV_A_ (W)w, active);
3294    
3295     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3296     idles [ABSPRI (w)][active - 1] = w;
3297     }
3298 root 1.248
3299     EV_FREQUENT_CHECK;
3300 root 1.144 }
3301    
3302     void
3303     ev_idle_stop (EV_P_ ev_idle *w)
3304     {
3305 root 1.166 clear_pending (EV_A_ (W)w);
3306 root 1.144 if (expect_false (!ev_is_active (w)))
3307     return;
3308    
3309 root 1.248 EV_FREQUENT_CHECK;
3310    
3311 root 1.144 {
3312 root 1.230 int active = ev_active (w);
3313 root 1.164
3314     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3315 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3316 root 1.164
3317     ev_stop (EV_A_ (W)w);
3318     --idleall;
3319 root 1.144 }
3320 root 1.248
3321     EV_FREQUENT_CHECK;
3322 root 1.144 }
3323 root 1.164 #endif
3324 root 1.144
3325 root 1.337 #if EV_PREPARE_ENABLE
3326 root 1.144 void
3327     ev_prepare_start (EV_P_ ev_prepare *w)
3328     {
3329     if (expect_false (ev_is_active (w)))
3330     return;
3331    
3332 root 1.248 EV_FREQUENT_CHECK;
3333    
3334 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3335     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3336     prepares [preparecnt - 1] = w;
3337 root 1.248
3338     EV_FREQUENT_CHECK;
3339 root 1.144 }
3340    
3341     void
3342     ev_prepare_stop (EV_P_ ev_prepare *w)
3343     {
3344 root 1.166 clear_pending (EV_A_ (W)w);
3345 root 1.144 if (expect_false (!ev_is_active (w)))
3346     return;
3347    
3348 root 1.248 EV_FREQUENT_CHECK;
3349    
3350 root 1.144 {
3351 root 1.230 int active = ev_active (w);
3352    
3353 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3354 root 1.230 ev_active (prepares [active - 1]) = active;
3355 root 1.144 }
3356    
3357     ev_stop (EV_A_ (W)w);
3358 root 1.248
3359     EV_FREQUENT_CHECK;
3360 root 1.144 }
3361 root 1.337 #endif
3362 root 1.144
3363 root 1.337 #if EV_CHECK_ENABLE
3364 root 1.144 void
3365     ev_check_start (EV_P_ ev_check *w)
3366     {
3367     if (expect_false (ev_is_active (w)))
3368     return;
3369    
3370 root 1.248 EV_FREQUENT_CHECK;
3371    
3372 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3373     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3374     checks [checkcnt - 1] = w;
3375 root 1.248
3376     EV_FREQUENT_CHECK;
3377 root 1.144 }
3378    
3379     void
3380     ev_check_stop (EV_P_ ev_check *w)
3381     {
3382 root 1.166 clear_pending (EV_A_ (W)w);
3383 root 1.144 if (expect_false (!ev_is_active (w)))
3384     return;
3385    
3386 root 1.248 EV_FREQUENT_CHECK;
3387    
3388 root 1.144 {
3389 root 1.230 int active = ev_active (w);
3390    
3391 root 1.144 checks [active - 1] = checks [--checkcnt];
3392 root 1.230 ev_active (checks [active - 1]) = active;
3393 root 1.144 }
3394    
3395     ev_stop (EV_A_ (W)w);
3396 root 1.248
3397     EV_FREQUENT_CHECK;
3398 root 1.144 }
3399 root 1.337 #endif
3400 root 1.144
3401     #if EV_EMBED_ENABLE
3402     void noinline
3403     ev_embed_sweep (EV_P_ ev_embed *w)
3404     {
3405 root 1.188 ev_loop (w->other, EVLOOP_NONBLOCK);
3406 root 1.144 }
3407    
3408     static void
3409 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3410 root 1.144 {
3411     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3412    
3413     if (ev_cb (w))
3414     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3415     else
3416 root 1.195 ev_loop (w->other, EVLOOP_NONBLOCK);
3417 root 1.144 }
3418    
3419 root 1.189 static void
3420     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3421     {
3422     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3423    
3424 root 1.195 {
3425 root 1.306 EV_P = w->other;
3426 root 1.195
3427     while (fdchangecnt)
3428     {
3429     fd_reify (EV_A);
3430     ev_loop (EV_A_ EVLOOP_NONBLOCK);
3431     }
3432     }
3433     }
3434    
3435 root 1.261 static void
3436     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3437     {
3438     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3439    
3440 root 1.277 ev_embed_stop (EV_A_ w);
3441    
3442 root 1.261 {
3443 root 1.306 EV_P = w->other;
3444 root 1.261
3445     ev_loop_fork (EV_A);
3446 root 1.277 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3447 root 1.261 }
3448 root 1.277
3449     ev_embed_start (EV_A_ w);
3450 root 1.261 }
3451    
3452 root 1.195 #if 0
3453     static void
3454     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3455     {
3456     ev_idle_stop (EV_A_ idle);
3457 root 1.189 }
3458 root 1.195 #endif
3459 root 1.189
3460 root 1.144 void
3461     ev_embed_start (EV_P_ ev_embed *w)
3462     {
3463     if (expect_false (ev_is_active (w)))
3464     return;
3465    
3466     {
3467 root 1.306 EV_P = w->other;
3468 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3469 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3470 root 1.144 }
3471    
3472 root 1.248 EV_FREQUENT_CHECK;
3473    
3474 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3475     ev_io_start (EV_A_ &w->io);
3476    
3477 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3478     ev_set_priority (&w->prepare, EV_MINPRI);
3479     ev_prepare_start (EV_A_ &w->prepare);
3480    
3481 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3482     ev_fork_start (EV_A_ &w->fork);
3483    
3484 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3485    
3486 root 1.144 ev_start (EV_A_ (W)w, 1);
3487 root 1.248
3488     EV_FREQUENT_CHECK;
3489 root 1.144 }
3490    
3491     void
3492     ev_embed_stop (EV_P_ ev_embed *w)
3493     {
3494 root 1.166 clear_pending (EV_A_ (W)w);
3495 root 1.144 if (expect_false (!ev_is_active (w)))
3496     return;
3497    
3498 root 1.248 EV_FREQUENT_CHECK;
3499    
3500 root 1.261 ev_io_stop (EV_A_ &w->io);
3501 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3502 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3503 root 1.248
3504 root 1.328 ev_stop (EV_A_ (W)w);
3505    
3506 root 1.248 EV_FREQUENT_CHECK;
3507 root 1.144 }
3508     #endif
3509    
3510 root 1.147 #if EV_FORK_ENABLE
3511     void
3512     ev_fork_start (EV_P_ ev_fork *w)
3513     {
3514     if (expect_false (ev_is_active (w)))
3515     return;
3516    
3517 root 1.248 EV_FREQUENT_CHECK;
3518    
3519 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3520     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3521     forks [forkcnt - 1] = w;
3522 root 1.248
3523     EV_FREQUENT_CHECK;
3524 root 1.147 }
3525    
3526     void
3527     ev_fork_stop (EV_P_ ev_fork *w)
3528     {
3529 root 1.166 clear_pending (EV_A_ (W)w);
3530 root 1.147 if (expect_false (!ev_is_active (w)))
3531     return;
3532    
3533 root 1.248 EV_FREQUENT_CHECK;
3534    
3535 root 1.147 {
3536 root 1.230 int active = ev_active (w);
3537    
3538 root 1.147 forks [active - 1] = forks [--forkcnt];
3539 root 1.230 ev_active (forks [active - 1]) = active;
3540 root 1.147 }
3541    
3542     ev_stop (EV_A_ (W)w);
3543 root 1.248
3544     EV_FREQUENT_CHECK;
3545 root 1.147 }
3546     #endif
3547    
3548 root 1.207 #if EV_ASYNC_ENABLE
3549     void
3550     ev_async_start (EV_P_ ev_async *w)
3551     {
3552     if (expect_false (ev_is_active (w)))
3553     return;
3554    
3555     evpipe_init (EV_A);
3556    
3557 root 1.248 EV_FREQUENT_CHECK;
3558    
3559 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3560     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3561     asyncs [asynccnt - 1] = w;
3562 root 1.248
3563     EV_FREQUENT_CHECK;
3564 root 1.207 }
3565    
3566     void
3567     ev_async_stop (EV_P_ ev_async *w)
3568     {
3569     clear_pending (EV_A_ (W)w);
3570     if (expect_false (!ev_is_active (w)))
3571     return;
3572    
3573 root 1.248 EV_FREQUENT_CHECK;
3574    
3575 root 1.207 {
3576 root 1.230 int active = ev_active (w);
3577    
3578 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3579 root 1.230 ev_active (asyncs [active - 1]) = active;
3580 root 1.207 }
3581    
3582     ev_stop (EV_A_ (W)w);
3583 root 1.248
3584     EV_FREQUENT_CHECK;
3585 root 1.207 }
3586    
3587     void
3588     ev_async_send (EV_P_ ev_async *w)
3589     {
3590     w->sent = 1;
3591 root 1.307 evpipe_write (EV_A_ &async_pending);
3592 root 1.207 }
3593     #endif
3594    
3595 root 1.1 /*****************************************************************************/
3596 root 1.10
3597 root 1.16 struct ev_once
3598     {
3599 root 1.136 ev_io io;
3600     ev_timer to;
3601 root 1.16 void (*cb)(int revents, void *arg);
3602     void *arg;
3603     };
3604    
3605     static void
3606 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3607 root 1.16 {
3608     void (*cb)(int revents, void *arg) = once->cb;
3609     void *arg = once->arg;
3610    
3611 root 1.259 ev_io_stop (EV_A_ &once->io);
3612 root 1.51 ev_timer_stop (EV_A_ &once->to);
3613 root 1.69 ev_free (once);
3614 root 1.16
3615     cb (revents, arg);
3616     }
3617    
3618     static void
3619 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3620 root 1.16 {
3621 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3622    
3623     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3624 root 1.16 }
3625    
3626     static void
3627 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3628 root 1.16 {
3629 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3630    
3631     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3632 root 1.16 }
3633    
3634     void
3635 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3636 root 1.16 {
3637 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3638 root 1.16
3639 root 1.123 if (expect_false (!once))
3640 root 1.16 {
3641 root 1.123 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3642     return;
3643     }
3644    
3645     once->cb = cb;
3646     once->arg = arg;
3647 root 1.16
3648 root 1.123 ev_init (&once->io, once_cb_io);
3649     if (fd >= 0)
3650     {
3651     ev_io_set (&once->io, fd, events);
3652     ev_io_start (EV_A_ &once->io);
3653     }
3654 root 1.16
3655 root 1.123 ev_init (&once->to, once_cb_to);
3656     if (timeout >= 0.)
3657     {
3658     ev_timer_set (&once->to, timeout, 0.);
3659     ev_timer_start (EV_A_ &once->to);
3660 root 1.16 }
3661     }
3662    
3663 root 1.282 /*****************************************************************************/
3664    
3665 root 1.288 #if EV_WALK_ENABLE
3666 root 1.282 void
3667     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3668     {
3669     int i, j;
3670     ev_watcher_list *wl, *wn;
3671    
3672     if (types & (EV_IO | EV_EMBED))
3673     for (i = 0; i < anfdmax; ++i)
3674     for (wl = anfds [i].head; wl; )
3675     {
3676     wn = wl->next;
3677    
3678     #if EV_EMBED_ENABLE
3679     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3680     {
3681     if (types & EV_EMBED)
3682     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3683     }
3684     else
3685     #endif
3686     #if EV_USE_INOTIFY
3687     if (ev_cb ((ev_io *)wl) == infy_cb)
3688     ;
3689     else
3690     #endif
3691 root 1.288 if ((ev_io *)wl != &pipe_w)
3692 root 1.282 if (types & EV_IO)
3693     cb (EV_A_ EV_IO, wl);
3694    
3695     wl = wn;
3696     }
3697    
3698     if (types & (EV_TIMER | EV_STAT))
3699     for (i = timercnt + HEAP0; i-- > HEAP0; )
3700     #if EV_STAT_ENABLE
3701     /*TODO: timer is not always active*/
3702     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3703     {
3704     if (types & EV_STAT)
3705     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3706     }
3707     else
3708     #endif
3709     if (types & EV_TIMER)
3710     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3711    
3712     #if EV_PERIODIC_ENABLE
3713     if (types & EV_PERIODIC)
3714     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3715     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3716     #endif
3717    
3718     #if EV_IDLE_ENABLE
3719     if (types & EV_IDLE)
3720     for (j = NUMPRI; i--; )
3721     for (i = idlecnt [j]; i--; )
3722     cb (EV_A_ EV_IDLE, idles [j][i]);
3723     #endif
3724    
3725     #if EV_FORK_ENABLE
3726     if (types & EV_FORK)
3727     for (i = forkcnt; i--; )
3728     if (ev_cb (forks [i]) != embed_fork_cb)
3729     cb (EV_A_ EV_FORK, forks [i]);
3730     #endif
3731    
3732     #if EV_ASYNC_ENABLE
3733     if (types & EV_ASYNC)
3734     for (i = asynccnt; i--; )
3735     cb (EV_A_ EV_ASYNC, asyncs [i]);
3736     #endif
3737    
3738 root 1.337 #if EV_PREPARE_ENABLE
3739 root 1.282 if (types & EV_PREPARE)
3740     for (i = preparecnt; i--; )
3741 root 1.337 # if EV_EMBED_ENABLE
3742 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3743 root 1.337 # endif
3744     cb (EV_A_ EV_PREPARE, prepares [i]);
3745 root 1.282 #endif
3746    
3747 root 1.337 #if EV_CHECK_ENABLE
3748 root 1.282 if (types & EV_CHECK)
3749     for (i = checkcnt; i--; )
3750     cb (EV_A_ EV_CHECK, checks [i]);
3751 root 1.337 #endif
3752 root 1.282
3753 root 1.337 #if EV_SIGNAL_ENABLE
3754 root 1.282 if (types & EV_SIGNAL)
3755 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
3756 root 1.282 for (wl = signals [i].head; wl; )
3757     {
3758     wn = wl->next;
3759     cb (EV_A_ EV_SIGNAL, wl);
3760     wl = wn;
3761     }
3762 root 1.337 #endif
3763 root 1.282
3764 root 1.337 #if EV_CHILD_ENABLE
3765 root 1.282 if (types & EV_CHILD)
3766 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
3767 root 1.282 for (wl = childs [i]; wl; )
3768     {
3769     wn = wl->next;
3770     cb (EV_A_ EV_CHILD, wl);
3771     wl = wn;
3772     }
3773 root 1.337 #endif
3774 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
3775     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3776     }
3777     #endif
3778    
3779 root 1.188 #if EV_MULTIPLICITY
3780     #include "ev_wrap.h"
3781     #endif
3782    
3783 root 1.87 #ifdef __cplusplus
3784     }
3785     #endif
3786