ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.346
Committed: Thu Oct 14 05:07:04 2010 UTC (13 years, 7 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.345: +6 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.326 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40     #ifdef __cplusplus
41     extern "C" {
42     #endif
43    
44 root 1.220 /* this big block deduces configuration from config.h */
45 root 1.59 #ifndef EV_STANDALONE
46 root 1.133 # ifdef EV_CONFIG_H
47     # include EV_CONFIG_H
48     # else
49     # include "config.h"
50     # endif
51 root 1.60
52 root 1.274 # if HAVE_CLOCK_SYSCALL
53     # ifndef EV_USE_CLOCK_SYSCALL
54     # define EV_USE_CLOCK_SYSCALL 1
55     # ifndef EV_USE_REALTIME
56     # define EV_USE_REALTIME 0
57     # endif
58     # ifndef EV_USE_MONOTONIC
59     # define EV_USE_MONOTONIC 1
60     # endif
61     # endif
62 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
63     # define EV_USE_CLOCK_SYSCALL 0
64 root 1.274 # endif
65    
66 root 1.60 # if HAVE_CLOCK_GETTIME
67 root 1.97 # ifndef EV_USE_MONOTONIC
68     # define EV_USE_MONOTONIC 1
69     # endif
70     # ifndef EV_USE_REALTIME
71 root 1.279 # define EV_USE_REALTIME 0
72 root 1.97 # endif
73 root 1.126 # else
74     # ifndef EV_USE_MONOTONIC
75     # define EV_USE_MONOTONIC 0
76     # endif
77     # ifndef EV_USE_REALTIME
78     # define EV_USE_REALTIME 0
79     # endif
80 root 1.60 # endif
81    
82 root 1.343 # if HAVE_NANOSLEEP
83     # ifndef EV_USE_NANOSLEEP
84     # define EV_USE_NANOSLEEP EV_FEATURE_OS
85     # endif
86     # else
87     # undef EV_USE_NANOSLEEP
88 root 1.193 # define EV_USE_NANOSLEEP 0
89     # endif
90    
91 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92     # ifndef EV_USE_SELECT
93 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
94 root 1.127 # endif
95 root 1.343 # else
96     # undef EV_USE_SELECT
97     # define EV_USE_SELECT 0
98 root 1.60 # endif
99    
100 root 1.343 # if HAVE_POLL && HAVE_POLL_H
101     # ifndef EV_USE_POLL
102 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
103 root 1.127 # endif
104 root 1.343 # else
105     # undef EV_USE_POLL
106     # define EV_USE_POLL 0
107 root 1.60 # endif
108 root 1.127
109 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
110     # ifndef EV_USE_EPOLL
111 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
112 root 1.127 # endif
113 root 1.343 # else
114     # undef EV_USE_EPOLL
115     # define EV_USE_EPOLL 0
116 root 1.60 # endif
117 root 1.127
118 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
119     # ifndef EV_USE_KQUEUE
120 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
121 root 1.127 # endif
122 root 1.343 # else
123     # undef EV_USE_KQUEUE
124     # define EV_USE_KQUEUE 0
125 root 1.60 # endif
126 root 1.127
127 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
128     # ifndef EV_USE_PORT
129 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
130 root 1.127 # endif
131 root 1.343 # else
132     # undef EV_USE_PORT
133     # define EV_USE_PORT 0
134 root 1.118 # endif
135    
136 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137     # ifndef EV_USE_INOTIFY
138 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
139 root 1.152 # endif
140 root 1.343 # else
141     # undef EV_USE_INOTIFY
142     # define EV_USE_INOTIFY 0
143 root 1.152 # endif
144    
145 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146     # ifndef EV_USE_SIGNALFD
147 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
148 root 1.303 # endif
149 root 1.343 # else
150     # undef EV_USE_SIGNALFD
151     # define EV_USE_SIGNALFD 0
152 root 1.303 # endif
153    
154 root 1.343 # if HAVE_EVENTFD
155     # ifndef EV_USE_EVENTFD
156 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
157 root 1.220 # endif
158 root 1.343 # else
159     # undef EV_USE_EVENTFD
160     # define EV_USE_EVENTFD 0
161 root 1.220 # endif
162 root 1.250
163 root 1.29 #endif
164 root 1.17
165 root 1.1 #include <math.h>
166     #include <stdlib.h>
167 root 1.319 #include <string.h>
168 root 1.7 #include <fcntl.h>
169 root 1.16 #include <stddef.h>
170 root 1.1
171     #include <stdio.h>
172    
173 root 1.4 #include <assert.h>
174 root 1.1 #include <errno.h>
175 root 1.22 #include <sys/types.h>
176 root 1.71 #include <time.h>
177 root 1.326 #include <limits.h>
178 root 1.71
179 root 1.72 #include <signal.h>
180 root 1.71
181 root 1.152 #ifdef EV_H
182     # include EV_H
183     #else
184     # include "ev.h"
185     #endif
186    
187 root 1.103 #ifndef _WIN32
188 root 1.71 # include <sys/time.h>
189 root 1.45 # include <sys/wait.h>
190 root 1.140 # include <unistd.h>
191 root 1.103 #else
192 root 1.256 # include <io.h>
193 root 1.103 # define WIN32_LEAN_AND_MEAN
194     # include <windows.h>
195     # ifndef EV_SELECT_IS_WINSOCKET
196     # define EV_SELECT_IS_WINSOCKET 1
197     # endif
198 root 1.331 # undef EV_AVOID_STDIO
199 root 1.45 #endif
200 root 1.103
201 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
202     * a limit of 1024 into their select. Where people have brains,
203     * OS X engineers apparently have a vacuum. Or maybe they were
204     * ordered to have a vacuum, or they do anything for money.
205     * This might help. Or not.
206     */
207     #define _DARWIN_UNLIMITED_SELECT 1
208    
209 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
210 root 1.40
211 root 1.305 /* try to deduce the maximum number of signals on this platform */
212     #if defined (EV_NSIG)
213     /* use what's provided */
214     #elif defined (NSIG)
215     # define EV_NSIG (NSIG)
216     #elif defined(_NSIG)
217     # define EV_NSIG (_NSIG)
218     #elif defined (SIGMAX)
219     # define EV_NSIG (SIGMAX+1)
220     #elif defined (SIG_MAX)
221     # define EV_NSIG (SIG_MAX+1)
222     #elif defined (_SIG_MAX)
223     # define EV_NSIG (_SIG_MAX+1)
224     #elif defined (MAXSIG)
225     # define EV_NSIG (MAXSIG+1)
226     #elif defined (MAX_SIG)
227     # define EV_NSIG (MAX_SIG+1)
228     #elif defined (SIGARRAYSIZE)
229 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230 root 1.305 #elif defined (_sys_nsig)
231     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232     #else
233     # error "unable to find value for NSIG, please report"
234 root 1.336 /* to make it compile regardless, just remove the above line, */
235     /* but consider reporting it, too! :) */
236 root 1.306 # define EV_NSIG 65
237 root 1.305 #endif
238    
239 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
240     # if __linux && __GLIBC__ >= 2
241 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242 root 1.274 # else
243     # define EV_USE_CLOCK_SYSCALL 0
244     # endif
245     #endif
246    
247 root 1.29 #ifndef EV_USE_MONOTONIC
248 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
250 root 1.253 # else
251     # define EV_USE_MONOTONIC 0
252     # endif
253 root 1.37 #endif
254    
255 root 1.118 #ifndef EV_USE_REALTIME
256 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
257 root 1.118 #endif
258    
259 root 1.193 #ifndef EV_USE_NANOSLEEP
260 root 1.253 # if _POSIX_C_SOURCE >= 199309L
261 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
262 root 1.253 # else
263     # define EV_USE_NANOSLEEP 0
264     # endif
265 root 1.193 #endif
266    
267 root 1.29 #ifndef EV_USE_SELECT
268 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
269 root 1.10 #endif
270    
271 root 1.59 #ifndef EV_USE_POLL
272 root 1.104 # ifdef _WIN32
273     # define EV_USE_POLL 0
274     # else
275 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
276 root 1.104 # endif
277 root 1.41 #endif
278    
279 root 1.29 #ifndef EV_USE_EPOLL
280 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
282 root 1.220 # else
283     # define EV_USE_EPOLL 0
284     # endif
285 root 1.10 #endif
286    
287 root 1.44 #ifndef EV_USE_KQUEUE
288     # define EV_USE_KQUEUE 0
289     #endif
290    
291 root 1.118 #ifndef EV_USE_PORT
292     # define EV_USE_PORT 0
293 root 1.40 #endif
294    
295 root 1.152 #ifndef EV_USE_INOTIFY
296 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
298 root 1.220 # else
299     # define EV_USE_INOTIFY 0
300     # endif
301 root 1.152 #endif
302    
303 root 1.149 #ifndef EV_PID_HASHSIZE
304 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
305 root 1.149 #endif
306    
307 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
308 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309 root 1.152 #endif
310    
311 root 1.220 #ifndef EV_USE_EVENTFD
312     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
314 root 1.220 # else
315     # define EV_USE_EVENTFD 0
316     # endif
317     #endif
318    
319 root 1.303 #ifndef EV_USE_SIGNALFD
320 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
322 root 1.303 # else
323     # define EV_USE_SIGNALFD 0
324     # endif
325     #endif
326    
327 root 1.249 #if 0 /* debugging */
328 root 1.250 # define EV_VERIFY 3
329 root 1.249 # define EV_USE_4HEAP 1
330     # define EV_HEAP_CACHE_AT 1
331     #endif
332    
333 root 1.250 #ifndef EV_VERIFY
334 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335 root 1.250 #endif
336    
337 root 1.243 #ifndef EV_USE_4HEAP
338 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
339 root 1.243 #endif
340    
341     #ifndef EV_HEAP_CACHE_AT
342 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343 root 1.243 #endif
344    
345 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346     /* which makes programs even slower. might work on other unices, too. */
347     #if EV_USE_CLOCK_SYSCALL
348     # include <syscall.h>
349     # ifdef SYS_clock_gettime
350     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351     # undef EV_USE_MONOTONIC
352     # define EV_USE_MONOTONIC 1
353     # else
354     # undef EV_USE_CLOCK_SYSCALL
355     # define EV_USE_CLOCK_SYSCALL 0
356     # endif
357     #endif
358    
359 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
360 root 1.40
361 root 1.325 #ifdef _AIX
362     /* AIX has a completely broken poll.h header */
363     # undef EV_USE_POLL
364     # define EV_USE_POLL 0
365     #endif
366    
367 root 1.40 #ifndef CLOCK_MONOTONIC
368     # undef EV_USE_MONOTONIC
369     # define EV_USE_MONOTONIC 0
370     #endif
371    
372 root 1.31 #ifndef CLOCK_REALTIME
373 root 1.40 # undef EV_USE_REALTIME
374 root 1.31 # define EV_USE_REALTIME 0
375     #endif
376 root 1.40
377 root 1.152 #if !EV_STAT_ENABLE
378 root 1.185 # undef EV_USE_INOTIFY
379 root 1.152 # define EV_USE_INOTIFY 0
380     #endif
381    
382 root 1.193 #if !EV_USE_NANOSLEEP
383     # ifndef _WIN32
384     # include <sys/select.h>
385     # endif
386     #endif
387    
388 root 1.152 #if EV_USE_INOTIFY
389 root 1.264 # include <sys/utsname.h>
390 root 1.273 # include <sys/statfs.h>
391 root 1.152 # include <sys/inotify.h>
392 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393     # ifndef IN_DONT_FOLLOW
394     # undef EV_USE_INOTIFY
395     # define EV_USE_INOTIFY 0
396     # endif
397 root 1.152 #endif
398    
399 root 1.185 #if EV_SELECT_IS_WINSOCKET
400     # include <winsock.h>
401     #endif
402    
403 root 1.220 #if EV_USE_EVENTFD
404     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405 root 1.221 # include <stdint.h>
406 root 1.303 # ifndef EFD_NONBLOCK
407     # define EFD_NONBLOCK O_NONBLOCK
408     # endif
409     # ifndef EFD_CLOEXEC
410 root 1.311 # ifdef O_CLOEXEC
411     # define EFD_CLOEXEC O_CLOEXEC
412     # else
413     # define EFD_CLOEXEC 02000000
414     # endif
415 root 1.303 # endif
416 root 1.222 # ifdef __cplusplus
417     extern "C" {
418     # endif
419 root 1.329 int (eventfd) (unsigned int initval, int flags);
420 root 1.222 # ifdef __cplusplus
421     }
422     # endif
423 root 1.220 #endif
424    
425 root 1.303 #if EV_USE_SIGNALFD
426 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427     # include <stdint.h>
428     # ifndef SFD_NONBLOCK
429     # define SFD_NONBLOCK O_NONBLOCK
430     # endif
431     # ifndef SFD_CLOEXEC
432     # ifdef O_CLOEXEC
433     # define SFD_CLOEXEC O_CLOEXEC
434     # else
435     # define SFD_CLOEXEC 02000000
436     # endif
437     # endif
438     # ifdef __cplusplus
439     extern "C" {
440     # endif
441     int signalfd (int fd, const sigset_t *mask, int flags);
442    
443     struct signalfd_siginfo
444     {
445     uint32_t ssi_signo;
446     char pad[128 - sizeof (uint32_t)];
447     };
448     # ifdef __cplusplus
449     }
450     # endif
451 root 1.303 #endif
452    
453 root 1.314
454 root 1.40 /**/
455 root 1.1
456 root 1.250 #if EV_VERIFY >= 3
457 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
458 root 1.248 #else
459     # define EV_FREQUENT_CHECK do { } while (0)
460     #endif
461    
462 root 1.176 /*
463     * This is used to avoid floating point rounding problems.
464     * It is added to ev_rt_now when scheduling periodics
465     * to ensure progress, time-wise, even when rounding
466     * errors are against us.
467 root 1.177 * This value is good at least till the year 4000.
468 root 1.176 * Better solutions welcome.
469     */
470     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
471    
472 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
473 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
474 root 1.1
475 root 1.185 #if __GNUC__ >= 4
476 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
477 root 1.169 # define noinline __attribute__ ((noinline))
478 root 1.40 #else
479     # define expect(expr,value) (expr)
480 root 1.140 # define noinline
481 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
482 root 1.169 # define inline
483     # endif
484 root 1.40 #endif
485    
486     #define expect_false(expr) expect ((expr) != 0, 0)
487     #define expect_true(expr) expect ((expr) != 0, 1)
488 root 1.169 #define inline_size static inline
489    
490 root 1.338 #if EV_FEATURE_CODE
491     # define inline_speed static inline
492     #else
493 root 1.169 # define inline_speed static noinline
494     #endif
495 root 1.40
496 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
497    
498     #if EV_MINPRI == EV_MAXPRI
499     # define ABSPRI(w) (((W)w), 0)
500     #else
501     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
502     #endif
503 root 1.42
504 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
505 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
506 root 1.103
507 root 1.136 typedef ev_watcher *W;
508     typedef ev_watcher_list *WL;
509     typedef ev_watcher_time *WT;
510 root 1.10
511 root 1.229 #define ev_active(w) ((W)(w))->active
512 root 1.228 #define ev_at(w) ((WT)(w))->at
513    
514 root 1.279 #if EV_USE_REALTIME
515 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
516 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
517 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
518     #endif
519    
520     #if EV_USE_MONOTONIC
521 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
522 root 1.198 #endif
523 root 1.54
524 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
525     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
526     #endif
527     #ifndef EV_WIN32_HANDLE_TO_FD
528 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
529 root 1.313 #endif
530     #ifndef EV_WIN32_CLOSE_FD
531     # define EV_WIN32_CLOSE_FD(fd) close (fd)
532     #endif
533    
534 root 1.103 #ifdef _WIN32
535 root 1.98 # include "ev_win32.c"
536     #endif
537 root 1.67
538 root 1.53 /*****************************************************************************/
539 root 1.1
540 root 1.331 #if EV_AVOID_STDIO
541     static void noinline
542     ev_printerr (const char *msg)
543     {
544     write (STDERR_FILENO, msg, strlen (msg));
545     }
546     #endif
547    
548 root 1.70 static void (*syserr_cb)(const char *msg);
549 root 1.69
550 root 1.141 void
551     ev_set_syserr_cb (void (*cb)(const char *msg))
552 root 1.69 {
553     syserr_cb = cb;
554     }
555    
556 root 1.141 static void noinline
557 root 1.269 ev_syserr (const char *msg)
558 root 1.69 {
559 root 1.70 if (!msg)
560     msg = "(libev) system error";
561    
562 root 1.69 if (syserr_cb)
563 root 1.70 syserr_cb (msg);
564 root 1.69 else
565     {
566 root 1.330 #if EV_AVOID_STDIO
567 root 1.331 const char *err = strerror (errno);
568    
569     ev_printerr (msg);
570     ev_printerr (": ");
571     ev_printerr (err);
572     ev_printerr ("\n");
573 root 1.330 #else
574 root 1.70 perror (msg);
575 root 1.330 #endif
576 root 1.69 abort ();
577     }
578     }
579    
580 root 1.224 static void *
581     ev_realloc_emul (void *ptr, long size)
582     {
583 root 1.334 #if __GLIBC__
584     return realloc (ptr, size);
585     #else
586 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
587 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
588 root 1.224 * the single unix specification, so work around them here.
589     */
590 root 1.333
591 root 1.224 if (size)
592     return realloc (ptr, size);
593    
594     free (ptr);
595     return 0;
596 root 1.334 #endif
597 root 1.224 }
598    
599     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
600 root 1.69
601 root 1.141 void
602 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
603 root 1.69 {
604     alloc = cb;
605     }
606    
607 root 1.150 inline_speed void *
608 root 1.155 ev_realloc (void *ptr, long size)
609 root 1.69 {
610 root 1.224 ptr = alloc (ptr, size);
611 root 1.69
612     if (!ptr && size)
613     {
614 root 1.330 #if EV_AVOID_STDIO
615 root 1.331 ev_printerr ("libev: memory allocation failed, aborting.\n");
616 root 1.330 #else
617 root 1.155 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
618 root 1.330 #endif
619 root 1.69 abort ();
620     }
621    
622     return ptr;
623     }
624    
625     #define ev_malloc(size) ev_realloc (0, (size))
626     #define ev_free(ptr) ev_realloc ((ptr), 0)
627    
628     /*****************************************************************************/
629    
630 root 1.298 /* set in reify when reification needed */
631     #define EV_ANFD_REIFY 1
632    
633 root 1.288 /* file descriptor info structure */
634 root 1.53 typedef struct
635     {
636 root 1.68 WL head;
637 root 1.288 unsigned char events; /* the events watched for */
638 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
639 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
640 root 1.269 unsigned char unused;
641     #if EV_USE_EPOLL
642 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
643 root 1.269 #endif
644 root 1.103 #if EV_SELECT_IS_WINSOCKET
645     SOCKET handle;
646     #endif
647 root 1.53 } ANFD;
648 root 1.1
649 root 1.288 /* stores the pending event set for a given watcher */
650 root 1.53 typedef struct
651     {
652     W w;
653 root 1.288 int events; /* the pending event set for the given watcher */
654 root 1.53 } ANPENDING;
655 root 1.51
656 root 1.155 #if EV_USE_INOTIFY
657 root 1.241 /* hash table entry per inotify-id */
658 root 1.152 typedef struct
659     {
660     WL head;
661 root 1.155 } ANFS;
662 root 1.152 #endif
663    
664 root 1.241 /* Heap Entry */
665     #if EV_HEAP_CACHE_AT
666 root 1.288 /* a heap element */
667 root 1.241 typedef struct {
668 root 1.243 ev_tstamp at;
669 root 1.241 WT w;
670     } ANHE;
671    
672 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
673     #define ANHE_at(he) (he).at /* access cached at, read-only */
674     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
675 root 1.241 #else
676 root 1.288 /* a heap element */
677 root 1.241 typedef WT ANHE;
678    
679 root 1.248 #define ANHE_w(he) (he)
680     #define ANHE_at(he) (he)->at
681     #define ANHE_at_cache(he)
682 root 1.241 #endif
683    
684 root 1.55 #if EV_MULTIPLICITY
685 root 1.54
686 root 1.80 struct ev_loop
687     {
688 root 1.86 ev_tstamp ev_rt_now;
689 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
690 root 1.80 #define VAR(name,decl) decl;
691     #include "ev_vars.h"
692     #undef VAR
693     };
694     #include "ev_wrap.h"
695    
696 root 1.116 static struct ev_loop default_loop_struct;
697     struct ev_loop *ev_default_loop_ptr;
698 root 1.54
699 root 1.53 #else
700 root 1.54
701 root 1.86 ev_tstamp ev_rt_now;
702 root 1.80 #define VAR(name,decl) static decl;
703     #include "ev_vars.h"
704     #undef VAR
705    
706 root 1.116 static int ev_default_loop_ptr;
707 root 1.54
708 root 1.51 #endif
709 root 1.1
710 root 1.338 #if EV_FEATURE_API
711 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
712     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
713 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
714     #else
715 root 1.298 # define EV_RELEASE_CB (void)0
716     # define EV_ACQUIRE_CB (void)0
717 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
718     #endif
719    
720 root 1.298 #define EVUNLOOP_RECURSE 0x80
721    
722 root 1.8 /*****************************************************************************/
723    
724 root 1.292 #ifndef EV_HAVE_EV_TIME
725 root 1.141 ev_tstamp
726 root 1.1 ev_time (void)
727     {
728 root 1.29 #if EV_USE_REALTIME
729 root 1.279 if (expect_true (have_realtime))
730     {
731     struct timespec ts;
732     clock_gettime (CLOCK_REALTIME, &ts);
733     return ts.tv_sec + ts.tv_nsec * 1e-9;
734     }
735     #endif
736    
737 root 1.1 struct timeval tv;
738     gettimeofday (&tv, 0);
739     return tv.tv_sec + tv.tv_usec * 1e-6;
740     }
741 root 1.292 #endif
742 root 1.1
743 root 1.284 inline_size ev_tstamp
744 root 1.1 get_clock (void)
745     {
746 root 1.29 #if EV_USE_MONOTONIC
747 root 1.40 if (expect_true (have_monotonic))
748 root 1.1 {
749     struct timespec ts;
750     clock_gettime (CLOCK_MONOTONIC, &ts);
751     return ts.tv_sec + ts.tv_nsec * 1e-9;
752     }
753     #endif
754    
755     return ev_time ();
756     }
757    
758 root 1.85 #if EV_MULTIPLICITY
759 root 1.51 ev_tstamp
760     ev_now (EV_P)
761     {
762 root 1.85 return ev_rt_now;
763 root 1.51 }
764 root 1.85 #endif
765 root 1.51
766 root 1.193 void
767     ev_sleep (ev_tstamp delay)
768     {
769     if (delay > 0.)
770     {
771     #if EV_USE_NANOSLEEP
772     struct timespec ts;
773    
774     ts.tv_sec = (time_t)delay;
775     ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
776    
777     nanosleep (&ts, 0);
778     #elif defined(_WIN32)
779 root 1.217 Sleep ((unsigned long)(delay * 1e3));
780 root 1.193 #else
781     struct timeval tv;
782    
783     tv.tv_sec = (time_t)delay;
784     tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
785    
786 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
787 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
788 root 1.257 /* by older ones */
789 root 1.193 select (0, 0, 0, 0, &tv);
790     #endif
791     }
792     }
793    
794     /*****************************************************************************/
795    
796 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
797 root 1.232
798 root 1.288 /* find a suitable new size for the given array, */
799 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
800 root 1.284 inline_size int
801 root 1.163 array_nextsize (int elem, int cur, int cnt)
802     {
803     int ncur = cur + 1;
804    
805     do
806     ncur <<= 1;
807     while (cnt > ncur);
808    
809 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
810     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
811 root 1.163 {
812     ncur *= elem;
813 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
814 root 1.163 ncur = ncur - sizeof (void *) * 4;
815     ncur /= elem;
816     }
817    
818     return ncur;
819     }
820    
821 root 1.171 static noinline void *
822 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
823     {
824     *cur = array_nextsize (elem, *cur, cnt);
825     return ev_realloc (base, elem * *cur);
826     }
827 root 1.29
828 root 1.265 #define array_init_zero(base,count) \
829     memset ((void *)(base), 0, sizeof (*(base)) * (count))
830    
831 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
832 root 1.163 if (expect_false ((cnt) > (cur))) \
833 root 1.69 { \
834 root 1.163 int ocur_ = (cur); \
835     (base) = (type *)array_realloc \
836     (sizeof (type), (base), &(cur), (cnt)); \
837     init ((base) + (ocur_), (cur) - ocur_); \
838 root 1.1 }
839    
840 root 1.163 #if 0
841 root 1.74 #define array_slim(type,stem) \
842 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
843     { \
844     stem ## max = array_roundsize (stem ## cnt >> 1); \
845 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
846 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
847     }
848 root 1.163 #endif
849 root 1.67
850 root 1.65 #define array_free(stem, idx) \
851 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
852 root 1.65
853 root 1.8 /*****************************************************************************/
854    
855 root 1.288 /* dummy callback for pending events */
856     static void noinline
857     pendingcb (EV_P_ ev_prepare *w, int revents)
858     {
859     }
860    
861 root 1.140 void noinline
862 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
863 root 1.1 {
864 root 1.78 W w_ = (W)w;
865 root 1.171 int pri = ABSPRI (w_);
866 root 1.78
867 root 1.123 if (expect_false (w_->pending))
868 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
869     else
870 root 1.32 {
871 root 1.171 w_->pending = ++pendingcnt [pri];
872     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
873     pendings [pri][w_->pending - 1].w = w_;
874     pendings [pri][w_->pending - 1].events = revents;
875 root 1.32 }
876 root 1.1 }
877    
878 root 1.284 inline_speed void
879     feed_reverse (EV_P_ W w)
880     {
881     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
882     rfeeds [rfeedcnt++] = w;
883     }
884    
885     inline_size void
886     feed_reverse_done (EV_P_ int revents)
887     {
888     do
889     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
890     while (rfeedcnt);
891     }
892    
893     inline_speed void
894 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
895 root 1.27 {
896     int i;
897    
898     for (i = 0; i < eventcnt; ++i)
899 root 1.78 ev_feed_event (EV_A_ events [i], type);
900 root 1.27 }
901    
902 root 1.141 /*****************************************************************************/
903    
904 root 1.284 inline_speed void
905 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
906 root 1.1 {
907     ANFD *anfd = anfds + fd;
908 root 1.136 ev_io *w;
909 root 1.1
910 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
911 root 1.1 {
912 root 1.79 int ev = w->events & revents;
913 root 1.1
914     if (ev)
915 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
916 root 1.1 }
917     }
918    
919 root 1.298 /* do not submit kernel events for fds that have reify set */
920     /* because that means they changed while we were polling for new events */
921     inline_speed void
922     fd_event (EV_P_ int fd, int revents)
923     {
924     ANFD *anfd = anfds + fd;
925    
926     if (expect_true (!anfd->reify))
927 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
928 root 1.298 }
929    
930 root 1.79 void
931     ev_feed_fd_event (EV_P_ int fd, int revents)
932     {
933 root 1.168 if (fd >= 0 && fd < anfdmax)
934 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
935 root 1.79 }
936    
937 root 1.288 /* make sure the external fd watch events are in-sync */
938     /* with the kernel/libev internal state */
939 root 1.284 inline_size void
940 root 1.51 fd_reify (EV_P)
941 root 1.9 {
942     int i;
943    
944 root 1.27 for (i = 0; i < fdchangecnt; ++i)
945     {
946     int fd = fdchanges [i];
947     ANFD *anfd = anfds + fd;
948 root 1.136 ev_io *w;
949 root 1.27
950 root 1.184 unsigned char events = 0;
951 root 1.27
952 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
953 root 1.184 events |= (unsigned char)w->events;
954 root 1.27
955 root 1.103 #if EV_SELECT_IS_WINSOCKET
956     if (events)
957     {
958 root 1.254 unsigned long arg;
959 root 1.313 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
960 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
961 root 1.103 }
962     #endif
963    
964 root 1.184 {
965     unsigned char o_events = anfd->events;
966     unsigned char o_reify = anfd->reify;
967    
968     anfd->reify = 0;
969     anfd->events = events;
970 root 1.27
971 root 1.281 if (o_events != events || o_reify & EV__IOFDSET)
972 root 1.184 backend_modify (EV_A_ fd, o_events, events);
973     }
974 root 1.27 }
975    
976     fdchangecnt = 0;
977     }
978    
979 root 1.288 /* something about the given fd changed */
980 root 1.284 inline_size void
981 root 1.183 fd_change (EV_P_ int fd, int flags)
982 root 1.27 {
983 root 1.183 unsigned char reify = anfds [fd].reify;
984 root 1.184 anfds [fd].reify |= flags;
985 root 1.27
986 root 1.183 if (expect_true (!reify))
987     {
988     ++fdchangecnt;
989     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
990     fdchanges [fdchangecnt - 1] = fd;
991     }
992 root 1.9 }
993    
994 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
995 root 1.284 inline_speed void
996 root 1.51 fd_kill (EV_P_ int fd)
997 root 1.41 {
998 root 1.136 ev_io *w;
999 root 1.41
1000 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1001 root 1.41 {
1002 root 1.51 ev_io_stop (EV_A_ w);
1003 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1004 root 1.41 }
1005     }
1006    
1007 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1008 root 1.284 inline_size int
1009 root 1.71 fd_valid (int fd)
1010     {
1011 root 1.103 #ifdef _WIN32
1012 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1013 root 1.71 #else
1014     return fcntl (fd, F_GETFD) != -1;
1015     #endif
1016     }
1017    
1018 root 1.19 /* called on EBADF to verify fds */
1019 root 1.140 static void noinline
1020 root 1.51 fd_ebadf (EV_P)
1021 root 1.19 {
1022     int fd;
1023    
1024     for (fd = 0; fd < anfdmax; ++fd)
1025 root 1.27 if (anfds [fd].events)
1026 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1027 root 1.51 fd_kill (EV_A_ fd);
1028 root 1.41 }
1029    
1030     /* called on ENOMEM in select/poll to kill some fds and retry */
1031 root 1.140 static void noinline
1032 root 1.51 fd_enomem (EV_P)
1033 root 1.41 {
1034 root 1.62 int fd;
1035 root 1.41
1036 root 1.62 for (fd = anfdmax; fd--; )
1037 root 1.41 if (anfds [fd].events)
1038     {
1039 root 1.51 fd_kill (EV_A_ fd);
1040 root 1.307 break;
1041 root 1.41 }
1042 root 1.19 }
1043    
1044 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1045 root 1.140 static void noinline
1046 root 1.56 fd_rearm_all (EV_P)
1047     {
1048     int fd;
1049    
1050     for (fd = 0; fd < anfdmax; ++fd)
1051     if (anfds [fd].events)
1052     {
1053     anfds [fd].events = 0;
1054 root 1.268 anfds [fd].emask = 0;
1055 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1056 root 1.56 }
1057     }
1058    
1059 root 1.336 /* used to prepare libev internal fd's */
1060     /* this is not fork-safe */
1061     inline_speed void
1062     fd_intern (int fd)
1063     {
1064     #ifdef _WIN32
1065     unsigned long arg = 1;
1066     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1067     #else
1068     fcntl (fd, F_SETFD, FD_CLOEXEC);
1069     fcntl (fd, F_SETFL, O_NONBLOCK);
1070     #endif
1071     }
1072    
1073 root 1.8 /*****************************************************************************/
1074    
1075 root 1.235 /*
1076 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1077 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1078     * the branching factor of the d-tree.
1079     */
1080    
1081     /*
1082 root 1.235 * at the moment we allow libev the luxury of two heaps,
1083     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1084     * which is more cache-efficient.
1085     * the difference is about 5% with 50000+ watchers.
1086     */
1087 root 1.241 #if EV_USE_4HEAP
1088 root 1.235
1089 root 1.237 #define DHEAP 4
1090     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1091 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1092 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1093 root 1.235
1094     /* away from the root */
1095 root 1.284 inline_speed void
1096 root 1.241 downheap (ANHE *heap, int N, int k)
1097 root 1.235 {
1098 root 1.241 ANHE he = heap [k];
1099     ANHE *E = heap + N + HEAP0;
1100 root 1.235
1101     for (;;)
1102     {
1103     ev_tstamp minat;
1104 root 1.241 ANHE *minpos;
1105 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1106 root 1.235
1107 root 1.248 /* find minimum child */
1108 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1109 root 1.235 {
1110 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1111     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1112     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1113     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1114 root 1.235 }
1115 root 1.240 else if (pos < E)
1116 root 1.235 {
1117 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1118     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1119     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1120     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1121 root 1.235 }
1122 root 1.240 else
1123     break;
1124 root 1.235
1125 root 1.241 if (ANHE_at (he) <= minat)
1126 root 1.235 break;
1127    
1128 root 1.247 heap [k] = *minpos;
1129 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1130 root 1.235
1131     k = minpos - heap;
1132     }
1133    
1134 root 1.247 heap [k] = he;
1135 root 1.241 ev_active (ANHE_w (he)) = k;
1136 root 1.235 }
1137    
1138 root 1.248 #else /* 4HEAP */
1139 root 1.235
1140     #define HEAP0 1
1141 root 1.247 #define HPARENT(k) ((k) >> 1)
1142 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1143 root 1.235
1144 root 1.248 /* away from the root */
1145 root 1.284 inline_speed void
1146 root 1.248 downheap (ANHE *heap, int N, int k)
1147 root 1.1 {
1148 root 1.241 ANHE he = heap [k];
1149 root 1.1
1150 root 1.228 for (;;)
1151 root 1.1 {
1152 root 1.248 int c = k << 1;
1153 root 1.179
1154 root 1.309 if (c >= N + HEAP0)
1155 root 1.179 break;
1156    
1157 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1158     ? 1 : 0;
1159    
1160     if (ANHE_at (he) <= ANHE_at (heap [c]))
1161     break;
1162    
1163     heap [k] = heap [c];
1164 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1165 root 1.248
1166     k = c;
1167 root 1.1 }
1168    
1169 root 1.243 heap [k] = he;
1170 root 1.248 ev_active (ANHE_w (he)) = k;
1171 root 1.1 }
1172 root 1.248 #endif
1173 root 1.1
1174 root 1.248 /* towards the root */
1175 root 1.284 inline_speed void
1176 root 1.248 upheap (ANHE *heap, int k)
1177 root 1.1 {
1178 root 1.241 ANHE he = heap [k];
1179 root 1.1
1180 root 1.179 for (;;)
1181 root 1.1 {
1182 root 1.248 int p = HPARENT (k);
1183 root 1.179
1184 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1185 root 1.179 break;
1186 root 1.1
1187 root 1.248 heap [k] = heap [p];
1188 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1189 root 1.248 k = p;
1190 root 1.1 }
1191    
1192 root 1.241 heap [k] = he;
1193     ev_active (ANHE_w (he)) = k;
1194 root 1.1 }
1195    
1196 root 1.288 /* move an element suitably so it is in a correct place */
1197 root 1.284 inline_size void
1198 root 1.241 adjustheap (ANHE *heap, int N, int k)
1199 root 1.84 {
1200 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1201 root 1.247 upheap (heap, k);
1202     else
1203     downheap (heap, N, k);
1204 root 1.84 }
1205    
1206 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1207 root 1.284 inline_size void
1208 root 1.248 reheap (ANHE *heap, int N)
1209     {
1210     int i;
1211 root 1.251
1212 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1213     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1214     for (i = 0; i < N; ++i)
1215     upheap (heap, i + HEAP0);
1216     }
1217    
1218 root 1.8 /*****************************************************************************/
1219    
1220 root 1.288 /* associate signal watchers to a signal signal */
1221 root 1.7 typedef struct
1222     {
1223 root 1.307 EV_ATOMIC_T pending;
1224 root 1.306 #if EV_MULTIPLICITY
1225     EV_P;
1226     #endif
1227 root 1.68 WL head;
1228 root 1.7 } ANSIG;
1229    
1230 root 1.306 static ANSIG signals [EV_NSIG - 1];
1231 root 1.7
1232 root 1.207 /*****************************************************************************/
1233    
1234 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1235 root 1.207
1236     static void noinline
1237     evpipe_init (EV_P)
1238     {
1239 root 1.288 if (!ev_is_active (&pipe_w))
1240 root 1.207 {
1241 root 1.336 # if EV_USE_EVENTFD
1242 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1243     if (evfd < 0 && errno == EINVAL)
1244     evfd = eventfd (0, 0);
1245    
1246     if (evfd >= 0)
1247 root 1.220 {
1248     evpipe [0] = -1;
1249 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1250 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1251 root 1.220 }
1252     else
1253 root 1.336 # endif
1254 root 1.220 {
1255     while (pipe (evpipe))
1256 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1257 root 1.207
1258 root 1.220 fd_intern (evpipe [0]);
1259     fd_intern (evpipe [1]);
1260 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1261 root 1.220 }
1262 root 1.207
1263 root 1.288 ev_io_start (EV_A_ &pipe_w);
1264 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1265 root 1.207 }
1266     }
1267    
1268 root 1.284 inline_size void
1269 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1270 root 1.207 {
1271 root 1.214 if (!*flag)
1272 root 1.207 {
1273 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1274 root 1.336 char dummy;
1275 root 1.214
1276     *flag = 1;
1277 root 1.220
1278     #if EV_USE_EVENTFD
1279     if (evfd >= 0)
1280     {
1281     uint64_t counter = 1;
1282     write (evfd, &counter, sizeof (uint64_t));
1283     }
1284     else
1285     #endif
1286 root 1.346 /* win32 people keep sending patches that change this write() to send() */
1287     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1288     /* so when you think this write should be a send instead, please find out */
1289     /* where your send() is from - it's definitely not the microsoft send, and */
1290     /* tell me. thank you. */
1291 root 1.336 write (evpipe [1], &dummy, 1);
1292 root 1.214
1293 root 1.207 errno = old_errno;
1294     }
1295     }
1296    
1297 root 1.288 /* called whenever the libev signal pipe */
1298     /* got some events (signal, async) */
1299 root 1.207 static void
1300     pipecb (EV_P_ ev_io *iow, int revents)
1301     {
1302 root 1.307 int i;
1303    
1304 root 1.220 #if EV_USE_EVENTFD
1305     if (evfd >= 0)
1306     {
1307 root 1.232 uint64_t counter;
1308 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1309     }
1310     else
1311     #endif
1312     {
1313     char dummy;
1314 root 1.346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1315 root 1.220 read (evpipe [0], &dummy, 1);
1316     }
1317 root 1.207
1318 root 1.307 if (sig_pending)
1319 root 1.207 {
1320 root 1.307 sig_pending = 0;
1321 root 1.207
1322 root 1.307 for (i = EV_NSIG - 1; i--; )
1323     if (expect_false (signals [i].pending))
1324     ev_feed_signal_event (EV_A_ i + 1);
1325 root 1.207 }
1326    
1327 root 1.209 #if EV_ASYNC_ENABLE
1328 root 1.307 if (async_pending)
1329 root 1.207 {
1330 root 1.307 async_pending = 0;
1331 root 1.207
1332     for (i = asynccnt; i--; )
1333     if (asyncs [i]->sent)
1334     {
1335     asyncs [i]->sent = 0;
1336     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1337     }
1338     }
1339 root 1.209 #endif
1340 root 1.207 }
1341    
1342     /*****************************************************************************/
1343    
1344 root 1.7 static void
1345 root 1.218 ev_sighandler (int signum)
1346 root 1.7 {
1347 root 1.207 #if EV_MULTIPLICITY
1348 root 1.306 EV_P = signals [signum - 1].loop;
1349 root 1.207 #endif
1350    
1351 root 1.322 #ifdef _WIN32
1352 root 1.218 signal (signum, ev_sighandler);
1353 root 1.67 #endif
1354    
1355 root 1.307 signals [signum - 1].pending = 1;
1356     evpipe_write (EV_A_ &sig_pending);
1357 root 1.7 }
1358    
1359 root 1.140 void noinline
1360 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1361     {
1362 root 1.80 WL w;
1363    
1364 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1365     return;
1366    
1367     --signum;
1368    
1369 root 1.79 #if EV_MULTIPLICITY
1370 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1371     /* or, likely more useful, feeding a signal nobody is waiting for */
1372 root 1.79
1373 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1374 root 1.306 return;
1375 root 1.307 #endif
1376 root 1.306
1377 root 1.307 signals [signum].pending = 0;
1378 root 1.79
1379     for (w = signals [signum].head; w; w = w->next)
1380     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1381     }
1382    
1383 root 1.303 #if EV_USE_SIGNALFD
1384     static void
1385     sigfdcb (EV_P_ ev_io *iow, int revents)
1386     {
1387 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1388 root 1.303
1389     for (;;)
1390     {
1391     ssize_t res = read (sigfd, si, sizeof (si));
1392    
1393     /* not ISO-C, as res might be -1, but works with SuS */
1394     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1395     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1396    
1397     if (res < (ssize_t)sizeof (si))
1398     break;
1399     }
1400     }
1401     #endif
1402    
1403 root 1.336 #endif
1404    
1405 root 1.8 /*****************************************************************************/
1406    
1407 root 1.336 #if EV_CHILD_ENABLE
1408 root 1.182 static WL childs [EV_PID_HASHSIZE];
1409 root 1.71
1410 root 1.136 static ev_signal childev;
1411 root 1.59
1412 root 1.206 #ifndef WIFCONTINUED
1413     # define WIFCONTINUED(status) 0
1414     #endif
1415    
1416 root 1.288 /* handle a single child status event */
1417 root 1.284 inline_speed void
1418 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1419 root 1.47 {
1420 root 1.136 ev_child *w;
1421 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1422 root 1.47
1423 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1424 root 1.206 {
1425     if ((w->pid == pid || !w->pid)
1426     && (!traced || (w->flags & 1)))
1427     {
1428 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1429 root 1.206 w->rpid = pid;
1430     w->rstatus = status;
1431     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1432     }
1433     }
1434 root 1.47 }
1435    
1436 root 1.142 #ifndef WCONTINUED
1437     # define WCONTINUED 0
1438     #endif
1439    
1440 root 1.288 /* called on sigchld etc., calls waitpid */
1441 root 1.47 static void
1442 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1443 root 1.22 {
1444     int pid, status;
1445    
1446 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1447     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1448     if (!WCONTINUED
1449     || errno != EINVAL
1450     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1451     return;
1452    
1453 root 1.216 /* make sure we are called again until all children have been reaped */
1454 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1455     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1456 root 1.47
1457 root 1.216 child_reap (EV_A_ pid, pid, status);
1458 root 1.338 if ((EV_PID_HASHSIZE) > 1)
1459 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1460 root 1.22 }
1461    
1462 root 1.45 #endif
1463    
1464 root 1.22 /*****************************************************************************/
1465    
1466 root 1.118 #if EV_USE_PORT
1467     # include "ev_port.c"
1468     #endif
1469 root 1.44 #if EV_USE_KQUEUE
1470     # include "ev_kqueue.c"
1471     #endif
1472 root 1.29 #if EV_USE_EPOLL
1473 root 1.1 # include "ev_epoll.c"
1474     #endif
1475 root 1.59 #if EV_USE_POLL
1476 root 1.41 # include "ev_poll.c"
1477     #endif
1478 root 1.29 #if EV_USE_SELECT
1479 root 1.1 # include "ev_select.c"
1480     #endif
1481    
1482 root 1.24 int
1483     ev_version_major (void)
1484     {
1485     return EV_VERSION_MAJOR;
1486     }
1487    
1488     int
1489     ev_version_minor (void)
1490     {
1491     return EV_VERSION_MINOR;
1492     }
1493    
1494 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1495 root 1.140 int inline_size
1496 root 1.51 enable_secure (void)
1497 root 1.41 {
1498 root 1.103 #ifdef _WIN32
1499 root 1.49 return 0;
1500     #else
1501 root 1.41 return getuid () != geteuid ()
1502     || getgid () != getegid ();
1503 root 1.49 #endif
1504 root 1.41 }
1505    
1506 root 1.111 unsigned int
1507 root 1.129 ev_supported_backends (void)
1508     {
1509 root 1.130 unsigned int flags = 0;
1510 root 1.129
1511     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1512     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1513     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1514     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1515     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1516    
1517     return flags;
1518     }
1519    
1520     unsigned int
1521 root 1.130 ev_recommended_backends (void)
1522 root 1.1 {
1523 root 1.131 unsigned int flags = ev_supported_backends ();
1524 root 1.129
1525     #ifndef __NetBSD__
1526     /* kqueue is borked on everything but netbsd apparently */
1527     /* it usually doesn't work correctly on anything but sockets and pipes */
1528     flags &= ~EVBACKEND_KQUEUE;
1529     #endif
1530     #ifdef __APPLE__
1531 root 1.278 /* only select works correctly on that "unix-certified" platform */
1532     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1533     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1534 root 1.129 #endif
1535 root 1.342 #ifdef __FreeBSD__
1536     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1537     #endif
1538 root 1.129
1539     return flags;
1540 root 1.51 }
1541    
1542 root 1.130 unsigned int
1543 root 1.134 ev_embeddable_backends (void)
1544     {
1545 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1546    
1547 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1548 root 1.196 /* please fix it and tell me how to detect the fix */
1549     flags &= ~EVBACKEND_EPOLL;
1550    
1551     return flags;
1552 root 1.134 }
1553    
1554     unsigned int
1555 root 1.130 ev_backend (EV_P)
1556     {
1557     return backend;
1558     }
1559    
1560 root 1.338 #if EV_FEATURE_API
1561 root 1.162 unsigned int
1562 root 1.340 ev_iteration (EV_P)
1563 root 1.162 {
1564     return loop_count;
1565     }
1566    
1567 root 1.294 unsigned int
1568 root 1.340 ev_depth (EV_P)
1569 root 1.294 {
1570     return loop_depth;
1571     }
1572    
1573 root 1.193 void
1574     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1575     {
1576     io_blocktime = interval;
1577     }
1578    
1579     void
1580     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1581     {
1582     timeout_blocktime = interval;
1583     }
1584    
1585 root 1.297 void
1586     ev_set_userdata (EV_P_ void *data)
1587     {
1588     userdata = data;
1589     }
1590    
1591     void *
1592     ev_userdata (EV_P)
1593     {
1594     return userdata;
1595     }
1596    
1597     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1598     {
1599     invoke_cb = invoke_pending_cb;
1600     }
1601    
1602 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1603 root 1.297 {
1604 root 1.298 release_cb = release;
1605     acquire_cb = acquire;
1606 root 1.297 }
1607     #endif
1608    
1609 root 1.288 /* initialise a loop structure, must be zero-initialised */
1610 root 1.151 static void noinline
1611 root 1.108 loop_init (EV_P_ unsigned int flags)
1612 root 1.51 {
1613 root 1.130 if (!backend)
1614 root 1.23 {
1615 root 1.279 #if EV_USE_REALTIME
1616     if (!have_realtime)
1617     {
1618     struct timespec ts;
1619    
1620     if (!clock_gettime (CLOCK_REALTIME, &ts))
1621     have_realtime = 1;
1622     }
1623     #endif
1624    
1625 root 1.29 #if EV_USE_MONOTONIC
1626 root 1.279 if (!have_monotonic)
1627     {
1628     struct timespec ts;
1629    
1630     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1631     have_monotonic = 1;
1632     }
1633 root 1.1 #endif
1634    
1635 root 1.306 /* pid check not overridable via env */
1636     #ifndef _WIN32
1637     if (flags & EVFLAG_FORKCHECK)
1638     curpid = getpid ();
1639     #endif
1640    
1641     if (!(flags & EVFLAG_NOENV)
1642     && !enable_secure ()
1643     && getenv ("LIBEV_FLAGS"))
1644     flags = atoi (getenv ("LIBEV_FLAGS"));
1645    
1646 root 1.209 ev_rt_now = ev_time ();
1647     mn_now = get_clock ();
1648     now_floor = mn_now;
1649     rtmn_diff = ev_rt_now - mn_now;
1650 root 1.338 #if EV_FEATURE_API
1651 root 1.296 invoke_cb = ev_invoke_pending;
1652 root 1.297 #endif
1653 root 1.1
1654 root 1.193 io_blocktime = 0.;
1655     timeout_blocktime = 0.;
1656 root 1.209 backend = 0;
1657     backend_fd = -1;
1658 root 1.307 sig_pending = 0;
1659     #if EV_ASYNC_ENABLE
1660     async_pending = 0;
1661     #endif
1662 root 1.209 #if EV_USE_INOTIFY
1663 root 1.306 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1664 root 1.209 #endif
1665 root 1.303 #if EV_USE_SIGNALFD
1666 root 1.321 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1667 root 1.303 #endif
1668 root 1.193
1669 root 1.225 if (!(flags & 0x0000ffffU))
1670 root 1.129 flags |= ev_recommended_backends ();
1671 root 1.41
1672 root 1.118 #if EV_USE_PORT
1673 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1674 root 1.118 #endif
1675 root 1.44 #if EV_USE_KQUEUE
1676 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1677 root 1.44 #endif
1678 root 1.29 #if EV_USE_EPOLL
1679 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1680 root 1.41 #endif
1681 root 1.59 #if EV_USE_POLL
1682 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1683 root 1.1 #endif
1684 root 1.29 #if EV_USE_SELECT
1685 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1686 root 1.1 #endif
1687 root 1.70
1688 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1689    
1690 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1691 root 1.288 ev_init (&pipe_w, pipecb);
1692     ev_set_priority (&pipe_w, EV_MAXPRI);
1693 root 1.336 #endif
1694 root 1.56 }
1695     }
1696    
1697 root 1.288 /* free up a loop structure */
1698 root 1.151 static void noinline
1699 root 1.56 loop_destroy (EV_P)
1700     {
1701 root 1.65 int i;
1702    
1703 root 1.288 if (ev_is_active (&pipe_w))
1704 root 1.207 {
1705 root 1.303 /*ev_ref (EV_A);*/
1706     /*ev_io_stop (EV_A_ &pipe_w);*/
1707 root 1.207
1708 root 1.220 #if EV_USE_EVENTFD
1709     if (evfd >= 0)
1710     close (evfd);
1711     #endif
1712    
1713     if (evpipe [0] >= 0)
1714     {
1715 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1716     EV_WIN32_CLOSE_FD (evpipe [1]);
1717 root 1.220 }
1718 root 1.207 }
1719    
1720 root 1.303 #if EV_USE_SIGNALFD
1721     if (ev_is_active (&sigfd_w))
1722 root 1.317 close (sigfd);
1723 root 1.303 #endif
1724    
1725 root 1.152 #if EV_USE_INOTIFY
1726     if (fs_fd >= 0)
1727     close (fs_fd);
1728     #endif
1729    
1730     if (backend_fd >= 0)
1731     close (backend_fd);
1732    
1733 root 1.118 #if EV_USE_PORT
1734 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1735 root 1.118 #endif
1736 root 1.56 #if EV_USE_KQUEUE
1737 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1738 root 1.56 #endif
1739     #if EV_USE_EPOLL
1740 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1741 root 1.56 #endif
1742 root 1.59 #if EV_USE_POLL
1743 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1744 root 1.56 #endif
1745     #if EV_USE_SELECT
1746 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1747 root 1.56 #endif
1748 root 1.1
1749 root 1.65 for (i = NUMPRI; i--; )
1750 root 1.164 {
1751     array_free (pending, [i]);
1752     #if EV_IDLE_ENABLE
1753     array_free (idle, [i]);
1754     #endif
1755     }
1756 root 1.65
1757 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
1758 root 1.186
1759 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1760 root 1.284 array_free (rfeed, EMPTY);
1761 root 1.164 array_free (fdchange, EMPTY);
1762     array_free (timer, EMPTY);
1763 root 1.140 #if EV_PERIODIC_ENABLE
1764 root 1.164 array_free (periodic, EMPTY);
1765 root 1.93 #endif
1766 root 1.187 #if EV_FORK_ENABLE
1767     array_free (fork, EMPTY);
1768     #endif
1769 root 1.164 array_free (prepare, EMPTY);
1770     array_free (check, EMPTY);
1771 root 1.209 #if EV_ASYNC_ENABLE
1772     array_free (async, EMPTY);
1773     #endif
1774 root 1.65
1775 root 1.130 backend = 0;
1776 root 1.56 }
1777 root 1.22
1778 root 1.226 #if EV_USE_INOTIFY
1779 root 1.284 inline_size void infy_fork (EV_P);
1780 root 1.226 #endif
1781 root 1.154
1782 root 1.284 inline_size void
1783 root 1.56 loop_fork (EV_P)
1784     {
1785 root 1.118 #if EV_USE_PORT
1786 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1787 root 1.56 #endif
1788     #if EV_USE_KQUEUE
1789 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1790 root 1.45 #endif
1791 root 1.118 #if EV_USE_EPOLL
1792 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1793 root 1.118 #endif
1794 root 1.154 #if EV_USE_INOTIFY
1795     infy_fork (EV_A);
1796     #endif
1797 root 1.70
1798 root 1.288 if (ev_is_active (&pipe_w))
1799 root 1.70 {
1800 root 1.207 /* this "locks" the handlers against writing to the pipe */
1801 root 1.212 /* while we modify the fd vars */
1802 root 1.307 sig_pending = 1;
1803 root 1.212 #if EV_ASYNC_ENABLE
1804 root 1.307 async_pending = 1;
1805 root 1.212 #endif
1806 root 1.70
1807     ev_ref (EV_A);
1808 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1809 root 1.220
1810     #if EV_USE_EVENTFD
1811     if (evfd >= 0)
1812     close (evfd);
1813     #endif
1814    
1815     if (evpipe [0] >= 0)
1816     {
1817 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1818     EV_WIN32_CLOSE_FD (evpipe [1]);
1819 root 1.220 }
1820 root 1.207
1821 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1822 root 1.207 evpipe_init (EV_A);
1823 root 1.208 /* now iterate over everything, in case we missed something */
1824 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1825 root 1.337 #endif
1826 root 1.70 }
1827    
1828     postfork = 0;
1829 root 1.1 }
1830    
1831 root 1.55 #if EV_MULTIPLICITY
1832 root 1.250
1833 root 1.54 struct ev_loop *
1834 root 1.108 ev_loop_new (unsigned int flags)
1835 root 1.54 {
1836 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1837 root 1.69
1838 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
1839 root 1.108 loop_init (EV_A_ flags);
1840 root 1.56
1841 root 1.130 if (ev_backend (EV_A))
1842 root 1.306 return EV_A;
1843 root 1.54
1844 root 1.55 return 0;
1845 root 1.54 }
1846    
1847     void
1848 root 1.56 ev_loop_destroy (EV_P)
1849 root 1.54 {
1850 root 1.56 loop_destroy (EV_A);
1851 root 1.69 ev_free (loop);
1852 root 1.54 }
1853    
1854 root 1.56 void
1855     ev_loop_fork (EV_P)
1856     {
1857 root 1.205 postfork = 1; /* must be in line with ev_default_fork */
1858 root 1.56 }
1859 root 1.297 #endif /* multiplicity */
1860 root 1.248
1861     #if EV_VERIFY
1862 root 1.258 static void noinline
1863 root 1.251 verify_watcher (EV_P_ W w)
1864     {
1865 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1866 root 1.251
1867     if (w->pending)
1868 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1869 root 1.251 }
1870    
1871     static void noinline
1872     verify_heap (EV_P_ ANHE *heap, int N)
1873     {
1874     int i;
1875    
1876     for (i = HEAP0; i < N + HEAP0; ++i)
1877     {
1878 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1879     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1880     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1881 root 1.251
1882     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1883     }
1884     }
1885    
1886     static void noinline
1887     array_verify (EV_P_ W *ws, int cnt)
1888 root 1.248 {
1889     while (cnt--)
1890 root 1.251 {
1891 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1892 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1893     }
1894 root 1.248 }
1895 root 1.250 #endif
1896 root 1.248
1897 root 1.338 #if EV_FEATURE_API
1898 root 1.250 void
1899 root 1.340 ev_verify (EV_P)
1900 root 1.248 {
1901 root 1.250 #if EV_VERIFY
1902 root 1.248 int i;
1903 root 1.251 WL w;
1904    
1905     assert (activecnt >= -1);
1906    
1907     assert (fdchangemax >= fdchangecnt);
1908     for (i = 0; i < fdchangecnt; ++i)
1909 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1910 root 1.251
1911     assert (anfdmax >= 0);
1912     for (i = 0; i < anfdmax; ++i)
1913     for (w = anfds [i].head; w; w = w->next)
1914     {
1915     verify_watcher (EV_A_ (W)w);
1916 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1917     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1918 root 1.251 }
1919    
1920     assert (timermax >= timercnt);
1921     verify_heap (EV_A_ timers, timercnt);
1922 root 1.248
1923     #if EV_PERIODIC_ENABLE
1924 root 1.251 assert (periodicmax >= periodiccnt);
1925     verify_heap (EV_A_ periodics, periodiccnt);
1926 root 1.248 #endif
1927    
1928 root 1.251 for (i = NUMPRI; i--; )
1929     {
1930     assert (pendingmax [i] >= pendingcnt [i]);
1931 root 1.248 #if EV_IDLE_ENABLE
1932 root 1.252 assert (idleall >= 0);
1933 root 1.251 assert (idlemax [i] >= idlecnt [i]);
1934     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1935 root 1.248 #endif
1936 root 1.251 }
1937    
1938 root 1.248 #if EV_FORK_ENABLE
1939 root 1.251 assert (forkmax >= forkcnt);
1940     array_verify (EV_A_ (W *)forks, forkcnt);
1941 root 1.248 #endif
1942 root 1.251
1943 root 1.250 #if EV_ASYNC_ENABLE
1944 root 1.251 assert (asyncmax >= asynccnt);
1945     array_verify (EV_A_ (W *)asyncs, asynccnt);
1946 root 1.250 #endif
1947 root 1.251
1948 root 1.337 #if EV_PREPARE_ENABLE
1949 root 1.251 assert (preparemax >= preparecnt);
1950     array_verify (EV_A_ (W *)prepares, preparecnt);
1951 root 1.337 #endif
1952 root 1.251
1953 root 1.337 #if EV_CHECK_ENABLE
1954 root 1.251 assert (checkmax >= checkcnt);
1955     array_verify (EV_A_ (W *)checks, checkcnt);
1956 root 1.337 #endif
1957 root 1.251
1958     # if 0
1959 root 1.336 #if EV_CHILD_ENABLE
1960 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1961 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1962 root 1.336 #endif
1963 root 1.251 # endif
1964 root 1.248 #endif
1965     }
1966 root 1.297 #endif
1967 root 1.56
1968     #if EV_MULTIPLICITY
1969     struct ev_loop *
1970 root 1.125 ev_default_loop_init (unsigned int flags)
1971 root 1.54 #else
1972     int
1973 root 1.116 ev_default_loop (unsigned int flags)
1974 root 1.56 #endif
1975 root 1.54 {
1976 root 1.116 if (!ev_default_loop_ptr)
1977 root 1.56 {
1978     #if EV_MULTIPLICITY
1979 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
1980 root 1.56 #else
1981 ayin 1.117 ev_default_loop_ptr = 1;
1982 root 1.54 #endif
1983    
1984 root 1.110 loop_init (EV_A_ flags);
1985 root 1.56
1986 root 1.130 if (ev_backend (EV_A))
1987 root 1.56 {
1988 root 1.336 #if EV_CHILD_ENABLE
1989 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
1990     ev_set_priority (&childev, EV_MAXPRI);
1991     ev_signal_start (EV_A_ &childev);
1992     ev_unref (EV_A); /* child watcher should not keep loop alive */
1993     #endif
1994     }
1995     else
1996 root 1.116 ev_default_loop_ptr = 0;
1997 root 1.56 }
1998 root 1.8
1999 root 1.116 return ev_default_loop_ptr;
2000 root 1.1 }
2001    
2002 root 1.24 void
2003 root 1.56 ev_default_destroy (void)
2004 root 1.1 {
2005 root 1.57 #if EV_MULTIPLICITY
2006 root 1.306 EV_P = ev_default_loop_ptr;
2007 root 1.57 #endif
2008 root 1.56
2009 root 1.266 ev_default_loop_ptr = 0;
2010    
2011 root 1.336 #if EV_CHILD_ENABLE
2012 root 1.56 ev_ref (EV_A); /* child watcher */
2013     ev_signal_stop (EV_A_ &childev);
2014 root 1.71 #endif
2015 root 1.56
2016     loop_destroy (EV_A);
2017 root 1.1 }
2018    
2019 root 1.24 void
2020 root 1.60 ev_default_fork (void)
2021 root 1.1 {
2022 root 1.60 #if EV_MULTIPLICITY
2023 root 1.306 EV_P = ev_default_loop_ptr;
2024 root 1.60 #endif
2025    
2026 root 1.270 postfork = 1; /* must be in line with ev_loop_fork */
2027 root 1.1 }
2028    
2029 root 1.8 /*****************************************************************************/
2030    
2031 root 1.168 void
2032     ev_invoke (EV_P_ void *w, int revents)
2033     {
2034     EV_CB_INVOKE ((W)w, revents);
2035     }
2036    
2037 root 1.300 unsigned int
2038     ev_pending_count (EV_P)
2039     {
2040     int pri;
2041     unsigned int count = 0;
2042    
2043     for (pri = NUMPRI; pri--; )
2044     count += pendingcnt [pri];
2045    
2046     return count;
2047     }
2048    
2049 root 1.297 void noinline
2050 root 1.296 ev_invoke_pending (EV_P)
2051 root 1.1 {
2052 root 1.42 int pri;
2053    
2054     for (pri = NUMPRI; pri--; )
2055     while (pendingcnt [pri])
2056     {
2057     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2058 root 1.1
2059 root 1.288 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2060     /* ^ this is no longer true, as pending_w could be here */
2061 root 1.139
2062 root 1.288 p->w->pending = 0;
2063     EV_CB_INVOKE (p->w, p->events);
2064     EV_FREQUENT_CHECK;
2065 root 1.42 }
2066 root 1.1 }
2067    
2068 root 1.234 #if EV_IDLE_ENABLE
2069 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2070     /* only when higher priorities are idle" logic */
2071 root 1.284 inline_size void
2072 root 1.234 idle_reify (EV_P)
2073     {
2074     if (expect_false (idleall))
2075     {
2076     int pri;
2077    
2078     for (pri = NUMPRI; pri--; )
2079     {
2080     if (pendingcnt [pri])
2081     break;
2082    
2083     if (idlecnt [pri])
2084     {
2085     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2086     break;
2087     }
2088     }
2089     }
2090     }
2091     #endif
2092    
2093 root 1.288 /* make timers pending */
2094 root 1.284 inline_size void
2095 root 1.51 timers_reify (EV_P)
2096 root 1.1 {
2097 root 1.248 EV_FREQUENT_CHECK;
2098    
2099 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2100 root 1.1 {
2101 root 1.284 do
2102     {
2103     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2104 root 1.1
2105 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2106    
2107     /* first reschedule or stop timer */
2108     if (w->repeat)
2109     {
2110     ev_at (w) += w->repeat;
2111     if (ev_at (w) < mn_now)
2112     ev_at (w) = mn_now;
2113 root 1.61
2114 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2115 root 1.90
2116 root 1.284 ANHE_at_cache (timers [HEAP0]);
2117     downheap (timers, timercnt, HEAP0);
2118     }
2119     else
2120     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2121 root 1.243
2122 root 1.284 EV_FREQUENT_CHECK;
2123     feed_reverse (EV_A_ (W)w);
2124 root 1.12 }
2125 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2126 root 1.30
2127 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2128 root 1.12 }
2129     }
2130 root 1.4
2131 root 1.140 #if EV_PERIODIC_ENABLE
2132 root 1.288 /* make periodics pending */
2133 root 1.284 inline_size void
2134 root 1.51 periodics_reify (EV_P)
2135 root 1.12 {
2136 root 1.248 EV_FREQUENT_CHECK;
2137 root 1.250
2138 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2139 root 1.12 {
2140 root 1.284 int feed_count = 0;
2141    
2142     do
2143     {
2144     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2145 root 1.1
2146 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2147 root 1.61
2148 root 1.284 /* first reschedule or stop timer */
2149     if (w->reschedule_cb)
2150     {
2151     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2152 root 1.243
2153 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2154 root 1.243
2155 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2156     downheap (periodics, periodiccnt, HEAP0);
2157     }
2158     else if (w->interval)
2159 root 1.246 {
2160 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2161     /* if next trigger time is not sufficiently in the future, put it there */
2162     /* this might happen because of floating point inexactness */
2163     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2164     {
2165     ev_at (w) += w->interval;
2166    
2167     /* if interval is unreasonably low we might still have a time in the past */
2168     /* so correct this. this will make the periodic very inexact, but the user */
2169     /* has effectively asked to get triggered more often than possible */
2170     if (ev_at (w) < ev_rt_now)
2171     ev_at (w) = ev_rt_now;
2172     }
2173 root 1.243
2174 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2175     downheap (periodics, periodiccnt, HEAP0);
2176 root 1.246 }
2177 root 1.284 else
2178     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2179 root 1.243
2180 root 1.284 EV_FREQUENT_CHECK;
2181     feed_reverse (EV_A_ (W)w);
2182 root 1.1 }
2183 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2184 root 1.12
2185 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2186 root 1.12 }
2187     }
2188    
2189 root 1.288 /* simply recalculate all periodics */
2190 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2191 root 1.140 static void noinline
2192 root 1.54 periodics_reschedule (EV_P)
2193 root 1.12 {
2194     int i;
2195    
2196 root 1.13 /* adjust periodics after time jump */
2197 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2198 root 1.12 {
2199 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2200 root 1.12
2201 root 1.77 if (w->reschedule_cb)
2202 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2203 root 1.77 else if (w->interval)
2204 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2205 root 1.242
2206 root 1.248 ANHE_at_cache (periodics [i]);
2207 root 1.77 }
2208 root 1.12
2209 root 1.248 reheap (periodics, periodiccnt);
2210 root 1.1 }
2211 root 1.93 #endif
2212 root 1.1
2213 root 1.288 /* adjust all timers by a given offset */
2214 root 1.285 static void noinline
2215     timers_reschedule (EV_P_ ev_tstamp adjust)
2216     {
2217     int i;
2218    
2219     for (i = 0; i < timercnt; ++i)
2220     {
2221     ANHE *he = timers + i + HEAP0;
2222     ANHE_w (*he)->at += adjust;
2223     ANHE_at_cache (*he);
2224     }
2225     }
2226    
2227 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2228 root 1.324 /* also detect if there was a timejump, and act accordingly */
2229 root 1.284 inline_speed void
2230 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2231 root 1.4 {
2232 root 1.40 #if EV_USE_MONOTONIC
2233     if (expect_true (have_monotonic))
2234     {
2235 root 1.289 int i;
2236 root 1.178 ev_tstamp odiff = rtmn_diff;
2237    
2238     mn_now = get_clock ();
2239    
2240     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2241     /* interpolate in the meantime */
2242     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2243 root 1.40 {
2244 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2245     return;
2246     }
2247    
2248     now_floor = mn_now;
2249     ev_rt_now = ev_time ();
2250 root 1.4
2251 root 1.178 /* loop a few times, before making important decisions.
2252     * on the choice of "4": one iteration isn't enough,
2253     * in case we get preempted during the calls to
2254     * ev_time and get_clock. a second call is almost guaranteed
2255     * to succeed in that case, though. and looping a few more times
2256     * doesn't hurt either as we only do this on time-jumps or
2257     * in the unlikely event of having been preempted here.
2258     */
2259     for (i = 4; --i; )
2260     {
2261     rtmn_diff = ev_rt_now - mn_now;
2262 root 1.4
2263 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2264 root 1.178 return; /* all is well */
2265 root 1.4
2266 root 1.178 ev_rt_now = ev_time ();
2267     mn_now = get_clock ();
2268     now_floor = mn_now;
2269     }
2270 root 1.4
2271 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2272     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2273 root 1.140 # if EV_PERIODIC_ENABLE
2274 root 1.178 periodics_reschedule (EV_A);
2275 root 1.93 # endif
2276 root 1.4 }
2277     else
2278 root 1.40 #endif
2279 root 1.4 {
2280 root 1.85 ev_rt_now = ev_time ();
2281 root 1.40
2282 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2283 root 1.13 {
2284 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2285     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2286 root 1.140 #if EV_PERIODIC_ENABLE
2287 root 1.54 periodics_reschedule (EV_A);
2288 root 1.93 #endif
2289 root 1.13 }
2290 root 1.4
2291 root 1.85 mn_now = ev_rt_now;
2292 root 1.4 }
2293     }
2294    
2295 root 1.51 void
2296     ev_loop (EV_P_ int flags)
2297 root 1.1 {
2298 root 1.338 #if EV_FEATURE_API
2299 root 1.294 ++loop_depth;
2300 root 1.297 #endif
2301 root 1.294
2302 root 1.298 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2303    
2304 root 1.219 loop_done = EVUNLOOP_CANCEL;
2305 root 1.1
2306 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2307 root 1.158
2308 root 1.161 do
2309 root 1.9 {
2310 root 1.250 #if EV_VERIFY >= 2
2311 root 1.340 ev_verify (EV_A);
2312 root 1.250 #endif
2313    
2314 root 1.158 #ifndef _WIN32
2315     if (expect_false (curpid)) /* penalise the forking check even more */
2316     if (expect_false (getpid () != curpid))
2317     {
2318     curpid = getpid ();
2319     postfork = 1;
2320     }
2321     #endif
2322    
2323 root 1.157 #if EV_FORK_ENABLE
2324     /* we might have forked, so queue fork handlers */
2325     if (expect_false (postfork))
2326     if (forkcnt)
2327     {
2328     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2329 root 1.297 EV_INVOKE_PENDING;
2330 root 1.157 }
2331     #endif
2332 root 1.147
2333 root 1.337 #if EV_PREPARE_ENABLE
2334 root 1.170 /* queue prepare watchers (and execute them) */
2335 root 1.40 if (expect_false (preparecnt))
2336 root 1.20 {
2337 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2338 root 1.297 EV_INVOKE_PENDING;
2339 root 1.20 }
2340 root 1.337 #endif
2341 root 1.9
2342 root 1.298 if (expect_false (loop_done))
2343     break;
2344    
2345 root 1.70 /* we might have forked, so reify kernel state if necessary */
2346     if (expect_false (postfork))
2347     loop_fork (EV_A);
2348    
2349 root 1.1 /* update fd-related kernel structures */
2350 root 1.51 fd_reify (EV_A);
2351 root 1.1
2352     /* calculate blocking time */
2353 root 1.135 {
2354 root 1.193 ev_tstamp waittime = 0.;
2355     ev_tstamp sleeptime = 0.;
2356 root 1.12
2357 root 1.193 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2358 root 1.135 {
2359 root 1.293 /* remember old timestamp for io_blocktime calculation */
2360     ev_tstamp prev_mn_now = mn_now;
2361    
2362 root 1.135 /* update time to cancel out callback processing overhead */
2363 root 1.178 time_update (EV_A_ 1e100);
2364 root 1.135
2365 root 1.287 waittime = MAX_BLOCKTIME;
2366    
2367 root 1.135 if (timercnt)
2368     {
2369 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2370 root 1.193 if (waittime > to) waittime = to;
2371 root 1.135 }
2372 root 1.4
2373 root 1.140 #if EV_PERIODIC_ENABLE
2374 root 1.135 if (periodiccnt)
2375     {
2376 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2377 root 1.193 if (waittime > to) waittime = to;
2378 root 1.135 }
2379 root 1.93 #endif
2380 root 1.4
2381 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2382 root 1.193 if (expect_false (waittime < timeout_blocktime))
2383     waittime = timeout_blocktime;
2384    
2385 root 1.293 /* extra check because io_blocktime is commonly 0 */
2386     if (expect_false (io_blocktime))
2387     {
2388     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2389 root 1.193
2390 root 1.293 if (sleeptime > waittime - backend_fudge)
2391     sleeptime = waittime - backend_fudge;
2392 root 1.193
2393 root 1.293 if (expect_true (sleeptime > 0.))
2394     {
2395     ev_sleep (sleeptime);
2396     waittime -= sleeptime;
2397     }
2398 root 1.193 }
2399 root 1.135 }
2400 root 1.1
2401 root 1.338 #if EV_FEATURE_API
2402 root 1.162 ++loop_count;
2403 root 1.297 #endif
2404 root 1.298 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2405 root 1.193 backend_poll (EV_A_ waittime);
2406 root 1.298 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2407 root 1.178
2408     /* update ev_rt_now, do magic */
2409 root 1.193 time_update (EV_A_ waittime + sleeptime);
2410 root 1.135 }
2411 root 1.1
2412 root 1.9 /* queue pending timers and reschedule them */
2413 root 1.51 timers_reify (EV_A); /* relative timers called last */
2414 root 1.140 #if EV_PERIODIC_ENABLE
2415 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2416 root 1.93 #endif
2417 root 1.1
2418 root 1.164 #if EV_IDLE_ENABLE
2419 root 1.137 /* queue idle watchers unless other events are pending */
2420 root 1.164 idle_reify (EV_A);
2421     #endif
2422 root 1.9
2423 root 1.337 #if EV_CHECK_ENABLE
2424 root 1.20 /* queue check watchers, to be executed first */
2425 root 1.123 if (expect_false (checkcnt))
2426 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2427 root 1.337 #endif
2428 root 1.9
2429 root 1.297 EV_INVOKE_PENDING;
2430 root 1.1 }
2431 root 1.219 while (expect_true (
2432     activecnt
2433     && !loop_done
2434     && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2435     ));
2436 root 1.13
2437 root 1.135 if (loop_done == EVUNLOOP_ONE)
2438     loop_done = EVUNLOOP_CANCEL;
2439 root 1.294
2440 root 1.338 #if EV_FEATURE_API
2441 root 1.294 --loop_depth;
2442 root 1.297 #endif
2443 root 1.51 }
2444    
2445     void
2446     ev_unloop (EV_P_ int how)
2447     {
2448     loop_done = how;
2449 root 1.1 }
2450    
2451 root 1.285 void
2452     ev_ref (EV_P)
2453     {
2454     ++activecnt;
2455     }
2456    
2457     void
2458     ev_unref (EV_P)
2459     {
2460     --activecnt;
2461     }
2462    
2463     void
2464     ev_now_update (EV_P)
2465     {
2466     time_update (EV_A_ 1e100);
2467     }
2468    
2469     void
2470     ev_suspend (EV_P)
2471     {
2472     ev_now_update (EV_A);
2473     }
2474    
2475     void
2476     ev_resume (EV_P)
2477     {
2478     ev_tstamp mn_prev = mn_now;
2479    
2480     ev_now_update (EV_A);
2481     timers_reschedule (EV_A_ mn_now - mn_prev);
2482 root 1.286 #if EV_PERIODIC_ENABLE
2483 root 1.288 /* TODO: really do this? */
2484 root 1.285 periodics_reschedule (EV_A);
2485 root 1.286 #endif
2486 root 1.285 }
2487    
2488 root 1.8 /*****************************************************************************/
2489 root 1.288 /* singly-linked list management, used when the expected list length is short */
2490 root 1.8
2491 root 1.284 inline_size void
2492 root 1.10 wlist_add (WL *head, WL elem)
2493 root 1.1 {
2494     elem->next = *head;
2495     *head = elem;
2496     }
2497    
2498 root 1.284 inline_size void
2499 root 1.10 wlist_del (WL *head, WL elem)
2500 root 1.1 {
2501     while (*head)
2502     {
2503 root 1.307 if (expect_true (*head == elem))
2504 root 1.1 {
2505     *head = elem->next;
2506 root 1.307 break;
2507 root 1.1 }
2508    
2509     head = &(*head)->next;
2510     }
2511     }
2512    
2513 root 1.288 /* internal, faster, version of ev_clear_pending */
2514 root 1.284 inline_speed void
2515 root 1.166 clear_pending (EV_P_ W w)
2516 root 1.16 {
2517     if (w->pending)
2518     {
2519 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2520 root 1.16 w->pending = 0;
2521     }
2522     }
2523    
2524 root 1.167 int
2525     ev_clear_pending (EV_P_ void *w)
2526 root 1.166 {
2527     W w_ = (W)w;
2528     int pending = w_->pending;
2529    
2530 root 1.172 if (expect_true (pending))
2531     {
2532     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2533 root 1.288 p->w = (W)&pending_w;
2534 root 1.172 w_->pending = 0;
2535     return p->events;
2536     }
2537     else
2538 root 1.167 return 0;
2539 root 1.166 }
2540    
2541 root 1.284 inline_size void
2542 root 1.164 pri_adjust (EV_P_ W w)
2543     {
2544 root 1.295 int pri = ev_priority (w);
2545 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2546     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2547 root 1.295 ev_set_priority (w, pri);
2548 root 1.164 }
2549    
2550 root 1.284 inline_speed void
2551 root 1.51 ev_start (EV_P_ W w, int active)
2552 root 1.1 {
2553 root 1.164 pri_adjust (EV_A_ w);
2554 root 1.1 w->active = active;
2555 root 1.51 ev_ref (EV_A);
2556 root 1.1 }
2557    
2558 root 1.284 inline_size void
2559 root 1.51 ev_stop (EV_P_ W w)
2560 root 1.1 {
2561 root 1.51 ev_unref (EV_A);
2562 root 1.1 w->active = 0;
2563     }
2564    
2565 root 1.8 /*****************************************************************************/
2566    
2567 root 1.171 void noinline
2568 root 1.136 ev_io_start (EV_P_ ev_io *w)
2569 root 1.1 {
2570 root 1.37 int fd = w->fd;
2571    
2572 root 1.123 if (expect_false (ev_is_active (w)))
2573 root 1.1 return;
2574    
2575 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2576 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2577 root 1.33
2578 root 1.248 EV_FREQUENT_CHECK;
2579    
2580 root 1.51 ev_start (EV_A_ (W)w, 1);
2581 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2582 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2583 root 1.1
2584 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2585 root 1.281 w->events &= ~EV__IOFDSET;
2586 root 1.248
2587     EV_FREQUENT_CHECK;
2588 root 1.1 }
2589    
2590 root 1.171 void noinline
2591 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2592 root 1.1 {
2593 root 1.166 clear_pending (EV_A_ (W)w);
2594 root 1.123 if (expect_false (!ev_is_active (w)))
2595 root 1.1 return;
2596    
2597 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2598 root 1.89
2599 root 1.248 EV_FREQUENT_CHECK;
2600    
2601 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2602 root 1.51 ev_stop (EV_A_ (W)w);
2603 root 1.1
2604 root 1.184 fd_change (EV_A_ w->fd, 1);
2605 root 1.248
2606     EV_FREQUENT_CHECK;
2607 root 1.1 }
2608    
2609 root 1.171 void noinline
2610 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2611 root 1.1 {
2612 root 1.123 if (expect_false (ev_is_active (w)))
2613 root 1.1 return;
2614    
2615 root 1.228 ev_at (w) += mn_now;
2616 root 1.12
2617 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2618 root 1.13
2619 root 1.248 EV_FREQUENT_CHECK;
2620    
2621     ++timercnt;
2622     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2623 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2624     ANHE_w (timers [ev_active (w)]) = (WT)w;
2625 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2626 root 1.235 upheap (timers, ev_active (w));
2627 root 1.62
2628 root 1.248 EV_FREQUENT_CHECK;
2629    
2630 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2631 root 1.12 }
2632    
2633 root 1.171 void noinline
2634 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2635 root 1.12 {
2636 root 1.166 clear_pending (EV_A_ (W)w);
2637 root 1.123 if (expect_false (!ev_is_active (w)))
2638 root 1.12 return;
2639    
2640 root 1.248 EV_FREQUENT_CHECK;
2641    
2642 root 1.230 {
2643     int active = ev_active (w);
2644 root 1.62
2645 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2646 root 1.151
2647 root 1.248 --timercnt;
2648    
2649     if (expect_true (active < timercnt + HEAP0))
2650 root 1.151 {
2651 root 1.248 timers [active] = timers [timercnt + HEAP0];
2652 root 1.181 adjustheap (timers, timercnt, active);
2653 root 1.151 }
2654 root 1.248 }
2655 root 1.228
2656     ev_at (w) -= mn_now;
2657 root 1.14
2658 root 1.51 ev_stop (EV_A_ (W)w);
2659 root 1.328
2660     EV_FREQUENT_CHECK;
2661 root 1.12 }
2662 root 1.4
2663 root 1.171 void noinline
2664 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2665 root 1.14 {
2666 root 1.248 EV_FREQUENT_CHECK;
2667    
2668 root 1.14 if (ev_is_active (w))
2669     {
2670     if (w->repeat)
2671 root 1.99 {
2672 root 1.228 ev_at (w) = mn_now + w->repeat;
2673 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2674 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2675 root 1.99 }
2676 root 1.14 else
2677 root 1.51 ev_timer_stop (EV_A_ w);
2678 root 1.14 }
2679     else if (w->repeat)
2680 root 1.112 {
2681 root 1.229 ev_at (w) = w->repeat;
2682 root 1.112 ev_timer_start (EV_A_ w);
2683     }
2684 root 1.248
2685     EV_FREQUENT_CHECK;
2686 root 1.14 }
2687    
2688 root 1.301 ev_tstamp
2689     ev_timer_remaining (EV_P_ ev_timer *w)
2690     {
2691     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2692     }
2693    
2694 root 1.140 #if EV_PERIODIC_ENABLE
2695 root 1.171 void noinline
2696 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2697 root 1.12 {
2698 root 1.123 if (expect_false (ev_is_active (w)))
2699 root 1.12 return;
2700 root 1.1
2701 root 1.77 if (w->reschedule_cb)
2702 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2703 root 1.77 else if (w->interval)
2704     {
2705 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2706 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2707 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2708 root 1.77 }
2709 root 1.173 else
2710 root 1.228 ev_at (w) = w->offset;
2711 root 1.12
2712 root 1.248 EV_FREQUENT_CHECK;
2713    
2714     ++periodiccnt;
2715     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2716 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2717     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2718 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2719 root 1.235 upheap (periodics, ev_active (w));
2720 root 1.62
2721 root 1.248 EV_FREQUENT_CHECK;
2722    
2723 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2724 root 1.1 }
2725    
2726 root 1.171 void noinline
2727 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2728 root 1.1 {
2729 root 1.166 clear_pending (EV_A_ (W)w);
2730 root 1.123 if (expect_false (!ev_is_active (w)))
2731 root 1.1 return;
2732    
2733 root 1.248 EV_FREQUENT_CHECK;
2734    
2735 root 1.230 {
2736     int active = ev_active (w);
2737 root 1.62
2738 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2739 root 1.151
2740 root 1.248 --periodiccnt;
2741    
2742     if (expect_true (active < periodiccnt + HEAP0))
2743 root 1.151 {
2744 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2745 root 1.181 adjustheap (periodics, periodiccnt, active);
2746 root 1.151 }
2747 root 1.248 }
2748 root 1.228
2749 root 1.328 ev_stop (EV_A_ (W)w);
2750    
2751 root 1.248 EV_FREQUENT_CHECK;
2752 root 1.1 }
2753    
2754 root 1.171 void noinline
2755 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2756 root 1.77 {
2757 root 1.84 /* TODO: use adjustheap and recalculation */
2758 root 1.77 ev_periodic_stop (EV_A_ w);
2759     ev_periodic_start (EV_A_ w);
2760     }
2761 root 1.93 #endif
2762 root 1.77
2763 root 1.56 #ifndef SA_RESTART
2764     # define SA_RESTART 0
2765     #endif
2766    
2767 root 1.336 #if EV_SIGNAL_ENABLE
2768    
2769 root 1.171 void noinline
2770 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2771 root 1.56 {
2772 root 1.123 if (expect_false (ev_is_active (w)))
2773 root 1.56 return;
2774    
2775 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2776    
2777     #if EV_MULTIPLICITY
2778 root 1.308 assert (("libev: a signal must not be attached to two different loops",
2779 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2780    
2781     signals [w->signum - 1].loop = EV_A;
2782     #endif
2783 root 1.56
2784 root 1.303 EV_FREQUENT_CHECK;
2785    
2786     #if EV_USE_SIGNALFD
2787     if (sigfd == -2)
2788     {
2789     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2790     if (sigfd < 0 && errno == EINVAL)
2791     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2792    
2793     if (sigfd >= 0)
2794     {
2795     fd_intern (sigfd); /* doing it twice will not hurt */
2796    
2797     sigemptyset (&sigfd_set);
2798    
2799     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2800     ev_set_priority (&sigfd_w, EV_MAXPRI);
2801     ev_io_start (EV_A_ &sigfd_w);
2802     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2803     }
2804     }
2805    
2806     if (sigfd >= 0)
2807     {
2808     /* TODO: check .head */
2809     sigaddset (&sigfd_set, w->signum);
2810     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2811 root 1.207
2812 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2813     }
2814 root 1.180 #endif
2815    
2816 root 1.56 ev_start (EV_A_ (W)w, 1);
2817 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2818 root 1.56
2819 root 1.63 if (!((WL)w)->next)
2820 root 1.304 # if EV_USE_SIGNALFD
2821 root 1.306 if (sigfd < 0) /*TODO*/
2822 root 1.304 # endif
2823 root 1.306 {
2824 root 1.322 # ifdef _WIN32
2825 root 1.317 evpipe_init (EV_A);
2826    
2827 root 1.306 signal (w->signum, ev_sighandler);
2828     # else
2829     struct sigaction sa;
2830    
2831     evpipe_init (EV_A);
2832    
2833     sa.sa_handler = ev_sighandler;
2834     sigfillset (&sa.sa_mask);
2835     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2836     sigaction (w->signum, &sa, 0);
2837    
2838     sigemptyset (&sa.sa_mask);
2839     sigaddset (&sa.sa_mask, w->signum);
2840     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2841 root 1.67 #endif
2842 root 1.306 }
2843 root 1.248
2844     EV_FREQUENT_CHECK;
2845 root 1.56 }
2846    
2847 root 1.171 void noinline
2848 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2849 root 1.56 {
2850 root 1.166 clear_pending (EV_A_ (W)w);
2851 root 1.123 if (expect_false (!ev_is_active (w)))
2852 root 1.56 return;
2853    
2854 root 1.248 EV_FREQUENT_CHECK;
2855    
2856 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2857 root 1.56 ev_stop (EV_A_ (W)w);
2858    
2859     if (!signals [w->signum - 1].head)
2860 root 1.306 {
2861 root 1.307 #if EV_MULTIPLICITY
2862 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
2863 root 1.307 #endif
2864     #if EV_USE_SIGNALFD
2865 root 1.306 if (sigfd >= 0)
2866     {
2867 root 1.321 sigset_t ss;
2868    
2869     sigemptyset (&ss);
2870     sigaddset (&ss, w->signum);
2871 root 1.306 sigdelset (&sigfd_set, w->signum);
2872 root 1.321
2873 root 1.306 signalfd (sigfd, &sigfd_set, 0);
2874 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
2875 root 1.306 }
2876     else
2877 root 1.307 #endif
2878 root 1.306 signal (w->signum, SIG_DFL);
2879     }
2880 root 1.248
2881     EV_FREQUENT_CHECK;
2882 root 1.56 }
2883    
2884 root 1.336 #endif
2885    
2886     #if EV_CHILD_ENABLE
2887    
2888 root 1.28 void
2889 root 1.136 ev_child_start (EV_P_ ev_child *w)
2890 root 1.22 {
2891 root 1.56 #if EV_MULTIPLICITY
2892 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2893 root 1.56 #endif
2894 root 1.123 if (expect_false (ev_is_active (w)))
2895 root 1.22 return;
2896    
2897 root 1.248 EV_FREQUENT_CHECK;
2898    
2899 root 1.51 ev_start (EV_A_ (W)w, 1);
2900 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2901 root 1.248
2902     EV_FREQUENT_CHECK;
2903 root 1.22 }
2904    
2905 root 1.28 void
2906 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2907 root 1.22 {
2908 root 1.166 clear_pending (EV_A_ (W)w);
2909 root 1.123 if (expect_false (!ev_is_active (w)))
2910 root 1.22 return;
2911    
2912 root 1.248 EV_FREQUENT_CHECK;
2913    
2914 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2915 root 1.51 ev_stop (EV_A_ (W)w);
2916 root 1.248
2917     EV_FREQUENT_CHECK;
2918 root 1.22 }
2919    
2920 root 1.336 #endif
2921    
2922 root 1.140 #if EV_STAT_ENABLE
2923    
2924     # ifdef _WIN32
2925 root 1.146 # undef lstat
2926     # define lstat(a,b) _stati64 (a,b)
2927 root 1.140 # endif
2928    
2929 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2930     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2931     #define MIN_STAT_INTERVAL 0.1074891
2932 root 1.143
2933 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2934 root 1.152
2935     #if EV_USE_INOTIFY
2936 root 1.326
2937     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2938     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2939 root 1.152
2940     static void noinline
2941     infy_add (EV_P_ ev_stat *w)
2942     {
2943     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2944    
2945 root 1.318 if (w->wd >= 0)
2946 root 1.152 {
2947 root 1.318 struct statfs sfs;
2948    
2949     /* now local changes will be tracked by inotify, but remote changes won't */
2950     /* unless the filesystem is known to be local, we therefore still poll */
2951     /* also do poll on <2.6.25, but with normal frequency */
2952    
2953     if (!fs_2625)
2954     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2955     else if (!statfs (w->path, &sfs)
2956     && (sfs.f_type == 0x1373 /* devfs */
2957     || sfs.f_type == 0xEF53 /* ext2/3 */
2958     || sfs.f_type == 0x3153464a /* jfs */
2959     || sfs.f_type == 0x52654973 /* reiser3 */
2960     || sfs.f_type == 0x01021994 /* tempfs */
2961     || sfs.f_type == 0x58465342 /* xfs */))
2962     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2963     else
2964     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2965     }
2966     else
2967     {
2968     /* can't use inotify, continue to stat */
2969 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2970 root 1.152
2971 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
2972 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2973 root 1.233 /* but an efficiency issue only */
2974 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2975 root 1.152 {
2976 root 1.153 char path [4096];
2977 root 1.152 strcpy (path, w->path);
2978    
2979     do
2980     {
2981     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2982     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2983    
2984     char *pend = strrchr (path, '/');
2985    
2986 root 1.275 if (!pend || pend == path)
2987     break;
2988 root 1.152
2989     *pend = 0;
2990 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
2991 root 1.152 }
2992     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2993     }
2994     }
2995 root 1.275
2996     if (w->wd >= 0)
2997 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2998 root 1.152
2999 root 1.318 /* now re-arm timer, if required */
3000     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3001     ev_timer_again (EV_A_ &w->timer);
3002     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3003 root 1.152 }
3004    
3005     static void noinline
3006     infy_del (EV_P_ ev_stat *w)
3007     {
3008     int slot;
3009     int wd = w->wd;
3010    
3011     if (wd < 0)
3012     return;
3013    
3014     w->wd = -2;
3015 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3016 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3017    
3018     /* remove this watcher, if others are watching it, they will rearm */
3019     inotify_rm_watch (fs_fd, wd);
3020     }
3021    
3022     static void noinline
3023     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3024     {
3025     if (slot < 0)
3026 root 1.264 /* overflow, need to check for all hash slots */
3027 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3028 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3029     else
3030     {
3031     WL w_;
3032    
3033 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3034 root 1.152 {
3035     ev_stat *w = (ev_stat *)w_;
3036     w_ = w_->next; /* lets us remove this watcher and all before it */
3037    
3038     if (w->wd == wd || wd == -1)
3039     {
3040     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3041     {
3042 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3043 root 1.152 w->wd = -1;
3044     infy_add (EV_A_ w); /* re-add, no matter what */
3045     }
3046    
3047 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3048 root 1.152 }
3049     }
3050     }
3051     }
3052    
3053     static void
3054     infy_cb (EV_P_ ev_io *w, int revents)
3055     {
3056     char buf [EV_INOTIFY_BUFSIZE];
3057     int ofs;
3058     int len = read (fs_fd, buf, sizeof (buf));
3059    
3060 root 1.326 for (ofs = 0; ofs < len; )
3061     {
3062     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3063     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3064     ofs += sizeof (struct inotify_event) + ev->len;
3065     }
3066 root 1.152 }
3067    
3068 root 1.330 inline_size unsigned int
3069     ev_linux_version (void)
3070 root 1.152 {
3071 root 1.273 struct utsname buf;
3072 root 1.330 unsigned int v;
3073     int i;
3074     char *p = buf.release;
3075 root 1.273
3076     if (uname (&buf))
3077 root 1.330 return 0;
3078    
3079     for (i = 3+1; --i; )
3080     {
3081     unsigned int c = 0;
3082    
3083     for (;;)
3084     {
3085     if (*p >= '0' && *p <= '9')
3086     c = c * 10 + *p++ - '0';
3087     else
3088     {
3089     p += *p == '.';
3090     break;
3091     }
3092     }
3093    
3094     v = (v << 8) | c;
3095     }
3096 root 1.273
3097 root 1.330 return v;
3098     }
3099 root 1.273
3100 root 1.330 inline_size void
3101     ev_check_2625 (EV_P)
3102     {
3103     /* kernels < 2.6.25 are borked
3104     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3105     */
3106     if (ev_linux_version () < 0x020619)
3107 root 1.273 return;
3108 root 1.264
3109 root 1.273 fs_2625 = 1;
3110     }
3111 root 1.264
3112 root 1.315 inline_size int
3113     infy_newfd (void)
3114     {
3115     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3116     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3117     if (fd >= 0)
3118     return fd;
3119     #endif
3120     return inotify_init ();
3121     }
3122    
3123 root 1.284 inline_size void
3124 root 1.273 infy_init (EV_P)
3125     {
3126     if (fs_fd != -2)
3127     return;
3128 root 1.264
3129 root 1.273 fs_fd = -1;
3130 root 1.264
3131 root 1.330 ev_check_2625 (EV_A);
3132 root 1.264
3133 root 1.315 fs_fd = infy_newfd ();
3134 root 1.152
3135     if (fs_fd >= 0)
3136     {
3137 root 1.315 fd_intern (fs_fd);
3138 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3139     ev_set_priority (&fs_w, EV_MAXPRI);
3140     ev_io_start (EV_A_ &fs_w);
3141 root 1.317 ev_unref (EV_A);
3142 root 1.152 }
3143     }
3144    
3145 root 1.284 inline_size void
3146 root 1.154 infy_fork (EV_P)
3147     {
3148     int slot;
3149    
3150     if (fs_fd < 0)
3151     return;
3152    
3153 root 1.317 ev_ref (EV_A);
3154 root 1.315 ev_io_stop (EV_A_ &fs_w);
3155 root 1.154 close (fs_fd);
3156 root 1.315 fs_fd = infy_newfd ();
3157    
3158     if (fs_fd >= 0)
3159     {
3160     fd_intern (fs_fd);
3161     ev_io_set (&fs_w, fs_fd, EV_READ);
3162     ev_io_start (EV_A_ &fs_w);
3163 root 1.317 ev_unref (EV_A);
3164 root 1.315 }
3165 root 1.154
3166 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3167 root 1.154 {
3168     WL w_ = fs_hash [slot].head;
3169     fs_hash [slot].head = 0;
3170    
3171     while (w_)
3172     {
3173     ev_stat *w = (ev_stat *)w_;
3174     w_ = w_->next; /* lets us add this watcher */
3175    
3176     w->wd = -1;
3177    
3178     if (fs_fd >= 0)
3179     infy_add (EV_A_ w); /* re-add, no matter what */
3180     else
3181 root 1.318 {
3182     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3183     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3184     ev_timer_again (EV_A_ &w->timer);
3185     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3186     }
3187 root 1.154 }
3188     }
3189     }
3190    
3191 root 1.152 #endif
3192    
3193 root 1.255 #ifdef _WIN32
3194     # define EV_LSTAT(p,b) _stati64 (p, b)
3195     #else
3196     # define EV_LSTAT(p,b) lstat (p, b)
3197     #endif
3198    
3199 root 1.140 void
3200     ev_stat_stat (EV_P_ ev_stat *w)
3201     {
3202     if (lstat (w->path, &w->attr) < 0)
3203     w->attr.st_nlink = 0;
3204     else if (!w->attr.st_nlink)
3205     w->attr.st_nlink = 1;
3206     }
3207    
3208 root 1.157 static void noinline
3209 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3210     {
3211     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3212    
3213 root 1.320 ev_statdata prev = w->attr;
3214 root 1.140 ev_stat_stat (EV_A_ w);
3215    
3216 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3217     if (
3218 root 1.320 prev.st_dev != w->attr.st_dev
3219     || prev.st_ino != w->attr.st_ino
3220     || prev.st_mode != w->attr.st_mode
3221     || prev.st_nlink != w->attr.st_nlink
3222     || prev.st_uid != w->attr.st_uid
3223     || prev.st_gid != w->attr.st_gid
3224     || prev.st_rdev != w->attr.st_rdev
3225     || prev.st_size != w->attr.st_size
3226     || prev.st_atime != w->attr.st_atime
3227     || prev.st_mtime != w->attr.st_mtime
3228     || prev.st_ctime != w->attr.st_ctime
3229 root 1.156 ) {
3230 root 1.320 /* we only update w->prev on actual differences */
3231     /* in case we test more often than invoke the callback, */
3232     /* to ensure that prev is always different to attr */
3233     w->prev = prev;
3234    
3235 root 1.152 #if EV_USE_INOTIFY
3236 root 1.264 if (fs_fd >= 0)
3237     {
3238     infy_del (EV_A_ w);
3239     infy_add (EV_A_ w);
3240     ev_stat_stat (EV_A_ w); /* avoid race... */
3241     }
3242 root 1.152 #endif
3243    
3244     ev_feed_event (EV_A_ w, EV_STAT);
3245     }
3246 root 1.140 }
3247    
3248     void
3249     ev_stat_start (EV_P_ ev_stat *w)
3250     {
3251     if (expect_false (ev_is_active (w)))
3252     return;
3253    
3254     ev_stat_stat (EV_A_ w);
3255    
3256 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3257     w->interval = MIN_STAT_INTERVAL;
3258 root 1.143
3259 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3260 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3261 root 1.152
3262     #if EV_USE_INOTIFY
3263     infy_init (EV_A);
3264    
3265     if (fs_fd >= 0)
3266     infy_add (EV_A_ w);
3267     else
3268     #endif
3269 root 1.318 {
3270     ev_timer_again (EV_A_ &w->timer);
3271     ev_unref (EV_A);
3272     }
3273 root 1.140
3274     ev_start (EV_A_ (W)w, 1);
3275 root 1.248
3276     EV_FREQUENT_CHECK;
3277 root 1.140 }
3278    
3279     void
3280     ev_stat_stop (EV_P_ ev_stat *w)
3281     {
3282 root 1.166 clear_pending (EV_A_ (W)w);
3283 root 1.140 if (expect_false (!ev_is_active (w)))
3284     return;
3285    
3286 root 1.248 EV_FREQUENT_CHECK;
3287    
3288 root 1.152 #if EV_USE_INOTIFY
3289     infy_del (EV_A_ w);
3290     #endif
3291 root 1.318
3292     if (ev_is_active (&w->timer))
3293     {
3294     ev_ref (EV_A);
3295     ev_timer_stop (EV_A_ &w->timer);
3296     }
3297 root 1.140
3298 root 1.134 ev_stop (EV_A_ (W)w);
3299 root 1.248
3300     EV_FREQUENT_CHECK;
3301 root 1.134 }
3302     #endif
3303    
3304 root 1.164 #if EV_IDLE_ENABLE
3305 root 1.144 void
3306     ev_idle_start (EV_P_ ev_idle *w)
3307     {
3308     if (expect_false (ev_is_active (w)))
3309     return;
3310    
3311 root 1.164 pri_adjust (EV_A_ (W)w);
3312    
3313 root 1.248 EV_FREQUENT_CHECK;
3314    
3315 root 1.164 {
3316     int active = ++idlecnt [ABSPRI (w)];
3317    
3318     ++idleall;
3319     ev_start (EV_A_ (W)w, active);
3320    
3321     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3322     idles [ABSPRI (w)][active - 1] = w;
3323     }
3324 root 1.248
3325     EV_FREQUENT_CHECK;
3326 root 1.144 }
3327    
3328     void
3329     ev_idle_stop (EV_P_ ev_idle *w)
3330     {
3331 root 1.166 clear_pending (EV_A_ (W)w);
3332 root 1.144 if (expect_false (!ev_is_active (w)))
3333     return;
3334    
3335 root 1.248 EV_FREQUENT_CHECK;
3336    
3337 root 1.144 {
3338 root 1.230 int active = ev_active (w);
3339 root 1.164
3340     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3341 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3342 root 1.164
3343     ev_stop (EV_A_ (W)w);
3344     --idleall;
3345 root 1.144 }
3346 root 1.248
3347     EV_FREQUENT_CHECK;
3348 root 1.144 }
3349 root 1.164 #endif
3350 root 1.144
3351 root 1.337 #if EV_PREPARE_ENABLE
3352 root 1.144 void
3353     ev_prepare_start (EV_P_ ev_prepare *w)
3354     {
3355     if (expect_false (ev_is_active (w)))
3356     return;
3357    
3358 root 1.248 EV_FREQUENT_CHECK;
3359    
3360 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3361     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3362     prepares [preparecnt - 1] = w;
3363 root 1.248
3364     EV_FREQUENT_CHECK;
3365 root 1.144 }
3366    
3367     void
3368     ev_prepare_stop (EV_P_ ev_prepare *w)
3369     {
3370 root 1.166 clear_pending (EV_A_ (W)w);
3371 root 1.144 if (expect_false (!ev_is_active (w)))
3372     return;
3373    
3374 root 1.248 EV_FREQUENT_CHECK;
3375    
3376 root 1.144 {
3377 root 1.230 int active = ev_active (w);
3378    
3379 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3380 root 1.230 ev_active (prepares [active - 1]) = active;
3381 root 1.144 }
3382    
3383     ev_stop (EV_A_ (W)w);
3384 root 1.248
3385     EV_FREQUENT_CHECK;
3386 root 1.144 }
3387 root 1.337 #endif
3388 root 1.144
3389 root 1.337 #if EV_CHECK_ENABLE
3390 root 1.144 void
3391     ev_check_start (EV_P_ ev_check *w)
3392     {
3393     if (expect_false (ev_is_active (w)))
3394     return;
3395    
3396 root 1.248 EV_FREQUENT_CHECK;
3397    
3398 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3399     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3400     checks [checkcnt - 1] = w;
3401 root 1.248
3402     EV_FREQUENT_CHECK;
3403 root 1.144 }
3404    
3405     void
3406     ev_check_stop (EV_P_ ev_check *w)
3407     {
3408 root 1.166 clear_pending (EV_A_ (W)w);
3409 root 1.144 if (expect_false (!ev_is_active (w)))
3410     return;
3411    
3412 root 1.248 EV_FREQUENT_CHECK;
3413    
3414 root 1.144 {
3415 root 1.230 int active = ev_active (w);
3416    
3417 root 1.144 checks [active - 1] = checks [--checkcnt];
3418 root 1.230 ev_active (checks [active - 1]) = active;
3419 root 1.144 }
3420    
3421     ev_stop (EV_A_ (W)w);
3422 root 1.248
3423     EV_FREQUENT_CHECK;
3424 root 1.144 }
3425 root 1.337 #endif
3426 root 1.144
3427     #if EV_EMBED_ENABLE
3428     void noinline
3429     ev_embed_sweep (EV_P_ ev_embed *w)
3430     {
3431 root 1.188 ev_loop (w->other, EVLOOP_NONBLOCK);
3432 root 1.144 }
3433    
3434     static void
3435 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3436 root 1.144 {
3437     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3438    
3439     if (ev_cb (w))
3440     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3441     else
3442 root 1.195 ev_loop (w->other, EVLOOP_NONBLOCK);
3443 root 1.144 }
3444    
3445 root 1.189 static void
3446     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3447     {
3448     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3449    
3450 root 1.195 {
3451 root 1.306 EV_P = w->other;
3452 root 1.195
3453     while (fdchangecnt)
3454     {
3455     fd_reify (EV_A);
3456     ev_loop (EV_A_ EVLOOP_NONBLOCK);
3457     }
3458     }
3459     }
3460    
3461 root 1.261 static void
3462     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3463     {
3464     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3465    
3466 root 1.277 ev_embed_stop (EV_A_ w);
3467    
3468 root 1.261 {
3469 root 1.306 EV_P = w->other;
3470 root 1.261
3471     ev_loop_fork (EV_A);
3472 root 1.277 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3473 root 1.261 }
3474 root 1.277
3475     ev_embed_start (EV_A_ w);
3476 root 1.261 }
3477    
3478 root 1.195 #if 0
3479     static void
3480     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3481     {
3482     ev_idle_stop (EV_A_ idle);
3483 root 1.189 }
3484 root 1.195 #endif
3485 root 1.189
3486 root 1.144 void
3487     ev_embed_start (EV_P_ ev_embed *w)
3488     {
3489     if (expect_false (ev_is_active (w)))
3490     return;
3491    
3492     {
3493 root 1.306 EV_P = w->other;
3494 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3495 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3496 root 1.144 }
3497    
3498 root 1.248 EV_FREQUENT_CHECK;
3499    
3500 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3501     ev_io_start (EV_A_ &w->io);
3502    
3503 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3504     ev_set_priority (&w->prepare, EV_MINPRI);
3505     ev_prepare_start (EV_A_ &w->prepare);
3506    
3507 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3508     ev_fork_start (EV_A_ &w->fork);
3509    
3510 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3511    
3512 root 1.144 ev_start (EV_A_ (W)w, 1);
3513 root 1.248
3514     EV_FREQUENT_CHECK;
3515 root 1.144 }
3516    
3517     void
3518     ev_embed_stop (EV_P_ ev_embed *w)
3519     {
3520 root 1.166 clear_pending (EV_A_ (W)w);
3521 root 1.144 if (expect_false (!ev_is_active (w)))
3522     return;
3523    
3524 root 1.248 EV_FREQUENT_CHECK;
3525    
3526 root 1.261 ev_io_stop (EV_A_ &w->io);
3527 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3528 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3529 root 1.248
3530 root 1.328 ev_stop (EV_A_ (W)w);
3531    
3532 root 1.248 EV_FREQUENT_CHECK;
3533 root 1.144 }
3534     #endif
3535    
3536 root 1.147 #if EV_FORK_ENABLE
3537     void
3538     ev_fork_start (EV_P_ ev_fork *w)
3539     {
3540     if (expect_false (ev_is_active (w)))
3541     return;
3542    
3543 root 1.248 EV_FREQUENT_CHECK;
3544    
3545 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3546     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3547     forks [forkcnt - 1] = w;
3548 root 1.248
3549     EV_FREQUENT_CHECK;
3550 root 1.147 }
3551    
3552     void
3553     ev_fork_stop (EV_P_ ev_fork *w)
3554     {
3555 root 1.166 clear_pending (EV_A_ (W)w);
3556 root 1.147 if (expect_false (!ev_is_active (w)))
3557     return;
3558    
3559 root 1.248 EV_FREQUENT_CHECK;
3560    
3561 root 1.147 {
3562 root 1.230 int active = ev_active (w);
3563    
3564 root 1.147 forks [active - 1] = forks [--forkcnt];
3565 root 1.230 ev_active (forks [active - 1]) = active;
3566 root 1.147 }
3567    
3568     ev_stop (EV_A_ (W)w);
3569 root 1.248
3570     EV_FREQUENT_CHECK;
3571 root 1.147 }
3572     #endif
3573    
3574 root 1.207 #if EV_ASYNC_ENABLE
3575     void
3576     ev_async_start (EV_P_ ev_async *w)
3577     {
3578     if (expect_false (ev_is_active (w)))
3579     return;
3580    
3581     evpipe_init (EV_A);
3582    
3583 root 1.248 EV_FREQUENT_CHECK;
3584    
3585 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3586     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3587     asyncs [asynccnt - 1] = w;
3588 root 1.248
3589     EV_FREQUENT_CHECK;
3590 root 1.207 }
3591    
3592     void
3593     ev_async_stop (EV_P_ ev_async *w)
3594     {
3595     clear_pending (EV_A_ (W)w);
3596     if (expect_false (!ev_is_active (w)))
3597     return;
3598    
3599 root 1.248 EV_FREQUENT_CHECK;
3600    
3601 root 1.207 {
3602 root 1.230 int active = ev_active (w);
3603    
3604 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3605 root 1.230 ev_active (asyncs [active - 1]) = active;
3606 root 1.207 }
3607    
3608     ev_stop (EV_A_ (W)w);
3609 root 1.248
3610     EV_FREQUENT_CHECK;
3611 root 1.207 }
3612    
3613     void
3614     ev_async_send (EV_P_ ev_async *w)
3615     {
3616     w->sent = 1;
3617 root 1.307 evpipe_write (EV_A_ &async_pending);
3618 root 1.207 }
3619     #endif
3620    
3621 root 1.1 /*****************************************************************************/
3622 root 1.10
3623 root 1.16 struct ev_once
3624     {
3625 root 1.136 ev_io io;
3626     ev_timer to;
3627 root 1.16 void (*cb)(int revents, void *arg);
3628     void *arg;
3629     };
3630    
3631     static void
3632 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3633 root 1.16 {
3634     void (*cb)(int revents, void *arg) = once->cb;
3635     void *arg = once->arg;
3636    
3637 root 1.259 ev_io_stop (EV_A_ &once->io);
3638 root 1.51 ev_timer_stop (EV_A_ &once->to);
3639 root 1.69 ev_free (once);
3640 root 1.16
3641     cb (revents, arg);
3642     }
3643    
3644     static void
3645 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3646 root 1.16 {
3647 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3648    
3649     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3650 root 1.16 }
3651    
3652     static void
3653 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3654 root 1.16 {
3655 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3656    
3657     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3658 root 1.16 }
3659    
3660     void
3661 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3662 root 1.16 {
3663 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3664 root 1.16
3665 root 1.123 if (expect_false (!once))
3666 root 1.16 {
3667 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3668 root 1.123 return;
3669     }
3670    
3671     once->cb = cb;
3672     once->arg = arg;
3673 root 1.16
3674 root 1.123 ev_init (&once->io, once_cb_io);
3675     if (fd >= 0)
3676     {
3677     ev_io_set (&once->io, fd, events);
3678     ev_io_start (EV_A_ &once->io);
3679     }
3680 root 1.16
3681 root 1.123 ev_init (&once->to, once_cb_to);
3682     if (timeout >= 0.)
3683     {
3684     ev_timer_set (&once->to, timeout, 0.);
3685     ev_timer_start (EV_A_ &once->to);
3686 root 1.16 }
3687     }
3688    
3689 root 1.282 /*****************************************************************************/
3690    
3691 root 1.288 #if EV_WALK_ENABLE
3692 root 1.282 void
3693     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3694     {
3695     int i, j;
3696     ev_watcher_list *wl, *wn;
3697    
3698     if (types & (EV_IO | EV_EMBED))
3699     for (i = 0; i < anfdmax; ++i)
3700     for (wl = anfds [i].head; wl; )
3701     {
3702     wn = wl->next;
3703    
3704     #if EV_EMBED_ENABLE
3705     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3706     {
3707     if (types & EV_EMBED)
3708     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3709     }
3710     else
3711     #endif
3712     #if EV_USE_INOTIFY
3713     if (ev_cb ((ev_io *)wl) == infy_cb)
3714     ;
3715     else
3716     #endif
3717 root 1.288 if ((ev_io *)wl != &pipe_w)
3718 root 1.282 if (types & EV_IO)
3719     cb (EV_A_ EV_IO, wl);
3720    
3721     wl = wn;
3722     }
3723    
3724     if (types & (EV_TIMER | EV_STAT))
3725     for (i = timercnt + HEAP0; i-- > HEAP0; )
3726     #if EV_STAT_ENABLE
3727     /*TODO: timer is not always active*/
3728     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3729     {
3730     if (types & EV_STAT)
3731     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3732     }
3733     else
3734     #endif
3735     if (types & EV_TIMER)
3736     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3737    
3738     #if EV_PERIODIC_ENABLE
3739     if (types & EV_PERIODIC)
3740     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3741     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3742     #endif
3743    
3744     #if EV_IDLE_ENABLE
3745     if (types & EV_IDLE)
3746     for (j = NUMPRI; i--; )
3747     for (i = idlecnt [j]; i--; )
3748     cb (EV_A_ EV_IDLE, idles [j][i]);
3749     #endif
3750    
3751     #if EV_FORK_ENABLE
3752     if (types & EV_FORK)
3753     for (i = forkcnt; i--; )
3754     if (ev_cb (forks [i]) != embed_fork_cb)
3755     cb (EV_A_ EV_FORK, forks [i]);
3756     #endif
3757    
3758     #if EV_ASYNC_ENABLE
3759     if (types & EV_ASYNC)
3760     for (i = asynccnt; i--; )
3761     cb (EV_A_ EV_ASYNC, asyncs [i]);
3762     #endif
3763    
3764 root 1.337 #if EV_PREPARE_ENABLE
3765 root 1.282 if (types & EV_PREPARE)
3766     for (i = preparecnt; i--; )
3767 root 1.337 # if EV_EMBED_ENABLE
3768 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3769 root 1.337 # endif
3770     cb (EV_A_ EV_PREPARE, prepares [i]);
3771 root 1.282 #endif
3772    
3773 root 1.337 #if EV_CHECK_ENABLE
3774 root 1.282 if (types & EV_CHECK)
3775     for (i = checkcnt; i--; )
3776     cb (EV_A_ EV_CHECK, checks [i]);
3777 root 1.337 #endif
3778 root 1.282
3779 root 1.337 #if EV_SIGNAL_ENABLE
3780 root 1.282 if (types & EV_SIGNAL)
3781 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
3782 root 1.282 for (wl = signals [i].head; wl; )
3783     {
3784     wn = wl->next;
3785     cb (EV_A_ EV_SIGNAL, wl);
3786     wl = wn;
3787     }
3788 root 1.337 #endif
3789 root 1.282
3790 root 1.337 #if EV_CHILD_ENABLE
3791 root 1.282 if (types & EV_CHILD)
3792 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
3793 root 1.282 for (wl = childs [i]; wl; )
3794     {
3795     wn = wl->next;
3796     cb (EV_A_ EV_CHILD, wl);
3797     wl = wn;
3798     }
3799 root 1.337 #endif
3800 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
3801     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3802     }
3803     #endif
3804    
3805 root 1.188 #if EV_MULTIPLICITY
3806     #include "ev_wrap.h"
3807     #endif
3808    
3809 root 1.87 #ifdef __cplusplus
3810     }
3811     #endif
3812