ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.352
Committed: Thu Oct 21 02:33:08 2010 UTC (13 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.351: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.326 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40     #ifdef __cplusplus
41     extern "C" {
42     #endif
43    
44 root 1.220 /* this big block deduces configuration from config.h */
45 root 1.59 #ifndef EV_STANDALONE
46 root 1.133 # ifdef EV_CONFIG_H
47     # include EV_CONFIG_H
48     # else
49     # include "config.h"
50     # endif
51 root 1.60
52 root 1.274 # if HAVE_CLOCK_SYSCALL
53     # ifndef EV_USE_CLOCK_SYSCALL
54     # define EV_USE_CLOCK_SYSCALL 1
55     # ifndef EV_USE_REALTIME
56     # define EV_USE_REALTIME 0
57     # endif
58     # ifndef EV_USE_MONOTONIC
59     # define EV_USE_MONOTONIC 1
60     # endif
61     # endif
62 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
63     # define EV_USE_CLOCK_SYSCALL 0
64 root 1.274 # endif
65    
66 root 1.60 # if HAVE_CLOCK_GETTIME
67 root 1.97 # ifndef EV_USE_MONOTONIC
68     # define EV_USE_MONOTONIC 1
69     # endif
70     # ifndef EV_USE_REALTIME
71 root 1.279 # define EV_USE_REALTIME 0
72 root 1.97 # endif
73 root 1.126 # else
74     # ifndef EV_USE_MONOTONIC
75     # define EV_USE_MONOTONIC 0
76     # endif
77     # ifndef EV_USE_REALTIME
78     # define EV_USE_REALTIME 0
79     # endif
80 root 1.60 # endif
81    
82 root 1.343 # if HAVE_NANOSLEEP
83     # ifndef EV_USE_NANOSLEEP
84     # define EV_USE_NANOSLEEP EV_FEATURE_OS
85     # endif
86     # else
87     # undef EV_USE_NANOSLEEP
88 root 1.193 # define EV_USE_NANOSLEEP 0
89     # endif
90    
91 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92     # ifndef EV_USE_SELECT
93 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
94 root 1.127 # endif
95 root 1.343 # else
96     # undef EV_USE_SELECT
97     # define EV_USE_SELECT 0
98 root 1.60 # endif
99    
100 root 1.343 # if HAVE_POLL && HAVE_POLL_H
101     # ifndef EV_USE_POLL
102 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
103 root 1.127 # endif
104 root 1.343 # else
105     # undef EV_USE_POLL
106     # define EV_USE_POLL 0
107 root 1.60 # endif
108 root 1.127
109 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
110     # ifndef EV_USE_EPOLL
111 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
112 root 1.127 # endif
113 root 1.343 # else
114     # undef EV_USE_EPOLL
115     # define EV_USE_EPOLL 0
116 root 1.60 # endif
117 root 1.127
118 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
119     # ifndef EV_USE_KQUEUE
120 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
121 root 1.127 # endif
122 root 1.343 # else
123     # undef EV_USE_KQUEUE
124     # define EV_USE_KQUEUE 0
125 root 1.60 # endif
126 root 1.127
127 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
128     # ifndef EV_USE_PORT
129 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
130 root 1.127 # endif
131 root 1.343 # else
132     # undef EV_USE_PORT
133     # define EV_USE_PORT 0
134 root 1.118 # endif
135    
136 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137     # ifndef EV_USE_INOTIFY
138 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
139 root 1.152 # endif
140 root 1.343 # else
141     # undef EV_USE_INOTIFY
142     # define EV_USE_INOTIFY 0
143 root 1.152 # endif
144    
145 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146     # ifndef EV_USE_SIGNALFD
147 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
148 root 1.303 # endif
149 root 1.343 # else
150     # undef EV_USE_SIGNALFD
151     # define EV_USE_SIGNALFD 0
152 root 1.303 # endif
153    
154 root 1.343 # if HAVE_EVENTFD
155     # ifndef EV_USE_EVENTFD
156 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
157 root 1.220 # endif
158 root 1.343 # else
159     # undef EV_USE_EVENTFD
160     # define EV_USE_EVENTFD 0
161 root 1.220 # endif
162 root 1.250
163 root 1.29 #endif
164 root 1.17
165 root 1.1 #include <math.h>
166     #include <stdlib.h>
167 root 1.319 #include <string.h>
168 root 1.7 #include <fcntl.h>
169 root 1.16 #include <stddef.h>
170 root 1.1
171     #include <stdio.h>
172    
173 root 1.4 #include <assert.h>
174 root 1.1 #include <errno.h>
175 root 1.22 #include <sys/types.h>
176 root 1.71 #include <time.h>
177 root 1.326 #include <limits.h>
178 root 1.71
179 root 1.72 #include <signal.h>
180 root 1.71
181 root 1.152 #ifdef EV_H
182     # include EV_H
183     #else
184     # include "ev.h"
185     #endif
186    
187 root 1.103 #ifndef _WIN32
188 root 1.71 # include <sys/time.h>
189 root 1.45 # include <sys/wait.h>
190 root 1.140 # include <unistd.h>
191 root 1.103 #else
192 root 1.256 # include <io.h>
193 root 1.103 # define WIN32_LEAN_AND_MEAN
194     # include <windows.h>
195     # ifndef EV_SELECT_IS_WINSOCKET
196     # define EV_SELECT_IS_WINSOCKET 1
197     # endif
198 root 1.331 # undef EV_AVOID_STDIO
199 root 1.45 #endif
200 root 1.103
201 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
202     * a limit of 1024 into their select. Where people have brains,
203     * OS X engineers apparently have a vacuum. Or maybe they were
204     * ordered to have a vacuum, or they do anything for money.
205     * This might help. Or not.
206     */
207     #define _DARWIN_UNLIMITED_SELECT 1
208    
209 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
210 root 1.40
211 root 1.305 /* try to deduce the maximum number of signals on this platform */
212     #if defined (EV_NSIG)
213     /* use what's provided */
214     #elif defined (NSIG)
215     # define EV_NSIG (NSIG)
216     #elif defined(_NSIG)
217     # define EV_NSIG (_NSIG)
218     #elif defined (SIGMAX)
219     # define EV_NSIG (SIGMAX+1)
220     #elif defined (SIG_MAX)
221     # define EV_NSIG (SIG_MAX+1)
222     #elif defined (_SIG_MAX)
223     # define EV_NSIG (_SIG_MAX+1)
224     #elif defined (MAXSIG)
225     # define EV_NSIG (MAXSIG+1)
226     #elif defined (MAX_SIG)
227     # define EV_NSIG (MAX_SIG+1)
228     #elif defined (SIGARRAYSIZE)
229 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230 root 1.305 #elif defined (_sys_nsig)
231     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232     #else
233     # error "unable to find value for NSIG, please report"
234 root 1.336 /* to make it compile regardless, just remove the above line, */
235     /* but consider reporting it, too! :) */
236 root 1.306 # define EV_NSIG 65
237 root 1.305 #endif
238    
239 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
240     # if __linux && __GLIBC__ >= 2
241 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242 root 1.274 # else
243     # define EV_USE_CLOCK_SYSCALL 0
244     # endif
245     #endif
246    
247 root 1.29 #ifndef EV_USE_MONOTONIC
248 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
250 root 1.253 # else
251     # define EV_USE_MONOTONIC 0
252     # endif
253 root 1.37 #endif
254    
255 root 1.118 #ifndef EV_USE_REALTIME
256 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
257 root 1.118 #endif
258    
259 root 1.193 #ifndef EV_USE_NANOSLEEP
260 root 1.253 # if _POSIX_C_SOURCE >= 199309L
261 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
262 root 1.253 # else
263     # define EV_USE_NANOSLEEP 0
264     # endif
265 root 1.193 #endif
266    
267 root 1.29 #ifndef EV_USE_SELECT
268 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
269 root 1.10 #endif
270    
271 root 1.59 #ifndef EV_USE_POLL
272 root 1.104 # ifdef _WIN32
273     # define EV_USE_POLL 0
274     # else
275 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
276 root 1.104 # endif
277 root 1.41 #endif
278    
279 root 1.29 #ifndef EV_USE_EPOLL
280 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
282 root 1.220 # else
283     # define EV_USE_EPOLL 0
284     # endif
285 root 1.10 #endif
286    
287 root 1.44 #ifndef EV_USE_KQUEUE
288     # define EV_USE_KQUEUE 0
289     #endif
290    
291 root 1.118 #ifndef EV_USE_PORT
292     # define EV_USE_PORT 0
293 root 1.40 #endif
294    
295 root 1.152 #ifndef EV_USE_INOTIFY
296 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
298 root 1.220 # else
299     # define EV_USE_INOTIFY 0
300     # endif
301 root 1.152 #endif
302    
303 root 1.149 #ifndef EV_PID_HASHSIZE
304 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
305 root 1.149 #endif
306    
307 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
308 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309 root 1.152 #endif
310    
311 root 1.220 #ifndef EV_USE_EVENTFD
312     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
314 root 1.220 # else
315     # define EV_USE_EVENTFD 0
316     # endif
317     #endif
318    
319 root 1.303 #ifndef EV_USE_SIGNALFD
320 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
322 root 1.303 # else
323     # define EV_USE_SIGNALFD 0
324     # endif
325     #endif
326    
327 root 1.249 #if 0 /* debugging */
328 root 1.250 # define EV_VERIFY 3
329 root 1.249 # define EV_USE_4HEAP 1
330     # define EV_HEAP_CACHE_AT 1
331     #endif
332    
333 root 1.250 #ifndef EV_VERIFY
334 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335 root 1.250 #endif
336    
337 root 1.243 #ifndef EV_USE_4HEAP
338 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
339 root 1.243 #endif
340    
341     #ifndef EV_HEAP_CACHE_AT
342 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343 root 1.243 #endif
344    
345 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346     /* which makes programs even slower. might work on other unices, too. */
347     #if EV_USE_CLOCK_SYSCALL
348     # include <syscall.h>
349     # ifdef SYS_clock_gettime
350     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351     # undef EV_USE_MONOTONIC
352     # define EV_USE_MONOTONIC 1
353     # else
354     # undef EV_USE_CLOCK_SYSCALL
355     # define EV_USE_CLOCK_SYSCALL 0
356     # endif
357     #endif
358    
359 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
360 root 1.40
361 root 1.325 #ifdef _AIX
362     /* AIX has a completely broken poll.h header */
363     # undef EV_USE_POLL
364     # define EV_USE_POLL 0
365     #endif
366    
367 root 1.40 #ifndef CLOCK_MONOTONIC
368     # undef EV_USE_MONOTONIC
369     # define EV_USE_MONOTONIC 0
370     #endif
371    
372 root 1.31 #ifndef CLOCK_REALTIME
373 root 1.40 # undef EV_USE_REALTIME
374 root 1.31 # define EV_USE_REALTIME 0
375     #endif
376 root 1.40
377 root 1.152 #if !EV_STAT_ENABLE
378 root 1.185 # undef EV_USE_INOTIFY
379 root 1.152 # define EV_USE_INOTIFY 0
380     #endif
381    
382 root 1.193 #if !EV_USE_NANOSLEEP
383     # ifndef _WIN32
384     # include <sys/select.h>
385     # endif
386     #endif
387    
388 root 1.152 #if EV_USE_INOTIFY
389 root 1.264 # include <sys/utsname.h>
390 root 1.273 # include <sys/statfs.h>
391 root 1.152 # include <sys/inotify.h>
392 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393     # ifndef IN_DONT_FOLLOW
394     # undef EV_USE_INOTIFY
395     # define EV_USE_INOTIFY 0
396     # endif
397 root 1.152 #endif
398    
399 root 1.185 #if EV_SELECT_IS_WINSOCKET
400     # include <winsock.h>
401     #endif
402    
403 root 1.220 #if EV_USE_EVENTFD
404     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405 root 1.221 # include <stdint.h>
406 root 1.303 # ifndef EFD_NONBLOCK
407     # define EFD_NONBLOCK O_NONBLOCK
408     # endif
409     # ifndef EFD_CLOEXEC
410 root 1.311 # ifdef O_CLOEXEC
411     # define EFD_CLOEXEC O_CLOEXEC
412     # else
413     # define EFD_CLOEXEC 02000000
414     # endif
415 root 1.303 # endif
416 root 1.222 # ifdef __cplusplus
417     extern "C" {
418     # endif
419 root 1.329 int (eventfd) (unsigned int initval, int flags);
420 root 1.222 # ifdef __cplusplus
421     }
422     # endif
423 root 1.220 #endif
424    
425 root 1.303 #if EV_USE_SIGNALFD
426 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427     # include <stdint.h>
428     # ifndef SFD_NONBLOCK
429     # define SFD_NONBLOCK O_NONBLOCK
430     # endif
431     # ifndef SFD_CLOEXEC
432     # ifdef O_CLOEXEC
433     # define SFD_CLOEXEC O_CLOEXEC
434     # else
435     # define SFD_CLOEXEC 02000000
436     # endif
437     # endif
438     # ifdef __cplusplus
439     extern "C" {
440     # endif
441     int signalfd (int fd, const sigset_t *mask, int flags);
442    
443     struct signalfd_siginfo
444     {
445     uint32_t ssi_signo;
446     char pad[128 - sizeof (uint32_t)];
447     };
448     # ifdef __cplusplus
449     }
450     # endif
451 root 1.303 #endif
452    
453 root 1.40 /**/
454 root 1.1
455 root 1.250 #if EV_VERIFY >= 3
456 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
457 root 1.248 #else
458     # define EV_FREQUENT_CHECK do { } while (0)
459     #endif
460    
461 root 1.176 /*
462     * This is used to avoid floating point rounding problems.
463     * It is added to ev_rt_now when scheduling periodics
464     * to ensure progress, time-wise, even when rounding
465     * errors are against us.
466 root 1.177 * This value is good at least till the year 4000.
467 root 1.176 * Better solutions welcome.
468     */
469     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
470    
471 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
472 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
473 root 1.1
474 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
475 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
476 root 1.347
477 root 1.185 #if __GNUC__ >= 4
478 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
479 root 1.169 # define noinline __attribute__ ((noinline))
480 root 1.40 #else
481     # define expect(expr,value) (expr)
482 root 1.140 # define noinline
483 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
484 root 1.169 # define inline
485     # endif
486 root 1.40 #endif
487    
488     #define expect_false(expr) expect ((expr) != 0, 0)
489     #define expect_true(expr) expect ((expr) != 0, 1)
490 root 1.169 #define inline_size static inline
491    
492 root 1.338 #if EV_FEATURE_CODE
493     # define inline_speed static inline
494     #else
495 root 1.169 # define inline_speed static noinline
496     #endif
497 root 1.40
498 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499    
500     #if EV_MINPRI == EV_MAXPRI
501     # define ABSPRI(w) (((W)w), 0)
502     #else
503     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504     #endif
505 root 1.42
506 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
507 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
508 root 1.103
509 root 1.136 typedef ev_watcher *W;
510     typedef ev_watcher_list *WL;
511     typedef ev_watcher_time *WT;
512 root 1.10
513 root 1.229 #define ev_active(w) ((W)(w))->active
514 root 1.228 #define ev_at(w) ((WT)(w))->at
515    
516 root 1.279 #if EV_USE_REALTIME
517 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
518 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
519 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
520     #endif
521    
522     #if EV_USE_MONOTONIC
523 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
524 root 1.198 #endif
525 root 1.54
526 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
527     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528     #endif
529     #ifndef EV_WIN32_HANDLE_TO_FD
530 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531 root 1.313 #endif
532     #ifndef EV_WIN32_CLOSE_FD
533     # define EV_WIN32_CLOSE_FD(fd) close (fd)
534     #endif
535    
536 root 1.103 #ifdef _WIN32
537 root 1.98 # include "ev_win32.c"
538     #endif
539 root 1.67
540 root 1.53 /*****************************************************************************/
541 root 1.1
542 root 1.331 #if EV_AVOID_STDIO
543     static void noinline
544     ev_printerr (const char *msg)
545     {
546     write (STDERR_FILENO, msg, strlen (msg));
547     }
548     #endif
549    
550 root 1.70 static void (*syserr_cb)(const char *msg);
551 root 1.69
552 root 1.141 void
553     ev_set_syserr_cb (void (*cb)(const char *msg))
554 root 1.69 {
555     syserr_cb = cb;
556     }
557    
558 root 1.141 static void noinline
559 root 1.269 ev_syserr (const char *msg)
560 root 1.69 {
561 root 1.70 if (!msg)
562     msg = "(libev) system error";
563    
564 root 1.69 if (syserr_cb)
565 root 1.70 syserr_cb (msg);
566 root 1.69 else
567     {
568 root 1.330 #if EV_AVOID_STDIO
569 root 1.331 const char *err = strerror (errno);
570    
571     ev_printerr (msg);
572     ev_printerr (": ");
573     ev_printerr (err);
574     ev_printerr ("\n");
575 root 1.330 #else
576 root 1.70 perror (msg);
577 root 1.330 #endif
578 root 1.69 abort ();
579     }
580     }
581    
582 root 1.224 static void *
583     ev_realloc_emul (void *ptr, long size)
584     {
585 root 1.334 #if __GLIBC__
586     return realloc (ptr, size);
587     #else
588 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
589 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
590 root 1.224 * the single unix specification, so work around them here.
591     */
592 root 1.333
593 root 1.224 if (size)
594     return realloc (ptr, size);
595    
596     free (ptr);
597     return 0;
598 root 1.334 #endif
599 root 1.224 }
600    
601     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
602 root 1.69
603 root 1.141 void
604 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
605 root 1.69 {
606     alloc = cb;
607     }
608    
609 root 1.150 inline_speed void *
610 root 1.155 ev_realloc (void *ptr, long size)
611 root 1.69 {
612 root 1.224 ptr = alloc (ptr, size);
613 root 1.69
614     if (!ptr && size)
615     {
616 root 1.330 #if EV_AVOID_STDIO
617 root 1.331 ev_printerr ("libev: memory allocation failed, aborting.\n");
618 root 1.330 #else
619 root 1.155 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620 root 1.330 #endif
621 root 1.69 abort ();
622     }
623    
624     return ptr;
625     }
626    
627     #define ev_malloc(size) ev_realloc (0, (size))
628     #define ev_free(ptr) ev_realloc ((ptr), 0)
629    
630     /*****************************************************************************/
631    
632 root 1.298 /* set in reify when reification needed */
633     #define EV_ANFD_REIFY 1
634    
635 root 1.288 /* file descriptor info structure */
636 root 1.53 typedef struct
637     {
638 root 1.68 WL head;
639 root 1.288 unsigned char events; /* the events watched for */
640 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
641 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
642 root 1.269 unsigned char unused;
643     #if EV_USE_EPOLL
644 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
645 root 1.269 #endif
646 root 1.103 #if EV_SELECT_IS_WINSOCKET
647     SOCKET handle;
648     #endif
649 root 1.53 } ANFD;
650 root 1.1
651 root 1.288 /* stores the pending event set for a given watcher */
652 root 1.53 typedef struct
653     {
654     W w;
655 root 1.288 int events; /* the pending event set for the given watcher */
656 root 1.53 } ANPENDING;
657 root 1.51
658 root 1.155 #if EV_USE_INOTIFY
659 root 1.241 /* hash table entry per inotify-id */
660 root 1.152 typedef struct
661     {
662     WL head;
663 root 1.155 } ANFS;
664 root 1.152 #endif
665    
666 root 1.241 /* Heap Entry */
667     #if EV_HEAP_CACHE_AT
668 root 1.288 /* a heap element */
669 root 1.241 typedef struct {
670 root 1.243 ev_tstamp at;
671 root 1.241 WT w;
672     } ANHE;
673    
674 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
675     #define ANHE_at(he) (he).at /* access cached at, read-only */
676     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
677 root 1.241 #else
678 root 1.288 /* a heap element */
679 root 1.241 typedef WT ANHE;
680    
681 root 1.248 #define ANHE_w(he) (he)
682     #define ANHE_at(he) (he)->at
683     #define ANHE_at_cache(he)
684 root 1.241 #endif
685    
686 root 1.55 #if EV_MULTIPLICITY
687 root 1.54
688 root 1.80 struct ev_loop
689     {
690 root 1.86 ev_tstamp ev_rt_now;
691 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
692 root 1.80 #define VAR(name,decl) decl;
693     #include "ev_vars.h"
694     #undef VAR
695     };
696     #include "ev_wrap.h"
697    
698 root 1.116 static struct ev_loop default_loop_struct;
699     struct ev_loop *ev_default_loop_ptr;
700 root 1.54
701 root 1.53 #else
702 root 1.54
703 root 1.86 ev_tstamp ev_rt_now;
704 root 1.80 #define VAR(name,decl) static decl;
705     #include "ev_vars.h"
706     #undef VAR
707    
708 root 1.116 static int ev_default_loop_ptr;
709 root 1.54
710 root 1.51 #endif
711 root 1.1
712 root 1.338 #if EV_FEATURE_API
713 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
716     #else
717 root 1.298 # define EV_RELEASE_CB (void)0
718     # define EV_ACQUIRE_CB (void)0
719 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720     #endif
721    
722 root 1.298 #define EVUNLOOP_RECURSE 0x80
723    
724 root 1.8 /*****************************************************************************/
725    
726 root 1.292 #ifndef EV_HAVE_EV_TIME
727 root 1.141 ev_tstamp
728 root 1.1 ev_time (void)
729     {
730 root 1.29 #if EV_USE_REALTIME
731 root 1.279 if (expect_true (have_realtime))
732     {
733     struct timespec ts;
734     clock_gettime (CLOCK_REALTIME, &ts);
735     return ts.tv_sec + ts.tv_nsec * 1e-9;
736     }
737     #endif
738    
739 root 1.1 struct timeval tv;
740     gettimeofday (&tv, 0);
741     return tv.tv_sec + tv.tv_usec * 1e-6;
742     }
743 root 1.292 #endif
744 root 1.1
745 root 1.284 inline_size ev_tstamp
746 root 1.1 get_clock (void)
747     {
748 root 1.29 #if EV_USE_MONOTONIC
749 root 1.40 if (expect_true (have_monotonic))
750 root 1.1 {
751     struct timespec ts;
752     clock_gettime (CLOCK_MONOTONIC, &ts);
753     return ts.tv_sec + ts.tv_nsec * 1e-9;
754     }
755     #endif
756    
757     return ev_time ();
758     }
759    
760 root 1.85 #if EV_MULTIPLICITY
761 root 1.51 ev_tstamp
762     ev_now (EV_P)
763     {
764 root 1.85 return ev_rt_now;
765 root 1.51 }
766 root 1.85 #endif
767 root 1.51
768 root 1.193 void
769     ev_sleep (ev_tstamp delay)
770     {
771     if (delay > 0.)
772     {
773     #if EV_USE_NANOSLEEP
774     struct timespec ts;
775    
776 root 1.348 EV_TS_SET (ts, delay);
777 root 1.193 nanosleep (&ts, 0);
778     #elif defined(_WIN32)
779 root 1.217 Sleep ((unsigned long)(delay * 1e3));
780 root 1.193 #else
781     struct timeval tv;
782    
783 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
784 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
785 root 1.257 /* by older ones */
786 sf-exg 1.349 EV_TV_SET (tv, delay);
787 root 1.193 select (0, 0, 0, 0, &tv);
788     #endif
789     }
790     }
791    
792     /*****************************************************************************/
793    
794 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
795 root 1.232
796 root 1.288 /* find a suitable new size for the given array, */
797 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
798 root 1.284 inline_size int
799 root 1.163 array_nextsize (int elem, int cur, int cnt)
800     {
801     int ncur = cur + 1;
802    
803     do
804     ncur <<= 1;
805     while (cnt > ncur);
806    
807 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
808     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
809 root 1.163 {
810     ncur *= elem;
811 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
812 root 1.163 ncur = ncur - sizeof (void *) * 4;
813     ncur /= elem;
814     }
815    
816     return ncur;
817     }
818    
819 root 1.171 static noinline void *
820 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
821     {
822     *cur = array_nextsize (elem, *cur, cnt);
823     return ev_realloc (base, elem * *cur);
824     }
825 root 1.29
826 root 1.265 #define array_init_zero(base,count) \
827     memset ((void *)(base), 0, sizeof (*(base)) * (count))
828    
829 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
830 root 1.163 if (expect_false ((cnt) > (cur))) \
831 root 1.69 { \
832 root 1.163 int ocur_ = (cur); \
833     (base) = (type *)array_realloc \
834     (sizeof (type), (base), &(cur), (cnt)); \
835     init ((base) + (ocur_), (cur) - ocur_); \
836 root 1.1 }
837    
838 root 1.163 #if 0
839 root 1.74 #define array_slim(type,stem) \
840 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
841     { \
842     stem ## max = array_roundsize (stem ## cnt >> 1); \
843 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
844 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
845     }
846 root 1.163 #endif
847 root 1.67
848 root 1.65 #define array_free(stem, idx) \
849 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
850 root 1.65
851 root 1.8 /*****************************************************************************/
852    
853 root 1.288 /* dummy callback for pending events */
854     static void noinline
855     pendingcb (EV_P_ ev_prepare *w, int revents)
856     {
857     }
858    
859 root 1.140 void noinline
860 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
861 root 1.1 {
862 root 1.78 W w_ = (W)w;
863 root 1.171 int pri = ABSPRI (w_);
864 root 1.78
865 root 1.123 if (expect_false (w_->pending))
866 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
867     else
868 root 1.32 {
869 root 1.171 w_->pending = ++pendingcnt [pri];
870     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
871     pendings [pri][w_->pending - 1].w = w_;
872     pendings [pri][w_->pending - 1].events = revents;
873 root 1.32 }
874 root 1.1 }
875    
876 root 1.284 inline_speed void
877     feed_reverse (EV_P_ W w)
878     {
879     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880     rfeeds [rfeedcnt++] = w;
881     }
882    
883     inline_size void
884     feed_reverse_done (EV_P_ int revents)
885     {
886     do
887     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888     while (rfeedcnt);
889     }
890    
891     inline_speed void
892 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
893 root 1.27 {
894     int i;
895    
896     for (i = 0; i < eventcnt; ++i)
897 root 1.78 ev_feed_event (EV_A_ events [i], type);
898 root 1.27 }
899    
900 root 1.141 /*****************************************************************************/
901    
902 root 1.284 inline_speed void
903 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
904 root 1.1 {
905     ANFD *anfd = anfds + fd;
906 root 1.136 ev_io *w;
907 root 1.1
908 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
909 root 1.1 {
910 root 1.79 int ev = w->events & revents;
911 root 1.1
912     if (ev)
913 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
914 root 1.1 }
915     }
916    
917 root 1.298 /* do not submit kernel events for fds that have reify set */
918     /* because that means they changed while we were polling for new events */
919     inline_speed void
920     fd_event (EV_P_ int fd, int revents)
921     {
922     ANFD *anfd = anfds + fd;
923    
924     if (expect_true (!anfd->reify))
925 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
926 root 1.298 }
927    
928 root 1.79 void
929     ev_feed_fd_event (EV_P_ int fd, int revents)
930     {
931 root 1.168 if (fd >= 0 && fd < anfdmax)
932 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
933 root 1.79 }
934    
935 root 1.288 /* make sure the external fd watch events are in-sync */
936     /* with the kernel/libev internal state */
937 root 1.284 inline_size void
938 root 1.51 fd_reify (EV_P)
939 root 1.9 {
940     int i;
941    
942 root 1.27 for (i = 0; i < fdchangecnt; ++i)
943     {
944     int fd = fdchanges [i];
945     ANFD *anfd = anfds + fd;
946 root 1.136 ev_io *w;
947 root 1.27
948 root 1.350 unsigned char o_events = anfd->events;
949     unsigned char o_reify = anfd->reify;
950 root 1.27
951 root 1.350 anfd->reify = 0;
952 root 1.27
953 root 1.103 #if EV_SELECT_IS_WINSOCKET
954 root 1.350 if (o_reify & EV__IOFDSET)
955 root 1.103 {
956 root 1.254 unsigned long arg;
957 root 1.313 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
958 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
959 root 1.103 }
960     #endif
961    
962 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
963     {
964     anfd->events = 0;
965 root 1.184
966 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
967     anfd->events |= (unsigned char)w->events;
968 root 1.27
969 root 1.351 if (o_events != anfd->events)
970 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
971     }
972    
973     if (o_reify & EV__IOFDSET)
974     backend_modify (EV_A_ fd, o_events, anfd->events);
975 root 1.27 }
976    
977     fdchangecnt = 0;
978     }
979    
980 root 1.288 /* something about the given fd changed */
981 root 1.284 inline_size void
982 root 1.183 fd_change (EV_P_ int fd, int flags)
983 root 1.27 {
984 root 1.183 unsigned char reify = anfds [fd].reify;
985 root 1.184 anfds [fd].reify |= flags;
986 root 1.27
987 root 1.183 if (expect_true (!reify))
988     {
989     ++fdchangecnt;
990     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
991     fdchanges [fdchangecnt - 1] = fd;
992     }
993 root 1.9 }
994    
995 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
996 root 1.284 inline_speed void
997 root 1.51 fd_kill (EV_P_ int fd)
998 root 1.41 {
999 root 1.136 ev_io *w;
1000 root 1.41
1001 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1002 root 1.41 {
1003 root 1.51 ev_io_stop (EV_A_ w);
1004 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1005 root 1.41 }
1006     }
1007    
1008 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1009 root 1.284 inline_size int
1010 root 1.71 fd_valid (int fd)
1011     {
1012 root 1.103 #ifdef _WIN32
1013 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1014 root 1.71 #else
1015     return fcntl (fd, F_GETFD) != -1;
1016     #endif
1017     }
1018    
1019 root 1.19 /* called on EBADF to verify fds */
1020 root 1.140 static void noinline
1021 root 1.51 fd_ebadf (EV_P)
1022 root 1.19 {
1023     int fd;
1024    
1025     for (fd = 0; fd < anfdmax; ++fd)
1026 root 1.27 if (anfds [fd].events)
1027 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1028 root 1.51 fd_kill (EV_A_ fd);
1029 root 1.41 }
1030    
1031     /* called on ENOMEM in select/poll to kill some fds and retry */
1032 root 1.140 static void noinline
1033 root 1.51 fd_enomem (EV_P)
1034 root 1.41 {
1035 root 1.62 int fd;
1036 root 1.41
1037 root 1.62 for (fd = anfdmax; fd--; )
1038 root 1.41 if (anfds [fd].events)
1039     {
1040 root 1.51 fd_kill (EV_A_ fd);
1041 root 1.307 break;
1042 root 1.41 }
1043 root 1.19 }
1044    
1045 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1046 root 1.140 static void noinline
1047 root 1.56 fd_rearm_all (EV_P)
1048     {
1049     int fd;
1050    
1051     for (fd = 0; fd < anfdmax; ++fd)
1052     if (anfds [fd].events)
1053     {
1054     anfds [fd].events = 0;
1055 root 1.268 anfds [fd].emask = 0;
1056 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1057 root 1.56 }
1058     }
1059    
1060 root 1.336 /* used to prepare libev internal fd's */
1061     /* this is not fork-safe */
1062     inline_speed void
1063     fd_intern (int fd)
1064     {
1065     #ifdef _WIN32
1066     unsigned long arg = 1;
1067     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1068     #else
1069     fcntl (fd, F_SETFD, FD_CLOEXEC);
1070     fcntl (fd, F_SETFL, O_NONBLOCK);
1071     #endif
1072     }
1073    
1074 root 1.8 /*****************************************************************************/
1075    
1076 root 1.235 /*
1077 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1078 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1079     * the branching factor of the d-tree.
1080     */
1081    
1082     /*
1083 root 1.235 * at the moment we allow libev the luxury of two heaps,
1084     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1085     * which is more cache-efficient.
1086     * the difference is about 5% with 50000+ watchers.
1087     */
1088 root 1.241 #if EV_USE_4HEAP
1089 root 1.235
1090 root 1.237 #define DHEAP 4
1091     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1092 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1093 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1094 root 1.235
1095     /* away from the root */
1096 root 1.284 inline_speed void
1097 root 1.241 downheap (ANHE *heap, int N, int k)
1098 root 1.235 {
1099 root 1.241 ANHE he = heap [k];
1100     ANHE *E = heap + N + HEAP0;
1101 root 1.235
1102     for (;;)
1103     {
1104     ev_tstamp minat;
1105 root 1.241 ANHE *minpos;
1106 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1107 root 1.235
1108 root 1.248 /* find minimum child */
1109 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1110 root 1.235 {
1111 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1112     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1113     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1114     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1115 root 1.235 }
1116 root 1.240 else if (pos < E)
1117 root 1.235 {
1118 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1119     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1120     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1121     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1122 root 1.235 }
1123 root 1.240 else
1124     break;
1125 root 1.235
1126 root 1.241 if (ANHE_at (he) <= minat)
1127 root 1.235 break;
1128    
1129 root 1.247 heap [k] = *minpos;
1130 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1131 root 1.235
1132     k = minpos - heap;
1133     }
1134    
1135 root 1.247 heap [k] = he;
1136 root 1.241 ev_active (ANHE_w (he)) = k;
1137 root 1.235 }
1138    
1139 root 1.248 #else /* 4HEAP */
1140 root 1.235
1141     #define HEAP0 1
1142 root 1.247 #define HPARENT(k) ((k) >> 1)
1143 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1144 root 1.235
1145 root 1.248 /* away from the root */
1146 root 1.284 inline_speed void
1147 root 1.248 downheap (ANHE *heap, int N, int k)
1148 root 1.1 {
1149 root 1.241 ANHE he = heap [k];
1150 root 1.1
1151 root 1.228 for (;;)
1152 root 1.1 {
1153 root 1.248 int c = k << 1;
1154 root 1.179
1155 root 1.309 if (c >= N + HEAP0)
1156 root 1.179 break;
1157    
1158 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1159     ? 1 : 0;
1160    
1161     if (ANHE_at (he) <= ANHE_at (heap [c]))
1162     break;
1163    
1164     heap [k] = heap [c];
1165 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1166 root 1.248
1167     k = c;
1168 root 1.1 }
1169    
1170 root 1.243 heap [k] = he;
1171 root 1.248 ev_active (ANHE_w (he)) = k;
1172 root 1.1 }
1173 root 1.248 #endif
1174 root 1.1
1175 root 1.248 /* towards the root */
1176 root 1.284 inline_speed void
1177 root 1.248 upheap (ANHE *heap, int k)
1178 root 1.1 {
1179 root 1.241 ANHE he = heap [k];
1180 root 1.1
1181 root 1.179 for (;;)
1182 root 1.1 {
1183 root 1.248 int p = HPARENT (k);
1184 root 1.179
1185 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1186 root 1.179 break;
1187 root 1.1
1188 root 1.248 heap [k] = heap [p];
1189 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1190 root 1.248 k = p;
1191 root 1.1 }
1192    
1193 root 1.241 heap [k] = he;
1194     ev_active (ANHE_w (he)) = k;
1195 root 1.1 }
1196    
1197 root 1.288 /* move an element suitably so it is in a correct place */
1198 root 1.284 inline_size void
1199 root 1.241 adjustheap (ANHE *heap, int N, int k)
1200 root 1.84 {
1201 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1202 root 1.247 upheap (heap, k);
1203     else
1204     downheap (heap, N, k);
1205 root 1.84 }
1206    
1207 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1208 root 1.284 inline_size void
1209 root 1.248 reheap (ANHE *heap, int N)
1210     {
1211     int i;
1212 root 1.251
1213 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1214     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1215     for (i = 0; i < N; ++i)
1216     upheap (heap, i + HEAP0);
1217     }
1218    
1219 root 1.8 /*****************************************************************************/
1220    
1221 root 1.288 /* associate signal watchers to a signal signal */
1222 root 1.7 typedef struct
1223     {
1224 root 1.307 EV_ATOMIC_T pending;
1225 root 1.306 #if EV_MULTIPLICITY
1226     EV_P;
1227     #endif
1228 root 1.68 WL head;
1229 root 1.7 } ANSIG;
1230    
1231 root 1.306 static ANSIG signals [EV_NSIG - 1];
1232 root 1.7
1233 root 1.207 /*****************************************************************************/
1234    
1235 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1236 root 1.207
1237     static void noinline
1238     evpipe_init (EV_P)
1239     {
1240 root 1.288 if (!ev_is_active (&pipe_w))
1241 root 1.207 {
1242 root 1.336 # if EV_USE_EVENTFD
1243 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1244     if (evfd < 0 && errno == EINVAL)
1245     evfd = eventfd (0, 0);
1246    
1247     if (evfd >= 0)
1248 root 1.220 {
1249     evpipe [0] = -1;
1250 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1251 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1252 root 1.220 }
1253     else
1254 root 1.336 # endif
1255 root 1.220 {
1256     while (pipe (evpipe))
1257 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1258 root 1.207
1259 root 1.220 fd_intern (evpipe [0]);
1260     fd_intern (evpipe [1]);
1261 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1262 root 1.220 }
1263 root 1.207
1264 root 1.288 ev_io_start (EV_A_ &pipe_w);
1265 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1266 root 1.207 }
1267     }
1268    
1269 root 1.284 inline_size void
1270 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1271 root 1.207 {
1272 root 1.214 if (!*flag)
1273 root 1.207 {
1274 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1275 root 1.336 char dummy;
1276 root 1.214
1277     *flag = 1;
1278 root 1.220
1279     #if EV_USE_EVENTFD
1280     if (evfd >= 0)
1281     {
1282     uint64_t counter = 1;
1283     write (evfd, &counter, sizeof (uint64_t));
1284     }
1285     else
1286     #endif
1287 root 1.346 /* win32 people keep sending patches that change this write() to send() */
1288     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1289     /* so when you think this write should be a send instead, please find out */
1290     /* where your send() is from - it's definitely not the microsoft send, and */
1291     /* tell me. thank you. */
1292 root 1.336 write (evpipe [1], &dummy, 1);
1293 root 1.214
1294 root 1.207 errno = old_errno;
1295     }
1296     }
1297    
1298 root 1.288 /* called whenever the libev signal pipe */
1299     /* got some events (signal, async) */
1300 root 1.207 static void
1301     pipecb (EV_P_ ev_io *iow, int revents)
1302     {
1303 root 1.307 int i;
1304    
1305 root 1.220 #if EV_USE_EVENTFD
1306     if (evfd >= 0)
1307     {
1308 root 1.232 uint64_t counter;
1309 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1310     }
1311     else
1312     #endif
1313     {
1314     char dummy;
1315 root 1.346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1316 root 1.220 read (evpipe [0], &dummy, 1);
1317     }
1318 root 1.207
1319 root 1.307 if (sig_pending)
1320 root 1.207 {
1321 root 1.307 sig_pending = 0;
1322 root 1.207
1323 root 1.307 for (i = EV_NSIG - 1; i--; )
1324     if (expect_false (signals [i].pending))
1325     ev_feed_signal_event (EV_A_ i + 1);
1326 root 1.207 }
1327    
1328 root 1.209 #if EV_ASYNC_ENABLE
1329 root 1.307 if (async_pending)
1330 root 1.207 {
1331 root 1.307 async_pending = 0;
1332 root 1.207
1333     for (i = asynccnt; i--; )
1334     if (asyncs [i]->sent)
1335     {
1336     asyncs [i]->sent = 0;
1337     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1338     }
1339     }
1340 root 1.209 #endif
1341 root 1.207 }
1342    
1343     /*****************************************************************************/
1344    
1345 root 1.7 static void
1346 root 1.218 ev_sighandler (int signum)
1347 root 1.7 {
1348 root 1.207 #if EV_MULTIPLICITY
1349 root 1.306 EV_P = signals [signum - 1].loop;
1350 root 1.207 #endif
1351    
1352 root 1.322 #ifdef _WIN32
1353 root 1.218 signal (signum, ev_sighandler);
1354 root 1.67 #endif
1355    
1356 root 1.307 signals [signum - 1].pending = 1;
1357     evpipe_write (EV_A_ &sig_pending);
1358 root 1.7 }
1359    
1360 root 1.140 void noinline
1361 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1362     {
1363 root 1.80 WL w;
1364    
1365 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1366     return;
1367    
1368     --signum;
1369    
1370 root 1.79 #if EV_MULTIPLICITY
1371 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1372     /* or, likely more useful, feeding a signal nobody is waiting for */
1373 root 1.79
1374 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1375 root 1.306 return;
1376 root 1.307 #endif
1377 root 1.306
1378 root 1.307 signals [signum].pending = 0;
1379 root 1.79
1380     for (w = signals [signum].head; w; w = w->next)
1381     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1382     }
1383    
1384 root 1.303 #if EV_USE_SIGNALFD
1385     static void
1386     sigfdcb (EV_P_ ev_io *iow, int revents)
1387     {
1388 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1389 root 1.303
1390     for (;;)
1391     {
1392     ssize_t res = read (sigfd, si, sizeof (si));
1393    
1394     /* not ISO-C, as res might be -1, but works with SuS */
1395     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1396     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1397    
1398     if (res < (ssize_t)sizeof (si))
1399     break;
1400     }
1401     }
1402     #endif
1403    
1404 root 1.336 #endif
1405    
1406 root 1.8 /*****************************************************************************/
1407    
1408 root 1.336 #if EV_CHILD_ENABLE
1409 root 1.182 static WL childs [EV_PID_HASHSIZE];
1410 root 1.71
1411 root 1.136 static ev_signal childev;
1412 root 1.59
1413 root 1.206 #ifndef WIFCONTINUED
1414     # define WIFCONTINUED(status) 0
1415     #endif
1416    
1417 root 1.288 /* handle a single child status event */
1418 root 1.284 inline_speed void
1419 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1420 root 1.47 {
1421 root 1.136 ev_child *w;
1422 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1423 root 1.47
1424 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1425 root 1.206 {
1426     if ((w->pid == pid || !w->pid)
1427     && (!traced || (w->flags & 1)))
1428     {
1429 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1430 root 1.206 w->rpid = pid;
1431     w->rstatus = status;
1432     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1433     }
1434     }
1435 root 1.47 }
1436    
1437 root 1.142 #ifndef WCONTINUED
1438     # define WCONTINUED 0
1439     #endif
1440    
1441 root 1.288 /* called on sigchld etc., calls waitpid */
1442 root 1.47 static void
1443 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1444 root 1.22 {
1445     int pid, status;
1446    
1447 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1448     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1449     if (!WCONTINUED
1450     || errno != EINVAL
1451     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1452     return;
1453    
1454 root 1.216 /* make sure we are called again until all children have been reaped */
1455 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1456     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1457 root 1.47
1458 root 1.216 child_reap (EV_A_ pid, pid, status);
1459 root 1.338 if ((EV_PID_HASHSIZE) > 1)
1460 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1461 root 1.22 }
1462    
1463 root 1.45 #endif
1464    
1465 root 1.22 /*****************************************************************************/
1466    
1467 root 1.118 #if EV_USE_PORT
1468     # include "ev_port.c"
1469     #endif
1470 root 1.44 #if EV_USE_KQUEUE
1471     # include "ev_kqueue.c"
1472     #endif
1473 root 1.29 #if EV_USE_EPOLL
1474 root 1.1 # include "ev_epoll.c"
1475     #endif
1476 root 1.59 #if EV_USE_POLL
1477 root 1.41 # include "ev_poll.c"
1478     #endif
1479 root 1.29 #if EV_USE_SELECT
1480 root 1.1 # include "ev_select.c"
1481     #endif
1482    
1483 root 1.24 int
1484     ev_version_major (void)
1485     {
1486     return EV_VERSION_MAJOR;
1487     }
1488    
1489     int
1490     ev_version_minor (void)
1491     {
1492     return EV_VERSION_MINOR;
1493     }
1494    
1495 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1496 root 1.140 int inline_size
1497 root 1.51 enable_secure (void)
1498 root 1.41 {
1499 root 1.103 #ifdef _WIN32
1500 root 1.49 return 0;
1501     #else
1502 root 1.41 return getuid () != geteuid ()
1503     || getgid () != getegid ();
1504 root 1.49 #endif
1505 root 1.41 }
1506    
1507 root 1.111 unsigned int
1508 root 1.129 ev_supported_backends (void)
1509     {
1510 root 1.130 unsigned int flags = 0;
1511 root 1.129
1512     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1513     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1514     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1515     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1516     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1517    
1518     return flags;
1519     }
1520    
1521     unsigned int
1522 root 1.130 ev_recommended_backends (void)
1523 root 1.1 {
1524 root 1.131 unsigned int flags = ev_supported_backends ();
1525 root 1.129
1526     #ifndef __NetBSD__
1527     /* kqueue is borked on everything but netbsd apparently */
1528     /* it usually doesn't work correctly on anything but sockets and pipes */
1529     flags &= ~EVBACKEND_KQUEUE;
1530     #endif
1531     #ifdef __APPLE__
1532 root 1.278 /* only select works correctly on that "unix-certified" platform */
1533     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1534     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1535 root 1.129 #endif
1536 root 1.342 #ifdef __FreeBSD__
1537     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1538     #endif
1539 root 1.129
1540     return flags;
1541 root 1.51 }
1542    
1543 root 1.130 unsigned int
1544 root 1.134 ev_embeddable_backends (void)
1545     {
1546 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1547    
1548 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1549 root 1.196 /* please fix it and tell me how to detect the fix */
1550     flags &= ~EVBACKEND_EPOLL;
1551    
1552     return flags;
1553 root 1.134 }
1554    
1555     unsigned int
1556 root 1.130 ev_backend (EV_P)
1557     {
1558     return backend;
1559     }
1560    
1561 root 1.338 #if EV_FEATURE_API
1562 root 1.162 unsigned int
1563 root 1.340 ev_iteration (EV_P)
1564 root 1.162 {
1565     return loop_count;
1566     }
1567    
1568 root 1.294 unsigned int
1569 root 1.340 ev_depth (EV_P)
1570 root 1.294 {
1571     return loop_depth;
1572     }
1573    
1574 root 1.193 void
1575     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1576     {
1577     io_blocktime = interval;
1578     }
1579    
1580     void
1581     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1582     {
1583     timeout_blocktime = interval;
1584     }
1585    
1586 root 1.297 void
1587     ev_set_userdata (EV_P_ void *data)
1588     {
1589     userdata = data;
1590     }
1591    
1592     void *
1593     ev_userdata (EV_P)
1594     {
1595     return userdata;
1596     }
1597    
1598     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1599     {
1600     invoke_cb = invoke_pending_cb;
1601     }
1602    
1603 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1604 root 1.297 {
1605 root 1.298 release_cb = release;
1606     acquire_cb = acquire;
1607 root 1.297 }
1608     #endif
1609    
1610 root 1.288 /* initialise a loop structure, must be zero-initialised */
1611 root 1.151 static void noinline
1612 root 1.108 loop_init (EV_P_ unsigned int flags)
1613 root 1.51 {
1614 root 1.130 if (!backend)
1615 root 1.23 {
1616 root 1.279 #if EV_USE_REALTIME
1617     if (!have_realtime)
1618     {
1619     struct timespec ts;
1620    
1621     if (!clock_gettime (CLOCK_REALTIME, &ts))
1622     have_realtime = 1;
1623     }
1624     #endif
1625    
1626 root 1.29 #if EV_USE_MONOTONIC
1627 root 1.279 if (!have_monotonic)
1628     {
1629     struct timespec ts;
1630    
1631     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1632     have_monotonic = 1;
1633     }
1634 root 1.1 #endif
1635    
1636 root 1.306 /* pid check not overridable via env */
1637     #ifndef _WIN32
1638     if (flags & EVFLAG_FORKCHECK)
1639     curpid = getpid ();
1640     #endif
1641    
1642     if (!(flags & EVFLAG_NOENV)
1643     && !enable_secure ()
1644     && getenv ("LIBEV_FLAGS"))
1645     flags = atoi (getenv ("LIBEV_FLAGS"));
1646    
1647 root 1.209 ev_rt_now = ev_time ();
1648     mn_now = get_clock ();
1649     now_floor = mn_now;
1650     rtmn_diff = ev_rt_now - mn_now;
1651 root 1.338 #if EV_FEATURE_API
1652 root 1.296 invoke_cb = ev_invoke_pending;
1653 root 1.297 #endif
1654 root 1.1
1655 root 1.193 io_blocktime = 0.;
1656     timeout_blocktime = 0.;
1657 root 1.209 backend = 0;
1658     backend_fd = -1;
1659 root 1.307 sig_pending = 0;
1660     #if EV_ASYNC_ENABLE
1661     async_pending = 0;
1662     #endif
1663 root 1.209 #if EV_USE_INOTIFY
1664 root 1.306 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1665 root 1.209 #endif
1666 root 1.303 #if EV_USE_SIGNALFD
1667 root 1.321 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1668 root 1.303 #endif
1669 root 1.193
1670 root 1.225 if (!(flags & 0x0000ffffU))
1671 root 1.129 flags |= ev_recommended_backends ();
1672 root 1.41
1673 root 1.118 #if EV_USE_PORT
1674 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1675 root 1.118 #endif
1676 root 1.44 #if EV_USE_KQUEUE
1677 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1678 root 1.44 #endif
1679 root 1.29 #if EV_USE_EPOLL
1680 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1681 root 1.41 #endif
1682 root 1.59 #if EV_USE_POLL
1683 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1684 root 1.1 #endif
1685 root 1.29 #if EV_USE_SELECT
1686 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1687 root 1.1 #endif
1688 root 1.70
1689 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1690    
1691 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1692 root 1.288 ev_init (&pipe_w, pipecb);
1693     ev_set_priority (&pipe_w, EV_MAXPRI);
1694 root 1.336 #endif
1695 root 1.56 }
1696     }
1697    
1698 root 1.288 /* free up a loop structure */
1699 root 1.151 static void noinline
1700 root 1.56 loop_destroy (EV_P)
1701     {
1702 root 1.65 int i;
1703    
1704 root 1.288 if (ev_is_active (&pipe_w))
1705 root 1.207 {
1706 root 1.303 /*ev_ref (EV_A);*/
1707     /*ev_io_stop (EV_A_ &pipe_w);*/
1708 root 1.207
1709 root 1.220 #if EV_USE_EVENTFD
1710     if (evfd >= 0)
1711     close (evfd);
1712     #endif
1713    
1714     if (evpipe [0] >= 0)
1715     {
1716 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1717     EV_WIN32_CLOSE_FD (evpipe [1]);
1718 root 1.220 }
1719 root 1.207 }
1720    
1721 root 1.303 #if EV_USE_SIGNALFD
1722     if (ev_is_active (&sigfd_w))
1723 root 1.317 close (sigfd);
1724 root 1.303 #endif
1725    
1726 root 1.152 #if EV_USE_INOTIFY
1727     if (fs_fd >= 0)
1728     close (fs_fd);
1729     #endif
1730    
1731     if (backend_fd >= 0)
1732     close (backend_fd);
1733    
1734 root 1.118 #if EV_USE_PORT
1735 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1736 root 1.118 #endif
1737 root 1.56 #if EV_USE_KQUEUE
1738 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1739 root 1.56 #endif
1740     #if EV_USE_EPOLL
1741 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1742 root 1.56 #endif
1743 root 1.59 #if EV_USE_POLL
1744 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1745 root 1.56 #endif
1746     #if EV_USE_SELECT
1747 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1748 root 1.56 #endif
1749 root 1.1
1750 root 1.65 for (i = NUMPRI; i--; )
1751 root 1.164 {
1752     array_free (pending, [i]);
1753     #if EV_IDLE_ENABLE
1754     array_free (idle, [i]);
1755     #endif
1756     }
1757 root 1.65
1758 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
1759 root 1.186
1760 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1761 root 1.284 array_free (rfeed, EMPTY);
1762 root 1.164 array_free (fdchange, EMPTY);
1763     array_free (timer, EMPTY);
1764 root 1.140 #if EV_PERIODIC_ENABLE
1765 root 1.164 array_free (periodic, EMPTY);
1766 root 1.93 #endif
1767 root 1.187 #if EV_FORK_ENABLE
1768     array_free (fork, EMPTY);
1769     #endif
1770 root 1.164 array_free (prepare, EMPTY);
1771     array_free (check, EMPTY);
1772 root 1.209 #if EV_ASYNC_ENABLE
1773     array_free (async, EMPTY);
1774     #endif
1775 root 1.65
1776 root 1.130 backend = 0;
1777 root 1.56 }
1778 root 1.22
1779 root 1.226 #if EV_USE_INOTIFY
1780 root 1.284 inline_size void infy_fork (EV_P);
1781 root 1.226 #endif
1782 root 1.154
1783 root 1.284 inline_size void
1784 root 1.56 loop_fork (EV_P)
1785     {
1786 root 1.118 #if EV_USE_PORT
1787 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1788 root 1.56 #endif
1789     #if EV_USE_KQUEUE
1790 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1791 root 1.45 #endif
1792 root 1.118 #if EV_USE_EPOLL
1793 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1794 root 1.118 #endif
1795 root 1.154 #if EV_USE_INOTIFY
1796     infy_fork (EV_A);
1797     #endif
1798 root 1.70
1799 root 1.288 if (ev_is_active (&pipe_w))
1800 root 1.70 {
1801 root 1.207 /* this "locks" the handlers against writing to the pipe */
1802 root 1.212 /* while we modify the fd vars */
1803 root 1.307 sig_pending = 1;
1804 root 1.212 #if EV_ASYNC_ENABLE
1805 root 1.307 async_pending = 1;
1806 root 1.212 #endif
1807 root 1.70
1808     ev_ref (EV_A);
1809 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1810 root 1.220
1811     #if EV_USE_EVENTFD
1812     if (evfd >= 0)
1813     close (evfd);
1814     #endif
1815    
1816     if (evpipe [0] >= 0)
1817     {
1818 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1819     EV_WIN32_CLOSE_FD (evpipe [1]);
1820 root 1.220 }
1821 root 1.207
1822 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1823 root 1.207 evpipe_init (EV_A);
1824 root 1.208 /* now iterate over everything, in case we missed something */
1825 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1826 root 1.337 #endif
1827 root 1.70 }
1828    
1829     postfork = 0;
1830 root 1.1 }
1831    
1832 root 1.55 #if EV_MULTIPLICITY
1833 root 1.250
1834 root 1.54 struct ev_loop *
1835 root 1.108 ev_loop_new (unsigned int flags)
1836 root 1.54 {
1837 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1838 root 1.69
1839 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
1840 root 1.108 loop_init (EV_A_ flags);
1841 root 1.56
1842 root 1.130 if (ev_backend (EV_A))
1843 root 1.306 return EV_A;
1844 root 1.54
1845 root 1.55 return 0;
1846 root 1.54 }
1847    
1848     void
1849 root 1.56 ev_loop_destroy (EV_P)
1850 root 1.54 {
1851 root 1.56 loop_destroy (EV_A);
1852 root 1.69 ev_free (loop);
1853 root 1.54 }
1854    
1855 root 1.56 void
1856     ev_loop_fork (EV_P)
1857     {
1858 root 1.205 postfork = 1; /* must be in line with ev_default_fork */
1859 root 1.56 }
1860 root 1.297 #endif /* multiplicity */
1861 root 1.248
1862     #if EV_VERIFY
1863 root 1.258 static void noinline
1864 root 1.251 verify_watcher (EV_P_ W w)
1865     {
1866 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1867 root 1.251
1868     if (w->pending)
1869 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1870 root 1.251 }
1871    
1872     static void noinline
1873     verify_heap (EV_P_ ANHE *heap, int N)
1874     {
1875     int i;
1876    
1877     for (i = HEAP0; i < N + HEAP0; ++i)
1878     {
1879 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1880     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1881     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1882 root 1.251
1883     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1884     }
1885     }
1886    
1887     static void noinline
1888     array_verify (EV_P_ W *ws, int cnt)
1889 root 1.248 {
1890     while (cnt--)
1891 root 1.251 {
1892 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1893 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1894     }
1895 root 1.248 }
1896 root 1.250 #endif
1897 root 1.248
1898 root 1.338 #if EV_FEATURE_API
1899 root 1.250 void
1900 root 1.340 ev_verify (EV_P)
1901 root 1.248 {
1902 root 1.250 #if EV_VERIFY
1903 root 1.248 int i;
1904 root 1.251 WL w;
1905    
1906     assert (activecnt >= -1);
1907    
1908     assert (fdchangemax >= fdchangecnt);
1909     for (i = 0; i < fdchangecnt; ++i)
1910 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1911 root 1.251
1912     assert (anfdmax >= 0);
1913     for (i = 0; i < anfdmax; ++i)
1914     for (w = anfds [i].head; w; w = w->next)
1915     {
1916     verify_watcher (EV_A_ (W)w);
1917 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1918     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1919 root 1.251 }
1920    
1921     assert (timermax >= timercnt);
1922     verify_heap (EV_A_ timers, timercnt);
1923 root 1.248
1924     #if EV_PERIODIC_ENABLE
1925 root 1.251 assert (periodicmax >= periodiccnt);
1926     verify_heap (EV_A_ periodics, periodiccnt);
1927 root 1.248 #endif
1928    
1929 root 1.251 for (i = NUMPRI; i--; )
1930     {
1931     assert (pendingmax [i] >= pendingcnt [i]);
1932 root 1.248 #if EV_IDLE_ENABLE
1933 root 1.252 assert (idleall >= 0);
1934 root 1.251 assert (idlemax [i] >= idlecnt [i]);
1935     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1936 root 1.248 #endif
1937 root 1.251 }
1938    
1939 root 1.248 #if EV_FORK_ENABLE
1940 root 1.251 assert (forkmax >= forkcnt);
1941     array_verify (EV_A_ (W *)forks, forkcnt);
1942 root 1.248 #endif
1943 root 1.251
1944 root 1.250 #if EV_ASYNC_ENABLE
1945 root 1.251 assert (asyncmax >= asynccnt);
1946     array_verify (EV_A_ (W *)asyncs, asynccnt);
1947 root 1.250 #endif
1948 root 1.251
1949 root 1.337 #if EV_PREPARE_ENABLE
1950 root 1.251 assert (preparemax >= preparecnt);
1951     array_verify (EV_A_ (W *)prepares, preparecnt);
1952 root 1.337 #endif
1953 root 1.251
1954 root 1.337 #if EV_CHECK_ENABLE
1955 root 1.251 assert (checkmax >= checkcnt);
1956     array_verify (EV_A_ (W *)checks, checkcnt);
1957 root 1.337 #endif
1958 root 1.251
1959     # if 0
1960 root 1.336 #if EV_CHILD_ENABLE
1961 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1962 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1963 root 1.336 #endif
1964 root 1.251 # endif
1965 root 1.248 #endif
1966     }
1967 root 1.297 #endif
1968 root 1.56
1969     #if EV_MULTIPLICITY
1970     struct ev_loop *
1971 root 1.125 ev_default_loop_init (unsigned int flags)
1972 root 1.54 #else
1973     int
1974 root 1.116 ev_default_loop (unsigned int flags)
1975 root 1.56 #endif
1976 root 1.54 {
1977 root 1.116 if (!ev_default_loop_ptr)
1978 root 1.56 {
1979     #if EV_MULTIPLICITY
1980 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
1981 root 1.56 #else
1982 ayin 1.117 ev_default_loop_ptr = 1;
1983 root 1.54 #endif
1984    
1985 root 1.110 loop_init (EV_A_ flags);
1986 root 1.56
1987 root 1.130 if (ev_backend (EV_A))
1988 root 1.56 {
1989 root 1.336 #if EV_CHILD_ENABLE
1990 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
1991     ev_set_priority (&childev, EV_MAXPRI);
1992     ev_signal_start (EV_A_ &childev);
1993     ev_unref (EV_A); /* child watcher should not keep loop alive */
1994     #endif
1995     }
1996     else
1997 root 1.116 ev_default_loop_ptr = 0;
1998 root 1.56 }
1999 root 1.8
2000 root 1.116 return ev_default_loop_ptr;
2001 root 1.1 }
2002    
2003 root 1.24 void
2004 root 1.56 ev_default_destroy (void)
2005 root 1.1 {
2006 root 1.57 #if EV_MULTIPLICITY
2007 root 1.306 EV_P = ev_default_loop_ptr;
2008 root 1.57 #endif
2009 root 1.56
2010 root 1.266 ev_default_loop_ptr = 0;
2011    
2012 root 1.336 #if EV_CHILD_ENABLE
2013 root 1.56 ev_ref (EV_A); /* child watcher */
2014     ev_signal_stop (EV_A_ &childev);
2015 root 1.71 #endif
2016 root 1.56
2017     loop_destroy (EV_A);
2018 root 1.1 }
2019    
2020 root 1.24 void
2021 root 1.60 ev_default_fork (void)
2022 root 1.1 {
2023 root 1.60 #if EV_MULTIPLICITY
2024 root 1.306 EV_P = ev_default_loop_ptr;
2025 root 1.60 #endif
2026    
2027 root 1.270 postfork = 1; /* must be in line with ev_loop_fork */
2028 root 1.1 }
2029    
2030 root 1.8 /*****************************************************************************/
2031    
2032 root 1.168 void
2033     ev_invoke (EV_P_ void *w, int revents)
2034     {
2035     EV_CB_INVOKE ((W)w, revents);
2036     }
2037    
2038 root 1.300 unsigned int
2039     ev_pending_count (EV_P)
2040     {
2041     int pri;
2042     unsigned int count = 0;
2043    
2044     for (pri = NUMPRI; pri--; )
2045     count += pendingcnt [pri];
2046    
2047     return count;
2048     }
2049    
2050 root 1.297 void noinline
2051 root 1.296 ev_invoke_pending (EV_P)
2052 root 1.1 {
2053 root 1.42 int pri;
2054    
2055     for (pri = NUMPRI; pri--; )
2056     while (pendingcnt [pri])
2057     {
2058     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2059 root 1.1
2060 root 1.288 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2061     /* ^ this is no longer true, as pending_w could be here */
2062 root 1.139
2063 root 1.288 p->w->pending = 0;
2064     EV_CB_INVOKE (p->w, p->events);
2065     EV_FREQUENT_CHECK;
2066 root 1.42 }
2067 root 1.1 }
2068    
2069 root 1.234 #if EV_IDLE_ENABLE
2070 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2071     /* only when higher priorities are idle" logic */
2072 root 1.284 inline_size void
2073 root 1.234 idle_reify (EV_P)
2074     {
2075     if (expect_false (idleall))
2076     {
2077     int pri;
2078    
2079     for (pri = NUMPRI; pri--; )
2080     {
2081     if (pendingcnt [pri])
2082     break;
2083    
2084     if (idlecnt [pri])
2085     {
2086     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2087     break;
2088     }
2089     }
2090     }
2091     }
2092     #endif
2093    
2094 root 1.288 /* make timers pending */
2095 root 1.284 inline_size void
2096 root 1.51 timers_reify (EV_P)
2097 root 1.1 {
2098 root 1.248 EV_FREQUENT_CHECK;
2099    
2100 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2101 root 1.1 {
2102 root 1.284 do
2103     {
2104     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2105 root 1.1
2106 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2107    
2108     /* first reschedule or stop timer */
2109     if (w->repeat)
2110     {
2111     ev_at (w) += w->repeat;
2112     if (ev_at (w) < mn_now)
2113     ev_at (w) = mn_now;
2114 root 1.61
2115 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2116 root 1.90
2117 root 1.284 ANHE_at_cache (timers [HEAP0]);
2118     downheap (timers, timercnt, HEAP0);
2119     }
2120     else
2121     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2122 root 1.243
2123 root 1.284 EV_FREQUENT_CHECK;
2124     feed_reverse (EV_A_ (W)w);
2125 root 1.12 }
2126 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2127 root 1.30
2128 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2129 root 1.12 }
2130     }
2131 root 1.4
2132 root 1.140 #if EV_PERIODIC_ENABLE
2133 root 1.288 /* make periodics pending */
2134 root 1.284 inline_size void
2135 root 1.51 periodics_reify (EV_P)
2136 root 1.12 {
2137 root 1.248 EV_FREQUENT_CHECK;
2138 root 1.250
2139 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2140 root 1.12 {
2141 root 1.284 int feed_count = 0;
2142    
2143     do
2144     {
2145     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2146 root 1.1
2147 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2148 root 1.61
2149 root 1.284 /* first reschedule or stop timer */
2150     if (w->reschedule_cb)
2151     {
2152     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2153 root 1.243
2154 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2155 root 1.243
2156 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2157     downheap (periodics, periodiccnt, HEAP0);
2158     }
2159     else if (w->interval)
2160 root 1.246 {
2161 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2162     /* if next trigger time is not sufficiently in the future, put it there */
2163     /* this might happen because of floating point inexactness */
2164     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2165     {
2166     ev_at (w) += w->interval;
2167    
2168     /* if interval is unreasonably low we might still have a time in the past */
2169     /* so correct this. this will make the periodic very inexact, but the user */
2170     /* has effectively asked to get triggered more often than possible */
2171     if (ev_at (w) < ev_rt_now)
2172     ev_at (w) = ev_rt_now;
2173     }
2174 root 1.243
2175 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2176     downheap (periodics, periodiccnt, HEAP0);
2177 root 1.246 }
2178 root 1.284 else
2179     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2180 root 1.243
2181 root 1.284 EV_FREQUENT_CHECK;
2182     feed_reverse (EV_A_ (W)w);
2183 root 1.1 }
2184 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2185 root 1.12
2186 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2187 root 1.12 }
2188     }
2189    
2190 root 1.288 /* simply recalculate all periodics */
2191 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2192 root 1.140 static void noinline
2193 root 1.54 periodics_reschedule (EV_P)
2194 root 1.12 {
2195     int i;
2196    
2197 root 1.13 /* adjust periodics after time jump */
2198 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2199 root 1.12 {
2200 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2201 root 1.12
2202 root 1.77 if (w->reschedule_cb)
2203 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2204 root 1.77 else if (w->interval)
2205 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2206 root 1.242
2207 root 1.248 ANHE_at_cache (periodics [i]);
2208 root 1.77 }
2209 root 1.12
2210 root 1.248 reheap (periodics, periodiccnt);
2211 root 1.1 }
2212 root 1.93 #endif
2213 root 1.1
2214 root 1.288 /* adjust all timers by a given offset */
2215 root 1.285 static void noinline
2216     timers_reschedule (EV_P_ ev_tstamp adjust)
2217     {
2218     int i;
2219    
2220     for (i = 0; i < timercnt; ++i)
2221     {
2222     ANHE *he = timers + i + HEAP0;
2223     ANHE_w (*he)->at += adjust;
2224     ANHE_at_cache (*he);
2225     }
2226     }
2227    
2228 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2229 root 1.324 /* also detect if there was a timejump, and act accordingly */
2230 root 1.284 inline_speed void
2231 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2232 root 1.4 {
2233 root 1.40 #if EV_USE_MONOTONIC
2234     if (expect_true (have_monotonic))
2235     {
2236 root 1.289 int i;
2237 root 1.178 ev_tstamp odiff = rtmn_diff;
2238    
2239     mn_now = get_clock ();
2240    
2241     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2242     /* interpolate in the meantime */
2243     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2244 root 1.40 {
2245 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2246     return;
2247     }
2248    
2249     now_floor = mn_now;
2250     ev_rt_now = ev_time ();
2251 root 1.4
2252 root 1.178 /* loop a few times, before making important decisions.
2253     * on the choice of "4": one iteration isn't enough,
2254     * in case we get preempted during the calls to
2255     * ev_time and get_clock. a second call is almost guaranteed
2256     * to succeed in that case, though. and looping a few more times
2257     * doesn't hurt either as we only do this on time-jumps or
2258     * in the unlikely event of having been preempted here.
2259     */
2260     for (i = 4; --i; )
2261     {
2262     rtmn_diff = ev_rt_now - mn_now;
2263 root 1.4
2264 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2265 root 1.178 return; /* all is well */
2266 root 1.4
2267 root 1.178 ev_rt_now = ev_time ();
2268     mn_now = get_clock ();
2269     now_floor = mn_now;
2270     }
2271 root 1.4
2272 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2273     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2274 root 1.140 # if EV_PERIODIC_ENABLE
2275 root 1.178 periodics_reschedule (EV_A);
2276 root 1.93 # endif
2277 root 1.4 }
2278     else
2279 root 1.40 #endif
2280 root 1.4 {
2281 root 1.85 ev_rt_now = ev_time ();
2282 root 1.40
2283 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2284 root 1.13 {
2285 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2286     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2287 root 1.140 #if EV_PERIODIC_ENABLE
2288 root 1.54 periodics_reschedule (EV_A);
2289 root 1.93 #endif
2290 root 1.13 }
2291 root 1.4
2292 root 1.85 mn_now = ev_rt_now;
2293 root 1.4 }
2294     }
2295    
2296 root 1.51 void
2297     ev_loop (EV_P_ int flags)
2298 root 1.1 {
2299 root 1.338 #if EV_FEATURE_API
2300 root 1.294 ++loop_depth;
2301 root 1.297 #endif
2302 root 1.294
2303 root 1.298 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2304    
2305 root 1.219 loop_done = EVUNLOOP_CANCEL;
2306 root 1.1
2307 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2308 root 1.158
2309 root 1.161 do
2310 root 1.9 {
2311 root 1.250 #if EV_VERIFY >= 2
2312 root 1.340 ev_verify (EV_A);
2313 root 1.250 #endif
2314    
2315 root 1.158 #ifndef _WIN32
2316     if (expect_false (curpid)) /* penalise the forking check even more */
2317     if (expect_false (getpid () != curpid))
2318     {
2319     curpid = getpid ();
2320     postfork = 1;
2321     }
2322     #endif
2323    
2324 root 1.157 #if EV_FORK_ENABLE
2325     /* we might have forked, so queue fork handlers */
2326     if (expect_false (postfork))
2327     if (forkcnt)
2328     {
2329     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2330 root 1.297 EV_INVOKE_PENDING;
2331 root 1.157 }
2332     #endif
2333 root 1.147
2334 root 1.337 #if EV_PREPARE_ENABLE
2335 root 1.170 /* queue prepare watchers (and execute them) */
2336 root 1.40 if (expect_false (preparecnt))
2337 root 1.20 {
2338 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2339 root 1.297 EV_INVOKE_PENDING;
2340 root 1.20 }
2341 root 1.337 #endif
2342 root 1.9
2343 root 1.298 if (expect_false (loop_done))
2344     break;
2345    
2346 root 1.70 /* we might have forked, so reify kernel state if necessary */
2347     if (expect_false (postfork))
2348     loop_fork (EV_A);
2349    
2350 root 1.1 /* update fd-related kernel structures */
2351 root 1.51 fd_reify (EV_A);
2352 root 1.1
2353     /* calculate blocking time */
2354 root 1.135 {
2355 root 1.193 ev_tstamp waittime = 0.;
2356     ev_tstamp sleeptime = 0.;
2357 root 1.12
2358 root 1.193 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2359 root 1.135 {
2360 root 1.293 /* remember old timestamp for io_blocktime calculation */
2361     ev_tstamp prev_mn_now = mn_now;
2362    
2363 root 1.135 /* update time to cancel out callback processing overhead */
2364 root 1.178 time_update (EV_A_ 1e100);
2365 root 1.135
2366 root 1.287 waittime = MAX_BLOCKTIME;
2367    
2368 root 1.135 if (timercnt)
2369     {
2370 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2371 root 1.193 if (waittime > to) waittime = to;
2372 root 1.135 }
2373 root 1.4
2374 root 1.140 #if EV_PERIODIC_ENABLE
2375 root 1.135 if (periodiccnt)
2376     {
2377 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2378 root 1.193 if (waittime > to) waittime = to;
2379 root 1.135 }
2380 root 1.93 #endif
2381 root 1.4
2382 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2383 root 1.193 if (expect_false (waittime < timeout_blocktime))
2384     waittime = timeout_blocktime;
2385    
2386 root 1.293 /* extra check because io_blocktime is commonly 0 */
2387     if (expect_false (io_blocktime))
2388     {
2389     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2390 root 1.193
2391 root 1.293 if (sleeptime > waittime - backend_fudge)
2392     sleeptime = waittime - backend_fudge;
2393 root 1.193
2394 root 1.293 if (expect_true (sleeptime > 0.))
2395     {
2396     ev_sleep (sleeptime);
2397     waittime -= sleeptime;
2398     }
2399 root 1.193 }
2400 root 1.135 }
2401 root 1.1
2402 root 1.338 #if EV_FEATURE_API
2403 root 1.162 ++loop_count;
2404 root 1.297 #endif
2405 root 1.298 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2406 root 1.193 backend_poll (EV_A_ waittime);
2407 root 1.298 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2408 root 1.178
2409     /* update ev_rt_now, do magic */
2410 root 1.193 time_update (EV_A_ waittime + sleeptime);
2411 root 1.135 }
2412 root 1.1
2413 root 1.9 /* queue pending timers and reschedule them */
2414 root 1.51 timers_reify (EV_A); /* relative timers called last */
2415 root 1.140 #if EV_PERIODIC_ENABLE
2416 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2417 root 1.93 #endif
2418 root 1.1
2419 root 1.164 #if EV_IDLE_ENABLE
2420 root 1.137 /* queue idle watchers unless other events are pending */
2421 root 1.164 idle_reify (EV_A);
2422     #endif
2423 root 1.9
2424 root 1.337 #if EV_CHECK_ENABLE
2425 root 1.20 /* queue check watchers, to be executed first */
2426 root 1.123 if (expect_false (checkcnt))
2427 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2428 root 1.337 #endif
2429 root 1.9
2430 root 1.297 EV_INVOKE_PENDING;
2431 root 1.1 }
2432 root 1.219 while (expect_true (
2433     activecnt
2434     && !loop_done
2435     && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2436     ));
2437 root 1.13
2438 root 1.135 if (loop_done == EVUNLOOP_ONE)
2439     loop_done = EVUNLOOP_CANCEL;
2440 root 1.294
2441 root 1.338 #if EV_FEATURE_API
2442 root 1.294 --loop_depth;
2443 root 1.297 #endif
2444 root 1.51 }
2445    
2446     void
2447     ev_unloop (EV_P_ int how)
2448     {
2449     loop_done = how;
2450 root 1.1 }
2451    
2452 root 1.285 void
2453     ev_ref (EV_P)
2454     {
2455     ++activecnt;
2456     }
2457    
2458     void
2459     ev_unref (EV_P)
2460     {
2461     --activecnt;
2462     }
2463    
2464     void
2465     ev_now_update (EV_P)
2466     {
2467     time_update (EV_A_ 1e100);
2468     }
2469    
2470     void
2471     ev_suspend (EV_P)
2472     {
2473     ev_now_update (EV_A);
2474     }
2475    
2476     void
2477     ev_resume (EV_P)
2478     {
2479     ev_tstamp mn_prev = mn_now;
2480    
2481     ev_now_update (EV_A);
2482     timers_reschedule (EV_A_ mn_now - mn_prev);
2483 root 1.286 #if EV_PERIODIC_ENABLE
2484 root 1.288 /* TODO: really do this? */
2485 root 1.285 periodics_reschedule (EV_A);
2486 root 1.286 #endif
2487 root 1.285 }
2488    
2489 root 1.8 /*****************************************************************************/
2490 root 1.288 /* singly-linked list management, used when the expected list length is short */
2491 root 1.8
2492 root 1.284 inline_size void
2493 root 1.10 wlist_add (WL *head, WL elem)
2494 root 1.1 {
2495     elem->next = *head;
2496     *head = elem;
2497     }
2498    
2499 root 1.284 inline_size void
2500 root 1.10 wlist_del (WL *head, WL elem)
2501 root 1.1 {
2502     while (*head)
2503     {
2504 root 1.307 if (expect_true (*head == elem))
2505 root 1.1 {
2506     *head = elem->next;
2507 root 1.307 break;
2508 root 1.1 }
2509    
2510     head = &(*head)->next;
2511     }
2512     }
2513    
2514 root 1.288 /* internal, faster, version of ev_clear_pending */
2515 root 1.284 inline_speed void
2516 root 1.166 clear_pending (EV_P_ W w)
2517 root 1.16 {
2518     if (w->pending)
2519     {
2520 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2521 root 1.16 w->pending = 0;
2522     }
2523     }
2524    
2525 root 1.167 int
2526     ev_clear_pending (EV_P_ void *w)
2527 root 1.166 {
2528     W w_ = (W)w;
2529     int pending = w_->pending;
2530    
2531 root 1.172 if (expect_true (pending))
2532     {
2533     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2534 root 1.288 p->w = (W)&pending_w;
2535 root 1.172 w_->pending = 0;
2536     return p->events;
2537     }
2538     else
2539 root 1.167 return 0;
2540 root 1.166 }
2541    
2542 root 1.284 inline_size void
2543 root 1.164 pri_adjust (EV_P_ W w)
2544     {
2545 root 1.295 int pri = ev_priority (w);
2546 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2547     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2548 root 1.295 ev_set_priority (w, pri);
2549 root 1.164 }
2550    
2551 root 1.284 inline_speed void
2552 root 1.51 ev_start (EV_P_ W w, int active)
2553 root 1.1 {
2554 root 1.164 pri_adjust (EV_A_ w);
2555 root 1.1 w->active = active;
2556 root 1.51 ev_ref (EV_A);
2557 root 1.1 }
2558    
2559 root 1.284 inline_size void
2560 root 1.51 ev_stop (EV_P_ W w)
2561 root 1.1 {
2562 root 1.51 ev_unref (EV_A);
2563 root 1.1 w->active = 0;
2564     }
2565    
2566 root 1.8 /*****************************************************************************/
2567    
2568 root 1.171 void noinline
2569 root 1.136 ev_io_start (EV_P_ ev_io *w)
2570 root 1.1 {
2571 root 1.37 int fd = w->fd;
2572    
2573 root 1.123 if (expect_false (ev_is_active (w)))
2574 root 1.1 return;
2575    
2576 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2577 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2578 root 1.33
2579 root 1.248 EV_FREQUENT_CHECK;
2580    
2581 root 1.51 ev_start (EV_A_ (W)w, 1);
2582 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2583 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2584 root 1.1
2585 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2586 root 1.281 w->events &= ~EV__IOFDSET;
2587 root 1.248
2588     EV_FREQUENT_CHECK;
2589 root 1.1 }
2590    
2591 root 1.171 void noinline
2592 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2593 root 1.1 {
2594 root 1.166 clear_pending (EV_A_ (W)w);
2595 root 1.123 if (expect_false (!ev_is_active (w)))
2596 root 1.1 return;
2597    
2598 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2599 root 1.89
2600 root 1.248 EV_FREQUENT_CHECK;
2601    
2602 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2603 root 1.51 ev_stop (EV_A_ (W)w);
2604 root 1.1
2605 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2606 root 1.248
2607     EV_FREQUENT_CHECK;
2608 root 1.1 }
2609    
2610 root 1.171 void noinline
2611 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2612 root 1.1 {
2613 root 1.123 if (expect_false (ev_is_active (w)))
2614 root 1.1 return;
2615    
2616 root 1.228 ev_at (w) += mn_now;
2617 root 1.12
2618 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2619 root 1.13
2620 root 1.248 EV_FREQUENT_CHECK;
2621    
2622     ++timercnt;
2623     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2624 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2625     ANHE_w (timers [ev_active (w)]) = (WT)w;
2626 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2627 root 1.235 upheap (timers, ev_active (w));
2628 root 1.62
2629 root 1.248 EV_FREQUENT_CHECK;
2630    
2631 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2632 root 1.12 }
2633    
2634 root 1.171 void noinline
2635 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2636 root 1.12 {
2637 root 1.166 clear_pending (EV_A_ (W)w);
2638 root 1.123 if (expect_false (!ev_is_active (w)))
2639 root 1.12 return;
2640    
2641 root 1.248 EV_FREQUENT_CHECK;
2642    
2643 root 1.230 {
2644     int active = ev_active (w);
2645 root 1.62
2646 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2647 root 1.151
2648 root 1.248 --timercnt;
2649    
2650     if (expect_true (active < timercnt + HEAP0))
2651 root 1.151 {
2652 root 1.248 timers [active] = timers [timercnt + HEAP0];
2653 root 1.181 adjustheap (timers, timercnt, active);
2654 root 1.151 }
2655 root 1.248 }
2656 root 1.228
2657     ev_at (w) -= mn_now;
2658 root 1.14
2659 root 1.51 ev_stop (EV_A_ (W)w);
2660 root 1.328
2661     EV_FREQUENT_CHECK;
2662 root 1.12 }
2663 root 1.4
2664 root 1.171 void noinline
2665 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2666 root 1.14 {
2667 root 1.248 EV_FREQUENT_CHECK;
2668    
2669 root 1.14 if (ev_is_active (w))
2670     {
2671     if (w->repeat)
2672 root 1.99 {
2673 root 1.228 ev_at (w) = mn_now + w->repeat;
2674 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2675 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2676 root 1.99 }
2677 root 1.14 else
2678 root 1.51 ev_timer_stop (EV_A_ w);
2679 root 1.14 }
2680     else if (w->repeat)
2681 root 1.112 {
2682 root 1.229 ev_at (w) = w->repeat;
2683 root 1.112 ev_timer_start (EV_A_ w);
2684     }
2685 root 1.248
2686     EV_FREQUENT_CHECK;
2687 root 1.14 }
2688    
2689 root 1.301 ev_tstamp
2690     ev_timer_remaining (EV_P_ ev_timer *w)
2691     {
2692     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2693     }
2694    
2695 root 1.140 #if EV_PERIODIC_ENABLE
2696 root 1.171 void noinline
2697 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2698 root 1.12 {
2699 root 1.123 if (expect_false (ev_is_active (w)))
2700 root 1.12 return;
2701 root 1.1
2702 root 1.77 if (w->reschedule_cb)
2703 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2704 root 1.77 else if (w->interval)
2705     {
2706 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2707 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2708 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2709 root 1.77 }
2710 root 1.173 else
2711 root 1.228 ev_at (w) = w->offset;
2712 root 1.12
2713 root 1.248 EV_FREQUENT_CHECK;
2714    
2715     ++periodiccnt;
2716     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2717 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2718     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2719 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2720 root 1.235 upheap (periodics, ev_active (w));
2721 root 1.62
2722 root 1.248 EV_FREQUENT_CHECK;
2723    
2724 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2725 root 1.1 }
2726    
2727 root 1.171 void noinline
2728 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2729 root 1.1 {
2730 root 1.166 clear_pending (EV_A_ (W)w);
2731 root 1.123 if (expect_false (!ev_is_active (w)))
2732 root 1.1 return;
2733    
2734 root 1.248 EV_FREQUENT_CHECK;
2735    
2736 root 1.230 {
2737     int active = ev_active (w);
2738 root 1.62
2739 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2740 root 1.151
2741 root 1.248 --periodiccnt;
2742    
2743     if (expect_true (active < periodiccnt + HEAP0))
2744 root 1.151 {
2745 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2746 root 1.181 adjustheap (periodics, periodiccnt, active);
2747 root 1.151 }
2748 root 1.248 }
2749 root 1.228
2750 root 1.328 ev_stop (EV_A_ (W)w);
2751    
2752 root 1.248 EV_FREQUENT_CHECK;
2753 root 1.1 }
2754    
2755 root 1.171 void noinline
2756 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2757 root 1.77 {
2758 root 1.84 /* TODO: use adjustheap and recalculation */
2759 root 1.77 ev_periodic_stop (EV_A_ w);
2760     ev_periodic_start (EV_A_ w);
2761     }
2762 root 1.93 #endif
2763 root 1.77
2764 root 1.56 #ifndef SA_RESTART
2765     # define SA_RESTART 0
2766     #endif
2767    
2768 root 1.336 #if EV_SIGNAL_ENABLE
2769    
2770 root 1.171 void noinline
2771 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2772 root 1.56 {
2773 root 1.123 if (expect_false (ev_is_active (w)))
2774 root 1.56 return;
2775    
2776 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2777    
2778     #if EV_MULTIPLICITY
2779 root 1.308 assert (("libev: a signal must not be attached to two different loops",
2780 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2781    
2782     signals [w->signum - 1].loop = EV_A;
2783     #endif
2784 root 1.56
2785 root 1.303 EV_FREQUENT_CHECK;
2786    
2787     #if EV_USE_SIGNALFD
2788     if (sigfd == -2)
2789     {
2790     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2791     if (sigfd < 0 && errno == EINVAL)
2792     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2793    
2794     if (sigfd >= 0)
2795     {
2796     fd_intern (sigfd); /* doing it twice will not hurt */
2797    
2798     sigemptyset (&sigfd_set);
2799    
2800     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2801     ev_set_priority (&sigfd_w, EV_MAXPRI);
2802     ev_io_start (EV_A_ &sigfd_w);
2803     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2804     }
2805     }
2806    
2807     if (sigfd >= 0)
2808     {
2809     /* TODO: check .head */
2810     sigaddset (&sigfd_set, w->signum);
2811     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2812 root 1.207
2813 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2814     }
2815 root 1.180 #endif
2816    
2817 root 1.56 ev_start (EV_A_ (W)w, 1);
2818 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2819 root 1.56
2820 root 1.63 if (!((WL)w)->next)
2821 root 1.304 # if EV_USE_SIGNALFD
2822 root 1.306 if (sigfd < 0) /*TODO*/
2823 root 1.304 # endif
2824 root 1.306 {
2825 root 1.322 # ifdef _WIN32
2826 root 1.317 evpipe_init (EV_A);
2827    
2828 root 1.306 signal (w->signum, ev_sighandler);
2829     # else
2830     struct sigaction sa;
2831    
2832     evpipe_init (EV_A);
2833    
2834     sa.sa_handler = ev_sighandler;
2835     sigfillset (&sa.sa_mask);
2836     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2837     sigaction (w->signum, &sa, 0);
2838    
2839     sigemptyset (&sa.sa_mask);
2840     sigaddset (&sa.sa_mask, w->signum);
2841     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2842 root 1.67 #endif
2843 root 1.306 }
2844 root 1.248
2845     EV_FREQUENT_CHECK;
2846 root 1.56 }
2847    
2848 root 1.171 void noinline
2849 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2850 root 1.56 {
2851 root 1.166 clear_pending (EV_A_ (W)w);
2852 root 1.123 if (expect_false (!ev_is_active (w)))
2853 root 1.56 return;
2854    
2855 root 1.248 EV_FREQUENT_CHECK;
2856    
2857 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2858 root 1.56 ev_stop (EV_A_ (W)w);
2859    
2860     if (!signals [w->signum - 1].head)
2861 root 1.306 {
2862 root 1.307 #if EV_MULTIPLICITY
2863 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
2864 root 1.307 #endif
2865     #if EV_USE_SIGNALFD
2866 root 1.306 if (sigfd >= 0)
2867     {
2868 root 1.321 sigset_t ss;
2869    
2870     sigemptyset (&ss);
2871     sigaddset (&ss, w->signum);
2872 root 1.306 sigdelset (&sigfd_set, w->signum);
2873 root 1.321
2874 root 1.306 signalfd (sigfd, &sigfd_set, 0);
2875 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
2876 root 1.306 }
2877     else
2878 root 1.307 #endif
2879 root 1.306 signal (w->signum, SIG_DFL);
2880     }
2881 root 1.248
2882     EV_FREQUENT_CHECK;
2883 root 1.56 }
2884    
2885 root 1.336 #endif
2886    
2887     #if EV_CHILD_ENABLE
2888    
2889 root 1.28 void
2890 root 1.136 ev_child_start (EV_P_ ev_child *w)
2891 root 1.22 {
2892 root 1.56 #if EV_MULTIPLICITY
2893 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2894 root 1.56 #endif
2895 root 1.123 if (expect_false (ev_is_active (w)))
2896 root 1.22 return;
2897    
2898 root 1.248 EV_FREQUENT_CHECK;
2899    
2900 root 1.51 ev_start (EV_A_ (W)w, 1);
2901 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2902 root 1.248
2903     EV_FREQUENT_CHECK;
2904 root 1.22 }
2905    
2906 root 1.28 void
2907 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2908 root 1.22 {
2909 root 1.166 clear_pending (EV_A_ (W)w);
2910 root 1.123 if (expect_false (!ev_is_active (w)))
2911 root 1.22 return;
2912    
2913 root 1.248 EV_FREQUENT_CHECK;
2914    
2915 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2916 root 1.51 ev_stop (EV_A_ (W)w);
2917 root 1.248
2918     EV_FREQUENT_CHECK;
2919 root 1.22 }
2920    
2921 root 1.336 #endif
2922    
2923 root 1.140 #if EV_STAT_ENABLE
2924    
2925     # ifdef _WIN32
2926 root 1.146 # undef lstat
2927     # define lstat(a,b) _stati64 (a,b)
2928 root 1.140 # endif
2929    
2930 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2931     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2932     #define MIN_STAT_INTERVAL 0.1074891
2933 root 1.143
2934 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2935 root 1.152
2936     #if EV_USE_INOTIFY
2937 root 1.326
2938     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2939     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2940 root 1.152
2941     static void noinline
2942     infy_add (EV_P_ ev_stat *w)
2943     {
2944     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2945    
2946 root 1.318 if (w->wd >= 0)
2947 root 1.152 {
2948 root 1.318 struct statfs sfs;
2949    
2950     /* now local changes will be tracked by inotify, but remote changes won't */
2951     /* unless the filesystem is known to be local, we therefore still poll */
2952     /* also do poll on <2.6.25, but with normal frequency */
2953    
2954     if (!fs_2625)
2955     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2956     else if (!statfs (w->path, &sfs)
2957     && (sfs.f_type == 0x1373 /* devfs */
2958     || sfs.f_type == 0xEF53 /* ext2/3 */
2959     || sfs.f_type == 0x3153464a /* jfs */
2960     || sfs.f_type == 0x52654973 /* reiser3 */
2961     || sfs.f_type == 0x01021994 /* tempfs */
2962     || sfs.f_type == 0x58465342 /* xfs */))
2963     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2964     else
2965     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2966     }
2967     else
2968     {
2969     /* can't use inotify, continue to stat */
2970 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2971 root 1.152
2972 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
2973 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2974 root 1.233 /* but an efficiency issue only */
2975 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2976 root 1.152 {
2977 root 1.153 char path [4096];
2978 root 1.152 strcpy (path, w->path);
2979    
2980     do
2981     {
2982     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2983     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2984    
2985     char *pend = strrchr (path, '/');
2986    
2987 root 1.275 if (!pend || pend == path)
2988     break;
2989 root 1.152
2990     *pend = 0;
2991 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
2992 root 1.152 }
2993     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2994     }
2995     }
2996 root 1.275
2997     if (w->wd >= 0)
2998 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2999 root 1.152
3000 root 1.318 /* now re-arm timer, if required */
3001     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3002     ev_timer_again (EV_A_ &w->timer);
3003     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3004 root 1.152 }
3005    
3006     static void noinline
3007     infy_del (EV_P_ ev_stat *w)
3008     {
3009     int slot;
3010     int wd = w->wd;
3011    
3012     if (wd < 0)
3013     return;
3014    
3015     w->wd = -2;
3016 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3017 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3018    
3019     /* remove this watcher, if others are watching it, they will rearm */
3020     inotify_rm_watch (fs_fd, wd);
3021     }
3022    
3023     static void noinline
3024     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3025     {
3026     if (slot < 0)
3027 root 1.264 /* overflow, need to check for all hash slots */
3028 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3029 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3030     else
3031     {
3032     WL w_;
3033    
3034 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3035 root 1.152 {
3036     ev_stat *w = (ev_stat *)w_;
3037     w_ = w_->next; /* lets us remove this watcher and all before it */
3038    
3039     if (w->wd == wd || wd == -1)
3040     {
3041     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3042     {
3043 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3044 root 1.152 w->wd = -1;
3045     infy_add (EV_A_ w); /* re-add, no matter what */
3046     }
3047    
3048 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3049 root 1.152 }
3050     }
3051     }
3052     }
3053    
3054     static void
3055     infy_cb (EV_P_ ev_io *w, int revents)
3056     {
3057     char buf [EV_INOTIFY_BUFSIZE];
3058     int ofs;
3059     int len = read (fs_fd, buf, sizeof (buf));
3060    
3061 root 1.326 for (ofs = 0; ofs < len; )
3062     {
3063     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3064     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3065     ofs += sizeof (struct inotify_event) + ev->len;
3066     }
3067 root 1.152 }
3068    
3069 root 1.330 inline_size unsigned int
3070     ev_linux_version (void)
3071 root 1.152 {
3072 root 1.273 struct utsname buf;
3073 root 1.330 unsigned int v;
3074     int i;
3075     char *p = buf.release;
3076 root 1.273
3077     if (uname (&buf))
3078 root 1.330 return 0;
3079    
3080     for (i = 3+1; --i; )
3081     {
3082     unsigned int c = 0;
3083    
3084     for (;;)
3085     {
3086     if (*p >= '0' && *p <= '9')
3087     c = c * 10 + *p++ - '0';
3088     else
3089     {
3090     p += *p == '.';
3091     break;
3092     }
3093     }
3094    
3095     v = (v << 8) | c;
3096     }
3097 root 1.273
3098 root 1.330 return v;
3099     }
3100 root 1.273
3101 root 1.330 inline_size void
3102     ev_check_2625 (EV_P)
3103     {
3104     /* kernels < 2.6.25 are borked
3105     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3106     */
3107     if (ev_linux_version () < 0x020619)
3108 root 1.273 return;
3109 root 1.264
3110 root 1.273 fs_2625 = 1;
3111     }
3112 root 1.264
3113 root 1.315 inline_size int
3114     infy_newfd (void)
3115     {
3116     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3117     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3118     if (fd >= 0)
3119     return fd;
3120     #endif
3121     return inotify_init ();
3122     }
3123    
3124 root 1.284 inline_size void
3125 root 1.273 infy_init (EV_P)
3126     {
3127     if (fs_fd != -2)
3128     return;
3129 root 1.264
3130 root 1.273 fs_fd = -1;
3131 root 1.264
3132 root 1.330 ev_check_2625 (EV_A);
3133 root 1.264
3134 root 1.315 fs_fd = infy_newfd ();
3135 root 1.152
3136     if (fs_fd >= 0)
3137     {
3138 root 1.315 fd_intern (fs_fd);
3139 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3140     ev_set_priority (&fs_w, EV_MAXPRI);
3141     ev_io_start (EV_A_ &fs_w);
3142 root 1.317 ev_unref (EV_A);
3143 root 1.152 }
3144     }
3145    
3146 root 1.284 inline_size void
3147 root 1.154 infy_fork (EV_P)
3148     {
3149     int slot;
3150    
3151     if (fs_fd < 0)
3152     return;
3153    
3154 root 1.317 ev_ref (EV_A);
3155 root 1.315 ev_io_stop (EV_A_ &fs_w);
3156 root 1.154 close (fs_fd);
3157 root 1.315 fs_fd = infy_newfd ();
3158    
3159     if (fs_fd >= 0)
3160     {
3161     fd_intern (fs_fd);
3162     ev_io_set (&fs_w, fs_fd, EV_READ);
3163     ev_io_start (EV_A_ &fs_w);
3164 root 1.317 ev_unref (EV_A);
3165 root 1.315 }
3166 root 1.154
3167 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3168 root 1.154 {
3169     WL w_ = fs_hash [slot].head;
3170     fs_hash [slot].head = 0;
3171    
3172     while (w_)
3173     {
3174     ev_stat *w = (ev_stat *)w_;
3175     w_ = w_->next; /* lets us add this watcher */
3176    
3177     w->wd = -1;
3178    
3179     if (fs_fd >= 0)
3180     infy_add (EV_A_ w); /* re-add, no matter what */
3181     else
3182 root 1.318 {
3183     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3184     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3185     ev_timer_again (EV_A_ &w->timer);
3186     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3187     }
3188 root 1.154 }
3189     }
3190     }
3191    
3192 root 1.152 #endif
3193    
3194 root 1.255 #ifdef _WIN32
3195     # define EV_LSTAT(p,b) _stati64 (p, b)
3196     #else
3197     # define EV_LSTAT(p,b) lstat (p, b)
3198     #endif
3199    
3200 root 1.140 void
3201     ev_stat_stat (EV_P_ ev_stat *w)
3202     {
3203     if (lstat (w->path, &w->attr) < 0)
3204     w->attr.st_nlink = 0;
3205     else if (!w->attr.st_nlink)
3206     w->attr.st_nlink = 1;
3207     }
3208    
3209 root 1.157 static void noinline
3210 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3211     {
3212     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3213    
3214 root 1.320 ev_statdata prev = w->attr;
3215 root 1.140 ev_stat_stat (EV_A_ w);
3216    
3217 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3218     if (
3219 root 1.320 prev.st_dev != w->attr.st_dev
3220     || prev.st_ino != w->attr.st_ino
3221     || prev.st_mode != w->attr.st_mode
3222     || prev.st_nlink != w->attr.st_nlink
3223     || prev.st_uid != w->attr.st_uid
3224     || prev.st_gid != w->attr.st_gid
3225     || prev.st_rdev != w->attr.st_rdev
3226     || prev.st_size != w->attr.st_size
3227     || prev.st_atime != w->attr.st_atime
3228     || prev.st_mtime != w->attr.st_mtime
3229     || prev.st_ctime != w->attr.st_ctime
3230 root 1.156 ) {
3231 root 1.320 /* we only update w->prev on actual differences */
3232     /* in case we test more often than invoke the callback, */
3233     /* to ensure that prev is always different to attr */
3234     w->prev = prev;
3235    
3236 root 1.152 #if EV_USE_INOTIFY
3237 root 1.264 if (fs_fd >= 0)
3238     {
3239     infy_del (EV_A_ w);
3240     infy_add (EV_A_ w);
3241     ev_stat_stat (EV_A_ w); /* avoid race... */
3242     }
3243 root 1.152 #endif
3244    
3245     ev_feed_event (EV_A_ w, EV_STAT);
3246     }
3247 root 1.140 }
3248    
3249     void
3250     ev_stat_start (EV_P_ ev_stat *w)
3251     {
3252     if (expect_false (ev_is_active (w)))
3253     return;
3254    
3255     ev_stat_stat (EV_A_ w);
3256    
3257 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3258     w->interval = MIN_STAT_INTERVAL;
3259 root 1.143
3260 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3261 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3262 root 1.152
3263     #if EV_USE_INOTIFY
3264     infy_init (EV_A);
3265    
3266     if (fs_fd >= 0)
3267     infy_add (EV_A_ w);
3268     else
3269     #endif
3270 root 1.318 {
3271     ev_timer_again (EV_A_ &w->timer);
3272     ev_unref (EV_A);
3273     }
3274 root 1.140
3275     ev_start (EV_A_ (W)w, 1);
3276 root 1.248
3277     EV_FREQUENT_CHECK;
3278 root 1.140 }
3279    
3280     void
3281     ev_stat_stop (EV_P_ ev_stat *w)
3282     {
3283 root 1.166 clear_pending (EV_A_ (W)w);
3284 root 1.140 if (expect_false (!ev_is_active (w)))
3285     return;
3286    
3287 root 1.248 EV_FREQUENT_CHECK;
3288    
3289 root 1.152 #if EV_USE_INOTIFY
3290     infy_del (EV_A_ w);
3291     #endif
3292 root 1.318
3293     if (ev_is_active (&w->timer))
3294     {
3295     ev_ref (EV_A);
3296     ev_timer_stop (EV_A_ &w->timer);
3297     }
3298 root 1.140
3299 root 1.134 ev_stop (EV_A_ (W)w);
3300 root 1.248
3301     EV_FREQUENT_CHECK;
3302 root 1.134 }
3303     #endif
3304    
3305 root 1.164 #if EV_IDLE_ENABLE
3306 root 1.144 void
3307     ev_idle_start (EV_P_ ev_idle *w)
3308     {
3309     if (expect_false (ev_is_active (w)))
3310     return;
3311    
3312 root 1.164 pri_adjust (EV_A_ (W)w);
3313    
3314 root 1.248 EV_FREQUENT_CHECK;
3315    
3316 root 1.164 {
3317     int active = ++idlecnt [ABSPRI (w)];
3318    
3319     ++idleall;
3320     ev_start (EV_A_ (W)w, active);
3321    
3322     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3323     idles [ABSPRI (w)][active - 1] = w;
3324     }
3325 root 1.248
3326     EV_FREQUENT_CHECK;
3327 root 1.144 }
3328    
3329     void
3330     ev_idle_stop (EV_P_ ev_idle *w)
3331     {
3332 root 1.166 clear_pending (EV_A_ (W)w);
3333 root 1.144 if (expect_false (!ev_is_active (w)))
3334     return;
3335    
3336 root 1.248 EV_FREQUENT_CHECK;
3337    
3338 root 1.144 {
3339 root 1.230 int active = ev_active (w);
3340 root 1.164
3341     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3342 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3343 root 1.164
3344     ev_stop (EV_A_ (W)w);
3345     --idleall;
3346 root 1.144 }
3347 root 1.248
3348     EV_FREQUENT_CHECK;
3349 root 1.144 }
3350 root 1.164 #endif
3351 root 1.144
3352 root 1.337 #if EV_PREPARE_ENABLE
3353 root 1.144 void
3354     ev_prepare_start (EV_P_ ev_prepare *w)
3355     {
3356     if (expect_false (ev_is_active (w)))
3357     return;
3358    
3359 root 1.248 EV_FREQUENT_CHECK;
3360    
3361 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3362     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3363     prepares [preparecnt - 1] = w;
3364 root 1.248
3365     EV_FREQUENT_CHECK;
3366 root 1.144 }
3367    
3368     void
3369     ev_prepare_stop (EV_P_ ev_prepare *w)
3370     {
3371 root 1.166 clear_pending (EV_A_ (W)w);
3372 root 1.144 if (expect_false (!ev_is_active (w)))
3373     return;
3374    
3375 root 1.248 EV_FREQUENT_CHECK;
3376    
3377 root 1.144 {
3378 root 1.230 int active = ev_active (w);
3379    
3380 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3381 root 1.230 ev_active (prepares [active - 1]) = active;
3382 root 1.144 }
3383    
3384     ev_stop (EV_A_ (W)w);
3385 root 1.248
3386     EV_FREQUENT_CHECK;
3387 root 1.144 }
3388 root 1.337 #endif
3389 root 1.144
3390 root 1.337 #if EV_CHECK_ENABLE
3391 root 1.144 void
3392     ev_check_start (EV_P_ ev_check *w)
3393     {
3394     if (expect_false (ev_is_active (w)))
3395     return;
3396    
3397 root 1.248 EV_FREQUENT_CHECK;
3398    
3399 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3400     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3401     checks [checkcnt - 1] = w;
3402 root 1.248
3403     EV_FREQUENT_CHECK;
3404 root 1.144 }
3405    
3406     void
3407     ev_check_stop (EV_P_ ev_check *w)
3408     {
3409 root 1.166 clear_pending (EV_A_ (W)w);
3410 root 1.144 if (expect_false (!ev_is_active (w)))
3411     return;
3412    
3413 root 1.248 EV_FREQUENT_CHECK;
3414    
3415 root 1.144 {
3416 root 1.230 int active = ev_active (w);
3417    
3418 root 1.144 checks [active - 1] = checks [--checkcnt];
3419 root 1.230 ev_active (checks [active - 1]) = active;
3420 root 1.144 }
3421    
3422     ev_stop (EV_A_ (W)w);
3423 root 1.248
3424     EV_FREQUENT_CHECK;
3425 root 1.144 }
3426 root 1.337 #endif
3427 root 1.144
3428     #if EV_EMBED_ENABLE
3429     void noinline
3430     ev_embed_sweep (EV_P_ ev_embed *w)
3431     {
3432 root 1.188 ev_loop (w->other, EVLOOP_NONBLOCK);
3433 root 1.144 }
3434    
3435     static void
3436 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3437 root 1.144 {
3438     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3439    
3440     if (ev_cb (w))
3441     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3442     else
3443 root 1.195 ev_loop (w->other, EVLOOP_NONBLOCK);
3444 root 1.144 }
3445    
3446 root 1.189 static void
3447     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3448     {
3449     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3450    
3451 root 1.195 {
3452 root 1.306 EV_P = w->other;
3453 root 1.195
3454     while (fdchangecnt)
3455     {
3456     fd_reify (EV_A);
3457     ev_loop (EV_A_ EVLOOP_NONBLOCK);
3458     }
3459     }
3460     }
3461    
3462 root 1.261 static void
3463     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3464     {
3465     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3466    
3467 root 1.277 ev_embed_stop (EV_A_ w);
3468    
3469 root 1.261 {
3470 root 1.306 EV_P = w->other;
3471 root 1.261
3472     ev_loop_fork (EV_A);
3473 root 1.277 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3474 root 1.261 }
3475 root 1.277
3476     ev_embed_start (EV_A_ w);
3477 root 1.261 }
3478    
3479 root 1.195 #if 0
3480     static void
3481     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3482     {
3483     ev_idle_stop (EV_A_ idle);
3484 root 1.189 }
3485 root 1.195 #endif
3486 root 1.189
3487 root 1.144 void
3488     ev_embed_start (EV_P_ ev_embed *w)
3489     {
3490     if (expect_false (ev_is_active (w)))
3491     return;
3492    
3493     {
3494 root 1.306 EV_P = w->other;
3495 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3496 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3497 root 1.144 }
3498    
3499 root 1.248 EV_FREQUENT_CHECK;
3500    
3501 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3502     ev_io_start (EV_A_ &w->io);
3503    
3504 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3505     ev_set_priority (&w->prepare, EV_MINPRI);
3506     ev_prepare_start (EV_A_ &w->prepare);
3507    
3508 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3509     ev_fork_start (EV_A_ &w->fork);
3510    
3511 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3512    
3513 root 1.144 ev_start (EV_A_ (W)w, 1);
3514 root 1.248
3515     EV_FREQUENT_CHECK;
3516 root 1.144 }
3517    
3518     void
3519     ev_embed_stop (EV_P_ ev_embed *w)
3520     {
3521 root 1.166 clear_pending (EV_A_ (W)w);
3522 root 1.144 if (expect_false (!ev_is_active (w)))
3523     return;
3524    
3525 root 1.248 EV_FREQUENT_CHECK;
3526    
3527 root 1.261 ev_io_stop (EV_A_ &w->io);
3528 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3529 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3530 root 1.248
3531 root 1.328 ev_stop (EV_A_ (W)w);
3532    
3533 root 1.248 EV_FREQUENT_CHECK;
3534 root 1.144 }
3535     #endif
3536    
3537 root 1.147 #if EV_FORK_ENABLE
3538     void
3539     ev_fork_start (EV_P_ ev_fork *w)
3540     {
3541     if (expect_false (ev_is_active (w)))
3542     return;
3543    
3544 root 1.248 EV_FREQUENT_CHECK;
3545    
3546 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3547     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3548     forks [forkcnt - 1] = w;
3549 root 1.248
3550     EV_FREQUENT_CHECK;
3551 root 1.147 }
3552    
3553     void
3554     ev_fork_stop (EV_P_ ev_fork *w)
3555     {
3556 root 1.166 clear_pending (EV_A_ (W)w);
3557 root 1.147 if (expect_false (!ev_is_active (w)))
3558     return;
3559    
3560 root 1.248 EV_FREQUENT_CHECK;
3561    
3562 root 1.147 {
3563 root 1.230 int active = ev_active (w);
3564    
3565 root 1.147 forks [active - 1] = forks [--forkcnt];
3566 root 1.230 ev_active (forks [active - 1]) = active;
3567 root 1.147 }
3568    
3569     ev_stop (EV_A_ (W)w);
3570 root 1.248
3571     EV_FREQUENT_CHECK;
3572 root 1.147 }
3573     #endif
3574    
3575 root 1.207 #if EV_ASYNC_ENABLE
3576     void
3577     ev_async_start (EV_P_ ev_async *w)
3578     {
3579     if (expect_false (ev_is_active (w)))
3580     return;
3581    
3582 root 1.352 w->sent = 0;
3583    
3584 root 1.207 evpipe_init (EV_A);
3585    
3586 root 1.248 EV_FREQUENT_CHECK;
3587    
3588 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3589     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3590     asyncs [asynccnt - 1] = w;
3591 root 1.248
3592     EV_FREQUENT_CHECK;
3593 root 1.207 }
3594    
3595     void
3596     ev_async_stop (EV_P_ ev_async *w)
3597     {
3598     clear_pending (EV_A_ (W)w);
3599     if (expect_false (!ev_is_active (w)))
3600     return;
3601    
3602 root 1.248 EV_FREQUENT_CHECK;
3603    
3604 root 1.207 {
3605 root 1.230 int active = ev_active (w);
3606    
3607 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3608 root 1.230 ev_active (asyncs [active - 1]) = active;
3609 root 1.207 }
3610    
3611     ev_stop (EV_A_ (W)w);
3612 root 1.248
3613     EV_FREQUENT_CHECK;
3614 root 1.207 }
3615    
3616     void
3617     ev_async_send (EV_P_ ev_async *w)
3618     {
3619     w->sent = 1;
3620 root 1.307 evpipe_write (EV_A_ &async_pending);
3621 root 1.207 }
3622     #endif
3623    
3624 root 1.1 /*****************************************************************************/
3625 root 1.10
3626 root 1.16 struct ev_once
3627     {
3628 root 1.136 ev_io io;
3629     ev_timer to;
3630 root 1.16 void (*cb)(int revents, void *arg);
3631     void *arg;
3632     };
3633    
3634     static void
3635 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3636 root 1.16 {
3637     void (*cb)(int revents, void *arg) = once->cb;
3638     void *arg = once->arg;
3639    
3640 root 1.259 ev_io_stop (EV_A_ &once->io);
3641 root 1.51 ev_timer_stop (EV_A_ &once->to);
3642 root 1.69 ev_free (once);
3643 root 1.16
3644     cb (revents, arg);
3645     }
3646    
3647     static void
3648 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3649 root 1.16 {
3650 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3651    
3652     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3653 root 1.16 }
3654    
3655     static void
3656 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3657 root 1.16 {
3658 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3659    
3660     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3661 root 1.16 }
3662    
3663     void
3664 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3665 root 1.16 {
3666 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3667 root 1.16
3668 root 1.123 if (expect_false (!once))
3669 root 1.16 {
3670 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3671 root 1.123 return;
3672     }
3673    
3674     once->cb = cb;
3675     once->arg = arg;
3676 root 1.16
3677 root 1.123 ev_init (&once->io, once_cb_io);
3678     if (fd >= 0)
3679     {
3680     ev_io_set (&once->io, fd, events);
3681     ev_io_start (EV_A_ &once->io);
3682     }
3683 root 1.16
3684 root 1.123 ev_init (&once->to, once_cb_to);
3685     if (timeout >= 0.)
3686     {
3687     ev_timer_set (&once->to, timeout, 0.);
3688     ev_timer_start (EV_A_ &once->to);
3689 root 1.16 }
3690     }
3691    
3692 root 1.282 /*****************************************************************************/
3693    
3694 root 1.288 #if EV_WALK_ENABLE
3695 root 1.282 void
3696     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3697     {
3698     int i, j;
3699     ev_watcher_list *wl, *wn;
3700    
3701     if (types & (EV_IO | EV_EMBED))
3702     for (i = 0; i < anfdmax; ++i)
3703     for (wl = anfds [i].head; wl; )
3704     {
3705     wn = wl->next;
3706    
3707     #if EV_EMBED_ENABLE
3708     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3709     {
3710     if (types & EV_EMBED)
3711     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3712     }
3713     else
3714     #endif
3715     #if EV_USE_INOTIFY
3716     if (ev_cb ((ev_io *)wl) == infy_cb)
3717     ;
3718     else
3719     #endif
3720 root 1.288 if ((ev_io *)wl != &pipe_w)
3721 root 1.282 if (types & EV_IO)
3722     cb (EV_A_ EV_IO, wl);
3723    
3724     wl = wn;
3725     }
3726    
3727     if (types & (EV_TIMER | EV_STAT))
3728     for (i = timercnt + HEAP0; i-- > HEAP0; )
3729     #if EV_STAT_ENABLE
3730     /*TODO: timer is not always active*/
3731     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3732     {
3733     if (types & EV_STAT)
3734     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3735     }
3736     else
3737     #endif
3738     if (types & EV_TIMER)
3739     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3740    
3741     #if EV_PERIODIC_ENABLE
3742     if (types & EV_PERIODIC)
3743     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3744     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3745     #endif
3746    
3747     #if EV_IDLE_ENABLE
3748     if (types & EV_IDLE)
3749     for (j = NUMPRI; i--; )
3750     for (i = idlecnt [j]; i--; )
3751     cb (EV_A_ EV_IDLE, idles [j][i]);
3752     #endif
3753    
3754     #if EV_FORK_ENABLE
3755     if (types & EV_FORK)
3756     for (i = forkcnt; i--; )
3757     if (ev_cb (forks [i]) != embed_fork_cb)
3758     cb (EV_A_ EV_FORK, forks [i]);
3759     #endif
3760    
3761     #if EV_ASYNC_ENABLE
3762     if (types & EV_ASYNC)
3763     for (i = asynccnt; i--; )
3764     cb (EV_A_ EV_ASYNC, asyncs [i]);
3765     #endif
3766    
3767 root 1.337 #if EV_PREPARE_ENABLE
3768 root 1.282 if (types & EV_PREPARE)
3769     for (i = preparecnt; i--; )
3770 root 1.337 # if EV_EMBED_ENABLE
3771 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3772 root 1.337 # endif
3773     cb (EV_A_ EV_PREPARE, prepares [i]);
3774 root 1.282 #endif
3775    
3776 root 1.337 #if EV_CHECK_ENABLE
3777 root 1.282 if (types & EV_CHECK)
3778     for (i = checkcnt; i--; )
3779     cb (EV_A_ EV_CHECK, checks [i]);
3780 root 1.337 #endif
3781 root 1.282
3782 root 1.337 #if EV_SIGNAL_ENABLE
3783 root 1.282 if (types & EV_SIGNAL)
3784 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
3785 root 1.282 for (wl = signals [i].head; wl; )
3786     {
3787     wn = wl->next;
3788     cb (EV_A_ EV_SIGNAL, wl);
3789     wl = wn;
3790     }
3791 root 1.337 #endif
3792 root 1.282
3793 root 1.337 #if EV_CHILD_ENABLE
3794 root 1.282 if (types & EV_CHILD)
3795 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
3796 root 1.282 for (wl = childs [i]; wl; )
3797     {
3798     wn = wl->next;
3799     cb (EV_A_ EV_CHILD, wl);
3800     wl = wn;
3801     }
3802 root 1.337 #endif
3803 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
3804     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3805     }
3806     #endif
3807    
3808 root 1.188 #if EV_MULTIPLICITY
3809     #include "ev_wrap.h"
3810     #endif
3811    
3812 root 1.87 #ifdef __cplusplus
3813     }
3814     #endif
3815