ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.364
Committed: Sun Oct 24 21:51:03 2010 UTC (13 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-4_00
Changes since 1.363: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.326 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.274 # if HAVE_CLOCK_SYSCALL
49     # ifndef EV_USE_CLOCK_SYSCALL
50     # define EV_USE_CLOCK_SYSCALL 1
51     # ifndef EV_USE_REALTIME
52     # define EV_USE_REALTIME 0
53     # endif
54     # ifndef EV_USE_MONOTONIC
55     # define EV_USE_MONOTONIC 1
56     # endif
57     # endif
58 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
59     # define EV_USE_CLOCK_SYSCALL 0
60 root 1.274 # endif
61    
62 root 1.60 # if HAVE_CLOCK_GETTIME
63 root 1.97 # ifndef EV_USE_MONOTONIC
64     # define EV_USE_MONOTONIC 1
65     # endif
66     # ifndef EV_USE_REALTIME
67 root 1.279 # define EV_USE_REALTIME 0
68 root 1.97 # endif
69 root 1.126 # else
70     # ifndef EV_USE_MONOTONIC
71     # define EV_USE_MONOTONIC 0
72     # endif
73     # ifndef EV_USE_REALTIME
74     # define EV_USE_REALTIME 0
75     # endif
76 root 1.60 # endif
77    
78 root 1.343 # if HAVE_NANOSLEEP
79     # ifndef EV_USE_NANOSLEEP
80     # define EV_USE_NANOSLEEP EV_FEATURE_OS
81     # endif
82     # else
83     # undef EV_USE_NANOSLEEP
84 root 1.193 # define EV_USE_NANOSLEEP 0
85     # endif
86    
87 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
88     # ifndef EV_USE_SELECT
89 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
90 root 1.127 # endif
91 root 1.343 # else
92     # undef EV_USE_SELECT
93     # define EV_USE_SELECT 0
94 root 1.60 # endif
95    
96 root 1.343 # if HAVE_POLL && HAVE_POLL_H
97     # ifndef EV_USE_POLL
98 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
99 root 1.127 # endif
100 root 1.343 # else
101     # undef EV_USE_POLL
102     # define EV_USE_POLL 0
103 root 1.60 # endif
104 root 1.127
105 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106     # ifndef EV_USE_EPOLL
107 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
108 root 1.127 # endif
109 root 1.343 # else
110     # undef EV_USE_EPOLL
111     # define EV_USE_EPOLL 0
112 root 1.60 # endif
113 root 1.127
114 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115     # ifndef EV_USE_KQUEUE
116 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117 root 1.127 # endif
118 root 1.343 # else
119     # undef EV_USE_KQUEUE
120     # define EV_USE_KQUEUE 0
121 root 1.60 # endif
122 root 1.127
123 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
124     # ifndef EV_USE_PORT
125 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
126 root 1.127 # endif
127 root 1.343 # else
128     # undef EV_USE_PORT
129     # define EV_USE_PORT 0
130 root 1.118 # endif
131    
132 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133     # ifndef EV_USE_INOTIFY
134 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
135 root 1.152 # endif
136 root 1.343 # else
137     # undef EV_USE_INOTIFY
138     # define EV_USE_INOTIFY 0
139 root 1.152 # endif
140    
141 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142     # ifndef EV_USE_SIGNALFD
143 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
144 root 1.303 # endif
145 root 1.343 # else
146     # undef EV_USE_SIGNALFD
147     # define EV_USE_SIGNALFD 0
148 root 1.303 # endif
149    
150 root 1.343 # if HAVE_EVENTFD
151     # ifndef EV_USE_EVENTFD
152 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
153 root 1.220 # endif
154 root 1.343 # else
155     # undef EV_USE_EVENTFD
156     # define EV_USE_EVENTFD 0
157 root 1.220 # endif
158 root 1.250
159 root 1.29 #endif
160 root 1.17
161 root 1.1 #include <math.h>
162     #include <stdlib.h>
163 root 1.319 #include <string.h>
164 root 1.7 #include <fcntl.h>
165 root 1.16 #include <stddef.h>
166 root 1.1
167     #include <stdio.h>
168    
169 root 1.4 #include <assert.h>
170 root 1.1 #include <errno.h>
171 root 1.22 #include <sys/types.h>
172 root 1.71 #include <time.h>
173 root 1.326 #include <limits.h>
174 root 1.71
175 root 1.72 #include <signal.h>
176 root 1.71
177 root 1.152 #ifdef EV_H
178     # include EV_H
179     #else
180     # include "ev.h"
181     #endif
182    
183 root 1.354 EV_CPP(extern "C" {)
184    
185 root 1.103 #ifndef _WIN32
186 root 1.71 # include <sys/time.h>
187 root 1.45 # include <sys/wait.h>
188 root 1.140 # include <unistd.h>
189 root 1.103 #else
190 root 1.256 # include <io.h>
191 root 1.103 # define WIN32_LEAN_AND_MEAN
192     # include <windows.h>
193     # ifndef EV_SELECT_IS_WINSOCKET
194     # define EV_SELECT_IS_WINSOCKET 1
195     # endif
196 root 1.331 # undef EV_AVOID_STDIO
197 root 1.45 #endif
198 root 1.103
199 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
200     * a limit of 1024 into their select. Where people have brains,
201     * OS X engineers apparently have a vacuum. Or maybe they were
202     * ordered to have a vacuum, or they do anything for money.
203     * This might help. Or not.
204     */
205     #define _DARWIN_UNLIMITED_SELECT 1
206    
207 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
208 root 1.40
209 root 1.305 /* try to deduce the maximum number of signals on this platform */
210     #if defined (EV_NSIG)
211     /* use what's provided */
212     #elif defined (NSIG)
213     # define EV_NSIG (NSIG)
214     #elif defined(_NSIG)
215     # define EV_NSIG (_NSIG)
216     #elif defined (SIGMAX)
217     # define EV_NSIG (SIGMAX+1)
218     #elif defined (SIG_MAX)
219     # define EV_NSIG (SIG_MAX+1)
220     #elif defined (_SIG_MAX)
221     # define EV_NSIG (_SIG_MAX+1)
222     #elif defined (MAXSIG)
223     # define EV_NSIG (MAXSIG+1)
224     #elif defined (MAX_SIG)
225     # define EV_NSIG (MAX_SIG+1)
226     #elif defined (SIGARRAYSIZE)
227 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228 root 1.305 #elif defined (_sys_nsig)
229     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230     #else
231     # error "unable to find value for NSIG, please report"
232 root 1.336 /* to make it compile regardless, just remove the above line, */
233     /* but consider reporting it, too! :) */
234 root 1.306 # define EV_NSIG 65
235 root 1.305 #endif
236    
237 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
238     # if __linux && __GLIBC__ >= 2
239 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240 root 1.274 # else
241     # define EV_USE_CLOCK_SYSCALL 0
242     # endif
243     #endif
244    
245 root 1.29 #ifndef EV_USE_MONOTONIC
246 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
248 root 1.253 # else
249     # define EV_USE_MONOTONIC 0
250     # endif
251 root 1.37 #endif
252    
253 root 1.118 #ifndef EV_USE_REALTIME
254 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255 root 1.118 #endif
256    
257 root 1.193 #ifndef EV_USE_NANOSLEEP
258 root 1.253 # if _POSIX_C_SOURCE >= 199309L
259 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
260 root 1.253 # else
261     # define EV_USE_NANOSLEEP 0
262     # endif
263 root 1.193 #endif
264    
265 root 1.29 #ifndef EV_USE_SELECT
266 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
267 root 1.10 #endif
268    
269 root 1.59 #ifndef EV_USE_POLL
270 root 1.104 # ifdef _WIN32
271     # define EV_USE_POLL 0
272     # else
273 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
274 root 1.104 # endif
275 root 1.41 #endif
276    
277 root 1.29 #ifndef EV_USE_EPOLL
278 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
280 root 1.220 # else
281     # define EV_USE_EPOLL 0
282     # endif
283 root 1.10 #endif
284    
285 root 1.44 #ifndef EV_USE_KQUEUE
286     # define EV_USE_KQUEUE 0
287     #endif
288    
289 root 1.118 #ifndef EV_USE_PORT
290     # define EV_USE_PORT 0
291 root 1.40 #endif
292    
293 root 1.152 #ifndef EV_USE_INOTIFY
294 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
296 root 1.220 # else
297     # define EV_USE_INOTIFY 0
298     # endif
299 root 1.152 #endif
300    
301 root 1.149 #ifndef EV_PID_HASHSIZE
302 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303 root 1.149 #endif
304    
305 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
306 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307 root 1.152 #endif
308    
309 root 1.220 #ifndef EV_USE_EVENTFD
310     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
312 root 1.220 # else
313     # define EV_USE_EVENTFD 0
314     # endif
315     #endif
316    
317 root 1.303 #ifndef EV_USE_SIGNALFD
318 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
320 root 1.303 # else
321     # define EV_USE_SIGNALFD 0
322     # endif
323     #endif
324    
325 root 1.249 #if 0 /* debugging */
326 root 1.250 # define EV_VERIFY 3
327 root 1.249 # define EV_USE_4HEAP 1
328     # define EV_HEAP_CACHE_AT 1
329     #endif
330    
331 root 1.250 #ifndef EV_VERIFY
332 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333 root 1.250 #endif
334    
335 root 1.243 #ifndef EV_USE_4HEAP
336 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
337 root 1.243 #endif
338    
339     #ifndef EV_HEAP_CACHE_AT
340 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341 root 1.243 #endif
342    
343 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344     /* which makes programs even slower. might work on other unices, too. */
345     #if EV_USE_CLOCK_SYSCALL
346     # include <syscall.h>
347     # ifdef SYS_clock_gettime
348     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349     # undef EV_USE_MONOTONIC
350     # define EV_USE_MONOTONIC 1
351     # else
352     # undef EV_USE_CLOCK_SYSCALL
353     # define EV_USE_CLOCK_SYSCALL 0
354     # endif
355     #endif
356    
357 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
358 root 1.40
359 root 1.325 #ifdef _AIX
360     /* AIX has a completely broken poll.h header */
361     # undef EV_USE_POLL
362     # define EV_USE_POLL 0
363     #endif
364    
365 root 1.40 #ifndef CLOCK_MONOTONIC
366     # undef EV_USE_MONOTONIC
367     # define EV_USE_MONOTONIC 0
368     #endif
369    
370 root 1.31 #ifndef CLOCK_REALTIME
371 root 1.40 # undef EV_USE_REALTIME
372 root 1.31 # define EV_USE_REALTIME 0
373     #endif
374 root 1.40
375 root 1.152 #if !EV_STAT_ENABLE
376 root 1.185 # undef EV_USE_INOTIFY
377 root 1.152 # define EV_USE_INOTIFY 0
378     #endif
379    
380 root 1.193 #if !EV_USE_NANOSLEEP
381     # ifndef _WIN32
382     # include <sys/select.h>
383     # endif
384     #endif
385    
386 root 1.152 #if EV_USE_INOTIFY
387 root 1.273 # include <sys/statfs.h>
388 root 1.152 # include <sys/inotify.h>
389 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390     # ifndef IN_DONT_FOLLOW
391     # undef EV_USE_INOTIFY
392     # define EV_USE_INOTIFY 0
393     # endif
394 root 1.152 #endif
395    
396 root 1.185 #if EV_SELECT_IS_WINSOCKET
397     # include <winsock.h>
398     #endif
399    
400 root 1.220 #if EV_USE_EVENTFD
401     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402 root 1.221 # include <stdint.h>
403 root 1.303 # ifndef EFD_NONBLOCK
404     # define EFD_NONBLOCK O_NONBLOCK
405     # endif
406     # ifndef EFD_CLOEXEC
407 root 1.311 # ifdef O_CLOEXEC
408     # define EFD_CLOEXEC O_CLOEXEC
409     # else
410     # define EFD_CLOEXEC 02000000
411     # endif
412 root 1.303 # endif
413 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414 root 1.220 #endif
415    
416 root 1.303 #if EV_USE_SIGNALFD
417 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418     # include <stdint.h>
419     # ifndef SFD_NONBLOCK
420     # define SFD_NONBLOCK O_NONBLOCK
421     # endif
422     # ifndef SFD_CLOEXEC
423     # ifdef O_CLOEXEC
424     # define SFD_CLOEXEC O_CLOEXEC
425     # else
426     # define SFD_CLOEXEC 02000000
427     # endif
428     # endif
429 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430 root 1.314
431     struct signalfd_siginfo
432     {
433     uint32_t ssi_signo;
434     char pad[128 - sizeof (uint32_t)];
435     };
436 root 1.303 #endif
437    
438 root 1.40 /**/
439 root 1.1
440 root 1.250 #if EV_VERIFY >= 3
441 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
442 root 1.248 #else
443     # define EV_FREQUENT_CHECK do { } while (0)
444     #endif
445    
446 root 1.176 /*
447     * This is used to avoid floating point rounding problems.
448     * It is added to ev_rt_now when scheduling periodics
449     * to ensure progress, time-wise, even when rounding
450     * errors are against us.
451 root 1.177 * This value is good at least till the year 4000.
452 root 1.176 * Better solutions welcome.
453     */
454     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455    
456 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
457 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
458 root 1.1
459 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461 root 1.347
462 root 1.185 #if __GNUC__ >= 4
463 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
464 root 1.169 # define noinline __attribute__ ((noinline))
465 root 1.40 #else
466     # define expect(expr,value) (expr)
467 root 1.140 # define noinline
468 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469 root 1.169 # define inline
470     # endif
471 root 1.40 #endif
472    
473     #define expect_false(expr) expect ((expr) != 0, 0)
474     #define expect_true(expr) expect ((expr) != 0, 1)
475 root 1.169 #define inline_size static inline
476    
477 root 1.338 #if EV_FEATURE_CODE
478     # define inline_speed static inline
479     #else
480 root 1.169 # define inline_speed static noinline
481     #endif
482 root 1.40
483 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484    
485     #if EV_MINPRI == EV_MAXPRI
486     # define ABSPRI(w) (((W)w), 0)
487     #else
488     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489     #endif
490 root 1.42
491 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
492 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
493 root 1.103
494 root 1.136 typedef ev_watcher *W;
495     typedef ev_watcher_list *WL;
496     typedef ev_watcher_time *WT;
497 root 1.10
498 root 1.229 #define ev_active(w) ((W)(w))->active
499 root 1.228 #define ev_at(w) ((WT)(w))->at
500    
501 root 1.279 #if EV_USE_REALTIME
502 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
503 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
504 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505     #endif
506    
507     #if EV_USE_MONOTONIC
508 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509 root 1.198 #endif
510 root 1.54
511 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
512     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513     #endif
514     #ifndef EV_WIN32_HANDLE_TO_FD
515 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516 root 1.313 #endif
517     #ifndef EV_WIN32_CLOSE_FD
518     # define EV_WIN32_CLOSE_FD(fd) close (fd)
519     #endif
520    
521 root 1.103 #ifdef _WIN32
522 root 1.98 # include "ev_win32.c"
523     #endif
524 root 1.67
525 root 1.53 /*****************************************************************************/
526 root 1.1
527 root 1.356 #ifdef __linux
528     # include <sys/utsname.h>
529     #endif
530    
531 root 1.355 static unsigned int noinline
532     ev_linux_version (void)
533     {
534     #ifdef __linux
535 root 1.359 unsigned int v = 0;
536 root 1.355 struct utsname buf;
537     int i;
538     char *p = buf.release;
539    
540     if (uname (&buf))
541     return 0;
542    
543     for (i = 3+1; --i; )
544     {
545     unsigned int c = 0;
546    
547     for (;;)
548     {
549     if (*p >= '0' && *p <= '9')
550     c = c * 10 + *p++ - '0';
551     else
552     {
553     p += *p == '.';
554     break;
555     }
556     }
557    
558     v = (v << 8) | c;
559     }
560    
561     return v;
562     #else
563     return 0;
564     #endif
565     }
566    
567     /*****************************************************************************/
568    
569 root 1.331 #if EV_AVOID_STDIO
570     static void noinline
571     ev_printerr (const char *msg)
572     {
573     write (STDERR_FILENO, msg, strlen (msg));
574     }
575     #endif
576    
577 root 1.70 static void (*syserr_cb)(const char *msg);
578 root 1.69
579 root 1.141 void
580     ev_set_syserr_cb (void (*cb)(const char *msg))
581 root 1.69 {
582     syserr_cb = cb;
583     }
584    
585 root 1.141 static void noinline
586 root 1.269 ev_syserr (const char *msg)
587 root 1.69 {
588 root 1.70 if (!msg)
589     msg = "(libev) system error";
590    
591 root 1.69 if (syserr_cb)
592 root 1.70 syserr_cb (msg);
593 root 1.69 else
594     {
595 root 1.330 #if EV_AVOID_STDIO
596 root 1.331 const char *err = strerror (errno);
597    
598     ev_printerr (msg);
599     ev_printerr (": ");
600     ev_printerr (err);
601     ev_printerr ("\n");
602 root 1.330 #else
603 root 1.70 perror (msg);
604 root 1.330 #endif
605 root 1.69 abort ();
606     }
607     }
608    
609 root 1.224 static void *
610     ev_realloc_emul (void *ptr, long size)
611     {
612 root 1.334 #if __GLIBC__
613     return realloc (ptr, size);
614     #else
615 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
616 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
617 root 1.224 * the single unix specification, so work around them here.
618     */
619 root 1.333
620 root 1.224 if (size)
621     return realloc (ptr, size);
622    
623     free (ptr);
624     return 0;
625 root 1.334 #endif
626 root 1.224 }
627    
628     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
629 root 1.69
630 root 1.141 void
631 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
632 root 1.69 {
633     alloc = cb;
634     }
635    
636 root 1.150 inline_speed void *
637 root 1.155 ev_realloc (void *ptr, long size)
638 root 1.69 {
639 root 1.224 ptr = alloc (ptr, size);
640 root 1.69
641     if (!ptr && size)
642     {
643 root 1.330 #if EV_AVOID_STDIO
644 root 1.331 ev_printerr ("libev: memory allocation failed, aborting.\n");
645 root 1.330 #else
646 root 1.155 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647 root 1.330 #endif
648 root 1.69 abort ();
649     }
650    
651     return ptr;
652     }
653    
654     #define ev_malloc(size) ev_realloc (0, (size))
655     #define ev_free(ptr) ev_realloc ((ptr), 0)
656    
657     /*****************************************************************************/
658    
659 root 1.298 /* set in reify when reification needed */
660     #define EV_ANFD_REIFY 1
661    
662 root 1.288 /* file descriptor info structure */
663 root 1.53 typedef struct
664     {
665 root 1.68 WL head;
666 root 1.288 unsigned char events; /* the events watched for */
667 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
669 root 1.269 unsigned char unused;
670     #if EV_USE_EPOLL
671 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
672 root 1.269 #endif
673 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
674 root 1.103 SOCKET handle;
675     #endif
676 root 1.357 #if EV_USE_IOCP
677     OVERLAPPED or, ow;
678     #endif
679 root 1.53 } ANFD;
680 root 1.1
681 root 1.288 /* stores the pending event set for a given watcher */
682 root 1.53 typedef struct
683     {
684     W w;
685 root 1.288 int events; /* the pending event set for the given watcher */
686 root 1.53 } ANPENDING;
687 root 1.51
688 root 1.155 #if EV_USE_INOTIFY
689 root 1.241 /* hash table entry per inotify-id */
690 root 1.152 typedef struct
691     {
692     WL head;
693 root 1.155 } ANFS;
694 root 1.152 #endif
695    
696 root 1.241 /* Heap Entry */
697     #if EV_HEAP_CACHE_AT
698 root 1.288 /* a heap element */
699 root 1.241 typedef struct {
700 root 1.243 ev_tstamp at;
701 root 1.241 WT w;
702     } ANHE;
703    
704 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
705     #define ANHE_at(he) (he).at /* access cached at, read-only */
706     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707 root 1.241 #else
708 root 1.288 /* a heap element */
709 root 1.241 typedef WT ANHE;
710    
711 root 1.248 #define ANHE_w(he) (he)
712     #define ANHE_at(he) (he)->at
713     #define ANHE_at_cache(he)
714 root 1.241 #endif
715    
716 root 1.55 #if EV_MULTIPLICITY
717 root 1.54
718 root 1.80 struct ev_loop
719     {
720 root 1.86 ev_tstamp ev_rt_now;
721 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
722 root 1.80 #define VAR(name,decl) decl;
723     #include "ev_vars.h"
724     #undef VAR
725     };
726     #include "ev_wrap.h"
727    
728 root 1.116 static struct ev_loop default_loop_struct;
729     struct ev_loop *ev_default_loop_ptr;
730 root 1.54
731 root 1.53 #else
732 root 1.54
733 root 1.86 ev_tstamp ev_rt_now;
734 root 1.80 #define VAR(name,decl) static decl;
735     #include "ev_vars.h"
736     #undef VAR
737    
738 root 1.116 static int ev_default_loop_ptr;
739 root 1.54
740 root 1.51 #endif
741 root 1.1
742 root 1.338 #if EV_FEATURE_API
743 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
746     #else
747 root 1.298 # define EV_RELEASE_CB (void)0
748     # define EV_ACQUIRE_CB (void)0
749 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750     #endif
751    
752 root 1.353 #define EVBREAK_RECURSE 0x80
753 root 1.298
754 root 1.8 /*****************************************************************************/
755    
756 root 1.292 #ifndef EV_HAVE_EV_TIME
757 root 1.141 ev_tstamp
758 root 1.1 ev_time (void)
759     {
760 root 1.29 #if EV_USE_REALTIME
761 root 1.279 if (expect_true (have_realtime))
762     {
763     struct timespec ts;
764     clock_gettime (CLOCK_REALTIME, &ts);
765     return ts.tv_sec + ts.tv_nsec * 1e-9;
766     }
767     #endif
768    
769 root 1.1 struct timeval tv;
770     gettimeofday (&tv, 0);
771     return tv.tv_sec + tv.tv_usec * 1e-6;
772     }
773 root 1.292 #endif
774 root 1.1
775 root 1.284 inline_size ev_tstamp
776 root 1.1 get_clock (void)
777     {
778 root 1.29 #if EV_USE_MONOTONIC
779 root 1.40 if (expect_true (have_monotonic))
780 root 1.1 {
781     struct timespec ts;
782     clock_gettime (CLOCK_MONOTONIC, &ts);
783     return ts.tv_sec + ts.tv_nsec * 1e-9;
784     }
785     #endif
786    
787     return ev_time ();
788     }
789    
790 root 1.85 #if EV_MULTIPLICITY
791 root 1.51 ev_tstamp
792     ev_now (EV_P)
793     {
794 root 1.85 return ev_rt_now;
795 root 1.51 }
796 root 1.85 #endif
797 root 1.51
798 root 1.193 void
799     ev_sleep (ev_tstamp delay)
800     {
801     if (delay > 0.)
802     {
803     #if EV_USE_NANOSLEEP
804     struct timespec ts;
805    
806 root 1.348 EV_TS_SET (ts, delay);
807 root 1.193 nanosleep (&ts, 0);
808     #elif defined(_WIN32)
809 root 1.217 Sleep ((unsigned long)(delay * 1e3));
810 root 1.193 #else
811     struct timeval tv;
812    
813 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
815 root 1.257 /* by older ones */
816 sf-exg 1.349 EV_TV_SET (tv, delay);
817 root 1.193 select (0, 0, 0, 0, &tv);
818     #endif
819     }
820     }
821    
822     /*****************************************************************************/
823    
824 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825 root 1.232
826 root 1.288 /* find a suitable new size for the given array, */
827 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
828 root 1.284 inline_size int
829 root 1.163 array_nextsize (int elem, int cur, int cnt)
830     {
831     int ncur = cur + 1;
832    
833     do
834     ncur <<= 1;
835     while (cnt > ncur);
836    
837 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 root 1.163 {
840     ncur *= elem;
841 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 root 1.163 ncur = ncur - sizeof (void *) * 4;
843     ncur /= elem;
844     }
845    
846     return ncur;
847     }
848    
849 root 1.171 static noinline void *
850 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
851     {
852     *cur = array_nextsize (elem, *cur, cnt);
853     return ev_realloc (base, elem * *cur);
854     }
855 root 1.29
856 root 1.265 #define array_init_zero(base,count) \
857     memset ((void *)(base), 0, sizeof (*(base)) * (count))
858    
859 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
860 root 1.163 if (expect_false ((cnt) > (cur))) \
861 root 1.69 { \
862 root 1.163 int ocur_ = (cur); \
863     (base) = (type *)array_realloc \
864     (sizeof (type), (base), &(cur), (cnt)); \
865     init ((base) + (ocur_), (cur) - ocur_); \
866 root 1.1 }
867    
868 root 1.163 #if 0
869 root 1.74 #define array_slim(type,stem) \
870 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
871     { \
872     stem ## max = array_roundsize (stem ## cnt >> 1); \
873 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
874 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
875     }
876 root 1.163 #endif
877 root 1.67
878 root 1.65 #define array_free(stem, idx) \
879 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
880 root 1.65
881 root 1.8 /*****************************************************************************/
882    
883 root 1.288 /* dummy callback for pending events */
884     static void noinline
885     pendingcb (EV_P_ ev_prepare *w, int revents)
886     {
887     }
888    
889 root 1.140 void noinline
890 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
891 root 1.1 {
892 root 1.78 W w_ = (W)w;
893 root 1.171 int pri = ABSPRI (w_);
894 root 1.78
895 root 1.123 if (expect_false (w_->pending))
896 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
897     else
898 root 1.32 {
899 root 1.171 w_->pending = ++pendingcnt [pri];
900     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901     pendings [pri][w_->pending - 1].w = w_;
902     pendings [pri][w_->pending - 1].events = revents;
903 root 1.32 }
904 root 1.1 }
905    
906 root 1.284 inline_speed void
907     feed_reverse (EV_P_ W w)
908     {
909     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910     rfeeds [rfeedcnt++] = w;
911     }
912    
913     inline_size void
914     feed_reverse_done (EV_P_ int revents)
915     {
916     do
917     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918     while (rfeedcnt);
919     }
920    
921     inline_speed void
922 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
923 root 1.27 {
924     int i;
925    
926     for (i = 0; i < eventcnt; ++i)
927 root 1.78 ev_feed_event (EV_A_ events [i], type);
928 root 1.27 }
929    
930 root 1.141 /*****************************************************************************/
931    
932 root 1.284 inline_speed void
933 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
934 root 1.1 {
935     ANFD *anfd = anfds + fd;
936 root 1.136 ev_io *w;
937 root 1.1
938 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
939 root 1.1 {
940 root 1.79 int ev = w->events & revents;
941 root 1.1
942     if (ev)
943 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
944 root 1.1 }
945     }
946    
947 root 1.298 /* do not submit kernel events for fds that have reify set */
948     /* because that means they changed while we were polling for new events */
949     inline_speed void
950     fd_event (EV_P_ int fd, int revents)
951     {
952     ANFD *anfd = anfds + fd;
953    
954     if (expect_true (!anfd->reify))
955 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
956 root 1.298 }
957    
958 root 1.79 void
959     ev_feed_fd_event (EV_P_ int fd, int revents)
960     {
961 root 1.168 if (fd >= 0 && fd < anfdmax)
962 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
963 root 1.79 }
964    
965 root 1.288 /* make sure the external fd watch events are in-sync */
966     /* with the kernel/libev internal state */
967 root 1.284 inline_size void
968 root 1.51 fd_reify (EV_P)
969 root 1.9 {
970     int i;
971    
972 root 1.27 for (i = 0; i < fdchangecnt; ++i)
973     {
974     int fd = fdchanges [i];
975     ANFD *anfd = anfds + fd;
976 root 1.136 ev_io *w;
977 root 1.27
978 root 1.350 unsigned char o_events = anfd->events;
979     unsigned char o_reify = anfd->reify;
980 root 1.27
981 root 1.350 anfd->reify = 0;
982 root 1.27
983 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
984 root 1.350 if (o_reify & EV__IOFDSET)
985 root 1.103 {
986 root 1.254 unsigned long arg;
987 root 1.313 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
988 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 root 1.357 printf ("oi %d %x\n", fd, anfd->handle);//D
990 root 1.103 }
991     #endif
992    
993 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994     {
995     anfd->events = 0;
996 root 1.184
997 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998     anfd->events |= (unsigned char)w->events;
999 root 1.27
1000 root 1.351 if (o_events != anfd->events)
1001 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1002     }
1003    
1004     if (o_reify & EV__IOFDSET)
1005     backend_modify (EV_A_ fd, o_events, anfd->events);
1006 root 1.27 }
1007    
1008     fdchangecnt = 0;
1009     }
1010    
1011 root 1.288 /* something about the given fd changed */
1012 root 1.284 inline_size void
1013 root 1.183 fd_change (EV_P_ int fd, int flags)
1014 root 1.27 {
1015 root 1.183 unsigned char reify = anfds [fd].reify;
1016 root 1.184 anfds [fd].reify |= flags;
1017 root 1.27
1018 root 1.183 if (expect_true (!reify))
1019     {
1020     ++fdchangecnt;
1021     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1022     fdchanges [fdchangecnt - 1] = fd;
1023     }
1024 root 1.9 }
1025    
1026 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027 root 1.284 inline_speed void
1028 root 1.51 fd_kill (EV_P_ int fd)
1029 root 1.41 {
1030 root 1.136 ev_io *w;
1031 root 1.41
1032 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1033 root 1.41 {
1034 root 1.51 ev_io_stop (EV_A_ w);
1035 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1036 root 1.41 }
1037     }
1038    
1039 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1040 root 1.284 inline_size int
1041 root 1.71 fd_valid (int fd)
1042     {
1043 root 1.103 #ifdef _WIN32
1044 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1045 root 1.71 #else
1046     return fcntl (fd, F_GETFD) != -1;
1047     #endif
1048     }
1049    
1050 root 1.19 /* called on EBADF to verify fds */
1051 root 1.140 static void noinline
1052 root 1.51 fd_ebadf (EV_P)
1053 root 1.19 {
1054     int fd;
1055    
1056     for (fd = 0; fd < anfdmax; ++fd)
1057 root 1.27 if (anfds [fd].events)
1058 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1059 root 1.51 fd_kill (EV_A_ fd);
1060 root 1.41 }
1061    
1062     /* called on ENOMEM in select/poll to kill some fds and retry */
1063 root 1.140 static void noinline
1064 root 1.51 fd_enomem (EV_P)
1065 root 1.41 {
1066 root 1.62 int fd;
1067 root 1.41
1068 root 1.62 for (fd = anfdmax; fd--; )
1069 root 1.41 if (anfds [fd].events)
1070     {
1071 root 1.51 fd_kill (EV_A_ fd);
1072 root 1.307 break;
1073 root 1.41 }
1074 root 1.19 }
1075    
1076 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1077 root 1.140 static void noinline
1078 root 1.56 fd_rearm_all (EV_P)
1079     {
1080     int fd;
1081    
1082     for (fd = 0; fd < anfdmax; ++fd)
1083     if (anfds [fd].events)
1084     {
1085     anfds [fd].events = 0;
1086 root 1.268 anfds [fd].emask = 0;
1087 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1088 root 1.56 }
1089     }
1090    
1091 root 1.336 /* used to prepare libev internal fd's */
1092     /* this is not fork-safe */
1093     inline_speed void
1094     fd_intern (int fd)
1095     {
1096     #ifdef _WIN32
1097     unsigned long arg = 1;
1098     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099     #else
1100     fcntl (fd, F_SETFD, FD_CLOEXEC);
1101     fcntl (fd, F_SETFL, O_NONBLOCK);
1102     #endif
1103     }
1104    
1105 root 1.8 /*****************************************************************************/
1106    
1107 root 1.235 /*
1108 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110     * the branching factor of the d-tree.
1111     */
1112    
1113     /*
1114 root 1.235 * at the moment we allow libev the luxury of two heaps,
1115     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116     * which is more cache-efficient.
1117     * the difference is about 5% with 50000+ watchers.
1118     */
1119 root 1.241 #if EV_USE_4HEAP
1120 root 1.235
1121 root 1.237 #define DHEAP 4
1122     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1125 root 1.235
1126     /* away from the root */
1127 root 1.284 inline_speed void
1128 root 1.241 downheap (ANHE *heap, int N, int k)
1129 root 1.235 {
1130 root 1.241 ANHE he = heap [k];
1131     ANHE *E = heap + N + HEAP0;
1132 root 1.235
1133     for (;;)
1134     {
1135     ev_tstamp minat;
1136 root 1.241 ANHE *minpos;
1137 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138 root 1.235
1139 root 1.248 /* find minimum child */
1140 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1141 root 1.235 {
1142 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 root 1.235 }
1147 root 1.240 else if (pos < E)
1148 root 1.235 {
1149 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 root 1.235 }
1154 root 1.240 else
1155     break;
1156 root 1.235
1157 root 1.241 if (ANHE_at (he) <= minat)
1158 root 1.235 break;
1159    
1160 root 1.247 heap [k] = *minpos;
1161 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1162 root 1.235
1163     k = minpos - heap;
1164     }
1165    
1166 root 1.247 heap [k] = he;
1167 root 1.241 ev_active (ANHE_w (he)) = k;
1168 root 1.235 }
1169    
1170 root 1.248 #else /* 4HEAP */
1171 root 1.235
1172     #define HEAP0 1
1173 root 1.247 #define HPARENT(k) ((k) >> 1)
1174 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1175 root 1.235
1176 root 1.248 /* away from the root */
1177 root 1.284 inline_speed void
1178 root 1.248 downheap (ANHE *heap, int N, int k)
1179 root 1.1 {
1180 root 1.241 ANHE he = heap [k];
1181 root 1.1
1182 root 1.228 for (;;)
1183 root 1.1 {
1184 root 1.248 int c = k << 1;
1185 root 1.179
1186 root 1.309 if (c >= N + HEAP0)
1187 root 1.179 break;
1188    
1189 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190     ? 1 : 0;
1191    
1192     if (ANHE_at (he) <= ANHE_at (heap [c]))
1193     break;
1194    
1195     heap [k] = heap [c];
1196 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1197 root 1.248
1198     k = c;
1199 root 1.1 }
1200    
1201 root 1.243 heap [k] = he;
1202 root 1.248 ev_active (ANHE_w (he)) = k;
1203 root 1.1 }
1204 root 1.248 #endif
1205 root 1.1
1206 root 1.248 /* towards the root */
1207 root 1.284 inline_speed void
1208 root 1.248 upheap (ANHE *heap, int k)
1209 root 1.1 {
1210 root 1.241 ANHE he = heap [k];
1211 root 1.1
1212 root 1.179 for (;;)
1213 root 1.1 {
1214 root 1.248 int p = HPARENT (k);
1215 root 1.179
1216 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 root 1.179 break;
1218 root 1.1
1219 root 1.248 heap [k] = heap [p];
1220 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1221 root 1.248 k = p;
1222 root 1.1 }
1223    
1224 root 1.241 heap [k] = he;
1225     ev_active (ANHE_w (he)) = k;
1226 root 1.1 }
1227    
1228 root 1.288 /* move an element suitably so it is in a correct place */
1229 root 1.284 inline_size void
1230 root 1.241 adjustheap (ANHE *heap, int N, int k)
1231 root 1.84 {
1232 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 root 1.247 upheap (heap, k);
1234     else
1235     downheap (heap, N, k);
1236 root 1.84 }
1237    
1238 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1239 root 1.284 inline_size void
1240 root 1.248 reheap (ANHE *heap, int N)
1241     {
1242     int i;
1243 root 1.251
1244 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246     for (i = 0; i < N; ++i)
1247     upheap (heap, i + HEAP0);
1248     }
1249    
1250 root 1.8 /*****************************************************************************/
1251    
1252 root 1.288 /* associate signal watchers to a signal signal */
1253 root 1.7 typedef struct
1254     {
1255 root 1.307 EV_ATOMIC_T pending;
1256 root 1.306 #if EV_MULTIPLICITY
1257     EV_P;
1258     #endif
1259 root 1.68 WL head;
1260 root 1.7 } ANSIG;
1261    
1262 root 1.306 static ANSIG signals [EV_NSIG - 1];
1263 root 1.7
1264 root 1.207 /*****************************************************************************/
1265    
1266 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267 root 1.207
1268     static void noinline
1269     evpipe_init (EV_P)
1270     {
1271 root 1.288 if (!ev_is_active (&pipe_w))
1272 root 1.207 {
1273 root 1.336 # if EV_USE_EVENTFD
1274 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275     if (evfd < 0 && errno == EINVAL)
1276     evfd = eventfd (0, 0);
1277    
1278     if (evfd >= 0)
1279 root 1.220 {
1280     evpipe [0] = -1;
1281 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1283 root 1.220 }
1284     else
1285 root 1.336 # endif
1286 root 1.220 {
1287     while (pipe (evpipe))
1288 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1289 root 1.207
1290 root 1.220 fd_intern (evpipe [0]);
1291     fd_intern (evpipe [1]);
1292 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 root 1.220 }
1294 root 1.207
1295 root 1.288 ev_io_start (EV_A_ &pipe_w);
1296 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 root 1.207 }
1298     }
1299    
1300 root 1.284 inline_size void
1301 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302 root 1.207 {
1303 root 1.214 if (!*flag)
1304 root 1.207 {
1305 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1306 root 1.336 char dummy;
1307 root 1.214
1308     *flag = 1;
1309 root 1.220
1310     #if EV_USE_EVENTFD
1311     if (evfd >= 0)
1312     {
1313     uint64_t counter = 1;
1314     write (evfd, &counter, sizeof (uint64_t));
1315     }
1316     else
1317     #endif
1318 root 1.346 /* win32 people keep sending patches that change this write() to send() */
1319     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320     /* so when you think this write should be a send instead, please find out */
1321     /* where your send() is from - it's definitely not the microsoft send, and */
1322     /* tell me. thank you. */
1323 root 1.336 write (evpipe [1], &dummy, 1);
1324 root 1.214
1325 root 1.207 errno = old_errno;
1326     }
1327     }
1328    
1329 root 1.288 /* called whenever the libev signal pipe */
1330     /* got some events (signal, async) */
1331 root 1.207 static void
1332     pipecb (EV_P_ ev_io *iow, int revents)
1333     {
1334 root 1.307 int i;
1335    
1336 root 1.220 #if EV_USE_EVENTFD
1337     if (evfd >= 0)
1338     {
1339 root 1.232 uint64_t counter;
1340 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1341     }
1342     else
1343     #endif
1344     {
1345     char dummy;
1346 root 1.346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 root 1.220 read (evpipe [0], &dummy, 1);
1348     }
1349 root 1.207
1350 root 1.307 if (sig_pending)
1351 root 1.207 {
1352 root 1.307 sig_pending = 0;
1353 root 1.207
1354 root 1.307 for (i = EV_NSIG - 1; i--; )
1355     if (expect_false (signals [i].pending))
1356     ev_feed_signal_event (EV_A_ i + 1);
1357 root 1.207 }
1358    
1359 root 1.209 #if EV_ASYNC_ENABLE
1360 root 1.307 if (async_pending)
1361 root 1.207 {
1362 root 1.307 async_pending = 0;
1363 root 1.207
1364     for (i = asynccnt; i--; )
1365     if (asyncs [i]->sent)
1366     {
1367     asyncs [i]->sent = 0;
1368     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369     }
1370     }
1371 root 1.209 #endif
1372 root 1.207 }
1373    
1374     /*****************************************************************************/
1375    
1376 root 1.7 static void
1377 root 1.218 ev_sighandler (int signum)
1378 root 1.7 {
1379 root 1.207 #if EV_MULTIPLICITY
1380 root 1.306 EV_P = signals [signum - 1].loop;
1381 root 1.207 #endif
1382    
1383 root 1.322 #ifdef _WIN32
1384 root 1.218 signal (signum, ev_sighandler);
1385 root 1.67 #endif
1386    
1387 root 1.307 signals [signum - 1].pending = 1;
1388     evpipe_write (EV_A_ &sig_pending);
1389 root 1.7 }
1390    
1391 root 1.140 void noinline
1392 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1393     {
1394 root 1.80 WL w;
1395    
1396 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397     return;
1398    
1399     --signum;
1400    
1401 root 1.79 #if EV_MULTIPLICITY
1402 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1403     /* or, likely more useful, feeding a signal nobody is waiting for */
1404 root 1.79
1405 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1406 root 1.306 return;
1407 root 1.307 #endif
1408 root 1.306
1409 root 1.307 signals [signum].pending = 0;
1410 root 1.79
1411     for (w = signals [signum].head; w; w = w->next)
1412     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413     }
1414    
1415 root 1.303 #if EV_USE_SIGNALFD
1416     static void
1417     sigfdcb (EV_P_ ev_io *iow, int revents)
1418     {
1419 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420 root 1.303
1421     for (;;)
1422     {
1423     ssize_t res = read (sigfd, si, sizeof (si));
1424    
1425     /* not ISO-C, as res might be -1, but works with SuS */
1426     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428    
1429     if (res < (ssize_t)sizeof (si))
1430     break;
1431     }
1432     }
1433     #endif
1434    
1435 root 1.336 #endif
1436    
1437 root 1.8 /*****************************************************************************/
1438    
1439 root 1.336 #if EV_CHILD_ENABLE
1440 root 1.182 static WL childs [EV_PID_HASHSIZE];
1441 root 1.71
1442 root 1.136 static ev_signal childev;
1443 root 1.59
1444 root 1.206 #ifndef WIFCONTINUED
1445     # define WIFCONTINUED(status) 0
1446     #endif
1447    
1448 root 1.288 /* handle a single child status event */
1449 root 1.284 inline_speed void
1450 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1451 root 1.47 {
1452 root 1.136 ev_child *w;
1453 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1454 root 1.47
1455 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 root 1.206 {
1457     if ((w->pid == pid || !w->pid)
1458     && (!traced || (w->flags & 1)))
1459     {
1460 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1461 root 1.206 w->rpid = pid;
1462     w->rstatus = status;
1463     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1464     }
1465     }
1466 root 1.47 }
1467    
1468 root 1.142 #ifndef WCONTINUED
1469     # define WCONTINUED 0
1470     #endif
1471    
1472 root 1.288 /* called on sigchld etc., calls waitpid */
1473 root 1.47 static void
1474 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1475 root 1.22 {
1476     int pid, status;
1477    
1478 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1479     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1480     if (!WCONTINUED
1481     || errno != EINVAL
1482     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1483     return;
1484    
1485 root 1.216 /* make sure we are called again until all children have been reaped */
1486 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1487     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1488 root 1.47
1489 root 1.216 child_reap (EV_A_ pid, pid, status);
1490 root 1.338 if ((EV_PID_HASHSIZE) > 1)
1491 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1492 root 1.22 }
1493    
1494 root 1.45 #endif
1495    
1496 root 1.22 /*****************************************************************************/
1497    
1498 root 1.357 #if EV_USE_IOCP
1499     # include "ev_iocp.c"
1500     #endif
1501 root 1.118 #if EV_USE_PORT
1502     # include "ev_port.c"
1503     #endif
1504 root 1.44 #if EV_USE_KQUEUE
1505     # include "ev_kqueue.c"
1506     #endif
1507 root 1.29 #if EV_USE_EPOLL
1508 root 1.1 # include "ev_epoll.c"
1509     #endif
1510 root 1.59 #if EV_USE_POLL
1511 root 1.41 # include "ev_poll.c"
1512     #endif
1513 root 1.29 #if EV_USE_SELECT
1514 root 1.1 # include "ev_select.c"
1515     #endif
1516    
1517 root 1.24 int
1518     ev_version_major (void)
1519     {
1520     return EV_VERSION_MAJOR;
1521     }
1522    
1523     int
1524     ev_version_minor (void)
1525     {
1526     return EV_VERSION_MINOR;
1527     }
1528    
1529 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1530 root 1.140 int inline_size
1531 root 1.51 enable_secure (void)
1532 root 1.41 {
1533 root 1.103 #ifdef _WIN32
1534 root 1.49 return 0;
1535     #else
1536 root 1.41 return getuid () != geteuid ()
1537     || getgid () != getegid ();
1538 root 1.49 #endif
1539 root 1.41 }
1540    
1541 root 1.111 unsigned int
1542 root 1.129 ev_supported_backends (void)
1543     {
1544 root 1.130 unsigned int flags = 0;
1545 root 1.129
1546     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1547     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1548     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1549     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1550     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1551    
1552     return flags;
1553     }
1554    
1555     unsigned int
1556 root 1.130 ev_recommended_backends (void)
1557 root 1.1 {
1558 root 1.131 unsigned int flags = ev_supported_backends ();
1559 root 1.129
1560     #ifndef __NetBSD__
1561     /* kqueue is borked on everything but netbsd apparently */
1562     /* it usually doesn't work correctly on anything but sockets and pipes */
1563     flags &= ~EVBACKEND_KQUEUE;
1564     #endif
1565     #ifdef __APPLE__
1566 root 1.278 /* only select works correctly on that "unix-certified" platform */
1567     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569 root 1.129 #endif
1570 root 1.342 #ifdef __FreeBSD__
1571     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1572     #endif
1573 root 1.129
1574     return flags;
1575 root 1.51 }
1576    
1577 root 1.130 unsigned int
1578 root 1.134 ev_embeddable_backends (void)
1579     {
1580 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1581    
1582 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584     flags &= ~EVBACKEND_EPOLL;
1585 root 1.196
1586     return flags;
1587 root 1.134 }
1588    
1589     unsigned int
1590 root 1.130 ev_backend (EV_P)
1591     {
1592     return backend;
1593     }
1594    
1595 root 1.338 #if EV_FEATURE_API
1596 root 1.162 unsigned int
1597 root 1.340 ev_iteration (EV_P)
1598 root 1.162 {
1599     return loop_count;
1600     }
1601    
1602 root 1.294 unsigned int
1603 root 1.340 ev_depth (EV_P)
1604 root 1.294 {
1605     return loop_depth;
1606     }
1607    
1608 root 1.193 void
1609     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1610     {
1611     io_blocktime = interval;
1612     }
1613    
1614     void
1615     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616     {
1617     timeout_blocktime = interval;
1618     }
1619    
1620 root 1.297 void
1621     ev_set_userdata (EV_P_ void *data)
1622     {
1623     userdata = data;
1624     }
1625    
1626     void *
1627     ev_userdata (EV_P)
1628     {
1629     return userdata;
1630     }
1631    
1632     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633     {
1634     invoke_cb = invoke_pending_cb;
1635     }
1636    
1637 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638 root 1.297 {
1639 root 1.298 release_cb = release;
1640     acquire_cb = acquire;
1641 root 1.297 }
1642     #endif
1643    
1644 root 1.288 /* initialise a loop structure, must be zero-initialised */
1645 root 1.151 static void noinline
1646 root 1.108 loop_init (EV_P_ unsigned int flags)
1647 root 1.51 {
1648 root 1.130 if (!backend)
1649 root 1.23 {
1650 root 1.279 #if EV_USE_REALTIME
1651     if (!have_realtime)
1652     {
1653     struct timespec ts;
1654    
1655     if (!clock_gettime (CLOCK_REALTIME, &ts))
1656     have_realtime = 1;
1657     }
1658     #endif
1659    
1660 root 1.29 #if EV_USE_MONOTONIC
1661 root 1.279 if (!have_monotonic)
1662     {
1663     struct timespec ts;
1664    
1665     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1666     have_monotonic = 1;
1667     }
1668 root 1.1 #endif
1669    
1670 root 1.306 /* pid check not overridable via env */
1671     #ifndef _WIN32
1672     if (flags & EVFLAG_FORKCHECK)
1673     curpid = getpid ();
1674     #endif
1675    
1676     if (!(flags & EVFLAG_NOENV)
1677     && !enable_secure ()
1678     && getenv ("LIBEV_FLAGS"))
1679     flags = atoi (getenv ("LIBEV_FLAGS"));
1680    
1681 root 1.209 ev_rt_now = ev_time ();
1682     mn_now = get_clock ();
1683     now_floor = mn_now;
1684     rtmn_diff = ev_rt_now - mn_now;
1685 root 1.338 #if EV_FEATURE_API
1686 root 1.296 invoke_cb = ev_invoke_pending;
1687 root 1.297 #endif
1688 root 1.1
1689 root 1.193 io_blocktime = 0.;
1690     timeout_blocktime = 0.;
1691 root 1.209 backend = 0;
1692     backend_fd = -1;
1693 root 1.307 sig_pending = 0;
1694     #if EV_ASYNC_ENABLE
1695     async_pending = 0;
1696     #endif
1697 root 1.209 #if EV_USE_INOTIFY
1698 root 1.306 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699 root 1.209 #endif
1700 root 1.303 #if EV_USE_SIGNALFD
1701 root 1.321 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702 root 1.303 #endif
1703 root 1.193
1704 root 1.225 if (!(flags & 0x0000ffffU))
1705 root 1.129 flags |= ev_recommended_backends ();
1706 root 1.41
1707 root 1.357 #if EV_USE_IOCP
1708     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709     #endif
1710 root 1.118 #if EV_USE_PORT
1711 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1712 root 1.118 #endif
1713 root 1.44 #if EV_USE_KQUEUE
1714 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1715 root 1.44 #endif
1716 root 1.29 #if EV_USE_EPOLL
1717 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1718 root 1.41 #endif
1719 root 1.59 #if EV_USE_POLL
1720 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1721 root 1.1 #endif
1722 root 1.29 #if EV_USE_SELECT
1723 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1724 root 1.1 #endif
1725 root 1.70
1726 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1727    
1728 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1729 root 1.288 ev_init (&pipe_w, pipecb);
1730     ev_set_priority (&pipe_w, EV_MAXPRI);
1731 root 1.336 #endif
1732 root 1.56 }
1733     }
1734    
1735 root 1.288 /* free up a loop structure */
1736 root 1.359 void
1737     ev_loop_destroy (EV_P)
1738 root 1.56 {
1739 root 1.65 int i;
1740    
1741 root 1.364 #if EV_MULTIPLICITY
1742 root 1.363 /* mimic free (0) */
1743     if (!EV_A)
1744     return;
1745 root 1.364 #endif
1746 root 1.363
1747 root 1.361 #if EV_CLEANUP_ENABLE
1748     /* queue cleanup watchers (and execute them) */
1749     if (expect_false (cleanupcnt))
1750     {
1751     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1752     EV_INVOKE_PENDING;
1753     }
1754     #endif
1755    
1756 root 1.359 #if EV_CHILD_ENABLE
1757     if (ev_is_active (&childev))
1758     {
1759     ev_ref (EV_A); /* child watcher */
1760     ev_signal_stop (EV_A_ &childev);
1761     }
1762     #endif
1763    
1764 root 1.288 if (ev_is_active (&pipe_w))
1765 root 1.207 {
1766 root 1.303 /*ev_ref (EV_A);*/
1767     /*ev_io_stop (EV_A_ &pipe_w);*/
1768 root 1.207
1769 root 1.220 #if EV_USE_EVENTFD
1770     if (evfd >= 0)
1771     close (evfd);
1772     #endif
1773    
1774     if (evpipe [0] >= 0)
1775     {
1776 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1777     EV_WIN32_CLOSE_FD (evpipe [1]);
1778 root 1.220 }
1779 root 1.207 }
1780    
1781 root 1.303 #if EV_USE_SIGNALFD
1782     if (ev_is_active (&sigfd_w))
1783 root 1.317 close (sigfd);
1784 root 1.303 #endif
1785    
1786 root 1.152 #if EV_USE_INOTIFY
1787     if (fs_fd >= 0)
1788     close (fs_fd);
1789     #endif
1790    
1791     if (backend_fd >= 0)
1792     close (backend_fd);
1793    
1794 root 1.357 #if EV_USE_IOCP
1795     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1796     #endif
1797 root 1.118 #if EV_USE_PORT
1798 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1799 root 1.118 #endif
1800 root 1.56 #if EV_USE_KQUEUE
1801 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1802 root 1.56 #endif
1803     #if EV_USE_EPOLL
1804 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1805 root 1.56 #endif
1806 root 1.59 #if EV_USE_POLL
1807 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1808 root 1.56 #endif
1809     #if EV_USE_SELECT
1810 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1811 root 1.56 #endif
1812 root 1.1
1813 root 1.65 for (i = NUMPRI; i--; )
1814 root 1.164 {
1815     array_free (pending, [i]);
1816     #if EV_IDLE_ENABLE
1817     array_free (idle, [i]);
1818     #endif
1819     }
1820 root 1.65
1821 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
1822 root 1.186
1823 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1824 root 1.284 array_free (rfeed, EMPTY);
1825 root 1.164 array_free (fdchange, EMPTY);
1826     array_free (timer, EMPTY);
1827 root 1.140 #if EV_PERIODIC_ENABLE
1828 root 1.164 array_free (periodic, EMPTY);
1829 root 1.93 #endif
1830 root 1.187 #if EV_FORK_ENABLE
1831     array_free (fork, EMPTY);
1832     #endif
1833 root 1.360 #if EV_CLEANUP_ENABLE
1834     array_free (cleanup, EMPTY);
1835     #endif
1836 root 1.164 array_free (prepare, EMPTY);
1837     array_free (check, EMPTY);
1838 root 1.209 #if EV_ASYNC_ENABLE
1839     array_free (async, EMPTY);
1840     #endif
1841 root 1.65
1842 root 1.130 backend = 0;
1843 root 1.359
1844     #if EV_MULTIPLICITY
1845     if (ev_is_default_loop (EV_A))
1846     #endif
1847     ev_default_loop_ptr = 0;
1848     #if EV_MULTIPLICITY
1849     else
1850     ev_free (EV_A);
1851     #endif
1852 root 1.56 }
1853 root 1.22
1854 root 1.226 #if EV_USE_INOTIFY
1855 root 1.284 inline_size void infy_fork (EV_P);
1856 root 1.226 #endif
1857 root 1.154
1858 root 1.284 inline_size void
1859 root 1.56 loop_fork (EV_P)
1860     {
1861 root 1.118 #if EV_USE_PORT
1862 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1863 root 1.56 #endif
1864     #if EV_USE_KQUEUE
1865 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1866 root 1.45 #endif
1867 root 1.118 #if EV_USE_EPOLL
1868 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1869 root 1.118 #endif
1870 root 1.154 #if EV_USE_INOTIFY
1871     infy_fork (EV_A);
1872     #endif
1873 root 1.70
1874 root 1.288 if (ev_is_active (&pipe_w))
1875 root 1.70 {
1876 root 1.207 /* this "locks" the handlers against writing to the pipe */
1877 root 1.212 /* while we modify the fd vars */
1878 root 1.307 sig_pending = 1;
1879 root 1.212 #if EV_ASYNC_ENABLE
1880 root 1.307 async_pending = 1;
1881 root 1.212 #endif
1882 root 1.70
1883     ev_ref (EV_A);
1884 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1885 root 1.220
1886     #if EV_USE_EVENTFD
1887     if (evfd >= 0)
1888     close (evfd);
1889     #endif
1890    
1891     if (evpipe [0] >= 0)
1892     {
1893 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1894     EV_WIN32_CLOSE_FD (evpipe [1]);
1895 root 1.220 }
1896 root 1.207
1897 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1898 root 1.207 evpipe_init (EV_A);
1899 root 1.208 /* now iterate over everything, in case we missed something */
1900 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1901 root 1.337 #endif
1902 root 1.70 }
1903    
1904     postfork = 0;
1905 root 1.1 }
1906    
1907 root 1.55 #if EV_MULTIPLICITY
1908 root 1.250
1909 root 1.54 struct ev_loop *
1910 root 1.108 ev_loop_new (unsigned int flags)
1911 root 1.54 {
1912 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1913 root 1.69
1914 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
1915 root 1.108 loop_init (EV_A_ flags);
1916 root 1.56
1917 root 1.130 if (ev_backend (EV_A))
1918 root 1.306 return EV_A;
1919 root 1.54
1920 root 1.359 ev_free (EV_A);
1921 root 1.55 return 0;
1922 root 1.54 }
1923    
1924 root 1.297 #endif /* multiplicity */
1925 root 1.248
1926     #if EV_VERIFY
1927 root 1.258 static void noinline
1928 root 1.251 verify_watcher (EV_P_ W w)
1929     {
1930 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1931 root 1.251
1932     if (w->pending)
1933 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1934 root 1.251 }
1935    
1936     static void noinline
1937     verify_heap (EV_P_ ANHE *heap, int N)
1938     {
1939     int i;
1940    
1941     for (i = HEAP0; i < N + HEAP0; ++i)
1942     {
1943 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1944     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1945     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1946 root 1.251
1947     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1948     }
1949     }
1950    
1951     static void noinline
1952     array_verify (EV_P_ W *ws, int cnt)
1953 root 1.248 {
1954     while (cnt--)
1955 root 1.251 {
1956 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1957 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1958     }
1959 root 1.248 }
1960 root 1.250 #endif
1961 root 1.248
1962 root 1.338 #if EV_FEATURE_API
1963 root 1.250 void
1964 root 1.340 ev_verify (EV_P)
1965 root 1.248 {
1966 root 1.250 #if EV_VERIFY
1967 root 1.248 int i;
1968 root 1.251 WL w;
1969    
1970     assert (activecnt >= -1);
1971    
1972     assert (fdchangemax >= fdchangecnt);
1973     for (i = 0; i < fdchangecnt; ++i)
1974 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1975 root 1.251
1976     assert (anfdmax >= 0);
1977     for (i = 0; i < anfdmax; ++i)
1978     for (w = anfds [i].head; w; w = w->next)
1979     {
1980     verify_watcher (EV_A_ (W)w);
1981 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1982     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1983 root 1.251 }
1984    
1985     assert (timermax >= timercnt);
1986     verify_heap (EV_A_ timers, timercnt);
1987 root 1.248
1988     #if EV_PERIODIC_ENABLE
1989 root 1.251 assert (periodicmax >= periodiccnt);
1990     verify_heap (EV_A_ periodics, periodiccnt);
1991 root 1.248 #endif
1992    
1993 root 1.251 for (i = NUMPRI; i--; )
1994     {
1995     assert (pendingmax [i] >= pendingcnt [i]);
1996 root 1.248 #if EV_IDLE_ENABLE
1997 root 1.252 assert (idleall >= 0);
1998 root 1.251 assert (idlemax [i] >= idlecnt [i]);
1999     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2000 root 1.248 #endif
2001 root 1.251 }
2002    
2003 root 1.248 #if EV_FORK_ENABLE
2004 root 1.251 assert (forkmax >= forkcnt);
2005     array_verify (EV_A_ (W *)forks, forkcnt);
2006 root 1.248 #endif
2007 root 1.251
2008 root 1.360 #if EV_CLEANUP_ENABLE
2009     assert (cleanupmax >= cleanupcnt);
2010     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2011     #endif
2012    
2013 root 1.250 #if EV_ASYNC_ENABLE
2014 root 1.251 assert (asyncmax >= asynccnt);
2015     array_verify (EV_A_ (W *)asyncs, asynccnt);
2016 root 1.250 #endif
2017 root 1.251
2018 root 1.337 #if EV_PREPARE_ENABLE
2019 root 1.251 assert (preparemax >= preparecnt);
2020     array_verify (EV_A_ (W *)prepares, preparecnt);
2021 root 1.337 #endif
2022 root 1.251
2023 root 1.337 #if EV_CHECK_ENABLE
2024 root 1.251 assert (checkmax >= checkcnt);
2025     array_verify (EV_A_ (W *)checks, checkcnt);
2026 root 1.337 #endif
2027 root 1.251
2028     # if 0
2029 root 1.336 #if EV_CHILD_ENABLE
2030 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2031 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2032 root 1.336 #endif
2033 root 1.251 # endif
2034 root 1.248 #endif
2035     }
2036 root 1.297 #endif
2037 root 1.56
2038     #if EV_MULTIPLICITY
2039     struct ev_loop *
2040 root 1.54 #else
2041     int
2042 root 1.358 #endif
2043 root 1.116 ev_default_loop (unsigned int flags)
2044 root 1.54 {
2045 root 1.116 if (!ev_default_loop_ptr)
2046 root 1.56 {
2047     #if EV_MULTIPLICITY
2048 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2049 root 1.56 #else
2050 ayin 1.117 ev_default_loop_ptr = 1;
2051 root 1.54 #endif
2052    
2053 root 1.110 loop_init (EV_A_ flags);
2054 root 1.56
2055 root 1.130 if (ev_backend (EV_A))
2056 root 1.56 {
2057 root 1.336 #if EV_CHILD_ENABLE
2058 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2059     ev_set_priority (&childev, EV_MAXPRI);
2060     ev_signal_start (EV_A_ &childev);
2061     ev_unref (EV_A); /* child watcher should not keep loop alive */
2062     #endif
2063     }
2064     else
2065 root 1.116 ev_default_loop_ptr = 0;
2066 root 1.56 }
2067 root 1.8
2068 root 1.116 return ev_default_loop_ptr;
2069 root 1.1 }
2070    
2071 root 1.24 void
2072 root 1.359 ev_loop_fork (EV_P)
2073 root 1.1 {
2074 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2075 root 1.1 }
2076    
2077 root 1.8 /*****************************************************************************/
2078    
2079 root 1.168 void
2080     ev_invoke (EV_P_ void *w, int revents)
2081     {
2082     EV_CB_INVOKE ((W)w, revents);
2083     }
2084    
2085 root 1.300 unsigned int
2086     ev_pending_count (EV_P)
2087     {
2088     int pri;
2089     unsigned int count = 0;
2090    
2091     for (pri = NUMPRI; pri--; )
2092     count += pendingcnt [pri];
2093    
2094     return count;
2095     }
2096    
2097 root 1.297 void noinline
2098 root 1.296 ev_invoke_pending (EV_P)
2099 root 1.1 {
2100 root 1.42 int pri;
2101    
2102     for (pri = NUMPRI; pri--; )
2103     while (pendingcnt [pri])
2104     {
2105     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2106 root 1.1
2107 root 1.288 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2108     /* ^ this is no longer true, as pending_w could be here */
2109 root 1.139
2110 root 1.288 p->w->pending = 0;
2111     EV_CB_INVOKE (p->w, p->events);
2112     EV_FREQUENT_CHECK;
2113 root 1.42 }
2114 root 1.1 }
2115    
2116 root 1.234 #if EV_IDLE_ENABLE
2117 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2118     /* only when higher priorities are idle" logic */
2119 root 1.284 inline_size void
2120 root 1.234 idle_reify (EV_P)
2121     {
2122     if (expect_false (idleall))
2123     {
2124     int pri;
2125    
2126     for (pri = NUMPRI; pri--; )
2127     {
2128     if (pendingcnt [pri])
2129     break;
2130    
2131     if (idlecnt [pri])
2132     {
2133     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2134     break;
2135     }
2136     }
2137     }
2138     }
2139     #endif
2140    
2141 root 1.288 /* make timers pending */
2142 root 1.284 inline_size void
2143 root 1.51 timers_reify (EV_P)
2144 root 1.1 {
2145 root 1.248 EV_FREQUENT_CHECK;
2146    
2147 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2148 root 1.1 {
2149 root 1.284 do
2150     {
2151     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2152 root 1.1
2153 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2154    
2155     /* first reschedule or stop timer */
2156     if (w->repeat)
2157     {
2158     ev_at (w) += w->repeat;
2159     if (ev_at (w) < mn_now)
2160     ev_at (w) = mn_now;
2161 root 1.61
2162 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2163 root 1.90
2164 root 1.284 ANHE_at_cache (timers [HEAP0]);
2165     downheap (timers, timercnt, HEAP0);
2166     }
2167     else
2168     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2169 root 1.243
2170 root 1.284 EV_FREQUENT_CHECK;
2171     feed_reverse (EV_A_ (W)w);
2172 root 1.12 }
2173 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2174 root 1.30
2175 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2176 root 1.12 }
2177     }
2178 root 1.4
2179 root 1.140 #if EV_PERIODIC_ENABLE
2180 root 1.288 /* make periodics pending */
2181 root 1.284 inline_size void
2182 root 1.51 periodics_reify (EV_P)
2183 root 1.12 {
2184 root 1.248 EV_FREQUENT_CHECK;
2185 root 1.250
2186 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2187 root 1.12 {
2188 root 1.284 int feed_count = 0;
2189    
2190     do
2191     {
2192     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2193 root 1.1
2194 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2195 root 1.61
2196 root 1.284 /* first reschedule or stop timer */
2197     if (w->reschedule_cb)
2198     {
2199     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2200 root 1.243
2201 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2202 root 1.243
2203 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2204     downheap (periodics, periodiccnt, HEAP0);
2205     }
2206     else if (w->interval)
2207 root 1.246 {
2208 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2209     /* if next trigger time is not sufficiently in the future, put it there */
2210     /* this might happen because of floating point inexactness */
2211     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2212     {
2213     ev_at (w) += w->interval;
2214    
2215     /* if interval is unreasonably low we might still have a time in the past */
2216     /* so correct this. this will make the periodic very inexact, but the user */
2217     /* has effectively asked to get triggered more often than possible */
2218     if (ev_at (w) < ev_rt_now)
2219     ev_at (w) = ev_rt_now;
2220     }
2221 root 1.243
2222 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2223     downheap (periodics, periodiccnt, HEAP0);
2224 root 1.246 }
2225 root 1.284 else
2226     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2227 root 1.243
2228 root 1.284 EV_FREQUENT_CHECK;
2229     feed_reverse (EV_A_ (W)w);
2230 root 1.1 }
2231 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2232 root 1.12
2233 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2234 root 1.12 }
2235     }
2236    
2237 root 1.288 /* simply recalculate all periodics */
2238 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2239 root 1.140 static void noinline
2240 root 1.54 periodics_reschedule (EV_P)
2241 root 1.12 {
2242     int i;
2243    
2244 root 1.13 /* adjust periodics after time jump */
2245 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2246 root 1.12 {
2247 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2248 root 1.12
2249 root 1.77 if (w->reschedule_cb)
2250 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2251 root 1.77 else if (w->interval)
2252 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253 root 1.242
2254 root 1.248 ANHE_at_cache (periodics [i]);
2255 root 1.77 }
2256 root 1.12
2257 root 1.248 reheap (periodics, periodiccnt);
2258 root 1.1 }
2259 root 1.93 #endif
2260 root 1.1
2261 root 1.288 /* adjust all timers by a given offset */
2262 root 1.285 static void noinline
2263     timers_reschedule (EV_P_ ev_tstamp adjust)
2264     {
2265     int i;
2266    
2267     for (i = 0; i < timercnt; ++i)
2268     {
2269     ANHE *he = timers + i + HEAP0;
2270     ANHE_w (*he)->at += adjust;
2271     ANHE_at_cache (*he);
2272     }
2273     }
2274    
2275 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2276 root 1.324 /* also detect if there was a timejump, and act accordingly */
2277 root 1.284 inline_speed void
2278 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2279 root 1.4 {
2280 root 1.40 #if EV_USE_MONOTONIC
2281     if (expect_true (have_monotonic))
2282     {
2283 root 1.289 int i;
2284 root 1.178 ev_tstamp odiff = rtmn_diff;
2285    
2286     mn_now = get_clock ();
2287    
2288     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2289     /* interpolate in the meantime */
2290     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2291 root 1.40 {
2292 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2293     return;
2294     }
2295    
2296     now_floor = mn_now;
2297     ev_rt_now = ev_time ();
2298 root 1.4
2299 root 1.178 /* loop a few times, before making important decisions.
2300     * on the choice of "4": one iteration isn't enough,
2301     * in case we get preempted during the calls to
2302     * ev_time and get_clock. a second call is almost guaranteed
2303     * to succeed in that case, though. and looping a few more times
2304     * doesn't hurt either as we only do this on time-jumps or
2305     * in the unlikely event of having been preempted here.
2306     */
2307     for (i = 4; --i; )
2308     {
2309     rtmn_diff = ev_rt_now - mn_now;
2310 root 1.4
2311 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2312 root 1.178 return; /* all is well */
2313 root 1.4
2314 root 1.178 ev_rt_now = ev_time ();
2315     mn_now = get_clock ();
2316     now_floor = mn_now;
2317     }
2318 root 1.4
2319 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2320     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2321 root 1.140 # if EV_PERIODIC_ENABLE
2322 root 1.178 periodics_reschedule (EV_A);
2323 root 1.93 # endif
2324 root 1.4 }
2325     else
2326 root 1.40 #endif
2327 root 1.4 {
2328 root 1.85 ev_rt_now = ev_time ();
2329 root 1.40
2330 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2331 root 1.13 {
2332 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2333     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2334 root 1.140 #if EV_PERIODIC_ENABLE
2335 root 1.54 periodics_reschedule (EV_A);
2336 root 1.93 #endif
2337 root 1.13 }
2338 root 1.4
2339 root 1.85 mn_now = ev_rt_now;
2340 root 1.4 }
2341     }
2342    
2343 root 1.51 void
2344 root 1.353 ev_run (EV_P_ int flags)
2345 root 1.1 {
2346 root 1.338 #if EV_FEATURE_API
2347 root 1.294 ++loop_depth;
2348 root 1.297 #endif
2349 root 1.294
2350 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2351 root 1.298
2352 root 1.353 loop_done = EVBREAK_CANCEL;
2353 root 1.1
2354 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2355 root 1.158
2356 root 1.161 do
2357 root 1.9 {
2358 root 1.250 #if EV_VERIFY >= 2
2359 root 1.340 ev_verify (EV_A);
2360 root 1.250 #endif
2361    
2362 root 1.158 #ifndef _WIN32
2363     if (expect_false (curpid)) /* penalise the forking check even more */
2364     if (expect_false (getpid () != curpid))
2365     {
2366     curpid = getpid ();
2367     postfork = 1;
2368     }
2369     #endif
2370    
2371 root 1.157 #if EV_FORK_ENABLE
2372     /* we might have forked, so queue fork handlers */
2373     if (expect_false (postfork))
2374     if (forkcnt)
2375     {
2376     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2377 root 1.297 EV_INVOKE_PENDING;
2378 root 1.157 }
2379     #endif
2380 root 1.147
2381 root 1.337 #if EV_PREPARE_ENABLE
2382 root 1.170 /* queue prepare watchers (and execute them) */
2383 root 1.40 if (expect_false (preparecnt))
2384 root 1.20 {
2385 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2386 root 1.297 EV_INVOKE_PENDING;
2387 root 1.20 }
2388 root 1.337 #endif
2389 root 1.9
2390 root 1.298 if (expect_false (loop_done))
2391     break;
2392    
2393 root 1.70 /* we might have forked, so reify kernel state if necessary */
2394     if (expect_false (postfork))
2395     loop_fork (EV_A);
2396    
2397 root 1.1 /* update fd-related kernel structures */
2398 root 1.51 fd_reify (EV_A);
2399 root 1.1
2400     /* calculate blocking time */
2401 root 1.135 {
2402 root 1.193 ev_tstamp waittime = 0.;
2403     ev_tstamp sleeptime = 0.;
2404 root 1.12
2405 root 1.353 /* remember old timestamp for io_blocktime calculation */
2406     ev_tstamp prev_mn_now = mn_now;
2407 root 1.293
2408 root 1.353 /* update time to cancel out callback processing overhead */
2409     time_update (EV_A_ 1e100);
2410 root 1.135
2411 root 1.353 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
2412     {
2413 root 1.287 waittime = MAX_BLOCKTIME;
2414    
2415 root 1.135 if (timercnt)
2416     {
2417 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2418 root 1.193 if (waittime > to) waittime = to;
2419 root 1.135 }
2420 root 1.4
2421 root 1.140 #if EV_PERIODIC_ENABLE
2422 root 1.135 if (periodiccnt)
2423     {
2424 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2425 root 1.193 if (waittime > to) waittime = to;
2426 root 1.135 }
2427 root 1.93 #endif
2428 root 1.4
2429 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2430 root 1.193 if (expect_false (waittime < timeout_blocktime))
2431     waittime = timeout_blocktime;
2432    
2433 root 1.293 /* extra check because io_blocktime is commonly 0 */
2434     if (expect_false (io_blocktime))
2435     {
2436     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2437 root 1.193
2438 root 1.293 if (sleeptime > waittime - backend_fudge)
2439     sleeptime = waittime - backend_fudge;
2440 root 1.193
2441 root 1.293 if (expect_true (sleeptime > 0.))
2442     {
2443     ev_sleep (sleeptime);
2444     waittime -= sleeptime;
2445     }
2446 root 1.193 }
2447 root 1.135 }
2448 root 1.1
2449 root 1.338 #if EV_FEATURE_API
2450 root 1.162 ++loop_count;
2451 root 1.297 #endif
2452 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2453 root 1.193 backend_poll (EV_A_ waittime);
2454 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2455 root 1.178
2456     /* update ev_rt_now, do magic */
2457 root 1.193 time_update (EV_A_ waittime + sleeptime);
2458 root 1.135 }
2459 root 1.1
2460 root 1.9 /* queue pending timers and reschedule them */
2461 root 1.51 timers_reify (EV_A); /* relative timers called last */
2462 root 1.140 #if EV_PERIODIC_ENABLE
2463 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2464 root 1.93 #endif
2465 root 1.1
2466 root 1.164 #if EV_IDLE_ENABLE
2467 root 1.137 /* queue idle watchers unless other events are pending */
2468 root 1.164 idle_reify (EV_A);
2469     #endif
2470 root 1.9
2471 root 1.337 #if EV_CHECK_ENABLE
2472 root 1.20 /* queue check watchers, to be executed first */
2473 root 1.123 if (expect_false (checkcnt))
2474 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2475 root 1.337 #endif
2476 root 1.9
2477 root 1.297 EV_INVOKE_PENDING;
2478 root 1.1 }
2479 root 1.219 while (expect_true (
2480     activecnt
2481     && !loop_done
2482 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2483 root 1.219 ));
2484 root 1.13
2485 root 1.353 if (loop_done == EVBREAK_ONE)
2486     loop_done = EVBREAK_CANCEL;
2487 root 1.294
2488 root 1.338 #if EV_FEATURE_API
2489 root 1.294 --loop_depth;
2490 root 1.297 #endif
2491 root 1.51 }
2492    
2493     void
2494 root 1.353 ev_break (EV_P_ int how)
2495 root 1.51 {
2496     loop_done = how;
2497 root 1.1 }
2498    
2499 root 1.285 void
2500     ev_ref (EV_P)
2501     {
2502     ++activecnt;
2503     }
2504    
2505     void
2506     ev_unref (EV_P)
2507     {
2508     --activecnt;
2509     }
2510    
2511     void
2512     ev_now_update (EV_P)
2513     {
2514     time_update (EV_A_ 1e100);
2515     }
2516    
2517     void
2518     ev_suspend (EV_P)
2519     {
2520     ev_now_update (EV_A);
2521     }
2522    
2523     void
2524     ev_resume (EV_P)
2525     {
2526     ev_tstamp mn_prev = mn_now;
2527    
2528     ev_now_update (EV_A);
2529     timers_reschedule (EV_A_ mn_now - mn_prev);
2530 root 1.286 #if EV_PERIODIC_ENABLE
2531 root 1.288 /* TODO: really do this? */
2532 root 1.285 periodics_reschedule (EV_A);
2533 root 1.286 #endif
2534 root 1.285 }
2535    
2536 root 1.8 /*****************************************************************************/
2537 root 1.288 /* singly-linked list management, used when the expected list length is short */
2538 root 1.8
2539 root 1.284 inline_size void
2540 root 1.10 wlist_add (WL *head, WL elem)
2541 root 1.1 {
2542     elem->next = *head;
2543     *head = elem;
2544     }
2545    
2546 root 1.284 inline_size void
2547 root 1.10 wlist_del (WL *head, WL elem)
2548 root 1.1 {
2549     while (*head)
2550     {
2551 root 1.307 if (expect_true (*head == elem))
2552 root 1.1 {
2553     *head = elem->next;
2554 root 1.307 break;
2555 root 1.1 }
2556    
2557     head = &(*head)->next;
2558     }
2559     }
2560    
2561 root 1.288 /* internal, faster, version of ev_clear_pending */
2562 root 1.284 inline_speed void
2563 root 1.166 clear_pending (EV_P_ W w)
2564 root 1.16 {
2565     if (w->pending)
2566     {
2567 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2568 root 1.16 w->pending = 0;
2569     }
2570     }
2571    
2572 root 1.167 int
2573     ev_clear_pending (EV_P_ void *w)
2574 root 1.166 {
2575     W w_ = (W)w;
2576     int pending = w_->pending;
2577    
2578 root 1.172 if (expect_true (pending))
2579     {
2580     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2581 root 1.288 p->w = (W)&pending_w;
2582 root 1.172 w_->pending = 0;
2583     return p->events;
2584     }
2585     else
2586 root 1.167 return 0;
2587 root 1.166 }
2588    
2589 root 1.284 inline_size void
2590 root 1.164 pri_adjust (EV_P_ W w)
2591     {
2592 root 1.295 int pri = ev_priority (w);
2593 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2594     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2595 root 1.295 ev_set_priority (w, pri);
2596 root 1.164 }
2597    
2598 root 1.284 inline_speed void
2599 root 1.51 ev_start (EV_P_ W w, int active)
2600 root 1.1 {
2601 root 1.164 pri_adjust (EV_A_ w);
2602 root 1.1 w->active = active;
2603 root 1.51 ev_ref (EV_A);
2604 root 1.1 }
2605    
2606 root 1.284 inline_size void
2607 root 1.51 ev_stop (EV_P_ W w)
2608 root 1.1 {
2609 root 1.51 ev_unref (EV_A);
2610 root 1.1 w->active = 0;
2611     }
2612    
2613 root 1.8 /*****************************************************************************/
2614    
2615 root 1.171 void noinline
2616 root 1.136 ev_io_start (EV_P_ ev_io *w)
2617 root 1.1 {
2618 root 1.37 int fd = w->fd;
2619    
2620 root 1.123 if (expect_false (ev_is_active (w)))
2621 root 1.1 return;
2622    
2623 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2624 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2625 root 1.33
2626 root 1.248 EV_FREQUENT_CHECK;
2627    
2628 root 1.51 ev_start (EV_A_ (W)w, 1);
2629 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2630 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2631 root 1.1
2632 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2633 root 1.281 w->events &= ~EV__IOFDSET;
2634 root 1.248
2635     EV_FREQUENT_CHECK;
2636 root 1.1 }
2637    
2638 root 1.171 void noinline
2639 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2640 root 1.1 {
2641 root 1.166 clear_pending (EV_A_ (W)w);
2642 root 1.123 if (expect_false (!ev_is_active (w)))
2643 root 1.1 return;
2644    
2645 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2646 root 1.89
2647 root 1.248 EV_FREQUENT_CHECK;
2648    
2649 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2650 root 1.51 ev_stop (EV_A_ (W)w);
2651 root 1.1
2652 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2653 root 1.248
2654     EV_FREQUENT_CHECK;
2655 root 1.1 }
2656    
2657 root 1.171 void noinline
2658 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2659 root 1.1 {
2660 root 1.123 if (expect_false (ev_is_active (w)))
2661 root 1.1 return;
2662    
2663 root 1.228 ev_at (w) += mn_now;
2664 root 1.12
2665 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2666 root 1.13
2667 root 1.248 EV_FREQUENT_CHECK;
2668    
2669     ++timercnt;
2670     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2671 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2672     ANHE_w (timers [ev_active (w)]) = (WT)w;
2673 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2674 root 1.235 upheap (timers, ev_active (w));
2675 root 1.62
2676 root 1.248 EV_FREQUENT_CHECK;
2677    
2678 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2679 root 1.12 }
2680    
2681 root 1.171 void noinline
2682 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2683 root 1.12 {
2684 root 1.166 clear_pending (EV_A_ (W)w);
2685 root 1.123 if (expect_false (!ev_is_active (w)))
2686 root 1.12 return;
2687    
2688 root 1.248 EV_FREQUENT_CHECK;
2689    
2690 root 1.230 {
2691     int active = ev_active (w);
2692 root 1.62
2693 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2694 root 1.151
2695 root 1.248 --timercnt;
2696    
2697     if (expect_true (active < timercnt + HEAP0))
2698 root 1.151 {
2699 root 1.248 timers [active] = timers [timercnt + HEAP0];
2700 root 1.181 adjustheap (timers, timercnt, active);
2701 root 1.151 }
2702 root 1.248 }
2703 root 1.228
2704     ev_at (w) -= mn_now;
2705 root 1.14
2706 root 1.51 ev_stop (EV_A_ (W)w);
2707 root 1.328
2708     EV_FREQUENT_CHECK;
2709 root 1.12 }
2710 root 1.4
2711 root 1.171 void noinline
2712 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2713 root 1.14 {
2714 root 1.248 EV_FREQUENT_CHECK;
2715    
2716 root 1.14 if (ev_is_active (w))
2717     {
2718     if (w->repeat)
2719 root 1.99 {
2720 root 1.228 ev_at (w) = mn_now + w->repeat;
2721 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2722 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2723 root 1.99 }
2724 root 1.14 else
2725 root 1.51 ev_timer_stop (EV_A_ w);
2726 root 1.14 }
2727     else if (w->repeat)
2728 root 1.112 {
2729 root 1.229 ev_at (w) = w->repeat;
2730 root 1.112 ev_timer_start (EV_A_ w);
2731     }
2732 root 1.248
2733     EV_FREQUENT_CHECK;
2734 root 1.14 }
2735    
2736 root 1.301 ev_tstamp
2737     ev_timer_remaining (EV_P_ ev_timer *w)
2738     {
2739     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2740     }
2741    
2742 root 1.140 #if EV_PERIODIC_ENABLE
2743 root 1.171 void noinline
2744 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2745 root 1.12 {
2746 root 1.123 if (expect_false (ev_is_active (w)))
2747 root 1.12 return;
2748 root 1.1
2749 root 1.77 if (w->reschedule_cb)
2750 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2751 root 1.77 else if (w->interval)
2752     {
2753 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2754 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2755 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2756 root 1.77 }
2757 root 1.173 else
2758 root 1.228 ev_at (w) = w->offset;
2759 root 1.12
2760 root 1.248 EV_FREQUENT_CHECK;
2761    
2762     ++periodiccnt;
2763     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2764 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2765     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2766 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2767 root 1.235 upheap (periodics, ev_active (w));
2768 root 1.62
2769 root 1.248 EV_FREQUENT_CHECK;
2770    
2771 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2772 root 1.1 }
2773    
2774 root 1.171 void noinline
2775 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2776 root 1.1 {
2777 root 1.166 clear_pending (EV_A_ (W)w);
2778 root 1.123 if (expect_false (!ev_is_active (w)))
2779 root 1.1 return;
2780    
2781 root 1.248 EV_FREQUENT_CHECK;
2782    
2783 root 1.230 {
2784     int active = ev_active (w);
2785 root 1.62
2786 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2787 root 1.151
2788 root 1.248 --periodiccnt;
2789    
2790     if (expect_true (active < periodiccnt + HEAP0))
2791 root 1.151 {
2792 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2793 root 1.181 adjustheap (periodics, periodiccnt, active);
2794 root 1.151 }
2795 root 1.248 }
2796 root 1.228
2797 root 1.328 ev_stop (EV_A_ (W)w);
2798    
2799 root 1.248 EV_FREQUENT_CHECK;
2800 root 1.1 }
2801    
2802 root 1.171 void noinline
2803 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2804 root 1.77 {
2805 root 1.84 /* TODO: use adjustheap and recalculation */
2806 root 1.77 ev_periodic_stop (EV_A_ w);
2807     ev_periodic_start (EV_A_ w);
2808     }
2809 root 1.93 #endif
2810 root 1.77
2811 root 1.56 #ifndef SA_RESTART
2812     # define SA_RESTART 0
2813     #endif
2814    
2815 root 1.336 #if EV_SIGNAL_ENABLE
2816    
2817 root 1.171 void noinline
2818 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2819 root 1.56 {
2820 root 1.123 if (expect_false (ev_is_active (w)))
2821 root 1.56 return;
2822    
2823 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2824    
2825     #if EV_MULTIPLICITY
2826 root 1.308 assert (("libev: a signal must not be attached to two different loops",
2827 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2828    
2829     signals [w->signum - 1].loop = EV_A;
2830     #endif
2831 root 1.56
2832 root 1.303 EV_FREQUENT_CHECK;
2833    
2834     #if EV_USE_SIGNALFD
2835     if (sigfd == -2)
2836     {
2837     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2838     if (sigfd < 0 && errno == EINVAL)
2839     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2840    
2841     if (sigfd >= 0)
2842     {
2843     fd_intern (sigfd); /* doing it twice will not hurt */
2844    
2845     sigemptyset (&sigfd_set);
2846    
2847     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2848     ev_set_priority (&sigfd_w, EV_MAXPRI);
2849     ev_io_start (EV_A_ &sigfd_w);
2850     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2851     }
2852     }
2853    
2854     if (sigfd >= 0)
2855     {
2856     /* TODO: check .head */
2857     sigaddset (&sigfd_set, w->signum);
2858     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2859 root 1.207
2860 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2861     }
2862 root 1.180 #endif
2863    
2864 root 1.56 ev_start (EV_A_ (W)w, 1);
2865 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2866 root 1.56
2867 root 1.63 if (!((WL)w)->next)
2868 root 1.304 # if EV_USE_SIGNALFD
2869 root 1.306 if (sigfd < 0) /*TODO*/
2870 root 1.304 # endif
2871 root 1.306 {
2872 root 1.322 # ifdef _WIN32
2873 root 1.317 evpipe_init (EV_A);
2874    
2875 root 1.306 signal (w->signum, ev_sighandler);
2876     # else
2877     struct sigaction sa;
2878    
2879     evpipe_init (EV_A);
2880    
2881     sa.sa_handler = ev_sighandler;
2882     sigfillset (&sa.sa_mask);
2883     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2884     sigaction (w->signum, &sa, 0);
2885    
2886     sigemptyset (&sa.sa_mask);
2887     sigaddset (&sa.sa_mask, w->signum);
2888     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2889 root 1.67 #endif
2890 root 1.306 }
2891 root 1.248
2892     EV_FREQUENT_CHECK;
2893 root 1.56 }
2894    
2895 root 1.171 void noinline
2896 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2897 root 1.56 {
2898 root 1.166 clear_pending (EV_A_ (W)w);
2899 root 1.123 if (expect_false (!ev_is_active (w)))
2900 root 1.56 return;
2901    
2902 root 1.248 EV_FREQUENT_CHECK;
2903    
2904 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2905 root 1.56 ev_stop (EV_A_ (W)w);
2906    
2907     if (!signals [w->signum - 1].head)
2908 root 1.306 {
2909 root 1.307 #if EV_MULTIPLICITY
2910 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
2911 root 1.307 #endif
2912     #if EV_USE_SIGNALFD
2913 root 1.306 if (sigfd >= 0)
2914     {
2915 root 1.321 sigset_t ss;
2916    
2917     sigemptyset (&ss);
2918     sigaddset (&ss, w->signum);
2919 root 1.306 sigdelset (&sigfd_set, w->signum);
2920 root 1.321
2921 root 1.306 signalfd (sigfd, &sigfd_set, 0);
2922 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
2923 root 1.306 }
2924     else
2925 root 1.307 #endif
2926 root 1.306 signal (w->signum, SIG_DFL);
2927     }
2928 root 1.248
2929     EV_FREQUENT_CHECK;
2930 root 1.56 }
2931    
2932 root 1.336 #endif
2933    
2934     #if EV_CHILD_ENABLE
2935    
2936 root 1.28 void
2937 root 1.136 ev_child_start (EV_P_ ev_child *w)
2938 root 1.22 {
2939 root 1.56 #if EV_MULTIPLICITY
2940 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2941 root 1.56 #endif
2942 root 1.123 if (expect_false (ev_is_active (w)))
2943 root 1.22 return;
2944    
2945 root 1.248 EV_FREQUENT_CHECK;
2946    
2947 root 1.51 ev_start (EV_A_ (W)w, 1);
2948 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2949 root 1.248
2950     EV_FREQUENT_CHECK;
2951 root 1.22 }
2952    
2953 root 1.28 void
2954 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2955 root 1.22 {
2956 root 1.166 clear_pending (EV_A_ (W)w);
2957 root 1.123 if (expect_false (!ev_is_active (w)))
2958 root 1.22 return;
2959    
2960 root 1.248 EV_FREQUENT_CHECK;
2961    
2962 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2963 root 1.51 ev_stop (EV_A_ (W)w);
2964 root 1.248
2965     EV_FREQUENT_CHECK;
2966 root 1.22 }
2967    
2968 root 1.336 #endif
2969    
2970 root 1.140 #if EV_STAT_ENABLE
2971    
2972     # ifdef _WIN32
2973 root 1.146 # undef lstat
2974     # define lstat(a,b) _stati64 (a,b)
2975 root 1.140 # endif
2976    
2977 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2978     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2979     #define MIN_STAT_INTERVAL 0.1074891
2980 root 1.143
2981 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2982 root 1.152
2983     #if EV_USE_INOTIFY
2984 root 1.326
2985     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2986     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2987 root 1.152
2988     static void noinline
2989     infy_add (EV_P_ ev_stat *w)
2990     {
2991     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2992    
2993 root 1.318 if (w->wd >= 0)
2994 root 1.152 {
2995 root 1.318 struct statfs sfs;
2996    
2997     /* now local changes will be tracked by inotify, but remote changes won't */
2998     /* unless the filesystem is known to be local, we therefore still poll */
2999     /* also do poll on <2.6.25, but with normal frequency */
3000    
3001     if (!fs_2625)
3002     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3003     else if (!statfs (w->path, &sfs)
3004     && (sfs.f_type == 0x1373 /* devfs */
3005     || sfs.f_type == 0xEF53 /* ext2/3 */
3006     || sfs.f_type == 0x3153464a /* jfs */
3007     || sfs.f_type == 0x52654973 /* reiser3 */
3008     || sfs.f_type == 0x01021994 /* tempfs */
3009     || sfs.f_type == 0x58465342 /* xfs */))
3010     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3011     else
3012     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3013     }
3014     else
3015     {
3016     /* can't use inotify, continue to stat */
3017 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3018 root 1.152
3019 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3020 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3021 root 1.233 /* but an efficiency issue only */
3022 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3023 root 1.152 {
3024 root 1.153 char path [4096];
3025 root 1.152 strcpy (path, w->path);
3026    
3027     do
3028     {
3029     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3030     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3031    
3032     char *pend = strrchr (path, '/');
3033    
3034 root 1.275 if (!pend || pend == path)
3035     break;
3036 root 1.152
3037     *pend = 0;
3038 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3039 root 1.152 }
3040     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3041     }
3042     }
3043 root 1.275
3044     if (w->wd >= 0)
3045 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3046 root 1.152
3047 root 1.318 /* now re-arm timer, if required */
3048     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3049     ev_timer_again (EV_A_ &w->timer);
3050     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3051 root 1.152 }
3052    
3053     static void noinline
3054     infy_del (EV_P_ ev_stat *w)
3055     {
3056     int slot;
3057     int wd = w->wd;
3058    
3059     if (wd < 0)
3060     return;
3061    
3062     w->wd = -2;
3063 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3064 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3065    
3066     /* remove this watcher, if others are watching it, they will rearm */
3067     inotify_rm_watch (fs_fd, wd);
3068     }
3069    
3070     static void noinline
3071     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3072     {
3073     if (slot < 0)
3074 root 1.264 /* overflow, need to check for all hash slots */
3075 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3076 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3077     else
3078     {
3079     WL w_;
3080    
3081 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3082 root 1.152 {
3083     ev_stat *w = (ev_stat *)w_;
3084     w_ = w_->next; /* lets us remove this watcher and all before it */
3085    
3086     if (w->wd == wd || wd == -1)
3087     {
3088     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3089     {
3090 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3091 root 1.152 w->wd = -1;
3092     infy_add (EV_A_ w); /* re-add, no matter what */
3093     }
3094    
3095 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3096 root 1.152 }
3097     }
3098     }
3099     }
3100    
3101     static void
3102     infy_cb (EV_P_ ev_io *w, int revents)
3103     {
3104     char buf [EV_INOTIFY_BUFSIZE];
3105     int ofs;
3106     int len = read (fs_fd, buf, sizeof (buf));
3107    
3108 root 1.326 for (ofs = 0; ofs < len; )
3109     {
3110     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3111     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3112     ofs += sizeof (struct inotify_event) + ev->len;
3113     }
3114 root 1.152 }
3115    
3116 root 1.330 inline_size void
3117     ev_check_2625 (EV_P)
3118     {
3119     /* kernels < 2.6.25 are borked
3120     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3121     */
3122     if (ev_linux_version () < 0x020619)
3123 root 1.273 return;
3124 root 1.264
3125 root 1.273 fs_2625 = 1;
3126     }
3127 root 1.264
3128 root 1.315 inline_size int
3129     infy_newfd (void)
3130     {
3131     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3132     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3133     if (fd >= 0)
3134     return fd;
3135     #endif
3136     return inotify_init ();
3137     }
3138    
3139 root 1.284 inline_size void
3140 root 1.273 infy_init (EV_P)
3141     {
3142     if (fs_fd != -2)
3143     return;
3144 root 1.264
3145 root 1.273 fs_fd = -1;
3146 root 1.264
3147 root 1.330 ev_check_2625 (EV_A);
3148 root 1.264
3149 root 1.315 fs_fd = infy_newfd ();
3150 root 1.152
3151     if (fs_fd >= 0)
3152     {
3153 root 1.315 fd_intern (fs_fd);
3154 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3155     ev_set_priority (&fs_w, EV_MAXPRI);
3156     ev_io_start (EV_A_ &fs_w);
3157 root 1.317 ev_unref (EV_A);
3158 root 1.152 }
3159     }
3160    
3161 root 1.284 inline_size void
3162 root 1.154 infy_fork (EV_P)
3163     {
3164     int slot;
3165    
3166     if (fs_fd < 0)
3167     return;
3168    
3169 root 1.317 ev_ref (EV_A);
3170 root 1.315 ev_io_stop (EV_A_ &fs_w);
3171 root 1.154 close (fs_fd);
3172 root 1.315 fs_fd = infy_newfd ();
3173    
3174     if (fs_fd >= 0)
3175     {
3176     fd_intern (fs_fd);
3177     ev_io_set (&fs_w, fs_fd, EV_READ);
3178     ev_io_start (EV_A_ &fs_w);
3179 root 1.317 ev_unref (EV_A);
3180 root 1.315 }
3181 root 1.154
3182 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3183 root 1.154 {
3184     WL w_ = fs_hash [slot].head;
3185     fs_hash [slot].head = 0;
3186    
3187     while (w_)
3188     {
3189     ev_stat *w = (ev_stat *)w_;
3190     w_ = w_->next; /* lets us add this watcher */
3191    
3192     w->wd = -1;
3193    
3194     if (fs_fd >= 0)
3195     infy_add (EV_A_ w); /* re-add, no matter what */
3196     else
3197 root 1.318 {
3198     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3199     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3200     ev_timer_again (EV_A_ &w->timer);
3201     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3202     }
3203 root 1.154 }
3204     }
3205     }
3206    
3207 root 1.152 #endif
3208    
3209 root 1.255 #ifdef _WIN32
3210     # define EV_LSTAT(p,b) _stati64 (p, b)
3211     #else
3212     # define EV_LSTAT(p,b) lstat (p, b)
3213     #endif
3214    
3215 root 1.140 void
3216     ev_stat_stat (EV_P_ ev_stat *w)
3217     {
3218     if (lstat (w->path, &w->attr) < 0)
3219     w->attr.st_nlink = 0;
3220     else if (!w->attr.st_nlink)
3221     w->attr.st_nlink = 1;
3222     }
3223    
3224 root 1.157 static void noinline
3225 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3226     {
3227     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3228    
3229 root 1.320 ev_statdata prev = w->attr;
3230 root 1.140 ev_stat_stat (EV_A_ w);
3231    
3232 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3233     if (
3234 root 1.320 prev.st_dev != w->attr.st_dev
3235     || prev.st_ino != w->attr.st_ino
3236     || prev.st_mode != w->attr.st_mode
3237     || prev.st_nlink != w->attr.st_nlink
3238     || prev.st_uid != w->attr.st_uid
3239     || prev.st_gid != w->attr.st_gid
3240     || prev.st_rdev != w->attr.st_rdev
3241     || prev.st_size != w->attr.st_size
3242     || prev.st_atime != w->attr.st_atime
3243     || prev.st_mtime != w->attr.st_mtime
3244     || prev.st_ctime != w->attr.st_ctime
3245 root 1.156 ) {
3246 root 1.320 /* we only update w->prev on actual differences */
3247     /* in case we test more often than invoke the callback, */
3248     /* to ensure that prev is always different to attr */
3249     w->prev = prev;
3250    
3251 root 1.152 #if EV_USE_INOTIFY
3252 root 1.264 if (fs_fd >= 0)
3253     {
3254     infy_del (EV_A_ w);
3255     infy_add (EV_A_ w);
3256     ev_stat_stat (EV_A_ w); /* avoid race... */
3257     }
3258 root 1.152 #endif
3259    
3260     ev_feed_event (EV_A_ w, EV_STAT);
3261     }
3262 root 1.140 }
3263    
3264     void
3265     ev_stat_start (EV_P_ ev_stat *w)
3266     {
3267     if (expect_false (ev_is_active (w)))
3268     return;
3269    
3270     ev_stat_stat (EV_A_ w);
3271    
3272 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3273     w->interval = MIN_STAT_INTERVAL;
3274 root 1.143
3275 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3276 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3277 root 1.152
3278     #if EV_USE_INOTIFY
3279     infy_init (EV_A);
3280    
3281     if (fs_fd >= 0)
3282     infy_add (EV_A_ w);
3283     else
3284     #endif
3285 root 1.318 {
3286     ev_timer_again (EV_A_ &w->timer);
3287     ev_unref (EV_A);
3288     }
3289 root 1.140
3290     ev_start (EV_A_ (W)w, 1);
3291 root 1.248
3292     EV_FREQUENT_CHECK;
3293 root 1.140 }
3294    
3295     void
3296     ev_stat_stop (EV_P_ ev_stat *w)
3297     {
3298 root 1.166 clear_pending (EV_A_ (W)w);
3299 root 1.140 if (expect_false (!ev_is_active (w)))
3300     return;
3301    
3302 root 1.248 EV_FREQUENT_CHECK;
3303    
3304 root 1.152 #if EV_USE_INOTIFY
3305     infy_del (EV_A_ w);
3306     #endif
3307 root 1.318
3308     if (ev_is_active (&w->timer))
3309     {
3310     ev_ref (EV_A);
3311     ev_timer_stop (EV_A_ &w->timer);
3312     }
3313 root 1.140
3314 root 1.134 ev_stop (EV_A_ (W)w);
3315 root 1.248
3316     EV_FREQUENT_CHECK;
3317 root 1.134 }
3318     #endif
3319    
3320 root 1.164 #if EV_IDLE_ENABLE
3321 root 1.144 void
3322     ev_idle_start (EV_P_ ev_idle *w)
3323     {
3324     if (expect_false (ev_is_active (w)))
3325     return;
3326    
3327 root 1.164 pri_adjust (EV_A_ (W)w);
3328    
3329 root 1.248 EV_FREQUENT_CHECK;
3330    
3331 root 1.164 {
3332     int active = ++idlecnt [ABSPRI (w)];
3333    
3334     ++idleall;
3335     ev_start (EV_A_ (W)w, active);
3336    
3337     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3338     idles [ABSPRI (w)][active - 1] = w;
3339     }
3340 root 1.248
3341     EV_FREQUENT_CHECK;
3342 root 1.144 }
3343    
3344     void
3345     ev_idle_stop (EV_P_ ev_idle *w)
3346     {
3347 root 1.166 clear_pending (EV_A_ (W)w);
3348 root 1.144 if (expect_false (!ev_is_active (w)))
3349     return;
3350    
3351 root 1.248 EV_FREQUENT_CHECK;
3352    
3353 root 1.144 {
3354 root 1.230 int active = ev_active (w);
3355 root 1.164
3356     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3357 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3358 root 1.164
3359     ev_stop (EV_A_ (W)w);
3360     --idleall;
3361 root 1.144 }
3362 root 1.248
3363     EV_FREQUENT_CHECK;
3364 root 1.144 }
3365 root 1.164 #endif
3366 root 1.144
3367 root 1.337 #if EV_PREPARE_ENABLE
3368 root 1.144 void
3369     ev_prepare_start (EV_P_ ev_prepare *w)
3370     {
3371     if (expect_false (ev_is_active (w)))
3372     return;
3373    
3374 root 1.248 EV_FREQUENT_CHECK;
3375    
3376 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3377     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3378     prepares [preparecnt - 1] = w;
3379 root 1.248
3380     EV_FREQUENT_CHECK;
3381 root 1.144 }
3382    
3383     void
3384     ev_prepare_stop (EV_P_ ev_prepare *w)
3385     {
3386 root 1.166 clear_pending (EV_A_ (W)w);
3387 root 1.144 if (expect_false (!ev_is_active (w)))
3388     return;
3389    
3390 root 1.248 EV_FREQUENT_CHECK;
3391    
3392 root 1.144 {
3393 root 1.230 int active = ev_active (w);
3394    
3395 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3396 root 1.230 ev_active (prepares [active - 1]) = active;
3397 root 1.144 }
3398    
3399     ev_stop (EV_A_ (W)w);
3400 root 1.248
3401     EV_FREQUENT_CHECK;
3402 root 1.144 }
3403 root 1.337 #endif
3404 root 1.144
3405 root 1.337 #if EV_CHECK_ENABLE
3406 root 1.144 void
3407     ev_check_start (EV_P_ ev_check *w)
3408     {
3409     if (expect_false (ev_is_active (w)))
3410     return;
3411    
3412 root 1.248 EV_FREQUENT_CHECK;
3413    
3414 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3415     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3416     checks [checkcnt - 1] = w;
3417 root 1.248
3418     EV_FREQUENT_CHECK;
3419 root 1.144 }
3420    
3421     void
3422     ev_check_stop (EV_P_ ev_check *w)
3423     {
3424 root 1.166 clear_pending (EV_A_ (W)w);
3425 root 1.144 if (expect_false (!ev_is_active (w)))
3426     return;
3427    
3428 root 1.248 EV_FREQUENT_CHECK;
3429    
3430 root 1.144 {
3431 root 1.230 int active = ev_active (w);
3432    
3433 root 1.144 checks [active - 1] = checks [--checkcnt];
3434 root 1.230 ev_active (checks [active - 1]) = active;
3435 root 1.144 }
3436    
3437     ev_stop (EV_A_ (W)w);
3438 root 1.248
3439     EV_FREQUENT_CHECK;
3440 root 1.144 }
3441 root 1.337 #endif
3442 root 1.144
3443     #if EV_EMBED_ENABLE
3444     void noinline
3445     ev_embed_sweep (EV_P_ ev_embed *w)
3446     {
3447 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3448 root 1.144 }
3449    
3450     static void
3451 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3452 root 1.144 {
3453     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3454    
3455     if (ev_cb (w))
3456     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3457     else
3458 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3459 root 1.144 }
3460    
3461 root 1.189 static void
3462     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3463     {
3464     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3465    
3466 root 1.195 {
3467 root 1.306 EV_P = w->other;
3468 root 1.195
3469     while (fdchangecnt)
3470     {
3471     fd_reify (EV_A);
3472 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3473 root 1.195 }
3474     }
3475     }
3476    
3477 root 1.261 static void
3478     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3479     {
3480     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3481    
3482 root 1.277 ev_embed_stop (EV_A_ w);
3483    
3484 root 1.261 {
3485 root 1.306 EV_P = w->other;
3486 root 1.261
3487     ev_loop_fork (EV_A);
3488 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3489 root 1.261 }
3490 root 1.277
3491     ev_embed_start (EV_A_ w);
3492 root 1.261 }
3493    
3494 root 1.195 #if 0
3495     static void
3496     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3497     {
3498     ev_idle_stop (EV_A_ idle);
3499 root 1.189 }
3500 root 1.195 #endif
3501 root 1.189
3502 root 1.144 void
3503     ev_embed_start (EV_P_ ev_embed *w)
3504     {
3505     if (expect_false (ev_is_active (w)))
3506     return;
3507    
3508     {
3509 root 1.306 EV_P = w->other;
3510 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3511 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3512 root 1.144 }
3513    
3514 root 1.248 EV_FREQUENT_CHECK;
3515    
3516 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3517     ev_io_start (EV_A_ &w->io);
3518    
3519 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3520     ev_set_priority (&w->prepare, EV_MINPRI);
3521     ev_prepare_start (EV_A_ &w->prepare);
3522    
3523 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3524     ev_fork_start (EV_A_ &w->fork);
3525    
3526 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3527    
3528 root 1.144 ev_start (EV_A_ (W)w, 1);
3529 root 1.248
3530     EV_FREQUENT_CHECK;
3531 root 1.144 }
3532    
3533     void
3534     ev_embed_stop (EV_P_ ev_embed *w)
3535     {
3536 root 1.166 clear_pending (EV_A_ (W)w);
3537 root 1.144 if (expect_false (!ev_is_active (w)))
3538     return;
3539    
3540 root 1.248 EV_FREQUENT_CHECK;
3541    
3542 root 1.261 ev_io_stop (EV_A_ &w->io);
3543 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3544 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3545 root 1.248
3546 root 1.328 ev_stop (EV_A_ (W)w);
3547    
3548 root 1.248 EV_FREQUENT_CHECK;
3549 root 1.144 }
3550     #endif
3551    
3552 root 1.147 #if EV_FORK_ENABLE
3553     void
3554     ev_fork_start (EV_P_ ev_fork *w)
3555     {
3556     if (expect_false (ev_is_active (w)))
3557     return;
3558    
3559 root 1.248 EV_FREQUENT_CHECK;
3560    
3561 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3562     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3563     forks [forkcnt - 1] = w;
3564 root 1.248
3565     EV_FREQUENT_CHECK;
3566 root 1.147 }
3567    
3568     void
3569     ev_fork_stop (EV_P_ ev_fork *w)
3570     {
3571 root 1.166 clear_pending (EV_A_ (W)w);
3572 root 1.147 if (expect_false (!ev_is_active (w)))
3573     return;
3574    
3575 root 1.248 EV_FREQUENT_CHECK;
3576    
3577 root 1.147 {
3578 root 1.230 int active = ev_active (w);
3579    
3580 root 1.147 forks [active - 1] = forks [--forkcnt];
3581 root 1.230 ev_active (forks [active - 1]) = active;
3582 root 1.147 }
3583    
3584     ev_stop (EV_A_ (W)w);
3585 root 1.248
3586     EV_FREQUENT_CHECK;
3587 root 1.147 }
3588     #endif
3589    
3590 root 1.360 #if EV_CLEANUP_ENABLE
3591     void
3592     ev_cleanup_start (EV_P_ ev_cleanup *w)
3593     {
3594     if (expect_false (ev_is_active (w)))
3595     return;
3596    
3597     EV_FREQUENT_CHECK;
3598    
3599     ev_start (EV_A_ (W)w, ++cleanupcnt);
3600     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3601     cleanups [cleanupcnt - 1] = w;
3602    
3603 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
3604     ev_unref (EV_A);
3605 root 1.360 EV_FREQUENT_CHECK;
3606     }
3607    
3608     void
3609     ev_cleanup_stop (EV_P_ ev_cleanup *w)
3610     {
3611     clear_pending (EV_A_ (W)w);
3612     if (expect_false (!ev_is_active (w)))
3613     return;
3614    
3615     EV_FREQUENT_CHECK;
3616 root 1.362 ev_ref (EV_A);
3617 root 1.360
3618     {
3619     int active = ev_active (w);
3620    
3621     cleanups [active - 1] = cleanups [--cleanupcnt];
3622     ev_active (cleanups [active - 1]) = active;
3623     }
3624    
3625     ev_stop (EV_A_ (W)w);
3626    
3627     EV_FREQUENT_CHECK;
3628     }
3629     #endif
3630    
3631 root 1.207 #if EV_ASYNC_ENABLE
3632     void
3633     ev_async_start (EV_P_ ev_async *w)
3634     {
3635     if (expect_false (ev_is_active (w)))
3636     return;
3637    
3638 root 1.352 w->sent = 0;
3639    
3640 root 1.207 evpipe_init (EV_A);
3641    
3642 root 1.248 EV_FREQUENT_CHECK;
3643    
3644 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3645     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3646     asyncs [asynccnt - 1] = w;
3647 root 1.248
3648     EV_FREQUENT_CHECK;
3649 root 1.207 }
3650    
3651     void
3652     ev_async_stop (EV_P_ ev_async *w)
3653     {
3654     clear_pending (EV_A_ (W)w);
3655     if (expect_false (!ev_is_active (w)))
3656     return;
3657    
3658 root 1.248 EV_FREQUENT_CHECK;
3659    
3660 root 1.207 {
3661 root 1.230 int active = ev_active (w);
3662    
3663 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3664 root 1.230 ev_active (asyncs [active - 1]) = active;
3665 root 1.207 }
3666    
3667     ev_stop (EV_A_ (W)w);
3668 root 1.248
3669     EV_FREQUENT_CHECK;
3670 root 1.207 }
3671    
3672     void
3673     ev_async_send (EV_P_ ev_async *w)
3674     {
3675     w->sent = 1;
3676 root 1.307 evpipe_write (EV_A_ &async_pending);
3677 root 1.207 }
3678     #endif
3679    
3680 root 1.1 /*****************************************************************************/
3681 root 1.10
3682 root 1.16 struct ev_once
3683     {
3684 root 1.136 ev_io io;
3685     ev_timer to;
3686 root 1.16 void (*cb)(int revents, void *arg);
3687     void *arg;
3688     };
3689    
3690     static void
3691 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3692 root 1.16 {
3693     void (*cb)(int revents, void *arg) = once->cb;
3694     void *arg = once->arg;
3695    
3696 root 1.259 ev_io_stop (EV_A_ &once->io);
3697 root 1.51 ev_timer_stop (EV_A_ &once->to);
3698 root 1.69 ev_free (once);
3699 root 1.16
3700     cb (revents, arg);
3701     }
3702    
3703     static void
3704 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3705 root 1.16 {
3706 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3707    
3708     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3709 root 1.16 }
3710    
3711     static void
3712 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3713 root 1.16 {
3714 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3715    
3716     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3717 root 1.16 }
3718    
3719     void
3720 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3721 root 1.16 {
3722 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3723 root 1.16
3724 root 1.123 if (expect_false (!once))
3725 root 1.16 {
3726 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3727 root 1.123 return;
3728     }
3729    
3730     once->cb = cb;
3731     once->arg = arg;
3732 root 1.16
3733 root 1.123 ev_init (&once->io, once_cb_io);
3734     if (fd >= 0)
3735     {
3736     ev_io_set (&once->io, fd, events);
3737     ev_io_start (EV_A_ &once->io);
3738     }
3739 root 1.16
3740 root 1.123 ev_init (&once->to, once_cb_to);
3741     if (timeout >= 0.)
3742     {
3743     ev_timer_set (&once->to, timeout, 0.);
3744     ev_timer_start (EV_A_ &once->to);
3745 root 1.16 }
3746     }
3747    
3748 root 1.282 /*****************************************************************************/
3749    
3750 root 1.288 #if EV_WALK_ENABLE
3751 root 1.282 void
3752     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3753     {
3754     int i, j;
3755     ev_watcher_list *wl, *wn;
3756    
3757     if (types & (EV_IO | EV_EMBED))
3758     for (i = 0; i < anfdmax; ++i)
3759     for (wl = anfds [i].head; wl; )
3760     {
3761     wn = wl->next;
3762    
3763     #if EV_EMBED_ENABLE
3764     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3765     {
3766     if (types & EV_EMBED)
3767     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3768     }
3769     else
3770     #endif
3771     #if EV_USE_INOTIFY
3772     if (ev_cb ((ev_io *)wl) == infy_cb)
3773     ;
3774     else
3775     #endif
3776 root 1.288 if ((ev_io *)wl != &pipe_w)
3777 root 1.282 if (types & EV_IO)
3778     cb (EV_A_ EV_IO, wl);
3779    
3780     wl = wn;
3781     }
3782    
3783     if (types & (EV_TIMER | EV_STAT))
3784     for (i = timercnt + HEAP0; i-- > HEAP0; )
3785     #if EV_STAT_ENABLE
3786     /*TODO: timer is not always active*/
3787     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3788     {
3789     if (types & EV_STAT)
3790     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3791     }
3792     else
3793     #endif
3794     if (types & EV_TIMER)
3795     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3796    
3797     #if EV_PERIODIC_ENABLE
3798     if (types & EV_PERIODIC)
3799     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3800     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3801     #endif
3802    
3803     #if EV_IDLE_ENABLE
3804     if (types & EV_IDLE)
3805     for (j = NUMPRI; i--; )
3806     for (i = idlecnt [j]; i--; )
3807     cb (EV_A_ EV_IDLE, idles [j][i]);
3808     #endif
3809    
3810     #if EV_FORK_ENABLE
3811     if (types & EV_FORK)
3812     for (i = forkcnt; i--; )
3813     if (ev_cb (forks [i]) != embed_fork_cb)
3814     cb (EV_A_ EV_FORK, forks [i]);
3815     #endif
3816    
3817     #if EV_ASYNC_ENABLE
3818     if (types & EV_ASYNC)
3819     for (i = asynccnt; i--; )
3820     cb (EV_A_ EV_ASYNC, asyncs [i]);
3821     #endif
3822    
3823 root 1.337 #if EV_PREPARE_ENABLE
3824 root 1.282 if (types & EV_PREPARE)
3825     for (i = preparecnt; i--; )
3826 root 1.337 # if EV_EMBED_ENABLE
3827 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3828 root 1.337 # endif
3829     cb (EV_A_ EV_PREPARE, prepares [i]);
3830 root 1.282 #endif
3831    
3832 root 1.337 #if EV_CHECK_ENABLE
3833 root 1.282 if (types & EV_CHECK)
3834     for (i = checkcnt; i--; )
3835     cb (EV_A_ EV_CHECK, checks [i]);
3836 root 1.337 #endif
3837 root 1.282
3838 root 1.337 #if EV_SIGNAL_ENABLE
3839 root 1.282 if (types & EV_SIGNAL)
3840 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
3841 root 1.282 for (wl = signals [i].head; wl; )
3842     {
3843     wn = wl->next;
3844     cb (EV_A_ EV_SIGNAL, wl);
3845     wl = wn;
3846     }
3847 root 1.337 #endif
3848 root 1.282
3849 root 1.337 #if EV_CHILD_ENABLE
3850 root 1.282 if (types & EV_CHILD)
3851 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
3852 root 1.282 for (wl = childs [i]; wl; )
3853     {
3854     wn = wl->next;
3855     cb (EV_A_ EV_CHILD, wl);
3856     wl = wn;
3857     }
3858 root 1.337 #endif
3859 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
3860     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3861     }
3862     #endif
3863    
3864 root 1.188 #if EV_MULTIPLICITY
3865     #include "ev_wrap.h"
3866     #endif
3867    
3868 root 1.354 EV_CPP(})
3869 root 1.87