ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.368
Committed: Mon Jan 17 12:11:11 2011 UTC (13 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.367: +8 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.274 # if HAVE_CLOCK_SYSCALL
49     # ifndef EV_USE_CLOCK_SYSCALL
50     # define EV_USE_CLOCK_SYSCALL 1
51     # ifndef EV_USE_REALTIME
52     # define EV_USE_REALTIME 0
53     # endif
54     # ifndef EV_USE_MONOTONIC
55     # define EV_USE_MONOTONIC 1
56     # endif
57     # endif
58 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
59     # define EV_USE_CLOCK_SYSCALL 0
60 root 1.274 # endif
61    
62 root 1.60 # if HAVE_CLOCK_GETTIME
63 root 1.97 # ifndef EV_USE_MONOTONIC
64     # define EV_USE_MONOTONIC 1
65     # endif
66     # ifndef EV_USE_REALTIME
67 root 1.279 # define EV_USE_REALTIME 0
68 root 1.97 # endif
69 root 1.126 # else
70     # ifndef EV_USE_MONOTONIC
71     # define EV_USE_MONOTONIC 0
72     # endif
73     # ifndef EV_USE_REALTIME
74     # define EV_USE_REALTIME 0
75     # endif
76 root 1.60 # endif
77    
78 root 1.343 # if HAVE_NANOSLEEP
79     # ifndef EV_USE_NANOSLEEP
80     # define EV_USE_NANOSLEEP EV_FEATURE_OS
81     # endif
82     # else
83     # undef EV_USE_NANOSLEEP
84 root 1.193 # define EV_USE_NANOSLEEP 0
85     # endif
86    
87 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
88     # ifndef EV_USE_SELECT
89 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
90 root 1.127 # endif
91 root 1.343 # else
92     # undef EV_USE_SELECT
93     # define EV_USE_SELECT 0
94 root 1.60 # endif
95    
96 root 1.343 # if HAVE_POLL && HAVE_POLL_H
97     # ifndef EV_USE_POLL
98 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
99 root 1.127 # endif
100 root 1.343 # else
101     # undef EV_USE_POLL
102     # define EV_USE_POLL 0
103 root 1.60 # endif
104 root 1.127
105 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106     # ifndef EV_USE_EPOLL
107 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
108 root 1.127 # endif
109 root 1.343 # else
110     # undef EV_USE_EPOLL
111     # define EV_USE_EPOLL 0
112 root 1.60 # endif
113 root 1.127
114 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115     # ifndef EV_USE_KQUEUE
116 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117 root 1.127 # endif
118 root 1.343 # else
119     # undef EV_USE_KQUEUE
120     # define EV_USE_KQUEUE 0
121 root 1.60 # endif
122 root 1.127
123 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
124     # ifndef EV_USE_PORT
125 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
126 root 1.127 # endif
127 root 1.343 # else
128     # undef EV_USE_PORT
129     # define EV_USE_PORT 0
130 root 1.118 # endif
131    
132 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133     # ifndef EV_USE_INOTIFY
134 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
135 root 1.152 # endif
136 root 1.343 # else
137     # undef EV_USE_INOTIFY
138     # define EV_USE_INOTIFY 0
139 root 1.152 # endif
140    
141 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142     # ifndef EV_USE_SIGNALFD
143 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
144 root 1.303 # endif
145 root 1.343 # else
146     # undef EV_USE_SIGNALFD
147     # define EV_USE_SIGNALFD 0
148 root 1.303 # endif
149    
150 root 1.343 # if HAVE_EVENTFD
151     # ifndef EV_USE_EVENTFD
152 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
153 root 1.220 # endif
154 root 1.343 # else
155     # undef EV_USE_EVENTFD
156     # define EV_USE_EVENTFD 0
157 root 1.220 # endif
158 root 1.250
159 root 1.29 #endif
160 root 1.17
161 root 1.1 #include <math.h>
162     #include <stdlib.h>
163 root 1.319 #include <string.h>
164 root 1.7 #include <fcntl.h>
165 root 1.16 #include <stddef.h>
166 root 1.1
167     #include <stdio.h>
168    
169 root 1.4 #include <assert.h>
170 root 1.1 #include <errno.h>
171 root 1.22 #include <sys/types.h>
172 root 1.71 #include <time.h>
173 root 1.326 #include <limits.h>
174 root 1.71
175 root 1.72 #include <signal.h>
176 root 1.71
177 root 1.152 #ifdef EV_H
178     # include EV_H
179     #else
180     # include "ev.h"
181     #endif
182    
183 root 1.354 EV_CPP(extern "C" {)
184    
185 root 1.103 #ifndef _WIN32
186 root 1.71 # include <sys/time.h>
187 root 1.45 # include <sys/wait.h>
188 root 1.140 # include <unistd.h>
189 root 1.103 #else
190 root 1.256 # include <io.h>
191 root 1.103 # define WIN32_LEAN_AND_MEAN
192     # include <windows.h>
193     # ifndef EV_SELECT_IS_WINSOCKET
194     # define EV_SELECT_IS_WINSOCKET 1
195     # endif
196 root 1.331 # undef EV_AVOID_STDIO
197 root 1.45 #endif
198 root 1.103
199 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
200     * a limit of 1024 into their select. Where people have brains,
201     * OS X engineers apparently have a vacuum. Or maybe they were
202     * ordered to have a vacuum, or they do anything for money.
203     * This might help. Or not.
204     */
205     #define _DARWIN_UNLIMITED_SELECT 1
206    
207 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
208 root 1.40
209 root 1.305 /* try to deduce the maximum number of signals on this platform */
210     #if defined (EV_NSIG)
211     /* use what's provided */
212     #elif defined (NSIG)
213     # define EV_NSIG (NSIG)
214     #elif defined(_NSIG)
215     # define EV_NSIG (_NSIG)
216     #elif defined (SIGMAX)
217     # define EV_NSIG (SIGMAX+1)
218     #elif defined (SIG_MAX)
219     # define EV_NSIG (SIG_MAX+1)
220     #elif defined (_SIG_MAX)
221     # define EV_NSIG (_SIG_MAX+1)
222     #elif defined (MAXSIG)
223     # define EV_NSIG (MAXSIG+1)
224     #elif defined (MAX_SIG)
225     # define EV_NSIG (MAX_SIG+1)
226     #elif defined (SIGARRAYSIZE)
227 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228 root 1.305 #elif defined (_sys_nsig)
229     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230     #else
231     # error "unable to find value for NSIG, please report"
232 root 1.336 /* to make it compile regardless, just remove the above line, */
233     /* but consider reporting it, too! :) */
234 root 1.306 # define EV_NSIG 65
235 root 1.305 #endif
236    
237 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
238     # if __linux && __GLIBC__ >= 2
239 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240 root 1.274 # else
241     # define EV_USE_CLOCK_SYSCALL 0
242     # endif
243     #endif
244    
245 root 1.29 #ifndef EV_USE_MONOTONIC
246 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
248 root 1.253 # else
249     # define EV_USE_MONOTONIC 0
250     # endif
251 root 1.37 #endif
252    
253 root 1.118 #ifndef EV_USE_REALTIME
254 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255 root 1.118 #endif
256    
257 root 1.193 #ifndef EV_USE_NANOSLEEP
258 root 1.253 # if _POSIX_C_SOURCE >= 199309L
259 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
260 root 1.253 # else
261     # define EV_USE_NANOSLEEP 0
262     # endif
263 root 1.193 #endif
264    
265 root 1.29 #ifndef EV_USE_SELECT
266 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
267 root 1.10 #endif
268    
269 root 1.59 #ifndef EV_USE_POLL
270 root 1.104 # ifdef _WIN32
271     # define EV_USE_POLL 0
272     # else
273 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
274 root 1.104 # endif
275 root 1.41 #endif
276    
277 root 1.29 #ifndef EV_USE_EPOLL
278 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
280 root 1.220 # else
281     # define EV_USE_EPOLL 0
282     # endif
283 root 1.10 #endif
284    
285 root 1.44 #ifndef EV_USE_KQUEUE
286     # define EV_USE_KQUEUE 0
287     #endif
288    
289 root 1.118 #ifndef EV_USE_PORT
290     # define EV_USE_PORT 0
291 root 1.40 #endif
292    
293 root 1.152 #ifndef EV_USE_INOTIFY
294 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
296 root 1.220 # else
297     # define EV_USE_INOTIFY 0
298     # endif
299 root 1.152 #endif
300    
301 root 1.149 #ifndef EV_PID_HASHSIZE
302 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303 root 1.149 #endif
304    
305 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
306 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307 root 1.152 #endif
308    
309 root 1.220 #ifndef EV_USE_EVENTFD
310     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
312 root 1.220 # else
313     # define EV_USE_EVENTFD 0
314     # endif
315     #endif
316    
317 root 1.303 #ifndef EV_USE_SIGNALFD
318 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
320 root 1.303 # else
321     # define EV_USE_SIGNALFD 0
322     # endif
323     #endif
324    
325 root 1.249 #if 0 /* debugging */
326 root 1.250 # define EV_VERIFY 3
327 root 1.249 # define EV_USE_4HEAP 1
328     # define EV_HEAP_CACHE_AT 1
329     #endif
330    
331 root 1.250 #ifndef EV_VERIFY
332 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333 root 1.250 #endif
334    
335 root 1.243 #ifndef EV_USE_4HEAP
336 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
337 root 1.243 #endif
338    
339     #ifndef EV_HEAP_CACHE_AT
340 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341 root 1.243 #endif
342    
343 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344     /* which makes programs even slower. might work on other unices, too. */
345     #if EV_USE_CLOCK_SYSCALL
346     # include <syscall.h>
347     # ifdef SYS_clock_gettime
348     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349     # undef EV_USE_MONOTONIC
350     # define EV_USE_MONOTONIC 1
351     # else
352     # undef EV_USE_CLOCK_SYSCALL
353     # define EV_USE_CLOCK_SYSCALL 0
354     # endif
355     #endif
356    
357 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
358 root 1.40
359 root 1.325 #ifdef _AIX
360     /* AIX has a completely broken poll.h header */
361     # undef EV_USE_POLL
362     # define EV_USE_POLL 0
363     #endif
364    
365 root 1.40 #ifndef CLOCK_MONOTONIC
366     # undef EV_USE_MONOTONIC
367     # define EV_USE_MONOTONIC 0
368     #endif
369    
370 root 1.31 #ifndef CLOCK_REALTIME
371 root 1.40 # undef EV_USE_REALTIME
372 root 1.31 # define EV_USE_REALTIME 0
373     #endif
374 root 1.40
375 root 1.152 #if !EV_STAT_ENABLE
376 root 1.185 # undef EV_USE_INOTIFY
377 root 1.152 # define EV_USE_INOTIFY 0
378     #endif
379    
380 root 1.193 #if !EV_USE_NANOSLEEP
381     # ifndef _WIN32
382     # include <sys/select.h>
383     # endif
384     #endif
385    
386 root 1.152 #if EV_USE_INOTIFY
387 root 1.273 # include <sys/statfs.h>
388 root 1.152 # include <sys/inotify.h>
389 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390     # ifndef IN_DONT_FOLLOW
391     # undef EV_USE_INOTIFY
392     # define EV_USE_INOTIFY 0
393     # endif
394 root 1.152 #endif
395    
396 root 1.185 #if EV_SELECT_IS_WINSOCKET
397     # include <winsock.h>
398     #endif
399    
400 root 1.220 #if EV_USE_EVENTFD
401     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402 root 1.221 # include <stdint.h>
403 root 1.303 # ifndef EFD_NONBLOCK
404     # define EFD_NONBLOCK O_NONBLOCK
405     # endif
406     # ifndef EFD_CLOEXEC
407 root 1.311 # ifdef O_CLOEXEC
408     # define EFD_CLOEXEC O_CLOEXEC
409     # else
410     # define EFD_CLOEXEC 02000000
411     # endif
412 root 1.303 # endif
413 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414 root 1.220 #endif
415    
416 root 1.303 #if EV_USE_SIGNALFD
417 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418     # include <stdint.h>
419     # ifndef SFD_NONBLOCK
420     # define SFD_NONBLOCK O_NONBLOCK
421     # endif
422     # ifndef SFD_CLOEXEC
423     # ifdef O_CLOEXEC
424     # define SFD_CLOEXEC O_CLOEXEC
425     # else
426     # define SFD_CLOEXEC 02000000
427     # endif
428     # endif
429 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430 root 1.314
431     struct signalfd_siginfo
432     {
433     uint32_t ssi_signo;
434     char pad[128 - sizeof (uint32_t)];
435     };
436 root 1.303 #endif
437    
438 root 1.40 /**/
439 root 1.1
440 root 1.250 #if EV_VERIFY >= 3
441 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
442 root 1.248 #else
443     # define EV_FREQUENT_CHECK do { } while (0)
444     #endif
445    
446 root 1.176 /*
447     * This is used to avoid floating point rounding problems.
448     * It is added to ev_rt_now when scheduling periodics
449     * to ensure progress, time-wise, even when rounding
450     * errors are against us.
451 root 1.177 * This value is good at least till the year 4000.
452 root 1.176 * Better solutions welcome.
453     */
454     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455    
456 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
457 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
458 root 1.1
459 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461 root 1.347
462 root 1.185 #if __GNUC__ >= 4
463 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
464 root 1.169 # define noinline __attribute__ ((noinline))
465 root 1.40 #else
466     # define expect(expr,value) (expr)
467 root 1.140 # define noinline
468 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469 root 1.169 # define inline
470     # endif
471 root 1.40 #endif
472    
473     #define expect_false(expr) expect ((expr) != 0, 0)
474     #define expect_true(expr) expect ((expr) != 0, 1)
475 root 1.169 #define inline_size static inline
476    
477 root 1.338 #if EV_FEATURE_CODE
478     # define inline_speed static inline
479     #else
480 root 1.169 # define inline_speed static noinline
481     #endif
482 root 1.40
483 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484    
485     #if EV_MINPRI == EV_MAXPRI
486     # define ABSPRI(w) (((W)w), 0)
487     #else
488     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489     #endif
490 root 1.42
491 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
492 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
493 root 1.103
494 root 1.136 typedef ev_watcher *W;
495     typedef ev_watcher_list *WL;
496     typedef ev_watcher_time *WT;
497 root 1.10
498 root 1.229 #define ev_active(w) ((W)(w))->active
499 root 1.228 #define ev_at(w) ((WT)(w))->at
500    
501 root 1.279 #if EV_USE_REALTIME
502 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
503 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
504 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505     #endif
506    
507     #if EV_USE_MONOTONIC
508 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509 root 1.198 #endif
510 root 1.54
511 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
512     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513     #endif
514     #ifndef EV_WIN32_HANDLE_TO_FD
515 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516 root 1.313 #endif
517     #ifndef EV_WIN32_CLOSE_FD
518     # define EV_WIN32_CLOSE_FD(fd) close (fd)
519     #endif
520    
521 root 1.103 #ifdef _WIN32
522 root 1.98 # include "ev_win32.c"
523     #endif
524 root 1.67
525 root 1.53 /*****************************************************************************/
526 root 1.1
527 root 1.356 #ifdef __linux
528     # include <sys/utsname.h>
529     #endif
530    
531 root 1.355 static unsigned int noinline
532     ev_linux_version (void)
533     {
534     #ifdef __linux
535 root 1.359 unsigned int v = 0;
536 root 1.355 struct utsname buf;
537     int i;
538     char *p = buf.release;
539    
540     if (uname (&buf))
541     return 0;
542    
543     for (i = 3+1; --i; )
544     {
545     unsigned int c = 0;
546    
547     for (;;)
548     {
549     if (*p >= '0' && *p <= '9')
550     c = c * 10 + *p++ - '0';
551     else
552     {
553     p += *p == '.';
554     break;
555     }
556     }
557    
558     v = (v << 8) | c;
559     }
560    
561     return v;
562     #else
563     return 0;
564     #endif
565     }
566    
567     /*****************************************************************************/
568    
569 root 1.331 #if EV_AVOID_STDIO
570     static void noinline
571     ev_printerr (const char *msg)
572     {
573     write (STDERR_FILENO, msg, strlen (msg));
574     }
575     #endif
576    
577 root 1.70 static void (*syserr_cb)(const char *msg);
578 root 1.69
579 root 1.141 void
580     ev_set_syserr_cb (void (*cb)(const char *msg))
581 root 1.69 {
582     syserr_cb = cb;
583     }
584    
585 root 1.141 static void noinline
586 root 1.269 ev_syserr (const char *msg)
587 root 1.69 {
588 root 1.70 if (!msg)
589     msg = "(libev) system error";
590    
591 root 1.69 if (syserr_cb)
592 root 1.70 syserr_cb (msg);
593 root 1.69 else
594     {
595 root 1.330 #if EV_AVOID_STDIO
596 root 1.331 ev_printerr (msg);
597     ev_printerr (": ");
598 root 1.365 ev_printerr (strerror (errno));
599 root 1.331 ev_printerr ("\n");
600 root 1.330 #else
601 root 1.70 perror (msg);
602 root 1.330 #endif
603 root 1.69 abort ();
604     }
605     }
606    
607 root 1.224 static void *
608     ev_realloc_emul (void *ptr, long size)
609     {
610 root 1.334 #if __GLIBC__
611     return realloc (ptr, size);
612     #else
613 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
614 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
615 root 1.224 * the single unix specification, so work around them here.
616     */
617 root 1.333
618 root 1.224 if (size)
619     return realloc (ptr, size);
620    
621     free (ptr);
622     return 0;
623 root 1.334 #endif
624 root 1.224 }
625    
626     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
627 root 1.69
628 root 1.141 void
629 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
630 root 1.69 {
631     alloc = cb;
632     }
633    
634 root 1.150 inline_speed void *
635 root 1.155 ev_realloc (void *ptr, long size)
636 root 1.69 {
637 root 1.224 ptr = alloc (ptr, size);
638 root 1.69
639     if (!ptr && size)
640     {
641 root 1.330 #if EV_AVOID_STDIO
642 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643 root 1.330 #else
644 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645 root 1.330 #endif
646 root 1.69 abort ();
647     }
648    
649     return ptr;
650     }
651    
652     #define ev_malloc(size) ev_realloc (0, (size))
653     #define ev_free(ptr) ev_realloc ((ptr), 0)
654    
655     /*****************************************************************************/
656    
657 root 1.298 /* set in reify when reification needed */
658     #define EV_ANFD_REIFY 1
659    
660 root 1.288 /* file descriptor info structure */
661 root 1.53 typedef struct
662     {
663 root 1.68 WL head;
664 root 1.288 unsigned char events; /* the events watched for */
665 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
667 root 1.269 unsigned char unused;
668     #if EV_USE_EPOLL
669 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
670 root 1.269 #endif
671 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
672 root 1.103 SOCKET handle;
673     #endif
674 root 1.357 #if EV_USE_IOCP
675     OVERLAPPED or, ow;
676     #endif
677 root 1.53 } ANFD;
678 root 1.1
679 root 1.288 /* stores the pending event set for a given watcher */
680 root 1.53 typedef struct
681     {
682     W w;
683 root 1.288 int events; /* the pending event set for the given watcher */
684 root 1.53 } ANPENDING;
685 root 1.51
686 root 1.155 #if EV_USE_INOTIFY
687 root 1.241 /* hash table entry per inotify-id */
688 root 1.152 typedef struct
689     {
690     WL head;
691 root 1.155 } ANFS;
692 root 1.152 #endif
693    
694 root 1.241 /* Heap Entry */
695     #if EV_HEAP_CACHE_AT
696 root 1.288 /* a heap element */
697 root 1.241 typedef struct {
698 root 1.243 ev_tstamp at;
699 root 1.241 WT w;
700     } ANHE;
701    
702 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
703     #define ANHE_at(he) (he).at /* access cached at, read-only */
704     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705 root 1.241 #else
706 root 1.288 /* a heap element */
707 root 1.241 typedef WT ANHE;
708    
709 root 1.248 #define ANHE_w(he) (he)
710     #define ANHE_at(he) (he)->at
711     #define ANHE_at_cache(he)
712 root 1.241 #endif
713    
714 root 1.55 #if EV_MULTIPLICITY
715 root 1.54
716 root 1.80 struct ev_loop
717     {
718 root 1.86 ev_tstamp ev_rt_now;
719 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
720 root 1.80 #define VAR(name,decl) decl;
721     #include "ev_vars.h"
722     #undef VAR
723     };
724     #include "ev_wrap.h"
725    
726 root 1.116 static struct ev_loop default_loop_struct;
727     struct ev_loop *ev_default_loop_ptr;
728 root 1.54
729 root 1.53 #else
730 root 1.54
731 root 1.86 ev_tstamp ev_rt_now;
732 root 1.80 #define VAR(name,decl) static decl;
733     #include "ev_vars.h"
734     #undef VAR
735    
736 root 1.116 static int ev_default_loop_ptr;
737 root 1.54
738 root 1.51 #endif
739 root 1.1
740 root 1.338 #if EV_FEATURE_API
741 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
744     #else
745 root 1.298 # define EV_RELEASE_CB (void)0
746     # define EV_ACQUIRE_CB (void)0
747 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748     #endif
749    
750 root 1.353 #define EVBREAK_RECURSE 0x80
751 root 1.298
752 root 1.8 /*****************************************************************************/
753    
754 root 1.292 #ifndef EV_HAVE_EV_TIME
755 root 1.141 ev_tstamp
756 root 1.1 ev_time (void)
757     {
758 root 1.29 #if EV_USE_REALTIME
759 root 1.279 if (expect_true (have_realtime))
760     {
761     struct timespec ts;
762     clock_gettime (CLOCK_REALTIME, &ts);
763     return ts.tv_sec + ts.tv_nsec * 1e-9;
764     }
765     #endif
766    
767 root 1.1 struct timeval tv;
768     gettimeofday (&tv, 0);
769     return tv.tv_sec + tv.tv_usec * 1e-6;
770     }
771 root 1.292 #endif
772 root 1.1
773 root 1.284 inline_size ev_tstamp
774 root 1.1 get_clock (void)
775     {
776 root 1.29 #if EV_USE_MONOTONIC
777 root 1.40 if (expect_true (have_monotonic))
778 root 1.1 {
779     struct timespec ts;
780     clock_gettime (CLOCK_MONOTONIC, &ts);
781     return ts.tv_sec + ts.tv_nsec * 1e-9;
782     }
783     #endif
784    
785     return ev_time ();
786     }
787    
788 root 1.85 #if EV_MULTIPLICITY
789 root 1.51 ev_tstamp
790     ev_now (EV_P)
791     {
792 root 1.85 return ev_rt_now;
793 root 1.51 }
794 root 1.85 #endif
795 root 1.51
796 root 1.193 void
797     ev_sleep (ev_tstamp delay)
798     {
799     if (delay > 0.)
800     {
801     #if EV_USE_NANOSLEEP
802     struct timespec ts;
803    
804 root 1.348 EV_TS_SET (ts, delay);
805 root 1.193 nanosleep (&ts, 0);
806     #elif defined(_WIN32)
807 root 1.217 Sleep ((unsigned long)(delay * 1e3));
808 root 1.193 #else
809     struct timeval tv;
810    
811 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
812 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
813 root 1.257 /* by older ones */
814 sf-exg 1.349 EV_TV_SET (tv, delay);
815 root 1.193 select (0, 0, 0, 0, &tv);
816     #endif
817     }
818     }
819    
820 root 1.368 inline_speed int
821     ev_timeout_to_ms (ev_tstamp timeout)
822     {
823     int ms = timeout * 1000. + .999999;
824    
825     return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
826     }
827    
828 root 1.193 /*****************************************************************************/
829    
830 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
831 root 1.232
832 root 1.288 /* find a suitable new size for the given array, */
833 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
834 root 1.284 inline_size int
835 root 1.163 array_nextsize (int elem, int cur, int cnt)
836     {
837     int ncur = cur + 1;
838    
839     do
840     ncur <<= 1;
841     while (cnt > ncur);
842    
843 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
844     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
845 root 1.163 {
846     ncur *= elem;
847 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
848 root 1.163 ncur = ncur - sizeof (void *) * 4;
849     ncur /= elem;
850     }
851    
852     return ncur;
853     }
854    
855 root 1.171 static noinline void *
856 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
857     {
858     *cur = array_nextsize (elem, *cur, cnt);
859     return ev_realloc (base, elem * *cur);
860     }
861 root 1.29
862 root 1.265 #define array_init_zero(base,count) \
863     memset ((void *)(base), 0, sizeof (*(base)) * (count))
864    
865 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
866 root 1.163 if (expect_false ((cnt) > (cur))) \
867 root 1.69 { \
868 root 1.163 int ocur_ = (cur); \
869     (base) = (type *)array_realloc \
870     (sizeof (type), (base), &(cur), (cnt)); \
871     init ((base) + (ocur_), (cur) - ocur_); \
872 root 1.1 }
873    
874 root 1.163 #if 0
875 root 1.74 #define array_slim(type,stem) \
876 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
877     { \
878     stem ## max = array_roundsize (stem ## cnt >> 1); \
879 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
880 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
881     }
882 root 1.163 #endif
883 root 1.67
884 root 1.65 #define array_free(stem, idx) \
885 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
886 root 1.65
887 root 1.8 /*****************************************************************************/
888    
889 root 1.288 /* dummy callback for pending events */
890     static void noinline
891     pendingcb (EV_P_ ev_prepare *w, int revents)
892     {
893     }
894    
895 root 1.140 void noinline
896 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
897 root 1.1 {
898 root 1.78 W w_ = (W)w;
899 root 1.171 int pri = ABSPRI (w_);
900 root 1.78
901 root 1.123 if (expect_false (w_->pending))
902 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
903     else
904 root 1.32 {
905 root 1.171 w_->pending = ++pendingcnt [pri];
906     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
907     pendings [pri][w_->pending - 1].w = w_;
908     pendings [pri][w_->pending - 1].events = revents;
909 root 1.32 }
910 root 1.1 }
911    
912 root 1.284 inline_speed void
913     feed_reverse (EV_P_ W w)
914     {
915     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
916     rfeeds [rfeedcnt++] = w;
917     }
918    
919     inline_size void
920     feed_reverse_done (EV_P_ int revents)
921     {
922     do
923     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
924     while (rfeedcnt);
925     }
926    
927     inline_speed void
928 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
929 root 1.27 {
930     int i;
931    
932     for (i = 0; i < eventcnt; ++i)
933 root 1.78 ev_feed_event (EV_A_ events [i], type);
934 root 1.27 }
935    
936 root 1.141 /*****************************************************************************/
937    
938 root 1.284 inline_speed void
939 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
940 root 1.1 {
941     ANFD *anfd = anfds + fd;
942 root 1.136 ev_io *w;
943 root 1.1
944 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
945 root 1.1 {
946 root 1.79 int ev = w->events & revents;
947 root 1.1
948     if (ev)
949 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
950 root 1.1 }
951     }
952    
953 root 1.298 /* do not submit kernel events for fds that have reify set */
954     /* because that means they changed while we were polling for new events */
955     inline_speed void
956     fd_event (EV_P_ int fd, int revents)
957     {
958     ANFD *anfd = anfds + fd;
959    
960     if (expect_true (!anfd->reify))
961 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
962 root 1.298 }
963    
964 root 1.79 void
965     ev_feed_fd_event (EV_P_ int fd, int revents)
966     {
967 root 1.168 if (fd >= 0 && fd < anfdmax)
968 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
969 root 1.79 }
970    
971 root 1.288 /* make sure the external fd watch events are in-sync */
972     /* with the kernel/libev internal state */
973 root 1.284 inline_size void
974 root 1.51 fd_reify (EV_P)
975 root 1.9 {
976     int i;
977    
978 root 1.27 for (i = 0; i < fdchangecnt; ++i)
979     {
980     int fd = fdchanges [i];
981     ANFD *anfd = anfds + fd;
982 root 1.136 ev_io *w;
983 root 1.27
984 root 1.350 unsigned char o_events = anfd->events;
985     unsigned char o_reify = anfd->reify;
986 root 1.27
987 root 1.350 anfd->reify = 0;
988 root 1.27
989 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
990 root 1.350 if (o_reify & EV__IOFDSET)
991 root 1.103 {
992 root 1.254 unsigned long arg;
993 root 1.313 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
994 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
995 root 1.357 printf ("oi %d %x\n", fd, anfd->handle);//D
996 root 1.103 }
997     #endif
998    
999 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1000     {
1001     anfd->events = 0;
1002 root 1.184
1003 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1004     anfd->events |= (unsigned char)w->events;
1005 root 1.27
1006 root 1.351 if (o_events != anfd->events)
1007 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1008     }
1009    
1010     if (o_reify & EV__IOFDSET)
1011     backend_modify (EV_A_ fd, o_events, anfd->events);
1012 root 1.27 }
1013    
1014     fdchangecnt = 0;
1015     }
1016    
1017 root 1.288 /* something about the given fd changed */
1018 root 1.284 inline_size void
1019 root 1.183 fd_change (EV_P_ int fd, int flags)
1020 root 1.27 {
1021 root 1.183 unsigned char reify = anfds [fd].reify;
1022 root 1.184 anfds [fd].reify |= flags;
1023 root 1.27
1024 root 1.183 if (expect_true (!reify))
1025     {
1026     ++fdchangecnt;
1027     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1028     fdchanges [fdchangecnt - 1] = fd;
1029     }
1030 root 1.9 }
1031    
1032 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1033 root 1.284 inline_speed void
1034 root 1.51 fd_kill (EV_P_ int fd)
1035 root 1.41 {
1036 root 1.136 ev_io *w;
1037 root 1.41
1038 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1039 root 1.41 {
1040 root 1.51 ev_io_stop (EV_A_ w);
1041 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1042 root 1.41 }
1043     }
1044    
1045 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1046 root 1.284 inline_size int
1047 root 1.71 fd_valid (int fd)
1048     {
1049 root 1.103 #ifdef _WIN32
1050 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1051 root 1.71 #else
1052     return fcntl (fd, F_GETFD) != -1;
1053     #endif
1054     }
1055    
1056 root 1.19 /* called on EBADF to verify fds */
1057 root 1.140 static void noinline
1058 root 1.51 fd_ebadf (EV_P)
1059 root 1.19 {
1060     int fd;
1061    
1062     for (fd = 0; fd < anfdmax; ++fd)
1063 root 1.27 if (anfds [fd].events)
1064 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1065 root 1.51 fd_kill (EV_A_ fd);
1066 root 1.41 }
1067    
1068     /* called on ENOMEM in select/poll to kill some fds and retry */
1069 root 1.140 static void noinline
1070 root 1.51 fd_enomem (EV_P)
1071 root 1.41 {
1072 root 1.62 int fd;
1073 root 1.41
1074 root 1.62 for (fd = anfdmax; fd--; )
1075 root 1.41 if (anfds [fd].events)
1076     {
1077 root 1.51 fd_kill (EV_A_ fd);
1078 root 1.307 break;
1079 root 1.41 }
1080 root 1.19 }
1081    
1082 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1083 root 1.140 static void noinline
1084 root 1.56 fd_rearm_all (EV_P)
1085     {
1086     int fd;
1087    
1088     for (fd = 0; fd < anfdmax; ++fd)
1089     if (anfds [fd].events)
1090     {
1091     anfds [fd].events = 0;
1092 root 1.268 anfds [fd].emask = 0;
1093 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1094 root 1.56 }
1095     }
1096    
1097 root 1.336 /* used to prepare libev internal fd's */
1098     /* this is not fork-safe */
1099     inline_speed void
1100     fd_intern (int fd)
1101     {
1102     #ifdef _WIN32
1103     unsigned long arg = 1;
1104     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1105     #else
1106     fcntl (fd, F_SETFD, FD_CLOEXEC);
1107     fcntl (fd, F_SETFL, O_NONBLOCK);
1108     #endif
1109     }
1110    
1111 root 1.8 /*****************************************************************************/
1112    
1113 root 1.235 /*
1114 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1115 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1116     * the branching factor of the d-tree.
1117     */
1118    
1119     /*
1120 root 1.235 * at the moment we allow libev the luxury of two heaps,
1121     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1122     * which is more cache-efficient.
1123     * the difference is about 5% with 50000+ watchers.
1124     */
1125 root 1.241 #if EV_USE_4HEAP
1126 root 1.235
1127 root 1.237 #define DHEAP 4
1128     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1129 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1130 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1131 root 1.235
1132     /* away from the root */
1133 root 1.284 inline_speed void
1134 root 1.241 downheap (ANHE *heap, int N, int k)
1135 root 1.235 {
1136 root 1.241 ANHE he = heap [k];
1137     ANHE *E = heap + N + HEAP0;
1138 root 1.235
1139     for (;;)
1140     {
1141     ev_tstamp minat;
1142 root 1.241 ANHE *minpos;
1143 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1144 root 1.235
1145 root 1.248 /* find minimum child */
1146 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1147 root 1.235 {
1148 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1149     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1150     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1151     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1152 root 1.235 }
1153 root 1.240 else if (pos < E)
1154 root 1.235 {
1155 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1156     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1157     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1158     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1159 root 1.235 }
1160 root 1.240 else
1161     break;
1162 root 1.235
1163 root 1.241 if (ANHE_at (he) <= minat)
1164 root 1.235 break;
1165    
1166 root 1.247 heap [k] = *minpos;
1167 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1168 root 1.235
1169     k = minpos - heap;
1170     }
1171    
1172 root 1.247 heap [k] = he;
1173 root 1.241 ev_active (ANHE_w (he)) = k;
1174 root 1.235 }
1175    
1176 root 1.248 #else /* 4HEAP */
1177 root 1.235
1178     #define HEAP0 1
1179 root 1.247 #define HPARENT(k) ((k) >> 1)
1180 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1181 root 1.235
1182 root 1.248 /* away from the root */
1183 root 1.284 inline_speed void
1184 root 1.248 downheap (ANHE *heap, int N, int k)
1185 root 1.1 {
1186 root 1.241 ANHE he = heap [k];
1187 root 1.1
1188 root 1.228 for (;;)
1189 root 1.1 {
1190 root 1.248 int c = k << 1;
1191 root 1.179
1192 root 1.309 if (c >= N + HEAP0)
1193 root 1.179 break;
1194    
1195 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1196     ? 1 : 0;
1197    
1198     if (ANHE_at (he) <= ANHE_at (heap [c]))
1199     break;
1200    
1201     heap [k] = heap [c];
1202 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1203 root 1.248
1204     k = c;
1205 root 1.1 }
1206    
1207 root 1.243 heap [k] = he;
1208 root 1.248 ev_active (ANHE_w (he)) = k;
1209 root 1.1 }
1210 root 1.248 #endif
1211 root 1.1
1212 root 1.248 /* towards the root */
1213 root 1.284 inline_speed void
1214 root 1.248 upheap (ANHE *heap, int k)
1215 root 1.1 {
1216 root 1.241 ANHE he = heap [k];
1217 root 1.1
1218 root 1.179 for (;;)
1219 root 1.1 {
1220 root 1.248 int p = HPARENT (k);
1221 root 1.179
1222 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1223 root 1.179 break;
1224 root 1.1
1225 root 1.248 heap [k] = heap [p];
1226 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1227 root 1.248 k = p;
1228 root 1.1 }
1229    
1230 root 1.241 heap [k] = he;
1231     ev_active (ANHE_w (he)) = k;
1232 root 1.1 }
1233    
1234 root 1.288 /* move an element suitably so it is in a correct place */
1235 root 1.284 inline_size void
1236 root 1.241 adjustheap (ANHE *heap, int N, int k)
1237 root 1.84 {
1238 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1239 root 1.247 upheap (heap, k);
1240     else
1241     downheap (heap, N, k);
1242 root 1.84 }
1243    
1244 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1245 root 1.284 inline_size void
1246 root 1.248 reheap (ANHE *heap, int N)
1247     {
1248     int i;
1249 root 1.251
1250 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1251     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1252     for (i = 0; i < N; ++i)
1253     upheap (heap, i + HEAP0);
1254     }
1255    
1256 root 1.8 /*****************************************************************************/
1257    
1258 root 1.288 /* associate signal watchers to a signal signal */
1259 root 1.7 typedef struct
1260     {
1261 root 1.307 EV_ATOMIC_T pending;
1262 root 1.306 #if EV_MULTIPLICITY
1263     EV_P;
1264     #endif
1265 root 1.68 WL head;
1266 root 1.7 } ANSIG;
1267    
1268 root 1.306 static ANSIG signals [EV_NSIG - 1];
1269 root 1.7
1270 root 1.207 /*****************************************************************************/
1271    
1272 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1273 root 1.207
1274     static void noinline
1275     evpipe_init (EV_P)
1276     {
1277 root 1.288 if (!ev_is_active (&pipe_w))
1278 root 1.207 {
1279 root 1.336 # if EV_USE_EVENTFD
1280 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1281     if (evfd < 0 && errno == EINVAL)
1282     evfd = eventfd (0, 0);
1283    
1284     if (evfd >= 0)
1285 root 1.220 {
1286     evpipe [0] = -1;
1287 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1288 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1289 root 1.220 }
1290     else
1291 root 1.336 # endif
1292 root 1.220 {
1293     while (pipe (evpipe))
1294 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1295 root 1.207
1296 root 1.220 fd_intern (evpipe [0]);
1297     fd_intern (evpipe [1]);
1298 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1299 root 1.220 }
1300 root 1.207
1301 root 1.288 ev_io_start (EV_A_ &pipe_w);
1302 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1303 root 1.207 }
1304     }
1305    
1306 root 1.284 inline_size void
1307 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1308 root 1.207 {
1309 root 1.214 if (!*flag)
1310 root 1.207 {
1311 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1312 root 1.336 char dummy;
1313 root 1.214
1314     *flag = 1;
1315 root 1.220
1316     #if EV_USE_EVENTFD
1317     if (evfd >= 0)
1318     {
1319     uint64_t counter = 1;
1320     write (evfd, &counter, sizeof (uint64_t));
1321     }
1322     else
1323     #endif
1324 root 1.346 /* win32 people keep sending patches that change this write() to send() */
1325     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1326     /* so when you think this write should be a send instead, please find out */
1327     /* where your send() is from - it's definitely not the microsoft send, and */
1328     /* tell me. thank you. */
1329 root 1.336 write (evpipe [1], &dummy, 1);
1330 root 1.214
1331 root 1.207 errno = old_errno;
1332     }
1333     }
1334    
1335 root 1.288 /* called whenever the libev signal pipe */
1336     /* got some events (signal, async) */
1337 root 1.207 static void
1338     pipecb (EV_P_ ev_io *iow, int revents)
1339     {
1340 root 1.307 int i;
1341    
1342 root 1.220 #if EV_USE_EVENTFD
1343     if (evfd >= 0)
1344     {
1345 root 1.232 uint64_t counter;
1346 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1347     }
1348     else
1349     #endif
1350     {
1351     char dummy;
1352 root 1.346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1353 root 1.220 read (evpipe [0], &dummy, 1);
1354     }
1355 root 1.207
1356 root 1.307 if (sig_pending)
1357 root 1.207 {
1358 root 1.307 sig_pending = 0;
1359 root 1.207
1360 root 1.307 for (i = EV_NSIG - 1; i--; )
1361     if (expect_false (signals [i].pending))
1362     ev_feed_signal_event (EV_A_ i + 1);
1363 root 1.207 }
1364    
1365 root 1.209 #if EV_ASYNC_ENABLE
1366 root 1.307 if (async_pending)
1367 root 1.207 {
1368 root 1.307 async_pending = 0;
1369 root 1.207
1370     for (i = asynccnt; i--; )
1371     if (asyncs [i]->sent)
1372     {
1373     asyncs [i]->sent = 0;
1374     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1375     }
1376     }
1377 root 1.209 #endif
1378 root 1.207 }
1379    
1380     /*****************************************************************************/
1381    
1382 root 1.366 void
1383     ev_feed_signal (int signum)
1384 root 1.7 {
1385 root 1.207 #if EV_MULTIPLICITY
1386 root 1.306 EV_P = signals [signum - 1].loop;
1387 root 1.366
1388     if (!EV_A)
1389     return;
1390 root 1.207 #endif
1391    
1392 root 1.366 signals [signum - 1].pending = 1;
1393     evpipe_write (EV_A_ &sig_pending);
1394     }
1395    
1396     static void
1397     ev_sighandler (int signum)
1398     {
1399 root 1.322 #ifdef _WIN32
1400 root 1.218 signal (signum, ev_sighandler);
1401 root 1.67 #endif
1402    
1403 root 1.366 ev_feed_signal (signum);
1404 root 1.7 }
1405    
1406 root 1.140 void noinline
1407 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1408     {
1409 root 1.80 WL w;
1410    
1411 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1412     return;
1413    
1414     --signum;
1415    
1416 root 1.79 #if EV_MULTIPLICITY
1417 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1418     /* or, likely more useful, feeding a signal nobody is waiting for */
1419 root 1.79
1420 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1421 root 1.306 return;
1422 root 1.307 #endif
1423 root 1.306
1424 root 1.307 signals [signum].pending = 0;
1425 root 1.79
1426     for (w = signals [signum].head; w; w = w->next)
1427     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1428     }
1429    
1430 root 1.303 #if EV_USE_SIGNALFD
1431     static void
1432     sigfdcb (EV_P_ ev_io *iow, int revents)
1433     {
1434 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1435 root 1.303
1436     for (;;)
1437     {
1438     ssize_t res = read (sigfd, si, sizeof (si));
1439    
1440     /* not ISO-C, as res might be -1, but works with SuS */
1441     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1442     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1443    
1444     if (res < (ssize_t)sizeof (si))
1445     break;
1446     }
1447     }
1448     #endif
1449    
1450 root 1.336 #endif
1451    
1452 root 1.8 /*****************************************************************************/
1453    
1454 root 1.336 #if EV_CHILD_ENABLE
1455 root 1.182 static WL childs [EV_PID_HASHSIZE];
1456 root 1.71
1457 root 1.136 static ev_signal childev;
1458 root 1.59
1459 root 1.206 #ifndef WIFCONTINUED
1460     # define WIFCONTINUED(status) 0
1461     #endif
1462    
1463 root 1.288 /* handle a single child status event */
1464 root 1.284 inline_speed void
1465 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1466 root 1.47 {
1467 root 1.136 ev_child *w;
1468 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1469 root 1.47
1470 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1471 root 1.206 {
1472     if ((w->pid == pid || !w->pid)
1473     && (!traced || (w->flags & 1)))
1474     {
1475 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1476 root 1.206 w->rpid = pid;
1477     w->rstatus = status;
1478     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1479     }
1480     }
1481 root 1.47 }
1482    
1483 root 1.142 #ifndef WCONTINUED
1484     # define WCONTINUED 0
1485     #endif
1486    
1487 root 1.288 /* called on sigchld etc., calls waitpid */
1488 root 1.47 static void
1489 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1490 root 1.22 {
1491     int pid, status;
1492    
1493 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1494     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1495     if (!WCONTINUED
1496     || errno != EINVAL
1497     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1498     return;
1499    
1500 root 1.216 /* make sure we are called again until all children have been reaped */
1501 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1502     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1503 root 1.47
1504 root 1.216 child_reap (EV_A_ pid, pid, status);
1505 root 1.338 if ((EV_PID_HASHSIZE) > 1)
1506 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1507 root 1.22 }
1508    
1509 root 1.45 #endif
1510    
1511 root 1.22 /*****************************************************************************/
1512    
1513 root 1.357 #if EV_USE_IOCP
1514     # include "ev_iocp.c"
1515     #endif
1516 root 1.118 #if EV_USE_PORT
1517     # include "ev_port.c"
1518     #endif
1519 root 1.44 #if EV_USE_KQUEUE
1520     # include "ev_kqueue.c"
1521     #endif
1522 root 1.29 #if EV_USE_EPOLL
1523 root 1.1 # include "ev_epoll.c"
1524     #endif
1525 root 1.59 #if EV_USE_POLL
1526 root 1.41 # include "ev_poll.c"
1527     #endif
1528 root 1.29 #if EV_USE_SELECT
1529 root 1.1 # include "ev_select.c"
1530     #endif
1531    
1532 root 1.24 int
1533     ev_version_major (void)
1534     {
1535     return EV_VERSION_MAJOR;
1536     }
1537    
1538     int
1539     ev_version_minor (void)
1540     {
1541     return EV_VERSION_MINOR;
1542     }
1543    
1544 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1545 root 1.140 int inline_size
1546 root 1.51 enable_secure (void)
1547 root 1.41 {
1548 root 1.103 #ifdef _WIN32
1549 root 1.49 return 0;
1550     #else
1551 root 1.41 return getuid () != geteuid ()
1552     || getgid () != getegid ();
1553 root 1.49 #endif
1554 root 1.41 }
1555    
1556 root 1.111 unsigned int
1557 root 1.129 ev_supported_backends (void)
1558     {
1559 root 1.130 unsigned int flags = 0;
1560 root 1.129
1561     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1562     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1563     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1564     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1565     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1566    
1567     return flags;
1568     }
1569    
1570     unsigned int
1571 root 1.130 ev_recommended_backends (void)
1572 root 1.1 {
1573 root 1.131 unsigned int flags = ev_supported_backends ();
1574 root 1.129
1575     #ifndef __NetBSD__
1576     /* kqueue is borked on everything but netbsd apparently */
1577     /* it usually doesn't work correctly on anything but sockets and pipes */
1578     flags &= ~EVBACKEND_KQUEUE;
1579     #endif
1580     #ifdef __APPLE__
1581 root 1.278 /* only select works correctly on that "unix-certified" platform */
1582     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1583     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1584 root 1.129 #endif
1585 root 1.342 #ifdef __FreeBSD__
1586     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1587     #endif
1588 root 1.129
1589     return flags;
1590 root 1.51 }
1591    
1592 root 1.130 unsigned int
1593 root 1.134 ev_embeddable_backends (void)
1594     {
1595 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1596    
1597 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1598 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1599     flags &= ~EVBACKEND_EPOLL;
1600 root 1.196
1601     return flags;
1602 root 1.134 }
1603    
1604     unsigned int
1605 root 1.130 ev_backend (EV_P)
1606     {
1607     return backend;
1608     }
1609    
1610 root 1.338 #if EV_FEATURE_API
1611 root 1.162 unsigned int
1612 root 1.340 ev_iteration (EV_P)
1613 root 1.162 {
1614     return loop_count;
1615     }
1616    
1617 root 1.294 unsigned int
1618 root 1.340 ev_depth (EV_P)
1619 root 1.294 {
1620     return loop_depth;
1621     }
1622    
1623 root 1.193 void
1624     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1625     {
1626     io_blocktime = interval;
1627     }
1628    
1629     void
1630     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1631     {
1632     timeout_blocktime = interval;
1633     }
1634    
1635 root 1.297 void
1636     ev_set_userdata (EV_P_ void *data)
1637     {
1638     userdata = data;
1639     }
1640    
1641     void *
1642     ev_userdata (EV_P)
1643     {
1644     return userdata;
1645     }
1646    
1647     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1648     {
1649     invoke_cb = invoke_pending_cb;
1650     }
1651    
1652 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1653 root 1.297 {
1654 root 1.298 release_cb = release;
1655     acquire_cb = acquire;
1656 root 1.297 }
1657     #endif
1658    
1659 root 1.288 /* initialise a loop structure, must be zero-initialised */
1660 root 1.151 static void noinline
1661 root 1.108 loop_init (EV_P_ unsigned int flags)
1662 root 1.51 {
1663 root 1.130 if (!backend)
1664 root 1.23 {
1665 root 1.366 origflags = flags;
1666    
1667 root 1.279 #if EV_USE_REALTIME
1668     if (!have_realtime)
1669     {
1670     struct timespec ts;
1671    
1672     if (!clock_gettime (CLOCK_REALTIME, &ts))
1673     have_realtime = 1;
1674     }
1675     #endif
1676    
1677 root 1.29 #if EV_USE_MONOTONIC
1678 root 1.279 if (!have_monotonic)
1679     {
1680     struct timespec ts;
1681    
1682     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1683     have_monotonic = 1;
1684     }
1685 root 1.1 #endif
1686    
1687 root 1.306 /* pid check not overridable via env */
1688     #ifndef _WIN32
1689     if (flags & EVFLAG_FORKCHECK)
1690     curpid = getpid ();
1691     #endif
1692    
1693     if (!(flags & EVFLAG_NOENV)
1694     && !enable_secure ()
1695     && getenv ("LIBEV_FLAGS"))
1696     flags = atoi (getenv ("LIBEV_FLAGS"));
1697    
1698 root 1.209 ev_rt_now = ev_time ();
1699     mn_now = get_clock ();
1700     now_floor = mn_now;
1701     rtmn_diff = ev_rt_now - mn_now;
1702 root 1.338 #if EV_FEATURE_API
1703 root 1.296 invoke_cb = ev_invoke_pending;
1704 root 1.297 #endif
1705 root 1.1
1706 root 1.193 io_blocktime = 0.;
1707     timeout_blocktime = 0.;
1708 root 1.209 backend = 0;
1709     backend_fd = -1;
1710 root 1.307 sig_pending = 0;
1711     #if EV_ASYNC_ENABLE
1712     async_pending = 0;
1713     #endif
1714 root 1.209 #if EV_USE_INOTIFY
1715 root 1.306 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1716 root 1.209 #endif
1717 root 1.303 #if EV_USE_SIGNALFD
1718 root 1.321 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1719 root 1.303 #endif
1720 root 1.193
1721 root 1.366 if (!(flags & EVBACKEND_MASK))
1722 root 1.129 flags |= ev_recommended_backends ();
1723 root 1.41
1724 root 1.357 #if EV_USE_IOCP
1725     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1726     #endif
1727 root 1.118 #if EV_USE_PORT
1728 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1729 root 1.118 #endif
1730 root 1.44 #if EV_USE_KQUEUE
1731 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1732 root 1.44 #endif
1733 root 1.29 #if EV_USE_EPOLL
1734 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1735 root 1.41 #endif
1736 root 1.59 #if EV_USE_POLL
1737 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1738 root 1.1 #endif
1739 root 1.29 #if EV_USE_SELECT
1740 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1741 root 1.1 #endif
1742 root 1.70
1743 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1744    
1745 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1746 root 1.288 ev_init (&pipe_w, pipecb);
1747     ev_set_priority (&pipe_w, EV_MAXPRI);
1748 root 1.336 #endif
1749 root 1.56 }
1750     }
1751    
1752 root 1.288 /* free up a loop structure */
1753 root 1.359 void
1754     ev_loop_destroy (EV_P)
1755 root 1.56 {
1756 root 1.65 int i;
1757    
1758 root 1.364 #if EV_MULTIPLICITY
1759 root 1.363 /* mimic free (0) */
1760     if (!EV_A)
1761     return;
1762 root 1.364 #endif
1763 root 1.363
1764 root 1.361 #if EV_CLEANUP_ENABLE
1765     /* queue cleanup watchers (and execute them) */
1766     if (expect_false (cleanupcnt))
1767     {
1768     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1769     EV_INVOKE_PENDING;
1770     }
1771     #endif
1772    
1773 root 1.359 #if EV_CHILD_ENABLE
1774     if (ev_is_active (&childev))
1775     {
1776     ev_ref (EV_A); /* child watcher */
1777     ev_signal_stop (EV_A_ &childev);
1778     }
1779     #endif
1780    
1781 root 1.288 if (ev_is_active (&pipe_w))
1782 root 1.207 {
1783 root 1.303 /*ev_ref (EV_A);*/
1784     /*ev_io_stop (EV_A_ &pipe_w);*/
1785 root 1.207
1786 root 1.220 #if EV_USE_EVENTFD
1787     if (evfd >= 0)
1788     close (evfd);
1789     #endif
1790    
1791     if (evpipe [0] >= 0)
1792     {
1793 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1794     EV_WIN32_CLOSE_FD (evpipe [1]);
1795 root 1.220 }
1796 root 1.207 }
1797    
1798 root 1.303 #if EV_USE_SIGNALFD
1799     if (ev_is_active (&sigfd_w))
1800 root 1.317 close (sigfd);
1801 root 1.303 #endif
1802    
1803 root 1.152 #if EV_USE_INOTIFY
1804     if (fs_fd >= 0)
1805     close (fs_fd);
1806     #endif
1807    
1808     if (backend_fd >= 0)
1809     close (backend_fd);
1810    
1811 root 1.357 #if EV_USE_IOCP
1812     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1813     #endif
1814 root 1.118 #if EV_USE_PORT
1815 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1816 root 1.118 #endif
1817 root 1.56 #if EV_USE_KQUEUE
1818 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1819 root 1.56 #endif
1820     #if EV_USE_EPOLL
1821 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1822 root 1.56 #endif
1823 root 1.59 #if EV_USE_POLL
1824 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1825 root 1.56 #endif
1826     #if EV_USE_SELECT
1827 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1828 root 1.56 #endif
1829 root 1.1
1830 root 1.65 for (i = NUMPRI; i--; )
1831 root 1.164 {
1832     array_free (pending, [i]);
1833     #if EV_IDLE_ENABLE
1834     array_free (idle, [i]);
1835     #endif
1836     }
1837 root 1.65
1838 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
1839 root 1.186
1840 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1841 root 1.284 array_free (rfeed, EMPTY);
1842 root 1.164 array_free (fdchange, EMPTY);
1843     array_free (timer, EMPTY);
1844 root 1.140 #if EV_PERIODIC_ENABLE
1845 root 1.164 array_free (periodic, EMPTY);
1846 root 1.93 #endif
1847 root 1.187 #if EV_FORK_ENABLE
1848     array_free (fork, EMPTY);
1849     #endif
1850 root 1.360 #if EV_CLEANUP_ENABLE
1851     array_free (cleanup, EMPTY);
1852     #endif
1853 root 1.164 array_free (prepare, EMPTY);
1854     array_free (check, EMPTY);
1855 root 1.209 #if EV_ASYNC_ENABLE
1856     array_free (async, EMPTY);
1857     #endif
1858 root 1.65
1859 root 1.130 backend = 0;
1860 root 1.359
1861     #if EV_MULTIPLICITY
1862     if (ev_is_default_loop (EV_A))
1863     #endif
1864     ev_default_loop_ptr = 0;
1865     #if EV_MULTIPLICITY
1866     else
1867     ev_free (EV_A);
1868     #endif
1869 root 1.56 }
1870 root 1.22
1871 root 1.226 #if EV_USE_INOTIFY
1872 root 1.284 inline_size void infy_fork (EV_P);
1873 root 1.226 #endif
1874 root 1.154
1875 root 1.284 inline_size void
1876 root 1.56 loop_fork (EV_P)
1877     {
1878 root 1.118 #if EV_USE_PORT
1879 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1880 root 1.56 #endif
1881     #if EV_USE_KQUEUE
1882 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1883 root 1.45 #endif
1884 root 1.118 #if EV_USE_EPOLL
1885 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1886 root 1.118 #endif
1887 root 1.154 #if EV_USE_INOTIFY
1888     infy_fork (EV_A);
1889     #endif
1890 root 1.70
1891 root 1.288 if (ev_is_active (&pipe_w))
1892 root 1.70 {
1893 root 1.207 /* this "locks" the handlers against writing to the pipe */
1894 root 1.212 /* while we modify the fd vars */
1895 root 1.307 sig_pending = 1;
1896 root 1.212 #if EV_ASYNC_ENABLE
1897 root 1.307 async_pending = 1;
1898 root 1.212 #endif
1899 root 1.70
1900     ev_ref (EV_A);
1901 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1902 root 1.220
1903     #if EV_USE_EVENTFD
1904     if (evfd >= 0)
1905     close (evfd);
1906     #endif
1907    
1908     if (evpipe [0] >= 0)
1909     {
1910 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1911     EV_WIN32_CLOSE_FD (evpipe [1]);
1912 root 1.220 }
1913 root 1.207
1914 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1915 root 1.207 evpipe_init (EV_A);
1916 root 1.208 /* now iterate over everything, in case we missed something */
1917 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1918 root 1.337 #endif
1919 root 1.70 }
1920    
1921     postfork = 0;
1922 root 1.1 }
1923    
1924 root 1.55 #if EV_MULTIPLICITY
1925 root 1.250
1926 root 1.54 struct ev_loop *
1927 root 1.108 ev_loop_new (unsigned int flags)
1928 root 1.54 {
1929 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1930 root 1.69
1931 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
1932 root 1.108 loop_init (EV_A_ flags);
1933 root 1.56
1934 root 1.130 if (ev_backend (EV_A))
1935 root 1.306 return EV_A;
1936 root 1.54
1937 root 1.359 ev_free (EV_A);
1938 root 1.55 return 0;
1939 root 1.54 }
1940    
1941 root 1.297 #endif /* multiplicity */
1942 root 1.248
1943     #if EV_VERIFY
1944 root 1.258 static void noinline
1945 root 1.251 verify_watcher (EV_P_ W w)
1946     {
1947 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1948 root 1.251
1949     if (w->pending)
1950 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1951 root 1.251 }
1952    
1953     static void noinline
1954     verify_heap (EV_P_ ANHE *heap, int N)
1955     {
1956     int i;
1957    
1958     for (i = HEAP0; i < N + HEAP0; ++i)
1959     {
1960 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1961     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1962     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1963 root 1.251
1964     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1965     }
1966     }
1967    
1968     static void noinline
1969     array_verify (EV_P_ W *ws, int cnt)
1970 root 1.248 {
1971     while (cnt--)
1972 root 1.251 {
1973 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1974 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1975     }
1976 root 1.248 }
1977 root 1.250 #endif
1978 root 1.248
1979 root 1.338 #if EV_FEATURE_API
1980 root 1.250 void
1981 root 1.340 ev_verify (EV_P)
1982 root 1.248 {
1983 root 1.250 #if EV_VERIFY
1984 root 1.248 int i;
1985 root 1.251 WL w;
1986    
1987     assert (activecnt >= -1);
1988    
1989     assert (fdchangemax >= fdchangecnt);
1990     for (i = 0; i < fdchangecnt; ++i)
1991 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1992 root 1.251
1993     assert (anfdmax >= 0);
1994     for (i = 0; i < anfdmax; ++i)
1995     for (w = anfds [i].head; w; w = w->next)
1996     {
1997     verify_watcher (EV_A_ (W)w);
1998 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1999     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2000 root 1.251 }
2001    
2002     assert (timermax >= timercnt);
2003     verify_heap (EV_A_ timers, timercnt);
2004 root 1.248
2005     #if EV_PERIODIC_ENABLE
2006 root 1.251 assert (periodicmax >= periodiccnt);
2007     verify_heap (EV_A_ periodics, periodiccnt);
2008 root 1.248 #endif
2009    
2010 root 1.251 for (i = NUMPRI; i--; )
2011     {
2012     assert (pendingmax [i] >= pendingcnt [i]);
2013 root 1.248 #if EV_IDLE_ENABLE
2014 root 1.252 assert (idleall >= 0);
2015 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2016     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2017 root 1.248 #endif
2018 root 1.251 }
2019    
2020 root 1.248 #if EV_FORK_ENABLE
2021 root 1.251 assert (forkmax >= forkcnt);
2022     array_verify (EV_A_ (W *)forks, forkcnt);
2023 root 1.248 #endif
2024 root 1.251
2025 root 1.360 #if EV_CLEANUP_ENABLE
2026     assert (cleanupmax >= cleanupcnt);
2027     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2028     #endif
2029    
2030 root 1.250 #if EV_ASYNC_ENABLE
2031 root 1.251 assert (asyncmax >= asynccnt);
2032     array_verify (EV_A_ (W *)asyncs, asynccnt);
2033 root 1.250 #endif
2034 root 1.251
2035 root 1.337 #if EV_PREPARE_ENABLE
2036 root 1.251 assert (preparemax >= preparecnt);
2037     array_verify (EV_A_ (W *)prepares, preparecnt);
2038 root 1.337 #endif
2039 root 1.251
2040 root 1.337 #if EV_CHECK_ENABLE
2041 root 1.251 assert (checkmax >= checkcnt);
2042     array_verify (EV_A_ (W *)checks, checkcnt);
2043 root 1.337 #endif
2044 root 1.251
2045     # if 0
2046 root 1.336 #if EV_CHILD_ENABLE
2047 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2048 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2049 root 1.336 #endif
2050 root 1.251 # endif
2051 root 1.248 #endif
2052     }
2053 root 1.297 #endif
2054 root 1.56
2055     #if EV_MULTIPLICITY
2056     struct ev_loop *
2057 root 1.54 #else
2058     int
2059 root 1.358 #endif
2060 root 1.116 ev_default_loop (unsigned int flags)
2061 root 1.54 {
2062 root 1.116 if (!ev_default_loop_ptr)
2063 root 1.56 {
2064     #if EV_MULTIPLICITY
2065 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2066 root 1.56 #else
2067 ayin 1.117 ev_default_loop_ptr = 1;
2068 root 1.54 #endif
2069    
2070 root 1.110 loop_init (EV_A_ flags);
2071 root 1.56
2072 root 1.130 if (ev_backend (EV_A))
2073 root 1.56 {
2074 root 1.336 #if EV_CHILD_ENABLE
2075 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2076     ev_set_priority (&childev, EV_MAXPRI);
2077     ev_signal_start (EV_A_ &childev);
2078     ev_unref (EV_A); /* child watcher should not keep loop alive */
2079     #endif
2080     }
2081     else
2082 root 1.116 ev_default_loop_ptr = 0;
2083 root 1.56 }
2084 root 1.8
2085 root 1.116 return ev_default_loop_ptr;
2086 root 1.1 }
2087    
2088 root 1.24 void
2089 root 1.359 ev_loop_fork (EV_P)
2090 root 1.1 {
2091 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2092 root 1.1 }
2093    
2094 root 1.8 /*****************************************************************************/
2095    
2096 root 1.168 void
2097     ev_invoke (EV_P_ void *w, int revents)
2098     {
2099     EV_CB_INVOKE ((W)w, revents);
2100     }
2101    
2102 root 1.300 unsigned int
2103     ev_pending_count (EV_P)
2104     {
2105     int pri;
2106     unsigned int count = 0;
2107    
2108     for (pri = NUMPRI; pri--; )
2109     count += pendingcnt [pri];
2110    
2111     return count;
2112     }
2113    
2114 root 1.297 void noinline
2115 root 1.296 ev_invoke_pending (EV_P)
2116 root 1.1 {
2117 root 1.42 int pri;
2118    
2119     for (pri = NUMPRI; pri--; )
2120     while (pendingcnt [pri])
2121     {
2122     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2123 root 1.1
2124 root 1.288 p->w->pending = 0;
2125     EV_CB_INVOKE (p->w, p->events);
2126     EV_FREQUENT_CHECK;
2127 root 1.42 }
2128 root 1.1 }
2129    
2130 root 1.234 #if EV_IDLE_ENABLE
2131 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2132     /* only when higher priorities are idle" logic */
2133 root 1.284 inline_size void
2134 root 1.234 idle_reify (EV_P)
2135     {
2136     if (expect_false (idleall))
2137     {
2138     int pri;
2139    
2140     for (pri = NUMPRI; pri--; )
2141     {
2142     if (pendingcnt [pri])
2143     break;
2144    
2145     if (idlecnt [pri])
2146     {
2147     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2148     break;
2149     }
2150     }
2151     }
2152     }
2153     #endif
2154    
2155 root 1.288 /* make timers pending */
2156 root 1.284 inline_size void
2157 root 1.51 timers_reify (EV_P)
2158 root 1.1 {
2159 root 1.248 EV_FREQUENT_CHECK;
2160    
2161 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2162 root 1.1 {
2163 root 1.284 do
2164     {
2165     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2166 root 1.1
2167 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2168    
2169     /* first reschedule or stop timer */
2170     if (w->repeat)
2171     {
2172     ev_at (w) += w->repeat;
2173     if (ev_at (w) < mn_now)
2174     ev_at (w) = mn_now;
2175 root 1.61
2176 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2177 root 1.90
2178 root 1.284 ANHE_at_cache (timers [HEAP0]);
2179     downheap (timers, timercnt, HEAP0);
2180     }
2181     else
2182     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2183 root 1.243
2184 root 1.284 EV_FREQUENT_CHECK;
2185     feed_reverse (EV_A_ (W)w);
2186 root 1.12 }
2187 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2188 root 1.30
2189 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2190 root 1.12 }
2191     }
2192 root 1.4
2193 root 1.140 #if EV_PERIODIC_ENABLE
2194 root 1.288 /* make periodics pending */
2195 root 1.284 inline_size void
2196 root 1.51 periodics_reify (EV_P)
2197 root 1.12 {
2198 root 1.248 EV_FREQUENT_CHECK;
2199 root 1.250
2200 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2201 root 1.12 {
2202 root 1.284 int feed_count = 0;
2203    
2204     do
2205     {
2206     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2207 root 1.1
2208 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2209 root 1.61
2210 root 1.284 /* first reschedule or stop timer */
2211     if (w->reschedule_cb)
2212     {
2213     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2214 root 1.243
2215 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2216 root 1.243
2217 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2218     downheap (periodics, periodiccnt, HEAP0);
2219     }
2220     else if (w->interval)
2221 root 1.246 {
2222 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2223     /* if next trigger time is not sufficiently in the future, put it there */
2224     /* this might happen because of floating point inexactness */
2225     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2226     {
2227     ev_at (w) += w->interval;
2228    
2229     /* if interval is unreasonably low we might still have a time in the past */
2230     /* so correct this. this will make the periodic very inexact, but the user */
2231     /* has effectively asked to get triggered more often than possible */
2232     if (ev_at (w) < ev_rt_now)
2233     ev_at (w) = ev_rt_now;
2234     }
2235 root 1.243
2236 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2237     downheap (periodics, periodiccnt, HEAP0);
2238 root 1.246 }
2239 root 1.284 else
2240     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2241 root 1.243
2242 root 1.284 EV_FREQUENT_CHECK;
2243     feed_reverse (EV_A_ (W)w);
2244 root 1.1 }
2245 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2246 root 1.12
2247 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2248 root 1.12 }
2249     }
2250    
2251 root 1.288 /* simply recalculate all periodics */
2252 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2253 root 1.140 static void noinline
2254 root 1.54 periodics_reschedule (EV_P)
2255 root 1.12 {
2256     int i;
2257    
2258 root 1.13 /* adjust periodics after time jump */
2259 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2260 root 1.12 {
2261 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2262 root 1.12
2263 root 1.77 if (w->reschedule_cb)
2264 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2265 root 1.77 else if (w->interval)
2266 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2267 root 1.242
2268 root 1.248 ANHE_at_cache (periodics [i]);
2269 root 1.77 }
2270 root 1.12
2271 root 1.248 reheap (periodics, periodiccnt);
2272 root 1.1 }
2273 root 1.93 #endif
2274 root 1.1
2275 root 1.288 /* adjust all timers by a given offset */
2276 root 1.285 static void noinline
2277     timers_reschedule (EV_P_ ev_tstamp adjust)
2278     {
2279     int i;
2280    
2281     for (i = 0; i < timercnt; ++i)
2282     {
2283     ANHE *he = timers + i + HEAP0;
2284     ANHE_w (*he)->at += adjust;
2285     ANHE_at_cache (*he);
2286     }
2287     }
2288    
2289 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2290 root 1.324 /* also detect if there was a timejump, and act accordingly */
2291 root 1.284 inline_speed void
2292 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2293 root 1.4 {
2294 root 1.40 #if EV_USE_MONOTONIC
2295     if (expect_true (have_monotonic))
2296     {
2297 root 1.289 int i;
2298 root 1.178 ev_tstamp odiff = rtmn_diff;
2299    
2300     mn_now = get_clock ();
2301    
2302     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2303     /* interpolate in the meantime */
2304     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2305 root 1.40 {
2306 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2307     return;
2308     }
2309    
2310     now_floor = mn_now;
2311     ev_rt_now = ev_time ();
2312 root 1.4
2313 root 1.178 /* loop a few times, before making important decisions.
2314     * on the choice of "4": one iteration isn't enough,
2315     * in case we get preempted during the calls to
2316     * ev_time and get_clock. a second call is almost guaranteed
2317     * to succeed in that case, though. and looping a few more times
2318     * doesn't hurt either as we only do this on time-jumps or
2319     * in the unlikely event of having been preempted here.
2320     */
2321     for (i = 4; --i; )
2322     {
2323     rtmn_diff = ev_rt_now - mn_now;
2324 root 1.4
2325 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2326 root 1.178 return; /* all is well */
2327 root 1.4
2328 root 1.178 ev_rt_now = ev_time ();
2329     mn_now = get_clock ();
2330     now_floor = mn_now;
2331     }
2332 root 1.4
2333 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2334     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2335 root 1.140 # if EV_PERIODIC_ENABLE
2336 root 1.178 periodics_reschedule (EV_A);
2337 root 1.93 # endif
2338 root 1.4 }
2339     else
2340 root 1.40 #endif
2341 root 1.4 {
2342 root 1.85 ev_rt_now = ev_time ();
2343 root 1.40
2344 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2345 root 1.13 {
2346 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2347     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2348 root 1.140 #if EV_PERIODIC_ENABLE
2349 root 1.54 periodics_reschedule (EV_A);
2350 root 1.93 #endif
2351 root 1.13 }
2352 root 1.4
2353 root 1.85 mn_now = ev_rt_now;
2354 root 1.4 }
2355     }
2356    
2357 root 1.51 void
2358 root 1.353 ev_run (EV_P_ int flags)
2359 root 1.1 {
2360 root 1.338 #if EV_FEATURE_API
2361 root 1.294 ++loop_depth;
2362 root 1.297 #endif
2363 root 1.294
2364 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2365 root 1.298
2366 root 1.353 loop_done = EVBREAK_CANCEL;
2367 root 1.1
2368 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2369 root 1.158
2370 root 1.161 do
2371 root 1.9 {
2372 root 1.250 #if EV_VERIFY >= 2
2373 root 1.340 ev_verify (EV_A);
2374 root 1.250 #endif
2375    
2376 root 1.158 #ifndef _WIN32
2377     if (expect_false (curpid)) /* penalise the forking check even more */
2378     if (expect_false (getpid () != curpid))
2379     {
2380     curpid = getpid ();
2381     postfork = 1;
2382     }
2383     #endif
2384    
2385 root 1.157 #if EV_FORK_ENABLE
2386     /* we might have forked, so queue fork handlers */
2387     if (expect_false (postfork))
2388     if (forkcnt)
2389     {
2390     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2391 root 1.297 EV_INVOKE_PENDING;
2392 root 1.157 }
2393     #endif
2394 root 1.147
2395 root 1.337 #if EV_PREPARE_ENABLE
2396 root 1.170 /* queue prepare watchers (and execute them) */
2397 root 1.40 if (expect_false (preparecnt))
2398 root 1.20 {
2399 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2400 root 1.297 EV_INVOKE_PENDING;
2401 root 1.20 }
2402 root 1.337 #endif
2403 root 1.9
2404 root 1.298 if (expect_false (loop_done))
2405     break;
2406    
2407 root 1.70 /* we might have forked, so reify kernel state if necessary */
2408     if (expect_false (postfork))
2409     loop_fork (EV_A);
2410    
2411 root 1.1 /* update fd-related kernel structures */
2412 root 1.51 fd_reify (EV_A);
2413 root 1.1
2414     /* calculate blocking time */
2415 root 1.135 {
2416 root 1.193 ev_tstamp waittime = 0.;
2417     ev_tstamp sleeptime = 0.;
2418 root 1.12
2419 root 1.353 /* remember old timestamp for io_blocktime calculation */
2420     ev_tstamp prev_mn_now = mn_now;
2421 root 1.293
2422 root 1.353 /* update time to cancel out callback processing overhead */
2423     time_update (EV_A_ 1e100);
2424 root 1.135
2425 root 1.353 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
2426     {
2427 root 1.287 waittime = MAX_BLOCKTIME;
2428    
2429 root 1.135 if (timercnt)
2430     {
2431 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2432 root 1.193 if (waittime > to) waittime = to;
2433 root 1.135 }
2434 root 1.4
2435 root 1.140 #if EV_PERIODIC_ENABLE
2436 root 1.135 if (periodiccnt)
2437     {
2438 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2439 root 1.193 if (waittime > to) waittime = to;
2440 root 1.135 }
2441 root 1.93 #endif
2442 root 1.4
2443 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2444 root 1.193 if (expect_false (waittime < timeout_blocktime))
2445     waittime = timeout_blocktime;
2446    
2447 root 1.293 /* extra check because io_blocktime is commonly 0 */
2448     if (expect_false (io_blocktime))
2449     {
2450     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2451 root 1.193
2452 root 1.293 if (sleeptime > waittime - backend_fudge)
2453     sleeptime = waittime - backend_fudge;
2454 root 1.193
2455 root 1.293 if (expect_true (sleeptime > 0.))
2456     {
2457     ev_sleep (sleeptime);
2458     waittime -= sleeptime;
2459     }
2460 root 1.193 }
2461 root 1.135 }
2462 root 1.1
2463 root 1.338 #if EV_FEATURE_API
2464 root 1.162 ++loop_count;
2465 root 1.297 #endif
2466 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2467 root 1.193 backend_poll (EV_A_ waittime);
2468 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2469 root 1.178
2470     /* update ev_rt_now, do magic */
2471 root 1.193 time_update (EV_A_ waittime + sleeptime);
2472 root 1.135 }
2473 root 1.1
2474 root 1.9 /* queue pending timers and reschedule them */
2475 root 1.51 timers_reify (EV_A); /* relative timers called last */
2476 root 1.140 #if EV_PERIODIC_ENABLE
2477 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2478 root 1.93 #endif
2479 root 1.1
2480 root 1.164 #if EV_IDLE_ENABLE
2481 root 1.137 /* queue idle watchers unless other events are pending */
2482 root 1.164 idle_reify (EV_A);
2483     #endif
2484 root 1.9
2485 root 1.337 #if EV_CHECK_ENABLE
2486 root 1.20 /* queue check watchers, to be executed first */
2487 root 1.123 if (expect_false (checkcnt))
2488 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2489 root 1.337 #endif
2490 root 1.9
2491 root 1.297 EV_INVOKE_PENDING;
2492 root 1.1 }
2493 root 1.219 while (expect_true (
2494     activecnt
2495     && !loop_done
2496 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2497 root 1.219 ));
2498 root 1.13
2499 root 1.353 if (loop_done == EVBREAK_ONE)
2500     loop_done = EVBREAK_CANCEL;
2501 root 1.294
2502 root 1.338 #if EV_FEATURE_API
2503 root 1.294 --loop_depth;
2504 root 1.297 #endif
2505 root 1.51 }
2506    
2507     void
2508 root 1.353 ev_break (EV_P_ int how)
2509 root 1.51 {
2510     loop_done = how;
2511 root 1.1 }
2512    
2513 root 1.285 void
2514     ev_ref (EV_P)
2515     {
2516     ++activecnt;
2517     }
2518    
2519     void
2520     ev_unref (EV_P)
2521     {
2522     --activecnt;
2523     }
2524    
2525     void
2526     ev_now_update (EV_P)
2527     {
2528     time_update (EV_A_ 1e100);
2529     }
2530    
2531     void
2532     ev_suspend (EV_P)
2533     {
2534     ev_now_update (EV_A);
2535     }
2536    
2537     void
2538     ev_resume (EV_P)
2539     {
2540     ev_tstamp mn_prev = mn_now;
2541    
2542     ev_now_update (EV_A);
2543     timers_reschedule (EV_A_ mn_now - mn_prev);
2544 root 1.286 #if EV_PERIODIC_ENABLE
2545 root 1.288 /* TODO: really do this? */
2546 root 1.285 periodics_reschedule (EV_A);
2547 root 1.286 #endif
2548 root 1.285 }
2549    
2550 root 1.8 /*****************************************************************************/
2551 root 1.288 /* singly-linked list management, used when the expected list length is short */
2552 root 1.8
2553 root 1.284 inline_size void
2554 root 1.10 wlist_add (WL *head, WL elem)
2555 root 1.1 {
2556     elem->next = *head;
2557     *head = elem;
2558     }
2559    
2560 root 1.284 inline_size void
2561 root 1.10 wlist_del (WL *head, WL elem)
2562 root 1.1 {
2563     while (*head)
2564     {
2565 root 1.307 if (expect_true (*head == elem))
2566 root 1.1 {
2567     *head = elem->next;
2568 root 1.307 break;
2569 root 1.1 }
2570    
2571     head = &(*head)->next;
2572     }
2573     }
2574    
2575 root 1.288 /* internal, faster, version of ev_clear_pending */
2576 root 1.284 inline_speed void
2577 root 1.166 clear_pending (EV_P_ W w)
2578 root 1.16 {
2579     if (w->pending)
2580     {
2581 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2582 root 1.16 w->pending = 0;
2583     }
2584     }
2585    
2586 root 1.167 int
2587     ev_clear_pending (EV_P_ void *w)
2588 root 1.166 {
2589     W w_ = (W)w;
2590     int pending = w_->pending;
2591    
2592 root 1.172 if (expect_true (pending))
2593     {
2594     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2595 root 1.288 p->w = (W)&pending_w;
2596 root 1.172 w_->pending = 0;
2597     return p->events;
2598     }
2599     else
2600 root 1.167 return 0;
2601 root 1.166 }
2602    
2603 root 1.284 inline_size void
2604 root 1.164 pri_adjust (EV_P_ W w)
2605     {
2606 root 1.295 int pri = ev_priority (w);
2607 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2608     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2609 root 1.295 ev_set_priority (w, pri);
2610 root 1.164 }
2611    
2612 root 1.284 inline_speed void
2613 root 1.51 ev_start (EV_P_ W w, int active)
2614 root 1.1 {
2615 root 1.164 pri_adjust (EV_A_ w);
2616 root 1.1 w->active = active;
2617 root 1.51 ev_ref (EV_A);
2618 root 1.1 }
2619    
2620 root 1.284 inline_size void
2621 root 1.51 ev_stop (EV_P_ W w)
2622 root 1.1 {
2623 root 1.51 ev_unref (EV_A);
2624 root 1.1 w->active = 0;
2625     }
2626    
2627 root 1.8 /*****************************************************************************/
2628    
2629 root 1.171 void noinline
2630 root 1.136 ev_io_start (EV_P_ ev_io *w)
2631 root 1.1 {
2632 root 1.37 int fd = w->fd;
2633    
2634 root 1.123 if (expect_false (ev_is_active (w)))
2635 root 1.1 return;
2636    
2637 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2638 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2639 root 1.33
2640 root 1.248 EV_FREQUENT_CHECK;
2641    
2642 root 1.51 ev_start (EV_A_ (W)w, 1);
2643 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2644 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2645 root 1.1
2646 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2647 root 1.281 w->events &= ~EV__IOFDSET;
2648 root 1.248
2649     EV_FREQUENT_CHECK;
2650 root 1.1 }
2651    
2652 root 1.171 void noinline
2653 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2654 root 1.1 {
2655 root 1.166 clear_pending (EV_A_ (W)w);
2656 root 1.123 if (expect_false (!ev_is_active (w)))
2657 root 1.1 return;
2658    
2659 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2660 root 1.89
2661 root 1.248 EV_FREQUENT_CHECK;
2662    
2663 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2664 root 1.51 ev_stop (EV_A_ (W)w);
2665 root 1.1
2666 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2667 root 1.248
2668     EV_FREQUENT_CHECK;
2669 root 1.1 }
2670    
2671 root 1.171 void noinline
2672 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2673 root 1.1 {
2674 root 1.123 if (expect_false (ev_is_active (w)))
2675 root 1.1 return;
2676    
2677 root 1.228 ev_at (w) += mn_now;
2678 root 1.12
2679 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2680 root 1.13
2681 root 1.248 EV_FREQUENT_CHECK;
2682    
2683     ++timercnt;
2684     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2685 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2686     ANHE_w (timers [ev_active (w)]) = (WT)w;
2687 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2688 root 1.235 upheap (timers, ev_active (w));
2689 root 1.62
2690 root 1.248 EV_FREQUENT_CHECK;
2691    
2692 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2693 root 1.12 }
2694    
2695 root 1.171 void noinline
2696 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2697 root 1.12 {
2698 root 1.166 clear_pending (EV_A_ (W)w);
2699 root 1.123 if (expect_false (!ev_is_active (w)))
2700 root 1.12 return;
2701    
2702 root 1.248 EV_FREQUENT_CHECK;
2703    
2704 root 1.230 {
2705     int active = ev_active (w);
2706 root 1.62
2707 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2708 root 1.151
2709 root 1.248 --timercnt;
2710    
2711     if (expect_true (active < timercnt + HEAP0))
2712 root 1.151 {
2713 root 1.248 timers [active] = timers [timercnt + HEAP0];
2714 root 1.181 adjustheap (timers, timercnt, active);
2715 root 1.151 }
2716 root 1.248 }
2717 root 1.228
2718     ev_at (w) -= mn_now;
2719 root 1.14
2720 root 1.51 ev_stop (EV_A_ (W)w);
2721 root 1.328
2722     EV_FREQUENT_CHECK;
2723 root 1.12 }
2724 root 1.4
2725 root 1.171 void noinline
2726 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2727 root 1.14 {
2728 root 1.248 EV_FREQUENT_CHECK;
2729    
2730 root 1.14 if (ev_is_active (w))
2731     {
2732     if (w->repeat)
2733 root 1.99 {
2734 root 1.228 ev_at (w) = mn_now + w->repeat;
2735 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2736 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2737 root 1.99 }
2738 root 1.14 else
2739 root 1.51 ev_timer_stop (EV_A_ w);
2740 root 1.14 }
2741     else if (w->repeat)
2742 root 1.112 {
2743 root 1.229 ev_at (w) = w->repeat;
2744 root 1.112 ev_timer_start (EV_A_ w);
2745     }
2746 root 1.248
2747     EV_FREQUENT_CHECK;
2748 root 1.14 }
2749    
2750 root 1.301 ev_tstamp
2751     ev_timer_remaining (EV_P_ ev_timer *w)
2752     {
2753     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2754     }
2755    
2756 root 1.140 #if EV_PERIODIC_ENABLE
2757 root 1.171 void noinline
2758 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2759 root 1.12 {
2760 root 1.123 if (expect_false (ev_is_active (w)))
2761 root 1.12 return;
2762 root 1.1
2763 root 1.77 if (w->reschedule_cb)
2764 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2765 root 1.77 else if (w->interval)
2766     {
2767 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2768 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2769 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2770 root 1.77 }
2771 root 1.173 else
2772 root 1.228 ev_at (w) = w->offset;
2773 root 1.12
2774 root 1.248 EV_FREQUENT_CHECK;
2775    
2776     ++periodiccnt;
2777     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2778 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2779     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2780 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2781 root 1.235 upheap (periodics, ev_active (w));
2782 root 1.62
2783 root 1.248 EV_FREQUENT_CHECK;
2784    
2785 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2786 root 1.1 }
2787    
2788 root 1.171 void noinline
2789 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2790 root 1.1 {
2791 root 1.166 clear_pending (EV_A_ (W)w);
2792 root 1.123 if (expect_false (!ev_is_active (w)))
2793 root 1.1 return;
2794    
2795 root 1.248 EV_FREQUENT_CHECK;
2796    
2797 root 1.230 {
2798     int active = ev_active (w);
2799 root 1.62
2800 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2801 root 1.151
2802 root 1.248 --periodiccnt;
2803    
2804     if (expect_true (active < periodiccnt + HEAP0))
2805 root 1.151 {
2806 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2807 root 1.181 adjustheap (periodics, periodiccnt, active);
2808 root 1.151 }
2809 root 1.248 }
2810 root 1.228
2811 root 1.328 ev_stop (EV_A_ (W)w);
2812    
2813 root 1.248 EV_FREQUENT_CHECK;
2814 root 1.1 }
2815    
2816 root 1.171 void noinline
2817 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2818 root 1.77 {
2819 root 1.84 /* TODO: use adjustheap and recalculation */
2820 root 1.77 ev_periodic_stop (EV_A_ w);
2821     ev_periodic_start (EV_A_ w);
2822     }
2823 root 1.93 #endif
2824 root 1.77
2825 root 1.56 #ifndef SA_RESTART
2826     # define SA_RESTART 0
2827     #endif
2828    
2829 root 1.336 #if EV_SIGNAL_ENABLE
2830    
2831 root 1.171 void noinline
2832 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2833 root 1.56 {
2834 root 1.123 if (expect_false (ev_is_active (w)))
2835 root 1.56 return;
2836    
2837 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2838    
2839     #if EV_MULTIPLICITY
2840 root 1.308 assert (("libev: a signal must not be attached to two different loops",
2841 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2842    
2843     signals [w->signum - 1].loop = EV_A;
2844     #endif
2845 root 1.56
2846 root 1.303 EV_FREQUENT_CHECK;
2847    
2848     #if EV_USE_SIGNALFD
2849     if (sigfd == -2)
2850     {
2851     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2852     if (sigfd < 0 && errno == EINVAL)
2853     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2854    
2855     if (sigfd >= 0)
2856     {
2857     fd_intern (sigfd); /* doing it twice will not hurt */
2858    
2859     sigemptyset (&sigfd_set);
2860    
2861     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2862     ev_set_priority (&sigfd_w, EV_MAXPRI);
2863     ev_io_start (EV_A_ &sigfd_w);
2864     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2865     }
2866     }
2867    
2868     if (sigfd >= 0)
2869     {
2870     /* TODO: check .head */
2871     sigaddset (&sigfd_set, w->signum);
2872     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2873 root 1.207
2874 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2875     }
2876 root 1.180 #endif
2877    
2878 root 1.56 ev_start (EV_A_ (W)w, 1);
2879 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2880 root 1.56
2881 root 1.63 if (!((WL)w)->next)
2882 root 1.304 # if EV_USE_SIGNALFD
2883 root 1.306 if (sigfd < 0) /*TODO*/
2884 root 1.304 # endif
2885 root 1.306 {
2886 root 1.322 # ifdef _WIN32
2887 root 1.317 evpipe_init (EV_A);
2888    
2889 root 1.306 signal (w->signum, ev_sighandler);
2890     # else
2891     struct sigaction sa;
2892    
2893     evpipe_init (EV_A);
2894    
2895     sa.sa_handler = ev_sighandler;
2896     sigfillset (&sa.sa_mask);
2897     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2898     sigaction (w->signum, &sa, 0);
2899    
2900 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
2901     {
2902     sigemptyset (&sa.sa_mask);
2903     sigaddset (&sa.sa_mask, w->signum);
2904     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2905     }
2906 root 1.67 #endif
2907 root 1.306 }
2908 root 1.248
2909     EV_FREQUENT_CHECK;
2910 root 1.56 }
2911    
2912 root 1.171 void noinline
2913 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2914 root 1.56 {
2915 root 1.166 clear_pending (EV_A_ (W)w);
2916 root 1.123 if (expect_false (!ev_is_active (w)))
2917 root 1.56 return;
2918    
2919 root 1.248 EV_FREQUENT_CHECK;
2920    
2921 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2922 root 1.56 ev_stop (EV_A_ (W)w);
2923    
2924     if (!signals [w->signum - 1].head)
2925 root 1.306 {
2926 root 1.307 #if EV_MULTIPLICITY
2927 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
2928 root 1.307 #endif
2929     #if EV_USE_SIGNALFD
2930 root 1.306 if (sigfd >= 0)
2931     {
2932 root 1.321 sigset_t ss;
2933    
2934     sigemptyset (&ss);
2935     sigaddset (&ss, w->signum);
2936 root 1.306 sigdelset (&sigfd_set, w->signum);
2937 root 1.321
2938 root 1.306 signalfd (sigfd, &sigfd_set, 0);
2939 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
2940 root 1.306 }
2941     else
2942 root 1.307 #endif
2943 root 1.306 signal (w->signum, SIG_DFL);
2944     }
2945 root 1.248
2946     EV_FREQUENT_CHECK;
2947 root 1.56 }
2948    
2949 root 1.336 #endif
2950    
2951     #if EV_CHILD_ENABLE
2952    
2953 root 1.28 void
2954 root 1.136 ev_child_start (EV_P_ ev_child *w)
2955 root 1.22 {
2956 root 1.56 #if EV_MULTIPLICITY
2957 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2958 root 1.56 #endif
2959 root 1.123 if (expect_false (ev_is_active (w)))
2960 root 1.22 return;
2961    
2962 root 1.248 EV_FREQUENT_CHECK;
2963    
2964 root 1.51 ev_start (EV_A_ (W)w, 1);
2965 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2966 root 1.248
2967     EV_FREQUENT_CHECK;
2968 root 1.22 }
2969    
2970 root 1.28 void
2971 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2972 root 1.22 {
2973 root 1.166 clear_pending (EV_A_ (W)w);
2974 root 1.123 if (expect_false (!ev_is_active (w)))
2975 root 1.22 return;
2976    
2977 root 1.248 EV_FREQUENT_CHECK;
2978    
2979 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2980 root 1.51 ev_stop (EV_A_ (W)w);
2981 root 1.248
2982     EV_FREQUENT_CHECK;
2983 root 1.22 }
2984    
2985 root 1.336 #endif
2986    
2987 root 1.140 #if EV_STAT_ENABLE
2988    
2989     # ifdef _WIN32
2990 root 1.146 # undef lstat
2991     # define lstat(a,b) _stati64 (a,b)
2992 root 1.140 # endif
2993    
2994 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2995     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2996     #define MIN_STAT_INTERVAL 0.1074891
2997 root 1.143
2998 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2999 root 1.152
3000     #if EV_USE_INOTIFY
3001 root 1.326
3002     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3003     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3004 root 1.152
3005     static void noinline
3006     infy_add (EV_P_ ev_stat *w)
3007     {
3008     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3009    
3010 root 1.318 if (w->wd >= 0)
3011 root 1.152 {
3012 root 1.318 struct statfs sfs;
3013    
3014     /* now local changes will be tracked by inotify, but remote changes won't */
3015     /* unless the filesystem is known to be local, we therefore still poll */
3016     /* also do poll on <2.6.25, but with normal frequency */
3017    
3018     if (!fs_2625)
3019     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3020     else if (!statfs (w->path, &sfs)
3021     && (sfs.f_type == 0x1373 /* devfs */
3022     || sfs.f_type == 0xEF53 /* ext2/3 */
3023     || sfs.f_type == 0x3153464a /* jfs */
3024     || sfs.f_type == 0x52654973 /* reiser3 */
3025     || sfs.f_type == 0x01021994 /* tempfs */
3026     || sfs.f_type == 0x58465342 /* xfs */))
3027     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3028     else
3029     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3030     }
3031     else
3032     {
3033     /* can't use inotify, continue to stat */
3034 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3035 root 1.152
3036 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3037 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3038 root 1.233 /* but an efficiency issue only */
3039 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3040 root 1.152 {
3041 root 1.153 char path [4096];
3042 root 1.152 strcpy (path, w->path);
3043    
3044     do
3045     {
3046     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3047     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3048    
3049     char *pend = strrchr (path, '/');
3050    
3051 root 1.275 if (!pend || pend == path)
3052     break;
3053 root 1.152
3054     *pend = 0;
3055 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3056 root 1.152 }
3057     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3058     }
3059     }
3060 root 1.275
3061     if (w->wd >= 0)
3062 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3063 root 1.152
3064 root 1.318 /* now re-arm timer, if required */
3065     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3066     ev_timer_again (EV_A_ &w->timer);
3067     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3068 root 1.152 }
3069    
3070     static void noinline
3071     infy_del (EV_P_ ev_stat *w)
3072     {
3073     int slot;
3074     int wd = w->wd;
3075    
3076     if (wd < 0)
3077     return;
3078    
3079     w->wd = -2;
3080 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3081 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3082    
3083     /* remove this watcher, if others are watching it, they will rearm */
3084     inotify_rm_watch (fs_fd, wd);
3085     }
3086    
3087     static void noinline
3088     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3089     {
3090     if (slot < 0)
3091 root 1.264 /* overflow, need to check for all hash slots */
3092 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3093 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3094     else
3095     {
3096     WL w_;
3097    
3098 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3099 root 1.152 {
3100     ev_stat *w = (ev_stat *)w_;
3101     w_ = w_->next; /* lets us remove this watcher and all before it */
3102    
3103     if (w->wd == wd || wd == -1)
3104     {
3105     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3106     {
3107 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3108 root 1.152 w->wd = -1;
3109     infy_add (EV_A_ w); /* re-add, no matter what */
3110     }
3111    
3112 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3113 root 1.152 }
3114     }
3115     }
3116     }
3117    
3118     static void
3119     infy_cb (EV_P_ ev_io *w, int revents)
3120     {
3121     char buf [EV_INOTIFY_BUFSIZE];
3122     int ofs;
3123     int len = read (fs_fd, buf, sizeof (buf));
3124    
3125 root 1.326 for (ofs = 0; ofs < len; )
3126     {
3127     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3128     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3129     ofs += sizeof (struct inotify_event) + ev->len;
3130     }
3131 root 1.152 }
3132    
3133 root 1.330 inline_size void
3134     ev_check_2625 (EV_P)
3135     {
3136     /* kernels < 2.6.25 are borked
3137     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3138     */
3139     if (ev_linux_version () < 0x020619)
3140 root 1.273 return;
3141 root 1.264
3142 root 1.273 fs_2625 = 1;
3143     }
3144 root 1.264
3145 root 1.315 inline_size int
3146     infy_newfd (void)
3147     {
3148     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3149     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3150     if (fd >= 0)
3151     return fd;
3152     #endif
3153     return inotify_init ();
3154     }
3155    
3156 root 1.284 inline_size void
3157 root 1.273 infy_init (EV_P)
3158     {
3159     if (fs_fd != -2)
3160     return;
3161 root 1.264
3162 root 1.273 fs_fd = -1;
3163 root 1.264
3164 root 1.330 ev_check_2625 (EV_A);
3165 root 1.264
3166 root 1.315 fs_fd = infy_newfd ();
3167 root 1.152
3168     if (fs_fd >= 0)
3169     {
3170 root 1.315 fd_intern (fs_fd);
3171 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3172     ev_set_priority (&fs_w, EV_MAXPRI);
3173     ev_io_start (EV_A_ &fs_w);
3174 root 1.317 ev_unref (EV_A);
3175 root 1.152 }
3176     }
3177    
3178 root 1.284 inline_size void
3179 root 1.154 infy_fork (EV_P)
3180     {
3181     int slot;
3182    
3183     if (fs_fd < 0)
3184     return;
3185    
3186 root 1.317 ev_ref (EV_A);
3187 root 1.315 ev_io_stop (EV_A_ &fs_w);
3188 root 1.154 close (fs_fd);
3189 root 1.315 fs_fd = infy_newfd ();
3190    
3191     if (fs_fd >= 0)
3192     {
3193     fd_intern (fs_fd);
3194     ev_io_set (&fs_w, fs_fd, EV_READ);
3195     ev_io_start (EV_A_ &fs_w);
3196 root 1.317 ev_unref (EV_A);
3197 root 1.315 }
3198 root 1.154
3199 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3200 root 1.154 {
3201     WL w_ = fs_hash [slot].head;
3202     fs_hash [slot].head = 0;
3203    
3204     while (w_)
3205     {
3206     ev_stat *w = (ev_stat *)w_;
3207     w_ = w_->next; /* lets us add this watcher */
3208    
3209     w->wd = -1;
3210    
3211     if (fs_fd >= 0)
3212     infy_add (EV_A_ w); /* re-add, no matter what */
3213     else
3214 root 1.318 {
3215     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3216     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3217     ev_timer_again (EV_A_ &w->timer);
3218     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3219     }
3220 root 1.154 }
3221     }
3222     }
3223    
3224 root 1.152 #endif
3225    
3226 root 1.255 #ifdef _WIN32
3227     # define EV_LSTAT(p,b) _stati64 (p, b)
3228     #else
3229     # define EV_LSTAT(p,b) lstat (p, b)
3230     #endif
3231    
3232 root 1.140 void
3233     ev_stat_stat (EV_P_ ev_stat *w)
3234     {
3235     if (lstat (w->path, &w->attr) < 0)
3236     w->attr.st_nlink = 0;
3237     else if (!w->attr.st_nlink)
3238     w->attr.st_nlink = 1;
3239     }
3240    
3241 root 1.157 static void noinline
3242 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3243     {
3244     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3245    
3246 root 1.320 ev_statdata prev = w->attr;
3247 root 1.140 ev_stat_stat (EV_A_ w);
3248    
3249 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3250     if (
3251 root 1.320 prev.st_dev != w->attr.st_dev
3252     || prev.st_ino != w->attr.st_ino
3253     || prev.st_mode != w->attr.st_mode
3254     || prev.st_nlink != w->attr.st_nlink
3255     || prev.st_uid != w->attr.st_uid
3256     || prev.st_gid != w->attr.st_gid
3257     || prev.st_rdev != w->attr.st_rdev
3258     || prev.st_size != w->attr.st_size
3259     || prev.st_atime != w->attr.st_atime
3260     || prev.st_mtime != w->attr.st_mtime
3261     || prev.st_ctime != w->attr.st_ctime
3262 root 1.156 ) {
3263 root 1.320 /* we only update w->prev on actual differences */
3264     /* in case we test more often than invoke the callback, */
3265     /* to ensure that prev is always different to attr */
3266     w->prev = prev;
3267    
3268 root 1.152 #if EV_USE_INOTIFY
3269 root 1.264 if (fs_fd >= 0)
3270     {
3271     infy_del (EV_A_ w);
3272     infy_add (EV_A_ w);
3273     ev_stat_stat (EV_A_ w); /* avoid race... */
3274     }
3275 root 1.152 #endif
3276    
3277     ev_feed_event (EV_A_ w, EV_STAT);
3278     }
3279 root 1.140 }
3280    
3281     void
3282     ev_stat_start (EV_P_ ev_stat *w)
3283     {
3284     if (expect_false (ev_is_active (w)))
3285     return;
3286    
3287     ev_stat_stat (EV_A_ w);
3288    
3289 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3290     w->interval = MIN_STAT_INTERVAL;
3291 root 1.143
3292 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3293 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3294 root 1.152
3295     #if EV_USE_INOTIFY
3296     infy_init (EV_A);
3297    
3298     if (fs_fd >= 0)
3299     infy_add (EV_A_ w);
3300     else
3301     #endif
3302 root 1.318 {
3303     ev_timer_again (EV_A_ &w->timer);
3304     ev_unref (EV_A);
3305     }
3306 root 1.140
3307     ev_start (EV_A_ (W)w, 1);
3308 root 1.248
3309     EV_FREQUENT_CHECK;
3310 root 1.140 }
3311    
3312     void
3313     ev_stat_stop (EV_P_ ev_stat *w)
3314     {
3315 root 1.166 clear_pending (EV_A_ (W)w);
3316 root 1.140 if (expect_false (!ev_is_active (w)))
3317     return;
3318    
3319 root 1.248 EV_FREQUENT_CHECK;
3320    
3321 root 1.152 #if EV_USE_INOTIFY
3322     infy_del (EV_A_ w);
3323     #endif
3324 root 1.318
3325     if (ev_is_active (&w->timer))
3326     {
3327     ev_ref (EV_A);
3328     ev_timer_stop (EV_A_ &w->timer);
3329     }
3330 root 1.140
3331 root 1.134 ev_stop (EV_A_ (W)w);
3332 root 1.248
3333     EV_FREQUENT_CHECK;
3334 root 1.134 }
3335     #endif
3336    
3337 root 1.164 #if EV_IDLE_ENABLE
3338 root 1.144 void
3339     ev_idle_start (EV_P_ ev_idle *w)
3340     {
3341     if (expect_false (ev_is_active (w)))
3342     return;
3343    
3344 root 1.164 pri_adjust (EV_A_ (W)w);
3345    
3346 root 1.248 EV_FREQUENT_CHECK;
3347    
3348 root 1.164 {
3349     int active = ++idlecnt [ABSPRI (w)];
3350    
3351     ++idleall;
3352     ev_start (EV_A_ (W)w, active);
3353    
3354     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3355     idles [ABSPRI (w)][active - 1] = w;
3356     }
3357 root 1.248
3358     EV_FREQUENT_CHECK;
3359 root 1.144 }
3360    
3361     void
3362     ev_idle_stop (EV_P_ ev_idle *w)
3363     {
3364 root 1.166 clear_pending (EV_A_ (W)w);
3365 root 1.144 if (expect_false (!ev_is_active (w)))
3366     return;
3367    
3368 root 1.248 EV_FREQUENT_CHECK;
3369    
3370 root 1.144 {
3371 root 1.230 int active = ev_active (w);
3372 root 1.164
3373     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3374 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3375 root 1.164
3376     ev_stop (EV_A_ (W)w);
3377     --idleall;
3378 root 1.144 }
3379 root 1.248
3380     EV_FREQUENT_CHECK;
3381 root 1.144 }
3382 root 1.164 #endif
3383 root 1.144
3384 root 1.337 #if EV_PREPARE_ENABLE
3385 root 1.144 void
3386     ev_prepare_start (EV_P_ ev_prepare *w)
3387     {
3388     if (expect_false (ev_is_active (w)))
3389     return;
3390    
3391 root 1.248 EV_FREQUENT_CHECK;
3392    
3393 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3394     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3395     prepares [preparecnt - 1] = w;
3396 root 1.248
3397     EV_FREQUENT_CHECK;
3398 root 1.144 }
3399    
3400     void
3401     ev_prepare_stop (EV_P_ ev_prepare *w)
3402     {
3403 root 1.166 clear_pending (EV_A_ (W)w);
3404 root 1.144 if (expect_false (!ev_is_active (w)))
3405     return;
3406    
3407 root 1.248 EV_FREQUENT_CHECK;
3408    
3409 root 1.144 {
3410 root 1.230 int active = ev_active (w);
3411    
3412 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3413 root 1.230 ev_active (prepares [active - 1]) = active;
3414 root 1.144 }
3415    
3416     ev_stop (EV_A_ (W)w);
3417 root 1.248
3418     EV_FREQUENT_CHECK;
3419 root 1.144 }
3420 root 1.337 #endif
3421 root 1.144
3422 root 1.337 #if EV_CHECK_ENABLE
3423 root 1.144 void
3424     ev_check_start (EV_P_ ev_check *w)
3425     {
3426     if (expect_false (ev_is_active (w)))
3427     return;
3428    
3429 root 1.248 EV_FREQUENT_CHECK;
3430    
3431 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3432     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3433     checks [checkcnt - 1] = w;
3434 root 1.248
3435     EV_FREQUENT_CHECK;
3436 root 1.144 }
3437    
3438     void
3439     ev_check_stop (EV_P_ ev_check *w)
3440     {
3441 root 1.166 clear_pending (EV_A_ (W)w);
3442 root 1.144 if (expect_false (!ev_is_active (w)))
3443     return;
3444    
3445 root 1.248 EV_FREQUENT_CHECK;
3446    
3447 root 1.144 {
3448 root 1.230 int active = ev_active (w);
3449    
3450 root 1.144 checks [active - 1] = checks [--checkcnt];
3451 root 1.230 ev_active (checks [active - 1]) = active;
3452 root 1.144 }
3453    
3454     ev_stop (EV_A_ (W)w);
3455 root 1.248
3456     EV_FREQUENT_CHECK;
3457 root 1.144 }
3458 root 1.337 #endif
3459 root 1.144
3460     #if EV_EMBED_ENABLE
3461     void noinline
3462     ev_embed_sweep (EV_P_ ev_embed *w)
3463     {
3464 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3465 root 1.144 }
3466    
3467     static void
3468 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3469 root 1.144 {
3470     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3471    
3472     if (ev_cb (w))
3473     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3474     else
3475 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3476 root 1.144 }
3477    
3478 root 1.189 static void
3479     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3480     {
3481     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3482    
3483 root 1.195 {
3484 root 1.306 EV_P = w->other;
3485 root 1.195
3486     while (fdchangecnt)
3487     {
3488     fd_reify (EV_A);
3489 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3490 root 1.195 }
3491     }
3492     }
3493    
3494 root 1.261 static void
3495     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3496     {
3497     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3498    
3499 root 1.277 ev_embed_stop (EV_A_ w);
3500    
3501 root 1.261 {
3502 root 1.306 EV_P = w->other;
3503 root 1.261
3504     ev_loop_fork (EV_A);
3505 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3506 root 1.261 }
3507 root 1.277
3508     ev_embed_start (EV_A_ w);
3509 root 1.261 }
3510    
3511 root 1.195 #if 0
3512     static void
3513     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3514     {
3515     ev_idle_stop (EV_A_ idle);
3516 root 1.189 }
3517 root 1.195 #endif
3518 root 1.189
3519 root 1.144 void
3520     ev_embed_start (EV_P_ ev_embed *w)
3521     {
3522     if (expect_false (ev_is_active (w)))
3523     return;
3524    
3525     {
3526 root 1.306 EV_P = w->other;
3527 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3528 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3529 root 1.144 }
3530    
3531 root 1.248 EV_FREQUENT_CHECK;
3532    
3533 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3534     ev_io_start (EV_A_ &w->io);
3535    
3536 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3537     ev_set_priority (&w->prepare, EV_MINPRI);
3538     ev_prepare_start (EV_A_ &w->prepare);
3539    
3540 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3541     ev_fork_start (EV_A_ &w->fork);
3542    
3543 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3544    
3545 root 1.144 ev_start (EV_A_ (W)w, 1);
3546 root 1.248
3547     EV_FREQUENT_CHECK;
3548 root 1.144 }
3549    
3550     void
3551     ev_embed_stop (EV_P_ ev_embed *w)
3552     {
3553 root 1.166 clear_pending (EV_A_ (W)w);
3554 root 1.144 if (expect_false (!ev_is_active (w)))
3555     return;
3556    
3557 root 1.248 EV_FREQUENT_CHECK;
3558    
3559 root 1.261 ev_io_stop (EV_A_ &w->io);
3560 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3561 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3562 root 1.248
3563 root 1.328 ev_stop (EV_A_ (W)w);
3564    
3565 root 1.248 EV_FREQUENT_CHECK;
3566 root 1.144 }
3567     #endif
3568    
3569 root 1.147 #if EV_FORK_ENABLE
3570     void
3571     ev_fork_start (EV_P_ ev_fork *w)
3572     {
3573     if (expect_false (ev_is_active (w)))
3574     return;
3575    
3576 root 1.248 EV_FREQUENT_CHECK;
3577    
3578 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3579     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3580     forks [forkcnt - 1] = w;
3581 root 1.248
3582     EV_FREQUENT_CHECK;
3583 root 1.147 }
3584    
3585     void
3586     ev_fork_stop (EV_P_ ev_fork *w)
3587     {
3588 root 1.166 clear_pending (EV_A_ (W)w);
3589 root 1.147 if (expect_false (!ev_is_active (w)))
3590     return;
3591    
3592 root 1.248 EV_FREQUENT_CHECK;
3593    
3594 root 1.147 {
3595 root 1.230 int active = ev_active (w);
3596    
3597 root 1.147 forks [active - 1] = forks [--forkcnt];
3598 root 1.230 ev_active (forks [active - 1]) = active;
3599 root 1.147 }
3600    
3601     ev_stop (EV_A_ (W)w);
3602 root 1.248
3603     EV_FREQUENT_CHECK;
3604 root 1.147 }
3605     #endif
3606    
3607 root 1.360 #if EV_CLEANUP_ENABLE
3608     void
3609     ev_cleanup_start (EV_P_ ev_cleanup *w)
3610     {
3611     if (expect_false (ev_is_active (w)))
3612     return;
3613    
3614     EV_FREQUENT_CHECK;
3615    
3616     ev_start (EV_A_ (W)w, ++cleanupcnt);
3617     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3618     cleanups [cleanupcnt - 1] = w;
3619    
3620 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
3621     ev_unref (EV_A);
3622 root 1.360 EV_FREQUENT_CHECK;
3623     }
3624    
3625     void
3626     ev_cleanup_stop (EV_P_ ev_cleanup *w)
3627     {
3628     clear_pending (EV_A_ (W)w);
3629     if (expect_false (!ev_is_active (w)))
3630     return;
3631    
3632     EV_FREQUENT_CHECK;
3633 root 1.362 ev_ref (EV_A);
3634 root 1.360
3635     {
3636     int active = ev_active (w);
3637    
3638     cleanups [active - 1] = cleanups [--cleanupcnt];
3639     ev_active (cleanups [active - 1]) = active;
3640     }
3641    
3642     ev_stop (EV_A_ (W)w);
3643    
3644     EV_FREQUENT_CHECK;
3645     }
3646     #endif
3647    
3648 root 1.207 #if EV_ASYNC_ENABLE
3649     void
3650     ev_async_start (EV_P_ ev_async *w)
3651     {
3652     if (expect_false (ev_is_active (w)))
3653     return;
3654    
3655 root 1.352 w->sent = 0;
3656    
3657 root 1.207 evpipe_init (EV_A);
3658    
3659 root 1.248 EV_FREQUENT_CHECK;
3660    
3661 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3662     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3663     asyncs [asynccnt - 1] = w;
3664 root 1.248
3665     EV_FREQUENT_CHECK;
3666 root 1.207 }
3667    
3668     void
3669     ev_async_stop (EV_P_ ev_async *w)
3670     {
3671     clear_pending (EV_A_ (W)w);
3672     if (expect_false (!ev_is_active (w)))
3673     return;
3674    
3675 root 1.248 EV_FREQUENT_CHECK;
3676    
3677 root 1.207 {
3678 root 1.230 int active = ev_active (w);
3679    
3680 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3681 root 1.230 ev_active (asyncs [active - 1]) = active;
3682 root 1.207 }
3683    
3684     ev_stop (EV_A_ (W)w);
3685 root 1.248
3686     EV_FREQUENT_CHECK;
3687 root 1.207 }
3688    
3689     void
3690     ev_async_send (EV_P_ ev_async *w)
3691     {
3692     w->sent = 1;
3693 root 1.307 evpipe_write (EV_A_ &async_pending);
3694 root 1.207 }
3695     #endif
3696    
3697 root 1.1 /*****************************************************************************/
3698 root 1.10
3699 root 1.16 struct ev_once
3700     {
3701 root 1.136 ev_io io;
3702     ev_timer to;
3703 root 1.16 void (*cb)(int revents, void *arg);
3704     void *arg;
3705     };
3706    
3707     static void
3708 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3709 root 1.16 {
3710     void (*cb)(int revents, void *arg) = once->cb;
3711     void *arg = once->arg;
3712    
3713 root 1.259 ev_io_stop (EV_A_ &once->io);
3714 root 1.51 ev_timer_stop (EV_A_ &once->to);
3715 root 1.69 ev_free (once);
3716 root 1.16
3717     cb (revents, arg);
3718     }
3719    
3720     static void
3721 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3722 root 1.16 {
3723 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3724    
3725     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3726 root 1.16 }
3727    
3728     static void
3729 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3730 root 1.16 {
3731 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3732    
3733     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3734 root 1.16 }
3735    
3736     void
3737 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3738 root 1.16 {
3739 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3740 root 1.16
3741 root 1.123 if (expect_false (!once))
3742 root 1.16 {
3743 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3744 root 1.123 return;
3745     }
3746    
3747     once->cb = cb;
3748     once->arg = arg;
3749 root 1.16
3750 root 1.123 ev_init (&once->io, once_cb_io);
3751     if (fd >= 0)
3752     {
3753     ev_io_set (&once->io, fd, events);
3754     ev_io_start (EV_A_ &once->io);
3755     }
3756 root 1.16
3757 root 1.123 ev_init (&once->to, once_cb_to);
3758     if (timeout >= 0.)
3759     {
3760     ev_timer_set (&once->to, timeout, 0.);
3761     ev_timer_start (EV_A_ &once->to);
3762 root 1.16 }
3763     }
3764    
3765 root 1.282 /*****************************************************************************/
3766    
3767 root 1.288 #if EV_WALK_ENABLE
3768 root 1.282 void
3769     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3770     {
3771     int i, j;
3772     ev_watcher_list *wl, *wn;
3773    
3774     if (types & (EV_IO | EV_EMBED))
3775     for (i = 0; i < anfdmax; ++i)
3776     for (wl = anfds [i].head; wl; )
3777     {
3778     wn = wl->next;
3779    
3780     #if EV_EMBED_ENABLE
3781     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3782     {
3783     if (types & EV_EMBED)
3784     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3785     }
3786     else
3787     #endif
3788     #if EV_USE_INOTIFY
3789     if (ev_cb ((ev_io *)wl) == infy_cb)
3790     ;
3791     else
3792     #endif
3793 root 1.288 if ((ev_io *)wl != &pipe_w)
3794 root 1.282 if (types & EV_IO)
3795     cb (EV_A_ EV_IO, wl);
3796    
3797     wl = wn;
3798     }
3799    
3800     if (types & (EV_TIMER | EV_STAT))
3801     for (i = timercnt + HEAP0; i-- > HEAP0; )
3802     #if EV_STAT_ENABLE
3803     /*TODO: timer is not always active*/
3804     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3805     {
3806     if (types & EV_STAT)
3807     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3808     }
3809     else
3810     #endif
3811     if (types & EV_TIMER)
3812     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3813    
3814     #if EV_PERIODIC_ENABLE
3815     if (types & EV_PERIODIC)
3816     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3817     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3818     #endif
3819    
3820     #if EV_IDLE_ENABLE
3821     if (types & EV_IDLE)
3822     for (j = NUMPRI; i--; )
3823     for (i = idlecnt [j]; i--; )
3824     cb (EV_A_ EV_IDLE, idles [j][i]);
3825     #endif
3826    
3827     #if EV_FORK_ENABLE
3828     if (types & EV_FORK)
3829     for (i = forkcnt; i--; )
3830     if (ev_cb (forks [i]) != embed_fork_cb)
3831     cb (EV_A_ EV_FORK, forks [i]);
3832     #endif
3833    
3834     #if EV_ASYNC_ENABLE
3835     if (types & EV_ASYNC)
3836     for (i = asynccnt; i--; )
3837     cb (EV_A_ EV_ASYNC, asyncs [i]);
3838     #endif
3839    
3840 root 1.337 #if EV_PREPARE_ENABLE
3841 root 1.282 if (types & EV_PREPARE)
3842     for (i = preparecnt; i--; )
3843 root 1.337 # if EV_EMBED_ENABLE
3844 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3845 root 1.337 # endif
3846     cb (EV_A_ EV_PREPARE, prepares [i]);
3847 root 1.282 #endif
3848    
3849 root 1.337 #if EV_CHECK_ENABLE
3850 root 1.282 if (types & EV_CHECK)
3851     for (i = checkcnt; i--; )
3852     cb (EV_A_ EV_CHECK, checks [i]);
3853 root 1.337 #endif
3854 root 1.282
3855 root 1.337 #if EV_SIGNAL_ENABLE
3856 root 1.282 if (types & EV_SIGNAL)
3857 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
3858 root 1.282 for (wl = signals [i].head; wl; )
3859     {
3860     wn = wl->next;
3861     cb (EV_A_ EV_SIGNAL, wl);
3862     wl = wn;
3863     }
3864 root 1.337 #endif
3865 root 1.282
3866 root 1.337 #if EV_CHILD_ENABLE
3867 root 1.282 if (types & EV_CHILD)
3868 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
3869 root 1.282 for (wl = childs [i]; wl; )
3870     {
3871     wn = wl->next;
3872     cb (EV_A_ EV_CHILD, wl);
3873     wl = wn;
3874     }
3875 root 1.337 #endif
3876 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
3877     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3878     }
3879     #endif
3880    
3881 root 1.188 #if EV_MULTIPLICITY
3882     #include "ev_wrap.h"
3883     #endif
3884    
3885 root 1.354 EV_CPP(})
3886 root 1.87