ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.369
Committed: Sun Jan 23 18:53:06 2011 UTC (13 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.368: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.274 # if HAVE_CLOCK_SYSCALL
49     # ifndef EV_USE_CLOCK_SYSCALL
50     # define EV_USE_CLOCK_SYSCALL 1
51     # ifndef EV_USE_REALTIME
52     # define EV_USE_REALTIME 0
53     # endif
54     # ifndef EV_USE_MONOTONIC
55     # define EV_USE_MONOTONIC 1
56     # endif
57     # endif
58 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
59     # define EV_USE_CLOCK_SYSCALL 0
60 root 1.274 # endif
61    
62 root 1.60 # if HAVE_CLOCK_GETTIME
63 root 1.97 # ifndef EV_USE_MONOTONIC
64     # define EV_USE_MONOTONIC 1
65     # endif
66     # ifndef EV_USE_REALTIME
67 root 1.279 # define EV_USE_REALTIME 0
68 root 1.97 # endif
69 root 1.126 # else
70     # ifndef EV_USE_MONOTONIC
71     # define EV_USE_MONOTONIC 0
72     # endif
73     # ifndef EV_USE_REALTIME
74     # define EV_USE_REALTIME 0
75     # endif
76 root 1.60 # endif
77    
78 root 1.343 # if HAVE_NANOSLEEP
79     # ifndef EV_USE_NANOSLEEP
80     # define EV_USE_NANOSLEEP EV_FEATURE_OS
81     # endif
82     # else
83     # undef EV_USE_NANOSLEEP
84 root 1.193 # define EV_USE_NANOSLEEP 0
85     # endif
86    
87 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
88     # ifndef EV_USE_SELECT
89 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
90 root 1.127 # endif
91 root 1.343 # else
92     # undef EV_USE_SELECT
93     # define EV_USE_SELECT 0
94 root 1.60 # endif
95    
96 root 1.343 # if HAVE_POLL && HAVE_POLL_H
97     # ifndef EV_USE_POLL
98 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
99 root 1.127 # endif
100 root 1.343 # else
101     # undef EV_USE_POLL
102     # define EV_USE_POLL 0
103 root 1.60 # endif
104 root 1.127
105 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106     # ifndef EV_USE_EPOLL
107 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
108 root 1.127 # endif
109 root 1.343 # else
110     # undef EV_USE_EPOLL
111     # define EV_USE_EPOLL 0
112 root 1.60 # endif
113 root 1.127
114 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115     # ifndef EV_USE_KQUEUE
116 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117 root 1.127 # endif
118 root 1.343 # else
119     # undef EV_USE_KQUEUE
120     # define EV_USE_KQUEUE 0
121 root 1.60 # endif
122 root 1.127
123 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
124     # ifndef EV_USE_PORT
125 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
126 root 1.127 # endif
127 root 1.343 # else
128     # undef EV_USE_PORT
129     # define EV_USE_PORT 0
130 root 1.118 # endif
131    
132 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133     # ifndef EV_USE_INOTIFY
134 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
135 root 1.152 # endif
136 root 1.343 # else
137     # undef EV_USE_INOTIFY
138     # define EV_USE_INOTIFY 0
139 root 1.152 # endif
140    
141 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142     # ifndef EV_USE_SIGNALFD
143 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
144 root 1.303 # endif
145 root 1.343 # else
146     # undef EV_USE_SIGNALFD
147     # define EV_USE_SIGNALFD 0
148 root 1.303 # endif
149    
150 root 1.343 # if HAVE_EVENTFD
151     # ifndef EV_USE_EVENTFD
152 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
153 root 1.220 # endif
154 root 1.343 # else
155     # undef EV_USE_EVENTFD
156     # define EV_USE_EVENTFD 0
157 root 1.220 # endif
158 root 1.250
159 root 1.29 #endif
160 root 1.17
161 root 1.1 #include <math.h>
162     #include <stdlib.h>
163 root 1.319 #include <string.h>
164 root 1.7 #include <fcntl.h>
165 root 1.16 #include <stddef.h>
166 root 1.1
167     #include <stdio.h>
168    
169 root 1.4 #include <assert.h>
170 root 1.1 #include <errno.h>
171 root 1.22 #include <sys/types.h>
172 root 1.71 #include <time.h>
173 root 1.326 #include <limits.h>
174 root 1.71
175 root 1.72 #include <signal.h>
176 root 1.71
177 root 1.152 #ifdef EV_H
178     # include EV_H
179     #else
180     # include "ev.h"
181     #endif
182    
183 root 1.354 EV_CPP(extern "C" {)
184    
185 root 1.103 #ifndef _WIN32
186 root 1.71 # include <sys/time.h>
187 root 1.45 # include <sys/wait.h>
188 root 1.140 # include <unistd.h>
189 root 1.103 #else
190 root 1.256 # include <io.h>
191 root 1.103 # define WIN32_LEAN_AND_MEAN
192     # include <windows.h>
193     # ifndef EV_SELECT_IS_WINSOCKET
194     # define EV_SELECT_IS_WINSOCKET 1
195     # endif
196 root 1.331 # undef EV_AVOID_STDIO
197 root 1.45 #endif
198 root 1.103
199 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
200     * a limit of 1024 into their select. Where people have brains,
201     * OS X engineers apparently have a vacuum. Or maybe they were
202     * ordered to have a vacuum, or they do anything for money.
203     * This might help. Or not.
204     */
205     #define _DARWIN_UNLIMITED_SELECT 1
206    
207 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
208 root 1.40
209 root 1.305 /* try to deduce the maximum number of signals on this platform */
210     #if defined (EV_NSIG)
211     /* use what's provided */
212     #elif defined (NSIG)
213     # define EV_NSIG (NSIG)
214     #elif defined(_NSIG)
215     # define EV_NSIG (_NSIG)
216     #elif defined (SIGMAX)
217     # define EV_NSIG (SIGMAX+1)
218     #elif defined (SIG_MAX)
219     # define EV_NSIG (SIG_MAX+1)
220     #elif defined (_SIG_MAX)
221     # define EV_NSIG (_SIG_MAX+1)
222     #elif defined (MAXSIG)
223     # define EV_NSIG (MAXSIG+1)
224     #elif defined (MAX_SIG)
225     # define EV_NSIG (MAX_SIG+1)
226     #elif defined (SIGARRAYSIZE)
227 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228 root 1.305 #elif defined (_sys_nsig)
229     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230     #else
231     # error "unable to find value for NSIG, please report"
232 root 1.336 /* to make it compile regardless, just remove the above line, */
233     /* but consider reporting it, too! :) */
234 root 1.306 # define EV_NSIG 65
235 root 1.305 #endif
236    
237 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
238     # if __linux && __GLIBC__ >= 2
239 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240 root 1.274 # else
241     # define EV_USE_CLOCK_SYSCALL 0
242     # endif
243     #endif
244    
245 root 1.29 #ifndef EV_USE_MONOTONIC
246 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
248 root 1.253 # else
249     # define EV_USE_MONOTONIC 0
250     # endif
251 root 1.37 #endif
252    
253 root 1.118 #ifndef EV_USE_REALTIME
254 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255 root 1.118 #endif
256    
257 root 1.193 #ifndef EV_USE_NANOSLEEP
258 root 1.253 # if _POSIX_C_SOURCE >= 199309L
259 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
260 root 1.253 # else
261     # define EV_USE_NANOSLEEP 0
262     # endif
263 root 1.193 #endif
264    
265 root 1.29 #ifndef EV_USE_SELECT
266 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
267 root 1.10 #endif
268    
269 root 1.59 #ifndef EV_USE_POLL
270 root 1.104 # ifdef _WIN32
271     # define EV_USE_POLL 0
272     # else
273 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
274 root 1.104 # endif
275 root 1.41 #endif
276    
277 root 1.29 #ifndef EV_USE_EPOLL
278 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
280 root 1.220 # else
281     # define EV_USE_EPOLL 0
282     # endif
283 root 1.10 #endif
284    
285 root 1.44 #ifndef EV_USE_KQUEUE
286     # define EV_USE_KQUEUE 0
287     #endif
288    
289 root 1.118 #ifndef EV_USE_PORT
290     # define EV_USE_PORT 0
291 root 1.40 #endif
292    
293 root 1.152 #ifndef EV_USE_INOTIFY
294 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
296 root 1.220 # else
297     # define EV_USE_INOTIFY 0
298     # endif
299 root 1.152 #endif
300    
301 root 1.149 #ifndef EV_PID_HASHSIZE
302 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303 root 1.149 #endif
304    
305 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
306 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307 root 1.152 #endif
308    
309 root 1.220 #ifndef EV_USE_EVENTFD
310     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
312 root 1.220 # else
313     # define EV_USE_EVENTFD 0
314     # endif
315     #endif
316    
317 root 1.303 #ifndef EV_USE_SIGNALFD
318 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
320 root 1.303 # else
321     # define EV_USE_SIGNALFD 0
322     # endif
323     #endif
324    
325 root 1.249 #if 0 /* debugging */
326 root 1.250 # define EV_VERIFY 3
327 root 1.249 # define EV_USE_4HEAP 1
328     # define EV_HEAP_CACHE_AT 1
329     #endif
330    
331 root 1.250 #ifndef EV_VERIFY
332 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333 root 1.250 #endif
334    
335 root 1.243 #ifndef EV_USE_4HEAP
336 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
337 root 1.243 #endif
338    
339     #ifndef EV_HEAP_CACHE_AT
340 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341 root 1.243 #endif
342    
343 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344     /* which makes programs even slower. might work on other unices, too. */
345     #if EV_USE_CLOCK_SYSCALL
346     # include <syscall.h>
347     # ifdef SYS_clock_gettime
348     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349     # undef EV_USE_MONOTONIC
350     # define EV_USE_MONOTONIC 1
351     # else
352     # undef EV_USE_CLOCK_SYSCALL
353     # define EV_USE_CLOCK_SYSCALL 0
354     # endif
355     #endif
356    
357 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
358 root 1.40
359 root 1.325 #ifdef _AIX
360     /* AIX has a completely broken poll.h header */
361     # undef EV_USE_POLL
362     # define EV_USE_POLL 0
363     #endif
364    
365 root 1.40 #ifndef CLOCK_MONOTONIC
366     # undef EV_USE_MONOTONIC
367     # define EV_USE_MONOTONIC 0
368     #endif
369    
370 root 1.31 #ifndef CLOCK_REALTIME
371 root 1.40 # undef EV_USE_REALTIME
372 root 1.31 # define EV_USE_REALTIME 0
373     #endif
374 root 1.40
375 root 1.152 #if !EV_STAT_ENABLE
376 root 1.185 # undef EV_USE_INOTIFY
377 root 1.152 # define EV_USE_INOTIFY 0
378     #endif
379    
380 root 1.193 #if !EV_USE_NANOSLEEP
381     # ifndef _WIN32
382     # include <sys/select.h>
383     # endif
384     #endif
385    
386 root 1.152 #if EV_USE_INOTIFY
387 root 1.273 # include <sys/statfs.h>
388 root 1.152 # include <sys/inotify.h>
389 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390     # ifndef IN_DONT_FOLLOW
391     # undef EV_USE_INOTIFY
392     # define EV_USE_INOTIFY 0
393     # endif
394 root 1.152 #endif
395    
396 root 1.185 #if EV_SELECT_IS_WINSOCKET
397     # include <winsock.h>
398     #endif
399    
400 root 1.220 #if EV_USE_EVENTFD
401     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402 root 1.221 # include <stdint.h>
403 root 1.303 # ifndef EFD_NONBLOCK
404     # define EFD_NONBLOCK O_NONBLOCK
405     # endif
406     # ifndef EFD_CLOEXEC
407 root 1.311 # ifdef O_CLOEXEC
408     # define EFD_CLOEXEC O_CLOEXEC
409     # else
410     # define EFD_CLOEXEC 02000000
411     # endif
412 root 1.303 # endif
413 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414 root 1.220 #endif
415    
416 root 1.303 #if EV_USE_SIGNALFD
417 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418     # include <stdint.h>
419     # ifndef SFD_NONBLOCK
420     # define SFD_NONBLOCK O_NONBLOCK
421     # endif
422     # ifndef SFD_CLOEXEC
423     # ifdef O_CLOEXEC
424     # define SFD_CLOEXEC O_CLOEXEC
425     # else
426     # define SFD_CLOEXEC 02000000
427     # endif
428     # endif
429 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430 root 1.314
431     struct signalfd_siginfo
432     {
433     uint32_t ssi_signo;
434     char pad[128 - sizeof (uint32_t)];
435     };
436 root 1.303 #endif
437    
438 root 1.40 /**/
439 root 1.1
440 root 1.250 #if EV_VERIFY >= 3
441 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
442 root 1.248 #else
443     # define EV_FREQUENT_CHECK do { } while (0)
444     #endif
445    
446 root 1.176 /*
447     * This is used to avoid floating point rounding problems.
448     * It is added to ev_rt_now when scheduling periodics
449     * to ensure progress, time-wise, even when rounding
450     * errors are against us.
451 root 1.177 * This value is good at least till the year 4000.
452 root 1.176 * Better solutions welcome.
453     */
454     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455    
456 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
457 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
458 root 1.1
459 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461 root 1.347
462 root 1.185 #if __GNUC__ >= 4
463 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
464 root 1.169 # define noinline __attribute__ ((noinline))
465 root 1.40 #else
466     # define expect(expr,value) (expr)
467 root 1.140 # define noinline
468 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469 root 1.169 # define inline
470     # endif
471 root 1.40 #endif
472    
473     #define expect_false(expr) expect ((expr) != 0, 0)
474     #define expect_true(expr) expect ((expr) != 0, 1)
475 root 1.169 #define inline_size static inline
476    
477 root 1.338 #if EV_FEATURE_CODE
478     # define inline_speed static inline
479     #else
480 root 1.169 # define inline_speed static noinline
481     #endif
482 root 1.40
483 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484    
485     #if EV_MINPRI == EV_MAXPRI
486     # define ABSPRI(w) (((W)w), 0)
487     #else
488     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489     #endif
490 root 1.42
491 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
492 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
493 root 1.103
494 root 1.136 typedef ev_watcher *W;
495     typedef ev_watcher_list *WL;
496     typedef ev_watcher_time *WT;
497 root 1.10
498 root 1.229 #define ev_active(w) ((W)(w))->active
499 root 1.228 #define ev_at(w) ((WT)(w))->at
500    
501 root 1.279 #if EV_USE_REALTIME
502 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
503 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
504 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505     #endif
506    
507     #if EV_USE_MONOTONIC
508 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509 root 1.198 #endif
510 root 1.54
511 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
512     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513     #endif
514     #ifndef EV_WIN32_HANDLE_TO_FD
515 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516 root 1.313 #endif
517     #ifndef EV_WIN32_CLOSE_FD
518     # define EV_WIN32_CLOSE_FD(fd) close (fd)
519     #endif
520    
521 root 1.103 #ifdef _WIN32
522 root 1.98 # include "ev_win32.c"
523     #endif
524 root 1.67
525 root 1.53 /*****************************************************************************/
526 root 1.1
527 root 1.356 #ifdef __linux
528     # include <sys/utsname.h>
529     #endif
530    
531 root 1.355 static unsigned int noinline
532     ev_linux_version (void)
533     {
534     #ifdef __linux
535 root 1.359 unsigned int v = 0;
536 root 1.355 struct utsname buf;
537     int i;
538     char *p = buf.release;
539    
540     if (uname (&buf))
541     return 0;
542    
543     for (i = 3+1; --i; )
544     {
545     unsigned int c = 0;
546    
547     for (;;)
548     {
549     if (*p >= '0' && *p <= '9')
550     c = c * 10 + *p++ - '0';
551     else
552     {
553     p += *p == '.';
554     break;
555     }
556     }
557    
558     v = (v << 8) | c;
559     }
560    
561     return v;
562     #else
563     return 0;
564     #endif
565     }
566    
567     /*****************************************************************************/
568    
569 root 1.331 #if EV_AVOID_STDIO
570     static void noinline
571     ev_printerr (const char *msg)
572     {
573     write (STDERR_FILENO, msg, strlen (msg));
574     }
575     #endif
576    
577 root 1.70 static void (*syserr_cb)(const char *msg);
578 root 1.69
579 root 1.141 void
580     ev_set_syserr_cb (void (*cb)(const char *msg))
581 root 1.69 {
582     syserr_cb = cb;
583     }
584    
585 root 1.141 static void noinline
586 root 1.269 ev_syserr (const char *msg)
587 root 1.69 {
588 root 1.70 if (!msg)
589     msg = "(libev) system error";
590    
591 root 1.69 if (syserr_cb)
592 root 1.70 syserr_cb (msg);
593 root 1.69 else
594     {
595 root 1.330 #if EV_AVOID_STDIO
596 root 1.331 ev_printerr (msg);
597     ev_printerr (": ");
598 root 1.365 ev_printerr (strerror (errno));
599 root 1.331 ev_printerr ("\n");
600 root 1.330 #else
601 root 1.70 perror (msg);
602 root 1.330 #endif
603 root 1.69 abort ();
604     }
605     }
606    
607 root 1.224 static void *
608     ev_realloc_emul (void *ptr, long size)
609     {
610 root 1.334 #if __GLIBC__
611     return realloc (ptr, size);
612     #else
613 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
614 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
615 root 1.224 * the single unix specification, so work around them here.
616     */
617 root 1.333
618 root 1.224 if (size)
619     return realloc (ptr, size);
620    
621     free (ptr);
622     return 0;
623 root 1.334 #endif
624 root 1.224 }
625    
626     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
627 root 1.69
628 root 1.141 void
629 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
630 root 1.69 {
631     alloc = cb;
632     }
633    
634 root 1.150 inline_speed void *
635 root 1.155 ev_realloc (void *ptr, long size)
636 root 1.69 {
637 root 1.224 ptr = alloc (ptr, size);
638 root 1.69
639     if (!ptr && size)
640     {
641 root 1.330 #if EV_AVOID_STDIO
642 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643 root 1.330 #else
644 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645 root 1.330 #endif
646 root 1.69 abort ();
647     }
648    
649     return ptr;
650     }
651    
652     #define ev_malloc(size) ev_realloc (0, (size))
653     #define ev_free(ptr) ev_realloc ((ptr), 0)
654    
655     /*****************************************************************************/
656    
657 root 1.298 /* set in reify when reification needed */
658     #define EV_ANFD_REIFY 1
659    
660 root 1.288 /* file descriptor info structure */
661 root 1.53 typedef struct
662     {
663 root 1.68 WL head;
664 root 1.288 unsigned char events; /* the events watched for */
665 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
667 root 1.269 unsigned char unused;
668     #if EV_USE_EPOLL
669 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
670 root 1.269 #endif
671 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
672 root 1.103 SOCKET handle;
673     #endif
674 root 1.357 #if EV_USE_IOCP
675     OVERLAPPED or, ow;
676     #endif
677 root 1.53 } ANFD;
678 root 1.1
679 root 1.288 /* stores the pending event set for a given watcher */
680 root 1.53 typedef struct
681     {
682     W w;
683 root 1.288 int events; /* the pending event set for the given watcher */
684 root 1.53 } ANPENDING;
685 root 1.51
686 root 1.155 #if EV_USE_INOTIFY
687 root 1.241 /* hash table entry per inotify-id */
688 root 1.152 typedef struct
689     {
690     WL head;
691 root 1.155 } ANFS;
692 root 1.152 #endif
693    
694 root 1.241 /* Heap Entry */
695     #if EV_HEAP_CACHE_AT
696 root 1.288 /* a heap element */
697 root 1.241 typedef struct {
698 root 1.243 ev_tstamp at;
699 root 1.241 WT w;
700     } ANHE;
701    
702 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
703     #define ANHE_at(he) (he).at /* access cached at, read-only */
704     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705 root 1.241 #else
706 root 1.288 /* a heap element */
707 root 1.241 typedef WT ANHE;
708    
709 root 1.248 #define ANHE_w(he) (he)
710     #define ANHE_at(he) (he)->at
711     #define ANHE_at_cache(he)
712 root 1.241 #endif
713    
714 root 1.55 #if EV_MULTIPLICITY
715 root 1.54
716 root 1.80 struct ev_loop
717     {
718 root 1.86 ev_tstamp ev_rt_now;
719 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
720 root 1.80 #define VAR(name,decl) decl;
721     #include "ev_vars.h"
722     #undef VAR
723     };
724     #include "ev_wrap.h"
725    
726 root 1.116 static struct ev_loop default_loop_struct;
727     struct ev_loop *ev_default_loop_ptr;
728 root 1.54
729 root 1.53 #else
730 root 1.54
731 root 1.86 ev_tstamp ev_rt_now;
732 root 1.80 #define VAR(name,decl) static decl;
733     #include "ev_vars.h"
734     #undef VAR
735    
736 root 1.116 static int ev_default_loop_ptr;
737 root 1.54
738 root 1.51 #endif
739 root 1.1
740 root 1.338 #if EV_FEATURE_API
741 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
744     #else
745 root 1.298 # define EV_RELEASE_CB (void)0
746     # define EV_ACQUIRE_CB (void)0
747 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748     #endif
749    
750 root 1.353 #define EVBREAK_RECURSE 0x80
751 root 1.298
752 root 1.8 /*****************************************************************************/
753    
754 root 1.292 #ifndef EV_HAVE_EV_TIME
755 root 1.141 ev_tstamp
756 root 1.1 ev_time (void)
757     {
758 root 1.29 #if EV_USE_REALTIME
759 root 1.279 if (expect_true (have_realtime))
760     {
761     struct timespec ts;
762     clock_gettime (CLOCK_REALTIME, &ts);
763     return ts.tv_sec + ts.tv_nsec * 1e-9;
764     }
765     #endif
766    
767 root 1.1 struct timeval tv;
768     gettimeofday (&tv, 0);
769     return tv.tv_sec + tv.tv_usec * 1e-6;
770     }
771 root 1.292 #endif
772 root 1.1
773 root 1.284 inline_size ev_tstamp
774 root 1.1 get_clock (void)
775     {
776 root 1.29 #if EV_USE_MONOTONIC
777 root 1.40 if (expect_true (have_monotonic))
778 root 1.1 {
779     struct timespec ts;
780     clock_gettime (CLOCK_MONOTONIC, &ts);
781     return ts.tv_sec + ts.tv_nsec * 1e-9;
782     }
783     #endif
784    
785     return ev_time ();
786     }
787    
788 root 1.85 #if EV_MULTIPLICITY
789 root 1.51 ev_tstamp
790     ev_now (EV_P)
791     {
792 root 1.85 return ev_rt_now;
793 root 1.51 }
794 root 1.85 #endif
795 root 1.51
796 root 1.193 void
797     ev_sleep (ev_tstamp delay)
798     {
799     if (delay > 0.)
800     {
801     #if EV_USE_NANOSLEEP
802     struct timespec ts;
803    
804 root 1.348 EV_TS_SET (ts, delay);
805 root 1.193 nanosleep (&ts, 0);
806     #elif defined(_WIN32)
807 root 1.217 Sleep ((unsigned long)(delay * 1e3));
808 root 1.193 #else
809     struct timeval tv;
810    
811 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
812 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
813 root 1.257 /* by older ones */
814 sf-exg 1.349 EV_TV_SET (tv, delay);
815 root 1.193 select (0, 0, 0, 0, &tv);
816     #endif
817     }
818     }
819    
820 root 1.368 inline_speed int
821     ev_timeout_to_ms (ev_tstamp timeout)
822     {
823     int ms = timeout * 1000. + .999999;
824    
825     return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
826     }
827    
828 root 1.193 /*****************************************************************************/
829    
830 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
831 root 1.232
832 root 1.288 /* find a suitable new size for the given array, */
833 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
834 root 1.284 inline_size int
835 root 1.163 array_nextsize (int elem, int cur, int cnt)
836     {
837     int ncur = cur + 1;
838    
839     do
840     ncur <<= 1;
841     while (cnt > ncur);
842    
843 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
844     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
845 root 1.163 {
846     ncur *= elem;
847 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
848 root 1.163 ncur = ncur - sizeof (void *) * 4;
849     ncur /= elem;
850     }
851    
852     return ncur;
853     }
854    
855 root 1.171 static noinline void *
856 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
857     {
858     *cur = array_nextsize (elem, *cur, cnt);
859     return ev_realloc (base, elem * *cur);
860     }
861 root 1.29
862 root 1.265 #define array_init_zero(base,count) \
863     memset ((void *)(base), 0, sizeof (*(base)) * (count))
864    
865 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
866 root 1.163 if (expect_false ((cnt) > (cur))) \
867 root 1.69 { \
868 root 1.163 int ocur_ = (cur); \
869     (base) = (type *)array_realloc \
870     (sizeof (type), (base), &(cur), (cnt)); \
871     init ((base) + (ocur_), (cur) - ocur_); \
872 root 1.1 }
873    
874 root 1.163 #if 0
875 root 1.74 #define array_slim(type,stem) \
876 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
877     { \
878     stem ## max = array_roundsize (stem ## cnt >> 1); \
879 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
880 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
881     }
882 root 1.163 #endif
883 root 1.67
884 root 1.65 #define array_free(stem, idx) \
885 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
886 root 1.65
887 root 1.8 /*****************************************************************************/
888    
889 root 1.288 /* dummy callback for pending events */
890     static void noinline
891     pendingcb (EV_P_ ev_prepare *w, int revents)
892     {
893     }
894    
895 root 1.140 void noinline
896 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
897 root 1.1 {
898 root 1.78 W w_ = (W)w;
899 root 1.171 int pri = ABSPRI (w_);
900 root 1.78
901 root 1.123 if (expect_false (w_->pending))
902 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
903     else
904 root 1.32 {
905 root 1.171 w_->pending = ++pendingcnt [pri];
906     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
907     pendings [pri][w_->pending - 1].w = w_;
908     pendings [pri][w_->pending - 1].events = revents;
909 root 1.32 }
910 root 1.1 }
911    
912 root 1.284 inline_speed void
913     feed_reverse (EV_P_ W w)
914     {
915     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
916     rfeeds [rfeedcnt++] = w;
917     }
918    
919     inline_size void
920     feed_reverse_done (EV_P_ int revents)
921     {
922     do
923     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
924     while (rfeedcnt);
925     }
926    
927     inline_speed void
928 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
929 root 1.27 {
930     int i;
931    
932     for (i = 0; i < eventcnt; ++i)
933 root 1.78 ev_feed_event (EV_A_ events [i], type);
934 root 1.27 }
935    
936 root 1.141 /*****************************************************************************/
937    
938 root 1.284 inline_speed void
939 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
940 root 1.1 {
941     ANFD *anfd = anfds + fd;
942 root 1.136 ev_io *w;
943 root 1.1
944 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
945 root 1.1 {
946 root 1.79 int ev = w->events & revents;
947 root 1.1
948     if (ev)
949 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
950 root 1.1 }
951     }
952    
953 root 1.298 /* do not submit kernel events for fds that have reify set */
954     /* because that means they changed while we were polling for new events */
955     inline_speed void
956     fd_event (EV_P_ int fd, int revents)
957     {
958     ANFD *anfd = anfds + fd;
959    
960     if (expect_true (!anfd->reify))
961 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
962 root 1.298 }
963    
964 root 1.79 void
965     ev_feed_fd_event (EV_P_ int fd, int revents)
966     {
967 root 1.168 if (fd >= 0 && fd < anfdmax)
968 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
969 root 1.79 }
970    
971 root 1.288 /* make sure the external fd watch events are in-sync */
972     /* with the kernel/libev internal state */
973 root 1.284 inline_size void
974 root 1.51 fd_reify (EV_P)
975 root 1.9 {
976     int i;
977    
978 root 1.27 for (i = 0; i < fdchangecnt; ++i)
979     {
980     int fd = fdchanges [i];
981     ANFD *anfd = anfds + fd;
982 root 1.136 ev_io *w;
983 root 1.27
984 root 1.350 unsigned char o_events = anfd->events;
985     unsigned char o_reify = anfd->reify;
986 root 1.27
987 root 1.350 anfd->reify = 0;
988 root 1.27
989 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
990 root 1.350 if (o_reify & EV__IOFDSET)
991 root 1.103 {
992 root 1.254 unsigned long arg;
993 root 1.313 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
994 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
995 root 1.357 printf ("oi %d %x\n", fd, anfd->handle);//D
996 root 1.103 }
997     #endif
998    
999 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1000     {
1001     anfd->events = 0;
1002 root 1.184
1003 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1004     anfd->events |= (unsigned char)w->events;
1005 root 1.27
1006 root 1.351 if (o_events != anfd->events)
1007 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1008     }
1009    
1010     if (o_reify & EV__IOFDSET)
1011     backend_modify (EV_A_ fd, o_events, anfd->events);
1012 root 1.27 }
1013    
1014     fdchangecnt = 0;
1015     }
1016    
1017 root 1.288 /* something about the given fd changed */
1018 root 1.284 inline_size void
1019 root 1.183 fd_change (EV_P_ int fd, int flags)
1020 root 1.27 {
1021 root 1.183 unsigned char reify = anfds [fd].reify;
1022 root 1.184 anfds [fd].reify |= flags;
1023 root 1.27
1024 root 1.183 if (expect_true (!reify))
1025     {
1026     ++fdchangecnt;
1027     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1028     fdchanges [fdchangecnt - 1] = fd;
1029     }
1030 root 1.9 }
1031    
1032 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1033 root 1.284 inline_speed void
1034 root 1.51 fd_kill (EV_P_ int fd)
1035 root 1.41 {
1036 root 1.136 ev_io *w;
1037 root 1.41
1038 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1039 root 1.41 {
1040 root 1.51 ev_io_stop (EV_A_ w);
1041 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1042 root 1.41 }
1043     }
1044    
1045 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1046 root 1.284 inline_size int
1047 root 1.71 fd_valid (int fd)
1048     {
1049 root 1.103 #ifdef _WIN32
1050 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1051 root 1.71 #else
1052     return fcntl (fd, F_GETFD) != -1;
1053     #endif
1054     }
1055    
1056 root 1.19 /* called on EBADF to verify fds */
1057 root 1.140 static void noinline
1058 root 1.51 fd_ebadf (EV_P)
1059 root 1.19 {
1060     int fd;
1061    
1062     for (fd = 0; fd < anfdmax; ++fd)
1063 root 1.27 if (anfds [fd].events)
1064 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1065 root 1.51 fd_kill (EV_A_ fd);
1066 root 1.41 }
1067    
1068     /* called on ENOMEM in select/poll to kill some fds and retry */
1069 root 1.140 static void noinline
1070 root 1.51 fd_enomem (EV_P)
1071 root 1.41 {
1072 root 1.62 int fd;
1073 root 1.41
1074 root 1.62 for (fd = anfdmax; fd--; )
1075 root 1.41 if (anfds [fd].events)
1076     {
1077 root 1.51 fd_kill (EV_A_ fd);
1078 root 1.307 break;
1079 root 1.41 }
1080 root 1.19 }
1081    
1082 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1083 root 1.140 static void noinline
1084 root 1.56 fd_rearm_all (EV_P)
1085     {
1086     int fd;
1087    
1088     for (fd = 0; fd < anfdmax; ++fd)
1089     if (anfds [fd].events)
1090     {
1091     anfds [fd].events = 0;
1092 root 1.268 anfds [fd].emask = 0;
1093 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1094 root 1.56 }
1095     }
1096    
1097 root 1.336 /* used to prepare libev internal fd's */
1098     /* this is not fork-safe */
1099     inline_speed void
1100     fd_intern (int fd)
1101     {
1102     #ifdef _WIN32
1103     unsigned long arg = 1;
1104     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1105     #else
1106     fcntl (fd, F_SETFD, FD_CLOEXEC);
1107     fcntl (fd, F_SETFL, O_NONBLOCK);
1108     #endif
1109     }
1110    
1111 root 1.8 /*****************************************************************************/
1112    
1113 root 1.235 /*
1114 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1115 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1116     * the branching factor of the d-tree.
1117     */
1118    
1119     /*
1120 root 1.235 * at the moment we allow libev the luxury of two heaps,
1121     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1122     * which is more cache-efficient.
1123     * the difference is about 5% with 50000+ watchers.
1124     */
1125 root 1.241 #if EV_USE_4HEAP
1126 root 1.235
1127 root 1.237 #define DHEAP 4
1128     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1129 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1130 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1131 root 1.235
1132     /* away from the root */
1133 root 1.284 inline_speed void
1134 root 1.241 downheap (ANHE *heap, int N, int k)
1135 root 1.235 {
1136 root 1.241 ANHE he = heap [k];
1137     ANHE *E = heap + N + HEAP0;
1138 root 1.235
1139     for (;;)
1140     {
1141     ev_tstamp minat;
1142 root 1.241 ANHE *minpos;
1143 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1144 root 1.235
1145 root 1.248 /* find minimum child */
1146 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1147 root 1.235 {
1148 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1149     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1150     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1151     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1152 root 1.235 }
1153 root 1.240 else if (pos < E)
1154 root 1.235 {
1155 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1156     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1157     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1158     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1159 root 1.235 }
1160 root 1.240 else
1161     break;
1162 root 1.235
1163 root 1.241 if (ANHE_at (he) <= minat)
1164 root 1.235 break;
1165    
1166 root 1.247 heap [k] = *minpos;
1167 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1168 root 1.235
1169     k = minpos - heap;
1170     }
1171    
1172 root 1.247 heap [k] = he;
1173 root 1.241 ev_active (ANHE_w (he)) = k;
1174 root 1.235 }
1175    
1176 root 1.248 #else /* 4HEAP */
1177 root 1.235
1178     #define HEAP0 1
1179 root 1.247 #define HPARENT(k) ((k) >> 1)
1180 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1181 root 1.235
1182 root 1.248 /* away from the root */
1183 root 1.284 inline_speed void
1184 root 1.248 downheap (ANHE *heap, int N, int k)
1185 root 1.1 {
1186 root 1.241 ANHE he = heap [k];
1187 root 1.1
1188 root 1.228 for (;;)
1189 root 1.1 {
1190 root 1.248 int c = k << 1;
1191 root 1.179
1192 root 1.309 if (c >= N + HEAP0)
1193 root 1.179 break;
1194    
1195 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1196     ? 1 : 0;
1197    
1198     if (ANHE_at (he) <= ANHE_at (heap [c]))
1199     break;
1200    
1201     heap [k] = heap [c];
1202 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1203 root 1.248
1204     k = c;
1205 root 1.1 }
1206    
1207 root 1.243 heap [k] = he;
1208 root 1.248 ev_active (ANHE_w (he)) = k;
1209 root 1.1 }
1210 root 1.248 #endif
1211 root 1.1
1212 root 1.248 /* towards the root */
1213 root 1.284 inline_speed void
1214 root 1.248 upheap (ANHE *heap, int k)
1215 root 1.1 {
1216 root 1.241 ANHE he = heap [k];
1217 root 1.1
1218 root 1.179 for (;;)
1219 root 1.1 {
1220 root 1.248 int p = HPARENT (k);
1221 root 1.179
1222 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1223 root 1.179 break;
1224 root 1.1
1225 root 1.248 heap [k] = heap [p];
1226 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1227 root 1.248 k = p;
1228 root 1.1 }
1229    
1230 root 1.241 heap [k] = he;
1231     ev_active (ANHE_w (he)) = k;
1232 root 1.1 }
1233    
1234 root 1.288 /* move an element suitably so it is in a correct place */
1235 root 1.284 inline_size void
1236 root 1.241 adjustheap (ANHE *heap, int N, int k)
1237 root 1.84 {
1238 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1239 root 1.247 upheap (heap, k);
1240     else
1241     downheap (heap, N, k);
1242 root 1.84 }
1243    
1244 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1245 root 1.284 inline_size void
1246 root 1.248 reheap (ANHE *heap, int N)
1247     {
1248     int i;
1249 root 1.251
1250 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1251     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1252     for (i = 0; i < N; ++i)
1253     upheap (heap, i + HEAP0);
1254     }
1255    
1256 root 1.8 /*****************************************************************************/
1257    
1258 root 1.288 /* associate signal watchers to a signal signal */
1259 root 1.7 typedef struct
1260     {
1261 root 1.307 EV_ATOMIC_T pending;
1262 root 1.306 #if EV_MULTIPLICITY
1263     EV_P;
1264     #endif
1265 root 1.68 WL head;
1266 root 1.7 } ANSIG;
1267    
1268 root 1.306 static ANSIG signals [EV_NSIG - 1];
1269 root 1.7
1270 root 1.207 /*****************************************************************************/
1271    
1272 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1273 root 1.207
1274     static void noinline
1275     evpipe_init (EV_P)
1276     {
1277 root 1.288 if (!ev_is_active (&pipe_w))
1278 root 1.207 {
1279 root 1.336 # if EV_USE_EVENTFD
1280 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1281     if (evfd < 0 && errno == EINVAL)
1282     evfd = eventfd (0, 0);
1283    
1284     if (evfd >= 0)
1285 root 1.220 {
1286     evpipe [0] = -1;
1287 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1288 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1289 root 1.220 }
1290     else
1291 root 1.336 # endif
1292 root 1.220 {
1293     while (pipe (evpipe))
1294 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1295 root 1.207
1296 root 1.220 fd_intern (evpipe [0]);
1297     fd_intern (evpipe [1]);
1298 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1299 root 1.220 }
1300 root 1.207
1301 root 1.288 ev_io_start (EV_A_ &pipe_w);
1302 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1303 root 1.207 }
1304     }
1305    
1306 root 1.284 inline_size void
1307 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1308 root 1.207 {
1309 root 1.214 if (!*flag)
1310 root 1.207 {
1311 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1312 root 1.336 char dummy;
1313 root 1.214
1314     *flag = 1;
1315 root 1.220
1316     #if EV_USE_EVENTFD
1317     if (evfd >= 0)
1318     {
1319     uint64_t counter = 1;
1320     write (evfd, &counter, sizeof (uint64_t));
1321     }
1322     else
1323     #endif
1324 root 1.346 /* win32 people keep sending patches that change this write() to send() */
1325     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1326     /* so when you think this write should be a send instead, please find out */
1327     /* where your send() is from - it's definitely not the microsoft send, and */
1328     /* tell me. thank you. */
1329 root 1.336 write (evpipe [1], &dummy, 1);
1330 root 1.214
1331 root 1.207 errno = old_errno;
1332     }
1333     }
1334    
1335 root 1.288 /* called whenever the libev signal pipe */
1336     /* got some events (signal, async) */
1337 root 1.207 static void
1338     pipecb (EV_P_ ev_io *iow, int revents)
1339     {
1340 root 1.307 int i;
1341    
1342 root 1.220 #if EV_USE_EVENTFD
1343     if (evfd >= 0)
1344     {
1345 root 1.232 uint64_t counter;
1346 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1347     }
1348     else
1349     #endif
1350     {
1351     char dummy;
1352 root 1.346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1353 root 1.220 read (evpipe [0], &dummy, 1);
1354     }
1355 root 1.207
1356 root 1.369 #if EV_SIGNAL_ENABLE
1357 root 1.307 if (sig_pending)
1358 root 1.207 {
1359 root 1.307 sig_pending = 0;
1360 root 1.207
1361 root 1.307 for (i = EV_NSIG - 1; i--; )
1362     if (expect_false (signals [i].pending))
1363     ev_feed_signal_event (EV_A_ i + 1);
1364 root 1.207 }
1365 root 1.369 #endif
1366 root 1.207
1367 root 1.209 #if EV_ASYNC_ENABLE
1368 root 1.307 if (async_pending)
1369 root 1.207 {
1370 root 1.307 async_pending = 0;
1371 root 1.207
1372     for (i = asynccnt; i--; )
1373     if (asyncs [i]->sent)
1374     {
1375     asyncs [i]->sent = 0;
1376     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1377     }
1378     }
1379 root 1.209 #endif
1380 root 1.207 }
1381    
1382     /*****************************************************************************/
1383    
1384 root 1.366 void
1385     ev_feed_signal (int signum)
1386 root 1.7 {
1387 root 1.207 #if EV_MULTIPLICITY
1388 root 1.306 EV_P = signals [signum - 1].loop;
1389 root 1.366
1390     if (!EV_A)
1391     return;
1392 root 1.207 #endif
1393    
1394 root 1.366 signals [signum - 1].pending = 1;
1395     evpipe_write (EV_A_ &sig_pending);
1396     }
1397    
1398     static void
1399     ev_sighandler (int signum)
1400     {
1401 root 1.322 #ifdef _WIN32
1402 root 1.218 signal (signum, ev_sighandler);
1403 root 1.67 #endif
1404    
1405 root 1.366 ev_feed_signal (signum);
1406 root 1.7 }
1407    
1408 root 1.140 void noinline
1409 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1410     {
1411 root 1.80 WL w;
1412    
1413 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1414     return;
1415    
1416     --signum;
1417    
1418 root 1.79 #if EV_MULTIPLICITY
1419 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1420     /* or, likely more useful, feeding a signal nobody is waiting for */
1421 root 1.79
1422 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1423 root 1.306 return;
1424 root 1.307 #endif
1425 root 1.306
1426 root 1.307 signals [signum].pending = 0;
1427 root 1.79
1428     for (w = signals [signum].head; w; w = w->next)
1429     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1430     }
1431    
1432 root 1.303 #if EV_USE_SIGNALFD
1433     static void
1434     sigfdcb (EV_P_ ev_io *iow, int revents)
1435     {
1436 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1437 root 1.303
1438     for (;;)
1439     {
1440     ssize_t res = read (sigfd, si, sizeof (si));
1441    
1442     /* not ISO-C, as res might be -1, but works with SuS */
1443     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1444     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1445    
1446     if (res < (ssize_t)sizeof (si))
1447     break;
1448     }
1449     }
1450     #endif
1451    
1452 root 1.336 #endif
1453    
1454 root 1.8 /*****************************************************************************/
1455    
1456 root 1.336 #if EV_CHILD_ENABLE
1457 root 1.182 static WL childs [EV_PID_HASHSIZE];
1458 root 1.71
1459 root 1.136 static ev_signal childev;
1460 root 1.59
1461 root 1.206 #ifndef WIFCONTINUED
1462     # define WIFCONTINUED(status) 0
1463     #endif
1464    
1465 root 1.288 /* handle a single child status event */
1466 root 1.284 inline_speed void
1467 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1468 root 1.47 {
1469 root 1.136 ev_child *w;
1470 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1471 root 1.47
1472 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1473 root 1.206 {
1474     if ((w->pid == pid || !w->pid)
1475     && (!traced || (w->flags & 1)))
1476     {
1477 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1478 root 1.206 w->rpid = pid;
1479     w->rstatus = status;
1480     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1481     }
1482     }
1483 root 1.47 }
1484    
1485 root 1.142 #ifndef WCONTINUED
1486     # define WCONTINUED 0
1487     #endif
1488    
1489 root 1.288 /* called on sigchld etc., calls waitpid */
1490 root 1.47 static void
1491 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1492 root 1.22 {
1493     int pid, status;
1494    
1495 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1496     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1497     if (!WCONTINUED
1498     || errno != EINVAL
1499     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1500     return;
1501    
1502 root 1.216 /* make sure we are called again until all children have been reaped */
1503 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1504     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1505 root 1.47
1506 root 1.216 child_reap (EV_A_ pid, pid, status);
1507 root 1.338 if ((EV_PID_HASHSIZE) > 1)
1508 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1509 root 1.22 }
1510    
1511 root 1.45 #endif
1512    
1513 root 1.22 /*****************************************************************************/
1514    
1515 root 1.357 #if EV_USE_IOCP
1516     # include "ev_iocp.c"
1517     #endif
1518 root 1.118 #if EV_USE_PORT
1519     # include "ev_port.c"
1520     #endif
1521 root 1.44 #if EV_USE_KQUEUE
1522     # include "ev_kqueue.c"
1523     #endif
1524 root 1.29 #if EV_USE_EPOLL
1525 root 1.1 # include "ev_epoll.c"
1526     #endif
1527 root 1.59 #if EV_USE_POLL
1528 root 1.41 # include "ev_poll.c"
1529     #endif
1530 root 1.29 #if EV_USE_SELECT
1531 root 1.1 # include "ev_select.c"
1532     #endif
1533    
1534 root 1.24 int
1535     ev_version_major (void)
1536     {
1537     return EV_VERSION_MAJOR;
1538     }
1539    
1540     int
1541     ev_version_minor (void)
1542     {
1543     return EV_VERSION_MINOR;
1544     }
1545    
1546 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1547 root 1.140 int inline_size
1548 root 1.51 enable_secure (void)
1549 root 1.41 {
1550 root 1.103 #ifdef _WIN32
1551 root 1.49 return 0;
1552     #else
1553 root 1.41 return getuid () != geteuid ()
1554     || getgid () != getegid ();
1555 root 1.49 #endif
1556 root 1.41 }
1557    
1558 root 1.111 unsigned int
1559 root 1.129 ev_supported_backends (void)
1560     {
1561 root 1.130 unsigned int flags = 0;
1562 root 1.129
1563     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1564     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1565     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1566     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1567     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1568    
1569     return flags;
1570     }
1571    
1572     unsigned int
1573 root 1.130 ev_recommended_backends (void)
1574 root 1.1 {
1575 root 1.131 unsigned int flags = ev_supported_backends ();
1576 root 1.129
1577     #ifndef __NetBSD__
1578     /* kqueue is borked on everything but netbsd apparently */
1579     /* it usually doesn't work correctly on anything but sockets and pipes */
1580     flags &= ~EVBACKEND_KQUEUE;
1581     #endif
1582     #ifdef __APPLE__
1583 root 1.278 /* only select works correctly on that "unix-certified" platform */
1584     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1585     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1586 root 1.129 #endif
1587 root 1.342 #ifdef __FreeBSD__
1588     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1589     #endif
1590 root 1.129
1591     return flags;
1592 root 1.51 }
1593    
1594 root 1.130 unsigned int
1595 root 1.134 ev_embeddable_backends (void)
1596     {
1597 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1598    
1599 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1600 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1601     flags &= ~EVBACKEND_EPOLL;
1602 root 1.196
1603     return flags;
1604 root 1.134 }
1605    
1606     unsigned int
1607 root 1.130 ev_backend (EV_P)
1608     {
1609     return backend;
1610     }
1611    
1612 root 1.338 #if EV_FEATURE_API
1613 root 1.162 unsigned int
1614 root 1.340 ev_iteration (EV_P)
1615 root 1.162 {
1616     return loop_count;
1617     }
1618    
1619 root 1.294 unsigned int
1620 root 1.340 ev_depth (EV_P)
1621 root 1.294 {
1622     return loop_depth;
1623     }
1624    
1625 root 1.193 void
1626     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1627     {
1628     io_blocktime = interval;
1629     }
1630    
1631     void
1632     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1633     {
1634     timeout_blocktime = interval;
1635     }
1636    
1637 root 1.297 void
1638     ev_set_userdata (EV_P_ void *data)
1639     {
1640     userdata = data;
1641     }
1642    
1643     void *
1644     ev_userdata (EV_P)
1645     {
1646     return userdata;
1647     }
1648    
1649     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1650     {
1651     invoke_cb = invoke_pending_cb;
1652     }
1653    
1654 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1655 root 1.297 {
1656 root 1.298 release_cb = release;
1657     acquire_cb = acquire;
1658 root 1.297 }
1659     #endif
1660    
1661 root 1.288 /* initialise a loop structure, must be zero-initialised */
1662 root 1.151 static void noinline
1663 root 1.108 loop_init (EV_P_ unsigned int flags)
1664 root 1.51 {
1665 root 1.130 if (!backend)
1666 root 1.23 {
1667 root 1.366 origflags = flags;
1668    
1669 root 1.279 #if EV_USE_REALTIME
1670     if (!have_realtime)
1671     {
1672     struct timespec ts;
1673    
1674     if (!clock_gettime (CLOCK_REALTIME, &ts))
1675     have_realtime = 1;
1676     }
1677     #endif
1678    
1679 root 1.29 #if EV_USE_MONOTONIC
1680 root 1.279 if (!have_monotonic)
1681     {
1682     struct timespec ts;
1683    
1684     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1685     have_monotonic = 1;
1686     }
1687 root 1.1 #endif
1688    
1689 root 1.306 /* pid check not overridable via env */
1690     #ifndef _WIN32
1691     if (flags & EVFLAG_FORKCHECK)
1692     curpid = getpid ();
1693     #endif
1694    
1695     if (!(flags & EVFLAG_NOENV)
1696     && !enable_secure ()
1697     && getenv ("LIBEV_FLAGS"))
1698     flags = atoi (getenv ("LIBEV_FLAGS"));
1699    
1700 root 1.209 ev_rt_now = ev_time ();
1701     mn_now = get_clock ();
1702     now_floor = mn_now;
1703     rtmn_diff = ev_rt_now - mn_now;
1704 root 1.338 #if EV_FEATURE_API
1705 root 1.296 invoke_cb = ev_invoke_pending;
1706 root 1.297 #endif
1707 root 1.1
1708 root 1.193 io_blocktime = 0.;
1709     timeout_blocktime = 0.;
1710 root 1.209 backend = 0;
1711     backend_fd = -1;
1712 root 1.307 sig_pending = 0;
1713     #if EV_ASYNC_ENABLE
1714     async_pending = 0;
1715     #endif
1716 root 1.209 #if EV_USE_INOTIFY
1717 root 1.306 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1718 root 1.209 #endif
1719 root 1.303 #if EV_USE_SIGNALFD
1720 root 1.321 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1721 root 1.303 #endif
1722 root 1.193
1723 root 1.366 if (!(flags & EVBACKEND_MASK))
1724 root 1.129 flags |= ev_recommended_backends ();
1725 root 1.41
1726 root 1.357 #if EV_USE_IOCP
1727     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1728     #endif
1729 root 1.118 #if EV_USE_PORT
1730 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1731 root 1.118 #endif
1732 root 1.44 #if EV_USE_KQUEUE
1733 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1734 root 1.44 #endif
1735 root 1.29 #if EV_USE_EPOLL
1736 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1737 root 1.41 #endif
1738 root 1.59 #if EV_USE_POLL
1739 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1740 root 1.1 #endif
1741 root 1.29 #if EV_USE_SELECT
1742 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1743 root 1.1 #endif
1744 root 1.70
1745 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1746    
1747 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1748 root 1.288 ev_init (&pipe_w, pipecb);
1749     ev_set_priority (&pipe_w, EV_MAXPRI);
1750 root 1.336 #endif
1751 root 1.56 }
1752     }
1753    
1754 root 1.288 /* free up a loop structure */
1755 root 1.359 void
1756     ev_loop_destroy (EV_P)
1757 root 1.56 {
1758 root 1.65 int i;
1759    
1760 root 1.364 #if EV_MULTIPLICITY
1761 root 1.363 /* mimic free (0) */
1762     if (!EV_A)
1763     return;
1764 root 1.364 #endif
1765 root 1.363
1766 root 1.361 #if EV_CLEANUP_ENABLE
1767     /* queue cleanup watchers (and execute them) */
1768     if (expect_false (cleanupcnt))
1769     {
1770     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1771     EV_INVOKE_PENDING;
1772     }
1773     #endif
1774    
1775 root 1.359 #if EV_CHILD_ENABLE
1776     if (ev_is_active (&childev))
1777     {
1778     ev_ref (EV_A); /* child watcher */
1779     ev_signal_stop (EV_A_ &childev);
1780     }
1781     #endif
1782    
1783 root 1.288 if (ev_is_active (&pipe_w))
1784 root 1.207 {
1785 root 1.303 /*ev_ref (EV_A);*/
1786     /*ev_io_stop (EV_A_ &pipe_w);*/
1787 root 1.207
1788 root 1.220 #if EV_USE_EVENTFD
1789     if (evfd >= 0)
1790     close (evfd);
1791     #endif
1792    
1793     if (evpipe [0] >= 0)
1794     {
1795 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1796     EV_WIN32_CLOSE_FD (evpipe [1]);
1797 root 1.220 }
1798 root 1.207 }
1799    
1800 root 1.303 #if EV_USE_SIGNALFD
1801     if (ev_is_active (&sigfd_w))
1802 root 1.317 close (sigfd);
1803 root 1.303 #endif
1804    
1805 root 1.152 #if EV_USE_INOTIFY
1806     if (fs_fd >= 0)
1807     close (fs_fd);
1808     #endif
1809    
1810     if (backend_fd >= 0)
1811     close (backend_fd);
1812    
1813 root 1.357 #if EV_USE_IOCP
1814     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1815     #endif
1816 root 1.118 #if EV_USE_PORT
1817 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1818 root 1.118 #endif
1819 root 1.56 #if EV_USE_KQUEUE
1820 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1821 root 1.56 #endif
1822     #if EV_USE_EPOLL
1823 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1824 root 1.56 #endif
1825 root 1.59 #if EV_USE_POLL
1826 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1827 root 1.56 #endif
1828     #if EV_USE_SELECT
1829 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1830 root 1.56 #endif
1831 root 1.1
1832 root 1.65 for (i = NUMPRI; i--; )
1833 root 1.164 {
1834     array_free (pending, [i]);
1835     #if EV_IDLE_ENABLE
1836     array_free (idle, [i]);
1837     #endif
1838     }
1839 root 1.65
1840 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
1841 root 1.186
1842 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1843 root 1.284 array_free (rfeed, EMPTY);
1844 root 1.164 array_free (fdchange, EMPTY);
1845     array_free (timer, EMPTY);
1846 root 1.140 #if EV_PERIODIC_ENABLE
1847 root 1.164 array_free (periodic, EMPTY);
1848 root 1.93 #endif
1849 root 1.187 #if EV_FORK_ENABLE
1850     array_free (fork, EMPTY);
1851     #endif
1852 root 1.360 #if EV_CLEANUP_ENABLE
1853     array_free (cleanup, EMPTY);
1854     #endif
1855 root 1.164 array_free (prepare, EMPTY);
1856     array_free (check, EMPTY);
1857 root 1.209 #if EV_ASYNC_ENABLE
1858     array_free (async, EMPTY);
1859     #endif
1860 root 1.65
1861 root 1.130 backend = 0;
1862 root 1.359
1863     #if EV_MULTIPLICITY
1864     if (ev_is_default_loop (EV_A))
1865     #endif
1866     ev_default_loop_ptr = 0;
1867     #if EV_MULTIPLICITY
1868     else
1869     ev_free (EV_A);
1870     #endif
1871 root 1.56 }
1872 root 1.22
1873 root 1.226 #if EV_USE_INOTIFY
1874 root 1.284 inline_size void infy_fork (EV_P);
1875 root 1.226 #endif
1876 root 1.154
1877 root 1.284 inline_size void
1878 root 1.56 loop_fork (EV_P)
1879     {
1880 root 1.118 #if EV_USE_PORT
1881 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1882 root 1.56 #endif
1883     #if EV_USE_KQUEUE
1884 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1885 root 1.45 #endif
1886 root 1.118 #if EV_USE_EPOLL
1887 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1888 root 1.118 #endif
1889 root 1.154 #if EV_USE_INOTIFY
1890     infy_fork (EV_A);
1891     #endif
1892 root 1.70
1893 root 1.288 if (ev_is_active (&pipe_w))
1894 root 1.70 {
1895 root 1.207 /* this "locks" the handlers against writing to the pipe */
1896 root 1.212 /* while we modify the fd vars */
1897 root 1.307 sig_pending = 1;
1898 root 1.212 #if EV_ASYNC_ENABLE
1899 root 1.307 async_pending = 1;
1900 root 1.212 #endif
1901 root 1.70
1902     ev_ref (EV_A);
1903 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1904 root 1.220
1905     #if EV_USE_EVENTFD
1906     if (evfd >= 0)
1907     close (evfd);
1908     #endif
1909    
1910     if (evpipe [0] >= 0)
1911     {
1912 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1913     EV_WIN32_CLOSE_FD (evpipe [1]);
1914 root 1.220 }
1915 root 1.207
1916 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1917 root 1.207 evpipe_init (EV_A);
1918 root 1.208 /* now iterate over everything, in case we missed something */
1919 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1920 root 1.337 #endif
1921 root 1.70 }
1922    
1923     postfork = 0;
1924 root 1.1 }
1925    
1926 root 1.55 #if EV_MULTIPLICITY
1927 root 1.250
1928 root 1.54 struct ev_loop *
1929 root 1.108 ev_loop_new (unsigned int flags)
1930 root 1.54 {
1931 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1932 root 1.69
1933 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
1934 root 1.108 loop_init (EV_A_ flags);
1935 root 1.56
1936 root 1.130 if (ev_backend (EV_A))
1937 root 1.306 return EV_A;
1938 root 1.54
1939 root 1.359 ev_free (EV_A);
1940 root 1.55 return 0;
1941 root 1.54 }
1942    
1943 root 1.297 #endif /* multiplicity */
1944 root 1.248
1945     #if EV_VERIFY
1946 root 1.258 static void noinline
1947 root 1.251 verify_watcher (EV_P_ W w)
1948     {
1949 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1950 root 1.251
1951     if (w->pending)
1952 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1953 root 1.251 }
1954    
1955     static void noinline
1956     verify_heap (EV_P_ ANHE *heap, int N)
1957     {
1958     int i;
1959    
1960     for (i = HEAP0; i < N + HEAP0; ++i)
1961     {
1962 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1963     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1964     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1965 root 1.251
1966     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1967     }
1968     }
1969    
1970     static void noinline
1971     array_verify (EV_P_ W *ws, int cnt)
1972 root 1.248 {
1973     while (cnt--)
1974 root 1.251 {
1975 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1976 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1977     }
1978 root 1.248 }
1979 root 1.250 #endif
1980 root 1.248
1981 root 1.338 #if EV_FEATURE_API
1982 root 1.250 void
1983 root 1.340 ev_verify (EV_P)
1984 root 1.248 {
1985 root 1.250 #if EV_VERIFY
1986 root 1.248 int i;
1987 root 1.251 WL w;
1988    
1989     assert (activecnt >= -1);
1990    
1991     assert (fdchangemax >= fdchangecnt);
1992     for (i = 0; i < fdchangecnt; ++i)
1993 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1994 root 1.251
1995     assert (anfdmax >= 0);
1996     for (i = 0; i < anfdmax; ++i)
1997     for (w = anfds [i].head; w; w = w->next)
1998     {
1999     verify_watcher (EV_A_ (W)w);
2000 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2001     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2002 root 1.251 }
2003    
2004     assert (timermax >= timercnt);
2005     verify_heap (EV_A_ timers, timercnt);
2006 root 1.248
2007     #if EV_PERIODIC_ENABLE
2008 root 1.251 assert (periodicmax >= periodiccnt);
2009     verify_heap (EV_A_ periodics, periodiccnt);
2010 root 1.248 #endif
2011    
2012 root 1.251 for (i = NUMPRI; i--; )
2013     {
2014     assert (pendingmax [i] >= pendingcnt [i]);
2015 root 1.248 #if EV_IDLE_ENABLE
2016 root 1.252 assert (idleall >= 0);
2017 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2018     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2019 root 1.248 #endif
2020 root 1.251 }
2021    
2022 root 1.248 #if EV_FORK_ENABLE
2023 root 1.251 assert (forkmax >= forkcnt);
2024     array_verify (EV_A_ (W *)forks, forkcnt);
2025 root 1.248 #endif
2026 root 1.251
2027 root 1.360 #if EV_CLEANUP_ENABLE
2028     assert (cleanupmax >= cleanupcnt);
2029     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2030     #endif
2031    
2032 root 1.250 #if EV_ASYNC_ENABLE
2033 root 1.251 assert (asyncmax >= asynccnt);
2034     array_verify (EV_A_ (W *)asyncs, asynccnt);
2035 root 1.250 #endif
2036 root 1.251
2037 root 1.337 #if EV_PREPARE_ENABLE
2038 root 1.251 assert (preparemax >= preparecnt);
2039     array_verify (EV_A_ (W *)prepares, preparecnt);
2040 root 1.337 #endif
2041 root 1.251
2042 root 1.337 #if EV_CHECK_ENABLE
2043 root 1.251 assert (checkmax >= checkcnt);
2044     array_verify (EV_A_ (W *)checks, checkcnt);
2045 root 1.337 #endif
2046 root 1.251
2047     # if 0
2048 root 1.336 #if EV_CHILD_ENABLE
2049 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2050 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2051 root 1.336 #endif
2052 root 1.251 # endif
2053 root 1.248 #endif
2054     }
2055 root 1.297 #endif
2056 root 1.56
2057     #if EV_MULTIPLICITY
2058     struct ev_loop *
2059 root 1.54 #else
2060     int
2061 root 1.358 #endif
2062 root 1.116 ev_default_loop (unsigned int flags)
2063 root 1.54 {
2064 root 1.116 if (!ev_default_loop_ptr)
2065 root 1.56 {
2066     #if EV_MULTIPLICITY
2067 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2068 root 1.56 #else
2069 ayin 1.117 ev_default_loop_ptr = 1;
2070 root 1.54 #endif
2071    
2072 root 1.110 loop_init (EV_A_ flags);
2073 root 1.56
2074 root 1.130 if (ev_backend (EV_A))
2075 root 1.56 {
2076 root 1.336 #if EV_CHILD_ENABLE
2077 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2078     ev_set_priority (&childev, EV_MAXPRI);
2079     ev_signal_start (EV_A_ &childev);
2080     ev_unref (EV_A); /* child watcher should not keep loop alive */
2081     #endif
2082     }
2083     else
2084 root 1.116 ev_default_loop_ptr = 0;
2085 root 1.56 }
2086 root 1.8
2087 root 1.116 return ev_default_loop_ptr;
2088 root 1.1 }
2089    
2090 root 1.24 void
2091 root 1.359 ev_loop_fork (EV_P)
2092 root 1.1 {
2093 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2094 root 1.1 }
2095    
2096 root 1.8 /*****************************************************************************/
2097    
2098 root 1.168 void
2099     ev_invoke (EV_P_ void *w, int revents)
2100     {
2101     EV_CB_INVOKE ((W)w, revents);
2102     }
2103    
2104 root 1.300 unsigned int
2105     ev_pending_count (EV_P)
2106     {
2107     int pri;
2108     unsigned int count = 0;
2109    
2110     for (pri = NUMPRI; pri--; )
2111     count += pendingcnt [pri];
2112    
2113     return count;
2114     }
2115    
2116 root 1.297 void noinline
2117 root 1.296 ev_invoke_pending (EV_P)
2118 root 1.1 {
2119 root 1.42 int pri;
2120    
2121     for (pri = NUMPRI; pri--; )
2122     while (pendingcnt [pri])
2123     {
2124     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2125 root 1.1
2126 root 1.288 p->w->pending = 0;
2127     EV_CB_INVOKE (p->w, p->events);
2128     EV_FREQUENT_CHECK;
2129 root 1.42 }
2130 root 1.1 }
2131    
2132 root 1.234 #if EV_IDLE_ENABLE
2133 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2134     /* only when higher priorities are idle" logic */
2135 root 1.284 inline_size void
2136 root 1.234 idle_reify (EV_P)
2137     {
2138     if (expect_false (idleall))
2139     {
2140     int pri;
2141    
2142     for (pri = NUMPRI; pri--; )
2143     {
2144     if (pendingcnt [pri])
2145     break;
2146    
2147     if (idlecnt [pri])
2148     {
2149     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2150     break;
2151     }
2152     }
2153     }
2154     }
2155     #endif
2156    
2157 root 1.288 /* make timers pending */
2158 root 1.284 inline_size void
2159 root 1.51 timers_reify (EV_P)
2160 root 1.1 {
2161 root 1.248 EV_FREQUENT_CHECK;
2162    
2163 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2164 root 1.1 {
2165 root 1.284 do
2166     {
2167     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2168 root 1.1
2169 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2170    
2171     /* first reschedule or stop timer */
2172     if (w->repeat)
2173     {
2174     ev_at (w) += w->repeat;
2175     if (ev_at (w) < mn_now)
2176     ev_at (w) = mn_now;
2177 root 1.61
2178 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2179 root 1.90
2180 root 1.284 ANHE_at_cache (timers [HEAP0]);
2181     downheap (timers, timercnt, HEAP0);
2182     }
2183     else
2184     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2185 root 1.243
2186 root 1.284 EV_FREQUENT_CHECK;
2187     feed_reverse (EV_A_ (W)w);
2188 root 1.12 }
2189 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2190 root 1.30
2191 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2192 root 1.12 }
2193     }
2194 root 1.4
2195 root 1.140 #if EV_PERIODIC_ENABLE
2196 root 1.288 /* make periodics pending */
2197 root 1.284 inline_size void
2198 root 1.51 periodics_reify (EV_P)
2199 root 1.12 {
2200 root 1.248 EV_FREQUENT_CHECK;
2201 root 1.250
2202 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2203 root 1.12 {
2204 root 1.284 int feed_count = 0;
2205    
2206     do
2207     {
2208     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2209 root 1.1
2210 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2211 root 1.61
2212 root 1.284 /* first reschedule or stop timer */
2213     if (w->reschedule_cb)
2214     {
2215     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2216 root 1.243
2217 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2218 root 1.243
2219 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2220     downheap (periodics, periodiccnt, HEAP0);
2221     }
2222     else if (w->interval)
2223 root 1.246 {
2224 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2225     /* if next trigger time is not sufficiently in the future, put it there */
2226     /* this might happen because of floating point inexactness */
2227     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2228     {
2229     ev_at (w) += w->interval;
2230    
2231     /* if interval is unreasonably low we might still have a time in the past */
2232     /* so correct this. this will make the periodic very inexact, but the user */
2233     /* has effectively asked to get triggered more often than possible */
2234     if (ev_at (w) < ev_rt_now)
2235     ev_at (w) = ev_rt_now;
2236     }
2237 root 1.243
2238 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2239     downheap (periodics, periodiccnt, HEAP0);
2240 root 1.246 }
2241 root 1.284 else
2242     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2243 root 1.243
2244 root 1.284 EV_FREQUENT_CHECK;
2245     feed_reverse (EV_A_ (W)w);
2246 root 1.1 }
2247 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2248 root 1.12
2249 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2250 root 1.12 }
2251     }
2252    
2253 root 1.288 /* simply recalculate all periodics */
2254 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2255 root 1.140 static void noinline
2256 root 1.54 periodics_reschedule (EV_P)
2257 root 1.12 {
2258     int i;
2259    
2260 root 1.13 /* adjust periodics after time jump */
2261 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2262 root 1.12 {
2263 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2264 root 1.12
2265 root 1.77 if (w->reschedule_cb)
2266 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2267 root 1.77 else if (w->interval)
2268 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2269 root 1.242
2270 root 1.248 ANHE_at_cache (periodics [i]);
2271 root 1.77 }
2272 root 1.12
2273 root 1.248 reheap (periodics, periodiccnt);
2274 root 1.1 }
2275 root 1.93 #endif
2276 root 1.1
2277 root 1.288 /* adjust all timers by a given offset */
2278 root 1.285 static void noinline
2279     timers_reschedule (EV_P_ ev_tstamp adjust)
2280     {
2281     int i;
2282    
2283     for (i = 0; i < timercnt; ++i)
2284     {
2285     ANHE *he = timers + i + HEAP0;
2286     ANHE_w (*he)->at += adjust;
2287     ANHE_at_cache (*he);
2288     }
2289     }
2290    
2291 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2292 root 1.324 /* also detect if there was a timejump, and act accordingly */
2293 root 1.284 inline_speed void
2294 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2295 root 1.4 {
2296 root 1.40 #if EV_USE_MONOTONIC
2297     if (expect_true (have_monotonic))
2298     {
2299 root 1.289 int i;
2300 root 1.178 ev_tstamp odiff = rtmn_diff;
2301    
2302     mn_now = get_clock ();
2303    
2304     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2305     /* interpolate in the meantime */
2306     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2307 root 1.40 {
2308 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2309     return;
2310     }
2311    
2312     now_floor = mn_now;
2313     ev_rt_now = ev_time ();
2314 root 1.4
2315 root 1.178 /* loop a few times, before making important decisions.
2316     * on the choice of "4": one iteration isn't enough,
2317     * in case we get preempted during the calls to
2318     * ev_time and get_clock. a second call is almost guaranteed
2319     * to succeed in that case, though. and looping a few more times
2320     * doesn't hurt either as we only do this on time-jumps or
2321     * in the unlikely event of having been preempted here.
2322     */
2323     for (i = 4; --i; )
2324     {
2325     rtmn_diff = ev_rt_now - mn_now;
2326 root 1.4
2327 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2328 root 1.178 return; /* all is well */
2329 root 1.4
2330 root 1.178 ev_rt_now = ev_time ();
2331     mn_now = get_clock ();
2332     now_floor = mn_now;
2333     }
2334 root 1.4
2335 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2336     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2337 root 1.140 # if EV_PERIODIC_ENABLE
2338 root 1.178 periodics_reschedule (EV_A);
2339 root 1.93 # endif
2340 root 1.4 }
2341     else
2342 root 1.40 #endif
2343 root 1.4 {
2344 root 1.85 ev_rt_now = ev_time ();
2345 root 1.40
2346 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2347 root 1.13 {
2348 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2349     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2350 root 1.140 #if EV_PERIODIC_ENABLE
2351 root 1.54 periodics_reschedule (EV_A);
2352 root 1.93 #endif
2353 root 1.13 }
2354 root 1.4
2355 root 1.85 mn_now = ev_rt_now;
2356 root 1.4 }
2357     }
2358    
2359 root 1.51 void
2360 root 1.353 ev_run (EV_P_ int flags)
2361 root 1.1 {
2362 root 1.338 #if EV_FEATURE_API
2363 root 1.294 ++loop_depth;
2364 root 1.297 #endif
2365 root 1.294
2366 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2367 root 1.298
2368 root 1.353 loop_done = EVBREAK_CANCEL;
2369 root 1.1
2370 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2371 root 1.158
2372 root 1.161 do
2373 root 1.9 {
2374 root 1.250 #if EV_VERIFY >= 2
2375 root 1.340 ev_verify (EV_A);
2376 root 1.250 #endif
2377    
2378 root 1.158 #ifndef _WIN32
2379     if (expect_false (curpid)) /* penalise the forking check even more */
2380     if (expect_false (getpid () != curpid))
2381     {
2382     curpid = getpid ();
2383     postfork = 1;
2384     }
2385     #endif
2386    
2387 root 1.157 #if EV_FORK_ENABLE
2388     /* we might have forked, so queue fork handlers */
2389     if (expect_false (postfork))
2390     if (forkcnt)
2391     {
2392     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2393 root 1.297 EV_INVOKE_PENDING;
2394 root 1.157 }
2395     #endif
2396 root 1.147
2397 root 1.337 #if EV_PREPARE_ENABLE
2398 root 1.170 /* queue prepare watchers (and execute them) */
2399 root 1.40 if (expect_false (preparecnt))
2400 root 1.20 {
2401 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2402 root 1.297 EV_INVOKE_PENDING;
2403 root 1.20 }
2404 root 1.337 #endif
2405 root 1.9
2406 root 1.298 if (expect_false (loop_done))
2407     break;
2408    
2409 root 1.70 /* we might have forked, so reify kernel state if necessary */
2410     if (expect_false (postfork))
2411     loop_fork (EV_A);
2412    
2413 root 1.1 /* update fd-related kernel structures */
2414 root 1.51 fd_reify (EV_A);
2415 root 1.1
2416     /* calculate blocking time */
2417 root 1.135 {
2418 root 1.193 ev_tstamp waittime = 0.;
2419     ev_tstamp sleeptime = 0.;
2420 root 1.12
2421 root 1.353 /* remember old timestamp for io_blocktime calculation */
2422     ev_tstamp prev_mn_now = mn_now;
2423 root 1.293
2424 root 1.353 /* update time to cancel out callback processing overhead */
2425     time_update (EV_A_ 1e100);
2426 root 1.135
2427 root 1.353 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
2428     {
2429 root 1.287 waittime = MAX_BLOCKTIME;
2430    
2431 root 1.135 if (timercnt)
2432     {
2433 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2434 root 1.193 if (waittime > to) waittime = to;
2435 root 1.135 }
2436 root 1.4
2437 root 1.140 #if EV_PERIODIC_ENABLE
2438 root 1.135 if (periodiccnt)
2439     {
2440 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2441 root 1.193 if (waittime > to) waittime = to;
2442 root 1.135 }
2443 root 1.93 #endif
2444 root 1.4
2445 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2446 root 1.193 if (expect_false (waittime < timeout_blocktime))
2447     waittime = timeout_blocktime;
2448    
2449 root 1.293 /* extra check because io_blocktime is commonly 0 */
2450     if (expect_false (io_blocktime))
2451     {
2452     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2453 root 1.193
2454 root 1.293 if (sleeptime > waittime - backend_fudge)
2455     sleeptime = waittime - backend_fudge;
2456 root 1.193
2457 root 1.293 if (expect_true (sleeptime > 0.))
2458     {
2459     ev_sleep (sleeptime);
2460     waittime -= sleeptime;
2461     }
2462 root 1.193 }
2463 root 1.135 }
2464 root 1.1
2465 root 1.338 #if EV_FEATURE_API
2466 root 1.162 ++loop_count;
2467 root 1.297 #endif
2468 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2469 root 1.193 backend_poll (EV_A_ waittime);
2470 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2471 root 1.178
2472     /* update ev_rt_now, do magic */
2473 root 1.193 time_update (EV_A_ waittime + sleeptime);
2474 root 1.135 }
2475 root 1.1
2476 root 1.9 /* queue pending timers and reschedule them */
2477 root 1.51 timers_reify (EV_A); /* relative timers called last */
2478 root 1.140 #if EV_PERIODIC_ENABLE
2479 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2480 root 1.93 #endif
2481 root 1.1
2482 root 1.164 #if EV_IDLE_ENABLE
2483 root 1.137 /* queue idle watchers unless other events are pending */
2484 root 1.164 idle_reify (EV_A);
2485     #endif
2486 root 1.9
2487 root 1.337 #if EV_CHECK_ENABLE
2488 root 1.20 /* queue check watchers, to be executed first */
2489 root 1.123 if (expect_false (checkcnt))
2490 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2491 root 1.337 #endif
2492 root 1.9
2493 root 1.297 EV_INVOKE_PENDING;
2494 root 1.1 }
2495 root 1.219 while (expect_true (
2496     activecnt
2497     && !loop_done
2498 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2499 root 1.219 ));
2500 root 1.13
2501 root 1.353 if (loop_done == EVBREAK_ONE)
2502     loop_done = EVBREAK_CANCEL;
2503 root 1.294
2504 root 1.338 #if EV_FEATURE_API
2505 root 1.294 --loop_depth;
2506 root 1.297 #endif
2507 root 1.51 }
2508    
2509     void
2510 root 1.353 ev_break (EV_P_ int how)
2511 root 1.51 {
2512     loop_done = how;
2513 root 1.1 }
2514    
2515 root 1.285 void
2516     ev_ref (EV_P)
2517     {
2518     ++activecnt;
2519     }
2520    
2521     void
2522     ev_unref (EV_P)
2523     {
2524     --activecnt;
2525     }
2526    
2527     void
2528     ev_now_update (EV_P)
2529     {
2530     time_update (EV_A_ 1e100);
2531     }
2532    
2533     void
2534     ev_suspend (EV_P)
2535     {
2536     ev_now_update (EV_A);
2537     }
2538    
2539     void
2540     ev_resume (EV_P)
2541     {
2542     ev_tstamp mn_prev = mn_now;
2543    
2544     ev_now_update (EV_A);
2545     timers_reschedule (EV_A_ mn_now - mn_prev);
2546 root 1.286 #if EV_PERIODIC_ENABLE
2547 root 1.288 /* TODO: really do this? */
2548 root 1.285 periodics_reschedule (EV_A);
2549 root 1.286 #endif
2550 root 1.285 }
2551    
2552 root 1.8 /*****************************************************************************/
2553 root 1.288 /* singly-linked list management, used when the expected list length is short */
2554 root 1.8
2555 root 1.284 inline_size void
2556 root 1.10 wlist_add (WL *head, WL elem)
2557 root 1.1 {
2558     elem->next = *head;
2559     *head = elem;
2560     }
2561    
2562 root 1.284 inline_size void
2563 root 1.10 wlist_del (WL *head, WL elem)
2564 root 1.1 {
2565     while (*head)
2566     {
2567 root 1.307 if (expect_true (*head == elem))
2568 root 1.1 {
2569     *head = elem->next;
2570 root 1.307 break;
2571 root 1.1 }
2572    
2573     head = &(*head)->next;
2574     }
2575     }
2576    
2577 root 1.288 /* internal, faster, version of ev_clear_pending */
2578 root 1.284 inline_speed void
2579 root 1.166 clear_pending (EV_P_ W w)
2580 root 1.16 {
2581     if (w->pending)
2582     {
2583 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2584 root 1.16 w->pending = 0;
2585     }
2586     }
2587    
2588 root 1.167 int
2589     ev_clear_pending (EV_P_ void *w)
2590 root 1.166 {
2591     W w_ = (W)w;
2592     int pending = w_->pending;
2593    
2594 root 1.172 if (expect_true (pending))
2595     {
2596     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2597 root 1.288 p->w = (W)&pending_w;
2598 root 1.172 w_->pending = 0;
2599     return p->events;
2600     }
2601     else
2602 root 1.167 return 0;
2603 root 1.166 }
2604    
2605 root 1.284 inline_size void
2606 root 1.164 pri_adjust (EV_P_ W w)
2607     {
2608 root 1.295 int pri = ev_priority (w);
2609 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2610     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2611 root 1.295 ev_set_priority (w, pri);
2612 root 1.164 }
2613    
2614 root 1.284 inline_speed void
2615 root 1.51 ev_start (EV_P_ W w, int active)
2616 root 1.1 {
2617 root 1.164 pri_adjust (EV_A_ w);
2618 root 1.1 w->active = active;
2619 root 1.51 ev_ref (EV_A);
2620 root 1.1 }
2621    
2622 root 1.284 inline_size void
2623 root 1.51 ev_stop (EV_P_ W w)
2624 root 1.1 {
2625 root 1.51 ev_unref (EV_A);
2626 root 1.1 w->active = 0;
2627     }
2628    
2629 root 1.8 /*****************************************************************************/
2630    
2631 root 1.171 void noinline
2632 root 1.136 ev_io_start (EV_P_ ev_io *w)
2633 root 1.1 {
2634 root 1.37 int fd = w->fd;
2635    
2636 root 1.123 if (expect_false (ev_is_active (w)))
2637 root 1.1 return;
2638    
2639 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2640 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2641 root 1.33
2642 root 1.248 EV_FREQUENT_CHECK;
2643    
2644 root 1.51 ev_start (EV_A_ (W)w, 1);
2645 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2646 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2647 root 1.1
2648 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2649 root 1.281 w->events &= ~EV__IOFDSET;
2650 root 1.248
2651     EV_FREQUENT_CHECK;
2652 root 1.1 }
2653    
2654 root 1.171 void noinline
2655 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2656 root 1.1 {
2657 root 1.166 clear_pending (EV_A_ (W)w);
2658 root 1.123 if (expect_false (!ev_is_active (w)))
2659 root 1.1 return;
2660    
2661 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2662 root 1.89
2663 root 1.248 EV_FREQUENT_CHECK;
2664    
2665 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2666 root 1.51 ev_stop (EV_A_ (W)w);
2667 root 1.1
2668 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2669 root 1.248
2670     EV_FREQUENT_CHECK;
2671 root 1.1 }
2672    
2673 root 1.171 void noinline
2674 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2675 root 1.1 {
2676 root 1.123 if (expect_false (ev_is_active (w)))
2677 root 1.1 return;
2678    
2679 root 1.228 ev_at (w) += mn_now;
2680 root 1.12
2681 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2682 root 1.13
2683 root 1.248 EV_FREQUENT_CHECK;
2684    
2685     ++timercnt;
2686     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2687 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2688     ANHE_w (timers [ev_active (w)]) = (WT)w;
2689 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2690 root 1.235 upheap (timers, ev_active (w));
2691 root 1.62
2692 root 1.248 EV_FREQUENT_CHECK;
2693    
2694 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2695 root 1.12 }
2696    
2697 root 1.171 void noinline
2698 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2699 root 1.12 {
2700 root 1.166 clear_pending (EV_A_ (W)w);
2701 root 1.123 if (expect_false (!ev_is_active (w)))
2702 root 1.12 return;
2703    
2704 root 1.248 EV_FREQUENT_CHECK;
2705    
2706 root 1.230 {
2707     int active = ev_active (w);
2708 root 1.62
2709 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2710 root 1.151
2711 root 1.248 --timercnt;
2712    
2713     if (expect_true (active < timercnt + HEAP0))
2714 root 1.151 {
2715 root 1.248 timers [active] = timers [timercnt + HEAP0];
2716 root 1.181 adjustheap (timers, timercnt, active);
2717 root 1.151 }
2718 root 1.248 }
2719 root 1.228
2720     ev_at (w) -= mn_now;
2721 root 1.14
2722 root 1.51 ev_stop (EV_A_ (W)w);
2723 root 1.328
2724     EV_FREQUENT_CHECK;
2725 root 1.12 }
2726 root 1.4
2727 root 1.171 void noinline
2728 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2729 root 1.14 {
2730 root 1.248 EV_FREQUENT_CHECK;
2731    
2732 root 1.14 if (ev_is_active (w))
2733     {
2734     if (w->repeat)
2735 root 1.99 {
2736 root 1.228 ev_at (w) = mn_now + w->repeat;
2737 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2738 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2739 root 1.99 }
2740 root 1.14 else
2741 root 1.51 ev_timer_stop (EV_A_ w);
2742 root 1.14 }
2743     else if (w->repeat)
2744 root 1.112 {
2745 root 1.229 ev_at (w) = w->repeat;
2746 root 1.112 ev_timer_start (EV_A_ w);
2747     }
2748 root 1.248
2749     EV_FREQUENT_CHECK;
2750 root 1.14 }
2751    
2752 root 1.301 ev_tstamp
2753     ev_timer_remaining (EV_P_ ev_timer *w)
2754     {
2755     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2756     }
2757    
2758 root 1.140 #if EV_PERIODIC_ENABLE
2759 root 1.171 void noinline
2760 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2761 root 1.12 {
2762 root 1.123 if (expect_false (ev_is_active (w)))
2763 root 1.12 return;
2764 root 1.1
2765 root 1.77 if (w->reschedule_cb)
2766 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2767 root 1.77 else if (w->interval)
2768     {
2769 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2770 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2771 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2772 root 1.77 }
2773 root 1.173 else
2774 root 1.228 ev_at (w) = w->offset;
2775 root 1.12
2776 root 1.248 EV_FREQUENT_CHECK;
2777    
2778     ++periodiccnt;
2779     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2780 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2781     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2782 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2783 root 1.235 upheap (periodics, ev_active (w));
2784 root 1.62
2785 root 1.248 EV_FREQUENT_CHECK;
2786    
2787 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2788 root 1.1 }
2789    
2790 root 1.171 void noinline
2791 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2792 root 1.1 {
2793 root 1.166 clear_pending (EV_A_ (W)w);
2794 root 1.123 if (expect_false (!ev_is_active (w)))
2795 root 1.1 return;
2796    
2797 root 1.248 EV_FREQUENT_CHECK;
2798    
2799 root 1.230 {
2800     int active = ev_active (w);
2801 root 1.62
2802 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2803 root 1.151
2804 root 1.248 --periodiccnt;
2805    
2806     if (expect_true (active < periodiccnt + HEAP0))
2807 root 1.151 {
2808 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2809 root 1.181 adjustheap (periodics, periodiccnt, active);
2810 root 1.151 }
2811 root 1.248 }
2812 root 1.228
2813 root 1.328 ev_stop (EV_A_ (W)w);
2814    
2815 root 1.248 EV_FREQUENT_CHECK;
2816 root 1.1 }
2817    
2818 root 1.171 void noinline
2819 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2820 root 1.77 {
2821 root 1.84 /* TODO: use adjustheap and recalculation */
2822 root 1.77 ev_periodic_stop (EV_A_ w);
2823     ev_periodic_start (EV_A_ w);
2824     }
2825 root 1.93 #endif
2826 root 1.77
2827 root 1.56 #ifndef SA_RESTART
2828     # define SA_RESTART 0
2829     #endif
2830    
2831 root 1.336 #if EV_SIGNAL_ENABLE
2832    
2833 root 1.171 void noinline
2834 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2835 root 1.56 {
2836 root 1.123 if (expect_false (ev_is_active (w)))
2837 root 1.56 return;
2838    
2839 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2840    
2841     #if EV_MULTIPLICITY
2842 root 1.308 assert (("libev: a signal must not be attached to two different loops",
2843 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2844    
2845     signals [w->signum - 1].loop = EV_A;
2846     #endif
2847 root 1.56
2848 root 1.303 EV_FREQUENT_CHECK;
2849    
2850     #if EV_USE_SIGNALFD
2851     if (sigfd == -2)
2852     {
2853     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2854     if (sigfd < 0 && errno == EINVAL)
2855     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2856    
2857     if (sigfd >= 0)
2858     {
2859     fd_intern (sigfd); /* doing it twice will not hurt */
2860    
2861     sigemptyset (&sigfd_set);
2862    
2863     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2864     ev_set_priority (&sigfd_w, EV_MAXPRI);
2865     ev_io_start (EV_A_ &sigfd_w);
2866     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2867     }
2868     }
2869    
2870     if (sigfd >= 0)
2871     {
2872     /* TODO: check .head */
2873     sigaddset (&sigfd_set, w->signum);
2874     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2875 root 1.207
2876 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2877     }
2878 root 1.180 #endif
2879    
2880 root 1.56 ev_start (EV_A_ (W)w, 1);
2881 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2882 root 1.56
2883 root 1.63 if (!((WL)w)->next)
2884 root 1.304 # if EV_USE_SIGNALFD
2885 root 1.306 if (sigfd < 0) /*TODO*/
2886 root 1.304 # endif
2887 root 1.306 {
2888 root 1.322 # ifdef _WIN32
2889 root 1.317 evpipe_init (EV_A);
2890    
2891 root 1.306 signal (w->signum, ev_sighandler);
2892     # else
2893     struct sigaction sa;
2894    
2895     evpipe_init (EV_A);
2896    
2897     sa.sa_handler = ev_sighandler;
2898     sigfillset (&sa.sa_mask);
2899     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2900     sigaction (w->signum, &sa, 0);
2901    
2902 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
2903     {
2904     sigemptyset (&sa.sa_mask);
2905     sigaddset (&sa.sa_mask, w->signum);
2906     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2907     }
2908 root 1.67 #endif
2909 root 1.306 }
2910 root 1.248
2911     EV_FREQUENT_CHECK;
2912 root 1.56 }
2913    
2914 root 1.171 void noinline
2915 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2916 root 1.56 {
2917 root 1.166 clear_pending (EV_A_ (W)w);
2918 root 1.123 if (expect_false (!ev_is_active (w)))
2919 root 1.56 return;
2920    
2921 root 1.248 EV_FREQUENT_CHECK;
2922    
2923 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2924 root 1.56 ev_stop (EV_A_ (W)w);
2925    
2926     if (!signals [w->signum - 1].head)
2927 root 1.306 {
2928 root 1.307 #if EV_MULTIPLICITY
2929 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
2930 root 1.307 #endif
2931     #if EV_USE_SIGNALFD
2932 root 1.306 if (sigfd >= 0)
2933     {
2934 root 1.321 sigset_t ss;
2935    
2936     sigemptyset (&ss);
2937     sigaddset (&ss, w->signum);
2938 root 1.306 sigdelset (&sigfd_set, w->signum);
2939 root 1.321
2940 root 1.306 signalfd (sigfd, &sigfd_set, 0);
2941 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
2942 root 1.306 }
2943     else
2944 root 1.307 #endif
2945 root 1.306 signal (w->signum, SIG_DFL);
2946     }
2947 root 1.248
2948     EV_FREQUENT_CHECK;
2949 root 1.56 }
2950    
2951 root 1.336 #endif
2952    
2953     #if EV_CHILD_ENABLE
2954    
2955 root 1.28 void
2956 root 1.136 ev_child_start (EV_P_ ev_child *w)
2957 root 1.22 {
2958 root 1.56 #if EV_MULTIPLICITY
2959 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2960 root 1.56 #endif
2961 root 1.123 if (expect_false (ev_is_active (w)))
2962 root 1.22 return;
2963    
2964 root 1.248 EV_FREQUENT_CHECK;
2965    
2966 root 1.51 ev_start (EV_A_ (W)w, 1);
2967 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2968 root 1.248
2969     EV_FREQUENT_CHECK;
2970 root 1.22 }
2971    
2972 root 1.28 void
2973 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2974 root 1.22 {
2975 root 1.166 clear_pending (EV_A_ (W)w);
2976 root 1.123 if (expect_false (!ev_is_active (w)))
2977 root 1.22 return;
2978    
2979 root 1.248 EV_FREQUENT_CHECK;
2980    
2981 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2982 root 1.51 ev_stop (EV_A_ (W)w);
2983 root 1.248
2984     EV_FREQUENT_CHECK;
2985 root 1.22 }
2986    
2987 root 1.336 #endif
2988    
2989 root 1.140 #if EV_STAT_ENABLE
2990    
2991     # ifdef _WIN32
2992 root 1.146 # undef lstat
2993     # define lstat(a,b) _stati64 (a,b)
2994 root 1.140 # endif
2995    
2996 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2997     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2998     #define MIN_STAT_INTERVAL 0.1074891
2999 root 1.143
3000 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3001 root 1.152
3002     #if EV_USE_INOTIFY
3003 root 1.326
3004     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3005     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3006 root 1.152
3007     static void noinline
3008     infy_add (EV_P_ ev_stat *w)
3009     {
3010     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3011    
3012 root 1.318 if (w->wd >= 0)
3013 root 1.152 {
3014 root 1.318 struct statfs sfs;
3015    
3016     /* now local changes will be tracked by inotify, but remote changes won't */
3017     /* unless the filesystem is known to be local, we therefore still poll */
3018     /* also do poll on <2.6.25, but with normal frequency */
3019    
3020     if (!fs_2625)
3021     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3022     else if (!statfs (w->path, &sfs)
3023     && (sfs.f_type == 0x1373 /* devfs */
3024     || sfs.f_type == 0xEF53 /* ext2/3 */
3025     || sfs.f_type == 0x3153464a /* jfs */
3026     || sfs.f_type == 0x52654973 /* reiser3 */
3027     || sfs.f_type == 0x01021994 /* tempfs */
3028     || sfs.f_type == 0x58465342 /* xfs */))
3029     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3030     else
3031     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3032     }
3033     else
3034     {
3035     /* can't use inotify, continue to stat */
3036 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3037 root 1.152
3038 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3039 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3040 root 1.233 /* but an efficiency issue only */
3041 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3042 root 1.152 {
3043 root 1.153 char path [4096];
3044 root 1.152 strcpy (path, w->path);
3045    
3046     do
3047     {
3048     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3049     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3050    
3051     char *pend = strrchr (path, '/');
3052    
3053 root 1.275 if (!pend || pend == path)
3054     break;
3055 root 1.152
3056     *pend = 0;
3057 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3058 root 1.152 }
3059     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3060     }
3061     }
3062 root 1.275
3063     if (w->wd >= 0)
3064 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3065 root 1.152
3066 root 1.318 /* now re-arm timer, if required */
3067     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3068     ev_timer_again (EV_A_ &w->timer);
3069     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3070 root 1.152 }
3071    
3072     static void noinline
3073     infy_del (EV_P_ ev_stat *w)
3074     {
3075     int slot;
3076     int wd = w->wd;
3077    
3078     if (wd < 0)
3079     return;
3080    
3081     w->wd = -2;
3082 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3083 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3084    
3085     /* remove this watcher, if others are watching it, they will rearm */
3086     inotify_rm_watch (fs_fd, wd);
3087     }
3088    
3089     static void noinline
3090     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3091     {
3092     if (slot < 0)
3093 root 1.264 /* overflow, need to check for all hash slots */
3094 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3095 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3096     else
3097     {
3098     WL w_;
3099    
3100 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3101 root 1.152 {
3102     ev_stat *w = (ev_stat *)w_;
3103     w_ = w_->next; /* lets us remove this watcher and all before it */
3104    
3105     if (w->wd == wd || wd == -1)
3106     {
3107     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3108     {
3109 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3110 root 1.152 w->wd = -1;
3111     infy_add (EV_A_ w); /* re-add, no matter what */
3112     }
3113    
3114 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3115 root 1.152 }
3116     }
3117     }
3118     }
3119    
3120     static void
3121     infy_cb (EV_P_ ev_io *w, int revents)
3122     {
3123     char buf [EV_INOTIFY_BUFSIZE];
3124     int ofs;
3125     int len = read (fs_fd, buf, sizeof (buf));
3126    
3127 root 1.326 for (ofs = 0; ofs < len; )
3128     {
3129     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3130     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3131     ofs += sizeof (struct inotify_event) + ev->len;
3132     }
3133 root 1.152 }
3134    
3135 root 1.330 inline_size void
3136     ev_check_2625 (EV_P)
3137     {
3138     /* kernels < 2.6.25 are borked
3139     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3140     */
3141     if (ev_linux_version () < 0x020619)
3142 root 1.273 return;
3143 root 1.264
3144 root 1.273 fs_2625 = 1;
3145     }
3146 root 1.264
3147 root 1.315 inline_size int
3148     infy_newfd (void)
3149     {
3150     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3151     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3152     if (fd >= 0)
3153     return fd;
3154     #endif
3155     return inotify_init ();
3156     }
3157    
3158 root 1.284 inline_size void
3159 root 1.273 infy_init (EV_P)
3160     {
3161     if (fs_fd != -2)
3162     return;
3163 root 1.264
3164 root 1.273 fs_fd = -1;
3165 root 1.264
3166 root 1.330 ev_check_2625 (EV_A);
3167 root 1.264
3168 root 1.315 fs_fd = infy_newfd ();
3169 root 1.152
3170     if (fs_fd >= 0)
3171     {
3172 root 1.315 fd_intern (fs_fd);
3173 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3174     ev_set_priority (&fs_w, EV_MAXPRI);
3175     ev_io_start (EV_A_ &fs_w);
3176 root 1.317 ev_unref (EV_A);
3177 root 1.152 }
3178     }
3179    
3180 root 1.284 inline_size void
3181 root 1.154 infy_fork (EV_P)
3182     {
3183     int slot;
3184    
3185     if (fs_fd < 0)
3186     return;
3187    
3188 root 1.317 ev_ref (EV_A);
3189 root 1.315 ev_io_stop (EV_A_ &fs_w);
3190 root 1.154 close (fs_fd);
3191 root 1.315 fs_fd = infy_newfd ();
3192    
3193     if (fs_fd >= 0)
3194     {
3195     fd_intern (fs_fd);
3196     ev_io_set (&fs_w, fs_fd, EV_READ);
3197     ev_io_start (EV_A_ &fs_w);
3198 root 1.317 ev_unref (EV_A);
3199 root 1.315 }
3200 root 1.154
3201 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3202 root 1.154 {
3203     WL w_ = fs_hash [slot].head;
3204     fs_hash [slot].head = 0;
3205    
3206     while (w_)
3207     {
3208     ev_stat *w = (ev_stat *)w_;
3209     w_ = w_->next; /* lets us add this watcher */
3210    
3211     w->wd = -1;
3212    
3213     if (fs_fd >= 0)
3214     infy_add (EV_A_ w); /* re-add, no matter what */
3215     else
3216 root 1.318 {
3217     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3218     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3219     ev_timer_again (EV_A_ &w->timer);
3220     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3221     }
3222 root 1.154 }
3223     }
3224     }
3225    
3226 root 1.152 #endif
3227    
3228 root 1.255 #ifdef _WIN32
3229     # define EV_LSTAT(p,b) _stati64 (p, b)
3230     #else
3231     # define EV_LSTAT(p,b) lstat (p, b)
3232     #endif
3233    
3234 root 1.140 void
3235     ev_stat_stat (EV_P_ ev_stat *w)
3236     {
3237     if (lstat (w->path, &w->attr) < 0)
3238     w->attr.st_nlink = 0;
3239     else if (!w->attr.st_nlink)
3240     w->attr.st_nlink = 1;
3241     }
3242    
3243 root 1.157 static void noinline
3244 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3245     {
3246     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3247    
3248 root 1.320 ev_statdata prev = w->attr;
3249 root 1.140 ev_stat_stat (EV_A_ w);
3250    
3251 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3252     if (
3253 root 1.320 prev.st_dev != w->attr.st_dev
3254     || prev.st_ino != w->attr.st_ino
3255     || prev.st_mode != w->attr.st_mode
3256     || prev.st_nlink != w->attr.st_nlink
3257     || prev.st_uid != w->attr.st_uid
3258     || prev.st_gid != w->attr.st_gid
3259     || prev.st_rdev != w->attr.st_rdev
3260     || prev.st_size != w->attr.st_size
3261     || prev.st_atime != w->attr.st_atime
3262     || prev.st_mtime != w->attr.st_mtime
3263     || prev.st_ctime != w->attr.st_ctime
3264 root 1.156 ) {
3265 root 1.320 /* we only update w->prev on actual differences */
3266     /* in case we test more often than invoke the callback, */
3267     /* to ensure that prev is always different to attr */
3268     w->prev = prev;
3269    
3270 root 1.152 #if EV_USE_INOTIFY
3271 root 1.264 if (fs_fd >= 0)
3272     {
3273     infy_del (EV_A_ w);
3274     infy_add (EV_A_ w);
3275     ev_stat_stat (EV_A_ w); /* avoid race... */
3276     }
3277 root 1.152 #endif
3278    
3279     ev_feed_event (EV_A_ w, EV_STAT);
3280     }
3281 root 1.140 }
3282    
3283     void
3284     ev_stat_start (EV_P_ ev_stat *w)
3285     {
3286     if (expect_false (ev_is_active (w)))
3287     return;
3288    
3289     ev_stat_stat (EV_A_ w);
3290    
3291 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3292     w->interval = MIN_STAT_INTERVAL;
3293 root 1.143
3294 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3295 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3296 root 1.152
3297     #if EV_USE_INOTIFY
3298     infy_init (EV_A);
3299    
3300     if (fs_fd >= 0)
3301     infy_add (EV_A_ w);
3302     else
3303     #endif
3304 root 1.318 {
3305     ev_timer_again (EV_A_ &w->timer);
3306     ev_unref (EV_A);
3307     }
3308 root 1.140
3309     ev_start (EV_A_ (W)w, 1);
3310 root 1.248
3311     EV_FREQUENT_CHECK;
3312 root 1.140 }
3313    
3314     void
3315     ev_stat_stop (EV_P_ ev_stat *w)
3316     {
3317 root 1.166 clear_pending (EV_A_ (W)w);
3318 root 1.140 if (expect_false (!ev_is_active (w)))
3319     return;
3320    
3321 root 1.248 EV_FREQUENT_CHECK;
3322    
3323 root 1.152 #if EV_USE_INOTIFY
3324     infy_del (EV_A_ w);
3325     #endif
3326 root 1.318
3327     if (ev_is_active (&w->timer))
3328     {
3329     ev_ref (EV_A);
3330     ev_timer_stop (EV_A_ &w->timer);
3331     }
3332 root 1.140
3333 root 1.134 ev_stop (EV_A_ (W)w);
3334 root 1.248
3335     EV_FREQUENT_CHECK;
3336 root 1.134 }
3337     #endif
3338    
3339 root 1.164 #if EV_IDLE_ENABLE
3340 root 1.144 void
3341     ev_idle_start (EV_P_ ev_idle *w)
3342     {
3343     if (expect_false (ev_is_active (w)))
3344     return;
3345    
3346 root 1.164 pri_adjust (EV_A_ (W)w);
3347    
3348 root 1.248 EV_FREQUENT_CHECK;
3349    
3350 root 1.164 {
3351     int active = ++idlecnt [ABSPRI (w)];
3352    
3353     ++idleall;
3354     ev_start (EV_A_ (W)w, active);
3355    
3356     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3357     idles [ABSPRI (w)][active - 1] = w;
3358     }
3359 root 1.248
3360     EV_FREQUENT_CHECK;
3361 root 1.144 }
3362    
3363     void
3364     ev_idle_stop (EV_P_ ev_idle *w)
3365     {
3366 root 1.166 clear_pending (EV_A_ (W)w);
3367 root 1.144 if (expect_false (!ev_is_active (w)))
3368     return;
3369    
3370 root 1.248 EV_FREQUENT_CHECK;
3371    
3372 root 1.144 {
3373 root 1.230 int active = ev_active (w);
3374 root 1.164
3375     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3376 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3377 root 1.164
3378     ev_stop (EV_A_ (W)w);
3379     --idleall;
3380 root 1.144 }
3381 root 1.248
3382     EV_FREQUENT_CHECK;
3383 root 1.144 }
3384 root 1.164 #endif
3385 root 1.144
3386 root 1.337 #if EV_PREPARE_ENABLE
3387 root 1.144 void
3388     ev_prepare_start (EV_P_ ev_prepare *w)
3389     {
3390     if (expect_false (ev_is_active (w)))
3391     return;
3392    
3393 root 1.248 EV_FREQUENT_CHECK;
3394    
3395 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3396     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3397     prepares [preparecnt - 1] = w;
3398 root 1.248
3399     EV_FREQUENT_CHECK;
3400 root 1.144 }
3401    
3402     void
3403     ev_prepare_stop (EV_P_ ev_prepare *w)
3404     {
3405 root 1.166 clear_pending (EV_A_ (W)w);
3406 root 1.144 if (expect_false (!ev_is_active (w)))
3407     return;
3408    
3409 root 1.248 EV_FREQUENT_CHECK;
3410    
3411 root 1.144 {
3412 root 1.230 int active = ev_active (w);
3413    
3414 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3415 root 1.230 ev_active (prepares [active - 1]) = active;
3416 root 1.144 }
3417    
3418     ev_stop (EV_A_ (W)w);
3419 root 1.248
3420     EV_FREQUENT_CHECK;
3421 root 1.144 }
3422 root 1.337 #endif
3423 root 1.144
3424 root 1.337 #if EV_CHECK_ENABLE
3425 root 1.144 void
3426     ev_check_start (EV_P_ ev_check *w)
3427     {
3428     if (expect_false (ev_is_active (w)))
3429     return;
3430    
3431 root 1.248 EV_FREQUENT_CHECK;
3432    
3433 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3434     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3435     checks [checkcnt - 1] = w;
3436 root 1.248
3437     EV_FREQUENT_CHECK;
3438 root 1.144 }
3439    
3440     void
3441     ev_check_stop (EV_P_ ev_check *w)
3442     {
3443 root 1.166 clear_pending (EV_A_ (W)w);
3444 root 1.144 if (expect_false (!ev_is_active (w)))
3445     return;
3446    
3447 root 1.248 EV_FREQUENT_CHECK;
3448    
3449 root 1.144 {
3450 root 1.230 int active = ev_active (w);
3451    
3452 root 1.144 checks [active - 1] = checks [--checkcnt];
3453 root 1.230 ev_active (checks [active - 1]) = active;
3454 root 1.144 }
3455    
3456     ev_stop (EV_A_ (W)w);
3457 root 1.248
3458     EV_FREQUENT_CHECK;
3459 root 1.144 }
3460 root 1.337 #endif
3461 root 1.144
3462     #if EV_EMBED_ENABLE
3463     void noinline
3464     ev_embed_sweep (EV_P_ ev_embed *w)
3465     {
3466 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3467 root 1.144 }
3468    
3469     static void
3470 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3471 root 1.144 {
3472     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3473    
3474     if (ev_cb (w))
3475     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3476     else
3477 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3478 root 1.144 }
3479    
3480 root 1.189 static void
3481     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3482     {
3483     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3484    
3485 root 1.195 {
3486 root 1.306 EV_P = w->other;
3487 root 1.195
3488     while (fdchangecnt)
3489     {
3490     fd_reify (EV_A);
3491 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3492 root 1.195 }
3493     }
3494     }
3495    
3496 root 1.261 static void
3497     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3498     {
3499     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3500    
3501 root 1.277 ev_embed_stop (EV_A_ w);
3502    
3503 root 1.261 {
3504 root 1.306 EV_P = w->other;
3505 root 1.261
3506     ev_loop_fork (EV_A);
3507 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3508 root 1.261 }
3509 root 1.277
3510     ev_embed_start (EV_A_ w);
3511 root 1.261 }
3512    
3513 root 1.195 #if 0
3514     static void
3515     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3516     {
3517     ev_idle_stop (EV_A_ idle);
3518 root 1.189 }
3519 root 1.195 #endif
3520 root 1.189
3521 root 1.144 void
3522     ev_embed_start (EV_P_ ev_embed *w)
3523     {
3524     if (expect_false (ev_is_active (w)))
3525     return;
3526    
3527     {
3528 root 1.306 EV_P = w->other;
3529 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3530 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3531 root 1.144 }
3532    
3533 root 1.248 EV_FREQUENT_CHECK;
3534    
3535 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3536     ev_io_start (EV_A_ &w->io);
3537    
3538 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3539     ev_set_priority (&w->prepare, EV_MINPRI);
3540     ev_prepare_start (EV_A_ &w->prepare);
3541    
3542 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3543     ev_fork_start (EV_A_ &w->fork);
3544    
3545 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3546    
3547 root 1.144 ev_start (EV_A_ (W)w, 1);
3548 root 1.248
3549     EV_FREQUENT_CHECK;
3550 root 1.144 }
3551    
3552     void
3553     ev_embed_stop (EV_P_ ev_embed *w)
3554     {
3555 root 1.166 clear_pending (EV_A_ (W)w);
3556 root 1.144 if (expect_false (!ev_is_active (w)))
3557     return;
3558    
3559 root 1.248 EV_FREQUENT_CHECK;
3560    
3561 root 1.261 ev_io_stop (EV_A_ &w->io);
3562 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3563 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3564 root 1.248
3565 root 1.328 ev_stop (EV_A_ (W)w);
3566    
3567 root 1.248 EV_FREQUENT_CHECK;
3568 root 1.144 }
3569     #endif
3570    
3571 root 1.147 #if EV_FORK_ENABLE
3572     void
3573     ev_fork_start (EV_P_ ev_fork *w)
3574     {
3575     if (expect_false (ev_is_active (w)))
3576     return;
3577    
3578 root 1.248 EV_FREQUENT_CHECK;
3579    
3580 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3581     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3582     forks [forkcnt - 1] = w;
3583 root 1.248
3584     EV_FREQUENT_CHECK;
3585 root 1.147 }
3586    
3587     void
3588     ev_fork_stop (EV_P_ ev_fork *w)
3589     {
3590 root 1.166 clear_pending (EV_A_ (W)w);
3591 root 1.147 if (expect_false (!ev_is_active (w)))
3592     return;
3593    
3594 root 1.248 EV_FREQUENT_CHECK;
3595    
3596 root 1.147 {
3597 root 1.230 int active = ev_active (w);
3598    
3599 root 1.147 forks [active - 1] = forks [--forkcnt];
3600 root 1.230 ev_active (forks [active - 1]) = active;
3601 root 1.147 }
3602    
3603     ev_stop (EV_A_ (W)w);
3604 root 1.248
3605     EV_FREQUENT_CHECK;
3606 root 1.147 }
3607     #endif
3608    
3609 root 1.360 #if EV_CLEANUP_ENABLE
3610     void
3611     ev_cleanup_start (EV_P_ ev_cleanup *w)
3612     {
3613     if (expect_false (ev_is_active (w)))
3614     return;
3615    
3616     EV_FREQUENT_CHECK;
3617    
3618     ev_start (EV_A_ (W)w, ++cleanupcnt);
3619     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3620     cleanups [cleanupcnt - 1] = w;
3621    
3622 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
3623     ev_unref (EV_A);
3624 root 1.360 EV_FREQUENT_CHECK;
3625     }
3626    
3627     void
3628     ev_cleanup_stop (EV_P_ ev_cleanup *w)
3629     {
3630     clear_pending (EV_A_ (W)w);
3631     if (expect_false (!ev_is_active (w)))
3632     return;
3633    
3634     EV_FREQUENT_CHECK;
3635 root 1.362 ev_ref (EV_A);
3636 root 1.360
3637     {
3638     int active = ev_active (w);
3639    
3640     cleanups [active - 1] = cleanups [--cleanupcnt];
3641     ev_active (cleanups [active - 1]) = active;
3642     }
3643    
3644     ev_stop (EV_A_ (W)w);
3645    
3646     EV_FREQUENT_CHECK;
3647     }
3648     #endif
3649    
3650 root 1.207 #if EV_ASYNC_ENABLE
3651     void
3652     ev_async_start (EV_P_ ev_async *w)
3653     {
3654     if (expect_false (ev_is_active (w)))
3655     return;
3656    
3657 root 1.352 w->sent = 0;
3658    
3659 root 1.207 evpipe_init (EV_A);
3660    
3661 root 1.248 EV_FREQUENT_CHECK;
3662    
3663 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3664     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3665     asyncs [asynccnt - 1] = w;
3666 root 1.248
3667     EV_FREQUENT_CHECK;
3668 root 1.207 }
3669    
3670     void
3671     ev_async_stop (EV_P_ ev_async *w)
3672     {
3673     clear_pending (EV_A_ (W)w);
3674     if (expect_false (!ev_is_active (w)))
3675     return;
3676    
3677 root 1.248 EV_FREQUENT_CHECK;
3678    
3679 root 1.207 {
3680 root 1.230 int active = ev_active (w);
3681    
3682 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3683 root 1.230 ev_active (asyncs [active - 1]) = active;
3684 root 1.207 }
3685    
3686     ev_stop (EV_A_ (W)w);
3687 root 1.248
3688     EV_FREQUENT_CHECK;
3689 root 1.207 }
3690    
3691     void
3692     ev_async_send (EV_P_ ev_async *w)
3693     {
3694     w->sent = 1;
3695 root 1.307 evpipe_write (EV_A_ &async_pending);
3696 root 1.207 }
3697     #endif
3698    
3699 root 1.1 /*****************************************************************************/
3700 root 1.10
3701 root 1.16 struct ev_once
3702     {
3703 root 1.136 ev_io io;
3704     ev_timer to;
3705 root 1.16 void (*cb)(int revents, void *arg);
3706     void *arg;
3707     };
3708    
3709     static void
3710 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3711 root 1.16 {
3712     void (*cb)(int revents, void *arg) = once->cb;
3713     void *arg = once->arg;
3714    
3715 root 1.259 ev_io_stop (EV_A_ &once->io);
3716 root 1.51 ev_timer_stop (EV_A_ &once->to);
3717 root 1.69 ev_free (once);
3718 root 1.16
3719     cb (revents, arg);
3720     }
3721    
3722     static void
3723 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3724 root 1.16 {
3725 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3726    
3727     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3728 root 1.16 }
3729    
3730     static void
3731 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3732 root 1.16 {
3733 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3734    
3735     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3736 root 1.16 }
3737    
3738     void
3739 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3740 root 1.16 {
3741 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3742 root 1.16
3743 root 1.123 if (expect_false (!once))
3744 root 1.16 {
3745 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3746 root 1.123 return;
3747     }
3748    
3749     once->cb = cb;
3750     once->arg = arg;
3751 root 1.16
3752 root 1.123 ev_init (&once->io, once_cb_io);
3753     if (fd >= 0)
3754     {
3755     ev_io_set (&once->io, fd, events);
3756     ev_io_start (EV_A_ &once->io);
3757     }
3758 root 1.16
3759 root 1.123 ev_init (&once->to, once_cb_to);
3760     if (timeout >= 0.)
3761     {
3762     ev_timer_set (&once->to, timeout, 0.);
3763     ev_timer_start (EV_A_ &once->to);
3764 root 1.16 }
3765     }
3766    
3767 root 1.282 /*****************************************************************************/
3768    
3769 root 1.288 #if EV_WALK_ENABLE
3770 root 1.282 void
3771     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3772     {
3773     int i, j;
3774     ev_watcher_list *wl, *wn;
3775    
3776     if (types & (EV_IO | EV_EMBED))
3777     for (i = 0; i < anfdmax; ++i)
3778     for (wl = anfds [i].head; wl; )
3779     {
3780     wn = wl->next;
3781    
3782     #if EV_EMBED_ENABLE
3783     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3784     {
3785     if (types & EV_EMBED)
3786     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3787     }
3788     else
3789     #endif
3790     #if EV_USE_INOTIFY
3791     if (ev_cb ((ev_io *)wl) == infy_cb)
3792     ;
3793     else
3794     #endif
3795 root 1.288 if ((ev_io *)wl != &pipe_w)
3796 root 1.282 if (types & EV_IO)
3797     cb (EV_A_ EV_IO, wl);
3798    
3799     wl = wn;
3800     }
3801    
3802     if (types & (EV_TIMER | EV_STAT))
3803     for (i = timercnt + HEAP0; i-- > HEAP0; )
3804     #if EV_STAT_ENABLE
3805     /*TODO: timer is not always active*/
3806     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3807     {
3808     if (types & EV_STAT)
3809     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3810     }
3811     else
3812     #endif
3813     if (types & EV_TIMER)
3814     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3815    
3816     #if EV_PERIODIC_ENABLE
3817     if (types & EV_PERIODIC)
3818     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3819     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3820     #endif
3821    
3822     #if EV_IDLE_ENABLE
3823     if (types & EV_IDLE)
3824     for (j = NUMPRI; i--; )
3825     for (i = idlecnt [j]; i--; )
3826     cb (EV_A_ EV_IDLE, idles [j][i]);
3827     #endif
3828    
3829     #if EV_FORK_ENABLE
3830     if (types & EV_FORK)
3831     for (i = forkcnt; i--; )
3832     if (ev_cb (forks [i]) != embed_fork_cb)
3833     cb (EV_A_ EV_FORK, forks [i]);
3834     #endif
3835    
3836     #if EV_ASYNC_ENABLE
3837     if (types & EV_ASYNC)
3838     for (i = asynccnt; i--; )
3839     cb (EV_A_ EV_ASYNC, asyncs [i]);
3840     #endif
3841    
3842 root 1.337 #if EV_PREPARE_ENABLE
3843 root 1.282 if (types & EV_PREPARE)
3844     for (i = preparecnt; i--; )
3845 root 1.337 # if EV_EMBED_ENABLE
3846 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3847 root 1.337 # endif
3848     cb (EV_A_ EV_PREPARE, prepares [i]);
3849 root 1.282 #endif
3850    
3851 root 1.337 #if EV_CHECK_ENABLE
3852 root 1.282 if (types & EV_CHECK)
3853     for (i = checkcnt; i--; )
3854     cb (EV_A_ EV_CHECK, checks [i]);
3855 root 1.337 #endif
3856 root 1.282
3857 root 1.337 #if EV_SIGNAL_ENABLE
3858 root 1.282 if (types & EV_SIGNAL)
3859 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
3860 root 1.282 for (wl = signals [i].head; wl; )
3861     {
3862     wn = wl->next;
3863     cb (EV_A_ EV_SIGNAL, wl);
3864     wl = wn;
3865     }
3866 root 1.337 #endif
3867 root 1.282
3868 root 1.337 #if EV_CHILD_ENABLE
3869 root 1.282 if (types & EV_CHILD)
3870 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
3871 root 1.282 for (wl = childs [i]; wl; )
3872     {
3873     wn = wl->next;
3874     cb (EV_A_ EV_CHILD, wl);
3875     wl = wn;
3876     }
3877 root 1.337 #endif
3878 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
3879     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3880     }
3881     #endif
3882    
3883 root 1.188 #if EV_MULTIPLICITY
3884     #include "ev_wrap.h"
3885     #endif
3886    
3887 root 1.354 EV_CPP(})
3888 root 1.87