ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.370
Committed: Sun Jan 30 19:05:41 2011 UTC (13 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.369: +15 -5 lines
Log Message:
periodic_recalc, hpux

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.274 # if HAVE_CLOCK_SYSCALL
49     # ifndef EV_USE_CLOCK_SYSCALL
50     # define EV_USE_CLOCK_SYSCALL 1
51     # ifndef EV_USE_REALTIME
52     # define EV_USE_REALTIME 0
53     # endif
54     # ifndef EV_USE_MONOTONIC
55     # define EV_USE_MONOTONIC 1
56     # endif
57     # endif
58 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
59     # define EV_USE_CLOCK_SYSCALL 0
60 root 1.274 # endif
61    
62 root 1.60 # if HAVE_CLOCK_GETTIME
63 root 1.97 # ifndef EV_USE_MONOTONIC
64     # define EV_USE_MONOTONIC 1
65     # endif
66     # ifndef EV_USE_REALTIME
67 root 1.279 # define EV_USE_REALTIME 0
68 root 1.97 # endif
69 root 1.126 # else
70     # ifndef EV_USE_MONOTONIC
71     # define EV_USE_MONOTONIC 0
72     # endif
73     # ifndef EV_USE_REALTIME
74     # define EV_USE_REALTIME 0
75     # endif
76 root 1.60 # endif
77    
78 root 1.343 # if HAVE_NANOSLEEP
79     # ifndef EV_USE_NANOSLEEP
80     # define EV_USE_NANOSLEEP EV_FEATURE_OS
81     # endif
82     # else
83     # undef EV_USE_NANOSLEEP
84 root 1.193 # define EV_USE_NANOSLEEP 0
85     # endif
86    
87 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
88     # ifndef EV_USE_SELECT
89 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
90 root 1.127 # endif
91 root 1.343 # else
92     # undef EV_USE_SELECT
93     # define EV_USE_SELECT 0
94 root 1.60 # endif
95    
96 root 1.343 # if HAVE_POLL && HAVE_POLL_H
97     # ifndef EV_USE_POLL
98 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
99 root 1.127 # endif
100 root 1.343 # else
101     # undef EV_USE_POLL
102     # define EV_USE_POLL 0
103 root 1.60 # endif
104 root 1.127
105 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106     # ifndef EV_USE_EPOLL
107 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
108 root 1.127 # endif
109 root 1.343 # else
110     # undef EV_USE_EPOLL
111     # define EV_USE_EPOLL 0
112 root 1.60 # endif
113 root 1.127
114 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115     # ifndef EV_USE_KQUEUE
116 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117 root 1.127 # endif
118 root 1.343 # else
119     # undef EV_USE_KQUEUE
120     # define EV_USE_KQUEUE 0
121 root 1.60 # endif
122 root 1.127
123 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
124     # ifndef EV_USE_PORT
125 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
126 root 1.127 # endif
127 root 1.343 # else
128     # undef EV_USE_PORT
129     # define EV_USE_PORT 0
130 root 1.118 # endif
131    
132 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133     # ifndef EV_USE_INOTIFY
134 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
135 root 1.152 # endif
136 root 1.343 # else
137     # undef EV_USE_INOTIFY
138     # define EV_USE_INOTIFY 0
139 root 1.152 # endif
140    
141 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142     # ifndef EV_USE_SIGNALFD
143 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
144 root 1.303 # endif
145 root 1.343 # else
146     # undef EV_USE_SIGNALFD
147     # define EV_USE_SIGNALFD 0
148 root 1.303 # endif
149    
150 root 1.343 # if HAVE_EVENTFD
151     # ifndef EV_USE_EVENTFD
152 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
153 root 1.220 # endif
154 root 1.343 # else
155     # undef EV_USE_EVENTFD
156     # define EV_USE_EVENTFD 0
157 root 1.220 # endif
158 root 1.250
159 root 1.29 #endif
160 root 1.17
161 root 1.1 #include <math.h>
162     #include <stdlib.h>
163 root 1.319 #include <string.h>
164 root 1.7 #include <fcntl.h>
165 root 1.16 #include <stddef.h>
166 root 1.1
167     #include <stdio.h>
168    
169 root 1.4 #include <assert.h>
170 root 1.1 #include <errno.h>
171 root 1.22 #include <sys/types.h>
172 root 1.71 #include <time.h>
173 root 1.326 #include <limits.h>
174 root 1.71
175 root 1.72 #include <signal.h>
176 root 1.71
177 root 1.152 #ifdef EV_H
178     # include EV_H
179     #else
180     # include "ev.h"
181     #endif
182    
183 root 1.354 EV_CPP(extern "C" {)
184    
185 root 1.103 #ifndef _WIN32
186 root 1.71 # include <sys/time.h>
187 root 1.45 # include <sys/wait.h>
188 root 1.140 # include <unistd.h>
189 root 1.103 #else
190 root 1.256 # include <io.h>
191 root 1.103 # define WIN32_LEAN_AND_MEAN
192     # include <windows.h>
193     # ifndef EV_SELECT_IS_WINSOCKET
194     # define EV_SELECT_IS_WINSOCKET 1
195     # endif
196 root 1.331 # undef EV_AVOID_STDIO
197 root 1.45 #endif
198 root 1.103
199 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
200     * a limit of 1024 into their select. Where people have brains,
201     * OS X engineers apparently have a vacuum. Or maybe they were
202     * ordered to have a vacuum, or they do anything for money.
203     * This might help. Or not.
204     */
205     #define _DARWIN_UNLIMITED_SELECT 1
206    
207 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
208 root 1.40
209 root 1.305 /* try to deduce the maximum number of signals on this platform */
210     #if defined (EV_NSIG)
211     /* use what's provided */
212     #elif defined (NSIG)
213     # define EV_NSIG (NSIG)
214     #elif defined(_NSIG)
215     # define EV_NSIG (_NSIG)
216     #elif defined (SIGMAX)
217     # define EV_NSIG (SIGMAX+1)
218     #elif defined (SIG_MAX)
219     # define EV_NSIG (SIG_MAX+1)
220     #elif defined (_SIG_MAX)
221     # define EV_NSIG (_SIG_MAX+1)
222     #elif defined (MAXSIG)
223     # define EV_NSIG (MAXSIG+1)
224     #elif defined (MAX_SIG)
225     # define EV_NSIG (MAX_SIG+1)
226     #elif defined (SIGARRAYSIZE)
227 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228 root 1.305 #elif defined (_sys_nsig)
229     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230     #else
231     # error "unable to find value for NSIG, please report"
232 root 1.336 /* to make it compile regardless, just remove the above line, */
233     /* but consider reporting it, too! :) */
234 root 1.306 # define EV_NSIG 65
235 root 1.305 #endif
236    
237 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
238     # if __linux && __GLIBC__ >= 2
239 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240 root 1.274 # else
241     # define EV_USE_CLOCK_SYSCALL 0
242     # endif
243     #endif
244    
245 root 1.29 #ifndef EV_USE_MONOTONIC
246 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
248 root 1.253 # else
249     # define EV_USE_MONOTONIC 0
250     # endif
251 root 1.37 #endif
252    
253 root 1.118 #ifndef EV_USE_REALTIME
254 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255 root 1.118 #endif
256    
257 root 1.193 #ifndef EV_USE_NANOSLEEP
258 root 1.253 # if _POSIX_C_SOURCE >= 199309L
259 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
260 root 1.253 # else
261     # define EV_USE_NANOSLEEP 0
262     # endif
263 root 1.193 #endif
264    
265 root 1.29 #ifndef EV_USE_SELECT
266 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
267 root 1.10 #endif
268    
269 root 1.59 #ifndef EV_USE_POLL
270 root 1.104 # ifdef _WIN32
271     # define EV_USE_POLL 0
272     # else
273 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
274 root 1.104 # endif
275 root 1.41 #endif
276    
277 root 1.29 #ifndef EV_USE_EPOLL
278 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
280 root 1.220 # else
281     # define EV_USE_EPOLL 0
282     # endif
283 root 1.10 #endif
284    
285 root 1.44 #ifndef EV_USE_KQUEUE
286     # define EV_USE_KQUEUE 0
287     #endif
288    
289 root 1.118 #ifndef EV_USE_PORT
290     # define EV_USE_PORT 0
291 root 1.40 #endif
292    
293 root 1.152 #ifndef EV_USE_INOTIFY
294 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
296 root 1.220 # else
297     # define EV_USE_INOTIFY 0
298     # endif
299 root 1.152 #endif
300    
301 root 1.149 #ifndef EV_PID_HASHSIZE
302 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303 root 1.149 #endif
304    
305 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
306 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307 root 1.152 #endif
308    
309 root 1.220 #ifndef EV_USE_EVENTFD
310     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
312 root 1.220 # else
313     # define EV_USE_EVENTFD 0
314     # endif
315     #endif
316    
317 root 1.303 #ifndef EV_USE_SIGNALFD
318 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
320 root 1.303 # else
321     # define EV_USE_SIGNALFD 0
322     # endif
323     #endif
324    
325 root 1.249 #if 0 /* debugging */
326 root 1.250 # define EV_VERIFY 3
327 root 1.249 # define EV_USE_4HEAP 1
328     # define EV_HEAP_CACHE_AT 1
329     #endif
330    
331 root 1.250 #ifndef EV_VERIFY
332 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333 root 1.250 #endif
334    
335 root 1.243 #ifndef EV_USE_4HEAP
336 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
337 root 1.243 #endif
338    
339     #ifndef EV_HEAP_CACHE_AT
340 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341 root 1.243 #endif
342    
343 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344     /* which makes programs even slower. might work on other unices, too. */
345     #if EV_USE_CLOCK_SYSCALL
346     # include <syscall.h>
347     # ifdef SYS_clock_gettime
348     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349     # undef EV_USE_MONOTONIC
350     # define EV_USE_MONOTONIC 1
351     # else
352     # undef EV_USE_CLOCK_SYSCALL
353     # define EV_USE_CLOCK_SYSCALL 0
354     # endif
355     #endif
356    
357 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
358 root 1.40
359 root 1.325 #ifdef _AIX
360     /* AIX has a completely broken poll.h header */
361     # undef EV_USE_POLL
362     # define EV_USE_POLL 0
363     #endif
364    
365 root 1.40 #ifndef CLOCK_MONOTONIC
366     # undef EV_USE_MONOTONIC
367     # define EV_USE_MONOTONIC 0
368     #endif
369    
370 root 1.31 #ifndef CLOCK_REALTIME
371 root 1.40 # undef EV_USE_REALTIME
372 root 1.31 # define EV_USE_REALTIME 0
373     #endif
374 root 1.40
375 root 1.152 #if !EV_STAT_ENABLE
376 root 1.185 # undef EV_USE_INOTIFY
377 root 1.152 # define EV_USE_INOTIFY 0
378     #endif
379    
380 root 1.193 #if !EV_USE_NANOSLEEP
381 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
382     # if !defined(_WIN32) && !defined(__hpux)
383 root 1.193 # include <sys/select.h>
384     # endif
385     #endif
386    
387 root 1.152 #if EV_USE_INOTIFY
388 root 1.273 # include <sys/statfs.h>
389 root 1.152 # include <sys/inotify.h>
390 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391     # ifndef IN_DONT_FOLLOW
392     # undef EV_USE_INOTIFY
393     # define EV_USE_INOTIFY 0
394     # endif
395 root 1.152 #endif
396    
397 root 1.185 #if EV_SELECT_IS_WINSOCKET
398     # include <winsock.h>
399     #endif
400    
401 root 1.220 #if EV_USE_EVENTFD
402     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
403 root 1.221 # include <stdint.h>
404 root 1.303 # ifndef EFD_NONBLOCK
405     # define EFD_NONBLOCK O_NONBLOCK
406     # endif
407     # ifndef EFD_CLOEXEC
408 root 1.311 # ifdef O_CLOEXEC
409     # define EFD_CLOEXEC O_CLOEXEC
410     # else
411     # define EFD_CLOEXEC 02000000
412     # endif
413 root 1.303 # endif
414 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415 root 1.220 #endif
416    
417 root 1.303 #if EV_USE_SIGNALFD
418 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419     # include <stdint.h>
420     # ifndef SFD_NONBLOCK
421     # define SFD_NONBLOCK O_NONBLOCK
422     # endif
423     # ifndef SFD_CLOEXEC
424     # ifdef O_CLOEXEC
425     # define SFD_CLOEXEC O_CLOEXEC
426     # else
427     # define SFD_CLOEXEC 02000000
428     # endif
429     # endif
430 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431 root 1.314
432     struct signalfd_siginfo
433     {
434     uint32_t ssi_signo;
435     char pad[128 - sizeof (uint32_t)];
436     };
437 root 1.303 #endif
438    
439 root 1.40 /**/
440 root 1.1
441 root 1.250 #if EV_VERIFY >= 3
442 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
443 root 1.248 #else
444     # define EV_FREQUENT_CHECK do { } while (0)
445     #endif
446    
447 root 1.176 /*
448     * This is used to avoid floating point rounding problems.
449     * It is added to ev_rt_now when scheduling periodics
450     * to ensure progress, time-wise, even when rounding
451     * errors are against us.
452 root 1.177 * This value is good at least till the year 4000.
453 root 1.176 * Better solutions welcome.
454     */
455     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
456    
457 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
458 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
459 root 1.1
460 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
461 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
462 root 1.347
463 root 1.185 #if __GNUC__ >= 4
464 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
465 root 1.169 # define noinline __attribute__ ((noinline))
466 root 1.40 #else
467     # define expect(expr,value) (expr)
468 root 1.140 # define noinline
469 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
470 root 1.169 # define inline
471     # endif
472 root 1.40 #endif
473    
474     #define expect_false(expr) expect ((expr) != 0, 0)
475     #define expect_true(expr) expect ((expr) != 0, 1)
476 root 1.169 #define inline_size static inline
477    
478 root 1.338 #if EV_FEATURE_CODE
479     # define inline_speed static inline
480     #else
481 root 1.169 # define inline_speed static noinline
482     #endif
483 root 1.40
484 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485    
486     #if EV_MINPRI == EV_MAXPRI
487     # define ABSPRI(w) (((W)w), 0)
488     #else
489     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490     #endif
491 root 1.42
492 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
493 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
494 root 1.103
495 root 1.136 typedef ev_watcher *W;
496     typedef ev_watcher_list *WL;
497     typedef ev_watcher_time *WT;
498 root 1.10
499 root 1.229 #define ev_active(w) ((W)(w))->active
500 root 1.228 #define ev_at(w) ((WT)(w))->at
501    
502 root 1.279 #if EV_USE_REALTIME
503 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
504 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
505 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506     #endif
507    
508     #if EV_USE_MONOTONIC
509 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510 root 1.198 #endif
511 root 1.54
512 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
513     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514     #endif
515     #ifndef EV_WIN32_HANDLE_TO_FD
516 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517 root 1.313 #endif
518     #ifndef EV_WIN32_CLOSE_FD
519     # define EV_WIN32_CLOSE_FD(fd) close (fd)
520     #endif
521    
522 root 1.103 #ifdef _WIN32
523 root 1.98 # include "ev_win32.c"
524     #endif
525 root 1.67
526 root 1.53 /*****************************************************************************/
527 root 1.1
528 root 1.356 #ifdef __linux
529     # include <sys/utsname.h>
530     #endif
531    
532 root 1.355 static unsigned int noinline
533     ev_linux_version (void)
534     {
535     #ifdef __linux
536 root 1.359 unsigned int v = 0;
537 root 1.355 struct utsname buf;
538     int i;
539     char *p = buf.release;
540    
541     if (uname (&buf))
542     return 0;
543    
544     for (i = 3+1; --i; )
545     {
546     unsigned int c = 0;
547    
548     for (;;)
549     {
550     if (*p >= '0' && *p <= '9')
551     c = c * 10 + *p++ - '0';
552     else
553     {
554     p += *p == '.';
555     break;
556     }
557     }
558    
559     v = (v << 8) | c;
560     }
561    
562     return v;
563     #else
564     return 0;
565     #endif
566     }
567    
568     /*****************************************************************************/
569    
570 root 1.331 #if EV_AVOID_STDIO
571     static void noinline
572     ev_printerr (const char *msg)
573     {
574     write (STDERR_FILENO, msg, strlen (msg));
575     }
576     #endif
577    
578 root 1.70 static void (*syserr_cb)(const char *msg);
579 root 1.69
580 root 1.141 void
581     ev_set_syserr_cb (void (*cb)(const char *msg))
582 root 1.69 {
583     syserr_cb = cb;
584     }
585    
586 root 1.141 static void noinline
587 root 1.269 ev_syserr (const char *msg)
588 root 1.69 {
589 root 1.70 if (!msg)
590     msg = "(libev) system error";
591    
592 root 1.69 if (syserr_cb)
593 root 1.70 syserr_cb (msg);
594 root 1.69 else
595     {
596 root 1.330 #if EV_AVOID_STDIO
597 root 1.331 ev_printerr (msg);
598     ev_printerr (": ");
599 root 1.365 ev_printerr (strerror (errno));
600 root 1.331 ev_printerr ("\n");
601 root 1.330 #else
602 root 1.70 perror (msg);
603 root 1.330 #endif
604 root 1.69 abort ();
605     }
606     }
607    
608 root 1.224 static void *
609     ev_realloc_emul (void *ptr, long size)
610     {
611 root 1.334 #if __GLIBC__
612     return realloc (ptr, size);
613     #else
614 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
615 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
616 root 1.224 * the single unix specification, so work around them here.
617     */
618 root 1.333
619 root 1.224 if (size)
620     return realloc (ptr, size);
621    
622     free (ptr);
623     return 0;
624 root 1.334 #endif
625 root 1.224 }
626    
627     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
628 root 1.69
629 root 1.141 void
630 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
631 root 1.69 {
632     alloc = cb;
633     }
634    
635 root 1.150 inline_speed void *
636 root 1.155 ev_realloc (void *ptr, long size)
637 root 1.69 {
638 root 1.224 ptr = alloc (ptr, size);
639 root 1.69
640     if (!ptr && size)
641     {
642 root 1.330 #if EV_AVOID_STDIO
643 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
644 root 1.330 #else
645 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
646 root 1.330 #endif
647 root 1.69 abort ();
648     }
649    
650     return ptr;
651     }
652    
653     #define ev_malloc(size) ev_realloc (0, (size))
654     #define ev_free(ptr) ev_realloc ((ptr), 0)
655    
656     /*****************************************************************************/
657    
658 root 1.298 /* set in reify when reification needed */
659     #define EV_ANFD_REIFY 1
660    
661 root 1.288 /* file descriptor info structure */
662 root 1.53 typedef struct
663     {
664 root 1.68 WL head;
665 root 1.288 unsigned char events; /* the events watched for */
666 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
667 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
668 root 1.269 unsigned char unused;
669     #if EV_USE_EPOLL
670 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
671 root 1.269 #endif
672 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
673 root 1.103 SOCKET handle;
674     #endif
675 root 1.357 #if EV_USE_IOCP
676     OVERLAPPED or, ow;
677     #endif
678 root 1.53 } ANFD;
679 root 1.1
680 root 1.288 /* stores the pending event set for a given watcher */
681 root 1.53 typedef struct
682     {
683     W w;
684 root 1.288 int events; /* the pending event set for the given watcher */
685 root 1.53 } ANPENDING;
686 root 1.51
687 root 1.155 #if EV_USE_INOTIFY
688 root 1.241 /* hash table entry per inotify-id */
689 root 1.152 typedef struct
690     {
691     WL head;
692 root 1.155 } ANFS;
693 root 1.152 #endif
694    
695 root 1.241 /* Heap Entry */
696     #if EV_HEAP_CACHE_AT
697 root 1.288 /* a heap element */
698 root 1.241 typedef struct {
699 root 1.243 ev_tstamp at;
700 root 1.241 WT w;
701     } ANHE;
702    
703 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
704     #define ANHE_at(he) (he).at /* access cached at, read-only */
705     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
706 root 1.241 #else
707 root 1.288 /* a heap element */
708 root 1.241 typedef WT ANHE;
709    
710 root 1.248 #define ANHE_w(he) (he)
711     #define ANHE_at(he) (he)->at
712     #define ANHE_at_cache(he)
713 root 1.241 #endif
714    
715 root 1.55 #if EV_MULTIPLICITY
716 root 1.54
717 root 1.80 struct ev_loop
718     {
719 root 1.86 ev_tstamp ev_rt_now;
720 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
721 root 1.80 #define VAR(name,decl) decl;
722     #include "ev_vars.h"
723     #undef VAR
724     };
725     #include "ev_wrap.h"
726    
727 root 1.116 static struct ev_loop default_loop_struct;
728     struct ev_loop *ev_default_loop_ptr;
729 root 1.54
730 root 1.53 #else
731 root 1.54
732 root 1.86 ev_tstamp ev_rt_now;
733 root 1.80 #define VAR(name,decl) static decl;
734     #include "ev_vars.h"
735     #undef VAR
736    
737 root 1.116 static int ev_default_loop_ptr;
738 root 1.54
739 root 1.51 #endif
740 root 1.1
741 root 1.338 #if EV_FEATURE_API
742 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
743     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
744 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
745     #else
746 root 1.298 # define EV_RELEASE_CB (void)0
747     # define EV_ACQUIRE_CB (void)0
748 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
749     #endif
750    
751 root 1.353 #define EVBREAK_RECURSE 0x80
752 root 1.298
753 root 1.8 /*****************************************************************************/
754    
755 root 1.292 #ifndef EV_HAVE_EV_TIME
756 root 1.141 ev_tstamp
757 root 1.1 ev_time (void)
758     {
759 root 1.29 #if EV_USE_REALTIME
760 root 1.279 if (expect_true (have_realtime))
761     {
762     struct timespec ts;
763     clock_gettime (CLOCK_REALTIME, &ts);
764     return ts.tv_sec + ts.tv_nsec * 1e-9;
765     }
766     #endif
767    
768 root 1.1 struct timeval tv;
769     gettimeofday (&tv, 0);
770     return tv.tv_sec + tv.tv_usec * 1e-6;
771     }
772 root 1.292 #endif
773 root 1.1
774 root 1.284 inline_size ev_tstamp
775 root 1.1 get_clock (void)
776     {
777 root 1.29 #if EV_USE_MONOTONIC
778 root 1.40 if (expect_true (have_monotonic))
779 root 1.1 {
780     struct timespec ts;
781     clock_gettime (CLOCK_MONOTONIC, &ts);
782     return ts.tv_sec + ts.tv_nsec * 1e-9;
783     }
784     #endif
785    
786     return ev_time ();
787     }
788    
789 root 1.85 #if EV_MULTIPLICITY
790 root 1.51 ev_tstamp
791     ev_now (EV_P)
792     {
793 root 1.85 return ev_rt_now;
794 root 1.51 }
795 root 1.85 #endif
796 root 1.51
797 root 1.193 void
798     ev_sleep (ev_tstamp delay)
799     {
800     if (delay > 0.)
801     {
802     #if EV_USE_NANOSLEEP
803     struct timespec ts;
804    
805 root 1.348 EV_TS_SET (ts, delay);
806 root 1.193 nanosleep (&ts, 0);
807     #elif defined(_WIN32)
808 root 1.217 Sleep ((unsigned long)(delay * 1e3));
809 root 1.193 #else
810     struct timeval tv;
811    
812 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
813 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
814 root 1.257 /* by older ones */
815 sf-exg 1.349 EV_TV_SET (tv, delay);
816 root 1.193 select (0, 0, 0, 0, &tv);
817     #endif
818     }
819     }
820    
821 root 1.368 inline_speed int
822     ev_timeout_to_ms (ev_tstamp timeout)
823     {
824     int ms = timeout * 1000. + .999999;
825    
826     return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
827     }
828    
829 root 1.193 /*****************************************************************************/
830    
831 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
832 root 1.232
833 root 1.288 /* find a suitable new size for the given array, */
834 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
835 root 1.284 inline_size int
836 root 1.163 array_nextsize (int elem, int cur, int cnt)
837     {
838     int ncur = cur + 1;
839    
840     do
841     ncur <<= 1;
842     while (cnt > ncur);
843    
844 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
845     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
846 root 1.163 {
847     ncur *= elem;
848 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
849 root 1.163 ncur = ncur - sizeof (void *) * 4;
850     ncur /= elem;
851     }
852    
853     return ncur;
854     }
855    
856 root 1.171 static noinline void *
857 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
858     {
859     *cur = array_nextsize (elem, *cur, cnt);
860     return ev_realloc (base, elem * *cur);
861     }
862 root 1.29
863 root 1.265 #define array_init_zero(base,count) \
864     memset ((void *)(base), 0, sizeof (*(base)) * (count))
865    
866 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
867 root 1.163 if (expect_false ((cnt) > (cur))) \
868 root 1.69 { \
869 root 1.163 int ocur_ = (cur); \
870     (base) = (type *)array_realloc \
871     (sizeof (type), (base), &(cur), (cnt)); \
872     init ((base) + (ocur_), (cur) - ocur_); \
873 root 1.1 }
874    
875 root 1.163 #if 0
876 root 1.74 #define array_slim(type,stem) \
877 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
878     { \
879     stem ## max = array_roundsize (stem ## cnt >> 1); \
880 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
881 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
882     }
883 root 1.163 #endif
884 root 1.67
885 root 1.65 #define array_free(stem, idx) \
886 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
887 root 1.65
888 root 1.8 /*****************************************************************************/
889    
890 root 1.288 /* dummy callback for pending events */
891     static void noinline
892     pendingcb (EV_P_ ev_prepare *w, int revents)
893     {
894     }
895    
896 root 1.140 void noinline
897 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
898 root 1.1 {
899 root 1.78 W w_ = (W)w;
900 root 1.171 int pri = ABSPRI (w_);
901 root 1.78
902 root 1.123 if (expect_false (w_->pending))
903 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
904     else
905 root 1.32 {
906 root 1.171 w_->pending = ++pendingcnt [pri];
907     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
908     pendings [pri][w_->pending - 1].w = w_;
909     pendings [pri][w_->pending - 1].events = revents;
910 root 1.32 }
911 root 1.1 }
912    
913 root 1.284 inline_speed void
914     feed_reverse (EV_P_ W w)
915     {
916     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
917     rfeeds [rfeedcnt++] = w;
918     }
919    
920     inline_size void
921     feed_reverse_done (EV_P_ int revents)
922     {
923     do
924     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
925     while (rfeedcnt);
926     }
927    
928     inline_speed void
929 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
930 root 1.27 {
931     int i;
932    
933     for (i = 0; i < eventcnt; ++i)
934 root 1.78 ev_feed_event (EV_A_ events [i], type);
935 root 1.27 }
936    
937 root 1.141 /*****************************************************************************/
938    
939 root 1.284 inline_speed void
940 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
941 root 1.1 {
942     ANFD *anfd = anfds + fd;
943 root 1.136 ev_io *w;
944 root 1.1
945 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
946 root 1.1 {
947 root 1.79 int ev = w->events & revents;
948 root 1.1
949     if (ev)
950 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
951 root 1.1 }
952     }
953    
954 root 1.298 /* do not submit kernel events for fds that have reify set */
955     /* because that means they changed while we were polling for new events */
956     inline_speed void
957     fd_event (EV_P_ int fd, int revents)
958     {
959     ANFD *anfd = anfds + fd;
960    
961     if (expect_true (!anfd->reify))
962 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
963 root 1.298 }
964    
965 root 1.79 void
966     ev_feed_fd_event (EV_P_ int fd, int revents)
967     {
968 root 1.168 if (fd >= 0 && fd < anfdmax)
969 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
970 root 1.79 }
971    
972 root 1.288 /* make sure the external fd watch events are in-sync */
973     /* with the kernel/libev internal state */
974 root 1.284 inline_size void
975 root 1.51 fd_reify (EV_P)
976 root 1.9 {
977     int i;
978    
979 root 1.27 for (i = 0; i < fdchangecnt; ++i)
980     {
981     int fd = fdchanges [i];
982     ANFD *anfd = anfds + fd;
983 root 1.136 ev_io *w;
984 root 1.27
985 root 1.350 unsigned char o_events = anfd->events;
986     unsigned char o_reify = anfd->reify;
987 root 1.27
988 root 1.350 anfd->reify = 0;
989 root 1.27
990 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
991 root 1.350 if (o_reify & EV__IOFDSET)
992 root 1.103 {
993 root 1.254 unsigned long arg;
994 root 1.313 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
995 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
996 root 1.357 printf ("oi %d %x\n", fd, anfd->handle);//D
997 root 1.103 }
998     #endif
999    
1000 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1001     {
1002     anfd->events = 0;
1003 root 1.184
1004 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1005     anfd->events |= (unsigned char)w->events;
1006 root 1.27
1007 root 1.351 if (o_events != anfd->events)
1008 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1009     }
1010    
1011     if (o_reify & EV__IOFDSET)
1012     backend_modify (EV_A_ fd, o_events, anfd->events);
1013 root 1.27 }
1014    
1015     fdchangecnt = 0;
1016     }
1017    
1018 root 1.288 /* something about the given fd changed */
1019 root 1.284 inline_size void
1020 root 1.183 fd_change (EV_P_ int fd, int flags)
1021 root 1.27 {
1022 root 1.183 unsigned char reify = anfds [fd].reify;
1023 root 1.184 anfds [fd].reify |= flags;
1024 root 1.27
1025 root 1.183 if (expect_true (!reify))
1026     {
1027     ++fdchangecnt;
1028     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1029     fdchanges [fdchangecnt - 1] = fd;
1030     }
1031 root 1.9 }
1032    
1033 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1034 root 1.284 inline_speed void
1035 root 1.51 fd_kill (EV_P_ int fd)
1036 root 1.41 {
1037 root 1.136 ev_io *w;
1038 root 1.41
1039 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1040 root 1.41 {
1041 root 1.51 ev_io_stop (EV_A_ w);
1042 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1043 root 1.41 }
1044     }
1045    
1046 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1047 root 1.284 inline_size int
1048 root 1.71 fd_valid (int fd)
1049     {
1050 root 1.103 #ifdef _WIN32
1051 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1052 root 1.71 #else
1053     return fcntl (fd, F_GETFD) != -1;
1054     #endif
1055     }
1056    
1057 root 1.19 /* called on EBADF to verify fds */
1058 root 1.140 static void noinline
1059 root 1.51 fd_ebadf (EV_P)
1060 root 1.19 {
1061     int fd;
1062    
1063     for (fd = 0; fd < anfdmax; ++fd)
1064 root 1.27 if (anfds [fd].events)
1065 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1066 root 1.51 fd_kill (EV_A_ fd);
1067 root 1.41 }
1068    
1069     /* called on ENOMEM in select/poll to kill some fds and retry */
1070 root 1.140 static void noinline
1071 root 1.51 fd_enomem (EV_P)
1072 root 1.41 {
1073 root 1.62 int fd;
1074 root 1.41
1075 root 1.62 for (fd = anfdmax; fd--; )
1076 root 1.41 if (anfds [fd].events)
1077     {
1078 root 1.51 fd_kill (EV_A_ fd);
1079 root 1.307 break;
1080 root 1.41 }
1081 root 1.19 }
1082    
1083 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1084 root 1.140 static void noinline
1085 root 1.56 fd_rearm_all (EV_P)
1086     {
1087     int fd;
1088    
1089     for (fd = 0; fd < anfdmax; ++fd)
1090     if (anfds [fd].events)
1091     {
1092     anfds [fd].events = 0;
1093 root 1.268 anfds [fd].emask = 0;
1094 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1095 root 1.56 }
1096     }
1097    
1098 root 1.336 /* used to prepare libev internal fd's */
1099     /* this is not fork-safe */
1100     inline_speed void
1101     fd_intern (int fd)
1102     {
1103     #ifdef _WIN32
1104     unsigned long arg = 1;
1105     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1106     #else
1107     fcntl (fd, F_SETFD, FD_CLOEXEC);
1108     fcntl (fd, F_SETFL, O_NONBLOCK);
1109     #endif
1110     }
1111    
1112 root 1.8 /*****************************************************************************/
1113    
1114 root 1.235 /*
1115 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1116 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1117     * the branching factor of the d-tree.
1118     */
1119    
1120     /*
1121 root 1.235 * at the moment we allow libev the luxury of two heaps,
1122     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1123     * which is more cache-efficient.
1124     * the difference is about 5% with 50000+ watchers.
1125     */
1126 root 1.241 #if EV_USE_4HEAP
1127 root 1.235
1128 root 1.237 #define DHEAP 4
1129     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1130 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1131 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1132 root 1.235
1133     /* away from the root */
1134 root 1.284 inline_speed void
1135 root 1.241 downheap (ANHE *heap, int N, int k)
1136 root 1.235 {
1137 root 1.241 ANHE he = heap [k];
1138     ANHE *E = heap + N + HEAP0;
1139 root 1.235
1140     for (;;)
1141     {
1142     ev_tstamp minat;
1143 root 1.241 ANHE *minpos;
1144 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1145 root 1.235
1146 root 1.248 /* find minimum child */
1147 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1148 root 1.235 {
1149 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 root 1.235 }
1154 root 1.240 else if (pos < E)
1155 root 1.235 {
1156 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1157     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1158     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1159     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1160 root 1.235 }
1161 root 1.240 else
1162     break;
1163 root 1.235
1164 root 1.241 if (ANHE_at (he) <= minat)
1165 root 1.235 break;
1166    
1167 root 1.247 heap [k] = *minpos;
1168 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1169 root 1.235
1170     k = minpos - heap;
1171     }
1172    
1173 root 1.247 heap [k] = he;
1174 root 1.241 ev_active (ANHE_w (he)) = k;
1175 root 1.235 }
1176    
1177 root 1.248 #else /* 4HEAP */
1178 root 1.235
1179     #define HEAP0 1
1180 root 1.247 #define HPARENT(k) ((k) >> 1)
1181 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1182 root 1.235
1183 root 1.248 /* away from the root */
1184 root 1.284 inline_speed void
1185 root 1.248 downheap (ANHE *heap, int N, int k)
1186 root 1.1 {
1187 root 1.241 ANHE he = heap [k];
1188 root 1.1
1189 root 1.228 for (;;)
1190 root 1.1 {
1191 root 1.248 int c = k << 1;
1192 root 1.179
1193 root 1.309 if (c >= N + HEAP0)
1194 root 1.179 break;
1195    
1196 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1197     ? 1 : 0;
1198    
1199     if (ANHE_at (he) <= ANHE_at (heap [c]))
1200     break;
1201    
1202     heap [k] = heap [c];
1203 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1204 root 1.248
1205     k = c;
1206 root 1.1 }
1207    
1208 root 1.243 heap [k] = he;
1209 root 1.248 ev_active (ANHE_w (he)) = k;
1210 root 1.1 }
1211 root 1.248 #endif
1212 root 1.1
1213 root 1.248 /* towards the root */
1214 root 1.284 inline_speed void
1215 root 1.248 upheap (ANHE *heap, int k)
1216 root 1.1 {
1217 root 1.241 ANHE he = heap [k];
1218 root 1.1
1219 root 1.179 for (;;)
1220 root 1.1 {
1221 root 1.248 int p = HPARENT (k);
1222 root 1.179
1223 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1224 root 1.179 break;
1225 root 1.1
1226 root 1.248 heap [k] = heap [p];
1227 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1228 root 1.248 k = p;
1229 root 1.1 }
1230    
1231 root 1.241 heap [k] = he;
1232     ev_active (ANHE_w (he)) = k;
1233 root 1.1 }
1234    
1235 root 1.288 /* move an element suitably so it is in a correct place */
1236 root 1.284 inline_size void
1237 root 1.241 adjustheap (ANHE *heap, int N, int k)
1238 root 1.84 {
1239 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1240 root 1.247 upheap (heap, k);
1241     else
1242     downheap (heap, N, k);
1243 root 1.84 }
1244    
1245 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1246 root 1.284 inline_size void
1247 root 1.248 reheap (ANHE *heap, int N)
1248     {
1249     int i;
1250 root 1.251
1251 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1252     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1253     for (i = 0; i < N; ++i)
1254     upheap (heap, i + HEAP0);
1255     }
1256    
1257 root 1.8 /*****************************************************************************/
1258    
1259 root 1.288 /* associate signal watchers to a signal signal */
1260 root 1.7 typedef struct
1261     {
1262 root 1.307 EV_ATOMIC_T pending;
1263 root 1.306 #if EV_MULTIPLICITY
1264     EV_P;
1265     #endif
1266 root 1.68 WL head;
1267 root 1.7 } ANSIG;
1268    
1269 root 1.306 static ANSIG signals [EV_NSIG - 1];
1270 root 1.7
1271 root 1.207 /*****************************************************************************/
1272    
1273 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1274 root 1.207
1275     static void noinline
1276     evpipe_init (EV_P)
1277     {
1278 root 1.288 if (!ev_is_active (&pipe_w))
1279 root 1.207 {
1280 root 1.336 # if EV_USE_EVENTFD
1281 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1282     if (evfd < 0 && errno == EINVAL)
1283     evfd = eventfd (0, 0);
1284    
1285     if (evfd >= 0)
1286 root 1.220 {
1287     evpipe [0] = -1;
1288 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1289 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1290 root 1.220 }
1291     else
1292 root 1.336 # endif
1293 root 1.220 {
1294     while (pipe (evpipe))
1295 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1296 root 1.207
1297 root 1.220 fd_intern (evpipe [0]);
1298     fd_intern (evpipe [1]);
1299 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1300 root 1.220 }
1301 root 1.207
1302 root 1.288 ev_io_start (EV_A_ &pipe_w);
1303 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1304 root 1.207 }
1305     }
1306    
1307 root 1.284 inline_size void
1308 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1309 root 1.207 {
1310 root 1.214 if (!*flag)
1311 root 1.207 {
1312 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1313 root 1.336 char dummy;
1314 root 1.214
1315     *flag = 1;
1316 root 1.220
1317     #if EV_USE_EVENTFD
1318     if (evfd >= 0)
1319     {
1320     uint64_t counter = 1;
1321     write (evfd, &counter, sizeof (uint64_t));
1322     }
1323     else
1324     #endif
1325 root 1.346 /* win32 people keep sending patches that change this write() to send() */
1326     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1327     /* so when you think this write should be a send instead, please find out */
1328     /* where your send() is from - it's definitely not the microsoft send, and */
1329     /* tell me. thank you. */
1330 root 1.336 write (evpipe [1], &dummy, 1);
1331 root 1.214
1332 root 1.207 errno = old_errno;
1333     }
1334     }
1335    
1336 root 1.288 /* called whenever the libev signal pipe */
1337     /* got some events (signal, async) */
1338 root 1.207 static void
1339     pipecb (EV_P_ ev_io *iow, int revents)
1340     {
1341 root 1.307 int i;
1342    
1343 root 1.220 #if EV_USE_EVENTFD
1344     if (evfd >= 0)
1345     {
1346 root 1.232 uint64_t counter;
1347 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1348     }
1349     else
1350     #endif
1351     {
1352     char dummy;
1353 root 1.346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1354 root 1.220 read (evpipe [0], &dummy, 1);
1355     }
1356 root 1.207
1357 root 1.369 #if EV_SIGNAL_ENABLE
1358 root 1.307 if (sig_pending)
1359 root 1.207 {
1360 root 1.307 sig_pending = 0;
1361 root 1.207
1362 root 1.307 for (i = EV_NSIG - 1; i--; )
1363     if (expect_false (signals [i].pending))
1364     ev_feed_signal_event (EV_A_ i + 1);
1365 root 1.207 }
1366 root 1.369 #endif
1367 root 1.207
1368 root 1.209 #if EV_ASYNC_ENABLE
1369 root 1.307 if (async_pending)
1370 root 1.207 {
1371 root 1.307 async_pending = 0;
1372 root 1.207
1373     for (i = asynccnt; i--; )
1374     if (asyncs [i]->sent)
1375     {
1376     asyncs [i]->sent = 0;
1377     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1378     }
1379     }
1380 root 1.209 #endif
1381 root 1.207 }
1382    
1383     /*****************************************************************************/
1384    
1385 root 1.366 void
1386     ev_feed_signal (int signum)
1387 root 1.7 {
1388 root 1.207 #if EV_MULTIPLICITY
1389 root 1.306 EV_P = signals [signum - 1].loop;
1390 root 1.366
1391     if (!EV_A)
1392     return;
1393 root 1.207 #endif
1394    
1395 root 1.366 signals [signum - 1].pending = 1;
1396     evpipe_write (EV_A_ &sig_pending);
1397     }
1398    
1399     static void
1400     ev_sighandler (int signum)
1401     {
1402 root 1.322 #ifdef _WIN32
1403 root 1.218 signal (signum, ev_sighandler);
1404 root 1.67 #endif
1405    
1406 root 1.366 ev_feed_signal (signum);
1407 root 1.7 }
1408    
1409 root 1.140 void noinline
1410 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1411     {
1412 root 1.80 WL w;
1413    
1414 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1415     return;
1416    
1417     --signum;
1418    
1419 root 1.79 #if EV_MULTIPLICITY
1420 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1421     /* or, likely more useful, feeding a signal nobody is waiting for */
1422 root 1.79
1423 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1424 root 1.306 return;
1425 root 1.307 #endif
1426 root 1.306
1427 root 1.307 signals [signum].pending = 0;
1428 root 1.79
1429     for (w = signals [signum].head; w; w = w->next)
1430     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1431     }
1432    
1433 root 1.303 #if EV_USE_SIGNALFD
1434     static void
1435     sigfdcb (EV_P_ ev_io *iow, int revents)
1436     {
1437 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1438 root 1.303
1439     for (;;)
1440     {
1441     ssize_t res = read (sigfd, si, sizeof (si));
1442    
1443     /* not ISO-C, as res might be -1, but works with SuS */
1444     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1445     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1446    
1447     if (res < (ssize_t)sizeof (si))
1448     break;
1449     }
1450     }
1451     #endif
1452    
1453 root 1.336 #endif
1454    
1455 root 1.8 /*****************************************************************************/
1456    
1457 root 1.336 #if EV_CHILD_ENABLE
1458 root 1.182 static WL childs [EV_PID_HASHSIZE];
1459 root 1.71
1460 root 1.136 static ev_signal childev;
1461 root 1.59
1462 root 1.206 #ifndef WIFCONTINUED
1463     # define WIFCONTINUED(status) 0
1464     #endif
1465    
1466 root 1.288 /* handle a single child status event */
1467 root 1.284 inline_speed void
1468 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1469 root 1.47 {
1470 root 1.136 ev_child *w;
1471 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1472 root 1.47
1473 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1474 root 1.206 {
1475     if ((w->pid == pid || !w->pid)
1476     && (!traced || (w->flags & 1)))
1477     {
1478 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1479 root 1.206 w->rpid = pid;
1480     w->rstatus = status;
1481     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1482     }
1483     }
1484 root 1.47 }
1485    
1486 root 1.142 #ifndef WCONTINUED
1487     # define WCONTINUED 0
1488     #endif
1489    
1490 root 1.288 /* called on sigchld etc., calls waitpid */
1491 root 1.47 static void
1492 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1493 root 1.22 {
1494     int pid, status;
1495    
1496 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1497     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1498     if (!WCONTINUED
1499     || errno != EINVAL
1500     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1501     return;
1502    
1503 root 1.216 /* make sure we are called again until all children have been reaped */
1504 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1505     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1506 root 1.47
1507 root 1.216 child_reap (EV_A_ pid, pid, status);
1508 root 1.338 if ((EV_PID_HASHSIZE) > 1)
1509 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1510 root 1.22 }
1511    
1512 root 1.45 #endif
1513    
1514 root 1.22 /*****************************************************************************/
1515    
1516 root 1.357 #if EV_USE_IOCP
1517     # include "ev_iocp.c"
1518     #endif
1519 root 1.118 #if EV_USE_PORT
1520     # include "ev_port.c"
1521     #endif
1522 root 1.44 #if EV_USE_KQUEUE
1523     # include "ev_kqueue.c"
1524     #endif
1525 root 1.29 #if EV_USE_EPOLL
1526 root 1.1 # include "ev_epoll.c"
1527     #endif
1528 root 1.59 #if EV_USE_POLL
1529 root 1.41 # include "ev_poll.c"
1530     #endif
1531 root 1.29 #if EV_USE_SELECT
1532 root 1.1 # include "ev_select.c"
1533     #endif
1534    
1535 root 1.24 int
1536     ev_version_major (void)
1537     {
1538     return EV_VERSION_MAJOR;
1539     }
1540    
1541     int
1542     ev_version_minor (void)
1543     {
1544     return EV_VERSION_MINOR;
1545     }
1546    
1547 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1548 root 1.140 int inline_size
1549 root 1.51 enable_secure (void)
1550 root 1.41 {
1551 root 1.103 #ifdef _WIN32
1552 root 1.49 return 0;
1553     #else
1554 root 1.41 return getuid () != geteuid ()
1555     || getgid () != getegid ();
1556 root 1.49 #endif
1557 root 1.41 }
1558    
1559 root 1.111 unsigned int
1560 root 1.129 ev_supported_backends (void)
1561     {
1562 root 1.130 unsigned int flags = 0;
1563 root 1.129
1564     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1565     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1566     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1567     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1568     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1569    
1570     return flags;
1571     }
1572    
1573     unsigned int
1574 root 1.130 ev_recommended_backends (void)
1575 root 1.1 {
1576 root 1.131 unsigned int flags = ev_supported_backends ();
1577 root 1.129
1578     #ifndef __NetBSD__
1579     /* kqueue is borked on everything but netbsd apparently */
1580     /* it usually doesn't work correctly on anything but sockets and pipes */
1581     flags &= ~EVBACKEND_KQUEUE;
1582     #endif
1583     #ifdef __APPLE__
1584 root 1.278 /* only select works correctly on that "unix-certified" platform */
1585     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1586     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1587 root 1.129 #endif
1588 root 1.342 #ifdef __FreeBSD__
1589     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1590     #endif
1591 root 1.129
1592     return flags;
1593 root 1.51 }
1594    
1595 root 1.130 unsigned int
1596 root 1.134 ev_embeddable_backends (void)
1597     {
1598 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1599    
1600 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1601 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1602     flags &= ~EVBACKEND_EPOLL;
1603 root 1.196
1604     return flags;
1605 root 1.134 }
1606    
1607     unsigned int
1608 root 1.130 ev_backend (EV_P)
1609     {
1610     return backend;
1611     }
1612    
1613 root 1.338 #if EV_FEATURE_API
1614 root 1.162 unsigned int
1615 root 1.340 ev_iteration (EV_P)
1616 root 1.162 {
1617     return loop_count;
1618     }
1619    
1620 root 1.294 unsigned int
1621 root 1.340 ev_depth (EV_P)
1622 root 1.294 {
1623     return loop_depth;
1624     }
1625    
1626 root 1.193 void
1627     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1628     {
1629     io_blocktime = interval;
1630     }
1631    
1632     void
1633     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1634     {
1635     timeout_blocktime = interval;
1636     }
1637    
1638 root 1.297 void
1639     ev_set_userdata (EV_P_ void *data)
1640     {
1641     userdata = data;
1642     }
1643    
1644     void *
1645     ev_userdata (EV_P)
1646     {
1647     return userdata;
1648     }
1649    
1650     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1651     {
1652     invoke_cb = invoke_pending_cb;
1653     }
1654    
1655 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1656 root 1.297 {
1657 root 1.298 release_cb = release;
1658     acquire_cb = acquire;
1659 root 1.297 }
1660     #endif
1661    
1662 root 1.288 /* initialise a loop structure, must be zero-initialised */
1663 root 1.151 static void noinline
1664 root 1.108 loop_init (EV_P_ unsigned int flags)
1665 root 1.51 {
1666 root 1.130 if (!backend)
1667 root 1.23 {
1668 root 1.366 origflags = flags;
1669    
1670 root 1.279 #if EV_USE_REALTIME
1671     if (!have_realtime)
1672     {
1673     struct timespec ts;
1674    
1675     if (!clock_gettime (CLOCK_REALTIME, &ts))
1676     have_realtime = 1;
1677     }
1678     #endif
1679    
1680 root 1.29 #if EV_USE_MONOTONIC
1681 root 1.279 if (!have_monotonic)
1682     {
1683     struct timespec ts;
1684    
1685     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1686     have_monotonic = 1;
1687     }
1688 root 1.1 #endif
1689    
1690 root 1.306 /* pid check not overridable via env */
1691     #ifndef _WIN32
1692     if (flags & EVFLAG_FORKCHECK)
1693     curpid = getpid ();
1694     #endif
1695    
1696     if (!(flags & EVFLAG_NOENV)
1697     && !enable_secure ()
1698     && getenv ("LIBEV_FLAGS"))
1699     flags = atoi (getenv ("LIBEV_FLAGS"));
1700    
1701 root 1.209 ev_rt_now = ev_time ();
1702     mn_now = get_clock ();
1703     now_floor = mn_now;
1704     rtmn_diff = ev_rt_now - mn_now;
1705 root 1.338 #if EV_FEATURE_API
1706 root 1.296 invoke_cb = ev_invoke_pending;
1707 root 1.297 #endif
1708 root 1.1
1709 root 1.193 io_blocktime = 0.;
1710     timeout_blocktime = 0.;
1711 root 1.209 backend = 0;
1712     backend_fd = -1;
1713 root 1.307 sig_pending = 0;
1714     #if EV_ASYNC_ENABLE
1715     async_pending = 0;
1716     #endif
1717 root 1.209 #if EV_USE_INOTIFY
1718 root 1.306 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1719 root 1.209 #endif
1720 root 1.303 #if EV_USE_SIGNALFD
1721 root 1.321 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1722 root 1.303 #endif
1723 root 1.193
1724 root 1.366 if (!(flags & EVBACKEND_MASK))
1725 root 1.129 flags |= ev_recommended_backends ();
1726 root 1.41
1727 root 1.357 #if EV_USE_IOCP
1728     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1729     #endif
1730 root 1.118 #if EV_USE_PORT
1731 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1732 root 1.118 #endif
1733 root 1.44 #if EV_USE_KQUEUE
1734 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1735 root 1.44 #endif
1736 root 1.29 #if EV_USE_EPOLL
1737 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1738 root 1.41 #endif
1739 root 1.59 #if EV_USE_POLL
1740 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1741 root 1.1 #endif
1742 root 1.29 #if EV_USE_SELECT
1743 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1744 root 1.1 #endif
1745 root 1.70
1746 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1747    
1748 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1749 root 1.288 ev_init (&pipe_w, pipecb);
1750     ev_set_priority (&pipe_w, EV_MAXPRI);
1751 root 1.336 #endif
1752 root 1.56 }
1753     }
1754    
1755 root 1.288 /* free up a loop structure */
1756 root 1.359 void
1757     ev_loop_destroy (EV_P)
1758 root 1.56 {
1759 root 1.65 int i;
1760    
1761 root 1.364 #if EV_MULTIPLICITY
1762 root 1.363 /* mimic free (0) */
1763     if (!EV_A)
1764     return;
1765 root 1.364 #endif
1766 root 1.363
1767 root 1.361 #if EV_CLEANUP_ENABLE
1768     /* queue cleanup watchers (and execute them) */
1769     if (expect_false (cleanupcnt))
1770     {
1771     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1772     EV_INVOKE_PENDING;
1773     }
1774     #endif
1775    
1776 root 1.359 #if EV_CHILD_ENABLE
1777     if (ev_is_active (&childev))
1778     {
1779     ev_ref (EV_A); /* child watcher */
1780     ev_signal_stop (EV_A_ &childev);
1781     }
1782     #endif
1783    
1784 root 1.288 if (ev_is_active (&pipe_w))
1785 root 1.207 {
1786 root 1.303 /*ev_ref (EV_A);*/
1787     /*ev_io_stop (EV_A_ &pipe_w);*/
1788 root 1.207
1789 root 1.220 #if EV_USE_EVENTFD
1790     if (evfd >= 0)
1791     close (evfd);
1792     #endif
1793    
1794     if (evpipe [0] >= 0)
1795     {
1796 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1797     EV_WIN32_CLOSE_FD (evpipe [1]);
1798 root 1.220 }
1799 root 1.207 }
1800    
1801 root 1.303 #if EV_USE_SIGNALFD
1802     if (ev_is_active (&sigfd_w))
1803 root 1.317 close (sigfd);
1804 root 1.303 #endif
1805    
1806 root 1.152 #if EV_USE_INOTIFY
1807     if (fs_fd >= 0)
1808     close (fs_fd);
1809     #endif
1810    
1811     if (backend_fd >= 0)
1812     close (backend_fd);
1813    
1814 root 1.357 #if EV_USE_IOCP
1815     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1816     #endif
1817 root 1.118 #if EV_USE_PORT
1818 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1819 root 1.118 #endif
1820 root 1.56 #if EV_USE_KQUEUE
1821 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1822 root 1.56 #endif
1823     #if EV_USE_EPOLL
1824 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1825 root 1.56 #endif
1826 root 1.59 #if EV_USE_POLL
1827 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1828 root 1.56 #endif
1829     #if EV_USE_SELECT
1830 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1831 root 1.56 #endif
1832 root 1.1
1833 root 1.65 for (i = NUMPRI; i--; )
1834 root 1.164 {
1835     array_free (pending, [i]);
1836     #if EV_IDLE_ENABLE
1837     array_free (idle, [i]);
1838     #endif
1839     }
1840 root 1.65
1841 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
1842 root 1.186
1843 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1844 root 1.284 array_free (rfeed, EMPTY);
1845 root 1.164 array_free (fdchange, EMPTY);
1846     array_free (timer, EMPTY);
1847 root 1.140 #if EV_PERIODIC_ENABLE
1848 root 1.164 array_free (periodic, EMPTY);
1849 root 1.93 #endif
1850 root 1.187 #if EV_FORK_ENABLE
1851     array_free (fork, EMPTY);
1852     #endif
1853 root 1.360 #if EV_CLEANUP_ENABLE
1854     array_free (cleanup, EMPTY);
1855     #endif
1856 root 1.164 array_free (prepare, EMPTY);
1857     array_free (check, EMPTY);
1858 root 1.209 #if EV_ASYNC_ENABLE
1859     array_free (async, EMPTY);
1860     #endif
1861 root 1.65
1862 root 1.130 backend = 0;
1863 root 1.359
1864     #if EV_MULTIPLICITY
1865     if (ev_is_default_loop (EV_A))
1866     #endif
1867     ev_default_loop_ptr = 0;
1868     #if EV_MULTIPLICITY
1869     else
1870     ev_free (EV_A);
1871     #endif
1872 root 1.56 }
1873 root 1.22
1874 root 1.226 #if EV_USE_INOTIFY
1875 root 1.284 inline_size void infy_fork (EV_P);
1876 root 1.226 #endif
1877 root 1.154
1878 root 1.284 inline_size void
1879 root 1.56 loop_fork (EV_P)
1880     {
1881 root 1.118 #if EV_USE_PORT
1882 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1883 root 1.56 #endif
1884     #if EV_USE_KQUEUE
1885 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1886 root 1.45 #endif
1887 root 1.118 #if EV_USE_EPOLL
1888 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1889 root 1.118 #endif
1890 root 1.154 #if EV_USE_INOTIFY
1891     infy_fork (EV_A);
1892     #endif
1893 root 1.70
1894 root 1.288 if (ev_is_active (&pipe_w))
1895 root 1.70 {
1896 root 1.207 /* this "locks" the handlers against writing to the pipe */
1897 root 1.212 /* while we modify the fd vars */
1898 root 1.307 sig_pending = 1;
1899 root 1.212 #if EV_ASYNC_ENABLE
1900 root 1.307 async_pending = 1;
1901 root 1.212 #endif
1902 root 1.70
1903     ev_ref (EV_A);
1904 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1905 root 1.220
1906     #if EV_USE_EVENTFD
1907     if (evfd >= 0)
1908     close (evfd);
1909     #endif
1910    
1911     if (evpipe [0] >= 0)
1912     {
1913 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1914     EV_WIN32_CLOSE_FD (evpipe [1]);
1915 root 1.220 }
1916 root 1.207
1917 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1918 root 1.207 evpipe_init (EV_A);
1919 root 1.208 /* now iterate over everything, in case we missed something */
1920 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1921 root 1.337 #endif
1922 root 1.70 }
1923    
1924     postfork = 0;
1925 root 1.1 }
1926    
1927 root 1.55 #if EV_MULTIPLICITY
1928 root 1.250
1929 root 1.54 struct ev_loop *
1930 root 1.108 ev_loop_new (unsigned int flags)
1931 root 1.54 {
1932 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1933 root 1.69
1934 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
1935 root 1.108 loop_init (EV_A_ flags);
1936 root 1.56
1937 root 1.130 if (ev_backend (EV_A))
1938 root 1.306 return EV_A;
1939 root 1.54
1940 root 1.359 ev_free (EV_A);
1941 root 1.55 return 0;
1942 root 1.54 }
1943    
1944 root 1.297 #endif /* multiplicity */
1945 root 1.248
1946     #if EV_VERIFY
1947 root 1.258 static void noinline
1948 root 1.251 verify_watcher (EV_P_ W w)
1949     {
1950 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1951 root 1.251
1952     if (w->pending)
1953 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1954 root 1.251 }
1955    
1956     static void noinline
1957     verify_heap (EV_P_ ANHE *heap, int N)
1958     {
1959     int i;
1960    
1961     for (i = HEAP0; i < N + HEAP0; ++i)
1962     {
1963 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1964     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1965     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1966 root 1.251
1967     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1968     }
1969     }
1970    
1971     static void noinline
1972     array_verify (EV_P_ W *ws, int cnt)
1973 root 1.248 {
1974     while (cnt--)
1975 root 1.251 {
1976 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1977 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1978     }
1979 root 1.248 }
1980 root 1.250 #endif
1981 root 1.248
1982 root 1.338 #if EV_FEATURE_API
1983 root 1.250 void
1984 root 1.340 ev_verify (EV_P)
1985 root 1.248 {
1986 root 1.250 #if EV_VERIFY
1987 root 1.248 int i;
1988 root 1.251 WL w;
1989    
1990     assert (activecnt >= -1);
1991    
1992     assert (fdchangemax >= fdchangecnt);
1993     for (i = 0; i < fdchangecnt; ++i)
1994 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1995 root 1.251
1996     assert (anfdmax >= 0);
1997     for (i = 0; i < anfdmax; ++i)
1998     for (w = anfds [i].head; w; w = w->next)
1999     {
2000     verify_watcher (EV_A_ (W)w);
2001 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2002     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2003 root 1.251 }
2004    
2005     assert (timermax >= timercnt);
2006     verify_heap (EV_A_ timers, timercnt);
2007 root 1.248
2008     #if EV_PERIODIC_ENABLE
2009 root 1.251 assert (periodicmax >= periodiccnt);
2010     verify_heap (EV_A_ periodics, periodiccnt);
2011 root 1.248 #endif
2012    
2013 root 1.251 for (i = NUMPRI; i--; )
2014     {
2015     assert (pendingmax [i] >= pendingcnt [i]);
2016 root 1.248 #if EV_IDLE_ENABLE
2017 root 1.252 assert (idleall >= 0);
2018 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2019     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2020 root 1.248 #endif
2021 root 1.251 }
2022    
2023 root 1.248 #if EV_FORK_ENABLE
2024 root 1.251 assert (forkmax >= forkcnt);
2025     array_verify (EV_A_ (W *)forks, forkcnt);
2026 root 1.248 #endif
2027 root 1.251
2028 root 1.360 #if EV_CLEANUP_ENABLE
2029     assert (cleanupmax >= cleanupcnt);
2030     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2031     #endif
2032    
2033 root 1.250 #if EV_ASYNC_ENABLE
2034 root 1.251 assert (asyncmax >= asynccnt);
2035     array_verify (EV_A_ (W *)asyncs, asynccnt);
2036 root 1.250 #endif
2037 root 1.251
2038 root 1.337 #if EV_PREPARE_ENABLE
2039 root 1.251 assert (preparemax >= preparecnt);
2040     array_verify (EV_A_ (W *)prepares, preparecnt);
2041 root 1.337 #endif
2042 root 1.251
2043 root 1.337 #if EV_CHECK_ENABLE
2044 root 1.251 assert (checkmax >= checkcnt);
2045     array_verify (EV_A_ (W *)checks, checkcnt);
2046 root 1.337 #endif
2047 root 1.251
2048     # if 0
2049 root 1.336 #if EV_CHILD_ENABLE
2050 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2051 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2052 root 1.336 #endif
2053 root 1.251 # endif
2054 root 1.248 #endif
2055     }
2056 root 1.297 #endif
2057 root 1.56
2058     #if EV_MULTIPLICITY
2059     struct ev_loop *
2060 root 1.54 #else
2061     int
2062 root 1.358 #endif
2063 root 1.116 ev_default_loop (unsigned int flags)
2064 root 1.54 {
2065 root 1.116 if (!ev_default_loop_ptr)
2066 root 1.56 {
2067     #if EV_MULTIPLICITY
2068 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2069 root 1.56 #else
2070 ayin 1.117 ev_default_loop_ptr = 1;
2071 root 1.54 #endif
2072    
2073 root 1.110 loop_init (EV_A_ flags);
2074 root 1.56
2075 root 1.130 if (ev_backend (EV_A))
2076 root 1.56 {
2077 root 1.336 #if EV_CHILD_ENABLE
2078 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2079     ev_set_priority (&childev, EV_MAXPRI);
2080     ev_signal_start (EV_A_ &childev);
2081     ev_unref (EV_A); /* child watcher should not keep loop alive */
2082     #endif
2083     }
2084     else
2085 root 1.116 ev_default_loop_ptr = 0;
2086 root 1.56 }
2087 root 1.8
2088 root 1.116 return ev_default_loop_ptr;
2089 root 1.1 }
2090    
2091 root 1.24 void
2092 root 1.359 ev_loop_fork (EV_P)
2093 root 1.1 {
2094 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2095 root 1.1 }
2096    
2097 root 1.8 /*****************************************************************************/
2098    
2099 root 1.168 void
2100     ev_invoke (EV_P_ void *w, int revents)
2101     {
2102     EV_CB_INVOKE ((W)w, revents);
2103     }
2104    
2105 root 1.300 unsigned int
2106     ev_pending_count (EV_P)
2107     {
2108     int pri;
2109     unsigned int count = 0;
2110    
2111     for (pri = NUMPRI; pri--; )
2112     count += pendingcnt [pri];
2113    
2114     return count;
2115     }
2116    
2117 root 1.297 void noinline
2118 root 1.296 ev_invoke_pending (EV_P)
2119 root 1.1 {
2120 root 1.42 int pri;
2121    
2122     for (pri = NUMPRI; pri--; )
2123     while (pendingcnt [pri])
2124     {
2125     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2126 root 1.1
2127 root 1.288 p->w->pending = 0;
2128     EV_CB_INVOKE (p->w, p->events);
2129     EV_FREQUENT_CHECK;
2130 root 1.42 }
2131 root 1.1 }
2132    
2133 root 1.234 #if EV_IDLE_ENABLE
2134 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2135     /* only when higher priorities are idle" logic */
2136 root 1.284 inline_size void
2137 root 1.234 idle_reify (EV_P)
2138     {
2139     if (expect_false (idleall))
2140     {
2141     int pri;
2142    
2143     for (pri = NUMPRI; pri--; )
2144     {
2145     if (pendingcnt [pri])
2146     break;
2147    
2148     if (idlecnt [pri])
2149     {
2150     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2151     break;
2152     }
2153     }
2154     }
2155     }
2156     #endif
2157    
2158 root 1.288 /* make timers pending */
2159 root 1.284 inline_size void
2160 root 1.51 timers_reify (EV_P)
2161 root 1.1 {
2162 root 1.248 EV_FREQUENT_CHECK;
2163    
2164 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2165 root 1.1 {
2166 root 1.284 do
2167     {
2168     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2169 root 1.1
2170 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2171    
2172     /* first reschedule or stop timer */
2173     if (w->repeat)
2174     {
2175     ev_at (w) += w->repeat;
2176     if (ev_at (w) < mn_now)
2177     ev_at (w) = mn_now;
2178 root 1.61
2179 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2180 root 1.90
2181 root 1.284 ANHE_at_cache (timers [HEAP0]);
2182     downheap (timers, timercnt, HEAP0);
2183     }
2184     else
2185     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2186 root 1.243
2187 root 1.284 EV_FREQUENT_CHECK;
2188     feed_reverse (EV_A_ (W)w);
2189 root 1.12 }
2190 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2191 root 1.30
2192 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2193 root 1.12 }
2194     }
2195 root 1.4
2196 root 1.140 #if EV_PERIODIC_ENABLE
2197 root 1.370
2198     inline_speed
2199     periodic_recalc (EV_P_ ev_periodic *w)
2200     {
2201     /* TODO: use slow but potentially more correct incremental algo, */
2202     /* also do not rely on ceil */
2203     ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2204     }
2205    
2206 root 1.288 /* make periodics pending */
2207 root 1.284 inline_size void
2208 root 1.51 periodics_reify (EV_P)
2209 root 1.12 {
2210 root 1.248 EV_FREQUENT_CHECK;
2211 root 1.250
2212 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2213 root 1.12 {
2214 root 1.284 int feed_count = 0;
2215    
2216     do
2217     {
2218     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2219 root 1.1
2220 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2221 root 1.61
2222 root 1.284 /* first reschedule or stop timer */
2223     if (w->reschedule_cb)
2224     {
2225     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2226 root 1.243
2227 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2228 root 1.243
2229 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2230     downheap (periodics, periodiccnt, HEAP0);
2231     }
2232     else if (w->interval)
2233 root 1.246 {
2234 root 1.370 periodic_recalc (EV_A_ w);
2235    
2236 root 1.284 /* if next trigger time is not sufficiently in the future, put it there */
2237     /* this might happen because of floating point inexactness */
2238     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2239     {
2240     ev_at (w) += w->interval;
2241    
2242     /* if interval is unreasonably low we might still have a time in the past */
2243     /* so correct this. this will make the periodic very inexact, but the user */
2244     /* has effectively asked to get triggered more often than possible */
2245     if (ev_at (w) < ev_rt_now)
2246     ev_at (w) = ev_rt_now;
2247     }
2248 root 1.243
2249 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2250     downheap (periodics, periodiccnt, HEAP0);
2251 root 1.246 }
2252 root 1.284 else
2253     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2254 root 1.243
2255 root 1.284 EV_FREQUENT_CHECK;
2256     feed_reverse (EV_A_ (W)w);
2257 root 1.1 }
2258 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2259 root 1.12
2260 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2261 root 1.12 }
2262     }
2263    
2264 root 1.288 /* simply recalculate all periodics */
2265 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2266 root 1.140 static void noinline
2267 root 1.54 periodics_reschedule (EV_P)
2268 root 1.12 {
2269     int i;
2270    
2271 root 1.13 /* adjust periodics after time jump */
2272 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2273 root 1.12 {
2274 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2275 root 1.12
2276 root 1.77 if (w->reschedule_cb)
2277 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2278 root 1.77 else if (w->interval)
2279 root 1.370 periodic_recalc (EV_A_ w);
2280 root 1.242
2281 root 1.248 ANHE_at_cache (periodics [i]);
2282 root 1.77 }
2283 root 1.12
2284 root 1.248 reheap (periodics, periodiccnt);
2285 root 1.1 }
2286 root 1.93 #endif
2287 root 1.1
2288 root 1.288 /* adjust all timers by a given offset */
2289 root 1.285 static void noinline
2290     timers_reschedule (EV_P_ ev_tstamp adjust)
2291     {
2292     int i;
2293    
2294     for (i = 0; i < timercnt; ++i)
2295     {
2296     ANHE *he = timers + i + HEAP0;
2297     ANHE_w (*he)->at += adjust;
2298     ANHE_at_cache (*he);
2299     }
2300     }
2301    
2302 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2303 root 1.324 /* also detect if there was a timejump, and act accordingly */
2304 root 1.284 inline_speed void
2305 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2306 root 1.4 {
2307 root 1.40 #if EV_USE_MONOTONIC
2308     if (expect_true (have_monotonic))
2309     {
2310 root 1.289 int i;
2311 root 1.178 ev_tstamp odiff = rtmn_diff;
2312    
2313     mn_now = get_clock ();
2314    
2315     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2316     /* interpolate in the meantime */
2317     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2318 root 1.40 {
2319 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2320     return;
2321     }
2322    
2323     now_floor = mn_now;
2324     ev_rt_now = ev_time ();
2325 root 1.4
2326 root 1.178 /* loop a few times, before making important decisions.
2327     * on the choice of "4": one iteration isn't enough,
2328     * in case we get preempted during the calls to
2329     * ev_time and get_clock. a second call is almost guaranteed
2330     * to succeed in that case, though. and looping a few more times
2331     * doesn't hurt either as we only do this on time-jumps or
2332     * in the unlikely event of having been preempted here.
2333     */
2334     for (i = 4; --i; )
2335     {
2336     rtmn_diff = ev_rt_now - mn_now;
2337 root 1.4
2338 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2339 root 1.178 return; /* all is well */
2340 root 1.4
2341 root 1.178 ev_rt_now = ev_time ();
2342     mn_now = get_clock ();
2343     now_floor = mn_now;
2344     }
2345 root 1.4
2346 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2347     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2348 root 1.140 # if EV_PERIODIC_ENABLE
2349 root 1.178 periodics_reschedule (EV_A);
2350 root 1.93 # endif
2351 root 1.4 }
2352     else
2353 root 1.40 #endif
2354 root 1.4 {
2355 root 1.85 ev_rt_now = ev_time ();
2356 root 1.40
2357 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2358 root 1.13 {
2359 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2360     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2361 root 1.140 #if EV_PERIODIC_ENABLE
2362 root 1.54 periodics_reschedule (EV_A);
2363 root 1.93 #endif
2364 root 1.13 }
2365 root 1.4
2366 root 1.85 mn_now = ev_rt_now;
2367 root 1.4 }
2368     }
2369    
2370 root 1.51 void
2371 root 1.353 ev_run (EV_P_ int flags)
2372 root 1.1 {
2373 root 1.338 #if EV_FEATURE_API
2374 root 1.294 ++loop_depth;
2375 root 1.297 #endif
2376 root 1.294
2377 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2378 root 1.298
2379 root 1.353 loop_done = EVBREAK_CANCEL;
2380 root 1.1
2381 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2382 root 1.158
2383 root 1.161 do
2384 root 1.9 {
2385 root 1.250 #if EV_VERIFY >= 2
2386 root 1.340 ev_verify (EV_A);
2387 root 1.250 #endif
2388    
2389 root 1.158 #ifndef _WIN32
2390     if (expect_false (curpid)) /* penalise the forking check even more */
2391     if (expect_false (getpid () != curpid))
2392     {
2393     curpid = getpid ();
2394     postfork = 1;
2395     }
2396     #endif
2397    
2398 root 1.157 #if EV_FORK_ENABLE
2399     /* we might have forked, so queue fork handlers */
2400     if (expect_false (postfork))
2401     if (forkcnt)
2402     {
2403     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2404 root 1.297 EV_INVOKE_PENDING;
2405 root 1.157 }
2406     #endif
2407 root 1.147
2408 root 1.337 #if EV_PREPARE_ENABLE
2409 root 1.170 /* queue prepare watchers (and execute them) */
2410 root 1.40 if (expect_false (preparecnt))
2411 root 1.20 {
2412 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2413 root 1.297 EV_INVOKE_PENDING;
2414 root 1.20 }
2415 root 1.337 #endif
2416 root 1.9
2417 root 1.298 if (expect_false (loop_done))
2418     break;
2419    
2420 root 1.70 /* we might have forked, so reify kernel state if necessary */
2421     if (expect_false (postfork))
2422     loop_fork (EV_A);
2423    
2424 root 1.1 /* update fd-related kernel structures */
2425 root 1.51 fd_reify (EV_A);
2426 root 1.1
2427     /* calculate blocking time */
2428 root 1.135 {
2429 root 1.193 ev_tstamp waittime = 0.;
2430     ev_tstamp sleeptime = 0.;
2431 root 1.12
2432 root 1.353 /* remember old timestamp for io_blocktime calculation */
2433     ev_tstamp prev_mn_now = mn_now;
2434 root 1.293
2435 root 1.353 /* update time to cancel out callback processing overhead */
2436     time_update (EV_A_ 1e100);
2437 root 1.135
2438 root 1.353 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
2439     {
2440 root 1.287 waittime = MAX_BLOCKTIME;
2441    
2442 root 1.135 if (timercnt)
2443     {
2444 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2445 root 1.193 if (waittime > to) waittime = to;
2446 root 1.135 }
2447 root 1.4
2448 root 1.140 #if EV_PERIODIC_ENABLE
2449 root 1.135 if (periodiccnt)
2450     {
2451 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2452 root 1.193 if (waittime > to) waittime = to;
2453 root 1.135 }
2454 root 1.93 #endif
2455 root 1.4
2456 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2457 root 1.193 if (expect_false (waittime < timeout_blocktime))
2458     waittime = timeout_blocktime;
2459    
2460 root 1.293 /* extra check because io_blocktime is commonly 0 */
2461     if (expect_false (io_blocktime))
2462     {
2463     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2464 root 1.193
2465 root 1.293 if (sleeptime > waittime - backend_fudge)
2466     sleeptime = waittime - backend_fudge;
2467 root 1.193
2468 root 1.293 if (expect_true (sleeptime > 0.))
2469     {
2470     ev_sleep (sleeptime);
2471     waittime -= sleeptime;
2472     }
2473 root 1.193 }
2474 root 1.135 }
2475 root 1.1
2476 root 1.338 #if EV_FEATURE_API
2477 root 1.162 ++loop_count;
2478 root 1.297 #endif
2479 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2480 root 1.193 backend_poll (EV_A_ waittime);
2481 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2482 root 1.178
2483     /* update ev_rt_now, do magic */
2484 root 1.193 time_update (EV_A_ waittime + sleeptime);
2485 root 1.135 }
2486 root 1.1
2487 root 1.9 /* queue pending timers and reschedule them */
2488 root 1.51 timers_reify (EV_A); /* relative timers called last */
2489 root 1.140 #if EV_PERIODIC_ENABLE
2490 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2491 root 1.93 #endif
2492 root 1.1
2493 root 1.164 #if EV_IDLE_ENABLE
2494 root 1.137 /* queue idle watchers unless other events are pending */
2495 root 1.164 idle_reify (EV_A);
2496     #endif
2497 root 1.9
2498 root 1.337 #if EV_CHECK_ENABLE
2499 root 1.20 /* queue check watchers, to be executed first */
2500 root 1.123 if (expect_false (checkcnt))
2501 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2502 root 1.337 #endif
2503 root 1.9
2504 root 1.297 EV_INVOKE_PENDING;
2505 root 1.1 }
2506 root 1.219 while (expect_true (
2507     activecnt
2508     && !loop_done
2509 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2510 root 1.219 ));
2511 root 1.13
2512 root 1.353 if (loop_done == EVBREAK_ONE)
2513     loop_done = EVBREAK_CANCEL;
2514 root 1.294
2515 root 1.338 #if EV_FEATURE_API
2516 root 1.294 --loop_depth;
2517 root 1.297 #endif
2518 root 1.51 }
2519    
2520     void
2521 root 1.353 ev_break (EV_P_ int how)
2522 root 1.51 {
2523     loop_done = how;
2524 root 1.1 }
2525    
2526 root 1.285 void
2527     ev_ref (EV_P)
2528     {
2529     ++activecnt;
2530     }
2531    
2532     void
2533     ev_unref (EV_P)
2534     {
2535     --activecnt;
2536     }
2537    
2538     void
2539     ev_now_update (EV_P)
2540     {
2541     time_update (EV_A_ 1e100);
2542     }
2543    
2544     void
2545     ev_suspend (EV_P)
2546     {
2547     ev_now_update (EV_A);
2548     }
2549    
2550     void
2551     ev_resume (EV_P)
2552     {
2553     ev_tstamp mn_prev = mn_now;
2554    
2555     ev_now_update (EV_A);
2556     timers_reschedule (EV_A_ mn_now - mn_prev);
2557 root 1.286 #if EV_PERIODIC_ENABLE
2558 root 1.288 /* TODO: really do this? */
2559 root 1.285 periodics_reschedule (EV_A);
2560 root 1.286 #endif
2561 root 1.285 }
2562    
2563 root 1.8 /*****************************************************************************/
2564 root 1.288 /* singly-linked list management, used when the expected list length is short */
2565 root 1.8
2566 root 1.284 inline_size void
2567 root 1.10 wlist_add (WL *head, WL elem)
2568 root 1.1 {
2569     elem->next = *head;
2570     *head = elem;
2571     }
2572    
2573 root 1.284 inline_size void
2574 root 1.10 wlist_del (WL *head, WL elem)
2575 root 1.1 {
2576     while (*head)
2577     {
2578 root 1.307 if (expect_true (*head == elem))
2579 root 1.1 {
2580     *head = elem->next;
2581 root 1.307 break;
2582 root 1.1 }
2583    
2584     head = &(*head)->next;
2585     }
2586     }
2587    
2588 root 1.288 /* internal, faster, version of ev_clear_pending */
2589 root 1.284 inline_speed void
2590 root 1.166 clear_pending (EV_P_ W w)
2591 root 1.16 {
2592     if (w->pending)
2593     {
2594 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2595 root 1.16 w->pending = 0;
2596     }
2597     }
2598    
2599 root 1.167 int
2600     ev_clear_pending (EV_P_ void *w)
2601 root 1.166 {
2602     W w_ = (W)w;
2603     int pending = w_->pending;
2604    
2605 root 1.172 if (expect_true (pending))
2606     {
2607     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2608 root 1.288 p->w = (W)&pending_w;
2609 root 1.172 w_->pending = 0;
2610     return p->events;
2611     }
2612     else
2613 root 1.167 return 0;
2614 root 1.166 }
2615    
2616 root 1.284 inline_size void
2617 root 1.164 pri_adjust (EV_P_ W w)
2618     {
2619 root 1.295 int pri = ev_priority (w);
2620 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2621     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2622 root 1.295 ev_set_priority (w, pri);
2623 root 1.164 }
2624    
2625 root 1.284 inline_speed void
2626 root 1.51 ev_start (EV_P_ W w, int active)
2627 root 1.1 {
2628 root 1.164 pri_adjust (EV_A_ w);
2629 root 1.1 w->active = active;
2630 root 1.51 ev_ref (EV_A);
2631 root 1.1 }
2632    
2633 root 1.284 inline_size void
2634 root 1.51 ev_stop (EV_P_ W w)
2635 root 1.1 {
2636 root 1.51 ev_unref (EV_A);
2637 root 1.1 w->active = 0;
2638     }
2639    
2640 root 1.8 /*****************************************************************************/
2641    
2642 root 1.171 void noinline
2643 root 1.136 ev_io_start (EV_P_ ev_io *w)
2644 root 1.1 {
2645 root 1.37 int fd = w->fd;
2646    
2647 root 1.123 if (expect_false (ev_is_active (w)))
2648 root 1.1 return;
2649    
2650 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2651 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2652 root 1.33
2653 root 1.248 EV_FREQUENT_CHECK;
2654    
2655 root 1.51 ev_start (EV_A_ (W)w, 1);
2656 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2657 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2658 root 1.1
2659 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2660 root 1.281 w->events &= ~EV__IOFDSET;
2661 root 1.248
2662     EV_FREQUENT_CHECK;
2663 root 1.1 }
2664    
2665 root 1.171 void noinline
2666 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2667 root 1.1 {
2668 root 1.166 clear_pending (EV_A_ (W)w);
2669 root 1.123 if (expect_false (!ev_is_active (w)))
2670 root 1.1 return;
2671    
2672 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2673 root 1.89
2674 root 1.248 EV_FREQUENT_CHECK;
2675    
2676 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2677 root 1.51 ev_stop (EV_A_ (W)w);
2678 root 1.1
2679 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2680 root 1.248
2681     EV_FREQUENT_CHECK;
2682 root 1.1 }
2683    
2684 root 1.171 void noinline
2685 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2686 root 1.1 {
2687 root 1.123 if (expect_false (ev_is_active (w)))
2688 root 1.1 return;
2689    
2690 root 1.228 ev_at (w) += mn_now;
2691 root 1.12
2692 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2693 root 1.13
2694 root 1.248 EV_FREQUENT_CHECK;
2695    
2696     ++timercnt;
2697     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2698 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2699     ANHE_w (timers [ev_active (w)]) = (WT)w;
2700 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2701 root 1.235 upheap (timers, ev_active (w));
2702 root 1.62
2703 root 1.248 EV_FREQUENT_CHECK;
2704    
2705 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2706 root 1.12 }
2707    
2708 root 1.171 void noinline
2709 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2710 root 1.12 {
2711 root 1.166 clear_pending (EV_A_ (W)w);
2712 root 1.123 if (expect_false (!ev_is_active (w)))
2713 root 1.12 return;
2714    
2715 root 1.248 EV_FREQUENT_CHECK;
2716    
2717 root 1.230 {
2718     int active = ev_active (w);
2719 root 1.62
2720 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2721 root 1.151
2722 root 1.248 --timercnt;
2723    
2724     if (expect_true (active < timercnt + HEAP0))
2725 root 1.151 {
2726 root 1.248 timers [active] = timers [timercnt + HEAP0];
2727 root 1.181 adjustheap (timers, timercnt, active);
2728 root 1.151 }
2729 root 1.248 }
2730 root 1.228
2731     ev_at (w) -= mn_now;
2732 root 1.14
2733 root 1.51 ev_stop (EV_A_ (W)w);
2734 root 1.328
2735     EV_FREQUENT_CHECK;
2736 root 1.12 }
2737 root 1.4
2738 root 1.171 void noinline
2739 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2740 root 1.14 {
2741 root 1.248 EV_FREQUENT_CHECK;
2742    
2743 root 1.14 if (ev_is_active (w))
2744     {
2745     if (w->repeat)
2746 root 1.99 {
2747 root 1.228 ev_at (w) = mn_now + w->repeat;
2748 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2749 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2750 root 1.99 }
2751 root 1.14 else
2752 root 1.51 ev_timer_stop (EV_A_ w);
2753 root 1.14 }
2754     else if (w->repeat)
2755 root 1.112 {
2756 root 1.229 ev_at (w) = w->repeat;
2757 root 1.112 ev_timer_start (EV_A_ w);
2758     }
2759 root 1.248
2760     EV_FREQUENT_CHECK;
2761 root 1.14 }
2762    
2763 root 1.301 ev_tstamp
2764     ev_timer_remaining (EV_P_ ev_timer *w)
2765     {
2766     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2767     }
2768    
2769 root 1.140 #if EV_PERIODIC_ENABLE
2770 root 1.171 void noinline
2771 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2772 root 1.12 {
2773 root 1.123 if (expect_false (ev_is_active (w)))
2774 root 1.12 return;
2775 root 1.1
2776 root 1.77 if (w->reschedule_cb)
2777 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2778 root 1.77 else if (w->interval)
2779     {
2780 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2781 root 1.370 periodic_recalc (EV_A_ w);
2782 root 1.77 }
2783 root 1.173 else
2784 root 1.228 ev_at (w) = w->offset;
2785 root 1.12
2786 root 1.248 EV_FREQUENT_CHECK;
2787    
2788     ++periodiccnt;
2789     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2790 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2791     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2792 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2793 root 1.235 upheap (periodics, ev_active (w));
2794 root 1.62
2795 root 1.248 EV_FREQUENT_CHECK;
2796    
2797 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2798 root 1.1 }
2799    
2800 root 1.171 void noinline
2801 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2802 root 1.1 {
2803 root 1.166 clear_pending (EV_A_ (W)w);
2804 root 1.123 if (expect_false (!ev_is_active (w)))
2805 root 1.1 return;
2806    
2807 root 1.248 EV_FREQUENT_CHECK;
2808    
2809 root 1.230 {
2810     int active = ev_active (w);
2811 root 1.62
2812 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2813 root 1.151
2814 root 1.248 --periodiccnt;
2815    
2816     if (expect_true (active < periodiccnt + HEAP0))
2817 root 1.151 {
2818 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2819 root 1.181 adjustheap (periodics, periodiccnt, active);
2820 root 1.151 }
2821 root 1.248 }
2822 root 1.228
2823 root 1.328 ev_stop (EV_A_ (W)w);
2824    
2825 root 1.248 EV_FREQUENT_CHECK;
2826 root 1.1 }
2827    
2828 root 1.171 void noinline
2829 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2830 root 1.77 {
2831 root 1.84 /* TODO: use adjustheap and recalculation */
2832 root 1.77 ev_periodic_stop (EV_A_ w);
2833     ev_periodic_start (EV_A_ w);
2834     }
2835 root 1.93 #endif
2836 root 1.77
2837 root 1.56 #ifndef SA_RESTART
2838     # define SA_RESTART 0
2839     #endif
2840    
2841 root 1.336 #if EV_SIGNAL_ENABLE
2842    
2843 root 1.171 void noinline
2844 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2845 root 1.56 {
2846 root 1.123 if (expect_false (ev_is_active (w)))
2847 root 1.56 return;
2848    
2849 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2850    
2851     #if EV_MULTIPLICITY
2852 root 1.308 assert (("libev: a signal must not be attached to two different loops",
2853 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2854    
2855     signals [w->signum - 1].loop = EV_A;
2856     #endif
2857 root 1.56
2858 root 1.303 EV_FREQUENT_CHECK;
2859    
2860     #if EV_USE_SIGNALFD
2861     if (sigfd == -2)
2862     {
2863     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2864     if (sigfd < 0 && errno == EINVAL)
2865     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2866    
2867     if (sigfd >= 0)
2868     {
2869     fd_intern (sigfd); /* doing it twice will not hurt */
2870    
2871     sigemptyset (&sigfd_set);
2872    
2873     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2874     ev_set_priority (&sigfd_w, EV_MAXPRI);
2875     ev_io_start (EV_A_ &sigfd_w);
2876     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2877     }
2878     }
2879    
2880     if (sigfd >= 0)
2881     {
2882     /* TODO: check .head */
2883     sigaddset (&sigfd_set, w->signum);
2884     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2885 root 1.207
2886 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2887     }
2888 root 1.180 #endif
2889    
2890 root 1.56 ev_start (EV_A_ (W)w, 1);
2891 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2892 root 1.56
2893 root 1.63 if (!((WL)w)->next)
2894 root 1.304 # if EV_USE_SIGNALFD
2895 root 1.306 if (sigfd < 0) /*TODO*/
2896 root 1.304 # endif
2897 root 1.306 {
2898 root 1.322 # ifdef _WIN32
2899 root 1.317 evpipe_init (EV_A);
2900    
2901 root 1.306 signal (w->signum, ev_sighandler);
2902     # else
2903     struct sigaction sa;
2904    
2905     evpipe_init (EV_A);
2906    
2907     sa.sa_handler = ev_sighandler;
2908     sigfillset (&sa.sa_mask);
2909     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2910     sigaction (w->signum, &sa, 0);
2911    
2912 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
2913     {
2914     sigemptyset (&sa.sa_mask);
2915     sigaddset (&sa.sa_mask, w->signum);
2916     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2917     }
2918 root 1.67 #endif
2919 root 1.306 }
2920 root 1.248
2921     EV_FREQUENT_CHECK;
2922 root 1.56 }
2923    
2924 root 1.171 void noinline
2925 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2926 root 1.56 {
2927 root 1.166 clear_pending (EV_A_ (W)w);
2928 root 1.123 if (expect_false (!ev_is_active (w)))
2929 root 1.56 return;
2930    
2931 root 1.248 EV_FREQUENT_CHECK;
2932    
2933 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2934 root 1.56 ev_stop (EV_A_ (W)w);
2935    
2936     if (!signals [w->signum - 1].head)
2937 root 1.306 {
2938 root 1.307 #if EV_MULTIPLICITY
2939 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
2940 root 1.307 #endif
2941     #if EV_USE_SIGNALFD
2942 root 1.306 if (sigfd >= 0)
2943     {
2944 root 1.321 sigset_t ss;
2945    
2946     sigemptyset (&ss);
2947     sigaddset (&ss, w->signum);
2948 root 1.306 sigdelset (&sigfd_set, w->signum);
2949 root 1.321
2950 root 1.306 signalfd (sigfd, &sigfd_set, 0);
2951 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
2952 root 1.306 }
2953     else
2954 root 1.307 #endif
2955 root 1.306 signal (w->signum, SIG_DFL);
2956     }
2957 root 1.248
2958     EV_FREQUENT_CHECK;
2959 root 1.56 }
2960    
2961 root 1.336 #endif
2962    
2963     #if EV_CHILD_ENABLE
2964    
2965 root 1.28 void
2966 root 1.136 ev_child_start (EV_P_ ev_child *w)
2967 root 1.22 {
2968 root 1.56 #if EV_MULTIPLICITY
2969 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2970 root 1.56 #endif
2971 root 1.123 if (expect_false (ev_is_active (w)))
2972 root 1.22 return;
2973    
2974 root 1.248 EV_FREQUENT_CHECK;
2975    
2976 root 1.51 ev_start (EV_A_ (W)w, 1);
2977 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2978 root 1.248
2979     EV_FREQUENT_CHECK;
2980 root 1.22 }
2981    
2982 root 1.28 void
2983 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2984 root 1.22 {
2985 root 1.166 clear_pending (EV_A_ (W)w);
2986 root 1.123 if (expect_false (!ev_is_active (w)))
2987 root 1.22 return;
2988    
2989 root 1.248 EV_FREQUENT_CHECK;
2990    
2991 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2992 root 1.51 ev_stop (EV_A_ (W)w);
2993 root 1.248
2994     EV_FREQUENT_CHECK;
2995 root 1.22 }
2996    
2997 root 1.336 #endif
2998    
2999 root 1.140 #if EV_STAT_ENABLE
3000    
3001     # ifdef _WIN32
3002 root 1.146 # undef lstat
3003     # define lstat(a,b) _stati64 (a,b)
3004 root 1.140 # endif
3005    
3006 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3007     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3008     #define MIN_STAT_INTERVAL 0.1074891
3009 root 1.143
3010 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3011 root 1.152
3012     #if EV_USE_INOTIFY
3013 root 1.326
3014     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3015     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3016 root 1.152
3017     static void noinline
3018     infy_add (EV_P_ ev_stat *w)
3019     {
3020     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3021    
3022 root 1.318 if (w->wd >= 0)
3023 root 1.152 {
3024 root 1.318 struct statfs sfs;
3025    
3026     /* now local changes will be tracked by inotify, but remote changes won't */
3027     /* unless the filesystem is known to be local, we therefore still poll */
3028     /* also do poll on <2.6.25, but with normal frequency */
3029    
3030     if (!fs_2625)
3031     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3032     else if (!statfs (w->path, &sfs)
3033     && (sfs.f_type == 0x1373 /* devfs */
3034     || sfs.f_type == 0xEF53 /* ext2/3 */
3035     || sfs.f_type == 0x3153464a /* jfs */
3036     || sfs.f_type == 0x52654973 /* reiser3 */
3037     || sfs.f_type == 0x01021994 /* tempfs */
3038     || sfs.f_type == 0x58465342 /* xfs */))
3039     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3040     else
3041     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3042     }
3043     else
3044     {
3045     /* can't use inotify, continue to stat */
3046 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3047 root 1.152
3048 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3049 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3050 root 1.233 /* but an efficiency issue only */
3051 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3052 root 1.152 {
3053 root 1.153 char path [4096];
3054 root 1.152 strcpy (path, w->path);
3055    
3056     do
3057     {
3058     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3059     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3060    
3061     char *pend = strrchr (path, '/');
3062    
3063 root 1.275 if (!pend || pend == path)
3064     break;
3065 root 1.152
3066     *pend = 0;
3067 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3068 root 1.152 }
3069     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3070     }
3071     }
3072 root 1.275
3073     if (w->wd >= 0)
3074 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3075 root 1.152
3076 root 1.318 /* now re-arm timer, if required */
3077     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3078     ev_timer_again (EV_A_ &w->timer);
3079     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3080 root 1.152 }
3081    
3082     static void noinline
3083     infy_del (EV_P_ ev_stat *w)
3084     {
3085     int slot;
3086     int wd = w->wd;
3087    
3088     if (wd < 0)
3089     return;
3090    
3091     w->wd = -2;
3092 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3093 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3094    
3095     /* remove this watcher, if others are watching it, they will rearm */
3096     inotify_rm_watch (fs_fd, wd);
3097     }
3098    
3099     static void noinline
3100     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3101     {
3102     if (slot < 0)
3103 root 1.264 /* overflow, need to check for all hash slots */
3104 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3105 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3106     else
3107     {
3108     WL w_;
3109    
3110 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3111 root 1.152 {
3112     ev_stat *w = (ev_stat *)w_;
3113     w_ = w_->next; /* lets us remove this watcher and all before it */
3114    
3115     if (w->wd == wd || wd == -1)
3116     {
3117     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3118     {
3119 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3120 root 1.152 w->wd = -1;
3121     infy_add (EV_A_ w); /* re-add, no matter what */
3122     }
3123    
3124 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3125 root 1.152 }
3126     }
3127     }
3128     }
3129    
3130     static void
3131     infy_cb (EV_P_ ev_io *w, int revents)
3132     {
3133     char buf [EV_INOTIFY_BUFSIZE];
3134     int ofs;
3135     int len = read (fs_fd, buf, sizeof (buf));
3136    
3137 root 1.326 for (ofs = 0; ofs < len; )
3138     {
3139     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3140     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3141     ofs += sizeof (struct inotify_event) + ev->len;
3142     }
3143 root 1.152 }
3144    
3145 root 1.330 inline_size void
3146     ev_check_2625 (EV_P)
3147     {
3148     /* kernels < 2.6.25 are borked
3149     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3150     */
3151     if (ev_linux_version () < 0x020619)
3152 root 1.273 return;
3153 root 1.264
3154 root 1.273 fs_2625 = 1;
3155     }
3156 root 1.264
3157 root 1.315 inline_size int
3158     infy_newfd (void)
3159     {
3160     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3161     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3162     if (fd >= 0)
3163     return fd;
3164     #endif
3165     return inotify_init ();
3166     }
3167    
3168 root 1.284 inline_size void
3169 root 1.273 infy_init (EV_P)
3170     {
3171     if (fs_fd != -2)
3172     return;
3173 root 1.264
3174 root 1.273 fs_fd = -1;
3175 root 1.264
3176 root 1.330 ev_check_2625 (EV_A);
3177 root 1.264
3178 root 1.315 fs_fd = infy_newfd ();
3179 root 1.152
3180     if (fs_fd >= 0)
3181     {
3182 root 1.315 fd_intern (fs_fd);
3183 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3184     ev_set_priority (&fs_w, EV_MAXPRI);
3185     ev_io_start (EV_A_ &fs_w);
3186 root 1.317 ev_unref (EV_A);
3187 root 1.152 }
3188     }
3189    
3190 root 1.284 inline_size void
3191 root 1.154 infy_fork (EV_P)
3192     {
3193     int slot;
3194    
3195     if (fs_fd < 0)
3196     return;
3197    
3198 root 1.317 ev_ref (EV_A);
3199 root 1.315 ev_io_stop (EV_A_ &fs_w);
3200 root 1.154 close (fs_fd);
3201 root 1.315 fs_fd = infy_newfd ();
3202    
3203     if (fs_fd >= 0)
3204     {
3205     fd_intern (fs_fd);
3206     ev_io_set (&fs_w, fs_fd, EV_READ);
3207     ev_io_start (EV_A_ &fs_w);
3208 root 1.317 ev_unref (EV_A);
3209 root 1.315 }
3210 root 1.154
3211 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3212 root 1.154 {
3213     WL w_ = fs_hash [slot].head;
3214     fs_hash [slot].head = 0;
3215    
3216     while (w_)
3217     {
3218     ev_stat *w = (ev_stat *)w_;
3219     w_ = w_->next; /* lets us add this watcher */
3220    
3221     w->wd = -1;
3222    
3223     if (fs_fd >= 0)
3224     infy_add (EV_A_ w); /* re-add, no matter what */
3225     else
3226 root 1.318 {
3227     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3228     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3229     ev_timer_again (EV_A_ &w->timer);
3230     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3231     }
3232 root 1.154 }
3233     }
3234     }
3235    
3236 root 1.152 #endif
3237    
3238 root 1.255 #ifdef _WIN32
3239     # define EV_LSTAT(p,b) _stati64 (p, b)
3240     #else
3241     # define EV_LSTAT(p,b) lstat (p, b)
3242     #endif
3243    
3244 root 1.140 void
3245     ev_stat_stat (EV_P_ ev_stat *w)
3246     {
3247     if (lstat (w->path, &w->attr) < 0)
3248     w->attr.st_nlink = 0;
3249     else if (!w->attr.st_nlink)
3250     w->attr.st_nlink = 1;
3251     }
3252    
3253 root 1.157 static void noinline
3254 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3255     {
3256     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3257    
3258 root 1.320 ev_statdata prev = w->attr;
3259 root 1.140 ev_stat_stat (EV_A_ w);
3260    
3261 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3262     if (
3263 root 1.320 prev.st_dev != w->attr.st_dev
3264     || prev.st_ino != w->attr.st_ino
3265     || prev.st_mode != w->attr.st_mode
3266     || prev.st_nlink != w->attr.st_nlink
3267     || prev.st_uid != w->attr.st_uid
3268     || prev.st_gid != w->attr.st_gid
3269     || prev.st_rdev != w->attr.st_rdev
3270     || prev.st_size != w->attr.st_size
3271     || prev.st_atime != w->attr.st_atime
3272     || prev.st_mtime != w->attr.st_mtime
3273     || prev.st_ctime != w->attr.st_ctime
3274 root 1.156 ) {
3275 root 1.320 /* we only update w->prev on actual differences */
3276     /* in case we test more often than invoke the callback, */
3277     /* to ensure that prev is always different to attr */
3278     w->prev = prev;
3279    
3280 root 1.152 #if EV_USE_INOTIFY
3281 root 1.264 if (fs_fd >= 0)
3282     {
3283     infy_del (EV_A_ w);
3284     infy_add (EV_A_ w);
3285     ev_stat_stat (EV_A_ w); /* avoid race... */
3286     }
3287 root 1.152 #endif
3288    
3289     ev_feed_event (EV_A_ w, EV_STAT);
3290     }
3291 root 1.140 }
3292    
3293     void
3294     ev_stat_start (EV_P_ ev_stat *w)
3295     {
3296     if (expect_false (ev_is_active (w)))
3297     return;
3298    
3299     ev_stat_stat (EV_A_ w);
3300    
3301 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3302     w->interval = MIN_STAT_INTERVAL;
3303 root 1.143
3304 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3305 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3306 root 1.152
3307     #if EV_USE_INOTIFY
3308     infy_init (EV_A);
3309    
3310     if (fs_fd >= 0)
3311     infy_add (EV_A_ w);
3312     else
3313     #endif
3314 root 1.318 {
3315     ev_timer_again (EV_A_ &w->timer);
3316     ev_unref (EV_A);
3317     }
3318 root 1.140
3319     ev_start (EV_A_ (W)w, 1);
3320 root 1.248
3321     EV_FREQUENT_CHECK;
3322 root 1.140 }
3323    
3324     void
3325     ev_stat_stop (EV_P_ ev_stat *w)
3326     {
3327 root 1.166 clear_pending (EV_A_ (W)w);
3328 root 1.140 if (expect_false (!ev_is_active (w)))
3329     return;
3330    
3331 root 1.248 EV_FREQUENT_CHECK;
3332    
3333 root 1.152 #if EV_USE_INOTIFY
3334     infy_del (EV_A_ w);
3335     #endif
3336 root 1.318
3337     if (ev_is_active (&w->timer))
3338     {
3339     ev_ref (EV_A);
3340     ev_timer_stop (EV_A_ &w->timer);
3341     }
3342 root 1.140
3343 root 1.134 ev_stop (EV_A_ (W)w);
3344 root 1.248
3345     EV_FREQUENT_CHECK;
3346 root 1.134 }
3347     #endif
3348    
3349 root 1.164 #if EV_IDLE_ENABLE
3350 root 1.144 void
3351     ev_idle_start (EV_P_ ev_idle *w)
3352     {
3353     if (expect_false (ev_is_active (w)))
3354     return;
3355    
3356 root 1.164 pri_adjust (EV_A_ (W)w);
3357    
3358 root 1.248 EV_FREQUENT_CHECK;
3359    
3360 root 1.164 {
3361     int active = ++idlecnt [ABSPRI (w)];
3362    
3363     ++idleall;
3364     ev_start (EV_A_ (W)w, active);
3365    
3366     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3367     idles [ABSPRI (w)][active - 1] = w;
3368     }
3369 root 1.248
3370     EV_FREQUENT_CHECK;
3371 root 1.144 }
3372    
3373     void
3374     ev_idle_stop (EV_P_ ev_idle *w)
3375     {
3376 root 1.166 clear_pending (EV_A_ (W)w);
3377 root 1.144 if (expect_false (!ev_is_active (w)))
3378     return;
3379    
3380 root 1.248 EV_FREQUENT_CHECK;
3381    
3382 root 1.144 {
3383 root 1.230 int active = ev_active (w);
3384 root 1.164
3385     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3386 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3387 root 1.164
3388     ev_stop (EV_A_ (W)w);
3389     --idleall;
3390 root 1.144 }
3391 root 1.248
3392     EV_FREQUENT_CHECK;
3393 root 1.144 }
3394 root 1.164 #endif
3395 root 1.144
3396 root 1.337 #if EV_PREPARE_ENABLE
3397 root 1.144 void
3398     ev_prepare_start (EV_P_ ev_prepare *w)
3399     {
3400     if (expect_false (ev_is_active (w)))
3401     return;
3402    
3403 root 1.248 EV_FREQUENT_CHECK;
3404    
3405 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3406     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3407     prepares [preparecnt - 1] = w;
3408 root 1.248
3409     EV_FREQUENT_CHECK;
3410 root 1.144 }
3411    
3412     void
3413     ev_prepare_stop (EV_P_ ev_prepare *w)
3414     {
3415 root 1.166 clear_pending (EV_A_ (W)w);
3416 root 1.144 if (expect_false (!ev_is_active (w)))
3417     return;
3418    
3419 root 1.248 EV_FREQUENT_CHECK;
3420    
3421 root 1.144 {
3422 root 1.230 int active = ev_active (w);
3423    
3424 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3425 root 1.230 ev_active (prepares [active - 1]) = active;
3426 root 1.144 }
3427    
3428     ev_stop (EV_A_ (W)w);
3429 root 1.248
3430     EV_FREQUENT_CHECK;
3431 root 1.144 }
3432 root 1.337 #endif
3433 root 1.144
3434 root 1.337 #if EV_CHECK_ENABLE
3435 root 1.144 void
3436     ev_check_start (EV_P_ ev_check *w)
3437     {
3438     if (expect_false (ev_is_active (w)))
3439     return;
3440    
3441 root 1.248 EV_FREQUENT_CHECK;
3442    
3443 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3444     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3445     checks [checkcnt - 1] = w;
3446 root 1.248
3447     EV_FREQUENT_CHECK;
3448 root 1.144 }
3449    
3450     void
3451     ev_check_stop (EV_P_ ev_check *w)
3452     {
3453 root 1.166 clear_pending (EV_A_ (W)w);
3454 root 1.144 if (expect_false (!ev_is_active (w)))
3455     return;
3456    
3457 root 1.248 EV_FREQUENT_CHECK;
3458    
3459 root 1.144 {
3460 root 1.230 int active = ev_active (w);
3461    
3462 root 1.144 checks [active - 1] = checks [--checkcnt];
3463 root 1.230 ev_active (checks [active - 1]) = active;
3464 root 1.144 }
3465    
3466     ev_stop (EV_A_ (W)w);
3467 root 1.248
3468     EV_FREQUENT_CHECK;
3469 root 1.144 }
3470 root 1.337 #endif
3471 root 1.144
3472     #if EV_EMBED_ENABLE
3473     void noinline
3474     ev_embed_sweep (EV_P_ ev_embed *w)
3475     {
3476 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3477 root 1.144 }
3478    
3479     static void
3480 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3481 root 1.144 {
3482     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3483    
3484     if (ev_cb (w))
3485     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3486     else
3487 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3488 root 1.144 }
3489    
3490 root 1.189 static void
3491     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3492     {
3493     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3494    
3495 root 1.195 {
3496 root 1.306 EV_P = w->other;
3497 root 1.195
3498     while (fdchangecnt)
3499     {
3500     fd_reify (EV_A);
3501 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3502 root 1.195 }
3503     }
3504     }
3505    
3506 root 1.261 static void
3507     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3508     {
3509     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3510    
3511 root 1.277 ev_embed_stop (EV_A_ w);
3512    
3513 root 1.261 {
3514 root 1.306 EV_P = w->other;
3515 root 1.261
3516     ev_loop_fork (EV_A);
3517 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3518 root 1.261 }
3519 root 1.277
3520     ev_embed_start (EV_A_ w);
3521 root 1.261 }
3522    
3523 root 1.195 #if 0
3524     static void
3525     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3526     {
3527     ev_idle_stop (EV_A_ idle);
3528 root 1.189 }
3529 root 1.195 #endif
3530 root 1.189
3531 root 1.144 void
3532     ev_embed_start (EV_P_ ev_embed *w)
3533     {
3534     if (expect_false (ev_is_active (w)))
3535     return;
3536    
3537     {
3538 root 1.306 EV_P = w->other;
3539 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3540 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3541 root 1.144 }
3542    
3543 root 1.248 EV_FREQUENT_CHECK;
3544    
3545 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3546     ev_io_start (EV_A_ &w->io);
3547    
3548 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3549     ev_set_priority (&w->prepare, EV_MINPRI);
3550     ev_prepare_start (EV_A_ &w->prepare);
3551    
3552 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3553     ev_fork_start (EV_A_ &w->fork);
3554    
3555 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3556    
3557 root 1.144 ev_start (EV_A_ (W)w, 1);
3558 root 1.248
3559     EV_FREQUENT_CHECK;
3560 root 1.144 }
3561    
3562     void
3563     ev_embed_stop (EV_P_ ev_embed *w)
3564     {
3565 root 1.166 clear_pending (EV_A_ (W)w);
3566 root 1.144 if (expect_false (!ev_is_active (w)))
3567     return;
3568    
3569 root 1.248 EV_FREQUENT_CHECK;
3570    
3571 root 1.261 ev_io_stop (EV_A_ &w->io);
3572 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3573 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3574 root 1.248
3575 root 1.328 ev_stop (EV_A_ (W)w);
3576    
3577 root 1.248 EV_FREQUENT_CHECK;
3578 root 1.144 }
3579     #endif
3580    
3581 root 1.147 #if EV_FORK_ENABLE
3582     void
3583     ev_fork_start (EV_P_ ev_fork *w)
3584     {
3585     if (expect_false (ev_is_active (w)))
3586     return;
3587    
3588 root 1.248 EV_FREQUENT_CHECK;
3589    
3590 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3591     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3592     forks [forkcnt - 1] = w;
3593 root 1.248
3594     EV_FREQUENT_CHECK;
3595 root 1.147 }
3596    
3597     void
3598     ev_fork_stop (EV_P_ ev_fork *w)
3599     {
3600 root 1.166 clear_pending (EV_A_ (W)w);
3601 root 1.147 if (expect_false (!ev_is_active (w)))
3602     return;
3603    
3604 root 1.248 EV_FREQUENT_CHECK;
3605    
3606 root 1.147 {
3607 root 1.230 int active = ev_active (w);
3608    
3609 root 1.147 forks [active - 1] = forks [--forkcnt];
3610 root 1.230 ev_active (forks [active - 1]) = active;
3611 root 1.147 }
3612    
3613     ev_stop (EV_A_ (W)w);
3614 root 1.248
3615     EV_FREQUENT_CHECK;
3616 root 1.147 }
3617     #endif
3618    
3619 root 1.360 #if EV_CLEANUP_ENABLE
3620     void
3621     ev_cleanup_start (EV_P_ ev_cleanup *w)
3622     {
3623     if (expect_false (ev_is_active (w)))
3624     return;
3625    
3626     EV_FREQUENT_CHECK;
3627    
3628     ev_start (EV_A_ (W)w, ++cleanupcnt);
3629     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3630     cleanups [cleanupcnt - 1] = w;
3631    
3632 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
3633     ev_unref (EV_A);
3634 root 1.360 EV_FREQUENT_CHECK;
3635     }
3636    
3637     void
3638     ev_cleanup_stop (EV_P_ ev_cleanup *w)
3639     {
3640     clear_pending (EV_A_ (W)w);
3641     if (expect_false (!ev_is_active (w)))
3642     return;
3643    
3644     EV_FREQUENT_CHECK;
3645 root 1.362 ev_ref (EV_A);
3646 root 1.360
3647     {
3648     int active = ev_active (w);
3649    
3650     cleanups [active - 1] = cleanups [--cleanupcnt];
3651     ev_active (cleanups [active - 1]) = active;
3652     }
3653    
3654     ev_stop (EV_A_ (W)w);
3655    
3656     EV_FREQUENT_CHECK;
3657     }
3658     #endif
3659    
3660 root 1.207 #if EV_ASYNC_ENABLE
3661     void
3662     ev_async_start (EV_P_ ev_async *w)
3663     {
3664     if (expect_false (ev_is_active (w)))
3665     return;
3666    
3667 root 1.352 w->sent = 0;
3668    
3669 root 1.207 evpipe_init (EV_A);
3670    
3671 root 1.248 EV_FREQUENT_CHECK;
3672    
3673 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3674     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3675     asyncs [asynccnt - 1] = w;
3676 root 1.248
3677     EV_FREQUENT_CHECK;
3678 root 1.207 }
3679    
3680     void
3681     ev_async_stop (EV_P_ ev_async *w)
3682     {
3683     clear_pending (EV_A_ (W)w);
3684     if (expect_false (!ev_is_active (w)))
3685     return;
3686    
3687 root 1.248 EV_FREQUENT_CHECK;
3688    
3689 root 1.207 {
3690 root 1.230 int active = ev_active (w);
3691    
3692 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3693 root 1.230 ev_active (asyncs [active - 1]) = active;
3694 root 1.207 }
3695    
3696     ev_stop (EV_A_ (W)w);
3697 root 1.248
3698     EV_FREQUENT_CHECK;
3699 root 1.207 }
3700    
3701     void
3702     ev_async_send (EV_P_ ev_async *w)
3703     {
3704     w->sent = 1;
3705 root 1.307 evpipe_write (EV_A_ &async_pending);
3706 root 1.207 }
3707     #endif
3708    
3709 root 1.1 /*****************************************************************************/
3710 root 1.10
3711 root 1.16 struct ev_once
3712     {
3713 root 1.136 ev_io io;
3714     ev_timer to;
3715 root 1.16 void (*cb)(int revents, void *arg);
3716     void *arg;
3717     };
3718    
3719     static void
3720 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3721 root 1.16 {
3722     void (*cb)(int revents, void *arg) = once->cb;
3723     void *arg = once->arg;
3724    
3725 root 1.259 ev_io_stop (EV_A_ &once->io);
3726 root 1.51 ev_timer_stop (EV_A_ &once->to);
3727 root 1.69 ev_free (once);
3728 root 1.16
3729     cb (revents, arg);
3730     }
3731    
3732     static void
3733 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3734 root 1.16 {
3735 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3736    
3737     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3738 root 1.16 }
3739    
3740     static void
3741 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3742 root 1.16 {
3743 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3744    
3745     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3746 root 1.16 }
3747    
3748     void
3749 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3750 root 1.16 {
3751 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3752 root 1.16
3753 root 1.123 if (expect_false (!once))
3754 root 1.16 {
3755 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3756 root 1.123 return;
3757     }
3758    
3759     once->cb = cb;
3760     once->arg = arg;
3761 root 1.16
3762 root 1.123 ev_init (&once->io, once_cb_io);
3763     if (fd >= 0)
3764     {
3765     ev_io_set (&once->io, fd, events);
3766     ev_io_start (EV_A_ &once->io);
3767     }
3768 root 1.16
3769 root 1.123 ev_init (&once->to, once_cb_to);
3770     if (timeout >= 0.)
3771     {
3772     ev_timer_set (&once->to, timeout, 0.);
3773     ev_timer_start (EV_A_ &once->to);
3774 root 1.16 }
3775     }
3776    
3777 root 1.282 /*****************************************************************************/
3778    
3779 root 1.288 #if EV_WALK_ENABLE
3780 root 1.282 void
3781     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3782     {
3783     int i, j;
3784     ev_watcher_list *wl, *wn;
3785    
3786     if (types & (EV_IO | EV_EMBED))
3787     for (i = 0; i < anfdmax; ++i)
3788     for (wl = anfds [i].head; wl; )
3789     {
3790     wn = wl->next;
3791    
3792     #if EV_EMBED_ENABLE
3793     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3794     {
3795     if (types & EV_EMBED)
3796     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3797     }
3798     else
3799     #endif
3800     #if EV_USE_INOTIFY
3801     if (ev_cb ((ev_io *)wl) == infy_cb)
3802     ;
3803     else
3804     #endif
3805 root 1.288 if ((ev_io *)wl != &pipe_w)
3806 root 1.282 if (types & EV_IO)
3807     cb (EV_A_ EV_IO, wl);
3808    
3809     wl = wn;
3810     }
3811    
3812     if (types & (EV_TIMER | EV_STAT))
3813     for (i = timercnt + HEAP0; i-- > HEAP0; )
3814     #if EV_STAT_ENABLE
3815     /*TODO: timer is not always active*/
3816     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3817     {
3818     if (types & EV_STAT)
3819     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3820     }
3821     else
3822     #endif
3823     if (types & EV_TIMER)
3824     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3825    
3826     #if EV_PERIODIC_ENABLE
3827     if (types & EV_PERIODIC)
3828     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3829     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3830     #endif
3831    
3832     #if EV_IDLE_ENABLE
3833     if (types & EV_IDLE)
3834     for (j = NUMPRI; i--; )
3835     for (i = idlecnt [j]; i--; )
3836     cb (EV_A_ EV_IDLE, idles [j][i]);
3837     #endif
3838    
3839     #if EV_FORK_ENABLE
3840     if (types & EV_FORK)
3841     for (i = forkcnt; i--; )
3842     if (ev_cb (forks [i]) != embed_fork_cb)
3843     cb (EV_A_ EV_FORK, forks [i]);
3844     #endif
3845    
3846     #if EV_ASYNC_ENABLE
3847     if (types & EV_ASYNC)
3848     for (i = asynccnt; i--; )
3849     cb (EV_A_ EV_ASYNC, asyncs [i]);
3850     #endif
3851    
3852 root 1.337 #if EV_PREPARE_ENABLE
3853 root 1.282 if (types & EV_PREPARE)
3854     for (i = preparecnt; i--; )
3855 root 1.337 # if EV_EMBED_ENABLE
3856 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3857 root 1.337 # endif
3858     cb (EV_A_ EV_PREPARE, prepares [i]);
3859 root 1.282 #endif
3860    
3861 root 1.337 #if EV_CHECK_ENABLE
3862 root 1.282 if (types & EV_CHECK)
3863     for (i = checkcnt; i--; )
3864     cb (EV_A_ EV_CHECK, checks [i]);
3865 root 1.337 #endif
3866 root 1.282
3867 root 1.337 #if EV_SIGNAL_ENABLE
3868 root 1.282 if (types & EV_SIGNAL)
3869 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
3870 root 1.282 for (wl = signals [i].head; wl; )
3871     {
3872     wn = wl->next;
3873     cb (EV_A_ EV_SIGNAL, wl);
3874     wl = wn;
3875     }
3876 root 1.337 #endif
3877 root 1.282
3878 root 1.337 #if EV_CHILD_ENABLE
3879 root 1.282 if (types & EV_CHILD)
3880 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
3881 root 1.282 for (wl = childs [i]; wl; )
3882     {
3883     wn = wl->next;
3884     cb (EV_A_ EV_CHILD, wl);
3885     wl = wn;
3886     }
3887 root 1.337 #endif
3888 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
3889     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3890     }
3891     #endif
3892    
3893 root 1.188 #if EV_MULTIPLICITY
3894     #include "ev_wrap.h"
3895     #endif
3896    
3897 root 1.354 EV_CPP(})
3898 root 1.87