ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.374
Committed: Sat Feb 26 15:21:01 2011 UTC (13 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.373: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
65     # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.354 EV_CPP(extern "C" {)
189    
190 root 1.103 #ifndef _WIN32
191 root 1.71 # include <sys/time.h>
192 root 1.45 # include <sys/wait.h>
193 root 1.140 # include <unistd.h>
194 root 1.103 #else
195 root 1.256 # include <io.h>
196 root 1.103 # define WIN32_LEAN_AND_MEAN
197     # include <windows.h>
198     # ifndef EV_SELECT_IS_WINSOCKET
199     # define EV_SELECT_IS_WINSOCKET 1
200     # endif
201 root 1.331 # undef EV_AVOID_STDIO
202 root 1.45 #endif
203 root 1.103
204 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
205     * a limit of 1024 into their select. Where people have brains,
206     * OS X engineers apparently have a vacuum. Or maybe they were
207     * ordered to have a vacuum, or they do anything for money.
208     * This might help. Or not.
209     */
210     #define _DARWIN_UNLIMITED_SELECT 1
211    
212 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
213 root 1.40
214 root 1.305 /* try to deduce the maximum number of signals on this platform */
215     #if defined (EV_NSIG)
216     /* use what's provided */
217     #elif defined (NSIG)
218     # define EV_NSIG (NSIG)
219     #elif defined(_NSIG)
220     # define EV_NSIG (_NSIG)
221     #elif defined (SIGMAX)
222     # define EV_NSIG (SIGMAX+1)
223     #elif defined (SIG_MAX)
224     # define EV_NSIG (SIG_MAX+1)
225     #elif defined (_SIG_MAX)
226     # define EV_NSIG (_SIG_MAX+1)
227     #elif defined (MAXSIG)
228     # define EV_NSIG (MAXSIG+1)
229     #elif defined (MAX_SIG)
230     # define EV_NSIG (MAX_SIG+1)
231     #elif defined (SIGARRAYSIZE)
232 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233 root 1.305 #elif defined (_sys_nsig)
234     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235     #else
236     # error "unable to find value for NSIG, please report"
237 root 1.336 /* to make it compile regardless, just remove the above line, */
238     /* but consider reporting it, too! :) */
239 root 1.306 # define EV_NSIG 65
240 root 1.305 #endif
241    
242 root 1.373 #ifndef EV_USE_FLOOR
243     # define EV_USE_FLOOR 0
244     #endif
245    
246 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
247     # if __linux && __GLIBC__ >= 2
248 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249 root 1.274 # else
250     # define EV_USE_CLOCK_SYSCALL 0
251     # endif
252     #endif
253    
254 root 1.29 #ifndef EV_USE_MONOTONIC
255 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
257 root 1.253 # else
258     # define EV_USE_MONOTONIC 0
259     # endif
260 root 1.37 #endif
261    
262 root 1.118 #ifndef EV_USE_REALTIME
263 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264 root 1.118 #endif
265    
266 root 1.193 #ifndef EV_USE_NANOSLEEP
267 root 1.253 # if _POSIX_C_SOURCE >= 199309L
268 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
269 root 1.253 # else
270     # define EV_USE_NANOSLEEP 0
271     # endif
272 root 1.193 #endif
273    
274 root 1.29 #ifndef EV_USE_SELECT
275 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
276 root 1.10 #endif
277    
278 root 1.59 #ifndef EV_USE_POLL
279 root 1.104 # ifdef _WIN32
280     # define EV_USE_POLL 0
281     # else
282 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
283 root 1.104 # endif
284 root 1.41 #endif
285    
286 root 1.29 #ifndef EV_USE_EPOLL
287 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
289 root 1.220 # else
290     # define EV_USE_EPOLL 0
291     # endif
292 root 1.10 #endif
293    
294 root 1.44 #ifndef EV_USE_KQUEUE
295     # define EV_USE_KQUEUE 0
296     #endif
297    
298 root 1.118 #ifndef EV_USE_PORT
299     # define EV_USE_PORT 0
300 root 1.40 #endif
301    
302 root 1.152 #ifndef EV_USE_INOTIFY
303 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
305 root 1.220 # else
306     # define EV_USE_INOTIFY 0
307     # endif
308 root 1.152 #endif
309    
310 root 1.149 #ifndef EV_PID_HASHSIZE
311 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312 root 1.149 #endif
313    
314 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
315 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316 root 1.152 #endif
317    
318 root 1.220 #ifndef EV_USE_EVENTFD
319     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
321 root 1.220 # else
322     # define EV_USE_EVENTFD 0
323     # endif
324     #endif
325    
326 root 1.303 #ifndef EV_USE_SIGNALFD
327 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
329 root 1.303 # else
330     # define EV_USE_SIGNALFD 0
331     # endif
332     #endif
333    
334 root 1.249 #if 0 /* debugging */
335 root 1.250 # define EV_VERIFY 3
336 root 1.249 # define EV_USE_4HEAP 1
337     # define EV_HEAP_CACHE_AT 1
338     #endif
339    
340 root 1.250 #ifndef EV_VERIFY
341 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342 root 1.250 #endif
343    
344 root 1.243 #ifndef EV_USE_4HEAP
345 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
346 root 1.243 #endif
347    
348     #ifndef EV_HEAP_CACHE_AT
349 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350 root 1.243 #endif
351    
352 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353     /* which makes programs even slower. might work on other unices, too. */
354     #if EV_USE_CLOCK_SYSCALL
355     # include <syscall.h>
356     # ifdef SYS_clock_gettime
357     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358     # undef EV_USE_MONOTONIC
359     # define EV_USE_MONOTONIC 1
360     # else
361     # undef EV_USE_CLOCK_SYSCALL
362     # define EV_USE_CLOCK_SYSCALL 0
363     # endif
364     #endif
365    
366 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
367 root 1.40
368 root 1.325 #ifdef _AIX
369     /* AIX has a completely broken poll.h header */
370     # undef EV_USE_POLL
371     # define EV_USE_POLL 0
372     #endif
373    
374 root 1.40 #ifndef CLOCK_MONOTONIC
375     # undef EV_USE_MONOTONIC
376     # define EV_USE_MONOTONIC 0
377     #endif
378    
379 root 1.31 #ifndef CLOCK_REALTIME
380 root 1.40 # undef EV_USE_REALTIME
381 root 1.31 # define EV_USE_REALTIME 0
382     #endif
383 root 1.40
384 root 1.152 #if !EV_STAT_ENABLE
385 root 1.185 # undef EV_USE_INOTIFY
386 root 1.152 # define EV_USE_INOTIFY 0
387     #endif
388    
389 root 1.193 #if !EV_USE_NANOSLEEP
390 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
391     # if !defined(_WIN32) && !defined(__hpux)
392 root 1.193 # include <sys/select.h>
393     # endif
394     #endif
395    
396 root 1.152 #if EV_USE_INOTIFY
397 root 1.273 # include <sys/statfs.h>
398 root 1.152 # include <sys/inotify.h>
399 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400     # ifndef IN_DONT_FOLLOW
401     # undef EV_USE_INOTIFY
402     # define EV_USE_INOTIFY 0
403     # endif
404 root 1.152 #endif
405    
406 root 1.185 #if EV_SELECT_IS_WINSOCKET
407     # include <winsock.h>
408     #endif
409    
410 root 1.220 #if EV_USE_EVENTFD
411     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412 root 1.221 # include <stdint.h>
413 root 1.303 # ifndef EFD_NONBLOCK
414     # define EFD_NONBLOCK O_NONBLOCK
415     # endif
416     # ifndef EFD_CLOEXEC
417 root 1.311 # ifdef O_CLOEXEC
418     # define EFD_CLOEXEC O_CLOEXEC
419     # else
420     # define EFD_CLOEXEC 02000000
421     # endif
422 root 1.303 # endif
423 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424 root 1.220 #endif
425    
426 root 1.303 #if EV_USE_SIGNALFD
427 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428     # include <stdint.h>
429     # ifndef SFD_NONBLOCK
430     # define SFD_NONBLOCK O_NONBLOCK
431     # endif
432     # ifndef SFD_CLOEXEC
433     # ifdef O_CLOEXEC
434     # define SFD_CLOEXEC O_CLOEXEC
435     # else
436     # define SFD_CLOEXEC 02000000
437     # endif
438     # endif
439 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440 root 1.314
441     struct signalfd_siginfo
442     {
443     uint32_t ssi_signo;
444     char pad[128 - sizeof (uint32_t)];
445     };
446 root 1.303 #endif
447    
448 root 1.40 /**/
449 root 1.1
450 root 1.250 #if EV_VERIFY >= 3
451 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
452 root 1.248 #else
453     # define EV_FREQUENT_CHECK do { } while (0)
454     #endif
455    
456 root 1.176 /*
457 root 1.373 * This is used to work around floating point rounding problems.
458 root 1.177 * This value is good at least till the year 4000.
459 root 1.176 */
460 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462 root 1.176
463 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
464 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465 root 1.1
466 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468 root 1.347
469 root 1.185 #if __GNUC__ >= 4
470 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
471 root 1.169 # define noinline __attribute__ ((noinline))
472 root 1.40 #else
473     # define expect(expr,value) (expr)
474 root 1.140 # define noinline
475 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
476 root 1.169 # define inline
477     # endif
478 root 1.40 #endif
479    
480     #define expect_false(expr) expect ((expr) != 0, 0)
481     #define expect_true(expr) expect ((expr) != 0, 1)
482 root 1.169 #define inline_size static inline
483    
484 root 1.338 #if EV_FEATURE_CODE
485     # define inline_speed static inline
486     #else
487 root 1.169 # define inline_speed static noinline
488     #endif
489 root 1.40
490 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491    
492     #if EV_MINPRI == EV_MAXPRI
493     # define ABSPRI(w) (((W)w), 0)
494     #else
495     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496     #endif
497 root 1.42
498 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
499 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
500 root 1.103
501 root 1.136 typedef ev_watcher *W;
502     typedef ev_watcher_list *WL;
503     typedef ev_watcher_time *WT;
504 root 1.10
505 root 1.229 #define ev_active(w) ((W)(w))->active
506 root 1.228 #define ev_at(w) ((WT)(w))->at
507    
508 root 1.279 #if EV_USE_REALTIME
509 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
510 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
511 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512     #endif
513    
514     #if EV_USE_MONOTONIC
515 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516 root 1.198 #endif
517 root 1.54
518 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
519     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520     #endif
521     #ifndef EV_WIN32_HANDLE_TO_FD
522 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523 root 1.313 #endif
524     #ifndef EV_WIN32_CLOSE_FD
525     # define EV_WIN32_CLOSE_FD(fd) close (fd)
526     #endif
527    
528 root 1.103 #ifdef _WIN32
529 root 1.98 # include "ev_win32.c"
530     #endif
531 root 1.67
532 root 1.53 /*****************************************************************************/
533 root 1.1
534 root 1.373 /* define a suitable floor function (only used by periodics atm) */
535    
536     #if EV_USE_FLOOR
537     # include <math.h>
538     # define ev_floor(v) floor (v)
539     #else
540    
541     #include <float.h>
542    
543     /* a floor() replacement function, should be independent of ev_tstamp type */
544     static ev_tstamp noinline
545     ev_floor (ev_tstamp v)
546     {
547     /* the choice of shift factor is not terribly important */
548     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550     #else
551     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552     #endif
553    
554     /* argument too large for an unsigned long? */
555     if (expect_false (v >= shift))
556     {
557     ev_tstamp f;
558    
559     if (v == v - 1.)
560     return v; /* very large number */
561    
562     f = shift * ev_floor (v * (1. / shift));
563     return f + ev_floor (v - f);
564     }
565    
566     /* special treatment for negative args? */
567     if (expect_false (v < 0.))
568     {
569     ev_tstamp f = -ev_floor (-v);
570    
571     return f - (f == v ? 0 : 1);
572     }
573    
574     /* fits into an unsigned long */
575     return (unsigned long)v;
576     }
577    
578     #endif
579    
580     /*****************************************************************************/
581    
582 root 1.356 #ifdef __linux
583     # include <sys/utsname.h>
584     #endif
585    
586 root 1.355 static unsigned int noinline
587     ev_linux_version (void)
588     {
589     #ifdef __linux
590 root 1.359 unsigned int v = 0;
591 root 1.355 struct utsname buf;
592     int i;
593     char *p = buf.release;
594    
595     if (uname (&buf))
596     return 0;
597    
598     for (i = 3+1; --i; )
599     {
600     unsigned int c = 0;
601    
602     for (;;)
603     {
604     if (*p >= '0' && *p <= '9')
605     c = c * 10 + *p++ - '0';
606     else
607     {
608     p += *p == '.';
609     break;
610     }
611     }
612    
613     v = (v << 8) | c;
614     }
615    
616     return v;
617     #else
618     return 0;
619     #endif
620     }
621    
622     /*****************************************************************************/
623    
624 root 1.331 #if EV_AVOID_STDIO
625     static void noinline
626     ev_printerr (const char *msg)
627     {
628     write (STDERR_FILENO, msg, strlen (msg));
629     }
630     #endif
631    
632 root 1.70 static void (*syserr_cb)(const char *msg);
633 root 1.69
634 root 1.141 void
635     ev_set_syserr_cb (void (*cb)(const char *msg))
636 root 1.69 {
637     syserr_cb = cb;
638     }
639    
640 root 1.141 static void noinline
641 root 1.269 ev_syserr (const char *msg)
642 root 1.69 {
643 root 1.70 if (!msg)
644     msg = "(libev) system error";
645    
646 root 1.69 if (syserr_cb)
647 root 1.70 syserr_cb (msg);
648 root 1.69 else
649     {
650 root 1.330 #if EV_AVOID_STDIO
651 root 1.331 ev_printerr (msg);
652     ev_printerr (": ");
653 root 1.365 ev_printerr (strerror (errno));
654 root 1.331 ev_printerr ("\n");
655 root 1.330 #else
656 root 1.70 perror (msg);
657 root 1.330 #endif
658 root 1.69 abort ();
659     }
660     }
661    
662 root 1.224 static void *
663     ev_realloc_emul (void *ptr, long size)
664     {
665 root 1.334 #if __GLIBC__
666     return realloc (ptr, size);
667     #else
668 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
669 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
670 root 1.224 * the single unix specification, so work around them here.
671     */
672 root 1.333
673 root 1.224 if (size)
674     return realloc (ptr, size);
675    
676     free (ptr);
677     return 0;
678 root 1.334 #endif
679 root 1.224 }
680    
681     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
682 root 1.69
683 root 1.141 void
684 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
685 root 1.69 {
686     alloc = cb;
687     }
688    
689 root 1.150 inline_speed void *
690 root 1.155 ev_realloc (void *ptr, long size)
691 root 1.69 {
692 root 1.224 ptr = alloc (ptr, size);
693 root 1.69
694     if (!ptr && size)
695     {
696 root 1.330 #if EV_AVOID_STDIO
697 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698 root 1.330 #else
699 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700 root 1.330 #endif
701 root 1.69 abort ();
702     }
703    
704     return ptr;
705     }
706    
707     #define ev_malloc(size) ev_realloc (0, (size))
708     #define ev_free(ptr) ev_realloc ((ptr), 0)
709    
710     /*****************************************************************************/
711    
712 root 1.298 /* set in reify when reification needed */
713     #define EV_ANFD_REIFY 1
714    
715 root 1.288 /* file descriptor info structure */
716 root 1.53 typedef struct
717     {
718 root 1.68 WL head;
719 root 1.288 unsigned char events; /* the events watched for */
720 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
722 root 1.269 unsigned char unused;
723     #if EV_USE_EPOLL
724 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
725 root 1.269 #endif
726 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
727 root 1.103 SOCKET handle;
728     #endif
729 root 1.357 #if EV_USE_IOCP
730     OVERLAPPED or, ow;
731     #endif
732 root 1.53 } ANFD;
733 root 1.1
734 root 1.288 /* stores the pending event set for a given watcher */
735 root 1.53 typedef struct
736     {
737     W w;
738 root 1.288 int events; /* the pending event set for the given watcher */
739 root 1.53 } ANPENDING;
740 root 1.51
741 root 1.155 #if EV_USE_INOTIFY
742 root 1.241 /* hash table entry per inotify-id */
743 root 1.152 typedef struct
744     {
745     WL head;
746 root 1.155 } ANFS;
747 root 1.152 #endif
748    
749 root 1.241 /* Heap Entry */
750     #if EV_HEAP_CACHE_AT
751 root 1.288 /* a heap element */
752 root 1.241 typedef struct {
753 root 1.243 ev_tstamp at;
754 root 1.241 WT w;
755     } ANHE;
756    
757 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
758     #define ANHE_at(he) (he).at /* access cached at, read-only */
759     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760 root 1.241 #else
761 root 1.288 /* a heap element */
762 root 1.241 typedef WT ANHE;
763    
764 root 1.248 #define ANHE_w(he) (he)
765     #define ANHE_at(he) (he)->at
766     #define ANHE_at_cache(he)
767 root 1.241 #endif
768    
769 root 1.55 #if EV_MULTIPLICITY
770 root 1.54
771 root 1.80 struct ev_loop
772     {
773 root 1.86 ev_tstamp ev_rt_now;
774 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
775 root 1.80 #define VAR(name,decl) decl;
776     #include "ev_vars.h"
777     #undef VAR
778     };
779     #include "ev_wrap.h"
780    
781 root 1.116 static struct ev_loop default_loop_struct;
782     struct ev_loop *ev_default_loop_ptr;
783 root 1.54
784 root 1.53 #else
785 root 1.54
786 root 1.86 ev_tstamp ev_rt_now;
787 root 1.80 #define VAR(name,decl) static decl;
788     #include "ev_vars.h"
789     #undef VAR
790    
791 root 1.116 static int ev_default_loop_ptr;
792 root 1.54
793 root 1.51 #endif
794 root 1.1
795 root 1.338 #if EV_FEATURE_API
796 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
799     #else
800 root 1.298 # define EV_RELEASE_CB (void)0
801     # define EV_ACQUIRE_CB (void)0
802 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803     #endif
804    
805 root 1.353 #define EVBREAK_RECURSE 0x80
806 root 1.298
807 root 1.8 /*****************************************************************************/
808    
809 root 1.292 #ifndef EV_HAVE_EV_TIME
810 root 1.141 ev_tstamp
811 root 1.1 ev_time (void)
812     {
813 root 1.29 #if EV_USE_REALTIME
814 root 1.279 if (expect_true (have_realtime))
815     {
816     struct timespec ts;
817     clock_gettime (CLOCK_REALTIME, &ts);
818     return ts.tv_sec + ts.tv_nsec * 1e-9;
819     }
820     #endif
821    
822 root 1.1 struct timeval tv;
823     gettimeofday (&tv, 0);
824     return tv.tv_sec + tv.tv_usec * 1e-6;
825     }
826 root 1.292 #endif
827 root 1.1
828 root 1.284 inline_size ev_tstamp
829 root 1.1 get_clock (void)
830     {
831 root 1.29 #if EV_USE_MONOTONIC
832 root 1.40 if (expect_true (have_monotonic))
833 root 1.1 {
834     struct timespec ts;
835     clock_gettime (CLOCK_MONOTONIC, &ts);
836     return ts.tv_sec + ts.tv_nsec * 1e-9;
837     }
838     #endif
839    
840     return ev_time ();
841     }
842    
843 root 1.85 #if EV_MULTIPLICITY
844 root 1.51 ev_tstamp
845     ev_now (EV_P)
846     {
847 root 1.85 return ev_rt_now;
848 root 1.51 }
849 root 1.85 #endif
850 root 1.51
851 root 1.193 void
852     ev_sleep (ev_tstamp delay)
853     {
854     if (delay > 0.)
855     {
856     #if EV_USE_NANOSLEEP
857     struct timespec ts;
858    
859 root 1.348 EV_TS_SET (ts, delay);
860 root 1.193 nanosleep (&ts, 0);
861     #elif defined(_WIN32)
862 root 1.217 Sleep ((unsigned long)(delay * 1e3));
863 root 1.193 #else
864     struct timeval tv;
865    
866 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
867 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
868 root 1.257 /* by older ones */
869 sf-exg 1.349 EV_TV_SET (tv, delay);
870 root 1.193 select (0, 0, 0, 0, &tv);
871     #endif
872     }
873     }
874    
875 root 1.368 inline_speed int
876     ev_timeout_to_ms (ev_tstamp timeout)
877     {
878     int ms = timeout * 1000. + .999999;
879    
880     return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
881     }
882    
883 root 1.193 /*****************************************************************************/
884    
885 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
886 root 1.232
887 root 1.288 /* find a suitable new size for the given array, */
888 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
889 root 1.284 inline_size int
890 root 1.163 array_nextsize (int elem, int cur, int cnt)
891     {
892     int ncur = cur + 1;
893    
894     do
895     ncur <<= 1;
896     while (cnt > ncur);
897    
898 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
899     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
900 root 1.163 {
901     ncur *= elem;
902 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
903 root 1.163 ncur = ncur - sizeof (void *) * 4;
904     ncur /= elem;
905     }
906    
907     return ncur;
908     }
909    
910 root 1.171 static noinline void *
911 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
912     {
913     *cur = array_nextsize (elem, *cur, cnt);
914     return ev_realloc (base, elem * *cur);
915     }
916 root 1.29
917 root 1.265 #define array_init_zero(base,count) \
918     memset ((void *)(base), 0, sizeof (*(base)) * (count))
919    
920 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
921 root 1.163 if (expect_false ((cnt) > (cur))) \
922 root 1.69 { \
923 root 1.163 int ocur_ = (cur); \
924     (base) = (type *)array_realloc \
925     (sizeof (type), (base), &(cur), (cnt)); \
926     init ((base) + (ocur_), (cur) - ocur_); \
927 root 1.1 }
928    
929 root 1.163 #if 0
930 root 1.74 #define array_slim(type,stem) \
931 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
932     { \
933     stem ## max = array_roundsize (stem ## cnt >> 1); \
934 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
935 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
936     }
937 root 1.163 #endif
938 root 1.67
939 root 1.65 #define array_free(stem, idx) \
940 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
941 root 1.65
942 root 1.8 /*****************************************************************************/
943    
944 root 1.288 /* dummy callback for pending events */
945     static void noinline
946     pendingcb (EV_P_ ev_prepare *w, int revents)
947     {
948     }
949    
950 root 1.140 void noinline
951 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
952 root 1.1 {
953 root 1.78 W w_ = (W)w;
954 root 1.171 int pri = ABSPRI (w_);
955 root 1.78
956 root 1.123 if (expect_false (w_->pending))
957 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
958     else
959 root 1.32 {
960 root 1.171 w_->pending = ++pendingcnt [pri];
961     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
962     pendings [pri][w_->pending - 1].w = w_;
963     pendings [pri][w_->pending - 1].events = revents;
964 root 1.32 }
965 root 1.1 }
966    
967 root 1.284 inline_speed void
968     feed_reverse (EV_P_ W w)
969     {
970     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
971     rfeeds [rfeedcnt++] = w;
972     }
973    
974     inline_size void
975     feed_reverse_done (EV_P_ int revents)
976     {
977     do
978     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
979     while (rfeedcnt);
980     }
981    
982     inline_speed void
983 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
984 root 1.27 {
985     int i;
986    
987     for (i = 0; i < eventcnt; ++i)
988 root 1.78 ev_feed_event (EV_A_ events [i], type);
989 root 1.27 }
990    
991 root 1.141 /*****************************************************************************/
992    
993 root 1.284 inline_speed void
994 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
995 root 1.1 {
996     ANFD *anfd = anfds + fd;
997 root 1.136 ev_io *w;
998 root 1.1
999 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1000 root 1.1 {
1001 root 1.79 int ev = w->events & revents;
1002 root 1.1
1003     if (ev)
1004 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1005 root 1.1 }
1006     }
1007    
1008 root 1.298 /* do not submit kernel events for fds that have reify set */
1009     /* because that means they changed while we were polling for new events */
1010     inline_speed void
1011     fd_event (EV_P_ int fd, int revents)
1012     {
1013     ANFD *anfd = anfds + fd;
1014    
1015     if (expect_true (!anfd->reify))
1016 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1017 root 1.298 }
1018    
1019 root 1.79 void
1020     ev_feed_fd_event (EV_P_ int fd, int revents)
1021     {
1022 root 1.168 if (fd >= 0 && fd < anfdmax)
1023 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1024 root 1.79 }
1025    
1026 root 1.288 /* make sure the external fd watch events are in-sync */
1027     /* with the kernel/libev internal state */
1028 root 1.284 inline_size void
1029 root 1.51 fd_reify (EV_P)
1030 root 1.9 {
1031     int i;
1032    
1033 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1034     for (i = 0; i < fdchangecnt; ++i)
1035     {
1036     int fd = fdchanges [i];
1037     ANFD *anfd = anfds + fd;
1038    
1039 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1040 root 1.371 {
1041     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1042    
1043     if (handle != anfd->handle)
1044     {
1045     unsigned long arg;
1046    
1047     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1048    
1049     /* handle changed, but fd didn't - we need to do it in two steps */
1050     backend_modify (EV_A_ fd, anfd->events, 0);
1051     anfd->events = 0;
1052     anfd->handle = handle;
1053     }
1054     }
1055     }
1056     #endif
1057    
1058 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1059     {
1060     int fd = fdchanges [i];
1061     ANFD *anfd = anfds + fd;
1062 root 1.136 ev_io *w;
1063 root 1.27
1064 root 1.350 unsigned char o_events = anfd->events;
1065     unsigned char o_reify = anfd->reify;
1066 root 1.27
1067 root 1.350 anfd->reify = 0;
1068 root 1.27
1069 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1070     {
1071     anfd->events = 0;
1072 root 1.184
1073 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1074     anfd->events |= (unsigned char)w->events;
1075 root 1.27
1076 root 1.351 if (o_events != anfd->events)
1077 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1078     }
1079    
1080     if (o_reify & EV__IOFDSET)
1081     backend_modify (EV_A_ fd, o_events, anfd->events);
1082 root 1.27 }
1083    
1084     fdchangecnt = 0;
1085     }
1086    
1087 root 1.288 /* something about the given fd changed */
1088 root 1.284 inline_size void
1089 root 1.183 fd_change (EV_P_ int fd, int flags)
1090 root 1.27 {
1091 root 1.183 unsigned char reify = anfds [fd].reify;
1092 root 1.184 anfds [fd].reify |= flags;
1093 root 1.27
1094 root 1.183 if (expect_true (!reify))
1095     {
1096     ++fdchangecnt;
1097     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1098     fdchanges [fdchangecnt - 1] = fd;
1099     }
1100 root 1.9 }
1101    
1102 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1103 root 1.284 inline_speed void
1104 root 1.51 fd_kill (EV_P_ int fd)
1105 root 1.41 {
1106 root 1.136 ev_io *w;
1107 root 1.41
1108 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1109 root 1.41 {
1110 root 1.51 ev_io_stop (EV_A_ w);
1111 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1112 root 1.41 }
1113     }
1114    
1115 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1116 root 1.284 inline_size int
1117 root 1.71 fd_valid (int fd)
1118     {
1119 root 1.103 #ifdef _WIN32
1120 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1121 root 1.71 #else
1122     return fcntl (fd, F_GETFD) != -1;
1123     #endif
1124     }
1125    
1126 root 1.19 /* called on EBADF to verify fds */
1127 root 1.140 static void noinline
1128 root 1.51 fd_ebadf (EV_P)
1129 root 1.19 {
1130     int fd;
1131    
1132     for (fd = 0; fd < anfdmax; ++fd)
1133 root 1.27 if (anfds [fd].events)
1134 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1135 root 1.51 fd_kill (EV_A_ fd);
1136 root 1.41 }
1137    
1138     /* called on ENOMEM in select/poll to kill some fds and retry */
1139 root 1.140 static void noinline
1140 root 1.51 fd_enomem (EV_P)
1141 root 1.41 {
1142 root 1.62 int fd;
1143 root 1.41
1144 root 1.62 for (fd = anfdmax; fd--; )
1145 root 1.41 if (anfds [fd].events)
1146     {
1147 root 1.51 fd_kill (EV_A_ fd);
1148 root 1.307 break;
1149 root 1.41 }
1150 root 1.19 }
1151    
1152 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1153 root 1.140 static void noinline
1154 root 1.56 fd_rearm_all (EV_P)
1155     {
1156     int fd;
1157    
1158     for (fd = 0; fd < anfdmax; ++fd)
1159     if (anfds [fd].events)
1160     {
1161     anfds [fd].events = 0;
1162 root 1.268 anfds [fd].emask = 0;
1163 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1164 root 1.56 }
1165     }
1166    
1167 root 1.336 /* used to prepare libev internal fd's */
1168     /* this is not fork-safe */
1169     inline_speed void
1170     fd_intern (int fd)
1171     {
1172     #ifdef _WIN32
1173     unsigned long arg = 1;
1174     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1175     #else
1176     fcntl (fd, F_SETFD, FD_CLOEXEC);
1177     fcntl (fd, F_SETFL, O_NONBLOCK);
1178     #endif
1179     }
1180    
1181 root 1.8 /*****************************************************************************/
1182    
1183 root 1.235 /*
1184 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1185 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1186     * the branching factor of the d-tree.
1187     */
1188    
1189     /*
1190 root 1.235 * at the moment we allow libev the luxury of two heaps,
1191     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1192     * which is more cache-efficient.
1193     * the difference is about 5% with 50000+ watchers.
1194     */
1195 root 1.241 #if EV_USE_4HEAP
1196 root 1.235
1197 root 1.237 #define DHEAP 4
1198     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1199 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1200 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1201 root 1.235
1202     /* away from the root */
1203 root 1.284 inline_speed void
1204 root 1.241 downheap (ANHE *heap, int N, int k)
1205 root 1.235 {
1206 root 1.241 ANHE he = heap [k];
1207     ANHE *E = heap + N + HEAP0;
1208 root 1.235
1209     for (;;)
1210     {
1211     ev_tstamp minat;
1212 root 1.241 ANHE *minpos;
1213 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1214 root 1.235
1215 root 1.248 /* find minimum child */
1216 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1217 root 1.235 {
1218 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1219     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1220     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1221     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1222 root 1.235 }
1223 root 1.240 else if (pos < E)
1224 root 1.235 {
1225 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1226     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1227     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1228     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1229 root 1.235 }
1230 root 1.240 else
1231     break;
1232 root 1.235
1233 root 1.241 if (ANHE_at (he) <= minat)
1234 root 1.235 break;
1235    
1236 root 1.247 heap [k] = *minpos;
1237 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1238 root 1.235
1239     k = minpos - heap;
1240     }
1241    
1242 root 1.247 heap [k] = he;
1243 root 1.241 ev_active (ANHE_w (he)) = k;
1244 root 1.235 }
1245    
1246 root 1.248 #else /* 4HEAP */
1247 root 1.235
1248     #define HEAP0 1
1249 root 1.247 #define HPARENT(k) ((k) >> 1)
1250 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1251 root 1.235
1252 root 1.248 /* away from the root */
1253 root 1.284 inline_speed void
1254 root 1.248 downheap (ANHE *heap, int N, int k)
1255 root 1.1 {
1256 root 1.241 ANHE he = heap [k];
1257 root 1.1
1258 root 1.228 for (;;)
1259 root 1.1 {
1260 root 1.248 int c = k << 1;
1261 root 1.179
1262 root 1.309 if (c >= N + HEAP0)
1263 root 1.179 break;
1264    
1265 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1266     ? 1 : 0;
1267    
1268     if (ANHE_at (he) <= ANHE_at (heap [c]))
1269     break;
1270    
1271     heap [k] = heap [c];
1272 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1273 root 1.248
1274     k = c;
1275 root 1.1 }
1276    
1277 root 1.243 heap [k] = he;
1278 root 1.248 ev_active (ANHE_w (he)) = k;
1279 root 1.1 }
1280 root 1.248 #endif
1281 root 1.1
1282 root 1.248 /* towards the root */
1283 root 1.284 inline_speed void
1284 root 1.248 upheap (ANHE *heap, int k)
1285 root 1.1 {
1286 root 1.241 ANHE he = heap [k];
1287 root 1.1
1288 root 1.179 for (;;)
1289 root 1.1 {
1290 root 1.248 int p = HPARENT (k);
1291 root 1.179
1292 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1293 root 1.179 break;
1294 root 1.1
1295 root 1.248 heap [k] = heap [p];
1296 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1297 root 1.248 k = p;
1298 root 1.1 }
1299    
1300 root 1.241 heap [k] = he;
1301     ev_active (ANHE_w (he)) = k;
1302 root 1.1 }
1303    
1304 root 1.288 /* move an element suitably so it is in a correct place */
1305 root 1.284 inline_size void
1306 root 1.241 adjustheap (ANHE *heap, int N, int k)
1307 root 1.84 {
1308 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1309 root 1.247 upheap (heap, k);
1310     else
1311     downheap (heap, N, k);
1312 root 1.84 }
1313    
1314 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1315 root 1.284 inline_size void
1316 root 1.248 reheap (ANHE *heap, int N)
1317     {
1318     int i;
1319 root 1.251
1320 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1321     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1322     for (i = 0; i < N; ++i)
1323     upheap (heap, i + HEAP0);
1324     }
1325    
1326 root 1.8 /*****************************************************************************/
1327    
1328 root 1.288 /* associate signal watchers to a signal signal */
1329 root 1.7 typedef struct
1330     {
1331 root 1.307 EV_ATOMIC_T pending;
1332 root 1.306 #if EV_MULTIPLICITY
1333     EV_P;
1334     #endif
1335 root 1.68 WL head;
1336 root 1.7 } ANSIG;
1337    
1338 root 1.306 static ANSIG signals [EV_NSIG - 1];
1339 root 1.7
1340 root 1.207 /*****************************************************************************/
1341    
1342 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1343 root 1.207
1344     static void noinline
1345     evpipe_init (EV_P)
1346     {
1347 root 1.288 if (!ev_is_active (&pipe_w))
1348 root 1.207 {
1349 root 1.336 # if EV_USE_EVENTFD
1350 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1351     if (evfd < 0 && errno == EINVAL)
1352     evfd = eventfd (0, 0);
1353    
1354     if (evfd >= 0)
1355 root 1.220 {
1356     evpipe [0] = -1;
1357 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1358 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1359 root 1.220 }
1360     else
1361 root 1.336 # endif
1362 root 1.220 {
1363     while (pipe (evpipe))
1364 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1365 root 1.207
1366 root 1.220 fd_intern (evpipe [0]);
1367     fd_intern (evpipe [1]);
1368 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1369 root 1.220 }
1370 root 1.207
1371 root 1.288 ev_io_start (EV_A_ &pipe_w);
1372 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1373 root 1.207 }
1374     }
1375    
1376 root 1.284 inline_size void
1377 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1378 root 1.207 {
1379 root 1.214 if (!*flag)
1380 root 1.207 {
1381 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1382 root 1.336 char dummy;
1383 root 1.214
1384     *flag = 1;
1385 root 1.220
1386     #if EV_USE_EVENTFD
1387     if (evfd >= 0)
1388     {
1389     uint64_t counter = 1;
1390     write (evfd, &counter, sizeof (uint64_t));
1391     }
1392     else
1393     #endif
1394 root 1.346 /* win32 people keep sending patches that change this write() to send() */
1395     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1396     /* so when you think this write should be a send instead, please find out */
1397     /* where your send() is from - it's definitely not the microsoft send, and */
1398     /* tell me. thank you. */
1399 root 1.336 write (evpipe [1], &dummy, 1);
1400 root 1.214
1401 root 1.207 errno = old_errno;
1402     }
1403     }
1404    
1405 root 1.288 /* called whenever the libev signal pipe */
1406     /* got some events (signal, async) */
1407 root 1.207 static void
1408     pipecb (EV_P_ ev_io *iow, int revents)
1409     {
1410 root 1.307 int i;
1411    
1412 root 1.220 #if EV_USE_EVENTFD
1413     if (evfd >= 0)
1414     {
1415 root 1.232 uint64_t counter;
1416 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1417     }
1418     else
1419     #endif
1420     {
1421     char dummy;
1422 root 1.346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1423 root 1.220 read (evpipe [0], &dummy, 1);
1424     }
1425 root 1.207
1426 root 1.369 #if EV_SIGNAL_ENABLE
1427 root 1.307 if (sig_pending)
1428 root 1.372 {
1429 root 1.307 sig_pending = 0;
1430 root 1.207
1431 root 1.307 for (i = EV_NSIG - 1; i--; )
1432     if (expect_false (signals [i].pending))
1433     ev_feed_signal_event (EV_A_ i + 1);
1434 root 1.207 }
1435 root 1.369 #endif
1436 root 1.207
1437 root 1.209 #if EV_ASYNC_ENABLE
1438 root 1.307 if (async_pending)
1439 root 1.207 {
1440 root 1.307 async_pending = 0;
1441 root 1.207
1442     for (i = asynccnt; i--; )
1443     if (asyncs [i]->sent)
1444     {
1445     asyncs [i]->sent = 0;
1446     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1447     }
1448     }
1449 root 1.209 #endif
1450 root 1.207 }
1451    
1452     /*****************************************************************************/
1453    
1454 root 1.366 void
1455     ev_feed_signal (int signum)
1456 root 1.7 {
1457 root 1.207 #if EV_MULTIPLICITY
1458 root 1.306 EV_P = signals [signum - 1].loop;
1459 root 1.366
1460     if (!EV_A)
1461     return;
1462 root 1.207 #endif
1463    
1464 root 1.366 signals [signum - 1].pending = 1;
1465     evpipe_write (EV_A_ &sig_pending);
1466     }
1467    
1468     static void
1469     ev_sighandler (int signum)
1470     {
1471 root 1.322 #ifdef _WIN32
1472 root 1.218 signal (signum, ev_sighandler);
1473 root 1.67 #endif
1474    
1475 root 1.366 ev_feed_signal (signum);
1476 root 1.7 }
1477    
1478 root 1.140 void noinline
1479 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1480     {
1481 root 1.80 WL w;
1482    
1483 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1484     return;
1485    
1486     --signum;
1487    
1488 root 1.79 #if EV_MULTIPLICITY
1489 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1490     /* or, likely more useful, feeding a signal nobody is waiting for */
1491 root 1.79
1492 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1493 root 1.306 return;
1494 root 1.307 #endif
1495 root 1.306
1496 root 1.307 signals [signum].pending = 0;
1497 root 1.79
1498     for (w = signals [signum].head; w; w = w->next)
1499     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1500     }
1501    
1502 root 1.303 #if EV_USE_SIGNALFD
1503     static void
1504     sigfdcb (EV_P_ ev_io *iow, int revents)
1505     {
1506 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1507 root 1.303
1508     for (;;)
1509     {
1510     ssize_t res = read (sigfd, si, sizeof (si));
1511    
1512     /* not ISO-C, as res might be -1, but works with SuS */
1513     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1514     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1515    
1516     if (res < (ssize_t)sizeof (si))
1517     break;
1518     }
1519     }
1520     #endif
1521    
1522 root 1.336 #endif
1523    
1524 root 1.8 /*****************************************************************************/
1525    
1526 root 1.336 #if EV_CHILD_ENABLE
1527 root 1.182 static WL childs [EV_PID_HASHSIZE];
1528 root 1.71
1529 root 1.136 static ev_signal childev;
1530 root 1.59
1531 root 1.206 #ifndef WIFCONTINUED
1532     # define WIFCONTINUED(status) 0
1533     #endif
1534    
1535 root 1.288 /* handle a single child status event */
1536 root 1.284 inline_speed void
1537 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1538 root 1.47 {
1539 root 1.136 ev_child *w;
1540 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1541 root 1.47
1542 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1543 root 1.206 {
1544     if ((w->pid == pid || !w->pid)
1545     && (!traced || (w->flags & 1)))
1546     {
1547 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1548 root 1.206 w->rpid = pid;
1549     w->rstatus = status;
1550     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1551     }
1552     }
1553 root 1.47 }
1554    
1555 root 1.142 #ifndef WCONTINUED
1556     # define WCONTINUED 0
1557     #endif
1558    
1559 root 1.288 /* called on sigchld etc., calls waitpid */
1560 root 1.47 static void
1561 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1562 root 1.22 {
1563     int pid, status;
1564    
1565 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1566     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1567     if (!WCONTINUED
1568     || errno != EINVAL
1569     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1570     return;
1571    
1572 root 1.216 /* make sure we are called again until all children have been reaped */
1573 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1574     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1575 root 1.47
1576 root 1.216 child_reap (EV_A_ pid, pid, status);
1577 root 1.338 if ((EV_PID_HASHSIZE) > 1)
1578 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1579 root 1.22 }
1580    
1581 root 1.45 #endif
1582    
1583 root 1.22 /*****************************************************************************/
1584    
1585 root 1.357 #if EV_USE_IOCP
1586     # include "ev_iocp.c"
1587     #endif
1588 root 1.118 #if EV_USE_PORT
1589     # include "ev_port.c"
1590     #endif
1591 root 1.44 #if EV_USE_KQUEUE
1592     # include "ev_kqueue.c"
1593     #endif
1594 root 1.29 #if EV_USE_EPOLL
1595 root 1.1 # include "ev_epoll.c"
1596     #endif
1597 root 1.59 #if EV_USE_POLL
1598 root 1.41 # include "ev_poll.c"
1599     #endif
1600 root 1.29 #if EV_USE_SELECT
1601 root 1.1 # include "ev_select.c"
1602     #endif
1603    
1604 root 1.24 int
1605     ev_version_major (void)
1606     {
1607     return EV_VERSION_MAJOR;
1608     }
1609    
1610     int
1611     ev_version_minor (void)
1612     {
1613     return EV_VERSION_MINOR;
1614     }
1615    
1616 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1617 root 1.140 int inline_size
1618 root 1.51 enable_secure (void)
1619 root 1.41 {
1620 root 1.103 #ifdef _WIN32
1621 root 1.49 return 0;
1622     #else
1623 root 1.41 return getuid () != geteuid ()
1624     || getgid () != getegid ();
1625 root 1.49 #endif
1626 root 1.41 }
1627    
1628 root 1.111 unsigned int
1629 root 1.129 ev_supported_backends (void)
1630     {
1631 root 1.130 unsigned int flags = 0;
1632 root 1.129
1633     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1634     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1635     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1636     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1637     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1638    
1639     return flags;
1640     }
1641    
1642     unsigned int
1643 root 1.130 ev_recommended_backends (void)
1644 root 1.1 {
1645 root 1.131 unsigned int flags = ev_supported_backends ();
1646 root 1.129
1647     #ifndef __NetBSD__
1648     /* kqueue is borked on everything but netbsd apparently */
1649     /* it usually doesn't work correctly on anything but sockets and pipes */
1650     flags &= ~EVBACKEND_KQUEUE;
1651     #endif
1652     #ifdef __APPLE__
1653 root 1.278 /* only select works correctly on that "unix-certified" platform */
1654     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1655     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1656 root 1.129 #endif
1657 root 1.342 #ifdef __FreeBSD__
1658     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1659     #endif
1660 root 1.129
1661     return flags;
1662 root 1.51 }
1663    
1664 root 1.130 unsigned int
1665 root 1.134 ev_embeddable_backends (void)
1666     {
1667 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1668    
1669 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1670 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1671     flags &= ~EVBACKEND_EPOLL;
1672 root 1.196
1673     return flags;
1674 root 1.134 }
1675    
1676     unsigned int
1677 root 1.130 ev_backend (EV_P)
1678     {
1679     return backend;
1680     }
1681    
1682 root 1.338 #if EV_FEATURE_API
1683 root 1.162 unsigned int
1684 root 1.340 ev_iteration (EV_P)
1685 root 1.162 {
1686     return loop_count;
1687     }
1688    
1689 root 1.294 unsigned int
1690 root 1.340 ev_depth (EV_P)
1691 root 1.294 {
1692     return loop_depth;
1693     }
1694    
1695 root 1.193 void
1696     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1697     {
1698     io_blocktime = interval;
1699     }
1700    
1701     void
1702     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1703     {
1704     timeout_blocktime = interval;
1705     }
1706    
1707 root 1.297 void
1708     ev_set_userdata (EV_P_ void *data)
1709     {
1710     userdata = data;
1711     }
1712    
1713     void *
1714     ev_userdata (EV_P)
1715     {
1716     return userdata;
1717     }
1718    
1719     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1720     {
1721     invoke_cb = invoke_pending_cb;
1722     }
1723    
1724 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1725 root 1.297 {
1726 root 1.298 release_cb = release;
1727     acquire_cb = acquire;
1728 root 1.297 }
1729     #endif
1730    
1731 root 1.288 /* initialise a loop structure, must be zero-initialised */
1732 root 1.151 static void noinline
1733 root 1.108 loop_init (EV_P_ unsigned int flags)
1734 root 1.51 {
1735 root 1.130 if (!backend)
1736 root 1.23 {
1737 root 1.366 origflags = flags;
1738    
1739 root 1.279 #if EV_USE_REALTIME
1740     if (!have_realtime)
1741     {
1742     struct timespec ts;
1743    
1744     if (!clock_gettime (CLOCK_REALTIME, &ts))
1745     have_realtime = 1;
1746     }
1747     #endif
1748    
1749 root 1.29 #if EV_USE_MONOTONIC
1750 root 1.279 if (!have_monotonic)
1751     {
1752     struct timespec ts;
1753    
1754     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1755     have_monotonic = 1;
1756     }
1757 root 1.1 #endif
1758    
1759 root 1.306 /* pid check not overridable via env */
1760     #ifndef _WIN32
1761     if (flags & EVFLAG_FORKCHECK)
1762     curpid = getpid ();
1763     #endif
1764    
1765     if (!(flags & EVFLAG_NOENV)
1766     && !enable_secure ()
1767     && getenv ("LIBEV_FLAGS"))
1768     flags = atoi (getenv ("LIBEV_FLAGS"));
1769    
1770 root 1.209 ev_rt_now = ev_time ();
1771     mn_now = get_clock ();
1772     now_floor = mn_now;
1773     rtmn_diff = ev_rt_now - mn_now;
1774 root 1.338 #if EV_FEATURE_API
1775 root 1.296 invoke_cb = ev_invoke_pending;
1776 root 1.297 #endif
1777 root 1.1
1778 root 1.193 io_blocktime = 0.;
1779     timeout_blocktime = 0.;
1780 root 1.209 backend = 0;
1781     backend_fd = -1;
1782 root 1.307 sig_pending = 0;
1783     #if EV_ASYNC_ENABLE
1784     async_pending = 0;
1785     #endif
1786 root 1.209 #if EV_USE_INOTIFY
1787 root 1.306 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1788 root 1.209 #endif
1789 root 1.303 #if EV_USE_SIGNALFD
1790 root 1.321 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1791 root 1.303 #endif
1792 root 1.193
1793 root 1.366 if (!(flags & EVBACKEND_MASK))
1794 root 1.129 flags |= ev_recommended_backends ();
1795 root 1.41
1796 root 1.357 #if EV_USE_IOCP
1797     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1798     #endif
1799 root 1.118 #if EV_USE_PORT
1800 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1801 root 1.118 #endif
1802 root 1.44 #if EV_USE_KQUEUE
1803 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1804 root 1.44 #endif
1805 root 1.29 #if EV_USE_EPOLL
1806 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1807 root 1.41 #endif
1808 root 1.59 #if EV_USE_POLL
1809 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1810 root 1.1 #endif
1811 root 1.29 #if EV_USE_SELECT
1812 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1813 root 1.1 #endif
1814 root 1.70
1815 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1816    
1817 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1818 root 1.288 ev_init (&pipe_w, pipecb);
1819     ev_set_priority (&pipe_w, EV_MAXPRI);
1820 root 1.336 #endif
1821 root 1.56 }
1822     }
1823    
1824 root 1.288 /* free up a loop structure */
1825 root 1.359 void
1826     ev_loop_destroy (EV_P)
1827 root 1.56 {
1828 root 1.65 int i;
1829    
1830 root 1.364 #if EV_MULTIPLICITY
1831 root 1.363 /* mimic free (0) */
1832     if (!EV_A)
1833     return;
1834 root 1.364 #endif
1835 root 1.363
1836 root 1.361 #if EV_CLEANUP_ENABLE
1837     /* queue cleanup watchers (and execute them) */
1838     if (expect_false (cleanupcnt))
1839     {
1840     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1841     EV_INVOKE_PENDING;
1842     }
1843     #endif
1844    
1845 root 1.359 #if EV_CHILD_ENABLE
1846     if (ev_is_active (&childev))
1847     {
1848     ev_ref (EV_A); /* child watcher */
1849     ev_signal_stop (EV_A_ &childev);
1850     }
1851     #endif
1852    
1853 root 1.288 if (ev_is_active (&pipe_w))
1854 root 1.207 {
1855 root 1.303 /*ev_ref (EV_A);*/
1856     /*ev_io_stop (EV_A_ &pipe_w);*/
1857 root 1.207
1858 root 1.220 #if EV_USE_EVENTFD
1859     if (evfd >= 0)
1860     close (evfd);
1861     #endif
1862    
1863     if (evpipe [0] >= 0)
1864     {
1865 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1866     EV_WIN32_CLOSE_FD (evpipe [1]);
1867 root 1.220 }
1868 root 1.207 }
1869    
1870 root 1.303 #if EV_USE_SIGNALFD
1871     if (ev_is_active (&sigfd_w))
1872 root 1.317 close (sigfd);
1873 root 1.303 #endif
1874    
1875 root 1.152 #if EV_USE_INOTIFY
1876     if (fs_fd >= 0)
1877     close (fs_fd);
1878     #endif
1879    
1880     if (backend_fd >= 0)
1881     close (backend_fd);
1882    
1883 root 1.357 #if EV_USE_IOCP
1884     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1885     #endif
1886 root 1.118 #if EV_USE_PORT
1887 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1888 root 1.118 #endif
1889 root 1.56 #if EV_USE_KQUEUE
1890 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1891 root 1.56 #endif
1892     #if EV_USE_EPOLL
1893 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1894 root 1.56 #endif
1895 root 1.59 #if EV_USE_POLL
1896 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1897 root 1.56 #endif
1898     #if EV_USE_SELECT
1899 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1900 root 1.56 #endif
1901 root 1.1
1902 root 1.65 for (i = NUMPRI; i--; )
1903 root 1.164 {
1904     array_free (pending, [i]);
1905     #if EV_IDLE_ENABLE
1906     array_free (idle, [i]);
1907     #endif
1908     }
1909 root 1.65
1910 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
1911 root 1.186
1912 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1913 root 1.284 array_free (rfeed, EMPTY);
1914 root 1.164 array_free (fdchange, EMPTY);
1915     array_free (timer, EMPTY);
1916 root 1.140 #if EV_PERIODIC_ENABLE
1917 root 1.164 array_free (periodic, EMPTY);
1918 root 1.93 #endif
1919 root 1.187 #if EV_FORK_ENABLE
1920     array_free (fork, EMPTY);
1921     #endif
1922 root 1.360 #if EV_CLEANUP_ENABLE
1923     array_free (cleanup, EMPTY);
1924     #endif
1925 root 1.164 array_free (prepare, EMPTY);
1926     array_free (check, EMPTY);
1927 root 1.209 #if EV_ASYNC_ENABLE
1928     array_free (async, EMPTY);
1929     #endif
1930 root 1.65
1931 root 1.130 backend = 0;
1932 root 1.359
1933     #if EV_MULTIPLICITY
1934     if (ev_is_default_loop (EV_A))
1935     #endif
1936     ev_default_loop_ptr = 0;
1937     #if EV_MULTIPLICITY
1938     else
1939     ev_free (EV_A);
1940     #endif
1941 root 1.56 }
1942 root 1.22
1943 root 1.226 #if EV_USE_INOTIFY
1944 root 1.284 inline_size void infy_fork (EV_P);
1945 root 1.226 #endif
1946 root 1.154
1947 root 1.284 inline_size void
1948 root 1.56 loop_fork (EV_P)
1949     {
1950 root 1.118 #if EV_USE_PORT
1951 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1952 root 1.56 #endif
1953     #if EV_USE_KQUEUE
1954 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1955 root 1.45 #endif
1956 root 1.118 #if EV_USE_EPOLL
1957 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1958 root 1.118 #endif
1959 root 1.154 #if EV_USE_INOTIFY
1960     infy_fork (EV_A);
1961     #endif
1962 root 1.70
1963 root 1.288 if (ev_is_active (&pipe_w))
1964 root 1.70 {
1965 root 1.207 /* this "locks" the handlers against writing to the pipe */
1966 root 1.212 /* while we modify the fd vars */
1967 root 1.307 sig_pending = 1;
1968 root 1.212 #if EV_ASYNC_ENABLE
1969 root 1.307 async_pending = 1;
1970 root 1.212 #endif
1971 root 1.70
1972     ev_ref (EV_A);
1973 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1974 root 1.220
1975     #if EV_USE_EVENTFD
1976     if (evfd >= 0)
1977     close (evfd);
1978     #endif
1979    
1980     if (evpipe [0] >= 0)
1981     {
1982 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1983     EV_WIN32_CLOSE_FD (evpipe [1]);
1984 root 1.220 }
1985 root 1.207
1986 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1987 root 1.207 evpipe_init (EV_A);
1988 root 1.208 /* now iterate over everything, in case we missed something */
1989 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1990 root 1.337 #endif
1991 root 1.70 }
1992    
1993     postfork = 0;
1994 root 1.1 }
1995    
1996 root 1.55 #if EV_MULTIPLICITY
1997 root 1.250
1998 root 1.54 struct ev_loop *
1999 root 1.108 ev_loop_new (unsigned int flags)
2000 root 1.54 {
2001 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2002 root 1.69
2003 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2004 root 1.108 loop_init (EV_A_ flags);
2005 root 1.56
2006 root 1.130 if (ev_backend (EV_A))
2007 root 1.306 return EV_A;
2008 root 1.54
2009 root 1.359 ev_free (EV_A);
2010 root 1.55 return 0;
2011 root 1.54 }
2012    
2013 root 1.297 #endif /* multiplicity */
2014 root 1.248
2015     #if EV_VERIFY
2016 root 1.258 static void noinline
2017 root 1.251 verify_watcher (EV_P_ W w)
2018     {
2019 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2020 root 1.251
2021     if (w->pending)
2022 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2023 root 1.251 }
2024    
2025     static void noinline
2026     verify_heap (EV_P_ ANHE *heap, int N)
2027     {
2028     int i;
2029    
2030     for (i = HEAP0; i < N + HEAP0; ++i)
2031     {
2032 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2033     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2034     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2035 root 1.251
2036     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2037     }
2038     }
2039    
2040     static void noinline
2041     array_verify (EV_P_ W *ws, int cnt)
2042 root 1.248 {
2043     while (cnt--)
2044 root 1.251 {
2045 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2046 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2047     }
2048 root 1.248 }
2049 root 1.250 #endif
2050 root 1.248
2051 root 1.338 #if EV_FEATURE_API
2052 root 1.250 void
2053 root 1.340 ev_verify (EV_P)
2054 root 1.248 {
2055 root 1.250 #if EV_VERIFY
2056 root 1.248 int i;
2057 root 1.251 WL w;
2058    
2059     assert (activecnt >= -1);
2060    
2061     assert (fdchangemax >= fdchangecnt);
2062     for (i = 0; i < fdchangecnt; ++i)
2063 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2064 root 1.251
2065     assert (anfdmax >= 0);
2066     for (i = 0; i < anfdmax; ++i)
2067     for (w = anfds [i].head; w; w = w->next)
2068     {
2069     verify_watcher (EV_A_ (W)w);
2070 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2071     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2072 root 1.251 }
2073    
2074     assert (timermax >= timercnt);
2075     verify_heap (EV_A_ timers, timercnt);
2076 root 1.248
2077     #if EV_PERIODIC_ENABLE
2078 root 1.251 assert (periodicmax >= periodiccnt);
2079     verify_heap (EV_A_ periodics, periodiccnt);
2080 root 1.248 #endif
2081    
2082 root 1.251 for (i = NUMPRI; i--; )
2083     {
2084     assert (pendingmax [i] >= pendingcnt [i]);
2085 root 1.248 #if EV_IDLE_ENABLE
2086 root 1.252 assert (idleall >= 0);
2087 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2088     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2089 root 1.248 #endif
2090 root 1.251 }
2091    
2092 root 1.248 #if EV_FORK_ENABLE
2093 root 1.251 assert (forkmax >= forkcnt);
2094     array_verify (EV_A_ (W *)forks, forkcnt);
2095 root 1.248 #endif
2096 root 1.251
2097 root 1.360 #if EV_CLEANUP_ENABLE
2098     assert (cleanupmax >= cleanupcnt);
2099     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2100     #endif
2101    
2102 root 1.250 #if EV_ASYNC_ENABLE
2103 root 1.251 assert (asyncmax >= asynccnt);
2104     array_verify (EV_A_ (W *)asyncs, asynccnt);
2105 root 1.250 #endif
2106 root 1.251
2107 root 1.337 #if EV_PREPARE_ENABLE
2108 root 1.251 assert (preparemax >= preparecnt);
2109     array_verify (EV_A_ (W *)prepares, preparecnt);
2110 root 1.337 #endif
2111 root 1.251
2112 root 1.337 #if EV_CHECK_ENABLE
2113 root 1.251 assert (checkmax >= checkcnt);
2114     array_verify (EV_A_ (W *)checks, checkcnt);
2115 root 1.337 #endif
2116 root 1.251
2117     # if 0
2118 root 1.336 #if EV_CHILD_ENABLE
2119 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2120 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2121 root 1.336 #endif
2122 root 1.251 # endif
2123 root 1.248 #endif
2124     }
2125 root 1.297 #endif
2126 root 1.56
2127     #if EV_MULTIPLICITY
2128     struct ev_loop *
2129 root 1.54 #else
2130     int
2131 root 1.358 #endif
2132 root 1.116 ev_default_loop (unsigned int flags)
2133 root 1.54 {
2134 root 1.116 if (!ev_default_loop_ptr)
2135 root 1.56 {
2136     #if EV_MULTIPLICITY
2137 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2138 root 1.56 #else
2139 ayin 1.117 ev_default_loop_ptr = 1;
2140 root 1.54 #endif
2141    
2142 root 1.110 loop_init (EV_A_ flags);
2143 root 1.56
2144 root 1.130 if (ev_backend (EV_A))
2145 root 1.56 {
2146 root 1.336 #if EV_CHILD_ENABLE
2147 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2148     ev_set_priority (&childev, EV_MAXPRI);
2149     ev_signal_start (EV_A_ &childev);
2150     ev_unref (EV_A); /* child watcher should not keep loop alive */
2151     #endif
2152     }
2153     else
2154 root 1.116 ev_default_loop_ptr = 0;
2155 root 1.56 }
2156 root 1.8
2157 root 1.116 return ev_default_loop_ptr;
2158 root 1.1 }
2159    
2160 root 1.24 void
2161 root 1.359 ev_loop_fork (EV_P)
2162 root 1.1 {
2163 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2164 root 1.1 }
2165    
2166 root 1.8 /*****************************************************************************/
2167    
2168 root 1.168 void
2169     ev_invoke (EV_P_ void *w, int revents)
2170     {
2171     EV_CB_INVOKE ((W)w, revents);
2172     }
2173    
2174 root 1.300 unsigned int
2175     ev_pending_count (EV_P)
2176     {
2177     int pri;
2178     unsigned int count = 0;
2179    
2180     for (pri = NUMPRI; pri--; )
2181     count += pendingcnt [pri];
2182    
2183     return count;
2184     }
2185    
2186 root 1.297 void noinline
2187 root 1.296 ev_invoke_pending (EV_P)
2188 root 1.1 {
2189 root 1.42 int pri;
2190    
2191     for (pri = NUMPRI; pri--; )
2192     while (pendingcnt [pri])
2193     {
2194     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2195 root 1.1
2196 root 1.288 p->w->pending = 0;
2197     EV_CB_INVOKE (p->w, p->events);
2198     EV_FREQUENT_CHECK;
2199 root 1.42 }
2200 root 1.1 }
2201    
2202 root 1.234 #if EV_IDLE_ENABLE
2203 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2204     /* only when higher priorities are idle" logic */
2205 root 1.284 inline_size void
2206 root 1.234 idle_reify (EV_P)
2207     {
2208     if (expect_false (idleall))
2209     {
2210     int pri;
2211    
2212     for (pri = NUMPRI; pri--; )
2213     {
2214     if (pendingcnt [pri])
2215     break;
2216    
2217     if (idlecnt [pri])
2218     {
2219     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2220     break;
2221     }
2222     }
2223     }
2224     }
2225     #endif
2226    
2227 root 1.288 /* make timers pending */
2228 root 1.284 inline_size void
2229 root 1.51 timers_reify (EV_P)
2230 root 1.1 {
2231 root 1.248 EV_FREQUENT_CHECK;
2232    
2233 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2234 root 1.1 {
2235 root 1.284 do
2236     {
2237     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2238 root 1.1
2239 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2240    
2241     /* first reschedule or stop timer */
2242     if (w->repeat)
2243     {
2244     ev_at (w) += w->repeat;
2245     if (ev_at (w) < mn_now)
2246     ev_at (w) = mn_now;
2247 root 1.61
2248 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2249 root 1.90
2250 root 1.284 ANHE_at_cache (timers [HEAP0]);
2251     downheap (timers, timercnt, HEAP0);
2252     }
2253     else
2254     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2255 root 1.243
2256 root 1.284 EV_FREQUENT_CHECK;
2257     feed_reverse (EV_A_ (W)w);
2258 root 1.12 }
2259 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2260 root 1.30
2261 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2262 root 1.12 }
2263     }
2264 root 1.4
2265 root 1.140 #if EV_PERIODIC_ENABLE
2266 root 1.370
2267 root 1.373 static void noinline
2268 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2269     {
2270 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2271     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2272    
2273     /* the above almost always errs on the low side */
2274     while (at <= ev_rt_now)
2275     {
2276     ev_tstamp nat = at + w->interval;
2277    
2278     /* when resolution fails us, we use ev_rt_now */
2279     if (expect_false (nat == at))
2280     {
2281     at = ev_rt_now;
2282     break;
2283     }
2284    
2285     at = nat;
2286     }
2287    
2288     ev_at (w) = at;
2289 root 1.370 }
2290    
2291 root 1.288 /* make periodics pending */
2292 root 1.284 inline_size void
2293 root 1.51 periodics_reify (EV_P)
2294 root 1.12 {
2295 root 1.248 EV_FREQUENT_CHECK;
2296 root 1.250
2297 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2298 root 1.12 {
2299 root 1.284 int feed_count = 0;
2300    
2301     do
2302     {
2303     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2304 root 1.1
2305 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2306 root 1.61
2307 root 1.284 /* first reschedule or stop timer */
2308     if (w->reschedule_cb)
2309     {
2310     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2311 root 1.243
2312 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2313 root 1.243
2314 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2315     downheap (periodics, periodiccnt, HEAP0);
2316     }
2317     else if (w->interval)
2318 root 1.246 {
2319 root 1.370 periodic_recalc (EV_A_ w);
2320 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2321     downheap (periodics, periodiccnt, HEAP0);
2322 root 1.246 }
2323 root 1.284 else
2324     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2325 root 1.243
2326 root 1.284 EV_FREQUENT_CHECK;
2327     feed_reverse (EV_A_ (W)w);
2328 root 1.1 }
2329 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2330 root 1.12
2331 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2332 root 1.12 }
2333     }
2334    
2335 root 1.288 /* simply recalculate all periodics */
2336 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2337 root 1.140 static void noinline
2338 root 1.54 periodics_reschedule (EV_P)
2339 root 1.12 {
2340     int i;
2341    
2342 root 1.13 /* adjust periodics after time jump */
2343 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2344 root 1.12 {
2345 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2346 root 1.12
2347 root 1.77 if (w->reschedule_cb)
2348 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2349 root 1.77 else if (w->interval)
2350 root 1.370 periodic_recalc (EV_A_ w);
2351 root 1.242
2352 root 1.248 ANHE_at_cache (periodics [i]);
2353 root 1.77 }
2354 root 1.12
2355 root 1.248 reheap (periodics, periodiccnt);
2356 root 1.1 }
2357 root 1.93 #endif
2358 root 1.1
2359 root 1.288 /* adjust all timers by a given offset */
2360 root 1.285 static void noinline
2361     timers_reschedule (EV_P_ ev_tstamp adjust)
2362     {
2363     int i;
2364    
2365     for (i = 0; i < timercnt; ++i)
2366     {
2367     ANHE *he = timers + i + HEAP0;
2368     ANHE_w (*he)->at += adjust;
2369     ANHE_at_cache (*he);
2370     }
2371     }
2372    
2373 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2374 root 1.324 /* also detect if there was a timejump, and act accordingly */
2375 root 1.284 inline_speed void
2376 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2377 root 1.4 {
2378 root 1.40 #if EV_USE_MONOTONIC
2379     if (expect_true (have_monotonic))
2380     {
2381 root 1.289 int i;
2382 root 1.178 ev_tstamp odiff = rtmn_diff;
2383    
2384     mn_now = get_clock ();
2385    
2386     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2387     /* interpolate in the meantime */
2388     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2389 root 1.40 {
2390 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2391     return;
2392     }
2393    
2394     now_floor = mn_now;
2395     ev_rt_now = ev_time ();
2396 root 1.4
2397 root 1.178 /* loop a few times, before making important decisions.
2398     * on the choice of "4": one iteration isn't enough,
2399     * in case we get preempted during the calls to
2400     * ev_time and get_clock. a second call is almost guaranteed
2401     * to succeed in that case, though. and looping a few more times
2402     * doesn't hurt either as we only do this on time-jumps or
2403     * in the unlikely event of having been preempted here.
2404     */
2405     for (i = 4; --i; )
2406     {
2407 root 1.373 ev_tstamp diff;
2408 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2409 root 1.4
2410 root 1.373 diff = odiff - rtmn_diff;
2411    
2412     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2413 root 1.178 return; /* all is well */
2414 root 1.4
2415 root 1.178 ev_rt_now = ev_time ();
2416     mn_now = get_clock ();
2417     now_floor = mn_now;
2418     }
2419 root 1.4
2420 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2421     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2422 root 1.140 # if EV_PERIODIC_ENABLE
2423 root 1.178 periodics_reschedule (EV_A);
2424 root 1.93 # endif
2425 root 1.4 }
2426     else
2427 root 1.40 #endif
2428 root 1.4 {
2429 root 1.85 ev_rt_now = ev_time ();
2430 root 1.40
2431 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2432 root 1.13 {
2433 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2434     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2435 root 1.140 #if EV_PERIODIC_ENABLE
2436 root 1.54 periodics_reschedule (EV_A);
2437 root 1.93 #endif
2438 root 1.13 }
2439 root 1.4
2440 root 1.85 mn_now = ev_rt_now;
2441 root 1.4 }
2442     }
2443    
2444 root 1.51 void
2445 root 1.353 ev_run (EV_P_ int flags)
2446 root 1.1 {
2447 root 1.338 #if EV_FEATURE_API
2448 root 1.294 ++loop_depth;
2449 root 1.297 #endif
2450 root 1.294
2451 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2452 root 1.298
2453 root 1.353 loop_done = EVBREAK_CANCEL;
2454 root 1.1
2455 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2456 root 1.158
2457 root 1.161 do
2458 root 1.9 {
2459 root 1.250 #if EV_VERIFY >= 2
2460 root 1.340 ev_verify (EV_A);
2461 root 1.250 #endif
2462    
2463 root 1.158 #ifndef _WIN32
2464     if (expect_false (curpid)) /* penalise the forking check even more */
2465     if (expect_false (getpid () != curpid))
2466     {
2467     curpid = getpid ();
2468     postfork = 1;
2469     }
2470     #endif
2471    
2472 root 1.157 #if EV_FORK_ENABLE
2473     /* we might have forked, so queue fork handlers */
2474     if (expect_false (postfork))
2475     if (forkcnt)
2476     {
2477     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2478 root 1.297 EV_INVOKE_PENDING;
2479 root 1.157 }
2480     #endif
2481 root 1.147
2482 root 1.337 #if EV_PREPARE_ENABLE
2483 root 1.170 /* queue prepare watchers (and execute them) */
2484 root 1.40 if (expect_false (preparecnt))
2485 root 1.20 {
2486 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2487 root 1.297 EV_INVOKE_PENDING;
2488 root 1.20 }
2489 root 1.337 #endif
2490 root 1.9
2491 root 1.298 if (expect_false (loop_done))
2492     break;
2493    
2494 root 1.70 /* we might have forked, so reify kernel state if necessary */
2495     if (expect_false (postfork))
2496     loop_fork (EV_A);
2497    
2498 root 1.1 /* update fd-related kernel structures */
2499 root 1.51 fd_reify (EV_A);
2500 root 1.1
2501     /* calculate blocking time */
2502 root 1.135 {
2503 root 1.193 ev_tstamp waittime = 0.;
2504     ev_tstamp sleeptime = 0.;
2505 root 1.12
2506 root 1.353 /* remember old timestamp for io_blocktime calculation */
2507     ev_tstamp prev_mn_now = mn_now;
2508 root 1.293
2509 root 1.353 /* update time to cancel out callback processing overhead */
2510     time_update (EV_A_ 1e100);
2511 root 1.135
2512 root 1.353 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
2513     {
2514 root 1.287 waittime = MAX_BLOCKTIME;
2515    
2516 root 1.135 if (timercnt)
2517     {
2518 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2519 root 1.193 if (waittime > to) waittime = to;
2520 root 1.135 }
2521 root 1.4
2522 root 1.140 #if EV_PERIODIC_ENABLE
2523 root 1.135 if (periodiccnt)
2524     {
2525 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2526 root 1.193 if (waittime > to) waittime = to;
2527 root 1.135 }
2528 root 1.93 #endif
2529 root 1.4
2530 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2531 root 1.193 if (expect_false (waittime < timeout_blocktime))
2532     waittime = timeout_blocktime;
2533    
2534 root 1.293 /* extra check because io_blocktime is commonly 0 */
2535     if (expect_false (io_blocktime))
2536     {
2537     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2538 root 1.193
2539 root 1.293 if (sleeptime > waittime - backend_fudge)
2540     sleeptime = waittime - backend_fudge;
2541 root 1.193
2542 root 1.293 if (expect_true (sleeptime > 0.))
2543     {
2544     ev_sleep (sleeptime);
2545     waittime -= sleeptime;
2546     }
2547 root 1.193 }
2548 root 1.135 }
2549 root 1.1
2550 root 1.338 #if EV_FEATURE_API
2551 root 1.162 ++loop_count;
2552 root 1.297 #endif
2553 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2554 root 1.193 backend_poll (EV_A_ waittime);
2555 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2556 root 1.178
2557     /* update ev_rt_now, do magic */
2558 root 1.193 time_update (EV_A_ waittime + sleeptime);
2559 root 1.135 }
2560 root 1.1
2561 root 1.9 /* queue pending timers and reschedule them */
2562 root 1.51 timers_reify (EV_A); /* relative timers called last */
2563 root 1.140 #if EV_PERIODIC_ENABLE
2564 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2565 root 1.93 #endif
2566 root 1.1
2567 root 1.164 #if EV_IDLE_ENABLE
2568 root 1.137 /* queue idle watchers unless other events are pending */
2569 root 1.164 idle_reify (EV_A);
2570     #endif
2571 root 1.9
2572 root 1.337 #if EV_CHECK_ENABLE
2573 root 1.20 /* queue check watchers, to be executed first */
2574 root 1.123 if (expect_false (checkcnt))
2575 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2576 root 1.337 #endif
2577 root 1.9
2578 root 1.297 EV_INVOKE_PENDING;
2579 root 1.1 }
2580 root 1.219 while (expect_true (
2581     activecnt
2582     && !loop_done
2583 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2584 root 1.219 ));
2585 root 1.13
2586 root 1.353 if (loop_done == EVBREAK_ONE)
2587     loop_done = EVBREAK_CANCEL;
2588 root 1.294
2589 root 1.338 #if EV_FEATURE_API
2590 root 1.294 --loop_depth;
2591 root 1.297 #endif
2592 root 1.51 }
2593    
2594     void
2595 root 1.353 ev_break (EV_P_ int how)
2596 root 1.51 {
2597     loop_done = how;
2598 root 1.1 }
2599    
2600 root 1.285 void
2601     ev_ref (EV_P)
2602     {
2603     ++activecnt;
2604     }
2605    
2606     void
2607     ev_unref (EV_P)
2608     {
2609     --activecnt;
2610     }
2611    
2612     void
2613     ev_now_update (EV_P)
2614     {
2615     time_update (EV_A_ 1e100);
2616     }
2617    
2618     void
2619     ev_suspend (EV_P)
2620     {
2621     ev_now_update (EV_A);
2622     }
2623    
2624     void
2625     ev_resume (EV_P)
2626     {
2627     ev_tstamp mn_prev = mn_now;
2628    
2629     ev_now_update (EV_A);
2630     timers_reschedule (EV_A_ mn_now - mn_prev);
2631 root 1.286 #if EV_PERIODIC_ENABLE
2632 root 1.288 /* TODO: really do this? */
2633 root 1.285 periodics_reschedule (EV_A);
2634 root 1.286 #endif
2635 root 1.285 }
2636    
2637 root 1.8 /*****************************************************************************/
2638 root 1.288 /* singly-linked list management, used when the expected list length is short */
2639 root 1.8
2640 root 1.284 inline_size void
2641 root 1.10 wlist_add (WL *head, WL elem)
2642 root 1.1 {
2643     elem->next = *head;
2644     *head = elem;
2645     }
2646    
2647 root 1.284 inline_size void
2648 root 1.10 wlist_del (WL *head, WL elem)
2649 root 1.1 {
2650     while (*head)
2651     {
2652 root 1.307 if (expect_true (*head == elem))
2653 root 1.1 {
2654     *head = elem->next;
2655 root 1.307 break;
2656 root 1.1 }
2657    
2658     head = &(*head)->next;
2659     }
2660     }
2661    
2662 root 1.288 /* internal, faster, version of ev_clear_pending */
2663 root 1.284 inline_speed void
2664 root 1.166 clear_pending (EV_P_ W w)
2665 root 1.16 {
2666     if (w->pending)
2667     {
2668 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2669 root 1.16 w->pending = 0;
2670     }
2671     }
2672    
2673 root 1.167 int
2674     ev_clear_pending (EV_P_ void *w)
2675 root 1.166 {
2676     W w_ = (W)w;
2677     int pending = w_->pending;
2678    
2679 root 1.172 if (expect_true (pending))
2680     {
2681     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2682 root 1.288 p->w = (W)&pending_w;
2683 root 1.172 w_->pending = 0;
2684     return p->events;
2685     }
2686     else
2687 root 1.167 return 0;
2688 root 1.166 }
2689    
2690 root 1.284 inline_size void
2691 root 1.164 pri_adjust (EV_P_ W w)
2692     {
2693 root 1.295 int pri = ev_priority (w);
2694 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2695     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2696 root 1.295 ev_set_priority (w, pri);
2697 root 1.164 }
2698    
2699 root 1.284 inline_speed void
2700 root 1.51 ev_start (EV_P_ W w, int active)
2701 root 1.1 {
2702 root 1.164 pri_adjust (EV_A_ w);
2703 root 1.1 w->active = active;
2704 root 1.51 ev_ref (EV_A);
2705 root 1.1 }
2706    
2707 root 1.284 inline_size void
2708 root 1.51 ev_stop (EV_P_ W w)
2709 root 1.1 {
2710 root 1.51 ev_unref (EV_A);
2711 root 1.1 w->active = 0;
2712     }
2713    
2714 root 1.8 /*****************************************************************************/
2715    
2716 root 1.171 void noinline
2717 root 1.136 ev_io_start (EV_P_ ev_io *w)
2718 root 1.1 {
2719 root 1.37 int fd = w->fd;
2720    
2721 root 1.123 if (expect_false (ev_is_active (w)))
2722 root 1.1 return;
2723    
2724 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2725 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2726 root 1.33
2727 root 1.248 EV_FREQUENT_CHECK;
2728    
2729 root 1.51 ev_start (EV_A_ (W)w, 1);
2730 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2731 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2732 root 1.1
2733 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2734 root 1.281 w->events &= ~EV__IOFDSET;
2735 root 1.248
2736     EV_FREQUENT_CHECK;
2737 root 1.1 }
2738    
2739 root 1.171 void noinline
2740 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2741 root 1.1 {
2742 root 1.166 clear_pending (EV_A_ (W)w);
2743 root 1.123 if (expect_false (!ev_is_active (w)))
2744 root 1.1 return;
2745    
2746 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2747 root 1.89
2748 root 1.248 EV_FREQUENT_CHECK;
2749    
2750 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2751 root 1.51 ev_stop (EV_A_ (W)w);
2752 root 1.1
2753 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2754 root 1.248
2755     EV_FREQUENT_CHECK;
2756 root 1.1 }
2757    
2758 root 1.171 void noinline
2759 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2760 root 1.1 {
2761 root 1.123 if (expect_false (ev_is_active (w)))
2762 root 1.1 return;
2763    
2764 root 1.228 ev_at (w) += mn_now;
2765 root 1.12
2766 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2767 root 1.13
2768 root 1.248 EV_FREQUENT_CHECK;
2769    
2770     ++timercnt;
2771     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2772 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2773     ANHE_w (timers [ev_active (w)]) = (WT)w;
2774 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2775 root 1.235 upheap (timers, ev_active (w));
2776 root 1.62
2777 root 1.248 EV_FREQUENT_CHECK;
2778    
2779 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2780 root 1.12 }
2781    
2782 root 1.171 void noinline
2783 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2784 root 1.12 {
2785 root 1.166 clear_pending (EV_A_ (W)w);
2786 root 1.123 if (expect_false (!ev_is_active (w)))
2787 root 1.12 return;
2788    
2789 root 1.248 EV_FREQUENT_CHECK;
2790    
2791 root 1.230 {
2792     int active = ev_active (w);
2793 root 1.62
2794 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2795 root 1.151
2796 root 1.248 --timercnt;
2797    
2798     if (expect_true (active < timercnt + HEAP0))
2799 root 1.151 {
2800 root 1.248 timers [active] = timers [timercnt + HEAP0];
2801 root 1.181 adjustheap (timers, timercnt, active);
2802 root 1.151 }
2803 root 1.248 }
2804 root 1.228
2805     ev_at (w) -= mn_now;
2806 root 1.14
2807 root 1.51 ev_stop (EV_A_ (W)w);
2808 root 1.328
2809     EV_FREQUENT_CHECK;
2810 root 1.12 }
2811 root 1.4
2812 root 1.171 void noinline
2813 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2814 root 1.14 {
2815 root 1.248 EV_FREQUENT_CHECK;
2816    
2817 root 1.14 if (ev_is_active (w))
2818     {
2819     if (w->repeat)
2820 root 1.99 {
2821 root 1.228 ev_at (w) = mn_now + w->repeat;
2822 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2823 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2824 root 1.99 }
2825 root 1.14 else
2826 root 1.51 ev_timer_stop (EV_A_ w);
2827 root 1.14 }
2828     else if (w->repeat)
2829 root 1.112 {
2830 root 1.229 ev_at (w) = w->repeat;
2831 root 1.112 ev_timer_start (EV_A_ w);
2832     }
2833 root 1.248
2834     EV_FREQUENT_CHECK;
2835 root 1.14 }
2836    
2837 root 1.301 ev_tstamp
2838     ev_timer_remaining (EV_P_ ev_timer *w)
2839     {
2840     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2841     }
2842    
2843 root 1.140 #if EV_PERIODIC_ENABLE
2844 root 1.171 void noinline
2845 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2846 root 1.12 {
2847 root 1.123 if (expect_false (ev_is_active (w)))
2848 root 1.12 return;
2849 root 1.1
2850 root 1.77 if (w->reschedule_cb)
2851 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2852 root 1.77 else if (w->interval)
2853     {
2854 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2855 root 1.370 periodic_recalc (EV_A_ w);
2856 root 1.77 }
2857 root 1.173 else
2858 root 1.228 ev_at (w) = w->offset;
2859 root 1.12
2860 root 1.248 EV_FREQUENT_CHECK;
2861    
2862     ++periodiccnt;
2863     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2864 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2865     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2866 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2867 root 1.235 upheap (periodics, ev_active (w));
2868 root 1.62
2869 root 1.248 EV_FREQUENT_CHECK;
2870    
2871 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2872 root 1.1 }
2873    
2874 root 1.171 void noinline
2875 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2876 root 1.1 {
2877 root 1.166 clear_pending (EV_A_ (W)w);
2878 root 1.123 if (expect_false (!ev_is_active (w)))
2879 root 1.1 return;
2880    
2881 root 1.248 EV_FREQUENT_CHECK;
2882    
2883 root 1.230 {
2884     int active = ev_active (w);
2885 root 1.62
2886 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2887 root 1.151
2888 root 1.248 --periodiccnt;
2889    
2890     if (expect_true (active < periodiccnt + HEAP0))
2891 root 1.151 {
2892 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2893 root 1.181 adjustheap (periodics, periodiccnt, active);
2894 root 1.151 }
2895 root 1.248 }
2896 root 1.228
2897 root 1.328 ev_stop (EV_A_ (W)w);
2898    
2899 root 1.248 EV_FREQUENT_CHECK;
2900 root 1.1 }
2901    
2902 root 1.171 void noinline
2903 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2904 root 1.77 {
2905 root 1.84 /* TODO: use adjustheap and recalculation */
2906 root 1.77 ev_periodic_stop (EV_A_ w);
2907     ev_periodic_start (EV_A_ w);
2908     }
2909 root 1.93 #endif
2910 root 1.77
2911 root 1.56 #ifndef SA_RESTART
2912     # define SA_RESTART 0
2913     #endif
2914    
2915 root 1.336 #if EV_SIGNAL_ENABLE
2916    
2917 root 1.171 void noinline
2918 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2919 root 1.56 {
2920 root 1.123 if (expect_false (ev_is_active (w)))
2921 root 1.56 return;
2922    
2923 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2924    
2925     #if EV_MULTIPLICITY
2926 root 1.308 assert (("libev: a signal must not be attached to two different loops",
2927 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2928    
2929     signals [w->signum - 1].loop = EV_A;
2930     #endif
2931 root 1.56
2932 root 1.303 EV_FREQUENT_CHECK;
2933    
2934     #if EV_USE_SIGNALFD
2935     if (sigfd == -2)
2936     {
2937     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2938     if (sigfd < 0 && errno == EINVAL)
2939     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2940    
2941     if (sigfd >= 0)
2942     {
2943     fd_intern (sigfd); /* doing it twice will not hurt */
2944    
2945     sigemptyset (&sigfd_set);
2946    
2947     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2948     ev_set_priority (&sigfd_w, EV_MAXPRI);
2949     ev_io_start (EV_A_ &sigfd_w);
2950     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2951     }
2952     }
2953    
2954     if (sigfd >= 0)
2955     {
2956     /* TODO: check .head */
2957     sigaddset (&sigfd_set, w->signum);
2958     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2959 root 1.207
2960 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2961     }
2962 root 1.180 #endif
2963    
2964 root 1.56 ev_start (EV_A_ (W)w, 1);
2965 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2966 root 1.56
2967 root 1.63 if (!((WL)w)->next)
2968 root 1.304 # if EV_USE_SIGNALFD
2969 root 1.306 if (sigfd < 0) /*TODO*/
2970 root 1.304 # endif
2971 root 1.306 {
2972 root 1.322 # ifdef _WIN32
2973 root 1.317 evpipe_init (EV_A);
2974    
2975 root 1.306 signal (w->signum, ev_sighandler);
2976     # else
2977     struct sigaction sa;
2978    
2979     evpipe_init (EV_A);
2980    
2981     sa.sa_handler = ev_sighandler;
2982     sigfillset (&sa.sa_mask);
2983     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2984     sigaction (w->signum, &sa, 0);
2985    
2986 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
2987     {
2988     sigemptyset (&sa.sa_mask);
2989     sigaddset (&sa.sa_mask, w->signum);
2990     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2991     }
2992 root 1.67 #endif
2993 root 1.306 }
2994 root 1.248
2995     EV_FREQUENT_CHECK;
2996 root 1.56 }
2997    
2998 root 1.171 void noinline
2999 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
3000 root 1.56 {
3001 root 1.166 clear_pending (EV_A_ (W)w);
3002 root 1.123 if (expect_false (!ev_is_active (w)))
3003 root 1.56 return;
3004    
3005 root 1.248 EV_FREQUENT_CHECK;
3006    
3007 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3008 root 1.56 ev_stop (EV_A_ (W)w);
3009    
3010     if (!signals [w->signum - 1].head)
3011 root 1.306 {
3012 root 1.307 #if EV_MULTIPLICITY
3013 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3014 root 1.307 #endif
3015     #if EV_USE_SIGNALFD
3016 root 1.306 if (sigfd >= 0)
3017     {
3018 root 1.321 sigset_t ss;
3019    
3020     sigemptyset (&ss);
3021     sigaddset (&ss, w->signum);
3022 root 1.306 sigdelset (&sigfd_set, w->signum);
3023 root 1.321
3024 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3025 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3026 root 1.306 }
3027     else
3028 root 1.307 #endif
3029 root 1.306 signal (w->signum, SIG_DFL);
3030     }
3031 root 1.248
3032     EV_FREQUENT_CHECK;
3033 root 1.56 }
3034    
3035 root 1.336 #endif
3036    
3037     #if EV_CHILD_ENABLE
3038    
3039 root 1.28 void
3040 root 1.136 ev_child_start (EV_P_ ev_child *w)
3041 root 1.22 {
3042 root 1.56 #if EV_MULTIPLICITY
3043 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3044 root 1.56 #endif
3045 root 1.123 if (expect_false (ev_is_active (w)))
3046 root 1.22 return;
3047    
3048 root 1.248 EV_FREQUENT_CHECK;
3049    
3050 root 1.51 ev_start (EV_A_ (W)w, 1);
3051 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3052 root 1.248
3053     EV_FREQUENT_CHECK;
3054 root 1.22 }
3055    
3056 root 1.28 void
3057 root 1.136 ev_child_stop (EV_P_ ev_child *w)
3058 root 1.22 {
3059 root 1.166 clear_pending (EV_A_ (W)w);
3060 root 1.123 if (expect_false (!ev_is_active (w)))
3061 root 1.22 return;
3062    
3063 root 1.248 EV_FREQUENT_CHECK;
3064    
3065 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3066 root 1.51 ev_stop (EV_A_ (W)w);
3067 root 1.248
3068     EV_FREQUENT_CHECK;
3069 root 1.22 }
3070    
3071 root 1.336 #endif
3072    
3073 root 1.140 #if EV_STAT_ENABLE
3074    
3075     # ifdef _WIN32
3076 root 1.146 # undef lstat
3077     # define lstat(a,b) _stati64 (a,b)
3078 root 1.140 # endif
3079    
3080 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3081     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3082     #define MIN_STAT_INTERVAL 0.1074891
3083 root 1.143
3084 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3085 root 1.152
3086     #if EV_USE_INOTIFY
3087 root 1.326
3088     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3089     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3090 root 1.152
3091     static void noinline
3092     infy_add (EV_P_ ev_stat *w)
3093     {
3094     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3095    
3096 root 1.318 if (w->wd >= 0)
3097 root 1.152 {
3098 root 1.318 struct statfs sfs;
3099    
3100     /* now local changes will be tracked by inotify, but remote changes won't */
3101     /* unless the filesystem is known to be local, we therefore still poll */
3102     /* also do poll on <2.6.25, but with normal frequency */
3103    
3104     if (!fs_2625)
3105     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3106     else if (!statfs (w->path, &sfs)
3107     && (sfs.f_type == 0x1373 /* devfs */
3108     || sfs.f_type == 0xEF53 /* ext2/3 */
3109     || sfs.f_type == 0x3153464a /* jfs */
3110     || sfs.f_type == 0x52654973 /* reiser3 */
3111     || sfs.f_type == 0x01021994 /* tempfs */
3112     || sfs.f_type == 0x58465342 /* xfs */))
3113     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3114     else
3115     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3116     }
3117     else
3118     {
3119     /* can't use inotify, continue to stat */
3120 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3121 root 1.152
3122 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3123 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3124 root 1.233 /* but an efficiency issue only */
3125 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3126 root 1.152 {
3127 root 1.153 char path [4096];
3128 root 1.152 strcpy (path, w->path);
3129    
3130     do
3131     {
3132     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3133     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3134    
3135     char *pend = strrchr (path, '/');
3136    
3137 root 1.275 if (!pend || pend == path)
3138     break;
3139 root 1.152
3140     *pend = 0;
3141 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3142 root 1.372 }
3143 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3144     }
3145     }
3146 root 1.275
3147     if (w->wd >= 0)
3148 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3149 root 1.152
3150 root 1.318 /* now re-arm timer, if required */
3151     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3152     ev_timer_again (EV_A_ &w->timer);
3153     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3154 root 1.152 }
3155    
3156     static void noinline
3157     infy_del (EV_P_ ev_stat *w)
3158     {
3159     int slot;
3160     int wd = w->wd;
3161    
3162     if (wd < 0)
3163     return;
3164    
3165     w->wd = -2;
3166 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3167 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3168    
3169     /* remove this watcher, if others are watching it, they will rearm */
3170     inotify_rm_watch (fs_fd, wd);
3171     }
3172    
3173     static void noinline
3174     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3175     {
3176     if (slot < 0)
3177 root 1.264 /* overflow, need to check for all hash slots */
3178 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3179 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3180     else
3181     {
3182     WL w_;
3183    
3184 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3185 root 1.152 {
3186     ev_stat *w = (ev_stat *)w_;
3187     w_ = w_->next; /* lets us remove this watcher and all before it */
3188    
3189     if (w->wd == wd || wd == -1)
3190     {
3191     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3192     {
3193 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3194 root 1.152 w->wd = -1;
3195     infy_add (EV_A_ w); /* re-add, no matter what */
3196     }
3197    
3198 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3199 root 1.152 }
3200     }
3201     }
3202     }
3203    
3204     static void
3205     infy_cb (EV_P_ ev_io *w, int revents)
3206     {
3207     char buf [EV_INOTIFY_BUFSIZE];
3208     int ofs;
3209     int len = read (fs_fd, buf, sizeof (buf));
3210    
3211 root 1.326 for (ofs = 0; ofs < len; )
3212     {
3213     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3214     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3215     ofs += sizeof (struct inotify_event) + ev->len;
3216     }
3217 root 1.152 }
3218    
3219 root 1.330 inline_size void
3220     ev_check_2625 (EV_P)
3221     {
3222     /* kernels < 2.6.25 are borked
3223     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3224     */
3225     if (ev_linux_version () < 0x020619)
3226 root 1.273 return;
3227 root 1.264
3228 root 1.273 fs_2625 = 1;
3229     }
3230 root 1.264
3231 root 1.315 inline_size int
3232     infy_newfd (void)
3233     {
3234     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3235     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3236     if (fd >= 0)
3237     return fd;
3238     #endif
3239     return inotify_init ();
3240     }
3241    
3242 root 1.284 inline_size void
3243 root 1.273 infy_init (EV_P)
3244     {
3245     if (fs_fd != -2)
3246     return;
3247 root 1.264
3248 root 1.273 fs_fd = -1;
3249 root 1.264
3250 root 1.330 ev_check_2625 (EV_A);
3251 root 1.264
3252 root 1.315 fs_fd = infy_newfd ();
3253 root 1.152
3254     if (fs_fd >= 0)
3255     {
3256 root 1.315 fd_intern (fs_fd);
3257 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3258     ev_set_priority (&fs_w, EV_MAXPRI);
3259     ev_io_start (EV_A_ &fs_w);
3260 root 1.317 ev_unref (EV_A);
3261 root 1.152 }
3262     }
3263    
3264 root 1.284 inline_size void
3265 root 1.154 infy_fork (EV_P)
3266     {
3267     int slot;
3268    
3269     if (fs_fd < 0)
3270     return;
3271    
3272 root 1.317 ev_ref (EV_A);
3273 root 1.315 ev_io_stop (EV_A_ &fs_w);
3274 root 1.154 close (fs_fd);
3275 root 1.315 fs_fd = infy_newfd ();
3276    
3277     if (fs_fd >= 0)
3278     {
3279     fd_intern (fs_fd);
3280     ev_io_set (&fs_w, fs_fd, EV_READ);
3281     ev_io_start (EV_A_ &fs_w);
3282 root 1.317 ev_unref (EV_A);
3283 root 1.315 }
3284 root 1.154
3285 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3286 root 1.154 {
3287     WL w_ = fs_hash [slot].head;
3288     fs_hash [slot].head = 0;
3289    
3290     while (w_)
3291     {
3292     ev_stat *w = (ev_stat *)w_;
3293     w_ = w_->next; /* lets us add this watcher */
3294    
3295     w->wd = -1;
3296    
3297     if (fs_fd >= 0)
3298     infy_add (EV_A_ w); /* re-add, no matter what */
3299     else
3300 root 1.318 {
3301     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3302     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3303     ev_timer_again (EV_A_ &w->timer);
3304     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3305     }
3306 root 1.154 }
3307     }
3308     }
3309    
3310 root 1.152 #endif
3311    
3312 root 1.255 #ifdef _WIN32
3313     # define EV_LSTAT(p,b) _stati64 (p, b)
3314     #else
3315     # define EV_LSTAT(p,b) lstat (p, b)
3316     #endif
3317    
3318 root 1.140 void
3319     ev_stat_stat (EV_P_ ev_stat *w)
3320     {
3321     if (lstat (w->path, &w->attr) < 0)
3322     w->attr.st_nlink = 0;
3323     else if (!w->attr.st_nlink)
3324     w->attr.st_nlink = 1;
3325     }
3326    
3327 root 1.157 static void noinline
3328 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3329     {
3330     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3331    
3332 root 1.320 ev_statdata prev = w->attr;
3333 root 1.140 ev_stat_stat (EV_A_ w);
3334    
3335 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3336     if (
3337 root 1.320 prev.st_dev != w->attr.st_dev
3338     || prev.st_ino != w->attr.st_ino
3339     || prev.st_mode != w->attr.st_mode
3340     || prev.st_nlink != w->attr.st_nlink
3341     || prev.st_uid != w->attr.st_uid
3342     || prev.st_gid != w->attr.st_gid
3343     || prev.st_rdev != w->attr.st_rdev
3344     || prev.st_size != w->attr.st_size
3345     || prev.st_atime != w->attr.st_atime
3346     || prev.st_mtime != w->attr.st_mtime
3347     || prev.st_ctime != w->attr.st_ctime
3348 root 1.156 ) {
3349 root 1.320 /* we only update w->prev on actual differences */
3350     /* in case we test more often than invoke the callback, */
3351     /* to ensure that prev is always different to attr */
3352     w->prev = prev;
3353    
3354 root 1.152 #if EV_USE_INOTIFY
3355 root 1.264 if (fs_fd >= 0)
3356     {
3357     infy_del (EV_A_ w);
3358     infy_add (EV_A_ w);
3359     ev_stat_stat (EV_A_ w); /* avoid race... */
3360     }
3361 root 1.152 #endif
3362    
3363     ev_feed_event (EV_A_ w, EV_STAT);
3364     }
3365 root 1.140 }
3366    
3367     void
3368     ev_stat_start (EV_P_ ev_stat *w)
3369     {
3370     if (expect_false (ev_is_active (w)))
3371     return;
3372    
3373     ev_stat_stat (EV_A_ w);
3374    
3375 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3376     w->interval = MIN_STAT_INTERVAL;
3377 root 1.143
3378 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3379 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3380 root 1.152
3381     #if EV_USE_INOTIFY
3382     infy_init (EV_A);
3383    
3384     if (fs_fd >= 0)
3385     infy_add (EV_A_ w);
3386     else
3387     #endif
3388 root 1.318 {
3389     ev_timer_again (EV_A_ &w->timer);
3390     ev_unref (EV_A);
3391     }
3392 root 1.140
3393     ev_start (EV_A_ (W)w, 1);
3394 root 1.248
3395     EV_FREQUENT_CHECK;
3396 root 1.140 }
3397    
3398     void
3399     ev_stat_stop (EV_P_ ev_stat *w)
3400     {
3401 root 1.166 clear_pending (EV_A_ (W)w);
3402 root 1.140 if (expect_false (!ev_is_active (w)))
3403     return;
3404    
3405 root 1.248 EV_FREQUENT_CHECK;
3406    
3407 root 1.152 #if EV_USE_INOTIFY
3408     infy_del (EV_A_ w);
3409     #endif
3410 root 1.318
3411     if (ev_is_active (&w->timer))
3412     {
3413     ev_ref (EV_A);
3414     ev_timer_stop (EV_A_ &w->timer);
3415     }
3416 root 1.140
3417 root 1.134 ev_stop (EV_A_ (W)w);
3418 root 1.248
3419     EV_FREQUENT_CHECK;
3420 root 1.134 }
3421     #endif
3422    
3423 root 1.164 #if EV_IDLE_ENABLE
3424 root 1.144 void
3425     ev_idle_start (EV_P_ ev_idle *w)
3426     {
3427     if (expect_false (ev_is_active (w)))
3428     return;
3429    
3430 root 1.164 pri_adjust (EV_A_ (W)w);
3431    
3432 root 1.248 EV_FREQUENT_CHECK;
3433    
3434 root 1.164 {
3435     int active = ++idlecnt [ABSPRI (w)];
3436    
3437     ++idleall;
3438     ev_start (EV_A_ (W)w, active);
3439    
3440     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3441     idles [ABSPRI (w)][active - 1] = w;
3442     }
3443 root 1.248
3444     EV_FREQUENT_CHECK;
3445 root 1.144 }
3446    
3447     void
3448     ev_idle_stop (EV_P_ ev_idle *w)
3449     {
3450 root 1.166 clear_pending (EV_A_ (W)w);
3451 root 1.144 if (expect_false (!ev_is_active (w)))
3452     return;
3453    
3454 root 1.248 EV_FREQUENT_CHECK;
3455    
3456 root 1.144 {
3457 root 1.230 int active = ev_active (w);
3458 root 1.164
3459     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3460 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3461 root 1.164
3462     ev_stop (EV_A_ (W)w);
3463     --idleall;
3464 root 1.144 }
3465 root 1.248
3466     EV_FREQUENT_CHECK;
3467 root 1.144 }
3468 root 1.164 #endif
3469 root 1.144
3470 root 1.337 #if EV_PREPARE_ENABLE
3471 root 1.144 void
3472     ev_prepare_start (EV_P_ ev_prepare *w)
3473     {
3474     if (expect_false (ev_is_active (w)))
3475     return;
3476    
3477 root 1.248 EV_FREQUENT_CHECK;
3478    
3479 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3480     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3481     prepares [preparecnt - 1] = w;
3482 root 1.248
3483     EV_FREQUENT_CHECK;
3484 root 1.144 }
3485    
3486     void
3487     ev_prepare_stop (EV_P_ ev_prepare *w)
3488     {
3489 root 1.166 clear_pending (EV_A_ (W)w);
3490 root 1.144 if (expect_false (!ev_is_active (w)))
3491     return;
3492    
3493 root 1.248 EV_FREQUENT_CHECK;
3494    
3495 root 1.144 {
3496 root 1.230 int active = ev_active (w);
3497    
3498 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3499 root 1.230 ev_active (prepares [active - 1]) = active;
3500 root 1.144 }
3501    
3502     ev_stop (EV_A_ (W)w);
3503 root 1.248
3504     EV_FREQUENT_CHECK;
3505 root 1.144 }
3506 root 1.337 #endif
3507 root 1.144
3508 root 1.337 #if EV_CHECK_ENABLE
3509 root 1.144 void
3510     ev_check_start (EV_P_ ev_check *w)
3511     {
3512     if (expect_false (ev_is_active (w)))
3513     return;
3514    
3515 root 1.248 EV_FREQUENT_CHECK;
3516    
3517 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3518     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3519     checks [checkcnt - 1] = w;
3520 root 1.248
3521     EV_FREQUENT_CHECK;
3522 root 1.144 }
3523    
3524     void
3525     ev_check_stop (EV_P_ ev_check *w)
3526     {
3527 root 1.166 clear_pending (EV_A_ (W)w);
3528 root 1.144 if (expect_false (!ev_is_active (w)))
3529     return;
3530    
3531 root 1.248 EV_FREQUENT_CHECK;
3532    
3533 root 1.144 {
3534 root 1.230 int active = ev_active (w);
3535    
3536 root 1.144 checks [active - 1] = checks [--checkcnt];
3537 root 1.230 ev_active (checks [active - 1]) = active;
3538 root 1.144 }
3539    
3540     ev_stop (EV_A_ (W)w);
3541 root 1.248
3542     EV_FREQUENT_CHECK;
3543 root 1.144 }
3544 root 1.337 #endif
3545 root 1.144
3546     #if EV_EMBED_ENABLE
3547     void noinline
3548     ev_embed_sweep (EV_P_ ev_embed *w)
3549     {
3550 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3551 root 1.144 }
3552    
3553     static void
3554 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3555 root 1.144 {
3556     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3557    
3558     if (ev_cb (w))
3559     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3560     else
3561 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3562 root 1.144 }
3563    
3564 root 1.189 static void
3565     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3566     {
3567     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3568    
3569 root 1.195 {
3570 root 1.306 EV_P = w->other;
3571 root 1.195
3572     while (fdchangecnt)
3573     {
3574     fd_reify (EV_A);
3575 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3576 root 1.195 }
3577     }
3578     }
3579    
3580 root 1.261 static void
3581     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3582     {
3583     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3584    
3585 root 1.277 ev_embed_stop (EV_A_ w);
3586    
3587 root 1.261 {
3588 root 1.306 EV_P = w->other;
3589 root 1.261
3590     ev_loop_fork (EV_A);
3591 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3592 root 1.261 }
3593 root 1.277
3594     ev_embed_start (EV_A_ w);
3595 root 1.261 }
3596    
3597 root 1.195 #if 0
3598     static void
3599     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3600     {
3601     ev_idle_stop (EV_A_ idle);
3602 root 1.189 }
3603 root 1.195 #endif
3604 root 1.189
3605 root 1.144 void
3606     ev_embed_start (EV_P_ ev_embed *w)
3607     {
3608     if (expect_false (ev_is_active (w)))
3609     return;
3610    
3611     {
3612 root 1.306 EV_P = w->other;
3613 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3614 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3615 root 1.144 }
3616    
3617 root 1.248 EV_FREQUENT_CHECK;
3618    
3619 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3620     ev_io_start (EV_A_ &w->io);
3621    
3622 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3623     ev_set_priority (&w->prepare, EV_MINPRI);
3624     ev_prepare_start (EV_A_ &w->prepare);
3625    
3626 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3627     ev_fork_start (EV_A_ &w->fork);
3628    
3629 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3630    
3631 root 1.144 ev_start (EV_A_ (W)w, 1);
3632 root 1.248
3633     EV_FREQUENT_CHECK;
3634 root 1.144 }
3635    
3636     void
3637     ev_embed_stop (EV_P_ ev_embed *w)
3638     {
3639 root 1.166 clear_pending (EV_A_ (W)w);
3640 root 1.144 if (expect_false (!ev_is_active (w)))
3641     return;
3642    
3643 root 1.248 EV_FREQUENT_CHECK;
3644    
3645 root 1.261 ev_io_stop (EV_A_ &w->io);
3646 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3647 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3648 root 1.248
3649 root 1.328 ev_stop (EV_A_ (W)w);
3650    
3651 root 1.248 EV_FREQUENT_CHECK;
3652 root 1.144 }
3653     #endif
3654    
3655 root 1.147 #if EV_FORK_ENABLE
3656     void
3657     ev_fork_start (EV_P_ ev_fork *w)
3658     {
3659     if (expect_false (ev_is_active (w)))
3660     return;
3661    
3662 root 1.248 EV_FREQUENT_CHECK;
3663    
3664 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3665     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3666     forks [forkcnt - 1] = w;
3667 root 1.248
3668     EV_FREQUENT_CHECK;
3669 root 1.147 }
3670    
3671     void
3672     ev_fork_stop (EV_P_ ev_fork *w)
3673     {
3674 root 1.166 clear_pending (EV_A_ (W)w);
3675 root 1.147 if (expect_false (!ev_is_active (w)))
3676     return;
3677    
3678 root 1.248 EV_FREQUENT_CHECK;
3679    
3680 root 1.147 {
3681 root 1.230 int active = ev_active (w);
3682    
3683 root 1.147 forks [active - 1] = forks [--forkcnt];
3684 root 1.230 ev_active (forks [active - 1]) = active;
3685 root 1.147 }
3686    
3687     ev_stop (EV_A_ (W)w);
3688 root 1.248
3689     EV_FREQUENT_CHECK;
3690 root 1.147 }
3691     #endif
3692    
3693 root 1.360 #if EV_CLEANUP_ENABLE
3694     void
3695     ev_cleanup_start (EV_P_ ev_cleanup *w)
3696     {
3697     if (expect_false (ev_is_active (w)))
3698     return;
3699    
3700     EV_FREQUENT_CHECK;
3701    
3702     ev_start (EV_A_ (W)w, ++cleanupcnt);
3703     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3704     cleanups [cleanupcnt - 1] = w;
3705    
3706 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
3707     ev_unref (EV_A);
3708 root 1.360 EV_FREQUENT_CHECK;
3709     }
3710    
3711     void
3712     ev_cleanup_stop (EV_P_ ev_cleanup *w)
3713     {
3714     clear_pending (EV_A_ (W)w);
3715     if (expect_false (!ev_is_active (w)))
3716     return;
3717    
3718     EV_FREQUENT_CHECK;
3719 root 1.362 ev_ref (EV_A);
3720 root 1.360
3721     {
3722     int active = ev_active (w);
3723    
3724     cleanups [active - 1] = cleanups [--cleanupcnt];
3725     ev_active (cleanups [active - 1]) = active;
3726     }
3727    
3728     ev_stop (EV_A_ (W)w);
3729    
3730     EV_FREQUENT_CHECK;
3731     }
3732     #endif
3733    
3734 root 1.207 #if EV_ASYNC_ENABLE
3735     void
3736     ev_async_start (EV_P_ ev_async *w)
3737     {
3738     if (expect_false (ev_is_active (w)))
3739     return;
3740    
3741 root 1.352 w->sent = 0;
3742    
3743 root 1.207 evpipe_init (EV_A);
3744    
3745 root 1.248 EV_FREQUENT_CHECK;
3746    
3747 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3748     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3749     asyncs [asynccnt - 1] = w;
3750 root 1.248
3751     EV_FREQUENT_CHECK;
3752 root 1.207 }
3753    
3754     void
3755     ev_async_stop (EV_P_ ev_async *w)
3756     {
3757     clear_pending (EV_A_ (W)w);
3758     if (expect_false (!ev_is_active (w)))
3759     return;
3760    
3761 root 1.248 EV_FREQUENT_CHECK;
3762    
3763 root 1.207 {
3764 root 1.230 int active = ev_active (w);
3765    
3766 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3767 root 1.230 ev_active (asyncs [active - 1]) = active;
3768 root 1.207 }
3769    
3770     ev_stop (EV_A_ (W)w);
3771 root 1.248
3772     EV_FREQUENT_CHECK;
3773 root 1.207 }
3774    
3775     void
3776     ev_async_send (EV_P_ ev_async *w)
3777     {
3778     w->sent = 1;
3779 root 1.307 evpipe_write (EV_A_ &async_pending);
3780 root 1.207 }
3781     #endif
3782    
3783 root 1.1 /*****************************************************************************/
3784 root 1.10
3785 root 1.16 struct ev_once
3786     {
3787 root 1.136 ev_io io;
3788     ev_timer to;
3789 root 1.16 void (*cb)(int revents, void *arg);
3790     void *arg;
3791     };
3792    
3793     static void
3794 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3795 root 1.16 {
3796     void (*cb)(int revents, void *arg) = once->cb;
3797     void *arg = once->arg;
3798    
3799 root 1.259 ev_io_stop (EV_A_ &once->io);
3800 root 1.51 ev_timer_stop (EV_A_ &once->to);
3801 root 1.69 ev_free (once);
3802 root 1.16
3803     cb (revents, arg);
3804     }
3805    
3806     static void
3807 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3808 root 1.16 {
3809 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3810    
3811     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3812 root 1.16 }
3813    
3814     static void
3815 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3816 root 1.16 {
3817 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3818    
3819     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3820 root 1.16 }
3821    
3822     void
3823 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3824 root 1.16 {
3825 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3826 root 1.16
3827 root 1.123 if (expect_false (!once))
3828 root 1.16 {
3829 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3830 root 1.123 return;
3831     }
3832    
3833     once->cb = cb;
3834     once->arg = arg;
3835 root 1.16
3836 root 1.123 ev_init (&once->io, once_cb_io);
3837     if (fd >= 0)
3838     {
3839     ev_io_set (&once->io, fd, events);
3840     ev_io_start (EV_A_ &once->io);
3841     }
3842 root 1.16
3843 root 1.123 ev_init (&once->to, once_cb_to);
3844     if (timeout >= 0.)
3845     {
3846     ev_timer_set (&once->to, timeout, 0.);
3847     ev_timer_start (EV_A_ &once->to);
3848 root 1.16 }
3849     }
3850    
3851 root 1.282 /*****************************************************************************/
3852    
3853 root 1.288 #if EV_WALK_ENABLE
3854 root 1.282 void
3855     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3856     {
3857     int i, j;
3858     ev_watcher_list *wl, *wn;
3859    
3860     if (types & (EV_IO | EV_EMBED))
3861     for (i = 0; i < anfdmax; ++i)
3862     for (wl = anfds [i].head; wl; )
3863     {
3864     wn = wl->next;
3865    
3866     #if EV_EMBED_ENABLE
3867     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3868     {
3869     if (types & EV_EMBED)
3870     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3871     }
3872     else
3873     #endif
3874     #if EV_USE_INOTIFY
3875     if (ev_cb ((ev_io *)wl) == infy_cb)
3876     ;
3877     else
3878     #endif
3879 root 1.288 if ((ev_io *)wl != &pipe_w)
3880 root 1.282 if (types & EV_IO)
3881     cb (EV_A_ EV_IO, wl);
3882    
3883     wl = wn;
3884     }
3885    
3886     if (types & (EV_TIMER | EV_STAT))
3887     for (i = timercnt + HEAP0; i-- > HEAP0; )
3888     #if EV_STAT_ENABLE
3889     /*TODO: timer is not always active*/
3890     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3891     {
3892     if (types & EV_STAT)
3893     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3894     }
3895     else
3896     #endif
3897     if (types & EV_TIMER)
3898     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3899    
3900     #if EV_PERIODIC_ENABLE
3901     if (types & EV_PERIODIC)
3902     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3903     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3904     #endif
3905    
3906     #if EV_IDLE_ENABLE
3907     if (types & EV_IDLE)
3908     for (j = NUMPRI; i--; )
3909     for (i = idlecnt [j]; i--; )
3910     cb (EV_A_ EV_IDLE, idles [j][i]);
3911     #endif
3912    
3913     #if EV_FORK_ENABLE
3914     if (types & EV_FORK)
3915     for (i = forkcnt; i--; )
3916     if (ev_cb (forks [i]) != embed_fork_cb)
3917     cb (EV_A_ EV_FORK, forks [i]);
3918     #endif
3919    
3920     #if EV_ASYNC_ENABLE
3921     if (types & EV_ASYNC)
3922     for (i = asynccnt; i--; )
3923     cb (EV_A_ EV_ASYNC, asyncs [i]);
3924     #endif
3925    
3926 root 1.337 #if EV_PREPARE_ENABLE
3927 root 1.282 if (types & EV_PREPARE)
3928     for (i = preparecnt; i--; )
3929 root 1.337 # if EV_EMBED_ENABLE
3930 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3931 root 1.337 # endif
3932     cb (EV_A_ EV_PREPARE, prepares [i]);
3933 root 1.282 #endif
3934    
3935 root 1.337 #if EV_CHECK_ENABLE
3936 root 1.282 if (types & EV_CHECK)
3937     for (i = checkcnt; i--; )
3938     cb (EV_A_ EV_CHECK, checks [i]);
3939 root 1.337 #endif
3940 root 1.282
3941 root 1.337 #if EV_SIGNAL_ENABLE
3942 root 1.282 if (types & EV_SIGNAL)
3943 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
3944 root 1.282 for (wl = signals [i].head; wl; )
3945     {
3946     wn = wl->next;
3947     cb (EV_A_ EV_SIGNAL, wl);
3948     wl = wn;
3949     }
3950 root 1.337 #endif
3951 root 1.282
3952 root 1.337 #if EV_CHILD_ENABLE
3953 root 1.282 if (types & EV_CHILD)
3954 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
3955 root 1.282 for (wl = childs [i]; wl; )
3956     {
3957     wn = wl->next;
3958     cb (EV_A_ EV_CHILD, wl);
3959     wl = wn;
3960     }
3961 root 1.337 #endif
3962 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
3963     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3964     }
3965     #endif
3966    
3967 root 1.188 #if EV_MULTIPLICITY
3968     #include "ev_wrap.h"
3969     #endif
3970    
3971 root 1.354 EV_CPP(})
3972 root 1.87