ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.377
Committed: Wed Jun 8 13:11:55 2011 UTC (12 years, 11 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.376: +7 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
65     # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.354 EV_CPP(extern "C" {)
189    
190 root 1.103 #ifndef _WIN32
191 root 1.71 # include <sys/time.h>
192 root 1.45 # include <sys/wait.h>
193 root 1.140 # include <unistd.h>
194 root 1.103 #else
195 root 1.256 # include <io.h>
196 root 1.103 # define WIN32_LEAN_AND_MEAN
197     # include <windows.h>
198     # ifndef EV_SELECT_IS_WINSOCKET
199     # define EV_SELECT_IS_WINSOCKET 1
200     # endif
201 root 1.331 # undef EV_AVOID_STDIO
202 root 1.45 #endif
203 root 1.103
204 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
205     * a limit of 1024 into their select. Where people have brains,
206     * OS X engineers apparently have a vacuum. Or maybe they were
207     * ordered to have a vacuum, or they do anything for money.
208     * This might help. Or not.
209     */
210     #define _DARWIN_UNLIMITED_SELECT 1
211    
212 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
213 root 1.40
214 root 1.305 /* try to deduce the maximum number of signals on this platform */
215     #if defined (EV_NSIG)
216     /* use what's provided */
217     #elif defined (NSIG)
218     # define EV_NSIG (NSIG)
219     #elif defined(_NSIG)
220     # define EV_NSIG (_NSIG)
221     #elif defined (SIGMAX)
222     # define EV_NSIG (SIGMAX+1)
223     #elif defined (SIG_MAX)
224     # define EV_NSIG (SIG_MAX+1)
225     #elif defined (_SIG_MAX)
226     # define EV_NSIG (_SIG_MAX+1)
227     #elif defined (MAXSIG)
228     # define EV_NSIG (MAXSIG+1)
229     #elif defined (MAX_SIG)
230     # define EV_NSIG (MAX_SIG+1)
231     #elif defined (SIGARRAYSIZE)
232 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233 root 1.305 #elif defined (_sys_nsig)
234     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235     #else
236     # error "unable to find value for NSIG, please report"
237 root 1.336 /* to make it compile regardless, just remove the above line, */
238     /* but consider reporting it, too! :) */
239 root 1.306 # define EV_NSIG 65
240 root 1.305 #endif
241    
242 root 1.373 #ifndef EV_USE_FLOOR
243     # define EV_USE_FLOOR 0
244     #endif
245    
246 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
247     # if __linux && __GLIBC__ >= 2
248 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249 root 1.274 # else
250     # define EV_USE_CLOCK_SYSCALL 0
251     # endif
252     #endif
253    
254 root 1.29 #ifndef EV_USE_MONOTONIC
255 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
257 root 1.253 # else
258     # define EV_USE_MONOTONIC 0
259     # endif
260 root 1.37 #endif
261    
262 root 1.118 #ifndef EV_USE_REALTIME
263 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264 root 1.118 #endif
265    
266 root 1.193 #ifndef EV_USE_NANOSLEEP
267 root 1.253 # if _POSIX_C_SOURCE >= 199309L
268 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
269 root 1.253 # else
270     # define EV_USE_NANOSLEEP 0
271     # endif
272 root 1.193 #endif
273    
274 root 1.29 #ifndef EV_USE_SELECT
275 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
276 root 1.10 #endif
277    
278 root 1.59 #ifndef EV_USE_POLL
279 root 1.104 # ifdef _WIN32
280     # define EV_USE_POLL 0
281     # else
282 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
283 root 1.104 # endif
284 root 1.41 #endif
285    
286 root 1.29 #ifndef EV_USE_EPOLL
287 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
289 root 1.220 # else
290     # define EV_USE_EPOLL 0
291     # endif
292 root 1.10 #endif
293    
294 root 1.44 #ifndef EV_USE_KQUEUE
295     # define EV_USE_KQUEUE 0
296     #endif
297    
298 root 1.118 #ifndef EV_USE_PORT
299     # define EV_USE_PORT 0
300 root 1.40 #endif
301    
302 root 1.152 #ifndef EV_USE_INOTIFY
303 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
305 root 1.220 # else
306     # define EV_USE_INOTIFY 0
307     # endif
308 root 1.152 #endif
309    
310 root 1.149 #ifndef EV_PID_HASHSIZE
311 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312 root 1.149 #endif
313    
314 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
315 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316 root 1.152 #endif
317    
318 root 1.220 #ifndef EV_USE_EVENTFD
319     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
321 root 1.220 # else
322     # define EV_USE_EVENTFD 0
323     # endif
324     #endif
325    
326 root 1.303 #ifndef EV_USE_SIGNALFD
327 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
329 root 1.303 # else
330     # define EV_USE_SIGNALFD 0
331     # endif
332     #endif
333    
334 root 1.249 #if 0 /* debugging */
335 root 1.250 # define EV_VERIFY 3
336 root 1.249 # define EV_USE_4HEAP 1
337     # define EV_HEAP_CACHE_AT 1
338     #endif
339    
340 root 1.250 #ifndef EV_VERIFY
341 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342 root 1.250 #endif
343    
344 root 1.243 #ifndef EV_USE_4HEAP
345 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
346 root 1.243 #endif
347    
348     #ifndef EV_HEAP_CACHE_AT
349 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350 root 1.243 #endif
351    
352 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353     /* which makes programs even slower. might work on other unices, too. */
354     #if EV_USE_CLOCK_SYSCALL
355     # include <syscall.h>
356     # ifdef SYS_clock_gettime
357     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358     # undef EV_USE_MONOTONIC
359     # define EV_USE_MONOTONIC 1
360     # else
361     # undef EV_USE_CLOCK_SYSCALL
362     # define EV_USE_CLOCK_SYSCALL 0
363     # endif
364     #endif
365    
366 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
367 root 1.40
368 root 1.325 #ifdef _AIX
369     /* AIX has a completely broken poll.h header */
370     # undef EV_USE_POLL
371     # define EV_USE_POLL 0
372     #endif
373    
374 root 1.40 #ifndef CLOCK_MONOTONIC
375     # undef EV_USE_MONOTONIC
376     # define EV_USE_MONOTONIC 0
377     #endif
378    
379 root 1.31 #ifndef CLOCK_REALTIME
380 root 1.40 # undef EV_USE_REALTIME
381 root 1.31 # define EV_USE_REALTIME 0
382     #endif
383 root 1.40
384 root 1.152 #if !EV_STAT_ENABLE
385 root 1.185 # undef EV_USE_INOTIFY
386 root 1.152 # define EV_USE_INOTIFY 0
387     #endif
388    
389 root 1.193 #if !EV_USE_NANOSLEEP
390 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
391     # if !defined(_WIN32) && !defined(__hpux)
392 root 1.193 # include <sys/select.h>
393     # endif
394     #endif
395    
396 root 1.152 #if EV_USE_INOTIFY
397 root 1.273 # include <sys/statfs.h>
398 root 1.152 # include <sys/inotify.h>
399 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400     # ifndef IN_DONT_FOLLOW
401     # undef EV_USE_INOTIFY
402     # define EV_USE_INOTIFY 0
403     # endif
404 root 1.152 #endif
405    
406 root 1.185 #if EV_SELECT_IS_WINSOCKET
407     # include <winsock.h>
408     #endif
409    
410 root 1.220 #if EV_USE_EVENTFD
411     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412 root 1.221 # include <stdint.h>
413 root 1.303 # ifndef EFD_NONBLOCK
414     # define EFD_NONBLOCK O_NONBLOCK
415     # endif
416     # ifndef EFD_CLOEXEC
417 root 1.311 # ifdef O_CLOEXEC
418     # define EFD_CLOEXEC O_CLOEXEC
419     # else
420     # define EFD_CLOEXEC 02000000
421     # endif
422 root 1.303 # endif
423 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424 root 1.220 #endif
425    
426 root 1.303 #if EV_USE_SIGNALFD
427 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428     # include <stdint.h>
429     # ifndef SFD_NONBLOCK
430     # define SFD_NONBLOCK O_NONBLOCK
431     # endif
432     # ifndef SFD_CLOEXEC
433     # ifdef O_CLOEXEC
434     # define SFD_CLOEXEC O_CLOEXEC
435     # else
436     # define SFD_CLOEXEC 02000000
437     # endif
438     # endif
439 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440 root 1.314
441     struct signalfd_siginfo
442     {
443     uint32_t ssi_signo;
444     char pad[128 - sizeof (uint32_t)];
445     };
446 root 1.303 #endif
447    
448 root 1.40 /**/
449 root 1.1
450 root 1.250 #if EV_VERIFY >= 3
451 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
452 root 1.248 #else
453     # define EV_FREQUENT_CHECK do { } while (0)
454     #endif
455    
456 root 1.176 /*
457 root 1.373 * This is used to work around floating point rounding problems.
458 root 1.177 * This value is good at least till the year 4000.
459 root 1.176 */
460 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462 root 1.176
463 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
464 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465 root 1.1
466 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468 root 1.347
469 root 1.185 #if __GNUC__ >= 4
470 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
471 root 1.169 # define noinline __attribute__ ((noinline))
472 root 1.40 #else
473     # define expect(expr,value) (expr)
474 root 1.140 # define noinline
475 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
476 root 1.169 # define inline
477     # endif
478 root 1.40 #endif
479    
480     #define expect_false(expr) expect ((expr) != 0, 0)
481     #define expect_true(expr) expect ((expr) != 0, 1)
482 root 1.169 #define inline_size static inline
483    
484 root 1.338 #if EV_FEATURE_CODE
485     # define inline_speed static inline
486     #else
487 root 1.169 # define inline_speed static noinline
488     #endif
489 root 1.40
490 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491    
492     #if EV_MINPRI == EV_MAXPRI
493     # define ABSPRI(w) (((W)w), 0)
494     #else
495     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496     #endif
497 root 1.42
498 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
499 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
500 root 1.103
501 root 1.136 typedef ev_watcher *W;
502     typedef ev_watcher_list *WL;
503     typedef ev_watcher_time *WT;
504 root 1.10
505 root 1.229 #define ev_active(w) ((W)(w))->active
506 root 1.228 #define ev_at(w) ((WT)(w))->at
507    
508 root 1.279 #if EV_USE_REALTIME
509 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
510 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
511 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512     #endif
513    
514     #if EV_USE_MONOTONIC
515 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516 root 1.198 #endif
517 root 1.54
518 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
519     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520     #endif
521     #ifndef EV_WIN32_HANDLE_TO_FD
522 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523 root 1.313 #endif
524     #ifndef EV_WIN32_CLOSE_FD
525     # define EV_WIN32_CLOSE_FD(fd) close (fd)
526     #endif
527    
528 root 1.103 #ifdef _WIN32
529 root 1.98 # include "ev_win32.c"
530     #endif
531 root 1.67
532 root 1.53 /*****************************************************************************/
533 root 1.1
534 root 1.373 /* define a suitable floor function (only used by periodics atm) */
535    
536     #if EV_USE_FLOOR
537     # include <math.h>
538     # define ev_floor(v) floor (v)
539     #else
540    
541     #include <float.h>
542    
543     /* a floor() replacement function, should be independent of ev_tstamp type */
544     static ev_tstamp noinline
545     ev_floor (ev_tstamp v)
546     {
547     /* the choice of shift factor is not terribly important */
548     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550     #else
551     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552     #endif
553    
554     /* argument too large for an unsigned long? */
555     if (expect_false (v >= shift))
556     {
557     ev_tstamp f;
558    
559     if (v == v - 1.)
560     return v; /* very large number */
561    
562     f = shift * ev_floor (v * (1. / shift));
563     return f + ev_floor (v - f);
564     }
565    
566     /* special treatment for negative args? */
567     if (expect_false (v < 0.))
568     {
569     ev_tstamp f = -ev_floor (-v);
570    
571     return f - (f == v ? 0 : 1);
572     }
573    
574     /* fits into an unsigned long */
575     return (unsigned long)v;
576     }
577    
578     #endif
579    
580     /*****************************************************************************/
581    
582 root 1.356 #ifdef __linux
583     # include <sys/utsname.h>
584     #endif
585    
586 root 1.355 static unsigned int noinline
587     ev_linux_version (void)
588     {
589     #ifdef __linux
590 root 1.359 unsigned int v = 0;
591 root 1.355 struct utsname buf;
592     int i;
593     char *p = buf.release;
594    
595     if (uname (&buf))
596     return 0;
597    
598     for (i = 3+1; --i; )
599     {
600     unsigned int c = 0;
601    
602     for (;;)
603     {
604     if (*p >= '0' && *p <= '9')
605     c = c * 10 + *p++ - '0';
606     else
607     {
608     p += *p == '.';
609     break;
610     }
611     }
612    
613     v = (v << 8) | c;
614     }
615    
616     return v;
617     #else
618     return 0;
619     #endif
620     }
621    
622     /*****************************************************************************/
623    
624 root 1.331 #if EV_AVOID_STDIO
625     static void noinline
626     ev_printerr (const char *msg)
627     {
628     write (STDERR_FILENO, msg, strlen (msg));
629     }
630     #endif
631    
632 root 1.70 static void (*syserr_cb)(const char *msg);
633 root 1.69
634 root 1.141 void
635     ev_set_syserr_cb (void (*cb)(const char *msg))
636 root 1.69 {
637     syserr_cb = cb;
638     }
639    
640 root 1.141 static void noinline
641 root 1.269 ev_syserr (const char *msg)
642 root 1.69 {
643 root 1.70 if (!msg)
644     msg = "(libev) system error";
645    
646 root 1.69 if (syserr_cb)
647 root 1.70 syserr_cb (msg);
648 root 1.69 else
649     {
650 root 1.330 #if EV_AVOID_STDIO
651 root 1.331 ev_printerr (msg);
652     ev_printerr (": ");
653 root 1.365 ev_printerr (strerror (errno));
654 root 1.331 ev_printerr ("\n");
655 root 1.330 #else
656 root 1.70 perror (msg);
657 root 1.330 #endif
658 root 1.69 abort ();
659     }
660     }
661    
662 root 1.224 static void *
663     ev_realloc_emul (void *ptr, long size)
664     {
665 root 1.334 #if __GLIBC__
666     return realloc (ptr, size);
667     #else
668 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
669 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
670 root 1.224 * the single unix specification, so work around them here.
671     */
672 root 1.333
673 root 1.224 if (size)
674     return realloc (ptr, size);
675    
676     free (ptr);
677     return 0;
678 root 1.334 #endif
679 root 1.224 }
680    
681     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
682 root 1.69
683 root 1.141 void
684 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
685 root 1.69 {
686     alloc = cb;
687     }
688    
689 root 1.150 inline_speed void *
690 root 1.155 ev_realloc (void *ptr, long size)
691 root 1.69 {
692 root 1.224 ptr = alloc (ptr, size);
693 root 1.69
694     if (!ptr && size)
695     {
696 root 1.330 #if EV_AVOID_STDIO
697 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698 root 1.330 #else
699 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700 root 1.330 #endif
701 root 1.69 abort ();
702     }
703    
704     return ptr;
705     }
706    
707     #define ev_malloc(size) ev_realloc (0, (size))
708     #define ev_free(ptr) ev_realloc ((ptr), 0)
709    
710     /*****************************************************************************/
711    
712 root 1.298 /* set in reify when reification needed */
713     #define EV_ANFD_REIFY 1
714    
715 root 1.288 /* file descriptor info structure */
716 root 1.53 typedef struct
717     {
718 root 1.68 WL head;
719 root 1.288 unsigned char events; /* the events watched for */
720 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
722 root 1.269 unsigned char unused;
723     #if EV_USE_EPOLL
724 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
725 root 1.269 #endif
726 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
727 root 1.103 SOCKET handle;
728     #endif
729 root 1.357 #if EV_USE_IOCP
730     OVERLAPPED or, ow;
731     #endif
732 root 1.53 } ANFD;
733 root 1.1
734 root 1.288 /* stores the pending event set for a given watcher */
735 root 1.53 typedef struct
736     {
737     W w;
738 root 1.288 int events; /* the pending event set for the given watcher */
739 root 1.53 } ANPENDING;
740 root 1.51
741 root 1.155 #if EV_USE_INOTIFY
742 root 1.241 /* hash table entry per inotify-id */
743 root 1.152 typedef struct
744     {
745     WL head;
746 root 1.155 } ANFS;
747 root 1.152 #endif
748    
749 root 1.241 /* Heap Entry */
750     #if EV_HEAP_CACHE_AT
751 root 1.288 /* a heap element */
752 root 1.241 typedef struct {
753 root 1.243 ev_tstamp at;
754 root 1.241 WT w;
755     } ANHE;
756    
757 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
758     #define ANHE_at(he) (he).at /* access cached at, read-only */
759     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760 root 1.241 #else
761 root 1.288 /* a heap element */
762 root 1.241 typedef WT ANHE;
763    
764 root 1.248 #define ANHE_w(he) (he)
765     #define ANHE_at(he) (he)->at
766     #define ANHE_at_cache(he)
767 root 1.241 #endif
768    
769 root 1.55 #if EV_MULTIPLICITY
770 root 1.54
771 root 1.80 struct ev_loop
772     {
773 root 1.86 ev_tstamp ev_rt_now;
774 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
775 root 1.80 #define VAR(name,decl) decl;
776     #include "ev_vars.h"
777     #undef VAR
778     };
779     #include "ev_wrap.h"
780    
781 root 1.116 static struct ev_loop default_loop_struct;
782     struct ev_loop *ev_default_loop_ptr;
783 root 1.54
784 root 1.53 #else
785 root 1.54
786 root 1.86 ev_tstamp ev_rt_now;
787 root 1.80 #define VAR(name,decl) static decl;
788     #include "ev_vars.h"
789     #undef VAR
790    
791 root 1.116 static int ev_default_loop_ptr;
792 root 1.54
793 root 1.51 #endif
794 root 1.1
795 root 1.338 #if EV_FEATURE_API
796 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
799     #else
800 root 1.298 # define EV_RELEASE_CB (void)0
801     # define EV_ACQUIRE_CB (void)0
802 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803     #endif
804    
805 root 1.353 #define EVBREAK_RECURSE 0x80
806 root 1.298
807 root 1.8 /*****************************************************************************/
808    
809 root 1.292 #ifndef EV_HAVE_EV_TIME
810 root 1.141 ev_tstamp
811 root 1.1 ev_time (void)
812     {
813 root 1.29 #if EV_USE_REALTIME
814 root 1.279 if (expect_true (have_realtime))
815     {
816     struct timespec ts;
817     clock_gettime (CLOCK_REALTIME, &ts);
818     return ts.tv_sec + ts.tv_nsec * 1e-9;
819     }
820     #endif
821    
822 root 1.1 struct timeval tv;
823     gettimeofday (&tv, 0);
824     return tv.tv_sec + tv.tv_usec * 1e-6;
825     }
826 root 1.292 #endif
827 root 1.1
828 root 1.284 inline_size ev_tstamp
829 root 1.1 get_clock (void)
830     {
831 root 1.29 #if EV_USE_MONOTONIC
832 root 1.40 if (expect_true (have_monotonic))
833 root 1.1 {
834     struct timespec ts;
835     clock_gettime (CLOCK_MONOTONIC, &ts);
836     return ts.tv_sec + ts.tv_nsec * 1e-9;
837     }
838     #endif
839    
840     return ev_time ();
841     }
842    
843 root 1.85 #if EV_MULTIPLICITY
844 root 1.51 ev_tstamp
845     ev_now (EV_P)
846     {
847 root 1.85 return ev_rt_now;
848 root 1.51 }
849 root 1.85 #endif
850 root 1.51
851 root 1.193 void
852     ev_sleep (ev_tstamp delay)
853     {
854     if (delay > 0.)
855     {
856     #if EV_USE_NANOSLEEP
857     struct timespec ts;
858    
859 root 1.348 EV_TS_SET (ts, delay);
860 root 1.193 nanosleep (&ts, 0);
861     #elif defined(_WIN32)
862 root 1.217 Sleep ((unsigned long)(delay * 1e3));
863 root 1.193 #else
864     struct timeval tv;
865    
866 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
867 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
868 root 1.257 /* by older ones */
869 sf-exg 1.349 EV_TV_SET (tv, delay);
870 root 1.193 select (0, 0, 0, 0, &tv);
871     #endif
872     }
873     }
874    
875     /*****************************************************************************/
876    
877 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
878 root 1.232
879 root 1.288 /* find a suitable new size for the given array, */
880 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
881 root 1.284 inline_size int
882 root 1.163 array_nextsize (int elem, int cur, int cnt)
883     {
884     int ncur = cur + 1;
885    
886     do
887     ncur <<= 1;
888     while (cnt > ncur);
889    
890 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
891     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
892 root 1.163 {
893     ncur *= elem;
894 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
895 root 1.163 ncur = ncur - sizeof (void *) * 4;
896     ncur /= elem;
897     }
898    
899     return ncur;
900     }
901    
902 root 1.171 static noinline void *
903 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
904     {
905     *cur = array_nextsize (elem, *cur, cnt);
906     return ev_realloc (base, elem * *cur);
907     }
908 root 1.29
909 root 1.265 #define array_init_zero(base,count) \
910     memset ((void *)(base), 0, sizeof (*(base)) * (count))
911    
912 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
913 root 1.163 if (expect_false ((cnt) > (cur))) \
914 root 1.69 { \
915 root 1.163 int ocur_ = (cur); \
916     (base) = (type *)array_realloc \
917     (sizeof (type), (base), &(cur), (cnt)); \
918     init ((base) + (ocur_), (cur) - ocur_); \
919 root 1.1 }
920    
921 root 1.163 #if 0
922 root 1.74 #define array_slim(type,stem) \
923 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
924     { \
925     stem ## max = array_roundsize (stem ## cnt >> 1); \
926 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
927 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
928     }
929 root 1.163 #endif
930 root 1.67
931 root 1.65 #define array_free(stem, idx) \
932 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
933 root 1.65
934 root 1.8 /*****************************************************************************/
935    
936 root 1.288 /* dummy callback for pending events */
937     static void noinline
938     pendingcb (EV_P_ ev_prepare *w, int revents)
939     {
940     }
941    
942 root 1.140 void noinline
943 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
944 root 1.1 {
945 root 1.78 W w_ = (W)w;
946 root 1.171 int pri = ABSPRI (w_);
947 root 1.78
948 root 1.123 if (expect_false (w_->pending))
949 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
950     else
951 root 1.32 {
952 root 1.171 w_->pending = ++pendingcnt [pri];
953     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
954     pendings [pri][w_->pending - 1].w = w_;
955     pendings [pri][w_->pending - 1].events = revents;
956 root 1.32 }
957 root 1.1 }
958    
959 root 1.284 inline_speed void
960     feed_reverse (EV_P_ W w)
961     {
962     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963     rfeeds [rfeedcnt++] = w;
964     }
965    
966     inline_size void
967     feed_reverse_done (EV_P_ int revents)
968     {
969     do
970     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971     while (rfeedcnt);
972     }
973    
974     inline_speed void
975 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
976 root 1.27 {
977     int i;
978    
979     for (i = 0; i < eventcnt; ++i)
980 root 1.78 ev_feed_event (EV_A_ events [i], type);
981 root 1.27 }
982    
983 root 1.141 /*****************************************************************************/
984    
985 root 1.284 inline_speed void
986 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
987 root 1.1 {
988     ANFD *anfd = anfds + fd;
989 root 1.136 ev_io *w;
990 root 1.1
991 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
992 root 1.1 {
993 root 1.79 int ev = w->events & revents;
994 root 1.1
995     if (ev)
996 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
997 root 1.1 }
998     }
999    
1000 root 1.298 /* do not submit kernel events for fds that have reify set */
1001     /* because that means they changed while we were polling for new events */
1002     inline_speed void
1003     fd_event (EV_P_ int fd, int revents)
1004     {
1005     ANFD *anfd = anfds + fd;
1006    
1007     if (expect_true (!anfd->reify))
1008 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1009 root 1.298 }
1010    
1011 root 1.79 void
1012     ev_feed_fd_event (EV_P_ int fd, int revents)
1013     {
1014 root 1.168 if (fd >= 0 && fd < anfdmax)
1015 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1016 root 1.79 }
1017    
1018 root 1.288 /* make sure the external fd watch events are in-sync */
1019     /* with the kernel/libev internal state */
1020 root 1.284 inline_size void
1021 root 1.51 fd_reify (EV_P)
1022 root 1.9 {
1023     int i;
1024    
1025 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1026     for (i = 0; i < fdchangecnt; ++i)
1027     {
1028     int fd = fdchanges [i];
1029     ANFD *anfd = anfds + fd;
1030    
1031 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1032 root 1.371 {
1033     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034    
1035     if (handle != anfd->handle)
1036     {
1037     unsigned long arg;
1038    
1039     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040    
1041     /* handle changed, but fd didn't - we need to do it in two steps */
1042     backend_modify (EV_A_ fd, anfd->events, 0);
1043     anfd->events = 0;
1044     anfd->handle = handle;
1045     }
1046     }
1047     }
1048     #endif
1049    
1050 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1051     {
1052     int fd = fdchanges [i];
1053     ANFD *anfd = anfds + fd;
1054 root 1.136 ev_io *w;
1055 root 1.27
1056 root 1.350 unsigned char o_events = anfd->events;
1057     unsigned char o_reify = anfd->reify;
1058 root 1.27
1059 root 1.350 anfd->reify = 0;
1060 root 1.27
1061 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1062     {
1063     anfd->events = 0;
1064 root 1.184
1065 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1066     anfd->events |= (unsigned char)w->events;
1067 root 1.27
1068 root 1.351 if (o_events != anfd->events)
1069 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1070     }
1071    
1072     if (o_reify & EV__IOFDSET)
1073     backend_modify (EV_A_ fd, o_events, anfd->events);
1074 root 1.27 }
1075    
1076     fdchangecnt = 0;
1077     }
1078    
1079 root 1.288 /* something about the given fd changed */
1080 root 1.284 inline_size void
1081 root 1.183 fd_change (EV_P_ int fd, int flags)
1082 root 1.27 {
1083 root 1.183 unsigned char reify = anfds [fd].reify;
1084 root 1.184 anfds [fd].reify |= flags;
1085 root 1.27
1086 root 1.183 if (expect_true (!reify))
1087     {
1088     ++fdchangecnt;
1089     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1090     fdchanges [fdchangecnt - 1] = fd;
1091     }
1092 root 1.9 }
1093    
1094 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095 root 1.284 inline_speed void
1096 root 1.51 fd_kill (EV_P_ int fd)
1097 root 1.41 {
1098 root 1.136 ev_io *w;
1099 root 1.41
1100 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1101 root 1.41 {
1102 root 1.51 ev_io_stop (EV_A_ w);
1103 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1104 root 1.41 }
1105     }
1106    
1107 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1108 root 1.284 inline_size int
1109 root 1.71 fd_valid (int fd)
1110     {
1111 root 1.103 #ifdef _WIN32
1112 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1113 root 1.71 #else
1114     return fcntl (fd, F_GETFD) != -1;
1115     #endif
1116     }
1117    
1118 root 1.19 /* called on EBADF to verify fds */
1119 root 1.140 static void noinline
1120 root 1.51 fd_ebadf (EV_P)
1121 root 1.19 {
1122     int fd;
1123    
1124     for (fd = 0; fd < anfdmax; ++fd)
1125 root 1.27 if (anfds [fd].events)
1126 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1127 root 1.51 fd_kill (EV_A_ fd);
1128 root 1.41 }
1129    
1130     /* called on ENOMEM in select/poll to kill some fds and retry */
1131 root 1.140 static void noinline
1132 root 1.51 fd_enomem (EV_P)
1133 root 1.41 {
1134 root 1.62 int fd;
1135 root 1.41
1136 root 1.62 for (fd = anfdmax; fd--; )
1137 root 1.41 if (anfds [fd].events)
1138     {
1139 root 1.51 fd_kill (EV_A_ fd);
1140 root 1.307 break;
1141 root 1.41 }
1142 root 1.19 }
1143    
1144 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1145 root 1.140 static void noinline
1146 root 1.56 fd_rearm_all (EV_P)
1147     {
1148     int fd;
1149    
1150     for (fd = 0; fd < anfdmax; ++fd)
1151     if (anfds [fd].events)
1152     {
1153     anfds [fd].events = 0;
1154 root 1.268 anfds [fd].emask = 0;
1155 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1156 root 1.56 }
1157     }
1158    
1159 root 1.336 /* used to prepare libev internal fd's */
1160     /* this is not fork-safe */
1161     inline_speed void
1162     fd_intern (int fd)
1163     {
1164     #ifdef _WIN32
1165     unsigned long arg = 1;
1166     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1167     #else
1168     fcntl (fd, F_SETFD, FD_CLOEXEC);
1169     fcntl (fd, F_SETFL, O_NONBLOCK);
1170     #endif
1171     }
1172    
1173 root 1.8 /*****************************************************************************/
1174    
1175 root 1.235 /*
1176 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1177 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1178     * the branching factor of the d-tree.
1179     */
1180    
1181     /*
1182 root 1.235 * at the moment we allow libev the luxury of two heaps,
1183     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1184     * which is more cache-efficient.
1185     * the difference is about 5% with 50000+ watchers.
1186     */
1187 root 1.241 #if EV_USE_4HEAP
1188 root 1.235
1189 root 1.237 #define DHEAP 4
1190     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1191 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1192 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1193 root 1.235
1194     /* away from the root */
1195 root 1.284 inline_speed void
1196 root 1.241 downheap (ANHE *heap, int N, int k)
1197 root 1.235 {
1198 root 1.241 ANHE he = heap [k];
1199     ANHE *E = heap + N + HEAP0;
1200 root 1.235
1201     for (;;)
1202     {
1203     ev_tstamp minat;
1204 root 1.241 ANHE *minpos;
1205 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1206 root 1.235
1207 root 1.248 /* find minimum child */
1208 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1209 root 1.235 {
1210 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1211     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1212     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1213     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1214 root 1.235 }
1215 root 1.240 else if (pos < E)
1216 root 1.235 {
1217 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1218     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1219     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1220     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1221 root 1.235 }
1222 root 1.240 else
1223     break;
1224 root 1.235
1225 root 1.241 if (ANHE_at (he) <= minat)
1226 root 1.235 break;
1227    
1228 root 1.247 heap [k] = *minpos;
1229 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1230 root 1.235
1231     k = minpos - heap;
1232     }
1233    
1234 root 1.247 heap [k] = he;
1235 root 1.241 ev_active (ANHE_w (he)) = k;
1236 root 1.235 }
1237    
1238 root 1.248 #else /* 4HEAP */
1239 root 1.235
1240     #define HEAP0 1
1241 root 1.247 #define HPARENT(k) ((k) >> 1)
1242 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1243 root 1.235
1244 root 1.248 /* away from the root */
1245 root 1.284 inline_speed void
1246 root 1.248 downheap (ANHE *heap, int N, int k)
1247 root 1.1 {
1248 root 1.241 ANHE he = heap [k];
1249 root 1.1
1250 root 1.228 for (;;)
1251 root 1.1 {
1252 root 1.248 int c = k << 1;
1253 root 1.179
1254 root 1.309 if (c >= N + HEAP0)
1255 root 1.179 break;
1256    
1257 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1258     ? 1 : 0;
1259    
1260     if (ANHE_at (he) <= ANHE_at (heap [c]))
1261     break;
1262    
1263     heap [k] = heap [c];
1264 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1265 root 1.248
1266     k = c;
1267 root 1.1 }
1268    
1269 root 1.243 heap [k] = he;
1270 root 1.248 ev_active (ANHE_w (he)) = k;
1271 root 1.1 }
1272 root 1.248 #endif
1273 root 1.1
1274 root 1.248 /* towards the root */
1275 root 1.284 inline_speed void
1276 root 1.248 upheap (ANHE *heap, int k)
1277 root 1.1 {
1278 root 1.241 ANHE he = heap [k];
1279 root 1.1
1280 root 1.179 for (;;)
1281 root 1.1 {
1282 root 1.248 int p = HPARENT (k);
1283 root 1.179
1284 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1285 root 1.179 break;
1286 root 1.1
1287 root 1.248 heap [k] = heap [p];
1288 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1289 root 1.248 k = p;
1290 root 1.1 }
1291    
1292 root 1.241 heap [k] = he;
1293     ev_active (ANHE_w (he)) = k;
1294 root 1.1 }
1295    
1296 root 1.288 /* move an element suitably so it is in a correct place */
1297 root 1.284 inline_size void
1298 root 1.241 adjustheap (ANHE *heap, int N, int k)
1299 root 1.84 {
1300 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1301 root 1.247 upheap (heap, k);
1302     else
1303     downheap (heap, N, k);
1304 root 1.84 }
1305    
1306 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1307 root 1.284 inline_size void
1308 root 1.248 reheap (ANHE *heap, int N)
1309     {
1310     int i;
1311 root 1.251
1312 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1313     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1314     for (i = 0; i < N; ++i)
1315     upheap (heap, i + HEAP0);
1316     }
1317    
1318 root 1.8 /*****************************************************************************/
1319    
1320 root 1.288 /* associate signal watchers to a signal signal */
1321 root 1.7 typedef struct
1322     {
1323 root 1.307 EV_ATOMIC_T pending;
1324 root 1.306 #if EV_MULTIPLICITY
1325     EV_P;
1326     #endif
1327 root 1.68 WL head;
1328 root 1.7 } ANSIG;
1329    
1330 root 1.306 static ANSIG signals [EV_NSIG - 1];
1331 root 1.7
1332 root 1.207 /*****************************************************************************/
1333    
1334 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1335 root 1.207
1336     static void noinline
1337     evpipe_init (EV_P)
1338     {
1339 root 1.288 if (!ev_is_active (&pipe_w))
1340 root 1.207 {
1341 root 1.336 # if EV_USE_EVENTFD
1342 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343     if (evfd < 0 && errno == EINVAL)
1344     evfd = eventfd (0, 0);
1345    
1346     if (evfd >= 0)
1347 root 1.220 {
1348     evpipe [0] = -1;
1349 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1350 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1351 root 1.220 }
1352     else
1353 root 1.336 # endif
1354 root 1.220 {
1355     while (pipe (evpipe))
1356 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1357 root 1.207
1358 root 1.220 fd_intern (evpipe [0]);
1359     fd_intern (evpipe [1]);
1360 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1361 root 1.220 }
1362 root 1.207
1363 root 1.288 ev_io_start (EV_A_ &pipe_w);
1364 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1365 root 1.207 }
1366     }
1367    
1368 root 1.284 inline_size void
1369 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1370 root 1.207 {
1371 root 1.214 if (!*flag)
1372 root 1.207 {
1373 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1374 root 1.336 char dummy;
1375 root 1.214
1376     *flag = 1;
1377 root 1.220
1378     #if EV_USE_EVENTFD
1379     if (evfd >= 0)
1380     {
1381     uint64_t counter = 1;
1382     write (evfd, &counter, sizeof (uint64_t));
1383     }
1384     else
1385     #endif
1386 root 1.346 /* win32 people keep sending patches that change this write() to send() */
1387     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1388     /* so when you think this write should be a send instead, please find out */
1389     /* where your send() is from - it's definitely not the microsoft send, and */
1390     /* tell me. thank you. */
1391 root 1.336 write (evpipe [1], &dummy, 1);
1392 root 1.214
1393 root 1.207 errno = old_errno;
1394     }
1395     }
1396    
1397 root 1.288 /* called whenever the libev signal pipe */
1398     /* got some events (signal, async) */
1399 root 1.207 static void
1400     pipecb (EV_P_ ev_io *iow, int revents)
1401     {
1402 root 1.307 int i;
1403    
1404 root 1.220 #if EV_USE_EVENTFD
1405     if (evfd >= 0)
1406     {
1407 root 1.232 uint64_t counter;
1408 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1409     }
1410     else
1411     #endif
1412     {
1413     char dummy;
1414 root 1.346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1415 root 1.220 read (evpipe [0], &dummy, 1);
1416     }
1417 root 1.207
1418 root 1.369 #if EV_SIGNAL_ENABLE
1419 root 1.307 if (sig_pending)
1420 root 1.372 {
1421 root 1.307 sig_pending = 0;
1422 root 1.207
1423 root 1.307 for (i = EV_NSIG - 1; i--; )
1424     if (expect_false (signals [i].pending))
1425     ev_feed_signal_event (EV_A_ i + 1);
1426 root 1.207 }
1427 root 1.369 #endif
1428 root 1.207
1429 root 1.209 #if EV_ASYNC_ENABLE
1430 root 1.307 if (async_pending)
1431 root 1.207 {
1432 root 1.307 async_pending = 0;
1433 root 1.207
1434     for (i = asynccnt; i--; )
1435     if (asyncs [i]->sent)
1436     {
1437     asyncs [i]->sent = 0;
1438     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1439     }
1440     }
1441 root 1.209 #endif
1442 root 1.207 }
1443    
1444     /*****************************************************************************/
1445    
1446 root 1.366 void
1447     ev_feed_signal (int signum)
1448 root 1.7 {
1449 root 1.207 #if EV_MULTIPLICITY
1450 root 1.306 EV_P = signals [signum - 1].loop;
1451 root 1.366
1452     if (!EV_A)
1453     return;
1454 root 1.207 #endif
1455    
1456 root 1.366 signals [signum - 1].pending = 1;
1457     evpipe_write (EV_A_ &sig_pending);
1458     }
1459    
1460     static void
1461     ev_sighandler (int signum)
1462     {
1463 root 1.322 #ifdef _WIN32
1464 root 1.218 signal (signum, ev_sighandler);
1465 root 1.67 #endif
1466    
1467 root 1.366 ev_feed_signal (signum);
1468 root 1.7 }
1469    
1470 root 1.140 void noinline
1471 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1472     {
1473 root 1.80 WL w;
1474    
1475 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1476     return;
1477    
1478     --signum;
1479    
1480 root 1.79 #if EV_MULTIPLICITY
1481 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1482     /* or, likely more useful, feeding a signal nobody is waiting for */
1483 root 1.79
1484 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1485 root 1.306 return;
1486 root 1.307 #endif
1487 root 1.306
1488 root 1.307 signals [signum].pending = 0;
1489 root 1.79
1490     for (w = signals [signum].head; w; w = w->next)
1491     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1492     }
1493    
1494 root 1.303 #if EV_USE_SIGNALFD
1495     static void
1496     sigfdcb (EV_P_ ev_io *iow, int revents)
1497     {
1498 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1499 root 1.303
1500     for (;;)
1501     {
1502     ssize_t res = read (sigfd, si, sizeof (si));
1503    
1504     /* not ISO-C, as res might be -1, but works with SuS */
1505     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1506     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1507    
1508     if (res < (ssize_t)sizeof (si))
1509     break;
1510     }
1511     }
1512     #endif
1513    
1514 root 1.336 #endif
1515    
1516 root 1.8 /*****************************************************************************/
1517    
1518 root 1.336 #if EV_CHILD_ENABLE
1519 root 1.182 static WL childs [EV_PID_HASHSIZE];
1520 root 1.71
1521 root 1.136 static ev_signal childev;
1522 root 1.59
1523 root 1.206 #ifndef WIFCONTINUED
1524     # define WIFCONTINUED(status) 0
1525     #endif
1526    
1527 root 1.288 /* handle a single child status event */
1528 root 1.284 inline_speed void
1529 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1530 root 1.47 {
1531 root 1.136 ev_child *w;
1532 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1533 root 1.47
1534 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1535 root 1.206 {
1536     if ((w->pid == pid || !w->pid)
1537     && (!traced || (w->flags & 1)))
1538     {
1539 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1540 root 1.206 w->rpid = pid;
1541     w->rstatus = status;
1542     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1543     }
1544     }
1545 root 1.47 }
1546    
1547 root 1.142 #ifndef WCONTINUED
1548     # define WCONTINUED 0
1549     #endif
1550    
1551 root 1.288 /* called on sigchld etc., calls waitpid */
1552 root 1.47 static void
1553 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1554 root 1.22 {
1555     int pid, status;
1556    
1557 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1558     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1559     if (!WCONTINUED
1560     || errno != EINVAL
1561     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1562     return;
1563    
1564 root 1.216 /* make sure we are called again until all children have been reaped */
1565 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1566     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1567 root 1.47
1568 root 1.216 child_reap (EV_A_ pid, pid, status);
1569 root 1.338 if ((EV_PID_HASHSIZE) > 1)
1570 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1571 root 1.22 }
1572    
1573 root 1.45 #endif
1574    
1575 root 1.22 /*****************************************************************************/
1576    
1577 root 1.357 #if EV_USE_IOCP
1578     # include "ev_iocp.c"
1579     #endif
1580 root 1.118 #if EV_USE_PORT
1581     # include "ev_port.c"
1582     #endif
1583 root 1.44 #if EV_USE_KQUEUE
1584     # include "ev_kqueue.c"
1585     #endif
1586 root 1.29 #if EV_USE_EPOLL
1587 root 1.1 # include "ev_epoll.c"
1588     #endif
1589 root 1.59 #if EV_USE_POLL
1590 root 1.41 # include "ev_poll.c"
1591     #endif
1592 root 1.29 #if EV_USE_SELECT
1593 root 1.1 # include "ev_select.c"
1594     #endif
1595    
1596 root 1.24 int
1597     ev_version_major (void)
1598     {
1599     return EV_VERSION_MAJOR;
1600     }
1601    
1602     int
1603     ev_version_minor (void)
1604     {
1605     return EV_VERSION_MINOR;
1606     }
1607    
1608 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1609 root 1.140 int inline_size
1610 root 1.51 enable_secure (void)
1611 root 1.41 {
1612 root 1.103 #ifdef _WIN32
1613 root 1.49 return 0;
1614     #else
1615 root 1.41 return getuid () != geteuid ()
1616     || getgid () != getegid ();
1617 root 1.49 #endif
1618 root 1.41 }
1619    
1620 root 1.111 unsigned int
1621 root 1.129 ev_supported_backends (void)
1622     {
1623 root 1.130 unsigned int flags = 0;
1624 root 1.129
1625     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1626     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1627     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1628     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1629     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1630    
1631     return flags;
1632     }
1633    
1634     unsigned int
1635 root 1.130 ev_recommended_backends (void)
1636 root 1.1 {
1637 root 1.131 unsigned int flags = ev_supported_backends ();
1638 root 1.129
1639     #ifndef __NetBSD__
1640     /* kqueue is borked on everything but netbsd apparently */
1641     /* it usually doesn't work correctly on anything but sockets and pipes */
1642     flags &= ~EVBACKEND_KQUEUE;
1643     #endif
1644     #ifdef __APPLE__
1645 root 1.278 /* only select works correctly on that "unix-certified" platform */
1646     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1647     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1648 root 1.129 #endif
1649 root 1.342 #ifdef __FreeBSD__
1650     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1651     #endif
1652 root 1.129
1653     return flags;
1654 root 1.51 }
1655    
1656 root 1.130 unsigned int
1657 root 1.134 ev_embeddable_backends (void)
1658     {
1659 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1660    
1661 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1662 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1663     flags &= ~EVBACKEND_EPOLL;
1664 root 1.196
1665     return flags;
1666 root 1.134 }
1667    
1668     unsigned int
1669 root 1.130 ev_backend (EV_P)
1670     {
1671     return backend;
1672     }
1673    
1674 root 1.338 #if EV_FEATURE_API
1675 root 1.162 unsigned int
1676 root 1.340 ev_iteration (EV_P)
1677 root 1.162 {
1678     return loop_count;
1679     }
1680    
1681 root 1.294 unsigned int
1682 root 1.340 ev_depth (EV_P)
1683 root 1.294 {
1684     return loop_depth;
1685     }
1686    
1687 root 1.193 void
1688     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1689     {
1690     io_blocktime = interval;
1691     }
1692    
1693     void
1694     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1695     {
1696     timeout_blocktime = interval;
1697     }
1698    
1699 root 1.297 void
1700     ev_set_userdata (EV_P_ void *data)
1701     {
1702     userdata = data;
1703     }
1704    
1705     void *
1706     ev_userdata (EV_P)
1707     {
1708     return userdata;
1709     }
1710    
1711     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1712     {
1713     invoke_cb = invoke_pending_cb;
1714     }
1715    
1716 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1717 root 1.297 {
1718 root 1.298 release_cb = release;
1719     acquire_cb = acquire;
1720 root 1.297 }
1721     #endif
1722    
1723 root 1.288 /* initialise a loop structure, must be zero-initialised */
1724 root 1.151 static void noinline
1725 root 1.108 loop_init (EV_P_ unsigned int flags)
1726 root 1.51 {
1727 root 1.130 if (!backend)
1728 root 1.23 {
1729 root 1.366 origflags = flags;
1730    
1731 root 1.279 #if EV_USE_REALTIME
1732     if (!have_realtime)
1733     {
1734     struct timespec ts;
1735    
1736     if (!clock_gettime (CLOCK_REALTIME, &ts))
1737     have_realtime = 1;
1738     }
1739     #endif
1740    
1741 root 1.29 #if EV_USE_MONOTONIC
1742 root 1.279 if (!have_monotonic)
1743     {
1744     struct timespec ts;
1745    
1746     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1747     have_monotonic = 1;
1748     }
1749 root 1.1 #endif
1750    
1751 root 1.306 /* pid check not overridable via env */
1752     #ifndef _WIN32
1753     if (flags & EVFLAG_FORKCHECK)
1754     curpid = getpid ();
1755     #endif
1756    
1757     if (!(flags & EVFLAG_NOENV)
1758     && !enable_secure ()
1759     && getenv ("LIBEV_FLAGS"))
1760     flags = atoi (getenv ("LIBEV_FLAGS"));
1761    
1762 root 1.209 ev_rt_now = ev_time ();
1763     mn_now = get_clock ();
1764     now_floor = mn_now;
1765     rtmn_diff = ev_rt_now - mn_now;
1766 root 1.338 #if EV_FEATURE_API
1767 root 1.296 invoke_cb = ev_invoke_pending;
1768 root 1.297 #endif
1769 root 1.1
1770 root 1.193 io_blocktime = 0.;
1771     timeout_blocktime = 0.;
1772 root 1.209 backend = 0;
1773     backend_fd = -1;
1774 root 1.307 sig_pending = 0;
1775     #if EV_ASYNC_ENABLE
1776     async_pending = 0;
1777     #endif
1778 root 1.209 #if EV_USE_INOTIFY
1779 root 1.306 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1780 root 1.209 #endif
1781 root 1.303 #if EV_USE_SIGNALFD
1782 root 1.321 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1783 root 1.303 #endif
1784 root 1.193
1785 root 1.366 if (!(flags & EVBACKEND_MASK))
1786 root 1.129 flags |= ev_recommended_backends ();
1787 root 1.41
1788 root 1.357 #if EV_USE_IOCP
1789     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1790     #endif
1791 root 1.118 #if EV_USE_PORT
1792 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1793 root 1.118 #endif
1794 root 1.44 #if EV_USE_KQUEUE
1795 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1796 root 1.44 #endif
1797 root 1.29 #if EV_USE_EPOLL
1798 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1799 root 1.41 #endif
1800 root 1.59 #if EV_USE_POLL
1801 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1802 root 1.1 #endif
1803 root 1.29 #if EV_USE_SELECT
1804 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1805 root 1.1 #endif
1806 root 1.70
1807 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1808    
1809 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1810 root 1.288 ev_init (&pipe_w, pipecb);
1811     ev_set_priority (&pipe_w, EV_MAXPRI);
1812 root 1.336 #endif
1813 root 1.56 }
1814     }
1815    
1816 root 1.288 /* free up a loop structure */
1817 root 1.359 void
1818     ev_loop_destroy (EV_P)
1819 root 1.56 {
1820 root 1.65 int i;
1821    
1822 root 1.364 #if EV_MULTIPLICITY
1823 root 1.363 /* mimic free (0) */
1824     if (!EV_A)
1825     return;
1826 root 1.364 #endif
1827 root 1.363
1828 root 1.361 #if EV_CLEANUP_ENABLE
1829     /* queue cleanup watchers (and execute them) */
1830     if (expect_false (cleanupcnt))
1831     {
1832     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1833     EV_INVOKE_PENDING;
1834     }
1835     #endif
1836    
1837 root 1.359 #if EV_CHILD_ENABLE
1838     if (ev_is_active (&childev))
1839     {
1840     ev_ref (EV_A); /* child watcher */
1841     ev_signal_stop (EV_A_ &childev);
1842     }
1843     #endif
1844    
1845 root 1.288 if (ev_is_active (&pipe_w))
1846 root 1.207 {
1847 root 1.303 /*ev_ref (EV_A);*/
1848     /*ev_io_stop (EV_A_ &pipe_w);*/
1849 root 1.207
1850 root 1.220 #if EV_USE_EVENTFD
1851     if (evfd >= 0)
1852     close (evfd);
1853     #endif
1854    
1855     if (evpipe [0] >= 0)
1856     {
1857 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1858     EV_WIN32_CLOSE_FD (evpipe [1]);
1859 root 1.220 }
1860 root 1.207 }
1861    
1862 root 1.303 #if EV_USE_SIGNALFD
1863     if (ev_is_active (&sigfd_w))
1864 root 1.317 close (sigfd);
1865 root 1.303 #endif
1866    
1867 root 1.152 #if EV_USE_INOTIFY
1868     if (fs_fd >= 0)
1869     close (fs_fd);
1870     #endif
1871    
1872     if (backend_fd >= 0)
1873     close (backend_fd);
1874    
1875 root 1.357 #if EV_USE_IOCP
1876     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1877     #endif
1878 root 1.118 #if EV_USE_PORT
1879 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1880 root 1.118 #endif
1881 root 1.56 #if EV_USE_KQUEUE
1882 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1883 root 1.56 #endif
1884     #if EV_USE_EPOLL
1885 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1886 root 1.56 #endif
1887 root 1.59 #if EV_USE_POLL
1888 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1889 root 1.56 #endif
1890     #if EV_USE_SELECT
1891 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1892 root 1.56 #endif
1893 root 1.1
1894 root 1.65 for (i = NUMPRI; i--; )
1895 root 1.164 {
1896     array_free (pending, [i]);
1897     #if EV_IDLE_ENABLE
1898     array_free (idle, [i]);
1899     #endif
1900     }
1901 root 1.65
1902 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
1903 root 1.186
1904 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1905 root 1.284 array_free (rfeed, EMPTY);
1906 root 1.164 array_free (fdchange, EMPTY);
1907     array_free (timer, EMPTY);
1908 root 1.140 #if EV_PERIODIC_ENABLE
1909 root 1.164 array_free (periodic, EMPTY);
1910 root 1.93 #endif
1911 root 1.187 #if EV_FORK_ENABLE
1912     array_free (fork, EMPTY);
1913     #endif
1914 root 1.360 #if EV_CLEANUP_ENABLE
1915     array_free (cleanup, EMPTY);
1916     #endif
1917 root 1.164 array_free (prepare, EMPTY);
1918     array_free (check, EMPTY);
1919 root 1.209 #if EV_ASYNC_ENABLE
1920     array_free (async, EMPTY);
1921     #endif
1922 root 1.65
1923 root 1.130 backend = 0;
1924 root 1.359
1925     #if EV_MULTIPLICITY
1926     if (ev_is_default_loop (EV_A))
1927     #endif
1928     ev_default_loop_ptr = 0;
1929     #if EV_MULTIPLICITY
1930     else
1931     ev_free (EV_A);
1932     #endif
1933 root 1.56 }
1934 root 1.22
1935 root 1.226 #if EV_USE_INOTIFY
1936 root 1.284 inline_size void infy_fork (EV_P);
1937 root 1.226 #endif
1938 root 1.154
1939 root 1.284 inline_size void
1940 root 1.56 loop_fork (EV_P)
1941     {
1942 root 1.118 #if EV_USE_PORT
1943 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1944 root 1.56 #endif
1945     #if EV_USE_KQUEUE
1946 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1947 root 1.45 #endif
1948 root 1.118 #if EV_USE_EPOLL
1949 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1950 root 1.118 #endif
1951 root 1.154 #if EV_USE_INOTIFY
1952     infy_fork (EV_A);
1953     #endif
1954 root 1.70
1955 root 1.288 if (ev_is_active (&pipe_w))
1956 root 1.70 {
1957 root 1.207 /* this "locks" the handlers against writing to the pipe */
1958 root 1.212 /* while we modify the fd vars */
1959 root 1.307 sig_pending = 1;
1960 root 1.212 #if EV_ASYNC_ENABLE
1961 root 1.307 async_pending = 1;
1962 root 1.212 #endif
1963 root 1.70
1964     ev_ref (EV_A);
1965 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1966 root 1.220
1967     #if EV_USE_EVENTFD
1968     if (evfd >= 0)
1969     close (evfd);
1970     #endif
1971    
1972     if (evpipe [0] >= 0)
1973     {
1974 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1975     EV_WIN32_CLOSE_FD (evpipe [1]);
1976 root 1.220 }
1977 root 1.207
1978 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1979 root 1.207 evpipe_init (EV_A);
1980 root 1.208 /* now iterate over everything, in case we missed something */
1981 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1982 root 1.337 #endif
1983 root 1.70 }
1984    
1985     postfork = 0;
1986 root 1.1 }
1987    
1988 root 1.55 #if EV_MULTIPLICITY
1989 root 1.250
1990 root 1.54 struct ev_loop *
1991 root 1.108 ev_loop_new (unsigned int flags)
1992 root 1.54 {
1993 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1994 root 1.69
1995 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
1996 root 1.108 loop_init (EV_A_ flags);
1997 root 1.56
1998 root 1.130 if (ev_backend (EV_A))
1999 root 1.306 return EV_A;
2000 root 1.54
2001 root 1.359 ev_free (EV_A);
2002 root 1.55 return 0;
2003 root 1.54 }
2004    
2005 root 1.297 #endif /* multiplicity */
2006 root 1.248
2007     #if EV_VERIFY
2008 root 1.258 static void noinline
2009 root 1.251 verify_watcher (EV_P_ W w)
2010     {
2011 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2012 root 1.251
2013     if (w->pending)
2014 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2015 root 1.251 }
2016    
2017     static void noinline
2018     verify_heap (EV_P_ ANHE *heap, int N)
2019     {
2020     int i;
2021    
2022     for (i = HEAP0; i < N + HEAP0; ++i)
2023     {
2024 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2025     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2026     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2027 root 1.251
2028     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2029     }
2030     }
2031    
2032     static void noinline
2033     array_verify (EV_P_ W *ws, int cnt)
2034 root 1.248 {
2035     while (cnt--)
2036 root 1.251 {
2037 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2038 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2039     }
2040 root 1.248 }
2041 root 1.250 #endif
2042 root 1.248
2043 root 1.338 #if EV_FEATURE_API
2044 root 1.250 void
2045 root 1.340 ev_verify (EV_P)
2046 root 1.248 {
2047 root 1.250 #if EV_VERIFY
2048 root 1.248 int i;
2049 root 1.251 WL w;
2050    
2051     assert (activecnt >= -1);
2052    
2053     assert (fdchangemax >= fdchangecnt);
2054     for (i = 0; i < fdchangecnt; ++i)
2055 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2056 root 1.251
2057     assert (anfdmax >= 0);
2058     for (i = 0; i < anfdmax; ++i)
2059     for (w = anfds [i].head; w; w = w->next)
2060     {
2061     verify_watcher (EV_A_ (W)w);
2062 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2063     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2064 root 1.251 }
2065    
2066     assert (timermax >= timercnt);
2067     verify_heap (EV_A_ timers, timercnt);
2068 root 1.248
2069     #if EV_PERIODIC_ENABLE
2070 root 1.251 assert (periodicmax >= periodiccnt);
2071     verify_heap (EV_A_ periodics, periodiccnt);
2072 root 1.248 #endif
2073    
2074 root 1.251 for (i = NUMPRI; i--; )
2075     {
2076     assert (pendingmax [i] >= pendingcnt [i]);
2077 root 1.248 #if EV_IDLE_ENABLE
2078 root 1.252 assert (idleall >= 0);
2079 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2080     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2081 root 1.248 #endif
2082 root 1.251 }
2083    
2084 root 1.248 #if EV_FORK_ENABLE
2085 root 1.251 assert (forkmax >= forkcnt);
2086     array_verify (EV_A_ (W *)forks, forkcnt);
2087 root 1.248 #endif
2088 root 1.251
2089 root 1.360 #if EV_CLEANUP_ENABLE
2090     assert (cleanupmax >= cleanupcnt);
2091     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2092     #endif
2093    
2094 root 1.250 #if EV_ASYNC_ENABLE
2095 root 1.251 assert (asyncmax >= asynccnt);
2096     array_verify (EV_A_ (W *)asyncs, asynccnt);
2097 root 1.250 #endif
2098 root 1.251
2099 root 1.337 #if EV_PREPARE_ENABLE
2100 root 1.251 assert (preparemax >= preparecnt);
2101     array_verify (EV_A_ (W *)prepares, preparecnt);
2102 root 1.337 #endif
2103 root 1.251
2104 root 1.337 #if EV_CHECK_ENABLE
2105 root 1.251 assert (checkmax >= checkcnt);
2106     array_verify (EV_A_ (W *)checks, checkcnt);
2107 root 1.337 #endif
2108 root 1.251
2109     # if 0
2110 root 1.336 #if EV_CHILD_ENABLE
2111 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2112 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2113 root 1.336 #endif
2114 root 1.251 # endif
2115 root 1.248 #endif
2116     }
2117 root 1.297 #endif
2118 root 1.56
2119     #if EV_MULTIPLICITY
2120     struct ev_loop *
2121 root 1.54 #else
2122     int
2123 root 1.358 #endif
2124 root 1.116 ev_default_loop (unsigned int flags)
2125 root 1.54 {
2126 root 1.116 if (!ev_default_loop_ptr)
2127 root 1.56 {
2128     #if EV_MULTIPLICITY
2129 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2130 root 1.56 #else
2131 ayin 1.117 ev_default_loop_ptr = 1;
2132 root 1.54 #endif
2133    
2134 root 1.110 loop_init (EV_A_ flags);
2135 root 1.56
2136 root 1.130 if (ev_backend (EV_A))
2137 root 1.56 {
2138 root 1.336 #if EV_CHILD_ENABLE
2139 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2140     ev_set_priority (&childev, EV_MAXPRI);
2141     ev_signal_start (EV_A_ &childev);
2142     ev_unref (EV_A); /* child watcher should not keep loop alive */
2143     #endif
2144     }
2145     else
2146 root 1.116 ev_default_loop_ptr = 0;
2147 root 1.56 }
2148 root 1.8
2149 root 1.116 return ev_default_loop_ptr;
2150 root 1.1 }
2151    
2152 root 1.24 void
2153 root 1.359 ev_loop_fork (EV_P)
2154 root 1.1 {
2155 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2156 root 1.1 }
2157    
2158 root 1.8 /*****************************************************************************/
2159    
2160 root 1.168 void
2161     ev_invoke (EV_P_ void *w, int revents)
2162     {
2163     EV_CB_INVOKE ((W)w, revents);
2164     }
2165    
2166 root 1.300 unsigned int
2167     ev_pending_count (EV_P)
2168     {
2169     int pri;
2170     unsigned int count = 0;
2171    
2172     for (pri = NUMPRI; pri--; )
2173     count += pendingcnt [pri];
2174    
2175     return count;
2176     }
2177    
2178 root 1.297 void noinline
2179 root 1.296 ev_invoke_pending (EV_P)
2180 root 1.1 {
2181 root 1.42 int pri;
2182    
2183     for (pri = NUMPRI; pri--; )
2184     while (pendingcnt [pri])
2185     {
2186     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2187 root 1.1
2188 root 1.288 p->w->pending = 0;
2189     EV_CB_INVOKE (p->w, p->events);
2190     EV_FREQUENT_CHECK;
2191 root 1.42 }
2192 root 1.1 }
2193    
2194 root 1.234 #if EV_IDLE_ENABLE
2195 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2196     /* only when higher priorities are idle" logic */
2197 root 1.284 inline_size void
2198 root 1.234 idle_reify (EV_P)
2199     {
2200     if (expect_false (idleall))
2201     {
2202     int pri;
2203    
2204     for (pri = NUMPRI; pri--; )
2205     {
2206     if (pendingcnt [pri])
2207     break;
2208    
2209     if (idlecnt [pri])
2210     {
2211     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2212     break;
2213     }
2214     }
2215     }
2216     }
2217     #endif
2218    
2219 root 1.288 /* make timers pending */
2220 root 1.284 inline_size void
2221 root 1.51 timers_reify (EV_P)
2222 root 1.1 {
2223 root 1.248 EV_FREQUENT_CHECK;
2224    
2225 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2226 root 1.1 {
2227 root 1.284 do
2228     {
2229     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2230 root 1.1
2231 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2232    
2233     /* first reschedule or stop timer */
2234     if (w->repeat)
2235     {
2236     ev_at (w) += w->repeat;
2237     if (ev_at (w) < mn_now)
2238     ev_at (w) = mn_now;
2239 root 1.61
2240 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2241 root 1.90
2242 root 1.284 ANHE_at_cache (timers [HEAP0]);
2243     downheap (timers, timercnt, HEAP0);
2244     }
2245     else
2246     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2247 root 1.243
2248 root 1.284 EV_FREQUENT_CHECK;
2249     feed_reverse (EV_A_ (W)w);
2250 root 1.12 }
2251 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2252 root 1.30
2253 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2254 root 1.12 }
2255     }
2256 root 1.4
2257 root 1.140 #if EV_PERIODIC_ENABLE
2258 root 1.370
2259 root 1.373 static void noinline
2260 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2261     {
2262 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2263     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2264    
2265     /* the above almost always errs on the low side */
2266     while (at <= ev_rt_now)
2267     {
2268     ev_tstamp nat = at + w->interval;
2269    
2270     /* when resolution fails us, we use ev_rt_now */
2271     if (expect_false (nat == at))
2272     {
2273     at = ev_rt_now;
2274     break;
2275     }
2276    
2277     at = nat;
2278     }
2279    
2280     ev_at (w) = at;
2281 root 1.370 }
2282    
2283 root 1.288 /* make periodics pending */
2284 root 1.284 inline_size void
2285 root 1.51 periodics_reify (EV_P)
2286 root 1.12 {
2287 root 1.248 EV_FREQUENT_CHECK;
2288 root 1.250
2289 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2290 root 1.12 {
2291 root 1.284 int feed_count = 0;
2292    
2293     do
2294     {
2295     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2296 root 1.1
2297 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2298 root 1.61
2299 root 1.284 /* first reschedule or stop timer */
2300     if (w->reschedule_cb)
2301     {
2302     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2303 root 1.243
2304 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2305 root 1.243
2306 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2307     downheap (periodics, periodiccnt, HEAP0);
2308     }
2309     else if (w->interval)
2310 root 1.246 {
2311 root 1.370 periodic_recalc (EV_A_ w);
2312 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2313     downheap (periodics, periodiccnt, HEAP0);
2314 root 1.246 }
2315 root 1.284 else
2316     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2317 root 1.243
2318 root 1.284 EV_FREQUENT_CHECK;
2319     feed_reverse (EV_A_ (W)w);
2320 root 1.1 }
2321 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2322 root 1.12
2323 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2324 root 1.12 }
2325     }
2326    
2327 root 1.288 /* simply recalculate all periodics */
2328 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2329 root 1.140 static void noinline
2330 root 1.54 periodics_reschedule (EV_P)
2331 root 1.12 {
2332     int i;
2333    
2334 root 1.13 /* adjust periodics after time jump */
2335 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2336 root 1.12 {
2337 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2338 root 1.12
2339 root 1.77 if (w->reschedule_cb)
2340 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2341 root 1.77 else if (w->interval)
2342 root 1.370 periodic_recalc (EV_A_ w);
2343 root 1.242
2344 root 1.248 ANHE_at_cache (periodics [i]);
2345 root 1.77 }
2346 root 1.12
2347 root 1.248 reheap (periodics, periodiccnt);
2348 root 1.1 }
2349 root 1.93 #endif
2350 root 1.1
2351 root 1.288 /* adjust all timers by a given offset */
2352 root 1.285 static void noinline
2353     timers_reschedule (EV_P_ ev_tstamp adjust)
2354     {
2355     int i;
2356    
2357     for (i = 0; i < timercnt; ++i)
2358     {
2359     ANHE *he = timers + i + HEAP0;
2360     ANHE_w (*he)->at += adjust;
2361     ANHE_at_cache (*he);
2362     }
2363     }
2364    
2365 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2366 root 1.324 /* also detect if there was a timejump, and act accordingly */
2367 root 1.284 inline_speed void
2368 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2369 root 1.4 {
2370 root 1.40 #if EV_USE_MONOTONIC
2371     if (expect_true (have_monotonic))
2372     {
2373 root 1.289 int i;
2374 root 1.178 ev_tstamp odiff = rtmn_diff;
2375    
2376     mn_now = get_clock ();
2377    
2378     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2379     /* interpolate in the meantime */
2380     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2381 root 1.40 {
2382 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2383     return;
2384     }
2385    
2386     now_floor = mn_now;
2387     ev_rt_now = ev_time ();
2388 root 1.4
2389 root 1.178 /* loop a few times, before making important decisions.
2390     * on the choice of "4": one iteration isn't enough,
2391     * in case we get preempted during the calls to
2392     * ev_time and get_clock. a second call is almost guaranteed
2393     * to succeed in that case, though. and looping a few more times
2394     * doesn't hurt either as we only do this on time-jumps or
2395     * in the unlikely event of having been preempted here.
2396     */
2397     for (i = 4; --i; )
2398     {
2399 root 1.373 ev_tstamp diff;
2400 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2401 root 1.4
2402 root 1.373 diff = odiff - rtmn_diff;
2403    
2404     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2405 root 1.178 return; /* all is well */
2406 root 1.4
2407 root 1.178 ev_rt_now = ev_time ();
2408     mn_now = get_clock ();
2409     now_floor = mn_now;
2410     }
2411 root 1.4
2412 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2413     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2414 root 1.140 # if EV_PERIODIC_ENABLE
2415 root 1.178 periodics_reschedule (EV_A);
2416 root 1.93 # endif
2417 root 1.4 }
2418     else
2419 root 1.40 #endif
2420 root 1.4 {
2421 root 1.85 ev_rt_now = ev_time ();
2422 root 1.40
2423 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2424 root 1.13 {
2425 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2426     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2427 root 1.140 #if EV_PERIODIC_ENABLE
2428 root 1.54 periodics_reschedule (EV_A);
2429 root 1.93 #endif
2430 root 1.13 }
2431 root 1.4
2432 root 1.85 mn_now = ev_rt_now;
2433 root 1.4 }
2434     }
2435    
2436 root 1.51 void
2437 root 1.353 ev_run (EV_P_ int flags)
2438 root 1.1 {
2439 root 1.338 #if EV_FEATURE_API
2440 root 1.294 ++loop_depth;
2441 root 1.297 #endif
2442 root 1.294
2443 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2444 root 1.298
2445 root 1.353 loop_done = EVBREAK_CANCEL;
2446 root 1.1
2447 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2448 root 1.158
2449 root 1.161 do
2450 root 1.9 {
2451 root 1.250 #if EV_VERIFY >= 2
2452 root 1.340 ev_verify (EV_A);
2453 root 1.250 #endif
2454    
2455 root 1.158 #ifndef _WIN32
2456     if (expect_false (curpid)) /* penalise the forking check even more */
2457     if (expect_false (getpid () != curpid))
2458     {
2459     curpid = getpid ();
2460     postfork = 1;
2461     }
2462     #endif
2463    
2464 root 1.157 #if EV_FORK_ENABLE
2465     /* we might have forked, so queue fork handlers */
2466     if (expect_false (postfork))
2467     if (forkcnt)
2468     {
2469     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2470 root 1.297 EV_INVOKE_PENDING;
2471 root 1.157 }
2472     #endif
2473 root 1.147
2474 root 1.337 #if EV_PREPARE_ENABLE
2475 root 1.170 /* queue prepare watchers (and execute them) */
2476 root 1.40 if (expect_false (preparecnt))
2477 root 1.20 {
2478 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2479 root 1.297 EV_INVOKE_PENDING;
2480 root 1.20 }
2481 root 1.337 #endif
2482 root 1.9
2483 root 1.298 if (expect_false (loop_done))
2484     break;
2485    
2486 root 1.70 /* we might have forked, so reify kernel state if necessary */
2487     if (expect_false (postfork))
2488     loop_fork (EV_A);
2489    
2490 root 1.1 /* update fd-related kernel structures */
2491 root 1.51 fd_reify (EV_A);
2492 root 1.1
2493     /* calculate blocking time */
2494 root 1.135 {
2495 root 1.193 ev_tstamp waittime = 0.;
2496     ev_tstamp sleeptime = 0.;
2497 root 1.12
2498 root 1.353 /* remember old timestamp for io_blocktime calculation */
2499     ev_tstamp prev_mn_now = mn_now;
2500 root 1.293
2501 root 1.353 /* update time to cancel out callback processing overhead */
2502     time_update (EV_A_ 1e100);
2503 root 1.135
2504 root 1.353 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
2505     {
2506 root 1.287 waittime = MAX_BLOCKTIME;
2507    
2508 root 1.135 if (timercnt)
2509     {
2510 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2511 root 1.193 if (waittime > to) waittime = to;
2512 root 1.135 }
2513 root 1.4
2514 root 1.140 #if EV_PERIODIC_ENABLE
2515 root 1.135 if (periodiccnt)
2516     {
2517 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2518 root 1.193 if (waittime > to) waittime = to;
2519 root 1.135 }
2520 root 1.93 #endif
2521 root 1.4
2522 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2523 root 1.193 if (expect_false (waittime < timeout_blocktime))
2524     waittime = timeout_blocktime;
2525    
2526 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
2527     /* to pass a minimum nonzero value to the backend */
2528     if (expect_false (waittime < backend_mintime))
2529     waittime = backend_mintime;
2530    
2531 root 1.293 /* extra check because io_blocktime is commonly 0 */
2532     if (expect_false (io_blocktime))
2533     {
2534     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2535 root 1.193
2536 root 1.376 if (sleeptime > waittime - backend_mintime)
2537     sleeptime = waittime - backend_mintime;
2538 root 1.193
2539 root 1.293 if (expect_true (sleeptime > 0.))
2540     {
2541     ev_sleep (sleeptime);
2542     waittime -= sleeptime;
2543     }
2544 root 1.193 }
2545 root 1.135 }
2546 root 1.1
2547 root 1.338 #if EV_FEATURE_API
2548 root 1.162 ++loop_count;
2549 root 1.297 #endif
2550 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2551 root 1.193 backend_poll (EV_A_ waittime);
2552 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2553 root 1.178
2554     /* update ev_rt_now, do magic */
2555 root 1.193 time_update (EV_A_ waittime + sleeptime);
2556 root 1.135 }
2557 root 1.1
2558 root 1.9 /* queue pending timers and reschedule them */
2559 root 1.51 timers_reify (EV_A); /* relative timers called last */
2560 root 1.140 #if EV_PERIODIC_ENABLE
2561 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2562 root 1.93 #endif
2563 root 1.1
2564 root 1.164 #if EV_IDLE_ENABLE
2565 root 1.137 /* queue idle watchers unless other events are pending */
2566 root 1.164 idle_reify (EV_A);
2567     #endif
2568 root 1.9
2569 root 1.337 #if EV_CHECK_ENABLE
2570 root 1.20 /* queue check watchers, to be executed first */
2571 root 1.123 if (expect_false (checkcnt))
2572 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2573 root 1.337 #endif
2574 root 1.9
2575 root 1.297 EV_INVOKE_PENDING;
2576 root 1.1 }
2577 root 1.219 while (expect_true (
2578     activecnt
2579     && !loop_done
2580 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2581 root 1.219 ));
2582 root 1.13
2583 root 1.353 if (loop_done == EVBREAK_ONE)
2584     loop_done = EVBREAK_CANCEL;
2585 root 1.294
2586 root 1.338 #if EV_FEATURE_API
2587 root 1.294 --loop_depth;
2588 root 1.297 #endif
2589 root 1.51 }
2590    
2591     void
2592 root 1.353 ev_break (EV_P_ int how)
2593 root 1.51 {
2594     loop_done = how;
2595 root 1.1 }
2596    
2597 root 1.285 void
2598     ev_ref (EV_P)
2599     {
2600     ++activecnt;
2601     }
2602    
2603     void
2604     ev_unref (EV_P)
2605     {
2606     --activecnt;
2607     }
2608    
2609     void
2610     ev_now_update (EV_P)
2611     {
2612     time_update (EV_A_ 1e100);
2613     }
2614    
2615     void
2616     ev_suspend (EV_P)
2617     {
2618     ev_now_update (EV_A);
2619     }
2620    
2621     void
2622     ev_resume (EV_P)
2623     {
2624     ev_tstamp mn_prev = mn_now;
2625    
2626     ev_now_update (EV_A);
2627     timers_reschedule (EV_A_ mn_now - mn_prev);
2628 root 1.286 #if EV_PERIODIC_ENABLE
2629 root 1.288 /* TODO: really do this? */
2630 root 1.285 periodics_reschedule (EV_A);
2631 root 1.286 #endif
2632 root 1.285 }
2633    
2634 root 1.8 /*****************************************************************************/
2635 root 1.288 /* singly-linked list management, used when the expected list length is short */
2636 root 1.8
2637 root 1.284 inline_size void
2638 root 1.10 wlist_add (WL *head, WL elem)
2639 root 1.1 {
2640     elem->next = *head;
2641     *head = elem;
2642     }
2643    
2644 root 1.284 inline_size void
2645 root 1.10 wlist_del (WL *head, WL elem)
2646 root 1.1 {
2647     while (*head)
2648     {
2649 root 1.307 if (expect_true (*head == elem))
2650 root 1.1 {
2651     *head = elem->next;
2652 root 1.307 break;
2653 root 1.1 }
2654    
2655     head = &(*head)->next;
2656     }
2657     }
2658    
2659 root 1.288 /* internal, faster, version of ev_clear_pending */
2660 root 1.284 inline_speed void
2661 root 1.166 clear_pending (EV_P_ W w)
2662 root 1.16 {
2663     if (w->pending)
2664     {
2665 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2666 root 1.16 w->pending = 0;
2667     }
2668     }
2669    
2670 root 1.167 int
2671     ev_clear_pending (EV_P_ void *w)
2672 root 1.166 {
2673     W w_ = (W)w;
2674     int pending = w_->pending;
2675    
2676 root 1.172 if (expect_true (pending))
2677     {
2678     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2679 root 1.288 p->w = (W)&pending_w;
2680 root 1.172 w_->pending = 0;
2681     return p->events;
2682     }
2683     else
2684 root 1.167 return 0;
2685 root 1.166 }
2686    
2687 root 1.284 inline_size void
2688 root 1.164 pri_adjust (EV_P_ W w)
2689     {
2690 root 1.295 int pri = ev_priority (w);
2691 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2692     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2693 root 1.295 ev_set_priority (w, pri);
2694 root 1.164 }
2695    
2696 root 1.284 inline_speed void
2697 root 1.51 ev_start (EV_P_ W w, int active)
2698 root 1.1 {
2699 root 1.164 pri_adjust (EV_A_ w);
2700 root 1.1 w->active = active;
2701 root 1.51 ev_ref (EV_A);
2702 root 1.1 }
2703    
2704 root 1.284 inline_size void
2705 root 1.51 ev_stop (EV_P_ W w)
2706 root 1.1 {
2707 root 1.51 ev_unref (EV_A);
2708 root 1.1 w->active = 0;
2709     }
2710    
2711 root 1.8 /*****************************************************************************/
2712    
2713 root 1.171 void noinline
2714 root 1.136 ev_io_start (EV_P_ ev_io *w)
2715 root 1.1 {
2716 root 1.37 int fd = w->fd;
2717    
2718 root 1.123 if (expect_false (ev_is_active (w)))
2719 root 1.1 return;
2720    
2721 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2722 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2723 root 1.33
2724 root 1.248 EV_FREQUENT_CHECK;
2725    
2726 root 1.51 ev_start (EV_A_ (W)w, 1);
2727 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2728 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2729 root 1.1
2730 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2731 root 1.281 w->events &= ~EV__IOFDSET;
2732 root 1.248
2733     EV_FREQUENT_CHECK;
2734 root 1.1 }
2735    
2736 root 1.171 void noinline
2737 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2738 root 1.1 {
2739 root 1.166 clear_pending (EV_A_ (W)w);
2740 root 1.123 if (expect_false (!ev_is_active (w)))
2741 root 1.1 return;
2742    
2743 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2744 root 1.89
2745 root 1.248 EV_FREQUENT_CHECK;
2746    
2747 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2748 root 1.51 ev_stop (EV_A_ (W)w);
2749 root 1.1
2750 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2751 root 1.248
2752     EV_FREQUENT_CHECK;
2753 root 1.1 }
2754    
2755 root 1.171 void noinline
2756 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2757 root 1.1 {
2758 root 1.123 if (expect_false (ev_is_active (w)))
2759 root 1.1 return;
2760    
2761 root 1.228 ev_at (w) += mn_now;
2762 root 1.12
2763 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2764 root 1.13
2765 root 1.248 EV_FREQUENT_CHECK;
2766    
2767     ++timercnt;
2768     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2769 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2770     ANHE_w (timers [ev_active (w)]) = (WT)w;
2771 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2772 root 1.235 upheap (timers, ev_active (w));
2773 root 1.62
2774 root 1.248 EV_FREQUENT_CHECK;
2775    
2776 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2777 root 1.12 }
2778    
2779 root 1.171 void noinline
2780 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2781 root 1.12 {
2782 root 1.166 clear_pending (EV_A_ (W)w);
2783 root 1.123 if (expect_false (!ev_is_active (w)))
2784 root 1.12 return;
2785    
2786 root 1.248 EV_FREQUENT_CHECK;
2787    
2788 root 1.230 {
2789     int active = ev_active (w);
2790 root 1.62
2791 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2792 root 1.151
2793 root 1.248 --timercnt;
2794    
2795     if (expect_true (active < timercnt + HEAP0))
2796 root 1.151 {
2797 root 1.248 timers [active] = timers [timercnt + HEAP0];
2798 root 1.181 adjustheap (timers, timercnt, active);
2799 root 1.151 }
2800 root 1.248 }
2801 root 1.228
2802     ev_at (w) -= mn_now;
2803 root 1.14
2804 root 1.51 ev_stop (EV_A_ (W)w);
2805 root 1.328
2806     EV_FREQUENT_CHECK;
2807 root 1.12 }
2808 root 1.4
2809 root 1.171 void noinline
2810 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2811 root 1.14 {
2812 root 1.248 EV_FREQUENT_CHECK;
2813    
2814 root 1.14 if (ev_is_active (w))
2815     {
2816     if (w->repeat)
2817 root 1.99 {
2818 root 1.228 ev_at (w) = mn_now + w->repeat;
2819 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2820 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2821 root 1.99 }
2822 root 1.14 else
2823 root 1.51 ev_timer_stop (EV_A_ w);
2824 root 1.14 }
2825     else if (w->repeat)
2826 root 1.112 {
2827 root 1.229 ev_at (w) = w->repeat;
2828 root 1.112 ev_timer_start (EV_A_ w);
2829     }
2830 root 1.248
2831     EV_FREQUENT_CHECK;
2832 root 1.14 }
2833    
2834 root 1.301 ev_tstamp
2835     ev_timer_remaining (EV_P_ ev_timer *w)
2836     {
2837     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2838     }
2839    
2840 root 1.140 #if EV_PERIODIC_ENABLE
2841 root 1.171 void noinline
2842 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2843 root 1.12 {
2844 root 1.123 if (expect_false (ev_is_active (w)))
2845 root 1.12 return;
2846 root 1.1
2847 root 1.77 if (w->reschedule_cb)
2848 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2849 root 1.77 else if (w->interval)
2850     {
2851 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2852 root 1.370 periodic_recalc (EV_A_ w);
2853 root 1.77 }
2854 root 1.173 else
2855 root 1.228 ev_at (w) = w->offset;
2856 root 1.12
2857 root 1.248 EV_FREQUENT_CHECK;
2858    
2859     ++periodiccnt;
2860     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2861 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2862     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2863 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2864 root 1.235 upheap (periodics, ev_active (w));
2865 root 1.62
2866 root 1.248 EV_FREQUENT_CHECK;
2867    
2868 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2869 root 1.1 }
2870    
2871 root 1.171 void noinline
2872 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2873 root 1.1 {
2874 root 1.166 clear_pending (EV_A_ (W)w);
2875 root 1.123 if (expect_false (!ev_is_active (w)))
2876 root 1.1 return;
2877    
2878 root 1.248 EV_FREQUENT_CHECK;
2879    
2880 root 1.230 {
2881     int active = ev_active (w);
2882 root 1.62
2883 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2884 root 1.151
2885 root 1.248 --periodiccnt;
2886    
2887     if (expect_true (active < periodiccnt + HEAP0))
2888 root 1.151 {
2889 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2890 root 1.181 adjustheap (periodics, periodiccnt, active);
2891 root 1.151 }
2892 root 1.248 }
2893 root 1.228
2894 root 1.328 ev_stop (EV_A_ (W)w);
2895    
2896 root 1.248 EV_FREQUENT_CHECK;
2897 root 1.1 }
2898    
2899 root 1.171 void noinline
2900 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2901 root 1.77 {
2902 root 1.84 /* TODO: use adjustheap and recalculation */
2903 root 1.77 ev_periodic_stop (EV_A_ w);
2904     ev_periodic_start (EV_A_ w);
2905     }
2906 root 1.93 #endif
2907 root 1.77
2908 root 1.56 #ifndef SA_RESTART
2909     # define SA_RESTART 0
2910     #endif
2911    
2912 root 1.336 #if EV_SIGNAL_ENABLE
2913    
2914 root 1.171 void noinline
2915 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2916 root 1.56 {
2917 root 1.123 if (expect_false (ev_is_active (w)))
2918 root 1.56 return;
2919    
2920 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2921    
2922     #if EV_MULTIPLICITY
2923 root 1.308 assert (("libev: a signal must not be attached to two different loops",
2924 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2925    
2926     signals [w->signum - 1].loop = EV_A;
2927     #endif
2928 root 1.56
2929 root 1.303 EV_FREQUENT_CHECK;
2930    
2931     #if EV_USE_SIGNALFD
2932     if (sigfd == -2)
2933     {
2934     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2935     if (sigfd < 0 && errno == EINVAL)
2936     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2937    
2938     if (sigfd >= 0)
2939     {
2940     fd_intern (sigfd); /* doing it twice will not hurt */
2941    
2942     sigemptyset (&sigfd_set);
2943    
2944     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2945     ev_set_priority (&sigfd_w, EV_MAXPRI);
2946     ev_io_start (EV_A_ &sigfd_w);
2947     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2948     }
2949     }
2950    
2951     if (sigfd >= 0)
2952     {
2953     /* TODO: check .head */
2954     sigaddset (&sigfd_set, w->signum);
2955     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2956 root 1.207
2957 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2958     }
2959 root 1.180 #endif
2960    
2961 root 1.56 ev_start (EV_A_ (W)w, 1);
2962 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2963 root 1.56
2964 root 1.63 if (!((WL)w)->next)
2965 root 1.304 # if EV_USE_SIGNALFD
2966 root 1.306 if (sigfd < 0) /*TODO*/
2967 root 1.304 # endif
2968 root 1.306 {
2969 root 1.322 # ifdef _WIN32
2970 root 1.317 evpipe_init (EV_A);
2971    
2972 root 1.306 signal (w->signum, ev_sighandler);
2973     # else
2974     struct sigaction sa;
2975    
2976     evpipe_init (EV_A);
2977    
2978     sa.sa_handler = ev_sighandler;
2979     sigfillset (&sa.sa_mask);
2980     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2981     sigaction (w->signum, &sa, 0);
2982    
2983 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
2984     {
2985     sigemptyset (&sa.sa_mask);
2986     sigaddset (&sa.sa_mask, w->signum);
2987     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2988     }
2989 root 1.67 #endif
2990 root 1.306 }
2991 root 1.248
2992     EV_FREQUENT_CHECK;
2993 root 1.56 }
2994    
2995 root 1.171 void noinline
2996 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2997 root 1.56 {
2998 root 1.166 clear_pending (EV_A_ (W)w);
2999 root 1.123 if (expect_false (!ev_is_active (w)))
3000 root 1.56 return;
3001    
3002 root 1.248 EV_FREQUENT_CHECK;
3003    
3004 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3005 root 1.56 ev_stop (EV_A_ (W)w);
3006    
3007     if (!signals [w->signum - 1].head)
3008 root 1.306 {
3009 root 1.307 #if EV_MULTIPLICITY
3010 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3011 root 1.307 #endif
3012     #if EV_USE_SIGNALFD
3013 root 1.306 if (sigfd >= 0)
3014     {
3015 root 1.321 sigset_t ss;
3016    
3017     sigemptyset (&ss);
3018     sigaddset (&ss, w->signum);
3019 root 1.306 sigdelset (&sigfd_set, w->signum);
3020 root 1.321
3021 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3022 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3023 root 1.306 }
3024     else
3025 root 1.307 #endif
3026 root 1.306 signal (w->signum, SIG_DFL);
3027     }
3028 root 1.248
3029     EV_FREQUENT_CHECK;
3030 root 1.56 }
3031    
3032 root 1.336 #endif
3033    
3034     #if EV_CHILD_ENABLE
3035    
3036 root 1.28 void
3037 root 1.136 ev_child_start (EV_P_ ev_child *w)
3038 root 1.22 {
3039 root 1.56 #if EV_MULTIPLICITY
3040 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3041 root 1.56 #endif
3042 root 1.123 if (expect_false (ev_is_active (w)))
3043 root 1.22 return;
3044    
3045 root 1.248 EV_FREQUENT_CHECK;
3046    
3047 root 1.51 ev_start (EV_A_ (W)w, 1);
3048 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3049 root 1.248
3050     EV_FREQUENT_CHECK;
3051 root 1.22 }
3052    
3053 root 1.28 void
3054 root 1.136 ev_child_stop (EV_P_ ev_child *w)
3055 root 1.22 {
3056 root 1.166 clear_pending (EV_A_ (W)w);
3057 root 1.123 if (expect_false (!ev_is_active (w)))
3058 root 1.22 return;
3059    
3060 root 1.248 EV_FREQUENT_CHECK;
3061    
3062 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3063 root 1.51 ev_stop (EV_A_ (W)w);
3064 root 1.248
3065     EV_FREQUENT_CHECK;
3066 root 1.22 }
3067    
3068 root 1.336 #endif
3069    
3070 root 1.140 #if EV_STAT_ENABLE
3071    
3072     # ifdef _WIN32
3073 root 1.146 # undef lstat
3074     # define lstat(a,b) _stati64 (a,b)
3075 root 1.140 # endif
3076    
3077 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3078     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3079     #define MIN_STAT_INTERVAL 0.1074891
3080 root 1.143
3081 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3082 root 1.152
3083     #if EV_USE_INOTIFY
3084 root 1.326
3085     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3086     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3087 root 1.152
3088     static void noinline
3089     infy_add (EV_P_ ev_stat *w)
3090     {
3091     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3092    
3093 root 1.318 if (w->wd >= 0)
3094 root 1.152 {
3095 root 1.318 struct statfs sfs;
3096    
3097     /* now local changes will be tracked by inotify, but remote changes won't */
3098     /* unless the filesystem is known to be local, we therefore still poll */
3099     /* also do poll on <2.6.25, but with normal frequency */
3100    
3101     if (!fs_2625)
3102     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3103     else if (!statfs (w->path, &sfs)
3104     && (sfs.f_type == 0x1373 /* devfs */
3105     || sfs.f_type == 0xEF53 /* ext2/3 */
3106     || sfs.f_type == 0x3153464a /* jfs */
3107     || sfs.f_type == 0x52654973 /* reiser3 */
3108     || sfs.f_type == 0x01021994 /* tempfs */
3109     || sfs.f_type == 0x58465342 /* xfs */))
3110     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3111     else
3112     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3113     }
3114     else
3115     {
3116     /* can't use inotify, continue to stat */
3117 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3118 root 1.152
3119 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3120 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3121 root 1.233 /* but an efficiency issue only */
3122 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3123 root 1.152 {
3124 root 1.153 char path [4096];
3125 root 1.152 strcpy (path, w->path);
3126    
3127     do
3128     {
3129     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3130     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3131    
3132     char *pend = strrchr (path, '/');
3133    
3134 root 1.275 if (!pend || pend == path)
3135     break;
3136 root 1.152
3137     *pend = 0;
3138 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3139 root 1.372 }
3140 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3141     }
3142     }
3143 root 1.275
3144     if (w->wd >= 0)
3145 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3146 root 1.152
3147 root 1.318 /* now re-arm timer, if required */
3148     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3149     ev_timer_again (EV_A_ &w->timer);
3150     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3151 root 1.152 }
3152    
3153     static void noinline
3154     infy_del (EV_P_ ev_stat *w)
3155     {
3156     int slot;
3157     int wd = w->wd;
3158    
3159     if (wd < 0)
3160     return;
3161    
3162     w->wd = -2;
3163 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3164 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3165    
3166     /* remove this watcher, if others are watching it, they will rearm */
3167     inotify_rm_watch (fs_fd, wd);
3168     }
3169    
3170     static void noinline
3171     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3172     {
3173     if (slot < 0)
3174 root 1.264 /* overflow, need to check for all hash slots */
3175 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3176 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3177     else
3178     {
3179     WL w_;
3180    
3181 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3182 root 1.152 {
3183     ev_stat *w = (ev_stat *)w_;
3184     w_ = w_->next; /* lets us remove this watcher and all before it */
3185    
3186     if (w->wd == wd || wd == -1)
3187     {
3188     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3189     {
3190 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3191 root 1.152 w->wd = -1;
3192     infy_add (EV_A_ w); /* re-add, no matter what */
3193     }
3194    
3195 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3196 root 1.152 }
3197     }
3198     }
3199     }
3200    
3201     static void
3202     infy_cb (EV_P_ ev_io *w, int revents)
3203     {
3204     char buf [EV_INOTIFY_BUFSIZE];
3205     int ofs;
3206     int len = read (fs_fd, buf, sizeof (buf));
3207    
3208 root 1.326 for (ofs = 0; ofs < len; )
3209     {
3210     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3211     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3212     ofs += sizeof (struct inotify_event) + ev->len;
3213     }
3214 root 1.152 }
3215    
3216 root 1.330 inline_size void
3217     ev_check_2625 (EV_P)
3218     {
3219     /* kernels < 2.6.25 are borked
3220     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3221     */
3222     if (ev_linux_version () < 0x020619)
3223 root 1.273 return;
3224 root 1.264
3225 root 1.273 fs_2625 = 1;
3226     }
3227 root 1.264
3228 root 1.315 inline_size int
3229     infy_newfd (void)
3230     {
3231     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3232     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3233     if (fd >= 0)
3234     return fd;
3235     #endif
3236     return inotify_init ();
3237     }
3238    
3239 root 1.284 inline_size void
3240 root 1.273 infy_init (EV_P)
3241     {
3242     if (fs_fd != -2)
3243     return;
3244 root 1.264
3245 root 1.273 fs_fd = -1;
3246 root 1.264
3247 root 1.330 ev_check_2625 (EV_A);
3248 root 1.264
3249 root 1.315 fs_fd = infy_newfd ();
3250 root 1.152
3251     if (fs_fd >= 0)
3252     {
3253 root 1.315 fd_intern (fs_fd);
3254 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3255     ev_set_priority (&fs_w, EV_MAXPRI);
3256     ev_io_start (EV_A_ &fs_w);
3257 root 1.317 ev_unref (EV_A);
3258 root 1.152 }
3259     }
3260    
3261 root 1.284 inline_size void
3262 root 1.154 infy_fork (EV_P)
3263     {
3264     int slot;
3265    
3266     if (fs_fd < 0)
3267     return;
3268    
3269 root 1.317 ev_ref (EV_A);
3270 root 1.315 ev_io_stop (EV_A_ &fs_w);
3271 root 1.154 close (fs_fd);
3272 root 1.315 fs_fd = infy_newfd ();
3273    
3274     if (fs_fd >= 0)
3275     {
3276     fd_intern (fs_fd);
3277     ev_io_set (&fs_w, fs_fd, EV_READ);
3278     ev_io_start (EV_A_ &fs_w);
3279 root 1.317 ev_unref (EV_A);
3280 root 1.315 }
3281 root 1.154
3282 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3283 root 1.154 {
3284     WL w_ = fs_hash [slot].head;
3285     fs_hash [slot].head = 0;
3286    
3287     while (w_)
3288     {
3289     ev_stat *w = (ev_stat *)w_;
3290     w_ = w_->next; /* lets us add this watcher */
3291    
3292     w->wd = -1;
3293    
3294     if (fs_fd >= 0)
3295     infy_add (EV_A_ w); /* re-add, no matter what */
3296     else
3297 root 1.318 {
3298     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3299     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3300     ev_timer_again (EV_A_ &w->timer);
3301     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3302     }
3303 root 1.154 }
3304     }
3305     }
3306    
3307 root 1.152 #endif
3308    
3309 root 1.255 #ifdef _WIN32
3310     # define EV_LSTAT(p,b) _stati64 (p, b)
3311     #else
3312     # define EV_LSTAT(p,b) lstat (p, b)
3313     #endif
3314    
3315 root 1.140 void
3316     ev_stat_stat (EV_P_ ev_stat *w)
3317     {
3318     if (lstat (w->path, &w->attr) < 0)
3319     w->attr.st_nlink = 0;
3320     else if (!w->attr.st_nlink)
3321     w->attr.st_nlink = 1;
3322     }
3323    
3324 root 1.157 static void noinline
3325 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3326     {
3327     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3328    
3329 root 1.320 ev_statdata prev = w->attr;
3330 root 1.140 ev_stat_stat (EV_A_ w);
3331    
3332 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3333     if (
3334 root 1.320 prev.st_dev != w->attr.st_dev
3335     || prev.st_ino != w->attr.st_ino
3336     || prev.st_mode != w->attr.st_mode
3337     || prev.st_nlink != w->attr.st_nlink
3338     || prev.st_uid != w->attr.st_uid
3339     || prev.st_gid != w->attr.st_gid
3340     || prev.st_rdev != w->attr.st_rdev
3341     || prev.st_size != w->attr.st_size
3342     || prev.st_atime != w->attr.st_atime
3343     || prev.st_mtime != w->attr.st_mtime
3344     || prev.st_ctime != w->attr.st_ctime
3345 root 1.156 ) {
3346 root 1.320 /* we only update w->prev on actual differences */
3347     /* in case we test more often than invoke the callback, */
3348     /* to ensure that prev is always different to attr */
3349     w->prev = prev;
3350    
3351 root 1.152 #if EV_USE_INOTIFY
3352 root 1.264 if (fs_fd >= 0)
3353     {
3354     infy_del (EV_A_ w);
3355     infy_add (EV_A_ w);
3356     ev_stat_stat (EV_A_ w); /* avoid race... */
3357     }
3358 root 1.152 #endif
3359    
3360     ev_feed_event (EV_A_ w, EV_STAT);
3361     }
3362 root 1.140 }
3363    
3364     void
3365     ev_stat_start (EV_P_ ev_stat *w)
3366     {
3367     if (expect_false (ev_is_active (w)))
3368     return;
3369    
3370     ev_stat_stat (EV_A_ w);
3371    
3372 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3373     w->interval = MIN_STAT_INTERVAL;
3374 root 1.143
3375 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3376 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3377 root 1.152
3378     #if EV_USE_INOTIFY
3379     infy_init (EV_A);
3380    
3381     if (fs_fd >= 0)
3382     infy_add (EV_A_ w);
3383     else
3384     #endif
3385 root 1.318 {
3386     ev_timer_again (EV_A_ &w->timer);
3387     ev_unref (EV_A);
3388     }
3389 root 1.140
3390     ev_start (EV_A_ (W)w, 1);
3391 root 1.248
3392     EV_FREQUENT_CHECK;
3393 root 1.140 }
3394    
3395     void
3396     ev_stat_stop (EV_P_ ev_stat *w)
3397     {
3398 root 1.166 clear_pending (EV_A_ (W)w);
3399 root 1.140 if (expect_false (!ev_is_active (w)))
3400     return;
3401    
3402 root 1.248 EV_FREQUENT_CHECK;
3403    
3404 root 1.152 #if EV_USE_INOTIFY
3405     infy_del (EV_A_ w);
3406     #endif
3407 root 1.318
3408     if (ev_is_active (&w->timer))
3409     {
3410     ev_ref (EV_A);
3411     ev_timer_stop (EV_A_ &w->timer);
3412     }
3413 root 1.140
3414 root 1.134 ev_stop (EV_A_ (W)w);
3415 root 1.248
3416     EV_FREQUENT_CHECK;
3417 root 1.134 }
3418     #endif
3419    
3420 root 1.164 #if EV_IDLE_ENABLE
3421 root 1.144 void
3422     ev_idle_start (EV_P_ ev_idle *w)
3423     {
3424     if (expect_false (ev_is_active (w)))
3425     return;
3426    
3427 root 1.164 pri_adjust (EV_A_ (W)w);
3428    
3429 root 1.248 EV_FREQUENT_CHECK;
3430    
3431 root 1.164 {
3432     int active = ++idlecnt [ABSPRI (w)];
3433    
3434     ++idleall;
3435     ev_start (EV_A_ (W)w, active);
3436    
3437     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3438     idles [ABSPRI (w)][active - 1] = w;
3439     }
3440 root 1.248
3441     EV_FREQUENT_CHECK;
3442 root 1.144 }
3443    
3444     void
3445     ev_idle_stop (EV_P_ ev_idle *w)
3446     {
3447 root 1.166 clear_pending (EV_A_ (W)w);
3448 root 1.144 if (expect_false (!ev_is_active (w)))
3449     return;
3450    
3451 root 1.248 EV_FREQUENT_CHECK;
3452    
3453 root 1.144 {
3454 root 1.230 int active = ev_active (w);
3455 root 1.164
3456     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3457 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3458 root 1.164
3459     ev_stop (EV_A_ (W)w);
3460     --idleall;
3461 root 1.144 }
3462 root 1.248
3463     EV_FREQUENT_CHECK;
3464 root 1.144 }
3465 root 1.164 #endif
3466 root 1.144
3467 root 1.337 #if EV_PREPARE_ENABLE
3468 root 1.144 void
3469     ev_prepare_start (EV_P_ ev_prepare *w)
3470     {
3471     if (expect_false (ev_is_active (w)))
3472     return;
3473    
3474 root 1.248 EV_FREQUENT_CHECK;
3475    
3476 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3477     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3478     prepares [preparecnt - 1] = w;
3479 root 1.248
3480     EV_FREQUENT_CHECK;
3481 root 1.144 }
3482    
3483     void
3484     ev_prepare_stop (EV_P_ ev_prepare *w)
3485     {
3486 root 1.166 clear_pending (EV_A_ (W)w);
3487 root 1.144 if (expect_false (!ev_is_active (w)))
3488     return;
3489    
3490 root 1.248 EV_FREQUENT_CHECK;
3491    
3492 root 1.144 {
3493 root 1.230 int active = ev_active (w);
3494    
3495 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3496 root 1.230 ev_active (prepares [active - 1]) = active;
3497 root 1.144 }
3498    
3499     ev_stop (EV_A_ (W)w);
3500 root 1.248
3501     EV_FREQUENT_CHECK;
3502 root 1.144 }
3503 root 1.337 #endif
3504 root 1.144
3505 root 1.337 #if EV_CHECK_ENABLE
3506 root 1.144 void
3507     ev_check_start (EV_P_ ev_check *w)
3508     {
3509     if (expect_false (ev_is_active (w)))
3510     return;
3511    
3512 root 1.248 EV_FREQUENT_CHECK;
3513    
3514 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3515     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3516     checks [checkcnt - 1] = w;
3517 root 1.248
3518     EV_FREQUENT_CHECK;
3519 root 1.144 }
3520    
3521     void
3522     ev_check_stop (EV_P_ ev_check *w)
3523     {
3524 root 1.166 clear_pending (EV_A_ (W)w);
3525 root 1.144 if (expect_false (!ev_is_active (w)))
3526     return;
3527    
3528 root 1.248 EV_FREQUENT_CHECK;
3529    
3530 root 1.144 {
3531 root 1.230 int active = ev_active (w);
3532    
3533 root 1.144 checks [active - 1] = checks [--checkcnt];
3534 root 1.230 ev_active (checks [active - 1]) = active;
3535 root 1.144 }
3536    
3537     ev_stop (EV_A_ (W)w);
3538 root 1.248
3539     EV_FREQUENT_CHECK;
3540 root 1.144 }
3541 root 1.337 #endif
3542 root 1.144
3543     #if EV_EMBED_ENABLE
3544     void noinline
3545     ev_embed_sweep (EV_P_ ev_embed *w)
3546     {
3547 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3548 root 1.144 }
3549    
3550     static void
3551 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3552 root 1.144 {
3553     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3554    
3555     if (ev_cb (w))
3556     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3557     else
3558 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3559 root 1.144 }
3560    
3561 root 1.189 static void
3562     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3563     {
3564     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3565    
3566 root 1.195 {
3567 root 1.306 EV_P = w->other;
3568 root 1.195
3569     while (fdchangecnt)
3570     {
3571     fd_reify (EV_A);
3572 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3573 root 1.195 }
3574     }
3575     }
3576    
3577 root 1.261 static void
3578     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3579     {
3580     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3581    
3582 root 1.277 ev_embed_stop (EV_A_ w);
3583    
3584 root 1.261 {
3585 root 1.306 EV_P = w->other;
3586 root 1.261
3587     ev_loop_fork (EV_A);
3588 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3589 root 1.261 }
3590 root 1.277
3591     ev_embed_start (EV_A_ w);
3592 root 1.261 }
3593    
3594 root 1.195 #if 0
3595     static void
3596     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3597     {
3598     ev_idle_stop (EV_A_ idle);
3599 root 1.189 }
3600 root 1.195 #endif
3601 root 1.189
3602 root 1.144 void
3603     ev_embed_start (EV_P_ ev_embed *w)
3604     {
3605     if (expect_false (ev_is_active (w)))
3606     return;
3607    
3608     {
3609 root 1.306 EV_P = w->other;
3610 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3611 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3612 root 1.144 }
3613    
3614 root 1.248 EV_FREQUENT_CHECK;
3615    
3616 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3617     ev_io_start (EV_A_ &w->io);
3618    
3619 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3620     ev_set_priority (&w->prepare, EV_MINPRI);
3621     ev_prepare_start (EV_A_ &w->prepare);
3622    
3623 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3624     ev_fork_start (EV_A_ &w->fork);
3625    
3626 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3627    
3628 root 1.144 ev_start (EV_A_ (W)w, 1);
3629 root 1.248
3630     EV_FREQUENT_CHECK;
3631 root 1.144 }
3632    
3633     void
3634     ev_embed_stop (EV_P_ ev_embed *w)
3635     {
3636 root 1.166 clear_pending (EV_A_ (W)w);
3637 root 1.144 if (expect_false (!ev_is_active (w)))
3638     return;
3639    
3640 root 1.248 EV_FREQUENT_CHECK;
3641    
3642 root 1.261 ev_io_stop (EV_A_ &w->io);
3643 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3644 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3645 root 1.248
3646 root 1.328 ev_stop (EV_A_ (W)w);
3647    
3648 root 1.248 EV_FREQUENT_CHECK;
3649 root 1.144 }
3650     #endif
3651    
3652 root 1.147 #if EV_FORK_ENABLE
3653     void
3654     ev_fork_start (EV_P_ ev_fork *w)
3655     {
3656     if (expect_false (ev_is_active (w)))
3657     return;
3658    
3659 root 1.248 EV_FREQUENT_CHECK;
3660    
3661 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3662     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3663     forks [forkcnt - 1] = w;
3664 root 1.248
3665     EV_FREQUENT_CHECK;
3666 root 1.147 }
3667    
3668     void
3669     ev_fork_stop (EV_P_ ev_fork *w)
3670     {
3671 root 1.166 clear_pending (EV_A_ (W)w);
3672 root 1.147 if (expect_false (!ev_is_active (w)))
3673     return;
3674    
3675 root 1.248 EV_FREQUENT_CHECK;
3676    
3677 root 1.147 {
3678 root 1.230 int active = ev_active (w);
3679    
3680 root 1.147 forks [active - 1] = forks [--forkcnt];
3681 root 1.230 ev_active (forks [active - 1]) = active;
3682 root 1.147 }
3683    
3684     ev_stop (EV_A_ (W)w);
3685 root 1.248
3686     EV_FREQUENT_CHECK;
3687 root 1.147 }
3688     #endif
3689    
3690 root 1.360 #if EV_CLEANUP_ENABLE
3691     void
3692     ev_cleanup_start (EV_P_ ev_cleanup *w)
3693     {
3694     if (expect_false (ev_is_active (w)))
3695     return;
3696    
3697     EV_FREQUENT_CHECK;
3698    
3699     ev_start (EV_A_ (W)w, ++cleanupcnt);
3700     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3701     cleanups [cleanupcnt - 1] = w;
3702    
3703 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
3704     ev_unref (EV_A);
3705 root 1.360 EV_FREQUENT_CHECK;
3706     }
3707    
3708     void
3709     ev_cleanup_stop (EV_P_ ev_cleanup *w)
3710     {
3711     clear_pending (EV_A_ (W)w);
3712     if (expect_false (!ev_is_active (w)))
3713     return;
3714    
3715     EV_FREQUENT_CHECK;
3716 root 1.362 ev_ref (EV_A);
3717 root 1.360
3718     {
3719     int active = ev_active (w);
3720    
3721     cleanups [active - 1] = cleanups [--cleanupcnt];
3722     ev_active (cleanups [active - 1]) = active;
3723     }
3724    
3725     ev_stop (EV_A_ (W)w);
3726    
3727     EV_FREQUENT_CHECK;
3728     }
3729     #endif
3730    
3731 root 1.207 #if EV_ASYNC_ENABLE
3732     void
3733     ev_async_start (EV_P_ ev_async *w)
3734     {
3735     if (expect_false (ev_is_active (w)))
3736     return;
3737    
3738 root 1.352 w->sent = 0;
3739    
3740 root 1.207 evpipe_init (EV_A);
3741    
3742 root 1.248 EV_FREQUENT_CHECK;
3743    
3744 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3745     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3746     asyncs [asynccnt - 1] = w;
3747 root 1.248
3748     EV_FREQUENT_CHECK;
3749 root 1.207 }
3750    
3751     void
3752     ev_async_stop (EV_P_ ev_async *w)
3753     {
3754     clear_pending (EV_A_ (W)w);
3755     if (expect_false (!ev_is_active (w)))
3756     return;
3757    
3758 root 1.248 EV_FREQUENT_CHECK;
3759    
3760 root 1.207 {
3761 root 1.230 int active = ev_active (w);
3762    
3763 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3764 root 1.230 ev_active (asyncs [active - 1]) = active;
3765 root 1.207 }
3766    
3767     ev_stop (EV_A_ (W)w);
3768 root 1.248
3769     EV_FREQUENT_CHECK;
3770 root 1.207 }
3771    
3772     void
3773     ev_async_send (EV_P_ ev_async *w)
3774     {
3775     w->sent = 1;
3776 root 1.307 evpipe_write (EV_A_ &async_pending);
3777 root 1.207 }
3778     #endif
3779    
3780 root 1.1 /*****************************************************************************/
3781 root 1.10
3782 root 1.16 struct ev_once
3783     {
3784 root 1.136 ev_io io;
3785     ev_timer to;
3786 root 1.16 void (*cb)(int revents, void *arg);
3787     void *arg;
3788     };
3789    
3790     static void
3791 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3792 root 1.16 {
3793     void (*cb)(int revents, void *arg) = once->cb;
3794     void *arg = once->arg;
3795    
3796 root 1.259 ev_io_stop (EV_A_ &once->io);
3797 root 1.51 ev_timer_stop (EV_A_ &once->to);
3798 root 1.69 ev_free (once);
3799 root 1.16
3800     cb (revents, arg);
3801     }
3802    
3803     static void
3804 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3805 root 1.16 {
3806 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3807    
3808     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3809 root 1.16 }
3810    
3811     static void
3812 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3813 root 1.16 {
3814 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3815    
3816     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3817 root 1.16 }
3818    
3819     void
3820 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3821 root 1.16 {
3822 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3823 root 1.16
3824 root 1.123 if (expect_false (!once))
3825 root 1.16 {
3826 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3827 root 1.123 return;
3828     }
3829    
3830     once->cb = cb;
3831     once->arg = arg;
3832 root 1.16
3833 root 1.123 ev_init (&once->io, once_cb_io);
3834     if (fd >= 0)
3835     {
3836     ev_io_set (&once->io, fd, events);
3837     ev_io_start (EV_A_ &once->io);
3838     }
3839 root 1.16
3840 root 1.123 ev_init (&once->to, once_cb_to);
3841     if (timeout >= 0.)
3842     {
3843     ev_timer_set (&once->to, timeout, 0.);
3844     ev_timer_start (EV_A_ &once->to);
3845 root 1.16 }
3846     }
3847    
3848 root 1.282 /*****************************************************************************/
3849    
3850 root 1.288 #if EV_WALK_ENABLE
3851 root 1.282 void
3852     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3853     {
3854     int i, j;
3855     ev_watcher_list *wl, *wn;
3856    
3857     if (types & (EV_IO | EV_EMBED))
3858     for (i = 0; i < anfdmax; ++i)
3859     for (wl = anfds [i].head; wl; )
3860     {
3861     wn = wl->next;
3862    
3863     #if EV_EMBED_ENABLE
3864     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3865     {
3866     if (types & EV_EMBED)
3867     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3868     }
3869     else
3870     #endif
3871     #if EV_USE_INOTIFY
3872     if (ev_cb ((ev_io *)wl) == infy_cb)
3873     ;
3874     else
3875     #endif
3876 root 1.288 if ((ev_io *)wl != &pipe_w)
3877 root 1.282 if (types & EV_IO)
3878     cb (EV_A_ EV_IO, wl);
3879    
3880     wl = wn;
3881     }
3882    
3883     if (types & (EV_TIMER | EV_STAT))
3884     for (i = timercnt + HEAP0; i-- > HEAP0; )
3885     #if EV_STAT_ENABLE
3886     /*TODO: timer is not always active*/
3887     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3888     {
3889     if (types & EV_STAT)
3890     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3891     }
3892     else
3893     #endif
3894     if (types & EV_TIMER)
3895     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3896    
3897     #if EV_PERIODIC_ENABLE
3898     if (types & EV_PERIODIC)
3899     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3900     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3901     #endif
3902    
3903     #if EV_IDLE_ENABLE
3904     if (types & EV_IDLE)
3905     for (j = NUMPRI; i--; )
3906     for (i = idlecnt [j]; i--; )
3907     cb (EV_A_ EV_IDLE, idles [j][i]);
3908     #endif
3909    
3910     #if EV_FORK_ENABLE
3911     if (types & EV_FORK)
3912     for (i = forkcnt; i--; )
3913     if (ev_cb (forks [i]) != embed_fork_cb)
3914     cb (EV_A_ EV_FORK, forks [i]);
3915     #endif
3916    
3917     #if EV_ASYNC_ENABLE
3918     if (types & EV_ASYNC)
3919     for (i = asynccnt; i--; )
3920     cb (EV_A_ EV_ASYNC, asyncs [i]);
3921     #endif
3922    
3923 root 1.337 #if EV_PREPARE_ENABLE
3924 root 1.282 if (types & EV_PREPARE)
3925     for (i = preparecnt; i--; )
3926 root 1.337 # if EV_EMBED_ENABLE
3927 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3928 root 1.337 # endif
3929     cb (EV_A_ EV_PREPARE, prepares [i]);
3930 root 1.282 #endif
3931    
3932 root 1.337 #if EV_CHECK_ENABLE
3933 root 1.282 if (types & EV_CHECK)
3934     for (i = checkcnt; i--; )
3935     cb (EV_A_ EV_CHECK, checks [i]);
3936 root 1.337 #endif
3937 root 1.282
3938 root 1.337 #if EV_SIGNAL_ENABLE
3939 root 1.282 if (types & EV_SIGNAL)
3940 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
3941 root 1.282 for (wl = signals [i].head; wl; )
3942     {
3943     wn = wl->next;
3944     cb (EV_A_ EV_SIGNAL, wl);
3945     wl = wn;
3946     }
3947 root 1.337 #endif
3948 root 1.282
3949 root 1.337 #if EV_CHILD_ENABLE
3950 root 1.282 if (types & EV_CHILD)
3951 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
3952 root 1.282 for (wl = childs [i]; wl; )
3953     {
3954     wn = wl->next;
3955     cb (EV_A_ EV_CHILD, wl);
3956     wl = wn;
3957     }
3958 root 1.337 #endif
3959 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
3960     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3961     }
3962     #endif
3963    
3964 root 1.188 #if EV_MULTIPLICITY
3965     #include "ev_wrap.h"
3966     #endif
3967    
3968 root 1.354 EV_CPP(})
3969 root 1.87