ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.378
Committed: Mon Jun 13 09:52:36 2011 UTC (12 years, 11 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.377: +71 -46 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
65     # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.354 EV_CPP(extern "C" {)
189    
190 root 1.103 #ifndef _WIN32
191 root 1.71 # include <sys/time.h>
192 root 1.45 # include <sys/wait.h>
193 root 1.140 # include <unistd.h>
194 root 1.103 #else
195 root 1.256 # include <io.h>
196 root 1.103 # define WIN32_LEAN_AND_MEAN
197     # include <windows.h>
198     # ifndef EV_SELECT_IS_WINSOCKET
199     # define EV_SELECT_IS_WINSOCKET 1
200     # endif
201 root 1.331 # undef EV_AVOID_STDIO
202 root 1.45 #endif
203 root 1.103
204 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
205     * a limit of 1024 into their select. Where people have brains,
206     * OS X engineers apparently have a vacuum. Or maybe they were
207     * ordered to have a vacuum, or they do anything for money.
208     * This might help. Or not.
209     */
210     #define _DARWIN_UNLIMITED_SELECT 1
211    
212 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
213 root 1.40
214 root 1.305 /* try to deduce the maximum number of signals on this platform */
215     #if defined (EV_NSIG)
216     /* use what's provided */
217     #elif defined (NSIG)
218     # define EV_NSIG (NSIG)
219     #elif defined(_NSIG)
220     # define EV_NSIG (_NSIG)
221     #elif defined (SIGMAX)
222     # define EV_NSIG (SIGMAX+1)
223     #elif defined (SIG_MAX)
224     # define EV_NSIG (SIG_MAX+1)
225     #elif defined (_SIG_MAX)
226     # define EV_NSIG (_SIG_MAX+1)
227     #elif defined (MAXSIG)
228     # define EV_NSIG (MAXSIG+1)
229     #elif defined (MAX_SIG)
230     # define EV_NSIG (MAX_SIG+1)
231     #elif defined (SIGARRAYSIZE)
232 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233 root 1.305 #elif defined (_sys_nsig)
234     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235     #else
236     # error "unable to find value for NSIG, please report"
237 root 1.336 /* to make it compile regardless, just remove the above line, */
238     /* but consider reporting it, too! :) */
239 root 1.306 # define EV_NSIG 65
240 root 1.305 #endif
241    
242 root 1.373 #ifndef EV_USE_FLOOR
243     # define EV_USE_FLOOR 0
244     #endif
245    
246 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
247     # if __linux && __GLIBC__ >= 2
248 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249 root 1.274 # else
250     # define EV_USE_CLOCK_SYSCALL 0
251     # endif
252     #endif
253    
254 root 1.29 #ifndef EV_USE_MONOTONIC
255 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
257 root 1.253 # else
258     # define EV_USE_MONOTONIC 0
259     # endif
260 root 1.37 #endif
261    
262 root 1.118 #ifndef EV_USE_REALTIME
263 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264 root 1.118 #endif
265    
266 root 1.193 #ifndef EV_USE_NANOSLEEP
267 root 1.253 # if _POSIX_C_SOURCE >= 199309L
268 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
269 root 1.253 # else
270     # define EV_USE_NANOSLEEP 0
271     # endif
272 root 1.193 #endif
273    
274 root 1.29 #ifndef EV_USE_SELECT
275 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
276 root 1.10 #endif
277    
278 root 1.59 #ifndef EV_USE_POLL
279 root 1.104 # ifdef _WIN32
280     # define EV_USE_POLL 0
281     # else
282 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
283 root 1.104 # endif
284 root 1.41 #endif
285    
286 root 1.29 #ifndef EV_USE_EPOLL
287 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
289 root 1.220 # else
290     # define EV_USE_EPOLL 0
291     # endif
292 root 1.10 #endif
293    
294 root 1.44 #ifndef EV_USE_KQUEUE
295     # define EV_USE_KQUEUE 0
296     #endif
297    
298 root 1.118 #ifndef EV_USE_PORT
299     # define EV_USE_PORT 0
300 root 1.40 #endif
301    
302 root 1.152 #ifndef EV_USE_INOTIFY
303 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
305 root 1.220 # else
306     # define EV_USE_INOTIFY 0
307     # endif
308 root 1.152 #endif
309    
310 root 1.149 #ifndef EV_PID_HASHSIZE
311 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312 root 1.149 #endif
313    
314 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
315 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316 root 1.152 #endif
317    
318 root 1.220 #ifndef EV_USE_EVENTFD
319     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
321 root 1.220 # else
322     # define EV_USE_EVENTFD 0
323     # endif
324     #endif
325    
326 root 1.303 #ifndef EV_USE_SIGNALFD
327 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
329 root 1.303 # else
330     # define EV_USE_SIGNALFD 0
331     # endif
332     #endif
333    
334 root 1.249 #if 0 /* debugging */
335 root 1.250 # define EV_VERIFY 3
336 root 1.249 # define EV_USE_4HEAP 1
337     # define EV_HEAP_CACHE_AT 1
338     #endif
339    
340 root 1.250 #ifndef EV_VERIFY
341 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342 root 1.250 #endif
343    
344 root 1.243 #ifndef EV_USE_4HEAP
345 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
346 root 1.243 #endif
347    
348     #ifndef EV_HEAP_CACHE_AT
349 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350 root 1.243 #endif
351    
352 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353     /* which makes programs even slower. might work on other unices, too. */
354     #if EV_USE_CLOCK_SYSCALL
355     # include <syscall.h>
356     # ifdef SYS_clock_gettime
357     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358     # undef EV_USE_MONOTONIC
359     # define EV_USE_MONOTONIC 1
360     # else
361     # undef EV_USE_CLOCK_SYSCALL
362     # define EV_USE_CLOCK_SYSCALL 0
363     # endif
364     #endif
365    
366 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
367 root 1.40
368 root 1.325 #ifdef _AIX
369     /* AIX has a completely broken poll.h header */
370     # undef EV_USE_POLL
371     # define EV_USE_POLL 0
372     #endif
373    
374 root 1.40 #ifndef CLOCK_MONOTONIC
375     # undef EV_USE_MONOTONIC
376     # define EV_USE_MONOTONIC 0
377     #endif
378    
379 root 1.31 #ifndef CLOCK_REALTIME
380 root 1.40 # undef EV_USE_REALTIME
381 root 1.31 # define EV_USE_REALTIME 0
382     #endif
383 root 1.40
384 root 1.152 #if !EV_STAT_ENABLE
385 root 1.185 # undef EV_USE_INOTIFY
386 root 1.152 # define EV_USE_INOTIFY 0
387     #endif
388    
389 root 1.193 #if !EV_USE_NANOSLEEP
390 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
391     # if !defined(_WIN32) && !defined(__hpux)
392 root 1.193 # include <sys/select.h>
393     # endif
394     #endif
395    
396 root 1.152 #if EV_USE_INOTIFY
397 root 1.273 # include <sys/statfs.h>
398 root 1.152 # include <sys/inotify.h>
399 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400     # ifndef IN_DONT_FOLLOW
401     # undef EV_USE_INOTIFY
402     # define EV_USE_INOTIFY 0
403     # endif
404 root 1.152 #endif
405    
406 root 1.185 #if EV_SELECT_IS_WINSOCKET
407     # include <winsock.h>
408     #endif
409    
410 root 1.220 #if EV_USE_EVENTFD
411     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412 root 1.221 # include <stdint.h>
413 root 1.303 # ifndef EFD_NONBLOCK
414     # define EFD_NONBLOCK O_NONBLOCK
415     # endif
416     # ifndef EFD_CLOEXEC
417 root 1.311 # ifdef O_CLOEXEC
418     # define EFD_CLOEXEC O_CLOEXEC
419     # else
420     # define EFD_CLOEXEC 02000000
421     # endif
422 root 1.303 # endif
423 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424 root 1.220 #endif
425    
426 root 1.303 #if EV_USE_SIGNALFD
427 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428     # include <stdint.h>
429     # ifndef SFD_NONBLOCK
430     # define SFD_NONBLOCK O_NONBLOCK
431     # endif
432     # ifndef SFD_CLOEXEC
433     # ifdef O_CLOEXEC
434     # define SFD_CLOEXEC O_CLOEXEC
435     # else
436     # define SFD_CLOEXEC 02000000
437     # endif
438     # endif
439 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440 root 1.314
441     struct signalfd_siginfo
442     {
443     uint32_t ssi_signo;
444     char pad[128 - sizeof (uint32_t)];
445     };
446 root 1.303 #endif
447    
448 root 1.40 /**/
449 root 1.1
450 root 1.250 #if EV_VERIFY >= 3
451 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
452 root 1.248 #else
453     # define EV_FREQUENT_CHECK do { } while (0)
454     #endif
455    
456 root 1.176 /*
457 root 1.373 * This is used to work around floating point rounding problems.
458 root 1.177 * This value is good at least till the year 4000.
459 root 1.176 */
460 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462 root 1.176
463 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
464 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465 root 1.1
466 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468 root 1.347
469 root 1.185 #if __GNUC__ >= 4
470 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
471 root 1.169 # define noinline __attribute__ ((noinline))
472 root 1.40 #else
473     # define expect(expr,value) (expr)
474 root 1.140 # define noinline
475 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
476 root 1.169 # define inline
477     # endif
478 root 1.40 #endif
479    
480     #define expect_false(expr) expect ((expr) != 0, 0)
481     #define expect_true(expr) expect ((expr) != 0, 1)
482 root 1.169 #define inline_size static inline
483    
484 root 1.338 #if EV_FEATURE_CODE
485     # define inline_speed static inline
486     #else
487 root 1.169 # define inline_speed static noinline
488     #endif
489 root 1.40
490 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491    
492     #if EV_MINPRI == EV_MAXPRI
493     # define ABSPRI(w) (((W)w), 0)
494     #else
495     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496     #endif
497 root 1.42
498 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
499 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
500 root 1.103
501 root 1.136 typedef ev_watcher *W;
502     typedef ev_watcher_list *WL;
503     typedef ev_watcher_time *WT;
504 root 1.10
505 root 1.229 #define ev_active(w) ((W)(w))->active
506 root 1.228 #define ev_at(w) ((WT)(w))->at
507    
508 root 1.279 #if EV_USE_REALTIME
509 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
510 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
511 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512     #endif
513    
514     #if EV_USE_MONOTONIC
515 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516 root 1.198 #endif
517 root 1.54
518 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
519     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520     #endif
521     #ifndef EV_WIN32_HANDLE_TO_FD
522 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523 root 1.313 #endif
524     #ifndef EV_WIN32_CLOSE_FD
525     # define EV_WIN32_CLOSE_FD(fd) close (fd)
526     #endif
527    
528 root 1.103 #ifdef _WIN32
529 root 1.98 # include "ev_win32.c"
530     #endif
531 root 1.67
532 root 1.53 /*****************************************************************************/
533 root 1.1
534 root 1.373 /* define a suitable floor function (only used by periodics atm) */
535    
536     #if EV_USE_FLOOR
537     # include <math.h>
538     # define ev_floor(v) floor (v)
539     #else
540    
541     #include <float.h>
542    
543     /* a floor() replacement function, should be independent of ev_tstamp type */
544     static ev_tstamp noinline
545     ev_floor (ev_tstamp v)
546     {
547     /* the choice of shift factor is not terribly important */
548     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550     #else
551     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552     #endif
553    
554     /* argument too large for an unsigned long? */
555     if (expect_false (v >= shift))
556     {
557     ev_tstamp f;
558    
559     if (v == v - 1.)
560     return v; /* very large number */
561    
562     f = shift * ev_floor (v * (1. / shift));
563     return f + ev_floor (v - f);
564     }
565    
566     /* special treatment for negative args? */
567     if (expect_false (v < 0.))
568     {
569     ev_tstamp f = -ev_floor (-v);
570    
571     return f - (f == v ? 0 : 1);
572     }
573    
574     /* fits into an unsigned long */
575     return (unsigned long)v;
576     }
577    
578     #endif
579    
580     /*****************************************************************************/
581    
582 root 1.356 #ifdef __linux
583     # include <sys/utsname.h>
584     #endif
585    
586 root 1.355 static unsigned int noinline
587     ev_linux_version (void)
588     {
589     #ifdef __linux
590 root 1.359 unsigned int v = 0;
591 root 1.355 struct utsname buf;
592     int i;
593     char *p = buf.release;
594    
595     if (uname (&buf))
596     return 0;
597    
598     for (i = 3+1; --i; )
599     {
600     unsigned int c = 0;
601    
602     for (;;)
603     {
604     if (*p >= '0' && *p <= '9')
605     c = c * 10 + *p++ - '0';
606     else
607     {
608     p += *p == '.';
609     break;
610     }
611     }
612    
613     v = (v << 8) | c;
614     }
615    
616     return v;
617     #else
618     return 0;
619     #endif
620     }
621    
622     /*****************************************************************************/
623    
624 root 1.331 #if EV_AVOID_STDIO
625     static void noinline
626     ev_printerr (const char *msg)
627     {
628     write (STDERR_FILENO, msg, strlen (msg));
629     }
630     #endif
631    
632 root 1.70 static void (*syserr_cb)(const char *msg);
633 root 1.69
634 root 1.141 void
635     ev_set_syserr_cb (void (*cb)(const char *msg))
636 root 1.69 {
637     syserr_cb = cb;
638     }
639    
640 root 1.141 static void noinline
641 root 1.269 ev_syserr (const char *msg)
642 root 1.69 {
643 root 1.70 if (!msg)
644     msg = "(libev) system error";
645    
646 root 1.69 if (syserr_cb)
647 root 1.70 syserr_cb (msg);
648 root 1.69 else
649     {
650 root 1.330 #if EV_AVOID_STDIO
651 root 1.331 ev_printerr (msg);
652     ev_printerr (": ");
653 root 1.365 ev_printerr (strerror (errno));
654 root 1.331 ev_printerr ("\n");
655 root 1.330 #else
656 root 1.70 perror (msg);
657 root 1.330 #endif
658 root 1.69 abort ();
659     }
660     }
661    
662 root 1.224 static void *
663     ev_realloc_emul (void *ptr, long size)
664     {
665 root 1.334 #if __GLIBC__
666     return realloc (ptr, size);
667     #else
668 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
669 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
670 root 1.224 * the single unix specification, so work around them here.
671     */
672 root 1.333
673 root 1.224 if (size)
674     return realloc (ptr, size);
675    
676     free (ptr);
677     return 0;
678 root 1.334 #endif
679 root 1.224 }
680    
681     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
682 root 1.69
683 root 1.141 void
684 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
685 root 1.69 {
686     alloc = cb;
687     }
688    
689 root 1.150 inline_speed void *
690 root 1.155 ev_realloc (void *ptr, long size)
691 root 1.69 {
692 root 1.224 ptr = alloc (ptr, size);
693 root 1.69
694     if (!ptr && size)
695     {
696 root 1.330 #if EV_AVOID_STDIO
697 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698 root 1.330 #else
699 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700 root 1.330 #endif
701 root 1.69 abort ();
702     }
703    
704     return ptr;
705     }
706    
707     #define ev_malloc(size) ev_realloc (0, (size))
708     #define ev_free(ptr) ev_realloc ((ptr), 0)
709    
710     /*****************************************************************************/
711    
712 root 1.298 /* set in reify when reification needed */
713     #define EV_ANFD_REIFY 1
714    
715 root 1.288 /* file descriptor info structure */
716 root 1.53 typedef struct
717     {
718 root 1.68 WL head;
719 root 1.288 unsigned char events; /* the events watched for */
720 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
722 root 1.269 unsigned char unused;
723     #if EV_USE_EPOLL
724 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
725 root 1.269 #endif
726 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
727 root 1.103 SOCKET handle;
728     #endif
729 root 1.357 #if EV_USE_IOCP
730     OVERLAPPED or, ow;
731     #endif
732 root 1.53 } ANFD;
733 root 1.1
734 root 1.288 /* stores the pending event set for a given watcher */
735 root 1.53 typedef struct
736     {
737     W w;
738 root 1.288 int events; /* the pending event set for the given watcher */
739 root 1.53 } ANPENDING;
740 root 1.51
741 root 1.155 #if EV_USE_INOTIFY
742 root 1.241 /* hash table entry per inotify-id */
743 root 1.152 typedef struct
744     {
745     WL head;
746 root 1.155 } ANFS;
747 root 1.152 #endif
748    
749 root 1.241 /* Heap Entry */
750     #if EV_HEAP_CACHE_AT
751 root 1.288 /* a heap element */
752 root 1.241 typedef struct {
753 root 1.243 ev_tstamp at;
754 root 1.241 WT w;
755     } ANHE;
756    
757 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
758     #define ANHE_at(he) (he).at /* access cached at, read-only */
759     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760 root 1.241 #else
761 root 1.288 /* a heap element */
762 root 1.241 typedef WT ANHE;
763    
764 root 1.248 #define ANHE_w(he) (he)
765     #define ANHE_at(he) (he)->at
766     #define ANHE_at_cache(he)
767 root 1.241 #endif
768    
769 root 1.55 #if EV_MULTIPLICITY
770 root 1.54
771 root 1.80 struct ev_loop
772     {
773 root 1.86 ev_tstamp ev_rt_now;
774 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
775 root 1.80 #define VAR(name,decl) decl;
776     #include "ev_vars.h"
777     #undef VAR
778     };
779     #include "ev_wrap.h"
780    
781 root 1.116 static struct ev_loop default_loop_struct;
782     struct ev_loop *ev_default_loop_ptr;
783 root 1.54
784 root 1.53 #else
785 root 1.54
786 root 1.86 ev_tstamp ev_rt_now;
787 root 1.80 #define VAR(name,decl) static decl;
788     #include "ev_vars.h"
789     #undef VAR
790    
791 root 1.116 static int ev_default_loop_ptr;
792 root 1.54
793 root 1.51 #endif
794 root 1.1
795 root 1.338 #if EV_FEATURE_API
796 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
799     #else
800 root 1.298 # define EV_RELEASE_CB (void)0
801     # define EV_ACQUIRE_CB (void)0
802 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803     #endif
804    
805 root 1.353 #define EVBREAK_RECURSE 0x80
806 root 1.298
807 root 1.8 /*****************************************************************************/
808    
809 root 1.292 #ifndef EV_HAVE_EV_TIME
810 root 1.141 ev_tstamp
811 root 1.1 ev_time (void)
812     {
813 root 1.29 #if EV_USE_REALTIME
814 root 1.279 if (expect_true (have_realtime))
815     {
816     struct timespec ts;
817     clock_gettime (CLOCK_REALTIME, &ts);
818     return ts.tv_sec + ts.tv_nsec * 1e-9;
819     }
820     #endif
821    
822 root 1.1 struct timeval tv;
823     gettimeofday (&tv, 0);
824     return tv.tv_sec + tv.tv_usec * 1e-6;
825     }
826 root 1.292 #endif
827 root 1.1
828 root 1.284 inline_size ev_tstamp
829 root 1.1 get_clock (void)
830     {
831 root 1.29 #if EV_USE_MONOTONIC
832 root 1.40 if (expect_true (have_monotonic))
833 root 1.1 {
834     struct timespec ts;
835     clock_gettime (CLOCK_MONOTONIC, &ts);
836     return ts.tv_sec + ts.tv_nsec * 1e-9;
837     }
838     #endif
839    
840     return ev_time ();
841     }
842    
843 root 1.85 #if EV_MULTIPLICITY
844 root 1.51 ev_tstamp
845     ev_now (EV_P)
846     {
847 root 1.85 return ev_rt_now;
848 root 1.51 }
849 root 1.85 #endif
850 root 1.51
851 root 1.193 void
852     ev_sleep (ev_tstamp delay)
853     {
854     if (delay > 0.)
855     {
856     #if EV_USE_NANOSLEEP
857     struct timespec ts;
858    
859 root 1.348 EV_TS_SET (ts, delay);
860 root 1.193 nanosleep (&ts, 0);
861     #elif defined(_WIN32)
862 root 1.217 Sleep ((unsigned long)(delay * 1e3));
863 root 1.193 #else
864     struct timeval tv;
865    
866 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
867 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
868 root 1.257 /* by older ones */
869 sf-exg 1.349 EV_TV_SET (tv, delay);
870 root 1.193 select (0, 0, 0, 0, &tv);
871     #endif
872     }
873     }
874    
875     /*****************************************************************************/
876    
877 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
878 root 1.232
879 root 1.288 /* find a suitable new size for the given array, */
880 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
881 root 1.284 inline_size int
882 root 1.163 array_nextsize (int elem, int cur, int cnt)
883     {
884     int ncur = cur + 1;
885    
886     do
887     ncur <<= 1;
888     while (cnt > ncur);
889    
890 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
891     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
892 root 1.163 {
893     ncur *= elem;
894 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
895 root 1.163 ncur = ncur - sizeof (void *) * 4;
896     ncur /= elem;
897     }
898    
899     return ncur;
900     }
901    
902 root 1.171 static noinline void *
903 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
904     {
905     *cur = array_nextsize (elem, *cur, cnt);
906     return ev_realloc (base, elem * *cur);
907     }
908 root 1.29
909 root 1.265 #define array_init_zero(base,count) \
910     memset ((void *)(base), 0, sizeof (*(base)) * (count))
911    
912 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
913 root 1.163 if (expect_false ((cnt) > (cur))) \
914 root 1.69 { \
915 root 1.163 int ocur_ = (cur); \
916     (base) = (type *)array_realloc \
917     (sizeof (type), (base), &(cur), (cnt)); \
918     init ((base) + (ocur_), (cur) - ocur_); \
919 root 1.1 }
920    
921 root 1.163 #if 0
922 root 1.74 #define array_slim(type,stem) \
923 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
924     { \
925     stem ## max = array_roundsize (stem ## cnt >> 1); \
926 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
927 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
928     }
929 root 1.163 #endif
930 root 1.67
931 root 1.65 #define array_free(stem, idx) \
932 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
933 root 1.65
934 root 1.8 /*****************************************************************************/
935    
936 root 1.288 /* dummy callback for pending events */
937     static void noinline
938     pendingcb (EV_P_ ev_prepare *w, int revents)
939     {
940     }
941    
942 root 1.140 void noinline
943 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
944 root 1.1 {
945 root 1.78 W w_ = (W)w;
946 root 1.171 int pri = ABSPRI (w_);
947 root 1.78
948 root 1.123 if (expect_false (w_->pending))
949 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
950     else
951 root 1.32 {
952 root 1.171 w_->pending = ++pendingcnt [pri];
953     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
954     pendings [pri][w_->pending - 1].w = w_;
955     pendings [pri][w_->pending - 1].events = revents;
956 root 1.32 }
957 root 1.1 }
958    
959 root 1.284 inline_speed void
960     feed_reverse (EV_P_ W w)
961     {
962     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963     rfeeds [rfeedcnt++] = w;
964     }
965    
966     inline_size void
967     feed_reverse_done (EV_P_ int revents)
968     {
969     do
970     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971     while (rfeedcnt);
972     }
973    
974     inline_speed void
975 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
976 root 1.27 {
977     int i;
978    
979     for (i = 0; i < eventcnt; ++i)
980 root 1.78 ev_feed_event (EV_A_ events [i], type);
981 root 1.27 }
982    
983 root 1.141 /*****************************************************************************/
984    
985 root 1.284 inline_speed void
986 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
987 root 1.1 {
988     ANFD *anfd = anfds + fd;
989 root 1.136 ev_io *w;
990 root 1.1
991 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
992 root 1.1 {
993 root 1.79 int ev = w->events & revents;
994 root 1.1
995     if (ev)
996 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
997 root 1.1 }
998     }
999    
1000 root 1.298 /* do not submit kernel events for fds that have reify set */
1001     /* because that means they changed while we were polling for new events */
1002     inline_speed void
1003     fd_event (EV_P_ int fd, int revents)
1004     {
1005     ANFD *anfd = anfds + fd;
1006    
1007     if (expect_true (!anfd->reify))
1008 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1009 root 1.298 }
1010    
1011 root 1.79 void
1012     ev_feed_fd_event (EV_P_ int fd, int revents)
1013     {
1014 root 1.168 if (fd >= 0 && fd < anfdmax)
1015 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1016 root 1.79 }
1017    
1018 root 1.288 /* make sure the external fd watch events are in-sync */
1019     /* with the kernel/libev internal state */
1020 root 1.284 inline_size void
1021 root 1.51 fd_reify (EV_P)
1022 root 1.9 {
1023     int i;
1024    
1025 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1026     for (i = 0; i < fdchangecnt; ++i)
1027     {
1028     int fd = fdchanges [i];
1029     ANFD *anfd = anfds + fd;
1030    
1031 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1032 root 1.371 {
1033     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034    
1035     if (handle != anfd->handle)
1036     {
1037     unsigned long arg;
1038    
1039     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040    
1041     /* handle changed, but fd didn't - we need to do it in two steps */
1042     backend_modify (EV_A_ fd, anfd->events, 0);
1043     anfd->events = 0;
1044     anfd->handle = handle;
1045     }
1046     }
1047     }
1048     #endif
1049    
1050 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1051     {
1052     int fd = fdchanges [i];
1053     ANFD *anfd = anfds + fd;
1054 root 1.136 ev_io *w;
1055 root 1.27
1056 root 1.350 unsigned char o_events = anfd->events;
1057     unsigned char o_reify = anfd->reify;
1058 root 1.27
1059 root 1.350 anfd->reify = 0;
1060 root 1.27
1061 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1062     {
1063     anfd->events = 0;
1064 root 1.184
1065 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1066     anfd->events |= (unsigned char)w->events;
1067 root 1.27
1068 root 1.351 if (o_events != anfd->events)
1069 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1070     }
1071    
1072     if (o_reify & EV__IOFDSET)
1073     backend_modify (EV_A_ fd, o_events, anfd->events);
1074 root 1.27 }
1075    
1076     fdchangecnt = 0;
1077     }
1078    
1079 root 1.288 /* something about the given fd changed */
1080 root 1.284 inline_size void
1081 root 1.183 fd_change (EV_P_ int fd, int flags)
1082 root 1.27 {
1083 root 1.183 unsigned char reify = anfds [fd].reify;
1084 root 1.184 anfds [fd].reify |= flags;
1085 root 1.27
1086 root 1.183 if (expect_true (!reify))
1087     {
1088     ++fdchangecnt;
1089     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1090     fdchanges [fdchangecnt - 1] = fd;
1091     }
1092 root 1.9 }
1093    
1094 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095 root 1.284 inline_speed void
1096 root 1.51 fd_kill (EV_P_ int fd)
1097 root 1.41 {
1098 root 1.136 ev_io *w;
1099 root 1.41
1100 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1101 root 1.41 {
1102 root 1.51 ev_io_stop (EV_A_ w);
1103 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1104 root 1.41 }
1105     }
1106    
1107 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1108 root 1.284 inline_size int
1109 root 1.71 fd_valid (int fd)
1110     {
1111 root 1.103 #ifdef _WIN32
1112 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1113 root 1.71 #else
1114     return fcntl (fd, F_GETFD) != -1;
1115     #endif
1116     }
1117    
1118 root 1.19 /* called on EBADF to verify fds */
1119 root 1.140 static void noinline
1120 root 1.51 fd_ebadf (EV_P)
1121 root 1.19 {
1122     int fd;
1123    
1124     for (fd = 0; fd < anfdmax; ++fd)
1125 root 1.27 if (anfds [fd].events)
1126 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1127 root 1.51 fd_kill (EV_A_ fd);
1128 root 1.41 }
1129    
1130     /* called on ENOMEM in select/poll to kill some fds and retry */
1131 root 1.140 static void noinline
1132 root 1.51 fd_enomem (EV_P)
1133 root 1.41 {
1134 root 1.62 int fd;
1135 root 1.41
1136 root 1.62 for (fd = anfdmax; fd--; )
1137 root 1.41 if (anfds [fd].events)
1138     {
1139 root 1.51 fd_kill (EV_A_ fd);
1140 root 1.307 break;
1141 root 1.41 }
1142 root 1.19 }
1143    
1144 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1145 root 1.140 static void noinline
1146 root 1.56 fd_rearm_all (EV_P)
1147     {
1148     int fd;
1149    
1150     for (fd = 0; fd < anfdmax; ++fd)
1151     if (anfds [fd].events)
1152     {
1153     anfds [fd].events = 0;
1154 root 1.268 anfds [fd].emask = 0;
1155 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1156 root 1.56 }
1157     }
1158    
1159 root 1.336 /* used to prepare libev internal fd's */
1160     /* this is not fork-safe */
1161     inline_speed void
1162     fd_intern (int fd)
1163     {
1164     #ifdef _WIN32
1165     unsigned long arg = 1;
1166     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1167     #else
1168     fcntl (fd, F_SETFD, FD_CLOEXEC);
1169     fcntl (fd, F_SETFL, O_NONBLOCK);
1170     #endif
1171     }
1172    
1173 root 1.8 /*****************************************************************************/
1174    
1175 root 1.235 /*
1176 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1177 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1178     * the branching factor of the d-tree.
1179     */
1180    
1181     /*
1182 root 1.235 * at the moment we allow libev the luxury of two heaps,
1183     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1184     * which is more cache-efficient.
1185     * the difference is about 5% with 50000+ watchers.
1186     */
1187 root 1.241 #if EV_USE_4HEAP
1188 root 1.235
1189 root 1.237 #define DHEAP 4
1190     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1191 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1192 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1193 root 1.235
1194     /* away from the root */
1195 root 1.284 inline_speed void
1196 root 1.241 downheap (ANHE *heap, int N, int k)
1197 root 1.235 {
1198 root 1.241 ANHE he = heap [k];
1199     ANHE *E = heap + N + HEAP0;
1200 root 1.235
1201     for (;;)
1202     {
1203     ev_tstamp minat;
1204 root 1.241 ANHE *minpos;
1205 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1206 root 1.235
1207 root 1.248 /* find minimum child */
1208 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1209 root 1.235 {
1210 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1211     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1212     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1213     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1214 root 1.235 }
1215 root 1.240 else if (pos < E)
1216 root 1.235 {
1217 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1218     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1219     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1220     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1221 root 1.235 }
1222 root 1.240 else
1223     break;
1224 root 1.235
1225 root 1.241 if (ANHE_at (he) <= minat)
1226 root 1.235 break;
1227    
1228 root 1.247 heap [k] = *minpos;
1229 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1230 root 1.235
1231     k = minpos - heap;
1232     }
1233    
1234 root 1.247 heap [k] = he;
1235 root 1.241 ev_active (ANHE_w (he)) = k;
1236 root 1.235 }
1237    
1238 root 1.248 #else /* 4HEAP */
1239 root 1.235
1240     #define HEAP0 1
1241 root 1.247 #define HPARENT(k) ((k) >> 1)
1242 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1243 root 1.235
1244 root 1.248 /* away from the root */
1245 root 1.284 inline_speed void
1246 root 1.248 downheap (ANHE *heap, int N, int k)
1247 root 1.1 {
1248 root 1.241 ANHE he = heap [k];
1249 root 1.1
1250 root 1.228 for (;;)
1251 root 1.1 {
1252 root 1.248 int c = k << 1;
1253 root 1.179
1254 root 1.309 if (c >= N + HEAP0)
1255 root 1.179 break;
1256    
1257 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1258     ? 1 : 0;
1259    
1260     if (ANHE_at (he) <= ANHE_at (heap [c]))
1261     break;
1262    
1263     heap [k] = heap [c];
1264 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1265 root 1.248
1266     k = c;
1267 root 1.1 }
1268    
1269 root 1.243 heap [k] = he;
1270 root 1.248 ev_active (ANHE_w (he)) = k;
1271 root 1.1 }
1272 root 1.248 #endif
1273 root 1.1
1274 root 1.248 /* towards the root */
1275 root 1.284 inline_speed void
1276 root 1.248 upheap (ANHE *heap, int k)
1277 root 1.1 {
1278 root 1.241 ANHE he = heap [k];
1279 root 1.1
1280 root 1.179 for (;;)
1281 root 1.1 {
1282 root 1.248 int p = HPARENT (k);
1283 root 1.179
1284 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1285 root 1.179 break;
1286 root 1.1
1287 root 1.248 heap [k] = heap [p];
1288 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1289 root 1.248 k = p;
1290 root 1.1 }
1291    
1292 root 1.241 heap [k] = he;
1293     ev_active (ANHE_w (he)) = k;
1294 root 1.1 }
1295    
1296 root 1.288 /* move an element suitably so it is in a correct place */
1297 root 1.284 inline_size void
1298 root 1.241 adjustheap (ANHE *heap, int N, int k)
1299 root 1.84 {
1300 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1301 root 1.247 upheap (heap, k);
1302     else
1303     downheap (heap, N, k);
1304 root 1.84 }
1305    
1306 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1307 root 1.284 inline_size void
1308 root 1.248 reheap (ANHE *heap, int N)
1309     {
1310     int i;
1311 root 1.251
1312 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1313     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1314     for (i = 0; i < N; ++i)
1315     upheap (heap, i + HEAP0);
1316     }
1317    
1318 root 1.8 /*****************************************************************************/
1319    
1320 root 1.288 /* associate signal watchers to a signal signal */
1321 root 1.7 typedef struct
1322     {
1323 root 1.307 EV_ATOMIC_T pending;
1324 root 1.306 #if EV_MULTIPLICITY
1325     EV_P;
1326     #endif
1327 root 1.68 WL head;
1328 root 1.7 } ANSIG;
1329    
1330 root 1.306 static ANSIG signals [EV_NSIG - 1];
1331 root 1.7
1332 root 1.207 /*****************************************************************************/
1333    
1334 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1335 root 1.207
1336     static void noinline
1337     evpipe_init (EV_P)
1338     {
1339 root 1.288 if (!ev_is_active (&pipe_w))
1340 root 1.207 {
1341 root 1.336 # if EV_USE_EVENTFD
1342 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343     if (evfd < 0 && errno == EINVAL)
1344     evfd = eventfd (0, 0);
1345    
1346     if (evfd >= 0)
1347 root 1.220 {
1348     evpipe [0] = -1;
1349 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1350 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1351 root 1.220 }
1352     else
1353 root 1.336 # endif
1354 root 1.220 {
1355     while (pipe (evpipe))
1356 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1357 root 1.207
1358 root 1.220 fd_intern (evpipe [0]);
1359     fd_intern (evpipe [1]);
1360 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1361 root 1.220 }
1362 root 1.207
1363 root 1.288 ev_io_start (EV_A_ &pipe_w);
1364 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1365 root 1.207 }
1366     }
1367    
1368 root 1.284 inline_size void
1369 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1370 root 1.207 {
1371 root 1.214 if (!*flag)
1372 root 1.207 {
1373 root 1.378 *flag = 1;
1374    
1375     pipe_write_skipped = 1;
1376 root 1.214
1377 root 1.378 if (pipe_write_wanted)
1378     {
1379     int old_errno = errno; /* save errno because write will clobber it */
1380     char dummy;
1381    
1382     pipe_write_skipped = 0;
1383 root 1.220
1384     #if EV_USE_EVENTFD
1385 root 1.378 if (evfd >= 0)
1386     {
1387     uint64_t counter = 1;
1388     write (evfd, &counter, sizeof (uint64_t));
1389     }
1390     else
1391 root 1.220 #endif
1392 root 1.378 {
1393     /* win32 people keep sending patches that change this write() to send() */
1394     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1395     /* so when you think this write should be a send instead, please find out */
1396     /* where your send() is from - it's definitely not the microsoft send, and */
1397     /* tell me. thank you. */
1398     write (evpipe [1], &dummy, 1);
1399     }
1400 root 1.214
1401 root 1.378 errno = old_errno;
1402     }
1403 root 1.207 }
1404     }
1405    
1406 root 1.288 /* called whenever the libev signal pipe */
1407     /* got some events (signal, async) */
1408 root 1.207 static void
1409     pipecb (EV_P_ ev_io *iow, int revents)
1410     {
1411 root 1.307 int i;
1412    
1413 root 1.378 if (revents & EV_READ)
1414     {
1415 root 1.220 #if EV_USE_EVENTFD
1416 root 1.378 if (evfd >= 0)
1417     {
1418     uint64_t counter;
1419     read (evfd, &counter, sizeof (uint64_t));
1420     }
1421     else
1422 root 1.220 #endif
1423 root 1.378 {
1424     char dummy;
1425     /* see discussion in evpipe_write when you think this read should be recv in win32 */
1426     read (evpipe [0], &dummy, 1);
1427     }
1428 root 1.220 }
1429 root 1.207
1430 root 1.378 pipe_write_skipped = 0;
1431    
1432 root 1.369 #if EV_SIGNAL_ENABLE
1433 root 1.307 if (sig_pending)
1434 root 1.372 {
1435 root 1.307 sig_pending = 0;
1436 root 1.207
1437 root 1.307 for (i = EV_NSIG - 1; i--; )
1438     if (expect_false (signals [i].pending))
1439     ev_feed_signal_event (EV_A_ i + 1);
1440 root 1.207 }
1441 root 1.369 #endif
1442 root 1.207
1443 root 1.209 #if EV_ASYNC_ENABLE
1444 root 1.307 if (async_pending)
1445 root 1.207 {
1446 root 1.307 async_pending = 0;
1447 root 1.207
1448     for (i = asynccnt; i--; )
1449     if (asyncs [i]->sent)
1450     {
1451     asyncs [i]->sent = 0;
1452     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1453     }
1454     }
1455 root 1.209 #endif
1456 root 1.207 }
1457    
1458     /*****************************************************************************/
1459    
1460 root 1.366 void
1461     ev_feed_signal (int signum)
1462 root 1.7 {
1463 root 1.207 #if EV_MULTIPLICITY
1464 root 1.306 EV_P = signals [signum - 1].loop;
1465 root 1.366
1466     if (!EV_A)
1467     return;
1468 root 1.207 #endif
1469    
1470 root 1.378 evpipe_init (EV_A);
1471    
1472 root 1.366 signals [signum - 1].pending = 1;
1473     evpipe_write (EV_A_ &sig_pending);
1474     }
1475    
1476     static void
1477     ev_sighandler (int signum)
1478     {
1479 root 1.322 #ifdef _WIN32
1480 root 1.218 signal (signum, ev_sighandler);
1481 root 1.67 #endif
1482    
1483 root 1.366 ev_feed_signal (signum);
1484 root 1.7 }
1485    
1486 root 1.140 void noinline
1487 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1488     {
1489 root 1.80 WL w;
1490    
1491 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1492     return;
1493    
1494     --signum;
1495    
1496 root 1.79 #if EV_MULTIPLICITY
1497 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1498     /* or, likely more useful, feeding a signal nobody is waiting for */
1499 root 1.79
1500 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1501 root 1.306 return;
1502 root 1.307 #endif
1503 root 1.306
1504 root 1.307 signals [signum].pending = 0;
1505 root 1.79
1506     for (w = signals [signum].head; w; w = w->next)
1507     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1508     }
1509    
1510 root 1.303 #if EV_USE_SIGNALFD
1511     static void
1512     sigfdcb (EV_P_ ev_io *iow, int revents)
1513     {
1514 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1515 root 1.303
1516     for (;;)
1517     {
1518     ssize_t res = read (sigfd, si, sizeof (si));
1519    
1520     /* not ISO-C, as res might be -1, but works with SuS */
1521     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1522     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1523    
1524     if (res < (ssize_t)sizeof (si))
1525     break;
1526     }
1527     }
1528     #endif
1529    
1530 root 1.336 #endif
1531    
1532 root 1.8 /*****************************************************************************/
1533    
1534 root 1.336 #if EV_CHILD_ENABLE
1535 root 1.182 static WL childs [EV_PID_HASHSIZE];
1536 root 1.71
1537 root 1.136 static ev_signal childev;
1538 root 1.59
1539 root 1.206 #ifndef WIFCONTINUED
1540     # define WIFCONTINUED(status) 0
1541     #endif
1542    
1543 root 1.288 /* handle a single child status event */
1544 root 1.284 inline_speed void
1545 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1546 root 1.47 {
1547 root 1.136 ev_child *w;
1548 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1549 root 1.47
1550 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1551 root 1.206 {
1552     if ((w->pid == pid || !w->pid)
1553     && (!traced || (w->flags & 1)))
1554     {
1555 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1556 root 1.206 w->rpid = pid;
1557     w->rstatus = status;
1558     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1559     }
1560     }
1561 root 1.47 }
1562    
1563 root 1.142 #ifndef WCONTINUED
1564     # define WCONTINUED 0
1565     #endif
1566    
1567 root 1.288 /* called on sigchld etc., calls waitpid */
1568 root 1.47 static void
1569 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1570 root 1.22 {
1571     int pid, status;
1572    
1573 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1574     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1575     if (!WCONTINUED
1576     || errno != EINVAL
1577     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1578     return;
1579    
1580 root 1.216 /* make sure we are called again until all children have been reaped */
1581 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1582     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1583 root 1.47
1584 root 1.216 child_reap (EV_A_ pid, pid, status);
1585 root 1.338 if ((EV_PID_HASHSIZE) > 1)
1586 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1587 root 1.22 }
1588    
1589 root 1.45 #endif
1590    
1591 root 1.22 /*****************************************************************************/
1592    
1593 root 1.357 #if EV_USE_IOCP
1594     # include "ev_iocp.c"
1595     #endif
1596 root 1.118 #if EV_USE_PORT
1597     # include "ev_port.c"
1598     #endif
1599 root 1.44 #if EV_USE_KQUEUE
1600     # include "ev_kqueue.c"
1601     #endif
1602 root 1.29 #if EV_USE_EPOLL
1603 root 1.1 # include "ev_epoll.c"
1604     #endif
1605 root 1.59 #if EV_USE_POLL
1606 root 1.41 # include "ev_poll.c"
1607     #endif
1608 root 1.29 #if EV_USE_SELECT
1609 root 1.1 # include "ev_select.c"
1610     #endif
1611    
1612 root 1.24 int
1613     ev_version_major (void)
1614     {
1615     return EV_VERSION_MAJOR;
1616     }
1617    
1618     int
1619     ev_version_minor (void)
1620     {
1621     return EV_VERSION_MINOR;
1622     }
1623    
1624 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1625 root 1.140 int inline_size
1626 root 1.51 enable_secure (void)
1627 root 1.41 {
1628 root 1.103 #ifdef _WIN32
1629 root 1.49 return 0;
1630     #else
1631 root 1.41 return getuid () != geteuid ()
1632     || getgid () != getegid ();
1633 root 1.49 #endif
1634 root 1.41 }
1635    
1636 root 1.111 unsigned int
1637 root 1.129 ev_supported_backends (void)
1638     {
1639 root 1.130 unsigned int flags = 0;
1640 root 1.129
1641     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1642     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1643     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1644     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1645     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1646    
1647     return flags;
1648     }
1649    
1650     unsigned int
1651 root 1.130 ev_recommended_backends (void)
1652 root 1.1 {
1653 root 1.131 unsigned int flags = ev_supported_backends ();
1654 root 1.129
1655     #ifndef __NetBSD__
1656     /* kqueue is borked on everything but netbsd apparently */
1657     /* it usually doesn't work correctly on anything but sockets and pipes */
1658     flags &= ~EVBACKEND_KQUEUE;
1659     #endif
1660     #ifdef __APPLE__
1661 root 1.278 /* only select works correctly on that "unix-certified" platform */
1662     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1663     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1664 root 1.129 #endif
1665 root 1.342 #ifdef __FreeBSD__
1666     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1667     #endif
1668 root 1.129
1669     return flags;
1670 root 1.51 }
1671    
1672 root 1.130 unsigned int
1673 root 1.134 ev_embeddable_backends (void)
1674     {
1675 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1676    
1677 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1678 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1679     flags &= ~EVBACKEND_EPOLL;
1680 root 1.196
1681     return flags;
1682 root 1.134 }
1683    
1684     unsigned int
1685 root 1.130 ev_backend (EV_P)
1686     {
1687     return backend;
1688     }
1689    
1690 root 1.338 #if EV_FEATURE_API
1691 root 1.162 unsigned int
1692 root 1.340 ev_iteration (EV_P)
1693 root 1.162 {
1694     return loop_count;
1695     }
1696    
1697 root 1.294 unsigned int
1698 root 1.340 ev_depth (EV_P)
1699 root 1.294 {
1700     return loop_depth;
1701     }
1702    
1703 root 1.193 void
1704     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1705     {
1706     io_blocktime = interval;
1707     }
1708    
1709     void
1710     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1711     {
1712     timeout_blocktime = interval;
1713     }
1714    
1715 root 1.297 void
1716     ev_set_userdata (EV_P_ void *data)
1717     {
1718     userdata = data;
1719     }
1720    
1721     void *
1722     ev_userdata (EV_P)
1723     {
1724     return userdata;
1725     }
1726    
1727     void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1728     {
1729     invoke_cb = invoke_pending_cb;
1730     }
1731    
1732 root 1.298 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1733 root 1.297 {
1734 root 1.298 release_cb = release;
1735     acquire_cb = acquire;
1736 root 1.297 }
1737     #endif
1738    
1739 root 1.288 /* initialise a loop structure, must be zero-initialised */
1740 root 1.151 static void noinline
1741 root 1.108 loop_init (EV_P_ unsigned int flags)
1742 root 1.51 {
1743 root 1.130 if (!backend)
1744 root 1.23 {
1745 root 1.366 origflags = flags;
1746    
1747 root 1.279 #if EV_USE_REALTIME
1748     if (!have_realtime)
1749     {
1750     struct timespec ts;
1751    
1752     if (!clock_gettime (CLOCK_REALTIME, &ts))
1753     have_realtime = 1;
1754     }
1755     #endif
1756    
1757 root 1.29 #if EV_USE_MONOTONIC
1758 root 1.279 if (!have_monotonic)
1759     {
1760     struct timespec ts;
1761    
1762     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1763     have_monotonic = 1;
1764     }
1765 root 1.1 #endif
1766    
1767 root 1.306 /* pid check not overridable via env */
1768     #ifndef _WIN32
1769     if (flags & EVFLAG_FORKCHECK)
1770     curpid = getpid ();
1771     #endif
1772    
1773     if (!(flags & EVFLAG_NOENV)
1774     && !enable_secure ()
1775     && getenv ("LIBEV_FLAGS"))
1776     flags = atoi (getenv ("LIBEV_FLAGS"));
1777    
1778 root 1.378 ev_rt_now = ev_time ();
1779     mn_now = get_clock ();
1780     now_floor = mn_now;
1781     rtmn_diff = ev_rt_now - mn_now;
1782 root 1.338 #if EV_FEATURE_API
1783 root 1.378 invoke_cb = ev_invoke_pending;
1784 root 1.297 #endif
1785 root 1.1
1786 root 1.378 io_blocktime = 0.;
1787     timeout_blocktime = 0.;
1788     backend = 0;
1789     backend_fd = -1;
1790     sig_pending = 0;
1791 root 1.307 #if EV_ASYNC_ENABLE
1792 root 1.378 async_pending = 0;
1793 root 1.307 #endif
1794 root 1.378 pipe_write_skipped = 0;
1795     pipe_write_wanted = 0;
1796 root 1.209 #if EV_USE_INOTIFY
1797 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1798 root 1.209 #endif
1799 root 1.303 #if EV_USE_SIGNALFD
1800 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1801 root 1.303 #endif
1802 root 1.193
1803 root 1.366 if (!(flags & EVBACKEND_MASK))
1804 root 1.129 flags |= ev_recommended_backends ();
1805 root 1.41
1806 root 1.357 #if EV_USE_IOCP
1807     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1808     #endif
1809 root 1.118 #if EV_USE_PORT
1810 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1811 root 1.118 #endif
1812 root 1.44 #if EV_USE_KQUEUE
1813 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1814 root 1.44 #endif
1815 root 1.29 #if EV_USE_EPOLL
1816 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1817 root 1.41 #endif
1818 root 1.59 #if EV_USE_POLL
1819 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1820 root 1.1 #endif
1821 root 1.29 #if EV_USE_SELECT
1822 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1823 root 1.1 #endif
1824 root 1.70
1825 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1826    
1827 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1828 root 1.288 ev_init (&pipe_w, pipecb);
1829     ev_set_priority (&pipe_w, EV_MAXPRI);
1830 root 1.336 #endif
1831 root 1.56 }
1832     }
1833    
1834 root 1.288 /* free up a loop structure */
1835 root 1.359 void
1836     ev_loop_destroy (EV_P)
1837 root 1.56 {
1838 root 1.65 int i;
1839    
1840 root 1.364 #if EV_MULTIPLICITY
1841 root 1.363 /* mimic free (0) */
1842     if (!EV_A)
1843     return;
1844 root 1.364 #endif
1845 root 1.363
1846 root 1.361 #if EV_CLEANUP_ENABLE
1847     /* queue cleanup watchers (and execute them) */
1848     if (expect_false (cleanupcnt))
1849     {
1850     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1851     EV_INVOKE_PENDING;
1852     }
1853     #endif
1854    
1855 root 1.359 #if EV_CHILD_ENABLE
1856     if (ev_is_active (&childev))
1857     {
1858     ev_ref (EV_A); /* child watcher */
1859     ev_signal_stop (EV_A_ &childev);
1860     }
1861     #endif
1862    
1863 root 1.288 if (ev_is_active (&pipe_w))
1864 root 1.207 {
1865 root 1.303 /*ev_ref (EV_A);*/
1866     /*ev_io_stop (EV_A_ &pipe_w);*/
1867 root 1.207
1868 root 1.220 #if EV_USE_EVENTFD
1869     if (evfd >= 0)
1870     close (evfd);
1871     #endif
1872    
1873     if (evpipe [0] >= 0)
1874     {
1875 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1876     EV_WIN32_CLOSE_FD (evpipe [1]);
1877 root 1.220 }
1878 root 1.207 }
1879    
1880 root 1.303 #if EV_USE_SIGNALFD
1881     if (ev_is_active (&sigfd_w))
1882 root 1.317 close (sigfd);
1883 root 1.303 #endif
1884    
1885 root 1.152 #if EV_USE_INOTIFY
1886     if (fs_fd >= 0)
1887     close (fs_fd);
1888     #endif
1889    
1890     if (backend_fd >= 0)
1891     close (backend_fd);
1892    
1893 root 1.357 #if EV_USE_IOCP
1894     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1895     #endif
1896 root 1.118 #if EV_USE_PORT
1897 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1898 root 1.118 #endif
1899 root 1.56 #if EV_USE_KQUEUE
1900 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1901 root 1.56 #endif
1902     #if EV_USE_EPOLL
1903 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1904 root 1.56 #endif
1905 root 1.59 #if EV_USE_POLL
1906 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1907 root 1.56 #endif
1908     #if EV_USE_SELECT
1909 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1910 root 1.56 #endif
1911 root 1.1
1912 root 1.65 for (i = NUMPRI; i--; )
1913 root 1.164 {
1914     array_free (pending, [i]);
1915     #if EV_IDLE_ENABLE
1916     array_free (idle, [i]);
1917     #endif
1918     }
1919 root 1.65
1920 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
1921 root 1.186
1922 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1923 root 1.284 array_free (rfeed, EMPTY);
1924 root 1.164 array_free (fdchange, EMPTY);
1925     array_free (timer, EMPTY);
1926 root 1.140 #if EV_PERIODIC_ENABLE
1927 root 1.164 array_free (periodic, EMPTY);
1928 root 1.93 #endif
1929 root 1.187 #if EV_FORK_ENABLE
1930     array_free (fork, EMPTY);
1931     #endif
1932 root 1.360 #if EV_CLEANUP_ENABLE
1933     array_free (cleanup, EMPTY);
1934     #endif
1935 root 1.164 array_free (prepare, EMPTY);
1936     array_free (check, EMPTY);
1937 root 1.209 #if EV_ASYNC_ENABLE
1938     array_free (async, EMPTY);
1939     #endif
1940 root 1.65
1941 root 1.130 backend = 0;
1942 root 1.359
1943     #if EV_MULTIPLICITY
1944     if (ev_is_default_loop (EV_A))
1945     #endif
1946     ev_default_loop_ptr = 0;
1947     #if EV_MULTIPLICITY
1948     else
1949     ev_free (EV_A);
1950     #endif
1951 root 1.56 }
1952 root 1.22
1953 root 1.226 #if EV_USE_INOTIFY
1954 root 1.284 inline_size void infy_fork (EV_P);
1955 root 1.226 #endif
1956 root 1.154
1957 root 1.284 inline_size void
1958 root 1.56 loop_fork (EV_P)
1959     {
1960 root 1.118 #if EV_USE_PORT
1961 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1962 root 1.56 #endif
1963     #if EV_USE_KQUEUE
1964 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1965 root 1.45 #endif
1966 root 1.118 #if EV_USE_EPOLL
1967 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1968 root 1.118 #endif
1969 root 1.154 #if EV_USE_INOTIFY
1970     infy_fork (EV_A);
1971     #endif
1972 root 1.70
1973 root 1.288 if (ev_is_active (&pipe_w))
1974 root 1.70 {
1975 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1976 root 1.70
1977     ev_ref (EV_A);
1978 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1979 root 1.220
1980     #if EV_USE_EVENTFD
1981     if (evfd >= 0)
1982     close (evfd);
1983     #endif
1984    
1985     if (evpipe [0] >= 0)
1986     {
1987 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
1988     EV_WIN32_CLOSE_FD (evpipe [1]);
1989 root 1.220 }
1990 root 1.207
1991 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1992 root 1.207 evpipe_init (EV_A);
1993 root 1.208 /* now iterate over everything, in case we missed something */
1994 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1995 root 1.337 #endif
1996 root 1.70 }
1997    
1998     postfork = 0;
1999 root 1.1 }
2000    
2001 root 1.55 #if EV_MULTIPLICITY
2002 root 1.250
2003 root 1.54 struct ev_loop *
2004 root 1.108 ev_loop_new (unsigned int flags)
2005 root 1.54 {
2006 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2007 root 1.69
2008 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2009 root 1.108 loop_init (EV_A_ flags);
2010 root 1.56
2011 root 1.130 if (ev_backend (EV_A))
2012 root 1.306 return EV_A;
2013 root 1.54
2014 root 1.359 ev_free (EV_A);
2015 root 1.55 return 0;
2016 root 1.54 }
2017    
2018 root 1.297 #endif /* multiplicity */
2019 root 1.248
2020     #if EV_VERIFY
2021 root 1.258 static void noinline
2022 root 1.251 verify_watcher (EV_P_ W w)
2023     {
2024 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2025 root 1.251
2026     if (w->pending)
2027 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2028 root 1.251 }
2029    
2030     static void noinline
2031     verify_heap (EV_P_ ANHE *heap, int N)
2032     {
2033     int i;
2034    
2035     for (i = HEAP0; i < N + HEAP0; ++i)
2036     {
2037 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2038     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2039     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2040 root 1.251
2041     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2042     }
2043     }
2044    
2045     static void noinline
2046     array_verify (EV_P_ W *ws, int cnt)
2047 root 1.248 {
2048     while (cnt--)
2049 root 1.251 {
2050 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2051 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2052     }
2053 root 1.248 }
2054 root 1.250 #endif
2055 root 1.248
2056 root 1.338 #if EV_FEATURE_API
2057 root 1.250 void
2058 root 1.340 ev_verify (EV_P)
2059 root 1.248 {
2060 root 1.250 #if EV_VERIFY
2061 root 1.248 int i;
2062 root 1.251 WL w;
2063    
2064     assert (activecnt >= -1);
2065    
2066     assert (fdchangemax >= fdchangecnt);
2067     for (i = 0; i < fdchangecnt; ++i)
2068 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2069 root 1.251
2070     assert (anfdmax >= 0);
2071     for (i = 0; i < anfdmax; ++i)
2072     for (w = anfds [i].head; w; w = w->next)
2073     {
2074     verify_watcher (EV_A_ (W)w);
2075 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2076     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2077 root 1.251 }
2078    
2079     assert (timermax >= timercnt);
2080     verify_heap (EV_A_ timers, timercnt);
2081 root 1.248
2082     #if EV_PERIODIC_ENABLE
2083 root 1.251 assert (periodicmax >= periodiccnt);
2084     verify_heap (EV_A_ periodics, periodiccnt);
2085 root 1.248 #endif
2086    
2087 root 1.251 for (i = NUMPRI; i--; )
2088     {
2089     assert (pendingmax [i] >= pendingcnt [i]);
2090 root 1.248 #if EV_IDLE_ENABLE
2091 root 1.252 assert (idleall >= 0);
2092 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2093     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2094 root 1.248 #endif
2095 root 1.251 }
2096    
2097 root 1.248 #if EV_FORK_ENABLE
2098 root 1.251 assert (forkmax >= forkcnt);
2099     array_verify (EV_A_ (W *)forks, forkcnt);
2100 root 1.248 #endif
2101 root 1.251
2102 root 1.360 #if EV_CLEANUP_ENABLE
2103     assert (cleanupmax >= cleanupcnt);
2104     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2105     #endif
2106    
2107 root 1.250 #if EV_ASYNC_ENABLE
2108 root 1.251 assert (asyncmax >= asynccnt);
2109     array_verify (EV_A_ (W *)asyncs, asynccnt);
2110 root 1.250 #endif
2111 root 1.251
2112 root 1.337 #if EV_PREPARE_ENABLE
2113 root 1.251 assert (preparemax >= preparecnt);
2114     array_verify (EV_A_ (W *)prepares, preparecnt);
2115 root 1.337 #endif
2116 root 1.251
2117 root 1.337 #if EV_CHECK_ENABLE
2118 root 1.251 assert (checkmax >= checkcnt);
2119     array_verify (EV_A_ (W *)checks, checkcnt);
2120 root 1.337 #endif
2121 root 1.251
2122     # if 0
2123 root 1.336 #if EV_CHILD_ENABLE
2124 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2125 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2126 root 1.336 #endif
2127 root 1.251 # endif
2128 root 1.248 #endif
2129     }
2130 root 1.297 #endif
2131 root 1.56
2132     #if EV_MULTIPLICITY
2133     struct ev_loop *
2134 root 1.54 #else
2135     int
2136 root 1.358 #endif
2137 root 1.116 ev_default_loop (unsigned int flags)
2138 root 1.54 {
2139 root 1.116 if (!ev_default_loop_ptr)
2140 root 1.56 {
2141     #if EV_MULTIPLICITY
2142 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2143 root 1.56 #else
2144 ayin 1.117 ev_default_loop_ptr = 1;
2145 root 1.54 #endif
2146    
2147 root 1.110 loop_init (EV_A_ flags);
2148 root 1.56
2149 root 1.130 if (ev_backend (EV_A))
2150 root 1.56 {
2151 root 1.336 #if EV_CHILD_ENABLE
2152 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2153     ev_set_priority (&childev, EV_MAXPRI);
2154     ev_signal_start (EV_A_ &childev);
2155     ev_unref (EV_A); /* child watcher should not keep loop alive */
2156     #endif
2157     }
2158     else
2159 root 1.116 ev_default_loop_ptr = 0;
2160 root 1.56 }
2161 root 1.8
2162 root 1.116 return ev_default_loop_ptr;
2163 root 1.1 }
2164    
2165 root 1.24 void
2166 root 1.359 ev_loop_fork (EV_P)
2167 root 1.1 {
2168 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2169 root 1.1 }
2170    
2171 root 1.8 /*****************************************************************************/
2172    
2173 root 1.168 void
2174     ev_invoke (EV_P_ void *w, int revents)
2175     {
2176     EV_CB_INVOKE ((W)w, revents);
2177     }
2178    
2179 root 1.300 unsigned int
2180     ev_pending_count (EV_P)
2181     {
2182     int pri;
2183     unsigned int count = 0;
2184    
2185     for (pri = NUMPRI; pri--; )
2186     count += pendingcnt [pri];
2187    
2188     return count;
2189     }
2190    
2191 root 1.297 void noinline
2192 root 1.296 ev_invoke_pending (EV_P)
2193 root 1.1 {
2194 root 1.42 int pri;
2195    
2196     for (pri = NUMPRI; pri--; )
2197     while (pendingcnt [pri])
2198     {
2199     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2200 root 1.1
2201 root 1.288 p->w->pending = 0;
2202     EV_CB_INVOKE (p->w, p->events);
2203     EV_FREQUENT_CHECK;
2204 root 1.42 }
2205 root 1.1 }
2206    
2207 root 1.234 #if EV_IDLE_ENABLE
2208 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2209     /* only when higher priorities are idle" logic */
2210 root 1.284 inline_size void
2211 root 1.234 idle_reify (EV_P)
2212     {
2213     if (expect_false (idleall))
2214     {
2215     int pri;
2216    
2217     for (pri = NUMPRI; pri--; )
2218     {
2219     if (pendingcnt [pri])
2220     break;
2221    
2222     if (idlecnt [pri])
2223     {
2224     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2225     break;
2226     }
2227     }
2228     }
2229     }
2230     #endif
2231    
2232 root 1.288 /* make timers pending */
2233 root 1.284 inline_size void
2234 root 1.51 timers_reify (EV_P)
2235 root 1.1 {
2236 root 1.248 EV_FREQUENT_CHECK;
2237    
2238 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2239 root 1.1 {
2240 root 1.284 do
2241     {
2242     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2243 root 1.1
2244 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2245    
2246     /* first reschedule or stop timer */
2247     if (w->repeat)
2248     {
2249     ev_at (w) += w->repeat;
2250     if (ev_at (w) < mn_now)
2251     ev_at (w) = mn_now;
2252 root 1.61
2253 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2254 root 1.90
2255 root 1.284 ANHE_at_cache (timers [HEAP0]);
2256     downheap (timers, timercnt, HEAP0);
2257     }
2258     else
2259     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2260 root 1.243
2261 root 1.284 EV_FREQUENT_CHECK;
2262     feed_reverse (EV_A_ (W)w);
2263 root 1.12 }
2264 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2265 root 1.30
2266 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2267 root 1.12 }
2268     }
2269 root 1.4
2270 root 1.140 #if EV_PERIODIC_ENABLE
2271 root 1.370
2272 root 1.373 static void noinline
2273 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2274     {
2275 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2276     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2277    
2278     /* the above almost always errs on the low side */
2279     while (at <= ev_rt_now)
2280     {
2281     ev_tstamp nat = at + w->interval;
2282    
2283     /* when resolution fails us, we use ev_rt_now */
2284     if (expect_false (nat == at))
2285     {
2286     at = ev_rt_now;
2287     break;
2288     }
2289    
2290     at = nat;
2291     }
2292    
2293     ev_at (w) = at;
2294 root 1.370 }
2295    
2296 root 1.288 /* make periodics pending */
2297 root 1.284 inline_size void
2298 root 1.51 periodics_reify (EV_P)
2299 root 1.12 {
2300 root 1.248 EV_FREQUENT_CHECK;
2301 root 1.250
2302 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2303 root 1.12 {
2304 root 1.284 int feed_count = 0;
2305    
2306     do
2307     {
2308     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2309 root 1.1
2310 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2311 root 1.61
2312 root 1.284 /* first reschedule or stop timer */
2313     if (w->reschedule_cb)
2314     {
2315     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2316 root 1.243
2317 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2318 root 1.243
2319 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2320     downheap (periodics, periodiccnt, HEAP0);
2321     }
2322     else if (w->interval)
2323 root 1.246 {
2324 root 1.370 periodic_recalc (EV_A_ w);
2325 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2326     downheap (periodics, periodiccnt, HEAP0);
2327 root 1.246 }
2328 root 1.284 else
2329     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2330 root 1.243
2331 root 1.284 EV_FREQUENT_CHECK;
2332     feed_reverse (EV_A_ (W)w);
2333 root 1.1 }
2334 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2335 root 1.12
2336 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2337 root 1.12 }
2338     }
2339    
2340 root 1.288 /* simply recalculate all periodics */
2341 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2342 root 1.140 static void noinline
2343 root 1.54 periodics_reschedule (EV_P)
2344 root 1.12 {
2345     int i;
2346    
2347 root 1.13 /* adjust periodics after time jump */
2348 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2349 root 1.12 {
2350 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2351 root 1.12
2352 root 1.77 if (w->reschedule_cb)
2353 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2354 root 1.77 else if (w->interval)
2355 root 1.370 periodic_recalc (EV_A_ w);
2356 root 1.242
2357 root 1.248 ANHE_at_cache (periodics [i]);
2358 root 1.77 }
2359 root 1.12
2360 root 1.248 reheap (periodics, periodiccnt);
2361 root 1.1 }
2362 root 1.93 #endif
2363 root 1.1
2364 root 1.288 /* adjust all timers by a given offset */
2365 root 1.285 static void noinline
2366     timers_reschedule (EV_P_ ev_tstamp adjust)
2367     {
2368     int i;
2369    
2370     for (i = 0; i < timercnt; ++i)
2371     {
2372     ANHE *he = timers + i + HEAP0;
2373     ANHE_w (*he)->at += adjust;
2374     ANHE_at_cache (*he);
2375     }
2376     }
2377    
2378 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2379 root 1.324 /* also detect if there was a timejump, and act accordingly */
2380 root 1.284 inline_speed void
2381 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2382 root 1.4 {
2383 root 1.40 #if EV_USE_MONOTONIC
2384     if (expect_true (have_monotonic))
2385     {
2386 root 1.289 int i;
2387 root 1.178 ev_tstamp odiff = rtmn_diff;
2388    
2389     mn_now = get_clock ();
2390    
2391     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2392     /* interpolate in the meantime */
2393     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2394 root 1.40 {
2395 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2396     return;
2397     }
2398    
2399     now_floor = mn_now;
2400     ev_rt_now = ev_time ();
2401 root 1.4
2402 root 1.178 /* loop a few times, before making important decisions.
2403     * on the choice of "4": one iteration isn't enough,
2404     * in case we get preempted during the calls to
2405     * ev_time and get_clock. a second call is almost guaranteed
2406     * to succeed in that case, though. and looping a few more times
2407     * doesn't hurt either as we only do this on time-jumps or
2408     * in the unlikely event of having been preempted here.
2409     */
2410     for (i = 4; --i; )
2411     {
2412 root 1.373 ev_tstamp diff;
2413 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2414 root 1.4
2415 root 1.373 diff = odiff - rtmn_diff;
2416    
2417     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2418 root 1.178 return; /* all is well */
2419 root 1.4
2420 root 1.178 ev_rt_now = ev_time ();
2421     mn_now = get_clock ();
2422     now_floor = mn_now;
2423     }
2424 root 1.4
2425 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2426     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2427 root 1.140 # if EV_PERIODIC_ENABLE
2428 root 1.178 periodics_reschedule (EV_A);
2429 root 1.93 # endif
2430 root 1.4 }
2431     else
2432 root 1.40 #endif
2433 root 1.4 {
2434 root 1.85 ev_rt_now = ev_time ();
2435 root 1.40
2436 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2437 root 1.13 {
2438 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2439     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2440 root 1.140 #if EV_PERIODIC_ENABLE
2441 root 1.54 periodics_reschedule (EV_A);
2442 root 1.93 #endif
2443 root 1.13 }
2444 root 1.4
2445 root 1.85 mn_now = ev_rt_now;
2446 root 1.4 }
2447     }
2448    
2449 root 1.51 void
2450 root 1.353 ev_run (EV_P_ int flags)
2451 root 1.1 {
2452 root 1.338 #if EV_FEATURE_API
2453 root 1.294 ++loop_depth;
2454 root 1.297 #endif
2455 root 1.294
2456 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2457 root 1.298
2458 root 1.353 loop_done = EVBREAK_CANCEL;
2459 root 1.1
2460 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2461 root 1.158
2462 root 1.161 do
2463 root 1.9 {
2464 root 1.250 #if EV_VERIFY >= 2
2465 root 1.340 ev_verify (EV_A);
2466 root 1.250 #endif
2467    
2468 root 1.158 #ifndef _WIN32
2469     if (expect_false (curpid)) /* penalise the forking check even more */
2470     if (expect_false (getpid () != curpid))
2471     {
2472     curpid = getpid ();
2473     postfork = 1;
2474     }
2475     #endif
2476    
2477 root 1.157 #if EV_FORK_ENABLE
2478     /* we might have forked, so queue fork handlers */
2479     if (expect_false (postfork))
2480     if (forkcnt)
2481     {
2482     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2483 root 1.297 EV_INVOKE_PENDING;
2484 root 1.157 }
2485     #endif
2486 root 1.147
2487 root 1.337 #if EV_PREPARE_ENABLE
2488 root 1.170 /* queue prepare watchers (and execute them) */
2489 root 1.40 if (expect_false (preparecnt))
2490 root 1.20 {
2491 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2492 root 1.297 EV_INVOKE_PENDING;
2493 root 1.20 }
2494 root 1.337 #endif
2495 root 1.9
2496 root 1.298 if (expect_false (loop_done))
2497     break;
2498    
2499 root 1.70 /* we might have forked, so reify kernel state if necessary */
2500     if (expect_false (postfork))
2501     loop_fork (EV_A);
2502    
2503 root 1.1 /* update fd-related kernel structures */
2504 root 1.51 fd_reify (EV_A);
2505 root 1.1
2506     /* calculate blocking time */
2507 root 1.135 {
2508 root 1.193 ev_tstamp waittime = 0.;
2509     ev_tstamp sleeptime = 0.;
2510 root 1.12
2511 root 1.353 /* remember old timestamp for io_blocktime calculation */
2512     ev_tstamp prev_mn_now = mn_now;
2513 root 1.293
2514 root 1.353 /* update time to cancel out callback processing overhead */
2515     time_update (EV_A_ 1e100);
2516 root 1.135
2517 root 1.378 /* from now on, we want a pipe-wake-up */
2518     pipe_write_wanted = 1;
2519    
2520     if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2521 root 1.353 {
2522 root 1.287 waittime = MAX_BLOCKTIME;
2523    
2524 root 1.135 if (timercnt)
2525     {
2526 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2527 root 1.193 if (waittime > to) waittime = to;
2528 root 1.135 }
2529 root 1.4
2530 root 1.140 #if EV_PERIODIC_ENABLE
2531 root 1.135 if (periodiccnt)
2532     {
2533 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2534 root 1.193 if (waittime > to) waittime = to;
2535 root 1.135 }
2536 root 1.93 #endif
2537 root 1.4
2538 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2539 root 1.193 if (expect_false (waittime < timeout_blocktime))
2540     waittime = timeout_blocktime;
2541    
2542 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
2543     /* to pass a minimum nonzero value to the backend */
2544     if (expect_false (waittime < backend_mintime))
2545     waittime = backend_mintime;
2546    
2547 root 1.293 /* extra check because io_blocktime is commonly 0 */
2548     if (expect_false (io_blocktime))
2549     {
2550     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2551 root 1.193
2552 root 1.376 if (sleeptime > waittime - backend_mintime)
2553     sleeptime = waittime - backend_mintime;
2554 root 1.193
2555 root 1.293 if (expect_true (sleeptime > 0.))
2556     {
2557     ev_sleep (sleeptime);
2558     waittime -= sleeptime;
2559     }
2560 root 1.193 }
2561 root 1.135 }
2562 root 1.1
2563 root 1.338 #if EV_FEATURE_API
2564 root 1.162 ++loop_count;
2565 root 1.297 #endif
2566 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2567 root 1.193 backend_poll (EV_A_ waittime);
2568 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2569 root 1.178
2570 root 1.378 pipe_write_wanted = 0;
2571    
2572     if (pipe_write_skipped)
2573     {
2574     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2575     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2576     }
2577    
2578    
2579 root 1.178 /* update ev_rt_now, do magic */
2580 root 1.193 time_update (EV_A_ waittime + sleeptime);
2581 root 1.135 }
2582 root 1.1
2583 root 1.9 /* queue pending timers and reschedule them */
2584 root 1.51 timers_reify (EV_A); /* relative timers called last */
2585 root 1.140 #if EV_PERIODIC_ENABLE
2586 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2587 root 1.93 #endif
2588 root 1.1
2589 root 1.164 #if EV_IDLE_ENABLE
2590 root 1.137 /* queue idle watchers unless other events are pending */
2591 root 1.164 idle_reify (EV_A);
2592     #endif
2593 root 1.9
2594 root 1.337 #if EV_CHECK_ENABLE
2595 root 1.20 /* queue check watchers, to be executed first */
2596 root 1.123 if (expect_false (checkcnt))
2597 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2598 root 1.337 #endif
2599 root 1.9
2600 root 1.297 EV_INVOKE_PENDING;
2601 root 1.1 }
2602 root 1.219 while (expect_true (
2603     activecnt
2604     && !loop_done
2605 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2606 root 1.219 ));
2607 root 1.13
2608 root 1.353 if (loop_done == EVBREAK_ONE)
2609     loop_done = EVBREAK_CANCEL;
2610 root 1.294
2611 root 1.338 #if EV_FEATURE_API
2612 root 1.294 --loop_depth;
2613 root 1.297 #endif
2614 root 1.51 }
2615    
2616     void
2617 root 1.353 ev_break (EV_P_ int how)
2618 root 1.51 {
2619     loop_done = how;
2620 root 1.1 }
2621    
2622 root 1.285 void
2623     ev_ref (EV_P)
2624     {
2625     ++activecnt;
2626     }
2627    
2628     void
2629     ev_unref (EV_P)
2630     {
2631     --activecnt;
2632     }
2633    
2634     void
2635     ev_now_update (EV_P)
2636     {
2637     time_update (EV_A_ 1e100);
2638     }
2639    
2640     void
2641     ev_suspend (EV_P)
2642     {
2643     ev_now_update (EV_A);
2644     }
2645    
2646     void
2647     ev_resume (EV_P)
2648     {
2649     ev_tstamp mn_prev = mn_now;
2650    
2651     ev_now_update (EV_A);
2652     timers_reschedule (EV_A_ mn_now - mn_prev);
2653 root 1.286 #if EV_PERIODIC_ENABLE
2654 root 1.288 /* TODO: really do this? */
2655 root 1.285 periodics_reschedule (EV_A);
2656 root 1.286 #endif
2657 root 1.285 }
2658    
2659 root 1.8 /*****************************************************************************/
2660 root 1.288 /* singly-linked list management, used when the expected list length is short */
2661 root 1.8
2662 root 1.284 inline_size void
2663 root 1.10 wlist_add (WL *head, WL elem)
2664 root 1.1 {
2665     elem->next = *head;
2666     *head = elem;
2667     }
2668    
2669 root 1.284 inline_size void
2670 root 1.10 wlist_del (WL *head, WL elem)
2671 root 1.1 {
2672     while (*head)
2673     {
2674 root 1.307 if (expect_true (*head == elem))
2675 root 1.1 {
2676     *head = elem->next;
2677 root 1.307 break;
2678 root 1.1 }
2679    
2680     head = &(*head)->next;
2681     }
2682     }
2683    
2684 root 1.288 /* internal, faster, version of ev_clear_pending */
2685 root 1.284 inline_speed void
2686 root 1.166 clear_pending (EV_P_ W w)
2687 root 1.16 {
2688     if (w->pending)
2689     {
2690 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2691 root 1.16 w->pending = 0;
2692     }
2693     }
2694    
2695 root 1.167 int
2696     ev_clear_pending (EV_P_ void *w)
2697 root 1.166 {
2698     W w_ = (W)w;
2699     int pending = w_->pending;
2700    
2701 root 1.172 if (expect_true (pending))
2702     {
2703     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2704 root 1.288 p->w = (W)&pending_w;
2705 root 1.172 w_->pending = 0;
2706     return p->events;
2707     }
2708     else
2709 root 1.167 return 0;
2710 root 1.166 }
2711    
2712 root 1.284 inline_size void
2713 root 1.164 pri_adjust (EV_P_ W w)
2714     {
2715 root 1.295 int pri = ev_priority (w);
2716 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2717     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2718 root 1.295 ev_set_priority (w, pri);
2719 root 1.164 }
2720    
2721 root 1.284 inline_speed void
2722 root 1.51 ev_start (EV_P_ W w, int active)
2723 root 1.1 {
2724 root 1.164 pri_adjust (EV_A_ w);
2725 root 1.1 w->active = active;
2726 root 1.51 ev_ref (EV_A);
2727 root 1.1 }
2728    
2729 root 1.284 inline_size void
2730 root 1.51 ev_stop (EV_P_ W w)
2731 root 1.1 {
2732 root 1.51 ev_unref (EV_A);
2733 root 1.1 w->active = 0;
2734     }
2735    
2736 root 1.8 /*****************************************************************************/
2737    
2738 root 1.171 void noinline
2739 root 1.136 ev_io_start (EV_P_ ev_io *w)
2740 root 1.1 {
2741 root 1.37 int fd = w->fd;
2742    
2743 root 1.123 if (expect_false (ev_is_active (w)))
2744 root 1.1 return;
2745    
2746 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2747 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2748 root 1.33
2749 root 1.248 EV_FREQUENT_CHECK;
2750    
2751 root 1.51 ev_start (EV_A_ (W)w, 1);
2752 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2753 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2754 root 1.1
2755 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2756 root 1.281 w->events &= ~EV__IOFDSET;
2757 root 1.248
2758     EV_FREQUENT_CHECK;
2759 root 1.1 }
2760    
2761 root 1.171 void noinline
2762 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2763 root 1.1 {
2764 root 1.166 clear_pending (EV_A_ (W)w);
2765 root 1.123 if (expect_false (!ev_is_active (w)))
2766 root 1.1 return;
2767    
2768 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2769 root 1.89
2770 root 1.248 EV_FREQUENT_CHECK;
2771    
2772 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2773 root 1.51 ev_stop (EV_A_ (W)w);
2774 root 1.1
2775 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2776 root 1.248
2777     EV_FREQUENT_CHECK;
2778 root 1.1 }
2779    
2780 root 1.171 void noinline
2781 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2782 root 1.1 {
2783 root 1.123 if (expect_false (ev_is_active (w)))
2784 root 1.1 return;
2785    
2786 root 1.228 ev_at (w) += mn_now;
2787 root 1.12
2788 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2789 root 1.13
2790 root 1.248 EV_FREQUENT_CHECK;
2791    
2792     ++timercnt;
2793     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2794 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2795     ANHE_w (timers [ev_active (w)]) = (WT)w;
2796 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2797 root 1.235 upheap (timers, ev_active (w));
2798 root 1.62
2799 root 1.248 EV_FREQUENT_CHECK;
2800    
2801 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2802 root 1.12 }
2803    
2804 root 1.171 void noinline
2805 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2806 root 1.12 {
2807 root 1.166 clear_pending (EV_A_ (W)w);
2808 root 1.123 if (expect_false (!ev_is_active (w)))
2809 root 1.12 return;
2810    
2811 root 1.248 EV_FREQUENT_CHECK;
2812    
2813 root 1.230 {
2814     int active = ev_active (w);
2815 root 1.62
2816 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2817 root 1.151
2818 root 1.248 --timercnt;
2819    
2820     if (expect_true (active < timercnt + HEAP0))
2821 root 1.151 {
2822 root 1.248 timers [active] = timers [timercnt + HEAP0];
2823 root 1.181 adjustheap (timers, timercnt, active);
2824 root 1.151 }
2825 root 1.248 }
2826 root 1.228
2827     ev_at (w) -= mn_now;
2828 root 1.14
2829 root 1.51 ev_stop (EV_A_ (W)w);
2830 root 1.328
2831     EV_FREQUENT_CHECK;
2832 root 1.12 }
2833 root 1.4
2834 root 1.171 void noinline
2835 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2836 root 1.14 {
2837 root 1.248 EV_FREQUENT_CHECK;
2838    
2839 root 1.14 if (ev_is_active (w))
2840     {
2841     if (w->repeat)
2842 root 1.99 {
2843 root 1.228 ev_at (w) = mn_now + w->repeat;
2844 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2845 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2846 root 1.99 }
2847 root 1.14 else
2848 root 1.51 ev_timer_stop (EV_A_ w);
2849 root 1.14 }
2850     else if (w->repeat)
2851 root 1.112 {
2852 root 1.229 ev_at (w) = w->repeat;
2853 root 1.112 ev_timer_start (EV_A_ w);
2854     }
2855 root 1.248
2856     EV_FREQUENT_CHECK;
2857 root 1.14 }
2858    
2859 root 1.301 ev_tstamp
2860     ev_timer_remaining (EV_P_ ev_timer *w)
2861     {
2862     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2863     }
2864    
2865 root 1.140 #if EV_PERIODIC_ENABLE
2866 root 1.171 void noinline
2867 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2868 root 1.12 {
2869 root 1.123 if (expect_false (ev_is_active (w)))
2870 root 1.12 return;
2871 root 1.1
2872 root 1.77 if (w->reschedule_cb)
2873 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2874 root 1.77 else if (w->interval)
2875     {
2876 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2877 root 1.370 periodic_recalc (EV_A_ w);
2878 root 1.77 }
2879 root 1.173 else
2880 root 1.228 ev_at (w) = w->offset;
2881 root 1.12
2882 root 1.248 EV_FREQUENT_CHECK;
2883    
2884     ++periodiccnt;
2885     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2886 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2887     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2888 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2889 root 1.235 upheap (periodics, ev_active (w));
2890 root 1.62
2891 root 1.248 EV_FREQUENT_CHECK;
2892    
2893 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2894 root 1.1 }
2895    
2896 root 1.171 void noinline
2897 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2898 root 1.1 {
2899 root 1.166 clear_pending (EV_A_ (W)w);
2900 root 1.123 if (expect_false (!ev_is_active (w)))
2901 root 1.1 return;
2902    
2903 root 1.248 EV_FREQUENT_CHECK;
2904    
2905 root 1.230 {
2906     int active = ev_active (w);
2907 root 1.62
2908 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2909 root 1.151
2910 root 1.248 --periodiccnt;
2911    
2912     if (expect_true (active < periodiccnt + HEAP0))
2913 root 1.151 {
2914 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2915 root 1.181 adjustheap (periodics, periodiccnt, active);
2916 root 1.151 }
2917 root 1.248 }
2918 root 1.228
2919 root 1.328 ev_stop (EV_A_ (W)w);
2920    
2921 root 1.248 EV_FREQUENT_CHECK;
2922 root 1.1 }
2923    
2924 root 1.171 void noinline
2925 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2926 root 1.77 {
2927 root 1.84 /* TODO: use adjustheap and recalculation */
2928 root 1.77 ev_periodic_stop (EV_A_ w);
2929     ev_periodic_start (EV_A_ w);
2930     }
2931 root 1.93 #endif
2932 root 1.77
2933 root 1.56 #ifndef SA_RESTART
2934     # define SA_RESTART 0
2935     #endif
2936    
2937 root 1.336 #if EV_SIGNAL_ENABLE
2938    
2939 root 1.171 void noinline
2940 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2941 root 1.56 {
2942 root 1.123 if (expect_false (ev_is_active (w)))
2943 root 1.56 return;
2944    
2945 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2946    
2947     #if EV_MULTIPLICITY
2948 root 1.308 assert (("libev: a signal must not be attached to two different loops",
2949 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2950    
2951     signals [w->signum - 1].loop = EV_A;
2952     #endif
2953 root 1.56
2954 root 1.303 EV_FREQUENT_CHECK;
2955    
2956     #if EV_USE_SIGNALFD
2957     if (sigfd == -2)
2958     {
2959     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2960     if (sigfd < 0 && errno == EINVAL)
2961     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2962    
2963     if (sigfd >= 0)
2964     {
2965     fd_intern (sigfd); /* doing it twice will not hurt */
2966    
2967     sigemptyset (&sigfd_set);
2968    
2969     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2970     ev_set_priority (&sigfd_w, EV_MAXPRI);
2971     ev_io_start (EV_A_ &sigfd_w);
2972     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2973     }
2974     }
2975    
2976     if (sigfd >= 0)
2977     {
2978     /* TODO: check .head */
2979     sigaddset (&sigfd_set, w->signum);
2980     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2981 root 1.207
2982 root 1.303 signalfd (sigfd, &sigfd_set, 0);
2983     }
2984 root 1.180 #endif
2985    
2986 root 1.56 ev_start (EV_A_ (W)w, 1);
2987 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2988 root 1.56
2989 root 1.63 if (!((WL)w)->next)
2990 root 1.304 # if EV_USE_SIGNALFD
2991 root 1.306 if (sigfd < 0) /*TODO*/
2992 root 1.304 # endif
2993 root 1.306 {
2994 root 1.322 # ifdef _WIN32
2995 root 1.317 evpipe_init (EV_A);
2996    
2997 root 1.306 signal (w->signum, ev_sighandler);
2998     # else
2999     struct sigaction sa;
3000    
3001     evpipe_init (EV_A);
3002    
3003     sa.sa_handler = ev_sighandler;
3004     sigfillset (&sa.sa_mask);
3005     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3006     sigaction (w->signum, &sa, 0);
3007    
3008 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3009     {
3010     sigemptyset (&sa.sa_mask);
3011     sigaddset (&sa.sa_mask, w->signum);
3012     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3013     }
3014 root 1.67 #endif
3015 root 1.306 }
3016 root 1.248
3017     EV_FREQUENT_CHECK;
3018 root 1.56 }
3019    
3020 root 1.171 void noinline
3021 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
3022 root 1.56 {
3023 root 1.166 clear_pending (EV_A_ (W)w);
3024 root 1.123 if (expect_false (!ev_is_active (w)))
3025 root 1.56 return;
3026    
3027 root 1.248 EV_FREQUENT_CHECK;
3028    
3029 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3030 root 1.56 ev_stop (EV_A_ (W)w);
3031    
3032     if (!signals [w->signum - 1].head)
3033 root 1.306 {
3034 root 1.307 #if EV_MULTIPLICITY
3035 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3036 root 1.307 #endif
3037     #if EV_USE_SIGNALFD
3038 root 1.306 if (sigfd >= 0)
3039     {
3040 root 1.321 sigset_t ss;
3041    
3042     sigemptyset (&ss);
3043     sigaddset (&ss, w->signum);
3044 root 1.306 sigdelset (&sigfd_set, w->signum);
3045 root 1.321
3046 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3047 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3048 root 1.306 }
3049     else
3050 root 1.307 #endif
3051 root 1.306 signal (w->signum, SIG_DFL);
3052     }
3053 root 1.248
3054     EV_FREQUENT_CHECK;
3055 root 1.56 }
3056    
3057 root 1.336 #endif
3058    
3059     #if EV_CHILD_ENABLE
3060    
3061 root 1.28 void
3062 root 1.136 ev_child_start (EV_P_ ev_child *w)
3063 root 1.22 {
3064 root 1.56 #if EV_MULTIPLICITY
3065 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3066 root 1.56 #endif
3067 root 1.123 if (expect_false (ev_is_active (w)))
3068 root 1.22 return;
3069    
3070 root 1.248 EV_FREQUENT_CHECK;
3071    
3072 root 1.51 ev_start (EV_A_ (W)w, 1);
3073 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3074 root 1.248
3075     EV_FREQUENT_CHECK;
3076 root 1.22 }
3077    
3078 root 1.28 void
3079 root 1.136 ev_child_stop (EV_P_ ev_child *w)
3080 root 1.22 {
3081 root 1.166 clear_pending (EV_A_ (W)w);
3082 root 1.123 if (expect_false (!ev_is_active (w)))
3083 root 1.22 return;
3084    
3085 root 1.248 EV_FREQUENT_CHECK;
3086    
3087 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3088 root 1.51 ev_stop (EV_A_ (W)w);
3089 root 1.248
3090     EV_FREQUENT_CHECK;
3091 root 1.22 }
3092    
3093 root 1.336 #endif
3094    
3095 root 1.140 #if EV_STAT_ENABLE
3096    
3097     # ifdef _WIN32
3098 root 1.146 # undef lstat
3099     # define lstat(a,b) _stati64 (a,b)
3100 root 1.140 # endif
3101    
3102 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3103     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3104     #define MIN_STAT_INTERVAL 0.1074891
3105 root 1.143
3106 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3107 root 1.152
3108     #if EV_USE_INOTIFY
3109 root 1.326
3110     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3111     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3112 root 1.152
3113     static void noinline
3114     infy_add (EV_P_ ev_stat *w)
3115     {
3116     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3117    
3118 root 1.318 if (w->wd >= 0)
3119 root 1.152 {
3120 root 1.318 struct statfs sfs;
3121    
3122     /* now local changes will be tracked by inotify, but remote changes won't */
3123     /* unless the filesystem is known to be local, we therefore still poll */
3124     /* also do poll on <2.6.25, but with normal frequency */
3125    
3126     if (!fs_2625)
3127     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3128     else if (!statfs (w->path, &sfs)
3129     && (sfs.f_type == 0x1373 /* devfs */
3130     || sfs.f_type == 0xEF53 /* ext2/3 */
3131     || sfs.f_type == 0x3153464a /* jfs */
3132     || sfs.f_type == 0x52654973 /* reiser3 */
3133     || sfs.f_type == 0x01021994 /* tempfs */
3134     || sfs.f_type == 0x58465342 /* xfs */))
3135     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3136     else
3137     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3138     }
3139     else
3140     {
3141     /* can't use inotify, continue to stat */
3142 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3143 root 1.152
3144 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3145 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3146 root 1.233 /* but an efficiency issue only */
3147 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3148 root 1.152 {
3149 root 1.153 char path [4096];
3150 root 1.152 strcpy (path, w->path);
3151    
3152     do
3153     {
3154     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3155     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3156    
3157     char *pend = strrchr (path, '/');
3158    
3159 root 1.275 if (!pend || pend == path)
3160     break;
3161 root 1.152
3162     *pend = 0;
3163 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3164 root 1.372 }
3165 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3166     }
3167     }
3168 root 1.275
3169     if (w->wd >= 0)
3170 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3171 root 1.152
3172 root 1.318 /* now re-arm timer, if required */
3173     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3174     ev_timer_again (EV_A_ &w->timer);
3175     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3176 root 1.152 }
3177    
3178     static void noinline
3179     infy_del (EV_P_ ev_stat *w)
3180     {
3181     int slot;
3182     int wd = w->wd;
3183    
3184     if (wd < 0)
3185     return;
3186    
3187     w->wd = -2;
3188 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3189 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3190    
3191     /* remove this watcher, if others are watching it, they will rearm */
3192     inotify_rm_watch (fs_fd, wd);
3193     }
3194    
3195     static void noinline
3196     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3197     {
3198     if (slot < 0)
3199 root 1.264 /* overflow, need to check for all hash slots */
3200 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3201 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3202     else
3203     {
3204     WL w_;
3205    
3206 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3207 root 1.152 {
3208     ev_stat *w = (ev_stat *)w_;
3209     w_ = w_->next; /* lets us remove this watcher and all before it */
3210    
3211     if (w->wd == wd || wd == -1)
3212     {
3213     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3214     {
3215 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3216 root 1.152 w->wd = -1;
3217     infy_add (EV_A_ w); /* re-add, no matter what */
3218     }
3219    
3220 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3221 root 1.152 }
3222     }
3223     }
3224     }
3225    
3226     static void
3227     infy_cb (EV_P_ ev_io *w, int revents)
3228     {
3229     char buf [EV_INOTIFY_BUFSIZE];
3230     int ofs;
3231     int len = read (fs_fd, buf, sizeof (buf));
3232    
3233 root 1.326 for (ofs = 0; ofs < len; )
3234     {
3235     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3236     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3237     ofs += sizeof (struct inotify_event) + ev->len;
3238     }
3239 root 1.152 }
3240    
3241 root 1.330 inline_size void
3242     ev_check_2625 (EV_P)
3243     {
3244     /* kernels < 2.6.25 are borked
3245     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3246     */
3247     if (ev_linux_version () < 0x020619)
3248 root 1.273 return;
3249 root 1.264
3250 root 1.273 fs_2625 = 1;
3251     }
3252 root 1.264
3253 root 1.315 inline_size int
3254     infy_newfd (void)
3255     {
3256     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3257     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3258     if (fd >= 0)
3259     return fd;
3260     #endif
3261     return inotify_init ();
3262     }
3263    
3264 root 1.284 inline_size void
3265 root 1.273 infy_init (EV_P)
3266     {
3267     if (fs_fd != -2)
3268     return;
3269 root 1.264
3270 root 1.273 fs_fd = -1;
3271 root 1.264
3272 root 1.330 ev_check_2625 (EV_A);
3273 root 1.264
3274 root 1.315 fs_fd = infy_newfd ();
3275 root 1.152
3276     if (fs_fd >= 0)
3277     {
3278 root 1.315 fd_intern (fs_fd);
3279 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3280     ev_set_priority (&fs_w, EV_MAXPRI);
3281     ev_io_start (EV_A_ &fs_w);
3282 root 1.317 ev_unref (EV_A);
3283 root 1.152 }
3284     }
3285    
3286 root 1.284 inline_size void
3287 root 1.154 infy_fork (EV_P)
3288     {
3289     int slot;
3290    
3291     if (fs_fd < 0)
3292     return;
3293    
3294 root 1.317 ev_ref (EV_A);
3295 root 1.315 ev_io_stop (EV_A_ &fs_w);
3296 root 1.154 close (fs_fd);
3297 root 1.315 fs_fd = infy_newfd ();
3298    
3299     if (fs_fd >= 0)
3300     {
3301     fd_intern (fs_fd);
3302     ev_io_set (&fs_w, fs_fd, EV_READ);
3303     ev_io_start (EV_A_ &fs_w);
3304 root 1.317 ev_unref (EV_A);
3305 root 1.315 }
3306 root 1.154
3307 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3308 root 1.154 {
3309     WL w_ = fs_hash [slot].head;
3310     fs_hash [slot].head = 0;
3311    
3312     while (w_)
3313     {
3314     ev_stat *w = (ev_stat *)w_;
3315     w_ = w_->next; /* lets us add this watcher */
3316    
3317     w->wd = -1;
3318    
3319     if (fs_fd >= 0)
3320     infy_add (EV_A_ w); /* re-add, no matter what */
3321     else
3322 root 1.318 {
3323     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3324     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3325     ev_timer_again (EV_A_ &w->timer);
3326     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3327     }
3328 root 1.154 }
3329     }
3330     }
3331    
3332 root 1.152 #endif
3333    
3334 root 1.255 #ifdef _WIN32
3335     # define EV_LSTAT(p,b) _stati64 (p, b)
3336     #else
3337     # define EV_LSTAT(p,b) lstat (p, b)
3338     #endif
3339    
3340 root 1.140 void
3341     ev_stat_stat (EV_P_ ev_stat *w)
3342     {
3343     if (lstat (w->path, &w->attr) < 0)
3344     w->attr.st_nlink = 0;
3345     else if (!w->attr.st_nlink)
3346     w->attr.st_nlink = 1;
3347     }
3348    
3349 root 1.157 static void noinline
3350 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3351     {
3352     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3353    
3354 root 1.320 ev_statdata prev = w->attr;
3355 root 1.140 ev_stat_stat (EV_A_ w);
3356    
3357 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3358     if (
3359 root 1.320 prev.st_dev != w->attr.st_dev
3360     || prev.st_ino != w->attr.st_ino
3361     || prev.st_mode != w->attr.st_mode
3362     || prev.st_nlink != w->attr.st_nlink
3363     || prev.st_uid != w->attr.st_uid
3364     || prev.st_gid != w->attr.st_gid
3365     || prev.st_rdev != w->attr.st_rdev
3366     || prev.st_size != w->attr.st_size
3367     || prev.st_atime != w->attr.st_atime
3368     || prev.st_mtime != w->attr.st_mtime
3369     || prev.st_ctime != w->attr.st_ctime
3370 root 1.156 ) {
3371 root 1.320 /* we only update w->prev on actual differences */
3372     /* in case we test more often than invoke the callback, */
3373     /* to ensure that prev is always different to attr */
3374     w->prev = prev;
3375    
3376 root 1.152 #if EV_USE_INOTIFY
3377 root 1.264 if (fs_fd >= 0)
3378     {
3379     infy_del (EV_A_ w);
3380     infy_add (EV_A_ w);
3381     ev_stat_stat (EV_A_ w); /* avoid race... */
3382     }
3383 root 1.152 #endif
3384    
3385     ev_feed_event (EV_A_ w, EV_STAT);
3386     }
3387 root 1.140 }
3388    
3389     void
3390     ev_stat_start (EV_P_ ev_stat *w)
3391     {
3392     if (expect_false (ev_is_active (w)))
3393     return;
3394    
3395     ev_stat_stat (EV_A_ w);
3396    
3397 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3398     w->interval = MIN_STAT_INTERVAL;
3399 root 1.143
3400 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3401 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3402 root 1.152
3403     #if EV_USE_INOTIFY
3404     infy_init (EV_A);
3405    
3406     if (fs_fd >= 0)
3407     infy_add (EV_A_ w);
3408     else
3409     #endif
3410 root 1.318 {
3411     ev_timer_again (EV_A_ &w->timer);
3412     ev_unref (EV_A);
3413     }
3414 root 1.140
3415     ev_start (EV_A_ (W)w, 1);
3416 root 1.248
3417     EV_FREQUENT_CHECK;
3418 root 1.140 }
3419    
3420     void
3421     ev_stat_stop (EV_P_ ev_stat *w)
3422     {
3423 root 1.166 clear_pending (EV_A_ (W)w);
3424 root 1.140 if (expect_false (!ev_is_active (w)))
3425     return;
3426    
3427 root 1.248 EV_FREQUENT_CHECK;
3428    
3429 root 1.152 #if EV_USE_INOTIFY
3430     infy_del (EV_A_ w);
3431     #endif
3432 root 1.318
3433     if (ev_is_active (&w->timer))
3434     {
3435     ev_ref (EV_A);
3436     ev_timer_stop (EV_A_ &w->timer);
3437     }
3438 root 1.140
3439 root 1.134 ev_stop (EV_A_ (W)w);
3440 root 1.248
3441     EV_FREQUENT_CHECK;
3442 root 1.134 }
3443     #endif
3444    
3445 root 1.164 #if EV_IDLE_ENABLE
3446 root 1.144 void
3447     ev_idle_start (EV_P_ ev_idle *w)
3448     {
3449     if (expect_false (ev_is_active (w)))
3450     return;
3451    
3452 root 1.164 pri_adjust (EV_A_ (W)w);
3453    
3454 root 1.248 EV_FREQUENT_CHECK;
3455    
3456 root 1.164 {
3457     int active = ++idlecnt [ABSPRI (w)];
3458    
3459     ++idleall;
3460     ev_start (EV_A_ (W)w, active);
3461    
3462     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3463     idles [ABSPRI (w)][active - 1] = w;
3464     }
3465 root 1.248
3466     EV_FREQUENT_CHECK;
3467 root 1.144 }
3468    
3469     void
3470     ev_idle_stop (EV_P_ ev_idle *w)
3471     {
3472 root 1.166 clear_pending (EV_A_ (W)w);
3473 root 1.144 if (expect_false (!ev_is_active (w)))
3474     return;
3475    
3476 root 1.248 EV_FREQUENT_CHECK;
3477    
3478 root 1.144 {
3479 root 1.230 int active = ev_active (w);
3480 root 1.164
3481     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3482 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3483 root 1.164
3484     ev_stop (EV_A_ (W)w);
3485     --idleall;
3486 root 1.144 }
3487 root 1.248
3488     EV_FREQUENT_CHECK;
3489 root 1.144 }
3490 root 1.164 #endif
3491 root 1.144
3492 root 1.337 #if EV_PREPARE_ENABLE
3493 root 1.144 void
3494     ev_prepare_start (EV_P_ ev_prepare *w)
3495     {
3496     if (expect_false (ev_is_active (w)))
3497     return;
3498    
3499 root 1.248 EV_FREQUENT_CHECK;
3500    
3501 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3502     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3503     prepares [preparecnt - 1] = w;
3504 root 1.248
3505     EV_FREQUENT_CHECK;
3506 root 1.144 }
3507    
3508     void
3509     ev_prepare_stop (EV_P_ ev_prepare *w)
3510     {
3511 root 1.166 clear_pending (EV_A_ (W)w);
3512 root 1.144 if (expect_false (!ev_is_active (w)))
3513     return;
3514    
3515 root 1.248 EV_FREQUENT_CHECK;
3516    
3517 root 1.144 {
3518 root 1.230 int active = ev_active (w);
3519    
3520 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3521 root 1.230 ev_active (prepares [active - 1]) = active;
3522 root 1.144 }
3523    
3524     ev_stop (EV_A_ (W)w);
3525 root 1.248
3526     EV_FREQUENT_CHECK;
3527 root 1.144 }
3528 root 1.337 #endif
3529 root 1.144
3530 root 1.337 #if EV_CHECK_ENABLE
3531 root 1.144 void
3532     ev_check_start (EV_P_ ev_check *w)
3533     {
3534     if (expect_false (ev_is_active (w)))
3535     return;
3536    
3537 root 1.248 EV_FREQUENT_CHECK;
3538    
3539 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3540     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3541     checks [checkcnt - 1] = w;
3542 root 1.248
3543     EV_FREQUENT_CHECK;
3544 root 1.144 }
3545    
3546     void
3547     ev_check_stop (EV_P_ ev_check *w)
3548     {
3549 root 1.166 clear_pending (EV_A_ (W)w);
3550 root 1.144 if (expect_false (!ev_is_active (w)))
3551     return;
3552    
3553 root 1.248 EV_FREQUENT_CHECK;
3554    
3555 root 1.144 {
3556 root 1.230 int active = ev_active (w);
3557    
3558 root 1.144 checks [active - 1] = checks [--checkcnt];
3559 root 1.230 ev_active (checks [active - 1]) = active;
3560 root 1.144 }
3561    
3562     ev_stop (EV_A_ (W)w);
3563 root 1.248
3564     EV_FREQUENT_CHECK;
3565 root 1.144 }
3566 root 1.337 #endif
3567 root 1.144
3568     #if EV_EMBED_ENABLE
3569     void noinline
3570     ev_embed_sweep (EV_P_ ev_embed *w)
3571     {
3572 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3573 root 1.144 }
3574    
3575     static void
3576 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3577 root 1.144 {
3578     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3579    
3580     if (ev_cb (w))
3581     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3582     else
3583 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3584 root 1.144 }
3585    
3586 root 1.189 static void
3587     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3588     {
3589     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3590    
3591 root 1.195 {
3592 root 1.306 EV_P = w->other;
3593 root 1.195
3594     while (fdchangecnt)
3595     {
3596     fd_reify (EV_A);
3597 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3598 root 1.195 }
3599     }
3600     }
3601    
3602 root 1.261 static void
3603     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3604     {
3605     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3606    
3607 root 1.277 ev_embed_stop (EV_A_ w);
3608    
3609 root 1.261 {
3610 root 1.306 EV_P = w->other;
3611 root 1.261
3612     ev_loop_fork (EV_A);
3613 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3614 root 1.261 }
3615 root 1.277
3616     ev_embed_start (EV_A_ w);
3617 root 1.261 }
3618    
3619 root 1.195 #if 0
3620     static void
3621     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3622     {
3623     ev_idle_stop (EV_A_ idle);
3624 root 1.189 }
3625 root 1.195 #endif
3626 root 1.189
3627 root 1.144 void
3628     ev_embed_start (EV_P_ ev_embed *w)
3629     {
3630     if (expect_false (ev_is_active (w)))
3631     return;
3632    
3633     {
3634 root 1.306 EV_P = w->other;
3635 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3636 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3637 root 1.144 }
3638    
3639 root 1.248 EV_FREQUENT_CHECK;
3640    
3641 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3642     ev_io_start (EV_A_ &w->io);
3643    
3644 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3645     ev_set_priority (&w->prepare, EV_MINPRI);
3646     ev_prepare_start (EV_A_ &w->prepare);
3647    
3648 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3649     ev_fork_start (EV_A_ &w->fork);
3650    
3651 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3652    
3653 root 1.144 ev_start (EV_A_ (W)w, 1);
3654 root 1.248
3655     EV_FREQUENT_CHECK;
3656 root 1.144 }
3657    
3658     void
3659     ev_embed_stop (EV_P_ ev_embed *w)
3660     {
3661 root 1.166 clear_pending (EV_A_ (W)w);
3662 root 1.144 if (expect_false (!ev_is_active (w)))
3663     return;
3664    
3665 root 1.248 EV_FREQUENT_CHECK;
3666    
3667 root 1.261 ev_io_stop (EV_A_ &w->io);
3668 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3669 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3670 root 1.248
3671 root 1.328 ev_stop (EV_A_ (W)w);
3672    
3673 root 1.248 EV_FREQUENT_CHECK;
3674 root 1.144 }
3675     #endif
3676    
3677 root 1.147 #if EV_FORK_ENABLE
3678     void
3679     ev_fork_start (EV_P_ ev_fork *w)
3680     {
3681     if (expect_false (ev_is_active (w)))
3682     return;
3683    
3684 root 1.248 EV_FREQUENT_CHECK;
3685    
3686 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3687     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3688     forks [forkcnt - 1] = w;
3689 root 1.248
3690     EV_FREQUENT_CHECK;
3691 root 1.147 }
3692    
3693     void
3694     ev_fork_stop (EV_P_ ev_fork *w)
3695     {
3696 root 1.166 clear_pending (EV_A_ (W)w);
3697 root 1.147 if (expect_false (!ev_is_active (w)))
3698     return;
3699    
3700 root 1.248 EV_FREQUENT_CHECK;
3701    
3702 root 1.147 {
3703 root 1.230 int active = ev_active (w);
3704    
3705 root 1.147 forks [active - 1] = forks [--forkcnt];
3706 root 1.230 ev_active (forks [active - 1]) = active;
3707 root 1.147 }
3708    
3709     ev_stop (EV_A_ (W)w);
3710 root 1.248
3711     EV_FREQUENT_CHECK;
3712 root 1.147 }
3713     #endif
3714    
3715 root 1.360 #if EV_CLEANUP_ENABLE
3716     void
3717     ev_cleanup_start (EV_P_ ev_cleanup *w)
3718     {
3719     if (expect_false (ev_is_active (w)))
3720     return;
3721    
3722     EV_FREQUENT_CHECK;
3723    
3724     ev_start (EV_A_ (W)w, ++cleanupcnt);
3725     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3726     cleanups [cleanupcnt - 1] = w;
3727    
3728 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
3729     ev_unref (EV_A);
3730 root 1.360 EV_FREQUENT_CHECK;
3731     }
3732    
3733     void
3734     ev_cleanup_stop (EV_P_ ev_cleanup *w)
3735     {
3736     clear_pending (EV_A_ (W)w);
3737     if (expect_false (!ev_is_active (w)))
3738     return;
3739    
3740     EV_FREQUENT_CHECK;
3741 root 1.362 ev_ref (EV_A);
3742 root 1.360
3743     {
3744     int active = ev_active (w);
3745    
3746     cleanups [active - 1] = cleanups [--cleanupcnt];
3747     ev_active (cleanups [active - 1]) = active;
3748     }
3749    
3750     ev_stop (EV_A_ (W)w);
3751    
3752     EV_FREQUENT_CHECK;
3753     }
3754     #endif
3755    
3756 root 1.207 #if EV_ASYNC_ENABLE
3757     void
3758     ev_async_start (EV_P_ ev_async *w)
3759     {
3760     if (expect_false (ev_is_active (w)))
3761     return;
3762    
3763 root 1.352 w->sent = 0;
3764    
3765 root 1.207 evpipe_init (EV_A);
3766    
3767 root 1.248 EV_FREQUENT_CHECK;
3768    
3769 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3770     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3771     asyncs [asynccnt - 1] = w;
3772 root 1.248
3773     EV_FREQUENT_CHECK;
3774 root 1.207 }
3775    
3776     void
3777     ev_async_stop (EV_P_ ev_async *w)
3778     {
3779     clear_pending (EV_A_ (W)w);
3780     if (expect_false (!ev_is_active (w)))
3781     return;
3782    
3783 root 1.248 EV_FREQUENT_CHECK;
3784    
3785 root 1.207 {
3786 root 1.230 int active = ev_active (w);
3787    
3788 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3789 root 1.230 ev_active (asyncs [active - 1]) = active;
3790 root 1.207 }
3791    
3792     ev_stop (EV_A_ (W)w);
3793 root 1.248
3794     EV_FREQUENT_CHECK;
3795 root 1.207 }
3796    
3797     void
3798     ev_async_send (EV_P_ ev_async *w)
3799     {
3800     w->sent = 1;
3801 root 1.307 evpipe_write (EV_A_ &async_pending);
3802 root 1.207 }
3803     #endif
3804    
3805 root 1.1 /*****************************************************************************/
3806 root 1.10
3807 root 1.16 struct ev_once
3808     {
3809 root 1.136 ev_io io;
3810     ev_timer to;
3811 root 1.16 void (*cb)(int revents, void *arg);
3812     void *arg;
3813     };
3814    
3815     static void
3816 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3817 root 1.16 {
3818     void (*cb)(int revents, void *arg) = once->cb;
3819     void *arg = once->arg;
3820    
3821 root 1.259 ev_io_stop (EV_A_ &once->io);
3822 root 1.51 ev_timer_stop (EV_A_ &once->to);
3823 root 1.69 ev_free (once);
3824 root 1.16
3825     cb (revents, arg);
3826     }
3827    
3828     static void
3829 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3830 root 1.16 {
3831 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3832    
3833     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3834 root 1.16 }
3835    
3836     static void
3837 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3838 root 1.16 {
3839 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3840    
3841     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3842 root 1.16 }
3843    
3844     void
3845 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3846 root 1.16 {
3847 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3848 root 1.16
3849 root 1.123 if (expect_false (!once))
3850 root 1.16 {
3851 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3852 root 1.123 return;
3853     }
3854    
3855     once->cb = cb;
3856     once->arg = arg;
3857 root 1.16
3858 root 1.123 ev_init (&once->io, once_cb_io);
3859     if (fd >= 0)
3860     {
3861     ev_io_set (&once->io, fd, events);
3862     ev_io_start (EV_A_ &once->io);
3863     }
3864 root 1.16
3865 root 1.123 ev_init (&once->to, once_cb_to);
3866     if (timeout >= 0.)
3867     {
3868     ev_timer_set (&once->to, timeout, 0.);
3869     ev_timer_start (EV_A_ &once->to);
3870 root 1.16 }
3871     }
3872    
3873 root 1.282 /*****************************************************************************/
3874    
3875 root 1.288 #if EV_WALK_ENABLE
3876 root 1.282 void
3877     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3878     {
3879     int i, j;
3880     ev_watcher_list *wl, *wn;
3881    
3882     if (types & (EV_IO | EV_EMBED))
3883     for (i = 0; i < anfdmax; ++i)
3884     for (wl = anfds [i].head; wl; )
3885     {
3886     wn = wl->next;
3887    
3888     #if EV_EMBED_ENABLE
3889     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3890     {
3891     if (types & EV_EMBED)
3892     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3893     }
3894     else
3895     #endif
3896     #if EV_USE_INOTIFY
3897     if (ev_cb ((ev_io *)wl) == infy_cb)
3898     ;
3899     else
3900     #endif
3901 root 1.288 if ((ev_io *)wl != &pipe_w)
3902 root 1.282 if (types & EV_IO)
3903     cb (EV_A_ EV_IO, wl);
3904    
3905     wl = wn;
3906     }
3907    
3908     if (types & (EV_TIMER | EV_STAT))
3909     for (i = timercnt + HEAP0; i-- > HEAP0; )
3910     #if EV_STAT_ENABLE
3911     /*TODO: timer is not always active*/
3912     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3913     {
3914     if (types & EV_STAT)
3915     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3916     }
3917     else
3918     #endif
3919     if (types & EV_TIMER)
3920     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3921    
3922     #if EV_PERIODIC_ENABLE
3923     if (types & EV_PERIODIC)
3924     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3925     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3926     #endif
3927    
3928     #if EV_IDLE_ENABLE
3929     if (types & EV_IDLE)
3930     for (j = NUMPRI; i--; )
3931     for (i = idlecnt [j]; i--; )
3932     cb (EV_A_ EV_IDLE, idles [j][i]);
3933     #endif
3934    
3935     #if EV_FORK_ENABLE
3936     if (types & EV_FORK)
3937     for (i = forkcnt; i--; )
3938     if (ev_cb (forks [i]) != embed_fork_cb)
3939     cb (EV_A_ EV_FORK, forks [i]);
3940     #endif
3941    
3942     #if EV_ASYNC_ENABLE
3943     if (types & EV_ASYNC)
3944     for (i = asynccnt; i--; )
3945     cb (EV_A_ EV_ASYNC, asyncs [i]);
3946     #endif
3947    
3948 root 1.337 #if EV_PREPARE_ENABLE
3949 root 1.282 if (types & EV_PREPARE)
3950     for (i = preparecnt; i--; )
3951 root 1.337 # if EV_EMBED_ENABLE
3952 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3953 root 1.337 # endif
3954     cb (EV_A_ EV_PREPARE, prepares [i]);
3955 root 1.282 #endif
3956    
3957 root 1.337 #if EV_CHECK_ENABLE
3958 root 1.282 if (types & EV_CHECK)
3959     for (i = checkcnt; i--; )
3960     cb (EV_A_ EV_CHECK, checks [i]);
3961 root 1.337 #endif
3962 root 1.282
3963 root 1.337 #if EV_SIGNAL_ENABLE
3964 root 1.282 if (types & EV_SIGNAL)
3965 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
3966 root 1.282 for (wl = signals [i].head; wl; )
3967     {
3968     wn = wl->next;
3969     cb (EV_A_ EV_SIGNAL, wl);
3970     wl = wn;
3971     }
3972 root 1.337 #endif
3973 root 1.282
3974 root 1.337 #if EV_CHILD_ENABLE
3975 root 1.282 if (types & EV_CHILD)
3976 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
3977 root 1.282 for (wl = childs [i]; wl; )
3978     {
3979     wn = wl->next;
3980     cb (EV_A_ EV_CHILD, wl);
3981     wl = wn;
3982     }
3983 root 1.337 #endif
3984 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
3985     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3986     }
3987     #endif
3988    
3989 root 1.188 #if EV_MULTIPLICITY
3990     #include "ev_wrap.h"
3991     #endif
3992    
3993 root 1.354 EV_CPP(})
3994 root 1.87