ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.391
Committed: Thu Aug 4 13:57:16 2011 UTC (12 years, 9 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.390: +294 -16 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
65     # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.354 EV_CPP(extern "C" {)
189    
190 root 1.103 #ifndef _WIN32
191 root 1.71 # include <sys/time.h>
192 root 1.45 # include <sys/wait.h>
193 root 1.140 # include <unistd.h>
194 root 1.103 #else
195 root 1.256 # include <io.h>
196 root 1.103 # define WIN32_LEAN_AND_MEAN
197     # include <windows.h>
198     # ifndef EV_SELECT_IS_WINSOCKET
199     # define EV_SELECT_IS_WINSOCKET 1
200     # endif
201 root 1.331 # undef EV_AVOID_STDIO
202 root 1.45 #endif
203 root 1.103
204 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
205     * a limit of 1024 into their select. Where people have brains,
206     * OS X engineers apparently have a vacuum. Or maybe they were
207     * ordered to have a vacuum, or they do anything for money.
208     * This might help. Or not.
209     */
210     #define _DARWIN_UNLIMITED_SELECT 1
211    
212 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
213 root 1.40
214 root 1.305 /* try to deduce the maximum number of signals on this platform */
215     #if defined (EV_NSIG)
216     /* use what's provided */
217     #elif defined (NSIG)
218     # define EV_NSIG (NSIG)
219     #elif defined(_NSIG)
220     # define EV_NSIG (_NSIG)
221     #elif defined (SIGMAX)
222     # define EV_NSIG (SIGMAX+1)
223     #elif defined (SIG_MAX)
224     # define EV_NSIG (SIG_MAX+1)
225     #elif defined (_SIG_MAX)
226     # define EV_NSIG (_SIG_MAX+1)
227     #elif defined (MAXSIG)
228     # define EV_NSIG (MAXSIG+1)
229     #elif defined (MAX_SIG)
230     # define EV_NSIG (MAX_SIG+1)
231     #elif defined (SIGARRAYSIZE)
232 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233 root 1.305 #elif defined (_sys_nsig)
234     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235     #else
236     # error "unable to find value for NSIG, please report"
237 root 1.336 /* to make it compile regardless, just remove the above line, */
238     /* but consider reporting it, too! :) */
239 root 1.306 # define EV_NSIG 65
240 root 1.305 #endif
241    
242 root 1.373 #ifndef EV_USE_FLOOR
243     # define EV_USE_FLOOR 0
244     #endif
245    
246 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
247     # if __linux && __GLIBC__ >= 2
248 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249 root 1.274 # else
250     # define EV_USE_CLOCK_SYSCALL 0
251     # endif
252     #endif
253    
254 root 1.29 #ifndef EV_USE_MONOTONIC
255 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
257 root 1.253 # else
258     # define EV_USE_MONOTONIC 0
259     # endif
260 root 1.37 #endif
261    
262 root 1.118 #ifndef EV_USE_REALTIME
263 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264 root 1.118 #endif
265    
266 root 1.193 #ifndef EV_USE_NANOSLEEP
267 root 1.253 # if _POSIX_C_SOURCE >= 199309L
268 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
269 root 1.253 # else
270     # define EV_USE_NANOSLEEP 0
271     # endif
272 root 1.193 #endif
273    
274 root 1.29 #ifndef EV_USE_SELECT
275 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
276 root 1.10 #endif
277    
278 root 1.59 #ifndef EV_USE_POLL
279 root 1.104 # ifdef _WIN32
280     # define EV_USE_POLL 0
281     # else
282 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
283 root 1.104 # endif
284 root 1.41 #endif
285    
286 root 1.29 #ifndef EV_USE_EPOLL
287 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
289 root 1.220 # else
290     # define EV_USE_EPOLL 0
291     # endif
292 root 1.10 #endif
293    
294 root 1.44 #ifndef EV_USE_KQUEUE
295     # define EV_USE_KQUEUE 0
296     #endif
297    
298 root 1.118 #ifndef EV_USE_PORT
299     # define EV_USE_PORT 0
300 root 1.40 #endif
301    
302 root 1.152 #ifndef EV_USE_INOTIFY
303 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
305 root 1.220 # else
306     # define EV_USE_INOTIFY 0
307     # endif
308 root 1.152 #endif
309    
310 root 1.149 #ifndef EV_PID_HASHSIZE
311 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312 root 1.149 #endif
313    
314 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
315 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316 root 1.152 #endif
317    
318 root 1.220 #ifndef EV_USE_EVENTFD
319     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
321 root 1.220 # else
322     # define EV_USE_EVENTFD 0
323     # endif
324     #endif
325    
326 root 1.303 #ifndef EV_USE_SIGNALFD
327 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
329 root 1.303 # else
330     # define EV_USE_SIGNALFD 0
331     # endif
332     #endif
333    
334 root 1.249 #if 0 /* debugging */
335 root 1.250 # define EV_VERIFY 3
336 root 1.249 # define EV_USE_4HEAP 1
337     # define EV_HEAP_CACHE_AT 1
338     #endif
339    
340 root 1.250 #ifndef EV_VERIFY
341 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342 root 1.250 #endif
343    
344 root 1.243 #ifndef EV_USE_4HEAP
345 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
346 root 1.243 #endif
347    
348     #ifndef EV_HEAP_CACHE_AT
349 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350 root 1.243 #endif
351    
352 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353     /* which makes programs even slower. might work on other unices, too. */
354     #if EV_USE_CLOCK_SYSCALL
355     # include <syscall.h>
356     # ifdef SYS_clock_gettime
357     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358     # undef EV_USE_MONOTONIC
359     # define EV_USE_MONOTONIC 1
360     # else
361     # undef EV_USE_CLOCK_SYSCALL
362     # define EV_USE_CLOCK_SYSCALL 0
363     # endif
364     #endif
365    
366 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
367 root 1.40
368 root 1.325 #ifdef _AIX
369     /* AIX has a completely broken poll.h header */
370     # undef EV_USE_POLL
371     # define EV_USE_POLL 0
372     #endif
373    
374 root 1.40 #ifndef CLOCK_MONOTONIC
375     # undef EV_USE_MONOTONIC
376     # define EV_USE_MONOTONIC 0
377     #endif
378    
379 root 1.31 #ifndef CLOCK_REALTIME
380 root 1.40 # undef EV_USE_REALTIME
381 root 1.31 # define EV_USE_REALTIME 0
382     #endif
383 root 1.40
384 root 1.152 #if !EV_STAT_ENABLE
385 root 1.185 # undef EV_USE_INOTIFY
386 root 1.152 # define EV_USE_INOTIFY 0
387     #endif
388    
389 root 1.193 #if !EV_USE_NANOSLEEP
390 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
391     # if !defined(_WIN32) && !defined(__hpux)
392 root 1.193 # include <sys/select.h>
393     # endif
394     #endif
395    
396 root 1.152 #if EV_USE_INOTIFY
397 root 1.273 # include <sys/statfs.h>
398 root 1.152 # include <sys/inotify.h>
399 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400     # ifndef IN_DONT_FOLLOW
401     # undef EV_USE_INOTIFY
402     # define EV_USE_INOTIFY 0
403     # endif
404 root 1.152 #endif
405    
406 root 1.185 #if EV_SELECT_IS_WINSOCKET
407     # include <winsock.h>
408     #endif
409    
410 root 1.220 #if EV_USE_EVENTFD
411     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412 root 1.221 # include <stdint.h>
413 root 1.303 # ifndef EFD_NONBLOCK
414     # define EFD_NONBLOCK O_NONBLOCK
415     # endif
416     # ifndef EFD_CLOEXEC
417 root 1.311 # ifdef O_CLOEXEC
418     # define EFD_CLOEXEC O_CLOEXEC
419     # else
420     # define EFD_CLOEXEC 02000000
421     # endif
422 root 1.303 # endif
423 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424 root 1.220 #endif
425    
426 root 1.303 #if EV_USE_SIGNALFD
427 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428     # include <stdint.h>
429     # ifndef SFD_NONBLOCK
430     # define SFD_NONBLOCK O_NONBLOCK
431     # endif
432     # ifndef SFD_CLOEXEC
433     # ifdef O_CLOEXEC
434     # define SFD_CLOEXEC O_CLOEXEC
435     # else
436     # define SFD_CLOEXEC 02000000
437     # endif
438     # endif
439 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440 root 1.314
441     struct signalfd_siginfo
442     {
443     uint32_t ssi_signo;
444     char pad[128 - sizeof (uint32_t)];
445     };
446 root 1.303 #endif
447    
448 root 1.40 /**/
449 root 1.1
450 root 1.250 #if EV_VERIFY >= 3
451 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
452 root 1.248 #else
453     # define EV_FREQUENT_CHECK do { } while (0)
454     #endif
455    
456 root 1.176 /*
457 root 1.373 * This is used to work around floating point rounding problems.
458 root 1.177 * This value is good at least till the year 4000.
459 root 1.176 */
460 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462 root 1.176
463 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
464 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465 root 1.1
466 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468 root 1.347
469 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470     /* ECB.H BEGIN */
471     /*
472     * libecb - http://software.schmorp.de/pkg/libecb
473     *
474     * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475     * Copyright (©) 2011 Emanuele Giaquinta
476     * All rights reserved.
477     *
478     * Redistribution and use in source and binary forms, with or without modifica-
479     * tion, are permitted provided that the following conditions are met:
480     *
481     * 1. Redistributions of source code must retain the above copyright notice,
482     * this list of conditions and the following disclaimer.
483     *
484     * 2. Redistributions in binary form must reproduce the above copyright
485     * notice, this list of conditions and the following disclaimer in the
486     * documentation and/or other materials provided with the distribution.
487     *
488     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497     * OF THE POSSIBILITY OF SUCH DAMAGE.
498     */
499    
500     #ifndef ECB_H
501     #define ECB_H
502    
503     #ifdef _WIN32
504     typedef signed char int8_t;
505     typedef unsigned char uint8_t;
506     typedef signed short int16_t;
507     typedef unsigned short uint16_t;
508     typedef signed int int32_t;
509     typedef unsigned int uint32_t;
510     #if __GNUC__
511     typedef signed long long int64_t;
512     typedef unsigned long long uint64_t;
513     #else /* _MSC_VER || __BORLANDC__ */
514     typedef signed __int64 int64_t;
515     typedef unsigned __int64 uint64_t;
516     #endif
517     #else
518     #include <inttypes.h>
519     #endif
520 root 1.379
521     /* many compilers define _GNUC_ to some versions but then only implement
522     * what their idiot authors think are the "more important" extensions,
523 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
524 root 1.379 * or so.
525     * we try to detect these and simply assume they are not gcc - if they have
526     * an issue with that they should have done it right in the first place.
527     */
528     #ifndef ECB_GCC_VERSION
529     #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530     #define ECB_GCC_VERSION(major,minor) 0
531     #else
532     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
533     #endif
534     #endif
535    
536 root 1.391 /*****************************************************************************/
537    
538     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540    
541     #if ECB_NO_THREADS || ECB_NO_SMP
542     #define ECB_MEMORY_FENCE do { } while (0)
543     #define ECB_MEMORY_FENCE_ACQUIRE do { } while (0)
544     #define ECB_MEMORY_FENCE_RELEASE do { } while (0)
545 root 1.40 #endif
546    
547 root 1.383 #ifndef ECB_MEMORY_FENCE
548     #if ECB_GCC_VERSION(2,5)
549     #if __x86
550     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
551 root 1.391 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
552     #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
553 root 1.383 #elif __amd64
554     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
555     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
556 root 1.391 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
557 root 1.383 #endif
558     #endif
559     #endif
560    
561     #ifndef ECB_MEMORY_FENCE
562     #if ECB_GCC_VERSION(4,4)
563     #define ECB_MEMORY_FENCE __sync_synchronize ()
564     #define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); })
565     #define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); })
566 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
567     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
568     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
569     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
570     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
571 root 1.388 #elif defined(_WIN32)
572     #include <WinNT.h>
573 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
574 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
575     #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
576     #endif
577     #endif
578    
579     #ifndef ECB_MEMORY_FENCE
580 root 1.391 /*
581     * if you get undefined symbol references to pthread_mutex_lock,
582     * or failure to find pthread.h, then you should implement
583     * the ECB_MEMORY_FENCE operations for your cpu/compiler
584     * OR provide pthread.h and link against the posix thread library
585     * of your system.
586     */
587 root 1.383 #include <pthread.h>
588 root 1.391 #define ECB_NEEDS_PTHREADS 1
589     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
590 root 1.383
591     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
592     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
593     #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
594     #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
595     #endif
596    
597 root 1.391 /*****************************************************************************/
598    
599     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
600    
601     #if __cplusplus
602     #define ecb_inline static inline
603     #elif ECB_GCC_VERSION(2,5)
604     #define ecb_inline static __inline__
605     #elif ECB_C99
606     #define ecb_inline static inline
607     #else
608     #define ecb_inline static
609     #endif
610    
611     #if ECB_GCC_VERSION(3,3)
612     #define ecb_restrict __restrict__
613     #elif ECB_C99
614     #define ecb_restrict restrict
615     #else
616     #define ecb_restrict
617     #endif
618    
619     typedef int ecb_bool;
620    
621     #define ECB_CONCAT_(a, b) a ## b
622     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
623     #define ECB_STRINGIFY_(a) # a
624     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
625    
626     #define ecb_function_ ecb_inline
627    
628 root 1.379 #if ECB_GCC_VERSION(3,1)
629     #define ecb_attribute(attrlist) __attribute__(attrlist)
630     #define ecb_is_constant(expr) __builtin_constant_p (expr)
631     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
632     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
633     #else
634     #define ecb_attribute(attrlist)
635     #define ecb_is_constant(expr) 0
636     #define ecb_expect(expr,value) (expr)
637     #define ecb_prefetch(addr,rw,locality)
638     #endif
639    
640 root 1.391 /* no emulation for ecb_decltype */
641     #if ECB_GCC_VERSION(4,5)
642     #define ecb_decltype(x) __decltype(x)
643     #elif ECB_GCC_VERSION(3,0)
644     #define ecb_decltype(x) __typeof(x)
645     #endif
646    
647 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
648     #define ecb_noreturn ecb_attribute ((__noreturn__))
649     #define ecb_unused ecb_attribute ((__unused__))
650     #define ecb_const ecb_attribute ((__const__))
651     #define ecb_pure ecb_attribute ((__pure__))
652    
653     #if ECB_GCC_VERSION(4,3)
654     #define ecb_artificial ecb_attribute ((__artificial__))
655     #define ecb_hot ecb_attribute ((__hot__))
656     #define ecb_cold ecb_attribute ((__cold__))
657     #else
658     #define ecb_artificial
659     #define ecb_hot
660     #define ecb_cold
661     #endif
662    
663     /* put around conditional expressions if you are very sure that the */
664     /* expression is mostly true or mostly false. note that these return */
665     /* booleans, not the expression. */
666     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
667     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
668 root 1.391 /* for compatibility to the rest of the world */
669     #define ecb_likely(expr) ecb_expect_true (expr)
670     #define ecb_unlikely(expr) ecb_expect_false (expr)
671    
672     /* count trailing zero bits and count # of one bits */
673     #if ECB_GCC_VERSION(3,4)
674     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
675     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
676     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
677     #define ecb_ctz32(x) __builtin_ctz (x)
678     #define ecb_ctz64(x) __builtin_ctzll (x)
679     #define ecb_popcount32(x) __builtin_popcount (x)
680     /* no popcountll */
681     #else
682     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
683     ecb_function_ int
684     ecb_ctz32 (uint32_t x)
685     {
686     int r = 0;
687    
688     x &= ~x + 1; /* this isolates the lowest bit */
689    
690     #if ECB_branchless_on_i386
691     r += !!(x & 0xaaaaaaaa) << 0;
692     r += !!(x & 0xcccccccc) << 1;
693     r += !!(x & 0xf0f0f0f0) << 2;
694     r += !!(x & 0xff00ff00) << 3;
695     r += !!(x & 0xffff0000) << 4;
696     #else
697     if (x & 0xaaaaaaaa) r += 1;
698     if (x & 0xcccccccc) r += 2;
699     if (x & 0xf0f0f0f0) r += 4;
700     if (x & 0xff00ff00) r += 8;
701     if (x & 0xffff0000) r += 16;
702     #endif
703    
704     return r;
705     }
706    
707     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
708     ecb_function_ int
709     ecb_ctz64 (uint64_t x)
710     {
711     int shift = x & 0xffffffffU ? 0 : 32;
712     return ecb_ctz32 (x >> shift) + shift;
713     }
714    
715     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
716     ecb_function_ int
717     ecb_popcount32 (uint32_t x)
718     {
719     x -= (x >> 1) & 0x55555555;
720     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
721     x = ((x >> 4) + x) & 0x0f0f0f0f;
722     x *= 0x01010101;
723    
724     return x >> 24;
725     }
726    
727     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
728     ecb_function_ int ecb_ld32 (uint32_t x)
729     {
730     int r = 0;
731    
732     if (x >> 16) { x >>= 16; r += 16; }
733     if (x >> 8) { x >>= 8; r += 8; }
734     if (x >> 4) { x >>= 4; r += 4; }
735     if (x >> 2) { x >>= 2; r += 2; }
736     if (x >> 1) { r += 1; }
737    
738     return r;
739     }
740    
741     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
742     ecb_function_ int ecb_ld64 (uint64_t x)
743     {
744     int r = 0;
745    
746     if (x >> 32) { x >>= 32; r += 32; }
747    
748     return r + ecb_ld32 (x);
749     }
750     #endif
751    
752     /* popcount64 is only available on 64 bit cpus as gcc builtin */
753     /* so for this version we are lazy */
754     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
755     ecb_function_ int
756     ecb_popcount64 (uint64_t x)
757     {
758     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
759     }
760    
761     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
762     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
763     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
764     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
765     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
766     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
767     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
768     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
769    
770     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
771     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
772     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
773     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
774     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
775     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
776     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
777     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
778    
779     #if ECB_GCC_VERSION(4,3)
780     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
781     #define ecb_bswap32(x) __builtin_bswap32 (x)
782     #define ecb_bswap64(x) __builtin_bswap64 (x)
783     #else
784     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
785     ecb_function_ uint16_t
786     ecb_bswap16 (uint16_t x)
787     {
788     return ecb_rotl16 (x, 8);
789     }
790    
791     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
792     ecb_function_ uint32_t
793     ecb_bswap32 (uint32_t x)
794     {
795     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
796     }
797    
798     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
799     ecb_function_ uint64_t
800     ecb_bswap64 (uint64_t x)
801     {
802     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
803     }
804     #endif
805    
806     #if ECB_GCC_VERSION(4,5)
807     #define ecb_unreachable() __builtin_unreachable ()
808     #else
809     /* this seems to work fine, but gcc always emits a warning for it :/ */
810     ecb_function_ void ecb_unreachable (void) ecb_noreturn;
811     ecb_function_ void ecb_unreachable (void) { }
812     #endif
813    
814     /* try to tell the compiler that some condition is definitely true */
815     #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
816    
817     ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
818     ecb_function_ unsigned char
819     ecb_byteorder_helper (void)
820     {
821     const uint32_t u = 0x11223344;
822     return *(unsigned char *)&u;
823     }
824    
825     ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
826     ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
827     ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
828     ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
829    
830     #if ECB_GCC_VERSION(3,0) || ECB_C99
831     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
832     #else
833     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
834     #endif
835    
836     #if ecb_cplusplus_does_not_suck
837     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
838     template<typename T, int N>
839     static inline int ecb_array_length (const T (&arr)[N])
840     {
841     return N;
842     }
843     #else
844     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
845     #endif
846    
847     #endif
848    
849     /* ECB.H END */
850 root 1.379
851     #define expect_false(cond) ecb_expect_false (cond)
852     #define expect_true(cond) ecb_expect_true (cond)
853     #define noinline ecb_noinline
854    
855     #define inline_size ecb_inline
856 root 1.169
857 root 1.338 #if EV_FEATURE_CODE
858 root 1.379 # define inline_speed ecb_inline
859 root 1.338 #else
860 root 1.169 # define inline_speed static noinline
861     #endif
862 root 1.40
863 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
864    
865     #if EV_MINPRI == EV_MAXPRI
866     # define ABSPRI(w) (((W)w), 0)
867     #else
868     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
869     #endif
870 root 1.42
871 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
872 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
873 root 1.103
874 root 1.136 typedef ev_watcher *W;
875     typedef ev_watcher_list *WL;
876     typedef ev_watcher_time *WT;
877 root 1.10
878 root 1.229 #define ev_active(w) ((W)(w))->active
879 root 1.228 #define ev_at(w) ((WT)(w))->at
880    
881 root 1.279 #if EV_USE_REALTIME
882 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
883 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
884 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
885     #endif
886    
887     #if EV_USE_MONOTONIC
888 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
889 root 1.198 #endif
890 root 1.54
891 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
892     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
893     #endif
894     #ifndef EV_WIN32_HANDLE_TO_FD
895 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
896 root 1.313 #endif
897     #ifndef EV_WIN32_CLOSE_FD
898     # define EV_WIN32_CLOSE_FD(fd) close (fd)
899     #endif
900    
901 root 1.103 #ifdef _WIN32
902 root 1.98 # include "ev_win32.c"
903     #endif
904 root 1.67
905 root 1.53 /*****************************************************************************/
906 root 1.1
907 root 1.373 /* define a suitable floor function (only used by periodics atm) */
908    
909     #if EV_USE_FLOOR
910     # include <math.h>
911     # define ev_floor(v) floor (v)
912     #else
913    
914     #include <float.h>
915    
916     /* a floor() replacement function, should be independent of ev_tstamp type */
917     static ev_tstamp noinline
918     ev_floor (ev_tstamp v)
919     {
920     /* the choice of shift factor is not terribly important */
921     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
922     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
923     #else
924     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
925     #endif
926    
927     /* argument too large for an unsigned long? */
928     if (expect_false (v >= shift))
929     {
930     ev_tstamp f;
931    
932     if (v == v - 1.)
933     return v; /* very large number */
934    
935     f = shift * ev_floor (v * (1. / shift));
936     return f + ev_floor (v - f);
937     }
938    
939     /* special treatment for negative args? */
940     if (expect_false (v < 0.))
941     {
942     ev_tstamp f = -ev_floor (-v);
943    
944     return f - (f == v ? 0 : 1);
945     }
946    
947     /* fits into an unsigned long */
948     return (unsigned long)v;
949     }
950    
951     #endif
952    
953     /*****************************************************************************/
954    
955 root 1.356 #ifdef __linux
956     # include <sys/utsname.h>
957     #endif
958    
959 root 1.379 static unsigned int noinline ecb_cold
960 root 1.355 ev_linux_version (void)
961     {
962     #ifdef __linux
963 root 1.359 unsigned int v = 0;
964 root 1.355 struct utsname buf;
965     int i;
966     char *p = buf.release;
967    
968     if (uname (&buf))
969     return 0;
970    
971     for (i = 3+1; --i; )
972     {
973     unsigned int c = 0;
974    
975     for (;;)
976     {
977     if (*p >= '0' && *p <= '9')
978     c = c * 10 + *p++ - '0';
979     else
980     {
981     p += *p == '.';
982     break;
983     }
984     }
985    
986     v = (v << 8) | c;
987     }
988    
989     return v;
990     #else
991     return 0;
992     #endif
993     }
994    
995     /*****************************************************************************/
996    
997 root 1.331 #if EV_AVOID_STDIO
998 root 1.379 static void noinline ecb_cold
999 root 1.331 ev_printerr (const char *msg)
1000     {
1001     write (STDERR_FILENO, msg, strlen (msg));
1002     }
1003     #endif
1004    
1005 root 1.70 static void (*syserr_cb)(const char *msg);
1006 root 1.69
1007 root 1.379 void ecb_cold
1008 root 1.141 ev_set_syserr_cb (void (*cb)(const char *msg))
1009 root 1.69 {
1010     syserr_cb = cb;
1011     }
1012    
1013 root 1.379 static void noinline ecb_cold
1014 root 1.269 ev_syserr (const char *msg)
1015 root 1.69 {
1016 root 1.70 if (!msg)
1017     msg = "(libev) system error";
1018    
1019 root 1.69 if (syserr_cb)
1020 root 1.70 syserr_cb (msg);
1021 root 1.69 else
1022     {
1023 root 1.330 #if EV_AVOID_STDIO
1024 root 1.331 ev_printerr (msg);
1025     ev_printerr (": ");
1026 root 1.365 ev_printerr (strerror (errno));
1027 root 1.331 ev_printerr ("\n");
1028 root 1.330 #else
1029 root 1.70 perror (msg);
1030 root 1.330 #endif
1031 root 1.69 abort ();
1032     }
1033     }
1034    
1035 root 1.224 static void *
1036     ev_realloc_emul (void *ptr, long size)
1037     {
1038 root 1.334 #if __GLIBC__
1039     return realloc (ptr, size);
1040     #else
1041 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
1042 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1043 root 1.224 * the single unix specification, so work around them here.
1044     */
1045 root 1.333
1046 root 1.224 if (size)
1047     return realloc (ptr, size);
1048    
1049     free (ptr);
1050     return 0;
1051 root 1.334 #endif
1052 root 1.224 }
1053    
1054     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1055 root 1.69
1056 root 1.379 void ecb_cold
1057 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
1058 root 1.69 {
1059     alloc = cb;
1060     }
1061    
1062 root 1.150 inline_speed void *
1063 root 1.155 ev_realloc (void *ptr, long size)
1064 root 1.69 {
1065 root 1.224 ptr = alloc (ptr, size);
1066 root 1.69
1067     if (!ptr && size)
1068     {
1069 root 1.330 #if EV_AVOID_STDIO
1070 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1071 root 1.330 #else
1072 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1073 root 1.330 #endif
1074 root 1.69 abort ();
1075     }
1076    
1077     return ptr;
1078     }
1079    
1080     #define ev_malloc(size) ev_realloc (0, (size))
1081     #define ev_free(ptr) ev_realloc ((ptr), 0)
1082    
1083     /*****************************************************************************/
1084    
1085 root 1.298 /* set in reify when reification needed */
1086     #define EV_ANFD_REIFY 1
1087    
1088 root 1.288 /* file descriptor info structure */
1089 root 1.53 typedef struct
1090     {
1091 root 1.68 WL head;
1092 root 1.288 unsigned char events; /* the events watched for */
1093 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1094 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1095 root 1.269 unsigned char unused;
1096     #if EV_USE_EPOLL
1097 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1098 root 1.269 #endif
1099 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1100 root 1.103 SOCKET handle;
1101     #endif
1102 root 1.357 #if EV_USE_IOCP
1103     OVERLAPPED or, ow;
1104     #endif
1105 root 1.53 } ANFD;
1106 root 1.1
1107 root 1.288 /* stores the pending event set for a given watcher */
1108 root 1.53 typedef struct
1109     {
1110     W w;
1111 root 1.288 int events; /* the pending event set for the given watcher */
1112 root 1.53 } ANPENDING;
1113 root 1.51
1114 root 1.155 #if EV_USE_INOTIFY
1115 root 1.241 /* hash table entry per inotify-id */
1116 root 1.152 typedef struct
1117     {
1118     WL head;
1119 root 1.155 } ANFS;
1120 root 1.152 #endif
1121    
1122 root 1.241 /* Heap Entry */
1123     #if EV_HEAP_CACHE_AT
1124 root 1.288 /* a heap element */
1125 root 1.241 typedef struct {
1126 root 1.243 ev_tstamp at;
1127 root 1.241 WT w;
1128     } ANHE;
1129    
1130 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1131     #define ANHE_at(he) (he).at /* access cached at, read-only */
1132     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1133 root 1.241 #else
1134 root 1.288 /* a heap element */
1135 root 1.241 typedef WT ANHE;
1136    
1137 root 1.248 #define ANHE_w(he) (he)
1138     #define ANHE_at(he) (he)->at
1139     #define ANHE_at_cache(he)
1140 root 1.241 #endif
1141    
1142 root 1.55 #if EV_MULTIPLICITY
1143 root 1.54
1144 root 1.80 struct ev_loop
1145     {
1146 root 1.86 ev_tstamp ev_rt_now;
1147 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1148 root 1.80 #define VAR(name,decl) decl;
1149     #include "ev_vars.h"
1150     #undef VAR
1151     };
1152     #include "ev_wrap.h"
1153    
1154 root 1.116 static struct ev_loop default_loop_struct;
1155     struct ev_loop *ev_default_loop_ptr;
1156 root 1.54
1157 root 1.53 #else
1158 root 1.54
1159 root 1.86 ev_tstamp ev_rt_now;
1160 root 1.80 #define VAR(name,decl) static decl;
1161     #include "ev_vars.h"
1162     #undef VAR
1163    
1164 root 1.116 static int ev_default_loop_ptr;
1165 root 1.54
1166 root 1.51 #endif
1167 root 1.1
1168 root 1.338 #if EV_FEATURE_API
1169 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1170     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1171 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1172     #else
1173 root 1.298 # define EV_RELEASE_CB (void)0
1174     # define EV_ACQUIRE_CB (void)0
1175 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1176     #endif
1177    
1178 root 1.353 #define EVBREAK_RECURSE 0x80
1179 root 1.298
1180 root 1.8 /*****************************************************************************/
1181    
1182 root 1.292 #ifndef EV_HAVE_EV_TIME
1183 root 1.141 ev_tstamp
1184 root 1.1 ev_time (void)
1185     {
1186 root 1.29 #if EV_USE_REALTIME
1187 root 1.279 if (expect_true (have_realtime))
1188     {
1189     struct timespec ts;
1190     clock_gettime (CLOCK_REALTIME, &ts);
1191     return ts.tv_sec + ts.tv_nsec * 1e-9;
1192     }
1193     #endif
1194    
1195 root 1.1 struct timeval tv;
1196     gettimeofday (&tv, 0);
1197     return tv.tv_sec + tv.tv_usec * 1e-6;
1198     }
1199 root 1.292 #endif
1200 root 1.1
1201 root 1.284 inline_size ev_tstamp
1202 root 1.1 get_clock (void)
1203     {
1204 root 1.29 #if EV_USE_MONOTONIC
1205 root 1.40 if (expect_true (have_monotonic))
1206 root 1.1 {
1207     struct timespec ts;
1208     clock_gettime (CLOCK_MONOTONIC, &ts);
1209     return ts.tv_sec + ts.tv_nsec * 1e-9;
1210     }
1211     #endif
1212    
1213     return ev_time ();
1214     }
1215    
1216 root 1.85 #if EV_MULTIPLICITY
1217 root 1.51 ev_tstamp
1218     ev_now (EV_P)
1219     {
1220 root 1.85 return ev_rt_now;
1221 root 1.51 }
1222 root 1.85 #endif
1223 root 1.51
1224 root 1.193 void
1225     ev_sleep (ev_tstamp delay)
1226     {
1227     if (delay > 0.)
1228     {
1229     #if EV_USE_NANOSLEEP
1230     struct timespec ts;
1231    
1232 root 1.348 EV_TS_SET (ts, delay);
1233 root 1.193 nanosleep (&ts, 0);
1234     #elif defined(_WIN32)
1235 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1236 root 1.193 #else
1237     struct timeval tv;
1238    
1239 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1240 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1241 root 1.257 /* by older ones */
1242 sf-exg 1.349 EV_TV_SET (tv, delay);
1243 root 1.193 select (0, 0, 0, 0, &tv);
1244     #endif
1245     }
1246     }
1247    
1248     /*****************************************************************************/
1249    
1250 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1251 root 1.232
1252 root 1.288 /* find a suitable new size for the given array, */
1253 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1254 root 1.284 inline_size int
1255 root 1.163 array_nextsize (int elem, int cur, int cnt)
1256     {
1257     int ncur = cur + 1;
1258    
1259     do
1260     ncur <<= 1;
1261     while (cnt > ncur);
1262    
1263 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
1264     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1265 root 1.163 {
1266     ncur *= elem;
1267 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1268 root 1.163 ncur = ncur - sizeof (void *) * 4;
1269     ncur /= elem;
1270     }
1271    
1272     return ncur;
1273     }
1274    
1275 root 1.379 static void * noinline ecb_cold
1276 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1277     {
1278     *cur = array_nextsize (elem, *cur, cnt);
1279     return ev_realloc (base, elem * *cur);
1280     }
1281 root 1.29
1282 root 1.265 #define array_init_zero(base,count) \
1283     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1284    
1285 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1286 root 1.163 if (expect_false ((cnt) > (cur))) \
1287 root 1.69 { \
1288 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1289 root 1.163 (base) = (type *)array_realloc \
1290     (sizeof (type), (base), &(cur), (cnt)); \
1291     init ((base) + (ocur_), (cur) - ocur_); \
1292 root 1.1 }
1293    
1294 root 1.163 #if 0
1295 root 1.74 #define array_slim(type,stem) \
1296 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1297     { \
1298     stem ## max = array_roundsize (stem ## cnt >> 1); \
1299 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1300 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1301     }
1302 root 1.163 #endif
1303 root 1.67
1304 root 1.65 #define array_free(stem, idx) \
1305 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1306 root 1.65
1307 root 1.8 /*****************************************************************************/
1308    
1309 root 1.288 /* dummy callback for pending events */
1310     static void noinline
1311     pendingcb (EV_P_ ev_prepare *w, int revents)
1312     {
1313     }
1314    
1315 root 1.140 void noinline
1316 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
1317 root 1.1 {
1318 root 1.78 W w_ = (W)w;
1319 root 1.171 int pri = ABSPRI (w_);
1320 root 1.78
1321 root 1.123 if (expect_false (w_->pending))
1322 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1323     else
1324 root 1.32 {
1325 root 1.171 w_->pending = ++pendingcnt [pri];
1326     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1327     pendings [pri][w_->pending - 1].w = w_;
1328     pendings [pri][w_->pending - 1].events = revents;
1329 root 1.32 }
1330 root 1.1 }
1331    
1332 root 1.284 inline_speed void
1333     feed_reverse (EV_P_ W w)
1334     {
1335     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1336     rfeeds [rfeedcnt++] = w;
1337     }
1338    
1339     inline_size void
1340     feed_reverse_done (EV_P_ int revents)
1341     {
1342     do
1343     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1344     while (rfeedcnt);
1345     }
1346    
1347     inline_speed void
1348 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1349 root 1.27 {
1350     int i;
1351    
1352     for (i = 0; i < eventcnt; ++i)
1353 root 1.78 ev_feed_event (EV_A_ events [i], type);
1354 root 1.27 }
1355    
1356 root 1.141 /*****************************************************************************/
1357    
1358 root 1.284 inline_speed void
1359 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1360 root 1.1 {
1361     ANFD *anfd = anfds + fd;
1362 root 1.136 ev_io *w;
1363 root 1.1
1364 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1365 root 1.1 {
1366 root 1.79 int ev = w->events & revents;
1367 root 1.1
1368     if (ev)
1369 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1370 root 1.1 }
1371     }
1372    
1373 root 1.298 /* do not submit kernel events for fds that have reify set */
1374     /* because that means they changed while we were polling for new events */
1375     inline_speed void
1376     fd_event (EV_P_ int fd, int revents)
1377     {
1378     ANFD *anfd = anfds + fd;
1379    
1380     if (expect_true (!anfd->reify))
1381 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1382 root 1.298 }
1383    
1384 root 1.79 void
1385     ev_feed_fd_event (EV_P_ int fd, int revents)
1386     {
1387 root 1.168 if (fd >= 0 && fd < anfdmax)
1388 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1389 root 1.79 }
1390    
1391 root 1.288 /* make sure the external fd watch events are in-sync */
1392     /* with the kernel/libev internal state */
1393 root 1.284 inline_size void
1394 root 1.51 fd_reify (EV_P)
1395 root 1.9 {
1396     int i;
1397    
1398 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1399     for (i = 0; i < fdchangecnt; ++i)
1400     {
1401     int fd = fdchanges [i];
1402     ANFD *anfd = anfds + fd;
1403    
1404 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1405 root 1.371 {
1406     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1407    
1408     if (handle != anfd->handle)
1409     {
1410     unsigned long arg;
1411    
1412     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1413    
1414     /* handle changed, but fd didn't - we need to do it in two steps */
1415     backend_modify (EV_A_ fd, anfd->events, 0);
1416     anfd->events = 0;
1417     anfd->handle = handle;
1418     }
1419     }
1420     }
1421     #endif
1422    
1423 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1424     {
1425     int fd = fdchanges [i];
1426     ANFD *anfd = anfds + fd;
1427 root 1.136 ev_io *w;
1428 root 1.27
1429 root 1.350 unsigned char o_events = anfd->events;
1430     unsigned char o_reify = anfd->reify;
1431 root 1.27
1432 root 1.350 anfd->reify = 0;
1433 root 1.27
1434 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1435     {
1436     anfd->events = 0;
1437 root 1.184
1438 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1439     anfd->events |= (unsigned char)w->events;
1440 root 1.27
1441 root 1.351 if (o_events != anfd->events)
1442 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1443     }
1444    
1445     if (o_reify & EV__IOFDSET)
1446     backend_modify (EV_A_ fd, o_events, anfd->events);
1447 root 1.27 }
1448    
1449     fdchangecnt = 0;
1450     }
1451    
1452 root 1.288 /* something about the given fd changed */
1453 root 1.284 inline_size void
1454 root 1.183 fd_change (EV_P_ int fd, int flags)
1455 root 1.27 {
1456 root 1.183 unsigned char reify = anfds [fd].reify;
1457 root 1.184 anfds [fd].reify |= flags;
1458 root 1.27
1459 root 1.183 if (expect_true (!reify))
1460     {
1461     ++fdchangecnt;
1462     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1463     fdchanges [fdchangecnt - 1] = fd;
1464     }
1465 root 1.9 }
1466    
1467 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1468 root 1.379 inline_speed void ecb_cold
1469 root 1.51 fd_kill (EV_P_ int fd)
1470 root 1.41 {
1471 root 1.136 ev_io *w;
1472 root 1.41
1473 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1474 root 1.41 {
1475 root 1.51 ev_io_stop (EV_A_ w);
1476 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1477 root 1.41 }
1478     }
1479    
1480 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1481 root 1.379 inline_size int ecb_cold
1482 root 1.71 fd_valid (int fd)
1483     {
1484 root 1.103 #ifdef _WIN32
1485 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1486 root 1.71 #else
1487     return fcntl (fd, F_GETFD) != -1;
1488     #endif
1489     }
1490    
1491 root 1.19 /* called on EBADF to verify fds */
1492 root 1.379 static void noinline ecb_cold
1493 root 1.51 fd_ebadf (EV_P)
1494 root 1.19 {
1495     int fd;
1496    
1497     for (fd = 0; fd < anfdmax; ++fd)
1498 root 1.27 if (anfds [fd].events)
1499 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1500 root 1.51 fd_kill (EV_A_ fd);
1501 root 1.41 }
1502    
1503     /* called on ENOMEM in select/poll to kill some fds and retry */
1504 root 1.379 static void noinline ecb_cold
1505 root 1.51 fd_enomem (EV_P)
1506 root 1.41 {
1507 root 1.62 int fd;
1508 root 1.41
1509 root 1.62 for (fd = anfdmax; fd--; )
1510 root 1.41 if (anfds [fd].events)
1511     {
1512 root 1.51 fd_kill (EV_A_ fd);
1513 root 1.307 break;
1514 root 1.41 }
1515 root 1.19 }
1516    
1517 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1518 root 1.140 static void noinline
1519 root 1.56 fd_rearm_all (EV_P)
1520     {
1521     int fd;
1522    
1523     for (fd = 0; fd < anfdmax; ++fd)
1524     if (anfds [fd].events)
1525     {
1526     anfds [fd].events = 0;
1527 root 1.268 anfds [fd].emask = 0;
1528 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1529 root 1.56 }
1530     }
1531    
1532 root 1.336 /* used to prepare libev internal fd's */
1533     /* this is not fork-safe */
1534     inline_speed void
1535     fd_intern (int fd)
1536     {
1537     #ifdef _WIN32
1538     unsigned long arg = 1;
1539     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1540     #else
1541     fcntl (fd, F_SETFD, FD_CLOEXEC);
1542     fcntl (fd, F_SETFL, O_NONBLOCK);
1543     #endif
1544     }
1545    
1546 root 1.8 /*****************************************************************************/
1547    
1548 root 1.235 /*
1549 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1550 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1551     * the branching factor of the d-tree.
1552     */
1553    
1554     /*
1555 root 1.235 * at the moment we allow libev the luxury of two heaps,
1556     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1557     * which is more cache-efficient.
1558     * the difference is about 5% with 50000+ watchers.
1559     */
1560 root 1.241 #if EV_USE_4HEAP
1561 root 1.235
1562 root 1.237 #define DHEAP 4
1563     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1564 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1565 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1566 root 1.235
1567     /* away from the root */
1568 root 1.284 inline_speed void
1569 root 1.241 downheap (ANHE *heap, int N, int k)
1570 root 1.235 {
1571 root 1.241 ANHE he = heap [k];
1572     ANHE *E = heap + N + HEAP0;
1573 root 1.235
1574     for (;;)
1575     {
1576     ev_tstamp minat;
1577 root 1.241 ANHE *minpos;
1578 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1579 root 1.235
1580 root 1.248 /* find minimum child */
1581 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1582 root 1.235 {
1583 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1584     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1585     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1586     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1587 root 1.235 }
1588 root 1.240 else if (pos < E)
1589 root 1.235 {
1590 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1591     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1592     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1593     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1594 root 1.235 }
1595 root 1.240 else
1596     break;
1597 root 1.235
1598 root 1.241 if (ANHE_at (he) <= minat)
1599 root 1.235 break;
1600    
1601 root 1.247 heap [k] = *minpos;
1602 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1603 root 1.235
1604     k = minpos - heap;
1605     }
1606    
1607 root 1.247 heap [k] = he;
1608 root 1.241 ev_active (ANHE_w (he)) = k;
1609 root 1.235 }
1610    
1611 root 1.248 #else /* 4HEAP */
1612 root 1.235
1613     #define HEAP0 1
1614 root 1.247 #define HPARENT(k) ((k) >> 1)
1615 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1616 root 1.235
1617 root 1.248 /* away from the root */
1618 root 1.284 inline_speed void
1619 root 1.248 downheap (ANHE *heap, int N, int k)
1620 root 1.1 {
1621 root 1.241 ANHE he = heap [k];
1622 root 1.1
1623 root 1.228 for (;;)
1624 root 1.1 {
1625 root 1.248 int c = k << 1;
1626 root 1.179
1627 root 1.309 if (c >= N + HEAP0)
1628 root 1.179 break;
1629    
1630 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1631     ? 1 : 0;
1632    
1633     if (ANHE_at (he) <= ANHE_at (heap [c]))
1634     break;
1635    
1636     heap [k] = heap [c];
1637 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1638 root 1.248
1639     k = c;
1640 root 1.1 }
1641    
1642 root 1.243 heap [k] = he;
1643 root 1.248 ev_active (ANHE_w (he)) = k;
1644 root 1.1 }
1645 root 1.248 #endif
1646 root 1.1
1647 root 1.248 /* towards the root */
1648 root 1.284 inline_speed void
1649 root 1.248 upheap (ANHE *heap, int k)
1650 root 1.1 {
1651 root 1.241 ANHE he = heap [k];
1652 root 1.1
1653 root 1.179 for (;;)
1654 root 1.1 {
1655 root 1.248 int p = HPARENT (k);
1656 root 1.179
1657 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1658 root 1.179 break;
1659 root 1.1
1660 root 1.248 heap [k] = heap [p];
1661 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1662 root 1.248 k = p;
1663 root 1.1 }
1664    
1665 root 1.241 heap [k] = he;
1666     ev_active (ANHE_w (he)) = k;
1667 root 1.1 }
1668    
1669 root 1.288 /* move an element suitably so it is in a correct place */
1670 root 1.284 inline_size void
1671 root 1.241 adjustheap (ANHE *heap, int N, int k)
1672 root 1.84 {
1673 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1674 root 1.247 upheap (heap, k);
1675     else
1676     downheap (heap, N, k);
1677 root 1.84 }
1678    
1679 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1680 root 1.284 inline_size void
1681 root 1.248 reheap (ANHE *heap, int N)
1682     {
1683     int i;
1684 root 1.251
1685 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1686     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1687     for (i = 0; i < N; ++i)
1688     upheap (heap, i + HEAP0);
1689     }
1690    
1691 root 1.8 /*****************************************************************************/
1692    
1693 root 1.288 /* associate signal watchers to a signal signal */
1694 root 1.7 typedef struct
1695     {
1696 root 1.307 EV_ATOMIC_T pending;
1697 root 1.306 #if EV_MULTIPLICITY
1698     EV_P;
1699     #endif
1700 root 1.68 WL head;
1701 root 1.7 } ANSIG;
1702    
1703 root 1.306 static ANSIG signals [EV_NSIG - 1];
1704 root 1.7
1705 root 1.207 /*****************************************************************************/
1706    
1707 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1708 root 1.207
1709 root 1.379 static void noinline ecb_cold
1710 root 1.207 evpipe_init (EV_P)
1711     {
1712 root 1.288 if (!ev_is_active (&pipe_w))
1713 root 1.207 {
1714 root 1.336 # if EV_USE_EVENTFD
1715 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1716     if (evfd < 0 && errno == EINVAL)
1717     evfd = eventfd (0, 0);
1718    
1719     if (evfd >= 0)
1720 root 1.220 {
1721     evpipe [0] = -1;
1722 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1723 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1724 root 1.220 }
1725     else
1726 root 1.336 # endif
1727 root 1.220 {
1728     while (pipe (evpipe))
1729 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1730 root 1.207
1731 root 1.220 fd_intern (evpipe [0]);
1732     fd_intern (evpipe [1]);
1733 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1734 root 1.220 }
1735 root 1.207
1736 root 1.288 ev_io_start (EV_A_ &pipe_w);
1737 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1738 root 1.207 }
1739     }
1740    
1741 root 1.380 inline_speed void
1742 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1743 root 1.207 {
1744 root 1.383 if (expect_true (*flag))
1745 root 1.387 return;
1746 root 1.383
1747     *flag = 1;
1748    
1749 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1750 root 1.383
1751     pipe_write_skipped = 1;
1752 root 1.378
1753 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1754 root 1.214
1755 root 1.383 if (pipe_write_wanted)
1756     {
1757     int old_errno;
1758 root 1.378
1759 root 1.384 pipe_write_skipped = 0; /* just an optimsiation, no fence needed */
1760 root 1.220
1761 root 1.383 old_errno = errno; /* save errno because write will clobber it */
1762 root 1.380
1763 root 1.220 #if EV_USE_EVENTFD
1764 root 1.383 if (evfd >= 0)
1765     {
1766     uint64_t counter = 1;
1767     write (evfd, &counter, sizeof (uint64_t));
1768     }
1769     else
1770 root 1.220 #endif
1771 root 1.383 {
1772     /* win32 people keep sending patches that change this write() to send() */
1773     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1774     /* so when you think this write should be a send instead, please find out */
1775     /* where your send() is from - it's definitely not the microsoft send, and */
1776     /* tell me. thank you. */
1777     write (evpipe [1], &(evpipe [1]), 1);
1778     }
1779 root 1.214
1780 root 1.383 errno = old_errno;
1781 root 1.207 }
1782     }
1783    
1784 root 1.288 /* called whenever the libev signal pipe */
1785     /* got some events (signal, async) */
1786 root 1.207 static void
1787     pipecb (EV_P_ ev_io *iow, int revents)
1788     {
1789 root 1.307 int i;
1790    
1791 root 1.378 if (revents & EV_READ)
1792     {
1793 root 1.220 #if EV_USE_EVENTFD
1794 root 1.378 if (evfd >= 0)
1795     {
1796     uint64_t counter;
1797     read (evfd, &counter, sizeof (uint64_t));
1798     }
1799     else
1800 root 1.220 #endif
1801 root 1.378 {
1802     char dummy;
1803     /* see discussion in evpipe_write when you think this read should be recv in win32 */
1804     read (evpipe [0], &dummy, 1);
1805     }
1806 root 1.220 }
1807 root 1.207
1808 root 1.378 pipe_write_skipped = 0;
1809    
1810 root 1.369 #if EV_SIGNAL_ENABLE
1811 root 1.307 if (sig_pending)
1812 root 1.372 {
1813 root 1.307 sig_pending = 0;
1814 root 1.207
1815 root 1.307 for (i = EV_NSIG - 1; i--; )
1816     if (expect_false (signals [i].pending))
1817     ev_feed_signal_event (EV_A_ i + 1);
1818 root 1.207 }
1819 root 1.369 #endif
1820 root 1.207
1821 root 1.209 #if EV_ASYNC_ENABLE
1822 root 1.307 if (async_pending)
1823 root 1.207 {
1824 root 1.307 async_pending = 0;
1825 root 1.207
1826     for (i = asynccnt; i--; )
1827     if (asyncs [i]->sent)
1828     {
1829     asyncs [i]->sent = 0;
1830     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1831     }
1832     }
1833 root 1.209 #endif
1834 root 1.207 }
1835    
1836     /*****************************************************************************/
1837    
1838 root 1.366 void
1839     ev_feed_signal (int signum)
1840 root 1.7 {
1841 root 1.207 #if EV_MULTIPLICITY
1842 root 1.306 EV_P = signals [signum - 1].loop;
1843 root 1.366
1844     if (!EV_A)
1845     return;
1846 root 1.207 #endif
1847    
1848 root 1.381 if (!ev_active (&pipe_w))
1849     return;
1850 root 1.378
1851 root 1.366 signals [signum - 1].pending = 1;
1852     evpipe_write (EV_A_ &sig_pending);
1853     }
1854    
1855     static void
1856     ev_sighandler (int signum)
1857     {
1858 root 1.322 #ifdef _WIN32
1859 root 1.218 signal (signum, ev_sighandler);
1860 root 1.67 #endif
1861    
1862 root 1.366 ev_feed_signal (signum);
1863 root 1.7 }
1864    
1865 root 1.140 void noinline
1866 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1867     {
1868 root 1.80 WL w;
1869    
1870 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1871     return;
1872    
1873     --signum;
1874    
1875 root 1.79 #if EV_MULTIPLICITY
1876 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1877     /* or, likely more useful, feeding a signal nobody is waiting for */
1878 root 1.79
1879 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1880 root 1.306 return;
1881 root 1.307 #endif
1882 root 1.306
1883 root 1.307 signals [signum].pending = 0;
1884 root 1.79
1885     for (w = signals [signum].head; w; w = w->next)
1886     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1887     }
1888    
1889 root 1.303 #if EV_USE_SIGNALFD
1890     static void
1891     sigfdcb (EV_P_ ev_io *iow, int revents)
1892     {
1893 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1894 root 1.303
1895     for (;;)
1896     {
1897     ssize_t res = read (sigfd, si, sizeof (si));
1898    
1899     /* not ISO-C, as res might be -1, but works with SuS */
1900     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1901     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1902    
1903     if (res < (ssize_t)sizeof (si))
1904     break;
1905     }
1906     }
1907     #endif
1908    
1909 root 1.336 #endif
1910    
1911 root 1.8 /*****************************************************************************/
1912    
1913 root 1.336 #if EV_CHILD_ENABLE
1914 root 1.182 static WL childs [EV_PID_HASHSIZE];
1915 root 1.71
1916 root 1.136 static ev_signal childev;
1917 root 1.59
1918 root 1.206 #ifndef WIFCONTINUED
1919     # define WIFCONTINUED(status) 0
1920     #endif
1921    
1922 root 1.288 /* handle a single child status event */
1923 root 1.284 inline_speed void
1924 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1925 root 1.47 {
1926 root 1.136 ev_child *w;
1927 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1928 root 1.47
1929 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1930 root 1.206 {
1931     if ((w->pid == pid || !w->pid)
1932     && (!traced || (w->flags & 1)))
1933     {
1934 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1935 root 1.206 w->rpid = pid;
1936     w->rstatus = status;
1937     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1938     }
1939     }
1940 root 1.47 }
1941    
1942 root 1.142 #ifndef WCONTINUED
1943     # define WCONTINUED 0
1944     #endif
1945    
1946 root 1.288 /* called on sigchld etc., calls waitpid */
1947 root 1.47 static void
1948 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1949 root 1.22 {
1950     int pid, status;
1951    
1952 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1953     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1954     if (!WCONTINUED
1955     || errno != EINVAL
1956     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1957     return;
1958    
1959 root 1.216 /* make sure we are called again until all children have been reaped */
1960 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1961     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1962 root 1.47
1963 root 1.216 child_reap (EV_A_ pid, pid, status);
1964 root 1.338 if ((EV_PID_HASHSIZE) > 1)
1965 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1966 root 1.22 }
1967    
1968 root 1.45 #endif
1969    
1970 root 1.22 /*****************************************************************************/
1971    
1972 root 1.357 #if EV_USE_IOCP
1973     # include "ev_iocp.c"
1974     #endif
1975 root 1.118 #if EV_USE_PORT
1976     # include "ev_port.c"
1977     #endif
1978 root 1.44 #if EV_USE_KQUEUE
1979     # include "ev_kqueue.c"
1980     #endif
1981 root 1.29 #if EV_USE_EPOLL
1982 root 1.1 # include "ev_epoll.c"
1983     #endif
1984 root 1.59 #if EV_USE_POLL
1985 root 1.41 # include "ev_poll.c"
1986     #endif
1987 root 1.29 #if EV_USE_SELECT
1988 root 1.1 # include "ev_select.c"
1989     #endif
1990    
1991 root 1.379 int ecb_cold
1992 root 1.24 ev_version_major (void)
1993     {
1994     return EV_VERSION_MAJOR;
1995     }
1996    
1997 root 1.379 int ecb_cold
1998 root 1.24 ev_version_minor (void)
1999     {
2000     return EV_VERSION_MINOR;
2001     }
2002    
2003 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2004 root 1.379 int inline_size ecb_cold
2005 root 1.51 enable_secure (void)
2006 root 1.41 {
2007 root 1.103 #ifdef _WIN32
2008 root 1.49 return 0;
2009     #else
2010 root 1.41 return getuid () != geteuid ()
2011     || getgid () != getegid ();
2012 root 1.49 #endif
2013 root 1.41 }
2014    
2015 root 1.379 unsigned int ecb_cold
2016 root 1.129 ev_supported_backends (void)
2017     {
2018 root 1.130 unsigned int flags = 0;
2019 root 1.129
2020     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2021     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2022     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2023     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2024     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2025    
2026     return flags;
2027     }
2028    
2029 root 1.379 unsigned int ecb_cold
2030 root 1.130 ev_recommended_backends (void)
2031 root 1.1 {
2032 root 1.131 unsigned int flags = ev_supported_backends ();
2033 root 1.129
2034     #ifndef __NetBSD__
2035     /* kqueue is borked on everything but netbsd apparently */
2036     /* it usually doesn't work correctly on anything but sockets and pipes */
2037     flags &= ~EVBACKEND_KQUEUE;
2038     #endif
2039     #ifdef __APPLE__
2040 root 1.278 /* only select works correctly on that "unix-certified" platform */
2041     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2042     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2043 root 1.129 #endif
2044 root 1.342 #ifdef __FreeBSD__
2045     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2046     #endif
2047 root 1.129
2048     return flags;
2049 root 1.51 }
2050    
2051 root 1.379 unsigned int ecb_cold
2052 root 1.134 ev_embeddable_backends (void)
2053     {
2054 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2055    
2056 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2057 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2058     flags &= ~EVBACKEND_EPOLL;
2059 root 1.196
2060     return flags;
2061 root 1.134 }
2062    
2063     unsigned int
2064 root 1.130 ev_backend (EV_P)
2065     {
2066     return backend;
2067     }
2068    
2069 root 1.338 #if EV_FEATURE_API
2070 root 1.162 unsigned int
2071 root 1.340 ev_iteration (EV_P)
2072 root 1.162 {
2073     return loop_count;
2074     }
2075    
2076 root 1.294 unsigned int
2077 root 1.340 ev_depth (EV_P)
2078 root 1.294 {
2079     return loop_depth;
2080     }
2081    
2082 root 1.193 void
2083     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2084     {
2085     io_blocktime = interval;
2086     }
2087    
2088     void
2089     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2090     {
2091     timeout_blocktime = interval;
2092     }
2093    
2094 root 1.297 void
2095     ev_set_userdata (EV_P_ void *data)
2096     {
2097     userdata = data;
2098     }
2099    
2100     void *
2101     ev_userdata (EV_P)
2102     {
2103     return userdata;
2104     }
2105    
2106 root 1.379 void
2107     ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2108 root 1.297 {
2109     invoke_cb = invoke_pending_cb;
2110     }
2111    
2112 root 1.379 void
2113     ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2114 root 1.297 {
2115 root 1.298 release_cb = release;
2116     acquire_cb = acquire;
2117 root 1.297 }
2118     #endif
2119    
2120 root 1.288 /* initialise a loop structure, must be zero-initialised */
2121 root 1.379 static void noinline ecb_cold
2122 root 1.108 loop_init (EV_P_ unsigned int flags)
2123 root 1.51 {
2124 root 1.130 if (!backend)
2125 root 1.23 {
2126 root 1.366 origflags = flags;
2127    
2128 root 1.279 #if EV_USE_REALTIME
2129     if (!have_realtime)
2130     {
2131     struct timespec ts;
2132    
2133     if (!clock_gettime (CLOCK_REALTIME, &ts))
2134     have_realtime = 1;
2135     }
2136     #endif
2137    
2138 root 1.29 #if EV_USE_MONOTONIC
2139 root 1.279 if (!have_monotonic)
2140     {
2141     struct timespec ts;
2142    
2143     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2144     have_monotonic = 1;
2145     }
2146 root 1.1 #endif
2147    
2148 root 1.306 /* pid check not overridable via env */
2149     #ifndef _WIN32
2150     if (flags & EVFLAG_FORKCHECK)
2151     curpid = getpid ();
2152     #endif
2153    
2154     if (!(flags & EVFLAG_NOENV)
2155     && !enable_secure ()
2156     && getenv ("LIBEV_FLAGS"))
2157     flags = atoi (getenv ("LIBEV_FLAGS"));
2158    
2159 root 1.378 ev_rt_now = ev_time ();
2160     mn_now = get_clock ();
2161     now_floor = mn_now;
2162     rtmn_diff = ev_rt_now - mn_now;
2163 root 1.338 #if EV_FEATURE_API
2164 root 1.378 invoke_cb = ev_invoke_pending;
2165 root 1.297 #endif
2166 root 1.1
2167 root 1.378 io_blocktime = 0.;
2168     timeout_blocktime = 0.;
2169     backend = 0;
2170     backend_fd = -1;
2171     sig_pending = 0;
2172 root 1.307 #if EV_ASYNC_ENABLE
2173 root 1.378 async_pending = 0;
2174 root 1.307 #endif
2175 root 1.378 pipe_write_skipped = 0;
2176     pipe_write_wanted = 0;
2177 root 1.209 #if EV_USE_INOTIFY
2178 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2179 root 1.209 #endif
2180 root 1.303 #if EV_USE_SIGNALFD
2181 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2182 root 1.303 #endif
2183 root 1.193
2184 root 1.366 if (!(flags & EVBACKEND_MASK))
2185 root 1.129 flags |= ev_recommended_backends ();
2186 root 1.41
2187 root 1.357 #if EV_USE_IOCP
2188     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2189     #endif
2190 root 1.118 #if EV_USE_PORT
2191 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2192 root 1.118 #endif
2193 root 1.44 #if EV_USE_KQUEUE
2194 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2195 root 1.44 #endif
2196 root 1.29 #if EV_USE_EPOLL
2197 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2198 root 1.41 #endif
2199 root 1.59 #if EV_USE_POLL
2200 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2201 root 1.1 #endif
2202 root 1.29 #if EV_USE_SELECT
2203 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2204 root 1.1 #endif
2205 root 1.70
2206 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2207    
2208 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2209 root 1.288 ev_init (&pipe_w, pipecb);
2210     ev_set_priority (&pipe_w, EV_MAXPRI);
2211 root 1.336 #endif
2212 root 1.56 }
2213     }
2214    
2215 root 1.288 /* free up a loop structure */
2216 root 1.379 void ecb_cold
2217 root 1.359 ev_loop_destroy (EV_P)
2218 root 1.56 {
2219 root 1.65 int i;
2220    
2221 root 1.364 #if EV_MULTIPLICITY
2222 root 1.363 /* mimic free (0) */
2223     if (!EV_A)
2224     return;
2225 root 1.364 #endif
2226 root 1.363
2227 root 1.361 #if EV_CLEANUP_ENABLE
2228     /* queue cleanup watchers (and execute them) */
2229     if (expect_false (cleanupcnt))
2230     {
2231     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2232     EV_INVOKE_PENDING;
2233     }
2234     #endif
2235    
2236 root 1.359 #if EV_CHILD_ENABLE
2237     if (ev_is_active (&childev))
2238     {
2239     ev_ref (EV_A); /* child watcher */
2240     ev_signal_stop (EV_A_ &childev);
2241     }
2242     #endif
2243    
2244 root 1.288 if (ev_is_active (&pipe_w))
2245 root 1.207 {
2246 root 1.303 /*ev_ref (EV_A);*/
2247     /*ev_io_stop (EV_A_ &pipe_w);*/
2248 root 1.207
2249 root 1.220 #if EV_USE_EVENTFD
2250     if (evfd >= 0)
2251     close (evfd);
2252     #endif
2253    
2254     if (evpipe [0] >= 0)
2255     {
2256 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2257     EV_WIN32_CLOSE_FD (evpipe [1]);
2258 root 1.220 }
2259 root 1.207 }
2260    
2261 root 1.303 #if EV_USE_SIGNALFD
2262     if (ev_is_active (&sigfd_w))
2263 root 1.317 close (sigfd);
2264 root 1.303 #endif
2265    
2266 root 1.152 #if EV_USE_INOTIFY
2267     if (fs_fd >= 0)
2268     close (fs_fd);
2269     #endif
2270    
2271     if (backend_fd >= 0)
2272     close (backend_fd);
2273    
2274 root 1.357 #if EV_USE_IOCP
2275     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2276     #endif
2277 root 1.118 #if EV_USE_PORT
2278 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2279 root 1.118 #endif
2280 root 1.56 #if EV_USE_KQUEUE
2281 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2282 root 1.56 #endif
2283     #if EV_USE_EPOLL
2284 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2285 root 1.56 #endif
2286 root 1.59 #if EV_USE_POLL
2287 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2288 root 1.56 #endif
2289     #if EV_USE_SELECT
2290 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2291 root 1.56 #endif
2292 root 1.1
2293 root 1.65 for (i = NUMPRI; i--; )
2294 root 1.164 {
2295     array_free (pending, [i]);
2296     #if EV_IDLE_ENABLE
2297     array_free (idle, [i]);
2298     #endif
2299     }
2300 root 1.65
2301 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2302 root 1.186
2303 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2304 root 1.284 array_free (rfeed, EMPTY);
2305 root 1.164 array_free (fdchange, EMPTY);
2306     array_free (timer, EMPTY);
2307 root 1.140 #if EV_PERIODIC_ENABLE
2308 root 1.164 array_free (periodic, EMPTY);
2309 root 1.93 #endif
2310 root 1.187 #if EV_FORK_ENABLE
2311     array_free (fork, EMPTY);
2312     #endif
2313 root 1.360 #if EV_CLEANUP_ENABLE
2314     array_free (cleanup, EMPTY);
2315     #endif
2316 root 1.164 array_free (prepare, EMPTY);
2317     array_free (check, EMPTY);
2318 root 1.209 #if EV_ASYNC_ENABLE
2319     array_free (async, EMPTY);
2320     #endif
2321 root 1.65
2322 root 1.130 backend = 0;
2323 root 1.359
2324     #if EV_MULTIPLICITY
2325     if (ev_is_default_loop (EV_A))
2326     #endif
2327     ev_default_loop_ptr = 0;
2328     #if EV_MULTIPLICITY
2329     else
2330     ev_free (EV_A);
2331     #endif
2332 root 1.56 }
2333 root 1.22
2334 root 1.226 #if EV_USE_INOTIFY
2335 root 1.284 inline_size void infy_fork (EV_P);
2336 root 1.226 #endif
2337 root 1.154
2338 root 1.284 inline_size void
2339 root 1.56 loop_fork (EV_P)
2340     {
2341 root 1.118 #if EV_USE_PORT
2342 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2343 root 1.56 #endif
2344     #if EV_USE_KQUEUE
2345 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2346 root 1.45 #endif
2347 root 1.118 #if EV_USE_EPOLL
2348 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2349 root 1.118 #endif
2350 root 1.154 #if EV_USE_INOTIFY
2351     infy_fork (EV_A);
2352     #endif
2353 root 1.70
2354 root 1.288 if (ev_is_active (&pipe_w))
2355 root 1.70 {
2356 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2357 root 1.70
2358     ev_ref (EV_A);
2359 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2360 root 1.220
2361     #if EV_USE_EVENTFD
2362     if (evfd >= 0)
2363     close (evfd);
2364     #endif
2365    
2366     if (evpipe [0] >= 0)
2367     {
2368 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2369     EV_WIN32_CLOSE_FD (evpipe [1]);
2370 root 1.220 }
2371 root 1.207
2372 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2373 root 1.207 evpipe_init (EV_A);
2374 root 1.208 /* now iterate over everything, in case we missed something */
2375 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
2376 root 1.337 #endif
2377 root 1.70 }
2378    
2379     postfork = 0;
2380 root 1.1 }
2381    
2382 root 1.55 #if EV_MULTIPLICITY
2383 root 1.250
2384 root 1.379 struct ev_loop * ecb_cold
2385 root 1.108 ev_loop_new (unsigned int flags)
2386 root 1.54 {
2387 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2388 root 1.69
2389 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2390 root 1.108 loop_init (EV_A_ flags);
2391 root 1.56
2392 root 1.130 if (ev_backend (EV_A))
2393 root 1.306 return EV_A;
2394 root 1.54
2395 root 1.359 ev_free (EV_A);
2396 root 1.55 return 0;
2397 root 1.54 }
2398    
2399 root 1.297 #endif /* multiplicity */
2400 root 1.248
2401     #if EV_VERIFY
2402 root 1.379 static void noinline ecb_cold
2403 root 1.251 verify_watcher (EV_P_ W w)
2404     {
2405 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2406 root 1.251
2407     if (w->pending)
2408 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2409 root 1.251 }
2410    
2411 root 1.379 static void noinline ecb_cold
2412 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2413     {
2414     int i;
2415    
2416     for (i = HEAP0; i < N + HEAP0; ++i)
2417     {
2418 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2419     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2420     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2421 root 1.251
2422     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2423     }
2424     }
2425    
2426 root 1.379 static void noinline ecb_cold
2427 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2428 root 1.248 {
2429     while (cnt--)
2430 root 1.251 {
2431 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2432 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2433     }
2434 root 1.248 }
2435 root 1.250 #endif
2436 root 1.248
2437 root 1.338 #if EV_FEATURE_API
2438 root 1.379 void ecb_cold
2439 root 1.340 ev_verify (EV_P)
2440 root 1.248 {
2441 root 1.250 #if EV_VERIFY
2442 root 1.248 int i;
2443 root 1.251 WL w;
2444    
2445     assert (activecnt >= -1);
2446    
2447     assert (fdchangemax >= fdchangecnt);
2448     for (i = 0; i < fdchangecnt; ++i)
2449 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2450 root 1.251
2451     assert (anfdmax >= 0);
2452     for (i = 0; i < anfdmax; ++i)
2453     for (w = anfds [i].head; w; w = w->next)
2454     {
2455     verify_watcher (EV_A_ (W)w);
2456 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2457     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2458 root 1.251 }
2459    
2460     assert (timermax >= timercnt);
2461     verify_heap (EV_A_ timers, timercnt);
2462 root 1.248
2463     #if EV_PERIODIC_ENABLE
2464 root 1.251 assert (periodicmax >= periodiccnt);
2465     verify_heap (EV_A_ periodics, periodiccnt);
2466 root 1.248 #endif
2467    
2468 root 1.251 for (i = NUMPRI; i--; )
2469     {
2470     assert (pendingmax [i] >= pendingcnt [i]);
2471 root 1.248 #if EV_IDLE_ENABLE
2472 root 1.252 assert (idleall >= 0);
2473 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2474     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2475 root 1.248 #endif
2476 root 1.251 }
2477    
2478 root 1.248 #if EV_FORK_ENABLE
2479 root 1.251 assert (forkmax >= forkcnt);
2480     array_verify (EV_A_ (W *)forks, forkcnt);
2481 root 1.248 #endif
2482 root 1.251
2483 root 1.360 #if EV_CLEANUP_ENABLE
2484     assert (cleanupmax >= cleanupcnt);
2485     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2486     #endif
2487    
2488 root 1.250 #if EV_ASYNC_ENABLE
2489 root 1.251 assert (asyncmax >= asynccnt);
2490     array_verify (EV_A_ (W *)asyncs, asynccnt);
2491 root 1.250 #endif
2492 root 1.251
2493 root 1.337 #if EV_PREPARE_ENABLE
2494 root 1.251 assert (preparemax >= preparecnt);
2495     array_verify (EV_A_ (W *)prepares, preparecnt);
2496 root 1.337 #endif
2497 root 1.251
2498 root 1.337 #if EV_CHECK_ENABLE
2499 root 1.251 assert (checkmax >= checkcnt);
2500     array_verify (EV_A_ (W *)checks, checkcnt);
2501 root 1.337 #endif
2502 root 1.251
2503     # if 0
2504 root 1.336 #if EV_CHILD_ENABLE
2505 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2506 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2507 root 1.336 #endif
2508 root 1.251 # endif
2509 root 1.248 #endif
2510     }
2511 root 1.297 #endif
2512 root 1.56
2513     #if EV_MULTIPLICITY
2514 root 1.379 struct ev_loop * ecb_cold
2515 root 1.54 #else
2516     int
2517 root 1.358 #endif
2518 root 1.116 ev_default_loop (unsigned int flags)
2519 root 1.54 {
2520 root 1.116 if (!ev_default_loop_ptr)
2521 root 1.56 {
2522     #if EV_MULTIPLICITY
2523 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2524 root 1.56 #else
2525 ayin 1.117 ev_default_loop_ptr = 1;
2526 root 1.54 #endif
2527    
2528 root 1.110 loop_init (EV_A_ flags);
2529 root 1.56
2530 root 1.130 if (ev_backend (EV_A))
2531 root 1.56 {
2532 root 1.336 #if EV_CHILD_ENABLE
2533 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2534     ev_set_priority (&childev, EV_MAXPRI);
2535     ev_signal_start (EV_A_ &childev);
2536     ev_unref (EV_A); /* child watcher should not keep loop alive */
2537     #endif
2538     }
2539     else
2540 root 1.116 ev_default_loop_ptr = 0;
2541 root 1.56 }
2542 root 1.8
2543 root 1.116 return ev_default_loop_ptr;
2544 root 1.1 }
2545    
2546 root 1.24 void
2547 root 1.359 ev_loop_fork (EV_P)
2548 root 1.1 {
2549 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2550 root 1.1 }
2551    
2552 root 1.8 /*****************************************************************************/
2553    
2554 root 1.168 void
2555     ev_invoke (EV_P_ void *w, int revents)
2556     {
2557     EV_CB_INVOKE ((W)w, revents);
2558     }
2559    
2560 root 1.300 unsigned int
2561     ev_pending_count (EV_P)
2562     {
2563     int pri;
2564     unsigned int count = 0;
2565    
2566     for (pri = NUMPRI; pri--; )
2567     count += pendingcnt [pri];
2568    
2569     return count;
2570     }
2571    
2572 root 1.297 void noinline
2573 root 1.296 ev_invoke_pending (EV_P)
2574 root 1.1 {
2575 root 1.42 int pri;
2576    
2577     for (pri = NUMPRI; pri--; )
2578     while (pendingcnt [pri])
2579     {
2580     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2581 root 1.1
2582 root 1.288 p->w->pending = 0;
2583     EV_CB_INVOKE (p->w, p->events);
2584     EV_FREQUENT_CHECK;
2585 root 1.42 }
2586 root 1.1 }
2587    
2588 root 1.234 #if EV_IDLE_ENABLE
2589 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2590     /* only when higher priorities are idle" logic */
2591 root 1.284 inline_size void
2592 root 1.234 idle_reify (EV_P)
2593     {
2594     if (expect_false (idleall))
2595     {
2596     int pri;
2597    
2598     for (pri = NUMPRI; pri--; )
2599     {
2600     if (pendingcnt [pri])
2601     break;
2602    
2603     if (idlecnt [pri])
2604     {
2605     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2606     break;
2607     }
2608     }
2609     }
2610     }
2611     #endif
2612    
2613 root 1.288 /* make timers pending */
2614 root 1.284 inline_size void
2615 root 1.51 timers_reify (EV_P)
2616 root 1.1 {
2617 root 1.248 EV_FREQUENT_CHECK;
2618    
2619 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2620 root 1.1 {
2621 root 1.284 do
2622     {
2623     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2624 root 1.1
2625 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2626    
2627     /* first reschedule or stop timer */
2628     if (w->repeat)
2629     {
2630     ev_at (w) += w->repeat;
2631     if (ev_at (w) < mn_now)
2632     ev_at (w) = mn_now;
2633 root 1.61
2634 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2635 root 1.90
2636 root 1.284 ANHE_at_cache (timers [HEAP0]);
2637     downheap (timers, timercnt, HEAP0);
2638     }
2639     else
2640     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2641 root 1.243
2642 root 1.284 EV_FREQUENT_CHECK;
2643     feed_reverse (EV_A_ (W)w);
2644 root 1.12 }
2645 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2646 root 1.30
2647 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2648 root 1.12 }
2649     }
2650 root 1.4
2651 root 1.140 #if EV_PERIODIC_ENABLE
2652 root 1.370
2653 root 1.373 static void noinline
2654 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2655     {
2656 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2657     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2658    
2659     /* the above almost always errs on the low side */
2660     while (at <= ev_rt_now)
2661     {
2662     ev_tstamp nat = at + w->interval;
2663    
2664     /* when resolution fails us, we use ev_rt_now */
2665     if (expect_false (nat == at))
2666     {
2667     at = ev_rt_now;
2668     break;
2669     }
2670    
2671     at = nat;
2672     }
2673    
2674     ev_at (w) = at;
2675 root 1.370 }
2676    
2677 root 1.288 /* make periodics pending */
2678 root 1.284 inline_size void
2679 root 1.51 periodics_reify (EV_P)
2680 root 1.12 {
2681 root 1.248 EV_FREQUENT_CHECK;
2682 root 1.250
2683 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2684 root 1.12 {
2685 root 1.284 int feed_count = 0;
2686    
2687     do
2688     {
2689     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2690 root 1.1
2691 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2692 root 1.61
2693 root 1.284 /* first reschedule or stop timer */
2694     if (w->reschedule_cb)
2695     {
2696     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2697 root 1.243
2698 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2699 root 1.243
2700 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2701     downheap (periodics, periodiccnt, HEAP0);
2702     }
2703     else if (w->interval)
2704 root 1.246 {
2705 root 1.370 periodic_recalc (EV_A_ w);
2706 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2707     downheap (periodics, periodiccnt, HEAP0);
2708 root 1.246 }
2709 root 1.284 else
2710     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2711 root 1.243
2712 root 1.284 EV_FREQUENT_CHECK;
2713     feed_reverse (EV_A_ (W)w);
2714 root 1.1 }
2715 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2716 root 1.12
2717 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2718 root 1.12 }
2719     }
2720    
2721 root 1.288 /* simply recalculate all periodics */
2722 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2723 root 1.379 static void noinline ecb_cold
2724 root 1.54 periodics_reschedule (EV_P)
2725 root 1.12 {
2726     int i;
2727    
2728 root 1.13 /* adjust periodics after time jump */
2729 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2730 root 1.12 {
2731 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2732 root 1.12
2733 root 1.77 if (w->reschedule_cb)
2734 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2735 root 1.77 else if (w->interval)
2736 root 1.370 periodic_recalc (EV_A_ w);
2737 root 1.242
2738 root 1.248 ANHE_at_cache (periodics [i]);
2739 root 1.77 }
2740 root 1.12
2741 root 1.248 reheap (periodics, periodiccnt);
2742 root 1.1 }
2743 root 1.93 #endif
2744 root 1.1
2745 root 1.288 /* adjust all timers by a given offset */
2746 root 1.379 static void noinline ecb_cold
2747 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
2748     {
2749     int i;
2750    
2751     for (i = 0; i < timercnt; ++i)
2752     {
2753     ANHE *he = timers + i + HEAP0;
2754     ANHE_w (*he)->at += adjust;
2755     ANHE_at_cache (*he);
2756     }
2757     }
2758    
2759 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2760 root 1.324 /* also detect if there was a timejump, and act accordingly */
2761 root 1.284 inline_speed void
2762 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2763 root 1.4 {
2764 root 1.40 #if EV_USE_MONOTONIC
2765     if (expect_true (have_monotonic))
2766     {
2767 root 1.289 int i;
2768 root 1.178 ev_tstamp odiff = rtmn_diff;
2769    
2770     mn_now = get_clock ();
2771    
2772     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2773     /* interpolate in the meantime */
2774     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2775 root 1.40 {
2776 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2777     return;
2778     }
2779    
2780     now_floor = mn_now;
2781     ev_rt_now = ev_time ();
2782 root 1.4
2783 root 1.178 /* loop a few times, before making important decisions.
2784     * on the choice of "4": one iteration isn't enough,
2785     * in case we get preempted during the calls to
2786     * ev_time and get_clock. a second call is almost guaranteed
2787     * to succeed in that case, though. and looping a few more times
2788     * doesn't hurt either as we only do this on time-jumps or
2789     * in the unlikely event of having been preempted here.
2790     */
2791     for (i = 4; --i; )
2792     {
2793 root 1.373 ev_tstamp diff;
2794 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2795 root 1.4
2796 root 1.373 diff = odiff - rtmn_diff;
2797    
2798     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2799 root 1.178 return; /* all is well */
2800 root 1.4
2801 root 1.178 ev_rt_now = ev_time ();
2802     mn_now = get_clock ();
2803     now_floor = mn_now;
2804     }
2805 root 1.4
2806 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2807     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2808 root 1.140 # if EV_PERIODIC_ENABLE
2809 root 1.178 periodics_reschedule (EV_A);
2810 root 1.93 # endif
2811 root 1.4 }
2812     else
2813 root 1.40 #endif
2814 root 1.4 {
2815 root 1.85 ev_rt_now = ev_time ();
2816 root 1.40
2817 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2818 root 1.13 {
2819 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2820     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2821 root 1.140 #if EV_PERIODIC_ENABLE
2822 root 1.54 periodics_reschedule (EV_A);
2823 root 1.93 #endif
2824 root 1.13 }
2825 root 1.4
2826 root 1.85 mn_now = ev_rt_now;
2827 root 1.4 }
2828     }
2829    
2830 root 1.51 void
2831 root 1.353 ev_run (EV_P_ int flags)
2832 root 1.1 {
2833 root 1.338 #if EV_FEATURE_API
2834 root 1.294 ++loop_depth;
2835 root 1.297 #endif
2836 root 1.294
2837 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2838 root 1.298
2839 root 1.353 loop_done = EVBREAK_CANCEL;
2840 root 1.1
2841 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2842 root 1.158
2843 root 1.161 do
2844 root 1.9 {
2845 root 1.250 #if EV_VERIFY >= 2
2846 root 1.340 ev_verify (EV_A);
2847 root 1.250 #endif
2848    
2849 root 1.158 #ifndef _WIN32
2850     if (expect_false (curpid)) /* penalise the forking check even more */
2851     if (expect_false (getpid () != curpid))
2852     {
2853     curpid = getpid ();
2854     postfork = 1;
2855     }
2856     #endif
2857    
2858 root 1.157 #if EV_FORK_ENABLE
2859     /* we might have forked, so queue fork handlers */
2860     if (expect_false (postfork))
2861     if (forkcnt)
2862     {
2863     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2864 root 1.297 EV_INVOKE_PENDING;
2865 root 1.157 }
2866     #endif
2867 root 1.147
2868 root 1.337 #if EV_PREPARE_ENABLE
2869 root 1.170 /* queue prepare watchers (and execute them) */
2870 root 1.40 if (expect_false (preparecnt))
2871 root 1.20 {
2872 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2873 root 1.297 EV_INVOKE_PENDING;
2874 root 1.20 }
2875 root 1.337 #endif
2876 root 1.9
2877 root 1.298 if (expect_false (loop_done))
2878     break;
2879    
2880 root 1.70 /* we might have forked, so reify kernel state if necessary */
2881     if (expect_false (postfork))
2882     loop_fork (EV_A);
2883    
2884 root 1.1 /* update fd-related kernel structures */
2885 root 1.51 fd_reify (EV_A);
2886 root 1.1
2887     /* calculate blocking time */
2888 root 1.135 {
2889 root 1.193 ev_tstamp waittime = 0.;
2890     ev_tstamp sleeptime = 0.;
2891 root 1.12
2892 root 1.353 /* remember old timestamp for io_blocktime calculation */
2893     ev_tstamp prev_mn_now = mn_now;
2894 root 1.293
2895 root 1.353 /* update time to cancel out callback processing overhead */
2896     time_update (EV_A_ 1e100);
2897 root 1.135
2898 root 1.378 /* from now on, we want a pipe-wake-up */
2899     pipe_write_wanted = 1;
2900    
2901 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2902 root 1.383
2903 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2904 root 1.353 {
2905 root 1.287 waittime = MAX_BLOCKTIME;
2906    
2907 root 1.135 if (timercnt)
2908     {
2909 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2910 root 1.193 if (waittime > to) waittime = to;
2911 root 1.135 }
2912 root 1.4
2913 root 1.140 #if EV_PERIODIC_ENABLE
2914 root 1.135 if (periodiccnt)
2915     {
2916 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2917 root 1.193 if (waittime > to) waittime = to;
2918 root 1.135 }
2919 root 1.93 #endif
2920 root 1.4
2921 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2922 root 1.193 if (expect_false (waittime < timeout_blocktime))
2923     waittime = timeout_blocktime;
2924    
2925 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
2926     /* to pass a minimum nonzero value to the backend */
2927     if (expect_false (waittime < backend_mintime))
2928     waittime = backend_mintime;
2929    
2930 root 1.293 /* extra check because io_blocktime is commonly 0 */
2931     if (expect_false (io_blocktime))
2932     {
2933     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2934 root 1.193
2935 root 1.376 if (sleeptime > waittime - backend_mintime)
2936     sleeptime = waittime - backend_mintime;
2937 root 1.193
2938 root 1.293 if (expect_true (sleeptime > 0.))
2939     {
2940     ev_sleep (sleeptime);
2941     waittime -= sleeptime;
2942     }
2943 root 1.193 }
2944 root 1.135 }
2945 root 1.1
2946 root 1.338 #if EV_FEATURE_API
2947 root 1.162 ++loop_count;
2948 root 1.297 #endif
2949 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2950 root 1.193 backend_poll (EV_A_ waittime);
2951 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2952 root 1.178
2953 root 1.384 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2954 root 1.378
2955     if (pipe_write_skipped)
2956     {
2957     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2958     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2959     }
2960    
2961    
2962 root 1.178 /* update ev_rt_now, do magic */
2963 root 1.193 time_update (EV_A_ waittime + sleeptime);
2964 root 1.135 }
2965 root 1.1
2966 root 1.9 /* queue pending timers and reschedule them */
2967 root 1.51 timers_reify (EV_A); /* relative timers called last */
2968 root 1.140 #if EV_PERIODIC_ENABLE
2969 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2970 root 1.93 #endif
2971 root 1.1
2972 root 1.164 #if EV_IDLE_ENABLE
2973 root 1.137 /* queue idle watchers unless other events are pending */
2974 root 1.164 idle_reify (EV_A);
2975     #endif
2976 root 1.9
2977 root 1.337 #if EV_CHECK_ENABLE
2978 root 1.20 /* queue check watchers, to be executed first */
2979 root 1.123 if (expect_false (checkcnt))
2980 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2981 root 1.337 #endif
2982 root 1.9
2983 root 1.297 EV_INVOKE_PENDING;
2984 root 1.1 }
2985 root 1.219 while (expect_true (
2986     activecnt
2987     && !loop_done
2988 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2989 root 1.219 ));
2990 root 1.13
2991 root 1.353 if (loop_done == EVBREAK_ONE)
2992     loop_done = EVBREAK_CANCEL;
2993 root 1.294
2994 root 1.338 #if EV_FEATURE_API
2995 root 1.294 --loop_depth;
2996 root 1.297 #endif
2997 root 1.51 }
2998    
2999     void
3000 root 1.353 ev_break (EV_P_ int how)
3001 root 1.51 {
3002     loop_done = how;
3003 root 1.1 }
3004    
3005 root 1.285 void
3006     ev_ref (EV_P)
3007     {
3008     ++activecnt;
3009     }
3010    
3011     void
3012     ev_unref (EV_P)
3013     {
3014     --activecnt;
3015     }
3016    
3017     void
3018     ev_now_update (EV_P)
3019     {
3020     time_update (EV_A_ 1e100);
3021     }
3022    
3023     void
3024     ev_suspend (EV_P)
3025     {
3026     ev_now_update (EV_A);
3027     }
3028    
3029     void
3030     ev_resume (EV_P)
3031     {
3032     ev_tstamp mn_prev = mn_now;
3033    
3034     ev_now_update (EV_A);
3035     timers_reschedule (EV_A_ mn_now - mn_prev);
3036 root 1.286 #if EV_PERIODIC_ENABLE
3037 root 1.288 /* TODO: really do this? */
3038 root 1.285 periodics_reschedule (EV_A);
3039 root 1.286 #endif
3040 root 1.285 }
3041    
3042 root 1.8 /*****************************************************************************/
3043 root 1.288 /* singly-linked list management, used when the expected list length is short */
3044 root 1.8
3045 root 1.284 inline_size void
3046 root 1.10 wlist_add (WL *head, WL elem)
3047 root 1.1 {
3048     elem->next = *head;
3049     *head = elem;
3050     }
3051    
3052 root 1.284 inline_size void
3053 root 1.10 wlist_del (WL *head, WL elem)
3054 root 1.1 {
3055     while (*head)
3056     {
3057 root 1.307 if (expect_true (*head == elem))
3058 root 1.1 {
3059     *head = elem->next;
3060 root 1.307 break;
3061 root 1.1 }
3062    
3063     head = &(*head)->next;
3064     }
3065     }
3066    
3067 root 1.288 /* internal, faster, version of ev_clear_pending */
3068 root 1.284 inline_speed void
3069 root 1.166 clear_pending (EV_P_ W w)
3070 root 1.16 {
3071     if (w->pending)
3072     {
3073 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3074 root 1.16 w->pending = 0;
3075     }
3076     }
3077    
3078 root 1.167 int
3079     ev_clear_pending (EV_P_ void *w)
3080 root 1.166 {
3081     W w_ = (W)w;
3082     int pending = w_->pending;
3083    
3084 root 1.172 if (expect_true (pending))
3085     {
3086     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3087 root 1.288 p->w = (W)&pending_w;
3088 root 1.172 w_->pending = 0;
3089     return p->events;
3090     }
3091     else
3092 root 1.167 return 0;
3093 root 1.166 }
3094    
3095 root 1.284 inline_size void
3096 root 1.164 pri_adjust (EV_P_ W w)
3097     {
3098 root 1.295 int pri = ev_priority (w);
3099 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3100     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3101 root 1.295 ev_set_priority (w, pri);
3102 root 1.164 }
3103    
3104 root 1.284 inline_speed void
3105 root 1.51 ev_start (EV_P_ W w, int active)
3106 root 1.1 {
3107 root 1.164 pri_adjust (EV_A_ w);
3108 root 1.1 w->active = active;
3109 root 1.51 ev_ref (EV_A);
3110 root 1.1 }
3111    
3112 root 1.284 inline_size void
3113 root 1.51 ev_stop (EV_P_ W w)
3114 root 1.1 {
3115 root 1.51 ev_unref (EV_A);
3116 root 1.1 w->active = 0;
3117     }
3118    
3119 root 1.8 /*****************************************************************************/
3120    
3121 root 1.171 void noinline
3122 root 1.136 ev_io_start (EV_P_ ev_io *w)
3123 root 1.1 {
3124 root 1.37 int fd = w->fd;
3125    
3126 root 1.123 if (expect_false (ev_is_active (w)))
3127 root 1.1 return;
3128    
3129 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3130 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3131 root 1.33
3132 root 1.248 EV_FREQUENT_CHECK;
3133    
3134 root 1.51 ev_start (EV_A_ (W)w, 1);
3135 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3136 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3137 root 1.1
3138 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3139 root 1.281 w->events &= ~EV__IOFDSET;
3140 root 1.248
3141     EV_FREQUENT_CHECK;
3142 root 1.1 }
3143    
3144 root 1.171 void noinline
3145 root 1.136 ev_io_stop (EV_P_ ev_io *w)
3146 root 1.1 {
3147 root 1.166 clear_pending (EV_A_ (W)w);
3148 root 1.123 if (expect_false (!ev_is_active (w)))
3149 root 1.1 return;
3150    
3151 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3152 root 1.89
3153 root 1.248 EV_FREQUENT_CHECK;
3154    
3155 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3156 root 1.51 ev_stop (EV_A_ (W)w);
3157 root 1.1
3158 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3159 root 1.248
3160     EV_FREQUENT_CHECK;
3161 root 1.1 }
3162    
3163 root 1.171 void noinline
3164 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
3165 root 1.1 {
3166 root 1.123 if (expect_false (ev_is_active (w)))
3167 root 1.1 return;
3168    
3169 root 1.228 ev_at (w) += mn_now;
3170 root 1.12
3171 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3172 root 1.13
3173 root 1.248 EV_FREQUENT_CHECK;
3174    
3175     ++timercnt;
3176     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3177 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3178     ANHE_w (timers [ev_active (w)]) = (WT)w;
3179 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3180 root 1.235 upheap (timers, ev_active (w));
3181 root 1.62
3182 root 1.248 EV_FREQUENT_CHECK;
3183    
3184 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3185 root 1.12 }
3186    
3187 root 1.171 void noinline
3188 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
3189 root 1.12 {
3190 root 1.166 clear_pending (EV_A_ (W)w);
3191 root 1.123 if (expect_false (!ev_is_active (w)))
3192 root 1.12 return;
3193    
3194 root 1.248 EV_FREQUENT_CHECK;
3195    
3196 root 1.230 {
3197     int active = ev_active (w);
3198 root 1.62
3199 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3200 root 1.151
3201 root 1.248 --timercnt;
3202    
3203     if (expect_true (active < timercnt + HEAP0))
3204 root 1.151 {
3205 root 1.248 timers [active] = timers [timercnt + HEAP0];
3206 root 1.181 adjustheap (timers, timercnt, active);
3207 root 1.151 }
3208 root 1.248 }
3209 root 1.228
3210     ev_at (w) -= mn_now;
3211 root 1.14
3212 root 1.51 ev_stop (EV_A_ (W)w);
3213 root 1.328
3214     EV_FREQUENT_CHECK;
3215 root 1.12 }
3216 root 1.4
3217 root 1.171 void noinline
3218 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
3219 root 1.14 {
3220 root 1.248 EV_FREQUENT_CHECK;
3221    
3222 root 1.14 if (ev_is_active (w))
3223     {
3224     if (w->repeat)
3225 root 1.99 {
3226 root 1.228 ev_at (w) = mn_now + w->repeat;
3227 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3228 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3229 root 1.99 }
3230 root 1.14 else
3231 root 1.51 ev_timer_stop (EV_A_ w);
3232 root 1.14 }
3233     else if (w->repeat)
3234 root 1.112 {
3235 root 1.229 ev_at (w) = w->repeat;
3236 root 1.112 ev_timer_start (EV_A_ w);
3237     }
3238 root 1.248
3239     EV_FREQUENT_CHECK;
3240 root 1.14 }
3241    
3242 root 1.301 ev_tstamp
3243     ev_timer_remaining (EV_P_ ev_timer *w)
3244     {
3245     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3246     }
3247    
3248 root 1.140 #if EV_PERIODIC_ENABLE
3249 root 1.171 void noinline
3250 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
3251 root 1.12 {
3252 root 1.123 if (expect_false (ev_is_active (w)))
3253 root 1.12 return;
3254 root 1.1
3255 root 1.77 if (w->reschedule_cb)
3256 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3257 root 1.77 else if (w->interval)
3258     {
3259 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3260 root 1.370 periodic_recalc (EV_A_ w);
3261 root 1.77 }
3262 root 1.173 else
3263 root 1.228 ev_at (w) = w->offset;
3264 root 1.12
3265 root 1.248 EV_FREQUENT_CHECK;
3266    
3267     ++periodiccnt;
3268     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3269 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3270     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3271 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3272 root 1.235 upheap (periodics, ev_active (w));
3273 root 1.62
3274 root 1.248 EV_FREQUENT_CHECK;
3275    
3276 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3277 root 1.1 }
3278    
3279 root 1.171 void noinline
3280 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
3281 root 1.1 {
3282 root 1.166 clear_pending (EV_A_ (W)w);
3283 root 1.123 if (expect_false (!ev_is_active (w)))
3284 root 1.1 return;
3285    
3286 root 1.248 EV_FREQUENT_CHECK;
3287    
3288 root 1.230 {
3289     int active = ev_active (w);
3290 root 1.62
3291 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3292 root 1.151
3293 root 1.248 --periodiccnt;
3294    
3295     if (expect_true (active < periodiccnt + HEAP0))
3296 root 1.151 {
3297 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3298 root 1.181 adjustheap (periodics, periodiccnt, active);
3299 root 1.151 }
3300 root 1.248 }
3301 root 1.228
3302 root 1.328 ev_stop (EV_A_ (W)w);
3303    
3304 root 1.248 EV_FREQUENT_CHECK;
3305 root 1.1 }
3306    
3307 root 1.171 void noinline
3308 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
3309 root 1.77 {
3310 root 1.84 /* TODO: use adjustheap and recalculation */
3311 root 1.77 ev_periodic_stop (EV_A_ w);
3312     ev_periodic_start (EV_A_ w);
3313     }
3314 root 1.93 #endif
3315 root 1.77
3316 root 1.56 #ifndef SA_RESTART
3317     # define SA_RESTART 0
3318     #endif
3319    
3320 root 1.336 #if EV_SIGNAL_ENABLE
3321    
3322 root 1.171 void noinline
3323 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
3324 root 1.56 {
3325 root 1.123 if (expect_false (ev_is_active (w)))
3326 root 1.56 return;
3327    
3328 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3329    
3330     #if EV_MULTIPLICITY
3331 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3332 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3333    
3334     signals [w->signum - 1].loop = EV_A;
3335     #endif
3336 root 1.56
3337 root 1.303 EV_FREQUENT_CHECK;
3338    
3339     #if EV_USE_SIGNALFD
3340     if (sigfd == -2)
3341     {
3342     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3343     if (sigfd < 0 && errno == EINVAL)
3344     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3345    
3346     if (sigfd >= 0)
3347     {
3348     fd_intern (sigfd); /* doing it twice will not hurt */
3349    
3350     sigemptyset (&sigfd_set);
3351    
3352     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3353     ev_set_priority (&sigfd_w, EV_MAXPRI);
3354     ev_io_start (EV_A_ &sigfd_w);
3355     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3356     }
3357     }
3358    
3359     if (sigfd >= 0)
3360     {
3361     /* TODO: check .head */
3362     sigaddset (&sigfd_set, w->signum);
3363     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3364 root 1.207
3365 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3366     }
3367 root 1.180 #endif
3368    
3369 root 1.56 ev_start (EV_A_ (W)w, 1);
3370 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3371 root 1.56
3372 root 1.63 if (!((WL)w)->next)
3373 root 1.304 # if EV_USE_SIGNALFD
3374 root 1.306 if (sigfd < 0) /*TODO*/
3375 root 1.304 # endif
3376 root 1.306 {
3377 root 1.322 # ifdef _WIN32
3378 root 1.317 evpipe_init (EV_A);
3379    
3380 root 1.306 signal (w->signum, ev_sighandler);
3381     # else
3382     struct sigaction sa;
3383    
3384     evpipe_init (EV_A);
3385    
3386     sa.sa_handler = ev_sighandler;
3387     sigfillset (&sa.sa_mask);
3388     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3389     sigaction (w->signum, &sa, 0);
3390    
3391 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3392     {
3393     sigemptyset (&sa.sa_mask);
3394     sigaddset (&sa.sa_mask, w->signum);
3395     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3396     }
3397 root 1.67 #endif
3398 root 1.306 }
3399 root 1.248
3400     EV_FREQUENT_CHECK;
3401 root 1.56 }
3402    
3403 root 1.171 void noinline
3404 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
3405 root 1.56 {
3406 root 1.166 clear_pending (EV_A_ (W)w);
3407 root 1.123 if (expect_false (!ev_is_active (w)))
3408 root 1.56 return;
3409    
3410 root 1.248 EV_FREQUENT_CHECK;
3411    
3412 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3413 root 1.56 ev_stop (EV_A_ (W)w);
3414    
3415     if (!signals [w->signum - 1].head)
3416 root 1.306 {
3417 root 1.307 #if EV_MULTIPLICITY
3418 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3419 root 1.307 #endif
3420     #if EV_USE_SIGNALFD
3421 root 1.306 if (sigfd >= 0)
3422     {
3423 root 1.321 sigset_t ss;
3424    
3425     sigemptyset (&ss);
3426     sigaddset (&ss, w->signum);
3427 root 1.306 sigdelset (&sigfd_set, w->signum);
3428 root 1.321
3429 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3430 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3431 root 1.306 }
3432     else
3433 root 1.307 #endif
3434 root 1.306 signal (w->signum, SIG_DFL);
3435     }
3436 root 1.248
3437     EV_FREQUENT_CHECK;
3438 root 1.56 }
3439    
3440 root 1.336 #endif
3441    
3442     #if EV_CHILD_ENABLE
3443    
3444 root 1.28 void
3445 root 1.136 ev_child_start (EV_P_ ev_child *w)
3446 root 1.22 {
3447 root 1.56 #if EV_MULTIPLICITY
3448 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3449 root 1.56 #endif
3450 root 1.123 if (expect_false (ev_is_active (w)))
3451 root 1.22 return;
3452    
3453 root 1.248 EV_FREQUENT_CHECK;
3454    
3455 root 1.51 ev_start (EV_A_ (W)w, 1);
3456 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3457 root 1.248
3458     EV_FREQUENT_CHECK;
3459 root 1.22 }
3460    
3461 root 1.28 void
3462 root 1.136 ev_child_stop (EV_P_ ev_child *w)
3463 root 1.22 {
3464 root 1.166 clear_pending (EV_A_ (W)w);
3465 root 1.123 if (expect_false (!ev_is_active (w)))
3466 root 1.22 return;
3467    
3468 root 1.248 EV_FREQUENT_CHECK;
3469    
3470 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3471 root 1.51 ev_stop (EV_A_ (W)w);
3472 root 1.248
3473     EV_FREQUENT_CHECK;
3474 root 1.22 }
3475    
3476 root 1.336 #endif
3477    
3478 root 1.140 #if EV_STAT_ENABLE
3479    
3480     # ifdef _WIN32
3481 root 1.146 # undef lstat
3482     # define lstat(a,b) _stati64 (a,b)
3483 root 1.140 # endif
3484    
3485 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3486     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3487     #define MIN_STAT_INTERVAL 0.1074891
3488 root 1.143
3489 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3490 root 1.152
3491     #if EV_USE_INOTIFY
3492 root 1.326
3493     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3494     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3495 root 1.152
3496     static void noinline
3497     infy_add (EV_P_ ev_stat *w)
3498     {
3499     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3500    
3501 root 1.318 if (w->wd >= 0)
3502 root 1.152 {
3503 root 1.318 struct statfs sfs;
3504    
3505     /* now local changes will be tracked by inotify, but remote changes won't */
3506     /* unless the filesystem is known to be local, we therefore still poll */
3507     /* also do poll on <2.6.25, but with normal frequency */
3508    
3509     if (!fs_2625)
3510     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3511     else if (!statfs (w->path, &sfs)
3512     && (sfs.f_type == 0x1373 /* devfs */
3513     || sfs.f_type == 0xEF53 /* ext2/3 */
3514     || sfs.f_type == 0x3153464a /* jfs */
3515     || sfs.f_type == 0x52654973 /* reiser3 */
3516     || sfs.f_type == 0x01021994 /* tempfs */
3517     || sfs.f_type == 0x58465342 /* xfs */))
3518     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3519     else
3520     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3521     }
3522     else
3523     {
3524     /* can't use inotify, continue to stat */
3525 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3526 root 1.152
3527 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3528 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3529 root 1.233 /* but an efficiency issue only */
3530 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3531 root 1.152 {
3532 root 1.153 char path [4096];
3533 root 1.152 strcpy (path, w->path);
3534    
3535     do
3536     {
3537     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3538     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3539    
3540     char *pend = strrchr (path, '/');
3541    
3542 root 1.275 if (!pend || pend == path)
3543     break;
3544 root 1.152
3545     *pend = 0;
3546 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3547 root 1.372 }
3548 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3549     }
3550     }
3551 root 1.275
3552     if (w->wd >= 0)
3553 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3554 root 1.152
3555 root 1.318 /* now re-arm timer, if required */
3556     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3557     ev_timer_again (EV_A_ &w->timer);
3558     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3559 root 1.152 }
3560    
3561     static void noinline
3562     infy_del (EV_P_ ev_stat *w)
3563     {
3564     int slot;
3565     int wd = w->wd;
3566    
3567     if (wd < 0)
3568     return;
3569    
3570     w->wd = -2;
3571 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3572 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3573    
3574     /* remove this watcher, if others are watching it, they will rearm */
3575     inotify_rm_watch (fs_fd, wd);
3576     }
3577    
3578     static void noinline
3579     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3580     {
3581     if (slot < 0)
3582 root 1.264 /* overflow, need to check for all hash slots */
3583 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3584 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3585     else
3586     {
3587     WL w_;
3588    
3589 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3590 root 1.152 {
3591     ev_stat *w = (ev_stat *)w_;
3592     w_ = w_->next; /* lets us remove this watcher and all before it */
3593    
3594     if (w->wd == wd || wd == -1)
3595     {
3596     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3597     {
3598 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3599 root 1.152 w->wd = -1;
3600     infy_add (EV_A_ w); /* re-add, no matter what */
3601     }
3602    
3603 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3604 root 1.152 }
3605     }
3606     }
3607     }
3608    
3609     static void
3610     infy_cb (EV_P_ ev_io *w, int revents)
3611     {
3612     char buf [EV_INOTIFY_BUFSIZE];
3613     int ofs;
3614     int len = read (fs_fd, buf, sizeof (buf));
3615    
3616 root 1.326 for (ofs = 0; ofs < len; )
3617     {
3618     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3619     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3620     ofs += sizeof (struct inotify_event) + ev->len;
3621     }
3622 root 1.152 }
3623    
3624 root 1.379 inline_size void ecb_cold
3625 root 1.330 ev_check_2625 (EV_P)
3626     {
3627     /* kernels < 2.6.25 are borked
3628     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3629     */
3630     if (ev_linux_version () < 0x020619)
3631 root 1.273 return;
3632 root 1.264
3633 root 1.273 fs_2625 = 1;
3634     }
3635 root 1.264
3636 root 1.315 inline_size int
3637     infy_newfd (void)
3638     {
3639     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3640     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3641     if (fd >= 0)
3642     return fd;
3643     #endif
3644     return inotify_init ();
3645     }
3646    
3647 root 1.284 inline_size void
3648 root 1.273 infy_init (EV_P)
3649     {
3650     if (fs_fd != -2)
3651     return;
3652 root 1.264
3653 root 1.273 fs_fd = -1;
3654 root 1.264
3655 root 1.330 ev_check_2625 (EV_A);
3656 root 1.264
3657 root 1.315 fs_fd = infy_newfd ();
3658 root 1.152
3659     if (fs_fd >= 0)
3660     {
3661 root 1.315 fd_intern (fs_fd);
3662 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3663     ev_set_priority (&fs_w, EV_MAXPRI);
3664     ev_io_start (EV_A_ &fs_w);
3665 root 1.317 ev_unref (EV_A);
3666 root 1.152 }
3667     }
3668    
3669 root 1.284 inline_size void
3670 root 1.154 infy_fork (EV_P)
3671     {
3672     int slot;
3673    
3674     if (fs_fd < 0)
3675     return;
3676    
3677 root 1.317 ev_ref (EV_A);
3678 root 1.315 ev_io_stop (EV_A_ &fs_w);
3679 root 1.154 close (fs_fd);
3680 root 1.315 fs_fd = infy_newfd ();
3681    
3682     if (fs_fd >= 0)
3683     {
3684     fd_intern (fs_fd);
3685     ev_io_set (&fs_w, fs_fd, EV_READ);
3686     ev_io_start (EV_A_ &fs_w);
3687 root 1.317 ev_unref (EV_A);
3688 root 1.315 }
3689 root 1.154
3690 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3691 root 1.154 {
3692     WL w_ = fs_hash [slot].head;
3693     fs_hash [slot].head = 0;
3694    
3695     while (w_)
3696     {
3697     ev_stat *w = (ev_stat *)w_;
3698     w_ = w_->next; /* lets us add this watcher */
3699    
3700     w->wd = -1;
3701    
3702     if (fs_fd >= 0)
3703     infy_add (EV_A_ w); /* re-add, no matter what */
3704     else
3705 root 1.318 {
3706     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3707     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3708     ev_timer_again (EV_A_ &w->timer);
3709     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3710     }
3711 root 1.154 }
3712     }
3713     }
3714    
3715 root 1.152 #endif
3716    
3717 root 1.255 #ifdef _WIN32
3718     # define EV_LSTAT(p,b) _stati64 (p, b)
3719     #else
3720     # define EV_LSTAT(p,b) lstat (p, b)
3721     #endif
3722    
3723 root 1.140 void
3724     ev_stat_stat (EV_P_ ev_stat *w)
3725     {
3726     if (lstat (w->path, &w->attr) < 0)
3727     w->attr.st_nlink = 0;
3728     else if (!w->attr.st_nlink)
3729     w->attr.st_nlink = 1;
3730     }
3731    
3732 root 1.157 static void noinline
3733 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3734     {
3735     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3736    
3737 root 1.320 ev_statdata prev = w->attr;
3738 root 1.140 ev_stat_stat (EV_A_ w);
3739    
3740 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3741     if (
3742 root 1.320 prev.st_dev != w->attr.st_dev
3743     || prev.st_ino != w->attr.st_ino
3744     || prev.st_mode != w->attr.st_mode
3745     || prev.st_nlink != w->attr.st_nlink
3746     || prev.st_uid != w->attr.st_uid
3747     || prev.st_gid != w->attr.st_gid
3748     || prev.st_rdev != w->attr.st_rdev
3749     || prev.st_size != w->attr.st_size
3750     || prev.st_atime != w->attr.st_atime
3751     || prev.st_mtime != w->attr.st_mtime
3752     || prev.st_ctime != w->attr.st_ctime
3753 root 1.156 ) {
3754 root 1.320 /* we only update w->prev on actual differences */
3755     /* in case we test more often than invoke the callback, */
3756     /* to ensure that prev is always different to attr */
3757     w->prev = prev;
3758    
3759 root 1.152 #if EV_USE_INOTIFY
3760 root 1.264 if (fs_fd >= 0)
3761     {
3762     infy_del (EV_A_ w);
3763     infy_add (EV_A_ w);
3764     ev_stat_stat (EV_A_ w); /* avoid race... */
3765     }
3766 root 1.152 #endif
3767    
3768     ev_feed_event (EV_A_ w, EV_STAT);
3769     }
3770 root 1.140 }
3771    
3772     void
3773     ev_stat_start (EV_P_ ev_stat *w)
3774     {
3775     if (expect_false (ev_is_active (w)))
3776     return;
3777    
3778     ev_stat_stat (EV_A_ w);
3779    
3780 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3781     w->interval = MIN_STAT_INTERVAL;
3782 root 1.143
3783 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3784 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3785 root 1.152
3786     #if EV_USE_INOTIFY
3787     infy_init (EV_A);
3788    
3789     if (fs_fd >= 0)
3790     infy_add (EV_A_ w);
3791     else
3792     #endif
3793 root 1.318 {
3794     ev_timer_again (EV_A_ &w->timer);
3795     ev_unref (EV_A);
3796     }
3797 root 1.140
3798     ev_start (EV_A_ (W)w, 1);
3799 root 1.248
3800     EV_FREQUENT_CHECK;
3801 root 1.140 }
3802    
3803     void
3804     ev_stat_stop (EV_P_ ev_stat *w)
3805     {
3806 root 1.166 clear_pending (EV_A_ (W)w);
3807 root 1.140 if (expect_false (!ev_is_active (w)))
3808     return;
3809    
3810 root 1.248 EV_FREQUENT_CHECK;
3811    
3812 root 1.152 #if EV_USE_INOTIFY
3813     infy_del (EV_A_ w);
3814     #endif
3815 root 1.318
3816     if (ev_is_active (&w->timer))
3817     {
3818     ev_ref (EV_A);
3819     ev_timer_stop (EV_A_ &w->timer);
3820     }
3821 root 1.140
3822 root 1.134 ev_stop (EV_A_ (W)w);
3823 root 1.248
3824     EV_FREQUENT_CHECK;
3825 root 1.134 }
3826     #endif
3827    
3828 root 1.164 #if EV_IDLE_ENABLE
3829 root 1.144 void
3830     ev_idle_start (EV_P_ ev_idle *w)
3831     {
3832     if (expect_false (ev_is_active (w)))
3833     return;
3834    
3835 root 1.164 pri_adjust (EV_A_ (W)w);
3836    
3837 root 1.248 EV_FREQUENT_CHECK;
3838    
3839 root 1.164 {
3840     int active = ++idlecnt [ABSPRI (w)];
3841    
3842     ++idleall;
3843     ev_start (EV_A_ (W)w, active);
3844    
3845     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3846     idles [ABSPRI (w)][active - 1] = w;
3847     }
3848 root 1.248
3849     EV_FREQUENT_CHECK;
3850 root 1.144 }
3851    
3852     void
3853     ev_idle_stop (EV_P_ ev_idle *w)
3854     {
3855 root 1.166 clear_pending (EV_A_ (W)w);
3856 root 1.144 if (expect_false (!ev_is_active (w)))
3857     return;
3858    
3859 root 1.248 EV_FREQUENT_CHECK;
3860    
3861 root 1.144 {
3862 root 1.230 int active = ev_active (w);
3863 root 1.164
3864     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3865 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3866 root 1.164
3867     ev_stop (EV_A_ (W)w);
3868     --idleall;
3869 root 1.144 }
3870 root 1.248
3871     EV_FREQUENT_CHECK;
3872 root 1.144 }
3873 root 1.164 #endif
3874 root 1.144
3875 root 1.337 #if EV_PREPARE_ENABLE
3876 root 1.144 void
3877     ev_prepare_start (EV_P_ ev_prepare *w)
3878     {
3879     if (expect_false (ev_is_active (w)))
3880     return;
3881    
3882 root 1.248 EV_FREQUENT_CHECK;
3883    
3884 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3885     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3886     prepares [preparecnt - 1] = w;
3887 root 1.248
3888     EV_FREQUENT_CHECK;
3889 root 1.144 }
3890    
3891     void
3892     ev_prepare_stop (EV_P_ ev_prepare *w)
3893     {
3894 root 1.166 clear_pending (EV_A_ (W)w);
3895 root 1.144 if (expect_false (!ev_is_active (w)))
3896     return;
3897    
3898 root 1.248 EV_FREQUENT_CHECK;
3899    
3900 root 1.144 {
3901 root 1.230 int active = ev_active (w);
3902    
3903 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3904 root 1.230 ev_active (prepares [active - 1]) = active;
3905 root 1.144 }
3906    
3907     ev_stop (EV_A_ (W)w);
3908 root 1.248
3909     EV_FREQUENT_CHECK;
3910 root 1.144 }
3911 root 1.337 #endif
3912 root 1.144
3913 root 1.337 #if EV_CHECK_ENABLE
3914 root 1.144 void
3915     ev_check_start (EV_P_ ev_check *w)
3916     {
3917     if (expect_false (ev_is_active (w)))
3918     return;
3919    
3920 root 1.248 EV_FREQUENT_CHECK;
3921    
3922 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3923     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3924     checks [checkcnt - 1] = w;
3925 root 1.248
3926     EV_FREQUENT_CHECK;
3927 root 1.144 }
3928    
3929     void
3930     ev_check_stop (EV_P_ ev_check *w)
3931     {
3932 root 1.166 clear_pending (EV_A_ (W)w);
3933 root 1.144 if (expect_false (!ev_is_active (w)))
3934     return;
3935    
3936 root 1.248 EV_FREQUENT_CHECK;
3937    
3938 root 1.144 {
3939 root 1.230 int active = ev_active (w);
3940    
3941 root 1.144 checks [active - 1] = checks [--checkcnt];
3942 root 1.230 ev_active (checks [active - 1]) = active;
3943 root 1.144 }
3944    
3945     ev_stop (EV_A_ (W)w);
3946 root 1.248
3947     EV_FREQUENT_CHECK;
3948 root 1.144 }
3949 root 1.337 #endif
3950 root 1.144
3951     #if EV_EMBED_ENABLE
3952     void noinline
3953     ev_embed_sweep (EV_P_ ev_embed *w)
3954     {
3955 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3956 root 1.144 }
3957    
3958     static void
3959 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3960 root 1.144 {
3961     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3962    
3963     if (ev_cb (w))
3964     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3965     else
3966 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3967 root 1.144 }
3968    
3969 root 1.189 static void
3970     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3971     {
3972     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3973    
3974 root 1.195 {
3975 root 1.306 EV_P = w->other;
3976 root 1.195
3977     while (fdchangecnt)
3978     {
3979     fd_reify (EV_A);
3980 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3981 root 1.195 }
3982     }
3983     }
3984    
3985 root 1.261 static void
3986     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3987     {
3988     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3989    
3990 root 1.277 ev_embed_stop (EV_A_ w);
3991    
3992 root 1.261 {
3993 root 1.306 EV_P = w->other;
3994 root 1.261
3995     ev_loop_fork (EV_A);
3996 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
3997 root 1.261 }
3998 root 1.277
3999     ev_embed_start (EV_A_ w);
4000 root 1.261 }
4001    
4002 root 1.195 #if 0
4003     static void
4004     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4005     {
4006     ev_idle_stop (EV_A_ idle);
4007 root 1.189 }
4008 root 1.195 #endif
4009 root 1.189
4010 root 1.144 void
4011     ev_embed_start (EV_P_ ev_embed *w)
4012     {
4013     if (expect_false (ev_is_active (w)))
4014     return;
4015    
4016     {
4017 root 1.306 EV_P = w->other;
4018 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4019 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4020 root 1.144 }
4021    
4022 root 1.248 EV_FREQUENT_CHECK;
4023    
4024 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4025     ev_io_start (EV_A_ &w->io);
4026    
4027 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4028     ev_set_priority (&w->prepare, EV_MINPRI);
4029     ev_prepare_start (EV_A_ &w->prepare);
4030    
4031 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4032     ev_fork_start (EV_A_ &w->fork);
4033    
4034 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4035    
4036 root 1.144 ev_start (EV_A_ (W)w, 1);
4037 root 1.248
4038     EV_FREQUENT_CHECK;
4039 root 1.144 }
4040    
4041     void
4042     ev_embed_stop (EV_P_ ev_embed *w)
4043     {
4044 root 1.166 clear_pending (EV_A_ (W)w);
4045 root 1.144 if (expect_false (!ev_is_active (w)))
4046     return;
4047    
4048 root 1.248 EV_FREQUENT_CHECK;
4049    
4050 root 1.261 ev_io_stop (EV_A_ &w->io);
4051 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4052 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4053 root 1.248
4054 root 1.328 ev_stop (EV_A_ (W)w);
4055    
4056 root 1.248 EV_FREQUENT_CHECK;
4057 root 1.144 }
4058     #endif
4059    
4060 root 1.147 #if EV_FORK_ENABLE
4061     void
4062     ev_fork_start (EV_P_ ev_fork *w)
4063     {
4064     if (expect_false (ev_is_active (w)))
4065     return;
4066    
4067 root 1.248 EV_FREQUENT_CHECK;
4068    
4069 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4070     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4071     forks [forkcnt - 1] = w;
4072 root 1.248
4073     EV_FREQUENT_CHECK;
4074 root 1.147 }
4075    
4076     void
4077     ev_fork_stop (EV_P_ ev_fork *w)
4078     {
4079 root 1.166 clear_pending (EV_A_ (W)w);
4080 root 1.147 if (expect_false (!ev_is_active (w)))
4081     return;
4082    
4083 root 1.248 EV_FREQUENT_CHECK;
4084    
4085 root 1.147 {
4086 root 1.230 int active = ev_active (w);
4087    
4088 root 1.147 forks [active - 1] = forks [--forkcnt];
4089 root 1.230 ev_active (forks [active - 1]) = active;
4090 root 1.147 }
4091    
4092     ev_stop (EV_A_ (W)w);
4093 root 1.248
4094     EV_FREQUENT_CHECK;
4095 root 1.147 }
4096     #endif
4097    
4098 root 1.360 #if EV_CLEANUP_ENABLE
4099     void
4100     ev_cleanup_start (EV_P_ ev_cleanup *w)
4101     {
4102     if (expect_false (ev_is_active (w)))
4103     return;
4104    
4105     EV_FREQUENT_CHECK;
4106    
4107     ev_start (EV_A_ (W)w, ++cleanupcnt);
4108     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4109     cleanups [cleanupcnt - 1] = w;
4110    
4111 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4112     ev_unref (EV_A);
4113 root 1.360 EV_FREQUENT_CHECK;
4114     }
4115    
4116     void
4117     ev_cleanup_stop (EV_P_ ev_cleanup *w)
4118     {
4119     clear_pending (EV_A_ (W)w);
4120     if (expect_false (!ev_is_active (w)))
4121     return;
4122    
4123     EV_FREQUENT_CHECK;
4124 root 1.362 ev_ref (EV_A);
4125 root 1.360
4126     {
4127     int active = ev_active (w);
4128    
4129     cleanups [active - 1] = cleanups [--cleanupcnt];
4130     ev_active (cleanups [active - 1]) = active;
4131     }
4132    
4133     ev_stop (EV_A_ (W)w);
4134    
4135     EV_FREQUENT_CHECK;
4136     }
4137     #endif
4138    
4139 root 1.207 #if EV_ASYNC_ENABLE
4140     void
4141     ev_async_start (EV_P_ ev_async *w)
4142     {
4143     if (expect_false (ev_is_active (w)))
4144     return;
4145    
4146 root 1.352 w->sent = 0;
4147    
4148 root 1.207 evpipe_init (EV_A);
4149    
4150 root 1.248 EV_FREQUENT_CHECK;
4151    
4152 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4153     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4154     asyncs [asynccnt - 1] = w;
4155 root 1.248
4156     EV_FREQUENT_CHECK;
4157 root 1.207 }
4158    
4159     void
4160     ev_async_stop (EV_P_ ev_async *w)
4161     {
4162     clear_pending (EV_A_ (W)w);
4163     if (expect_false (!ev_is_active (w)))
4164     return;
4165    
4166 root 1.248 EV_FREQUENT_CHECK;
4167    
4168 root 1.207 {
4169 root 1.230 int active = ev_active (w);
4170    
4171 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4172 root 1.230 ev_active (asyncs [active - 1]) = active;
4173 root 1.207 }
4174    
4175     ev_stop (EV_A_ (W)w);
4176 root 1.248
4177     EV_FREQUENT_CHECK;
4178 root 1.207 }
4179    
4180     void
4181     ev_async_send (EV_P_ ev_async *w)
4182     {
4183     w->sent = 1;
4184 root 1.307 evpipe_write (EV_A_ &async_pending);
4185 root 1.207 }
4186     #endif
4187    
4188 root 1.1 /*****************************************************************************/
4189 root 1.10
4190 root 1.16 struct ev_once
4191     {
4192 root 1.136 ev_io io;
4193     ev_timer to;
4194 root 1.16 void (*cb)(int revents, void *arg);
4195     void *arg;
4196     };
4197    
4198     static void
4199 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4200 root 1.16 {
4201     void (*cb)(int revents, void *arg) = once->cb;
4202     void *arg = once->arg;
4203    
4204 root 1.259 ev_io_stop (EV_A_ &once->io);
4205 root 1.51 ev_timer_stop (EV_A_ &once->to);
4206 root 1.69 ev_free (once);
4207 root 1.16
4208     cb (revents, arg);
4209     }
4210    
4211     static void
4212 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4213 root 1.16 {
4214 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4215    
4216     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4217 root 1.16 }
4218    
4219     static void
4220 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4221 root 1.16 {
4222 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4223    
4224     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4225 root 1.16 }
4226    
4227     void
4228 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4229 root 1.16 {
4230 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4231 root 1.16
4232 root 1.123 if (expect_false (!once))
4233 root 1.16 {
4234 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4235 root 1.123 return;
4236     }
4237    
4238     once->cb = cb;
4239     once->arg = arg;
4240 root 1.16
4241 root 1.123 ev_init (&once->io, once_cb_io);
4242     if (fd >= 0)
4243     {
4244     ev_io_set (&once->io, fd, events);
4245     ev_io_start (EV_A_ &once->io);
4246     }
4247 root 1.16
4248 root 1.123 ev_init (&once->to, once_cb_to);
4249     if (timeout >= 0.)
4250     {
4251     ev_timer_set (&once->to, timeout, 0.);
4252     ev_timer_start (EV_A_ &once->to);
4253 root 1.16 }
4254     }
4255    
4256 root 1.282 /*****************************************************************************/
4257    
4258 root 1.288 #if EV_WALK_ENABLE
4259 root 1.379 void ecb_cold
4260 root 1.282 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4261     {
4262     int i, j;
4263     ev_watcher_list *wl, *wn;
4264    
4265     if (types & (EV_IO | EV_EMBED))
4266     for (i = 0; i < anfdmax; ++i)
4267     for (wl = anfds [i].head; wl; )
4268     {
4269     wn = wl->next;
4270    
4271     #if EV_EMBED_ENABLE
4272     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4273     {
4274     if (types & EV_EMBED)
4275     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4276     }
4277     else
4278     #endif
4279     #if EV_USE_INOTIFY
4280     if (ev_cb ((ev_io *)wl) == infy_cb)
4281     ;
4282     else
4283     #endif
4284 root 1.288 if ((ev_io *)wl != &pipe_w)
4285 root 1.282 if (types & EV_IO)
4286     cb (EV_A_ EV_IO, wl);
4287    
4288     wl = wn;
4289     }
4290    
4291     if (types & (EV_TIMER | EV_STAT))
4292     for (i = timercnt + HEAP0; i-- > HEAP0; )
4293     #if EV_STAT_ENABLE
4294     /*TODO: timer is not always active*/
4295     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4296     {
4297     if (types & EV_STAT)
4298     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4299     }
4300     else
4301     #endif
4302     if (types & EV_TIMER)
4303     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4304    
4305     #if EV_PERIODIC_ENABLE
4306     if (types & EV_PERIODIC)
4307     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4308     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4309     #endif
4310    
4311     #if EV_IDLE_ENABLE
4312     if (types & EV_IDLE)
4313 root 1.390 for (j = NUMPRI; j--; )
4314 root 1.282 for (i = idlecnt [j]; i--; )
4315     cb (EV_A_ EV_IDLE, idles [j][i]);
4316     #endif
4317    
4318     #if EV_FORK_ENABLE
4319     if (types & EV_FORK)
4320     for (i = forkcnt; i--; )
4321     if (ev_cb (forks [i]) != embed_fork_cb)
4322     cb (EV_A_ EV_FORK, forks [i]);
4323     #endif
4324    
4325     #if EV_ASYNC_ENABLE
4326     if (types & EV_ASYNC)
4327     for (i = asynccnt; i--; )
4328     cb (EV_A_ EV_ASYNC, asyncs [i]);
4329     #endif
4330    
4331 root 1.337 #if EV_PREPARE_ENABLE
4332 root 1.282 if (types & EV_PREPARE)
4333     for (i = preparecnt; i--; )
4334 root 1.337 # if EV_EMBED_ENABLE
4335 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4336 root 1.337 # endif
4337     cb (EV_A_ EV_PREPARE, prepares [i]);
4338 root 1.282 #endif
4339    
4340 root 1.337 #if EV_CHECK_ENABLE
4341 root 1.282 if (types & EV_CHECK)
4342     for (i = checkcnt; i--; )
4343     cb (EV_A_ EV_CHECK, checks [i]);
4344 root 1.337 #endif
4345 root 1.282
4346 root 1.337 #if EV_SIGNAL_ENABLE
4347 root 1.282 if (types & EV_SIGNAL)
4348 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4349 root 1.282 for (wl = signals [i].head; wl; )
4350     {
4351     wn = wl->next;
4352     cb (EV_A_ EV_SIGNAL, wl);
4353     wl = wn;
4354     }
4355 root 1.337 #endif
4356 root 1.282
4357 root 1.337 #if EV_CHILD_ENABLE
4358 root 1.282 if (types & EV_CHILD)
4359 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4360 root 1.282 for (wl = childs [i]; wl; )
4361     {
4362     wn = wl->next;
4363     cb (EV_A_ EV_CHILD, wl);
4364     wl = wn;
4365     }
4366 root 1.337 #endif
4367 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4368     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4369     }
4370     #endif
4371    
4372 root 1.188 #if EV_MULTIPLICITY
4373     #include "ev_wrap.h"
4374     #endif
4375    
4376 root 1.354 EV_CPP(})
4377 root 1.87