ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.392
Committed: Thu Aug 4 14:37:49 2011 UTC (12 years, 9 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.391: +41 -18 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
65     # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.354 EV_CPP(extern "C" {)
189    
190 root 1.103 #ifndef _WIN32
191 root 1.71 # include <sys/time.h>
192 root 1.45 # include <sys/wait.h>
193 root 1.140 # include <unistd.h>
194 root 1.103 #else
195 root 1.256 # include <io.h>
196 root 1.103 # define WIN32_LEAN_AND_MEAN
197     # include <windows.h>
198     # ifndef EV_SELECT_IS_WINSOCKET
199     # define EV_SELECT_IS_WINSOCKET 1
200     # endif
201 root 1.331 # undef EV_AVOID_STDIO
202 root 1.45 #endif
203 root 1.103
204 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
205     * a limit of 1024 into their select. Where people have brains,
206     * OS X engineers apparently have a vacuum. Or maybe they were
207     * ordered to have a vacuum, or they do anything for money.
208     * This might help. Or not.
209     */
210     #define _DARWIN_UNLIMITED_SELECT 1
211    
212 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
213 root 1.40
214 root 1.305 /* try to deduce the maximum number of signals on this platform */
215     #if defined (EV_NSIG)
216     /* use what's provided */
217     #elif defined (NSIG)
218     # define EV_NSIG (NSIG)
219     #elif defined(_NSIG)
220     # define EV_NSIG (_NSIG)
221     #elif defined (SIGMAX)
222     # define EV_NSIG (SIGMAX+1)
223     #elif defined (SIG_MAX)
224     # define EV_NSIG (SIG_MAX+1)
225     #elif defined (_SIG_MAX)
226     # define EV_NSIG (_SIG_MAX+1)
227     #elif defined (MAXSIG)
228     # define EV_NSIG (MAXSIG+1)
229     #elif defined (MAX_SIG)
230     # define EV_NSIG (MAX_SIG+1)
231     #elif defined (SIGARRAYSIZE)
232 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233 root 1.305 #elif defined (_sys_nsig)
234     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235     #else
236     # error "unable to find value for NSIG, please report"
237 root 1.336 /* to make it compile regardless, just remove the above line, */
238     /* but consider reporting it, too! :) */
239 root 1.306 # define EV_NSIG 65
240 root 1.305 #endif
241    
242 root 1.373 #ifndef EV_USE_FLOOR
243     # define EV_USE_FLOOR 0
244     #endif
245    
246 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
247     # if __linux && __GLIBC__ >= 2
248 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249 root 1.274 # else
250     # define EV_USE_CLOCK_SYSCALL 0
251     # endif
252     #endif
253    
254 root 1.29 #ifndef EV_USE_MONOTONIC
255 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
257 root 1.253 # else
258     # define EV_USE_MONOTONIC 0
259     # endif
260 root 1.37 #endif
261    
262 root 1.118 #ifndef EV_USE_REALTIME
263 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264 root 1.118 #endif
265    
266 root 1.193 #ifndef EV_USE_NANOSLEEP
267 root 1.253 # if _POSIX_C_SOURCE >= 199309L
268 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
269 root 1.253 # else
270     # define EV_USE_NANOSLEEP 0
271     # endif
272 root 1.193 #endif
273    
274 root 1.29 #ifndef EV_USE_SELECT
275 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
276 root 1.10 #endif
277    
278 root 1.59 #ifndef EV_USE_POLL
279 root 1.104 # ifdef _WIN32
280     # define EV_USE_POLL 0
281     # else
282 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
283 root 1.104 # endif
284 root 1.41 #endif
285    
286 root 1.29 #ifndef EV_USE_EPOLL
287 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
289 root 1.220 # else
290     # define EV_USE_EPOLL 0
291     # endif
292 root 1.10 #endif
293    
294 root 1.44 #ifndef EV_USE_KQUEUE
295     # define EV_USE_KQUEUE 0
296     #endif
297    
298 root 1.118 #ifndef EV_USE_PORT
299     # define EV_USE_PORT 0
300 root 1.40 #endif
301    
302 root 1.152 #ifndef EV_USE_INOTIFY
303 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
305 root 1.220 # else
306     # define EV_USE_INOTIFY 0
307     # endif
308 root 1.152 #endif
309    
310 root 1.149 #ifndef EV_PID_HASHSIZE
311 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312 root 1.149 #endif
313    
314 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
315 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316 root 1.152 #endif
317    
318 root 1.220 #ifndef EV_USE_EVENTFD
319     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
321 root 1.220 # else
322     # define EV_USE_EVENTFD 0
323     # endif
324     #endif
325    
326 root 1.303 #ifndef EV_USE_SIGNALFD
327 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
329 root 1.303 # else
330     # define EV_USE_SIGNALFD 0
331     # endif
332     #endif
333    
334 root 1.249 #if 0 /* debugging */
335 root 1.250 # define EV_VERIFY 3
336 root 1.249 # define EV_USE_4HEAP 1
337     # define EV_HEAP_CACHE_AT 1
338     #endif
339    
340 root 1.250 #ifndef EV_VERIFY
341 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342 root 1.250 #endif
343    
344 root 1.243 #ifndef EV_USE_4HEAP
345 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
346 root 1.243 #endif
347    
348     #ifndef EV_HEAP_CACHE_AT
349 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350 root 1.243 #endif
351    
352 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353     /* which makes programs even slower. might work on other unices, too. */
354     #if EV_USE_CLOCK_SYSCALL
355     # include <syscall.h>
356     # ifdef SYS_clock_gettime
357     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358     # undef EV_USE_MONOTONIC
359     # define EV_USE_MONOTONIC 1
360     # else
361     # undef EV_USE_CLOCK_SYSCALL
362     # define EV_USE_CLOCK_SYSCALL 0
363     # endif
364     #endif
365    
366 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
367 root 1.40
368 root 1.325 #ifdef _AIX
369     /* AIX has a completely broken poll.h header */
370     # undef EV_USE_POLL
371     # define EV_USE_POLL 0
372     #endif
373    
374 root 1.40 #ifndef CLOCK_MONOTONIC
375     # undef EV_USE_MONOTONIC
376     # define EV_USE_MONOTONIC 0
377     #endif
378    
379 root 1.31 #ifndef CLOCK_REALTIME
380 root 1.40 # undef EV_USE_REALTIME
381 root 1.31 # define EV_USE_REALTIME 0
382     #endif
383 root 1.40
384 root 1.152 #if !EV_STAT_ENABLE
385 root 1.185 # undef EV_USE_INOTIFY
386 root 1.152 # define EV_USE_INOTIFY 0
387     #endif
388    
389 root 1.193 #if !EV_USE_NANOSLEEP
390 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
391     # if !defined(_WIN32) && !defined(__hpux)
392 root 1.193 # include <sys/select.h>
393     # endif
394     #endif
395    
396 root 1.152 #if EV_USE_INOTIFY
397 root 1.273 # include <sys/statfs.h>
398 root 1.152 # include <sys/inotify.h>
399 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400     # ifndef IN_DONT_FOLLOW
401     # undef EV_USE_INOTIFY
402     # define EV_USE_INOTIFY 0
403     # endif
404 root 1.152 #endif
405    
406 root 1.185 #if EV_SELECT_IS_WINSOCKET
407     # include <winsock.h>
408     #endif
409    
410 root 1.220 #if EV_USE_EVENTFD
411     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412 root 1.221 # include <stdint.h>
413 root 1.303 # ifndef EFD_NONBLOCK
414     # define EFD_NONBLOCK O_NONBLOCK
415     # endif
416     # ifndef EFD_CLOEXEC
417 root 1.311 # ifdef O_CLOEXEC
418     # define EFD_CLOEXEC O_CLOEXEC
419     # else
420     # define EFD_CLOEXEC 02000000
421     # endif
422 root 1.303 # endif
423 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424 root 1.220 #endif
425    
426 root 1.303 #if EV_USE_SIGNALFD
427 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428     # include <stdint.h>
429     # ifndef SFD_NONBLOCK
430     # define SFD_NONBLOCK O_NONBLOCK
431     # endif
432     # ifndef SFD_CLOEXEC
433     # ifdef O_CLOEXEC
434     # define SFD_CLOEXEC O_CLOEXEC
435     # else
436     # define SFD_CLOEXEC 02000000
437     # endif
438     # endif
439 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440 root 1.314
441     struct signalfd_siginfo
442     {
443     uint32_t ssi_signo;
444     char pad[128 - sizeof (uint32_t)];
445     };
446 root 1.303 #endif
447    
448 root 1.40 /**/
449 root 1.1
450 root 1.250 #if EV_VERIFY >= 3
451 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
452 root 1.248 #else
453     # define EV_FREQUENT_CHECK do { } while (0)
454     #endif
455    
456 root 1.176 /*
457 root 1.373 * This is used to work around floating point rounding problems.
458 root 1.177 * This value is good at least till the year 4000.
459 root 1.176 */
460 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462 root 1.176
463 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
464 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465 root 1.1
466 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468 root 1.347
469 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470     /* ECB.H BEGIN */
471     /*
472     * libecb - http://software.schmorp.de/pkg/libecb
473     *
474     * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475     * Copyright (©) 2011 Emanuele Giaquinta
476     * All rights reserved.
477     *
478     * Redistribution and use in source and binary forms, with or without modifica-
479     * tion, are permitted provided that the following conditions are met:
480     *
481     * 1. Redistributions of source code must retain the above copyright notice,
482     * this list of conditions and the following disclaimer.
483     *
484     * 2. Redistributions in binary form must reproduce the above copyright
485     * notice, this list of conditions and the following disclaimer in the
486     * documentation and/or other materials provided with the distribution.
487     *
488     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497     * OF THE POSSIBILITY OF SUCH DAMAGE.
498     */
499    
500     #ifndef ECB_H
501     #define ECB_H
502    
503     #ifdef _WIN32
504     typedef signed char int8_t;
505     typedef unsigned char uint8_t;
506     typedef signed short int16_t;
507     typedef unsigned short uint16_t;
508     typedef signed int int32_t;
509     typedef unsigned int uint32_t;
510     #if __GNUC__
511     typedef signed long long int64_t;
512     typedef unsigned long long uint64_t;
513     #else /* _MSC_VER || __BORLANDC__ */
514     typedef signed __int64 int64_t;
515     typedef unsigned __int64 uint64_t;
516     #endif
517     #else
518     #include <inttypes.h>
519     #endif
520 root 1.379
521     /* many compilers define _GNUC_ to some versions but then only implement
522     * what their idiot authors think are the "more important" extensions,
523 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
524 root 1.379 * or so.
525     * we try to detect these and simply assume they are not gcc - if they have
526     * an issue with that they should have done it right in the first place.
527     */
528     #ifndef ECB_GCC_VERSION
529     #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530     #define ECB_GCC_VERSION(major,minor) 0
531     #else
532     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
533     #endif
534     #endif
535    
536 root 1.391 /*****************************************************************************/
537    
538     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540    
541     #if ECB_NO_THREADS || ECB_NO_SMP
542     #define ECB_MEMORY_FENCE do { } while (0)
543     #define ECB_MEMORY_FENCE_ACQUIRE do { } while (0)
544     #define ECB_MEMORY_FENCE_RELEASE do { } while (0)
545 root 1.40 #endif
546    
547 root 1.383 #ifndef ECB_MEMORY_FENCE
548     #if ECB_GCC_VERSION(2,5)
549     #if __x86
550     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
551 root 1.391 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
552     #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
553 root 1.383 #elif __amd64
554     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
555     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
556 root 1.391 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
557 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
558     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
559     #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
560     || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__) \
561     || defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
562     || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
563     #define ECB_MEMORY_FENCE \
564     do { \
565     int null = 0; \
566     __asm__ __volatile__ ("mcr p15,0,%0,c6,c10,5", : "=&r" (null) : : "memory"); \
567     while (0)
568 root 1.383 #endif
569     #endif
570     #endif
571    
572     #ifndef ECB_MEMORY_FENCE
573 root 1.392 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER)
574 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
575 root 1.392 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
576     /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
577 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
578     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
579     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
580     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
581     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
582 root 1.388 #elif defined(_WIN32)
583     #include <WinNT.h>
584 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
585 root 1.383 #endif
586     #endif
587    
588     #ifndef ECB_MEMORY_FENCE
589 root 1.392 #if !ECB_AVOID_PTHREADS
590     /*
591     * if you get undefined symbol references to pthread_mutex_lock,
592     * or failure to find pthread.h, then you should implement
593     * the ECB_MEMORY_FENCE operations for your cpu/compiler
594     * OR provide pthread.h and link against the posix thread library
595     * of your system.
596     */
597     #include <pthread.h>
598     #define ECB_NEEDS_PTHREADS 1
599     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
600    
601     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
602     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
603     #endif
604     #endif
605 root 1.383
606 root 1.392 #if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
607 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
608 root 1.392 #endif
609    
610     #if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
611 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
612     #endif
613    
614 root 1.391 /*****************************************************************************/
615    
616     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
617    
618     #if __cplusplus
619     #define ecb_inline static inline
620     #elif ECB_GCC_VERSION(2,5)
621     #define ecb_inline static __inline__
622     #elif ECB_C99
623     #define ecb_inline static inline
624     #else
625     #define ecb_inline static
626     #endif
627    
628     #if ECB_GCC_VERSION(3,3)
629     #define ecb_restrict __restrict__
630     #elif ECB_C99
631     #define ecb_restrict restrict
632     #else
633     #define ecb_restrict
634     #endif
635    
636     typedef int ecb_bool;
637    
638     #define ECB_CONCAT_(a, b) a ## b
639     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
640     #define ECB_STRINGIFY_(a) # a
641     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
642    
643     #define ecb_function_ ecb_inline
644    
645 root 1.379 #if ECB_GCC_VERSION(3,1)
646     #define ecb_attribute(attrlist) __attribute__(attrlist)
647     #define ecb_is_constant(expr) __builtin_constant_p (expr)
648     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
649     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
650     #else
651     #define ecb_attribute(attrlist)
652     #define ecb_is_constant(expr) 0
653     #define ecb_expect(expr,value) (expr)
654     #define ecb_prefetch(addr,rw,locality)
655     #endif
656    
657 root 1.391 /* no emulation for ecb_decltype */
658     #if ECB_GCC_VERSION(4,5)
659     #define ecb_decltype(x) __decltype(x)
660     #elif ECB_GCC_VERSION(3,0)
661     #define ecb_decltype(x) __typeof(x)
662     #endif
663    
664 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
665     #define ecb_noreturn ecb_attribute ((__noreturn__))
666     #define ecb_unused ecb_attribute ((__unused__))
667     #define ecb_const ecb_attribute ((__const__))
668     #define ecb_pure ecb_attribute ((__pure__))
669    
670     #if ECB_GCC_VERSION(4,3)
671     #define ecb_artificial ecb_attribute ((__artificial__))
672     #define ecb_hot ecb_attribute ((__hot__))
673     #define ecb_cold ecb_attribute ((__cold__))
674     #else
675     #define ecb_artificial
676     #define ecb_hot
677     #define ecb_cold
678     #endif
679    
680     /* put around conditional expressions if you are very sure that the */
681     /* expression is mostly true or mostly false. note that these return */
682     /* booleans, not the expression. */
683     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
684     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
685 root 1.391 /* for compatibility to the rest of the world */
686     #define ecb_likely(expr) ecb_expect_true (expr)
687     #define ecb_unlikely(expr) ecb_expect_false (expr)
688    
689     /* count trailing zero bits and count # of one bits */
690     #if ECB_GCC_VERSION(3,4)
691     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
692     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
693     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
694     #define ecb_ctz32(x) __builtin_ctz (x)
695     #define ecb_ctz64(x) __builtin_ctzll (x)
696     #define ecb_popcount32(x) __builtin_popcount (x)
697     /* no popcountll */
698     #else
699     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
700     ecb_function_ int
701     ecb_ctz32 (uint32_t x)
702     {
703     int r = 0;
704    
705     x &= ~x + 1; /* this isolates the lowest bit */
706    
707     #if ECB_branchless_on_i386
708     r += !!(x & 0xaaaaaaaa) << 0;
709     r += !!(x & 0xcccccccc) << 1;
710     r += !!(x & 0xf0f0f0f0) << 2;
711     r += !!(x & 0xff00ff00) << 3;
712     r += !!(x & 0xffff0000) << 4;
713     #else
714     if (x & 0xaaaaaaaa) r += 1;
715     if (x & 0xcccccccc) r += 2;
716     if (x & 0xf0f0f0f0) r += 4;
717     if (x & 0xff00ff00) r += 8;
718     if (x & 0xffff0000) r += 16;
719     #endif
720    
721     return r;
722     }
723    
724     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
725     ecb_function_ int
726     ecb_ctz64 (uint64_t x)
727     {
728     int shift = x & 0xffffffffU ? 0 : 32;
729     return ecb_ctz32 (x >> shift) + shift;
730     }
731    
732     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
733     ecb_function_ int
734     ecb_popcount32 (uint32_t x)
735     {
736     x -= (x >> 1) & 0x55555555;
737     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
738     x = ((x >> 4) + x) & 0x0f0f0f0f;
739     x *= 0x01010101;
740    
741     return x >> 24;
742     }
743    
744     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
745     ecb_function_ int ecb_ld32 (uint32_t x)
746     {
747     int r = 0;
748    
749     if (x >> 16) { x >>= 16; r += 16; }
750     if (x >> 8) { x >>= 8; r += 8; }
751     if (x >> 4) { x >>= 4; r += 4; }
752     if (x >> 2) { x >>= 2; r += 2; }
753     if (x >> 1) { r += 1; }
754    
755     return r;
756     }
757    
758     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
759     ecb_function_ int ecb_ld64 (uint64_t x)
760     {
761     int r = 0;
762    
763     if (x >> 32) { x >>= 32; r += 32; }
764    
765     return r + ecb_ld32 (x);
766     }
767     #endif
768    
769     /* popcount64 is only available on 64 bit cpus as gcc builtin */
770     /* so for this version we are lazy */
771     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
772     ecb_function_ int
773     ecb_popcount64 (uint64_t x)
774     {
775     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
776     }
777    
778     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
779     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
780     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
781     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
782     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
783     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
784     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
785     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
786    
787     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
788     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
789     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
790     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
791     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
792     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
793     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
794     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
795    
796     #if ECB_GCC_VERSION(4,3)
797     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
798     #define ecb_bswap32(x) __builtin_bswap32 (x)
799     #define ecb_bswap64(x) __builtin_bswap64 (x)
800     #else
801     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
802     ecb_function_ uint16_t
803     ecb_bswap16 (uint16_t x)
804     {
805     return ecb_rotl16 (x, 8);
806     }
807    
808     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
809     ecb_function_ uint32_t
810     ecb_bswap32 (uint32_t x)
811     {
812     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
813     }
814    
815     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
816     ecb_function_ uint64_t
817     ecb_bswap64 (uint64_t x)
818     {
819     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
820     }
821     #endif
822    
823     #if ECB_GCC_VERSION(4,5)
824     #define ecb_unreachable() __builtin_unreachable ()
825     #else
826     /* this seems to work fine, but gcc always emits a warning for it :/ */
827     ecb_function_ void ecb_unreachable (void) ecb_noreturn;
828     ecb_function_ void ecb_unreachable (void) { }
829     #endif
830    
831     /* try to tell the compiler that some condition is definitely true */
832     #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
833    
834     ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
835     ecb_function_ unsigned char
836     ecb_byteorder_helper (void)
837     {
838     const uint32_t u = 0x11223344;
839     return *(unsigned char *)&u;
840     }
841    
842     ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
843     ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
844     ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
845     ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
846    
847     #if ECB_GCC_VERSION(3,0) || ECB_C99
848     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
849     #else
850     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
851     #endif
852    
853     #if ecb_cplusplus_does_not_suck
854     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
855     template<typename T, int N>
856     static inline int ecb_array_length (const T (&arr)[N])
857     {
858     return N;
859     }
860     #else
861     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
862     #endif
863    
864     #endif
865    
866     /* ECB.H END */
867 root 1.379
868 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
869     # undef ECB_MEMORY_FENCE
870     # undef ECB_MEMORY_FENCE_ACQUIRE
871     # undef ECB_MEMORY_FENCE_RELEASE
872     #endif
873    
874 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
875     #define expect_true(cond) ecb_expect_true (cond)
876     #define noinline ecb_noinline
877    
878     #define inline_size ecb_inline
879 root 1.169
880 root 1.338 #if EV_FEATURE_CODE
881 root 1.379 # define inline_speed ecb_inline
882 root 1.338 #else
883 root 1.169 # define inline_speed static noinline
884     #endif
885 root 1.40
886 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
887    
888     #if EV_MINPRI == EV_MAXPRI
889     # define ABSPRI(w) (((W)w), 0)
890     #else
891     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
892     #endif
893 root 1.42
894 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
895 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
896 root 1.103
897 root 1.136 typedef ev_watcher *W;
898     typedef ev_watcher_list *WL;
899     typedef ev_watcher_time *WT;
900 root 1.10
901 root 1.229 #define ev_active(w) ((W)(w))->active
902 root 1.228 #define ev_at(w) ((WT)(w))->at
903    
904 root 1.279 #if EV_USE_REALTIME
905 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
906 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
907 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
908     #endif
909    
910     #if EV_USE_MONOTONIC
911 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
912 root 1.198 #endif
913 root 1.54
914 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
915     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
916     #endif
917     #ifndef EV_WIN32_HANDLE_TO_FD
918 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
919 root 1.313 #endif
920     #ifndef EV_WIN32_CLOSE_FD
921     # define EV_WIN32_CLOSE_FD(fd) close (fd)
922     #endif
923    
924 root 1.103 #ifdef _WIN32
925 root 1.98 # include "ev_win32.c"
926     #endif
927 root 1.67
928 root 1.53 /*****************************************************************************/
929 root 1.1
930 root 1.373 /* define a suitable floor function (only used by periodics atm) */
931    
932     #if EV_USE_FLOOR
933     # include <math.h>
934     # define ev_floor(v) floor (v)
935     #else
936    
937     #include <float.h>
938    
939     /* a floor() replacement function, should be independent of ev_tstamp type */
940     static ev_tstamp noinline
941     ev_floor (ev_tstamp v)
942     {
943     /* the choice of shift factor is not terribly important */
944     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
945     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
946     #else
947     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
948     #endif
949    
950     /* argument too large for an unsigned long? */
951     if (expect_false (v >= shift))
952     {
953     ev_tstamp f;
954    
955     if (v == v - 1.)
956     return v; /* very large number */
957    
958     f = shift * ev_floor (v * (1. / shift));
959     return f + ev_floor (v - f);
960     }
961    
962     /* special treatment for negative args? */
963     if (expect_false (v < 0.))
964     {
965     ev_tstamp f = -ev_floor (-v);
966    
967     return f - (f == v ? 0 : 1);
968     }
969    
970     /* fits into an unsigned long */
971     return (unsigned long)v;
972     }
973    
974     #endif
975    
976     /*****************************************************************************/
977    
978 root 1.356 #ifdef __linux
979     # include <sys/utsname.h>
980     #endif
981    
982 root 1.379 static unsigned int noinline ecb_cold
983 root 1.355 ev_linux_version (void)
984     {
985     #ifdef __linux
986 root 1.359 unsigned int v = 0;
987 root 1.355 struct utsname buf;
988     int i;
989     char *p = buf.release;
990    
991     if (uname (&buf))
992     return 0;
993    
994     for (i = 3+1; --i; )
995     {
996     unsigned int c = 0;
997    
998     for (;;)
999     {
1000     if (*p >= '0' && *p <= '9')
1001     c = c * 10 + *p++ - '0';
1002     else
1003     {
1004     p += *p == '.';
1005     break;
1006     }
1007     }
1008    
1009     v = (v << 8) | c;
1010     }
1011    
1012     return v;
1013     #else
1014     return 0;
1015     #endif
1016     }
1017    
1018     /*****************************************************************************/
1019    
1020 root 1.331 #if EV_AVOID_STDIO
1021 root 1.379 static void noinline ecb_cold
1022 root 1.331 ev_printerr (const char *msg)
1023     {
1024     write (STDERR_FILENO, msg, strlen (msg));
1025     }
1026     #endif
1027    
1028 root 1.70 static void (*syserr_cb)(const char *msg);
1029 root 1.69
1030 root 1.379 void ecb_cold
1031 root 1.141 ev_set_syserr_cb (void (*cb)(const char *msg))
1032 root 1.69 {
1033     syserr_cb = cb;
1034     }
1035    
1036 root 1.379 static void noinline ecb_cold
1037 root 1.269 ev_syserr (const char *msg)
1038 root 1.69 {
1039 root 1.70 if (!msg)
1040     msg = "(libev) system error";
1041    
1042 root 1.69 if (syserr_cb)
1043 root 1.70 syserr_cb (msg);
1044 root 1.69 else
1045     {
1046 root 1.330 #if EV_AVOID_STDIO
1047 root 1.331 ev_printerr (msg);
1048     ev_printerr (": ");
1049 root 1.365 ev_printerr (strerror (errno));
1050 root 1.331 ev_printerr ("\n");
1051 root 1.330 #else
1052 root 1.70 perror (msg);
1053 root 1.330 #endif
1054 root 1.69 abort ();
1055     }
1056     }
1057    
1058 root 1.224 static void *
1059     ev_realloc_emul (void *ptr, long size)
1060     {
1061 root 1.334 #if __GLIBC__
1062     return realloc (ptr, size);
1063     #else
1064 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
1065 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1066 root 1.224 * the single unix specification, so work around them here.
1067     */
1068 root 1.333
1069 root 1.224 if (size)
1070     return realloc (ptr, size);
1071    
1072     free (ptr);
1073     return 0;
1074 root 1.334 #endif
1075 root 1.224 }
1076    
1077     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1078 root 1.69
1079 root 1.379 void ecb_cold
1080 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
1081 root 1.69 {
1082     alloc = cb;
1083     }
1084    
1085 root 1.150 inline_speed void *
1086 root 1.155 ev_realloc (void *ptr, long size)
1087 root 1.69 {
1088 root 1.224 ptr = alloc (ptr, size);
1089 root 1.69
1090     if (!ptr && size)
1091     {
1092 root 1.330 #if EV_AVOID_STDIO
1093 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1094 root 1.330 #else
1095 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1096 root 1.330 #endif
1097 root 1.69 abort ();
1098     }
1099    
1100     return ptr;
1101     }
1102    
1103     #define ev_malloc(size) ev_realloc (0, (size))
1104     #define ev_free(ptr) ev_realloc ((ptr), 0)
1105    
1106     /*****************************************************************************/
1107    
1108 root 1.298 /* set in reify when reification needed */
1109     #define EV_ANFD_REIFY 1
1110    
1111 root 1.288 /* file descriptor info structure */
1112 root 1.53 typedef struct
1113     {
1114 root 1.68 WL head;
1115 root 1.288 unsigned char events; /* the events watched for */
1116 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1117 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1118 root 1.269 unsigned char unused;
1119     #if EV_USE_EPOLL
1120 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1121 root 1.269 #endif
1122 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1123 root 1.103 SOCKET handle;
1124     #endif
1125 root 1.357 #if EV_USE_IOCP
1126     OVERLAPPED or, ow;
1127     #endif
1128 root 1.53 } ANFD;
1129 root 1.1
1130 root 1.288 /* stores the pending event set for a given watcher */
1131 root 1.53 typedef struct
1132     {
1133     W w;
1134 root 1.288 int events; /* the pending event set for the given watcher */
1135 root 1.53 } ANPENDING;
1136 root 1.51
1137 root 1.155 #if EV_USE_INOTIFY
1138 root 1.241 /* hash table entry per inotify-id */
1139 root 1.152 typedef struct
1140     {
1141     WL head;
1142 root 1.155 } ANFS;
1143 root 1.152 #endif
1144    
1145 root 1.241 /* Heap Entry */
1146     #if EV_HEAP_CACHE_AT
1147 root 1.288 /* a heap element */
1148 root 1.241 typedef struct {
1149 root 1.243 ev_tstamp at;
1150 root 1.241 WT w;
1151     } ANHE;
1152    
1153 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1154     #define ANHE_at(he) (he).at /* access cached at, read-only */
1155     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1156 root 1.241 #else
1157 root 1.288 /* a heap element */
1158 root 1.241 typedef WT ANHE;
1159    
1160 root 1.248 #define ANHE_w(he) (he)
1161     #define ANHE_at(he) (he)->at
1162     #define ANHE_at_cache(he)
1163 root 1.241 #endif
1164    
1165 root 1.55 #if EV_MULTIPLICITY
1166 root 1.54
1167 root 1.80 struct ev_loop
1168     {
1169 root 1.86 ev_tstamp ev_rt_now;
1170 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1171 root 1.80 #define VAR(name,decl) decl;
1172     #include "ev_vars.h"
1173     #undef VAR
1174     };
1175     #include "ev_wrap.h"
1176    
1177 root 1.116 static struct ev_loop default_loop_struct;
1178     struct ev_loop *ev_default_loop_ptr;
1179 root 1.54
1180 root 1.53 #else
1181 root 1.54
1182 root 1.86 ev_tstamp ev_rt_now;
1183 root 1.80 #define VAR(name,decl) static decl;
1184     #include "ev_vars.h"
1185     #undef VAR
1186    
1187 root 1.116 static int ev_default_loop_ptr;
1188 root 1.54
1189 root 1.51 #endif
1190 root 1.1
1191 root 1.338 #if EV_FEATURE_API
1192 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1193     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1194 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1195     #else
1196 root 1.298 # define EV_RELEASE_CB (void)0
1197     # define EV_ACQUIRE_CB (void)0
1198 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1199     #endif
1200    
1201 root 1.353 #define EVBREAK_RECURSE 0x80
1202 root 1.298
1203 root 1.8 /*****************************************************************************/
1204    
1205 root 1.292 #ifndef EV_HAVE_EV_TIME
1206 root 1.141 ev_tstamp
1207 root 1.1 ev_time (void)
1208     {
1209 root 1.29 #if EV_USE_REALTIME
1210 root 1.279 if (expect_true (have_realtime))
1211     {
1212     struct timespec ts;
1213     clock_gettime (CLOCK_REALTIME, &ts);
1214     return ts.tv_sec + ts.tv_nsec * 1e-9;
1215     }
1216     #endif
1217    
1218 root 1.1 struct timeval tv;
1219     gettimeofday (&tv, 0);
1220     return tv.tv_sec + tv.tv_usec * 1e-6;
1221     }
1222 root 1.292 #endif
1223 root 1.1
1224 root 1.284 inline_size ev_tstamp
1225 root 1.1 get_clock (void)
1226     {
1227 root 1.29 #if EV_USE_MONOTONIC
1228 root 1.40 if (expect_true (have_monotonic))
1229 root 1.1 {
1230     struct timespec ts;
1231     clock_gettime (CLOCK_MONOTONIC, &ts);
1232     return ts.tv_sec + ts.tv_nsec * 1e-9;
1233     }
1234     #endif
1235    
1236     return ev_time ();
1237     }
1238    
1239 root 1.85 #if EV_MULTIPLICITY
1240 root 1.51 ev_tstamp
1241     ev_now (EV_P)
1242     {
1243 root 1.85 return ev_rt_now;
1244 root 1.51 }
1245 root 1.85 #endif
1246 root 1.51
1247 root 1.193 void
1248     ev_sleep (ev_tstamp delay)
1249     {
1250     if (delay > 0.)
1251     {
1252     #if EV_USE_NANOSLEEP
1253     struct timespec ts;
1254    
1255 root 1.348 EV_TS_SET (ts, delay);
1256 root 1.193 nanosleep (&ts, 0);
1257     #elif defined(_WIN32)
1258 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1259 root 1.193 #else
1260     struct timeval tv;
1261    
1262 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1263 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1264 root 1.257 /* by older ones */
1265 sf-exg 1.349 EV_TV_SET (tv, delay);
1266 root 1.193 select (0, 0, 0, 0, &tv);
1267     #endif
1268     }
1269     }
1270    
1271     /*****************************************************************************/
1272    
1273 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1274 root 1.232
1275 root 1.288 /* find a suitable new size for the given array, */
1276 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1277 root 1.284 inline_size int
1278 root 1.163 array_nextsize (int elem, int cur, int cnt)
1279     {
1280     int ncur = cur + 1;
1281    
1282     do
1283     ncur <<= 1;
1284     while (cnt > ncur);
1285    
1286 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
1287     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1288 root 1.163 {
1289     ncur *= elem;
1290 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1291 root 1.163 ncur = ncur - sizeof (void *) * 4;
1292     ncur /= elem;
1293     }
1294    
1295     return ncur;
1296     }
1297    
1298 root 1.379 static void * noinline ecb_cold
1299 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1300     {
1301     *cur = array_nextsize (elem, *cur, cnt);
1302     return ev_realloc (base, elem * *cur);
1303     }
1304 root 1.29
1305 root 1.265 #define array_init_zero(base,count) \
1306     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1307    
1308 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1309 root 1.163 if (expect_false ((cnt) > (cur))) \
1310 root 1.69 { \
1311 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1312 root 1.163 (base) = (type *)array_realloc \
1313     (sizeof (type), (base), &(cur), (cnt)); \
1314     init ((base) + (ocur_), (cur) - ocur_); \
1315 root 1.1 }
1316    
1317 root 1.163 #if 0
1318 root 1.74 #define array_slim(type,stem) \
1319 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1320     { \
1321     stem ## max = array_roundsize (stem ## cnt >> 1); \
1322 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1323 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1324     }
1325 root 1.163 #endif
1326 root 1.67
1327 root 1.65 #define array_free(stem, idx) \
1328 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1329 root 1.65
1330 root 1.8 /*****************************************************************************/
1331    
1332 root 1.288 /* dummy callback for pending events */
1333     static void noinline
1334     pendingcb (EV_P_ ev_prepare *w, int revents)
1335     {
1336     }
1337    
1338 root 1.140 void noinline
1339 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
1340 root 1.1 {
1341 root 1.78 W w_ = (W)w;
1342 root 1.171 int pri = ABSPRI (w_);
1343 root 1.78
1344 root 1.123 if (expect_false (w_->pending))
1345 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1346     else
1347 root 1.32 {
1348 root 1.171 w_->pending = ++pendingcnt [pri];
1349     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1350     pendings [pri][w_->pending - 1].w = w_;
1351     pendings [pri][w_->pending - 1].events = revents;
1352 root 1.32 }
1353 root 1.1 }
1354    
1355 root 1.284 inline_speed void
1356     feed_reverse (EV_P_ W w)
1357     {
1358     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1359     rfeeds [rfeedcnt++] = w;
1360     }
1361    
1362     inline_size void
1363     feed_reverse_done (EV_P_ int revents)
1364     {
1365     do
1366     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1367     while (rfeedcnt);
1368     }
1369    
1370     inline_speed void
1371 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1372 root 1.27 {
1373     int i;
1374    
1375     for (i = 0; i < eventcnt; ++i)
1376 root 1.78 ev_feed_event (EV_A_ events [i], type);
1377 root 1.27 }
1378    
1379 root 1.141 /*****************************************************************************/
1380    
1381 root 1.284 inline_speed void
1382 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1383 root 1.1 {
1384     ANFD *anfd = anfds + fd;
1385 root 1.136 ev_io *w;
1386 root 1.1
1387 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1388 root 1.1 {
1389 root 1.79 int ev = w->events & revents;
1390 root 1.1
1391     if (ev)
1392 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1393 root 1.1 }
1394     }
1395    
1396 root 1.298 /* do not submit kernel events for fds that have reify set */
1397     /* because that means they changed while we were polling for new events */
1398     inline_speed void
1399     fd_event (EV_P_ int fd, int revents)
1400     {
1401     ANFD *anfd = anfds + fd;
1402    
1403     if (expect_true (!anfd->reify))
1404 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1405 root 1.298 }
1406    
1407 root 1.79 void
1408     ev_feed_fd_event (EV_P_ int fd, int revents)
1409     {
1410 root 1.168 if (fd >= 0 && fd < anfdmax)
1411 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1412 root 1.79 }
1413    
1414 root 1.288 /* make sure the external fd watch events are in-sync */
1415     /* with the kernel/libev internal state */
1416 root 1.284 inline_size void
1417 root 1.51 fd_reify (EV_P)
1418 root 1.9 {
1419     int i;
1420    
1421 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1422     for (i = 0; i < fdchangecnt; ++i)
1423     {
1424     int fd = fdchanges [i];
1425     ANFD *anfd = anfds + fd;
1426    
1427 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1428 root 1.371 {
1429     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1430    
1431     if (handle != anfd->handle)
1432     {
1433     unsigned long arg;
1434    
1435     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1436    
1437     /* handle changed, but fd didn't - we need to do it in two steps */
1438     backend_modify (EV_A_ fd, anfd->events, 0);
1439     anfd->events = 0;
1440     anfd->handle = handle;
1441     }
1442     }
1443     }
1444     #endif
1445    
1446 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1447     {
1448     int fd = fdchanges [i];
1449     ANFD *anfd = anfds + fd;
1450 root 1.136 ev_io *w;
1451 root 1.27
1452 root 1.350 unsigned char o_events = anfd->events;
1453     unsigned char o_reify = anfd->reify;
1454 root 1.27
1455 root 1.350 anfd->reify = 0;
1456 root 1.27
1457 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1458     {
1459     anfd->events = 0;
1460 root 1.184
1461 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1462     anfd->events |= (unsigned char)w->events;
1463 root 1.27
1464 root 1.351 if (o_events != anfd->events)
1465 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1466     }
1467    
1468     if (o_reify & EV__IOFDSET)
1469     backend_modify (EV_A_ fd, o_events, anfd->events);
1470 root 1.27 }
1471    
1472     fdchangecnt = 0;
1473     }
1474    
1475 root 1.288 /* something about the given fd changed */
1476 root 1.284 inline_size void
1477 root 1.183 fd_change (EV_P_ int fd, int flags)
1478 root 1.27 {
1479 root 1.183 unsigned char reify = anfds [fd].reify;
1480 root 1.184 anfds [fd].reify |= flags;
1481 root 1.27
1482 root 1.183 if (expect_true (!reify))
1483     {
1484     ++fdchangecnt;
1485     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1486     fdchanges [fdchangecnt - 1] = fd;
1487     }
1488 root 1.9 }
1489    
1490 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1491 root 1.379 inline_speed void ecb_cold
1492 root 1.51 fd_kill (EV_P_ int fd)
1493 root 1.41 {
1494 root 1.136 ev_io *w;
1495 root 1.41
1496 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1497 root 1.41 {
1498 root 1.51 ev_io_stop (EV_A_ w);
1499 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1500 root 1.41 }
1501     }
1502    
1503 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1504 root 1.379 inline_size int ecb_cold
1505 root 1.71 fd_valid (int fd)
1506     {
1507 root 1.103 #ifdef _WIN32
1508 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1509 root 1.71 #else
1510     return fcntl (fd, F_GETFD) != -1;
1511     #endif
1512     }
1513    
1514 root 1.19 /* called on EBADF to verify fds */
1515 root 1.379 static void noinline ecb_cold
1516 root 1.51 fd_ebadf (EV_P)
1517 root 1.19 {
1518     int fd;
1519    
1520     for (fd = 0; fd < anfdmax; ++fd)
1521 root 1.27 if (anfds [fd].events)
1522 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1523 root 1.51 fd_kill (EV_A_ fd);
1524 root 1.41 }
1525    
1526     /* called on ENOMEM in select/poll to kill some fds and retry */
1527 root 1.379 static void noinline ecb_cold
1528 root 1.51 fd_enomem (EV_P)
1529 root 1.41 {
1530 root 1.62 int fd;
1531 root 1.41
1532 root 1.62 for (fd = anfdmax; fd--; )
1533 root 1.41 if (anfds [fd].events)
1534     {
1535 root 1.51 fd_kill (EV_A_ fd);
1536 root 1.307 break;
1537 root 1.41 }
1538 root 1.19 }
1539    
1540 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1541 root 1.140 static void noinline
1542 root 1.56 fd_rearm_all (EV_P)
1543     {
1544     int fd;
1545    
1546     for (fd = 0; fd < anfdmax; ++fd)
1547     if (anfds [fd].events)
1548     {
1549     anfds [fd].events = 0;
1550 root 1.268 anfds [fd].emask = 0;
1551 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1552 root 1.56 }
1553     }
1554    
1555 root 1.336 /* used to prepare libev internal fd's */
1556     /* this is not fork-safe */
1557     inline_speed void
1558     fd_intern (int fd)
1559     {
1560     #ifdef _WIN32
1561     unsigned long arg = 1;
1562     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1563     #else
1564     fcntl (fd, F_SETFD, FD_CLOEXEC);
1565     fcntl (fd, F_SETFL, O_NONBLOCK);
1566     #endif
1567     }
1568    
1569 root 1.8 /*****************************************************************************/
1570    
1571 root 1.235 /*
1572 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1573 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1574     * the branching factor of the d-tree.
1575     */
1576    
1577     /*
1578 root 1.235 * at the moment we allow libev the luxury of two heaps,
1579     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1580     * which is more cache-efficient.
1581     * the difference is about 5% with 50000+ watchers.
1582     */
1583 root 1.241 #if EV_USE_4HEAP
1584 root 1.235
1585 root 1.237 #define DHEAP 4
1586     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1587 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1588 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1589 root 1.235
1590     /* away from the root */
1591 root 1.284 inline_speed void
1592 root 1.241 downheap (ANHE *heap, int N, int k)
1593 root 1.235 {
1594 root 1.241 ANHE he = heap [k];
1595     ANHE *E = heap + N + HEAP0;
1596 root 1.235
1597     for (;;)
1598     {
1599     ev_tstamp minat;
1600 root 1.241 ANHE *minpos;
1601 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1602 root 1.235
1603 root 1.248 /* find minimum child */
1604 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1605 root 1.235 {
1606 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1607     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1608     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1609     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1610 root 1.235 }
1611 root 1.240 else if (pos < E)
1612 root 1.235 {
1613 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1614     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1615     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1616     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1617 root 1.235 }
1618 root 1.240 else
1619     break;
1620 root 1.235
1621 root 1.241 if (ANHE_at (he) <= minat)
1622 root 1.235 break;
1623    
1624 root 1.247 heap [k] = *minpos;
1625 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1626 root 1.235
1627     k = minpos - heap;
1628     }
1629    
1630 root 1.247 heap [k] = he;
1631 root 1.241 ev_active (ANHE_w (he)) = k;
1632 root 1.235 }
1633    
1634 root 1.248 #else /* 4HEAP */
1635 root 1.235
1636     #define HEAP0 1
1637 root 1.247 #define HPARENT(k) ((k) >> 1)
1638 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1639 root 1.235
1640 root 1.248 /* away from the root */
1641 root 1.284 inline_speed void
1642 root 1.248 downheap (ANHE *heap, int N, int k)
1643 root 1.1 {
1644 root 1.241 ANHE he = heap [k];
1645 root 1.1
1646 root 1.228 for (;;)
1647 root 1.1 {
1648 root 1.248 int c = k << 1;
1649 root 1.179
1650 root 1.309 if (c >= N + HEAP0)
1651 root 1.179 break;
1652    
1653 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1654     ? 1 : 0;
1655    
1656     if (ANHE_at (he) <= ANHE_at (heap [c]))
1657     break;
1658    
1659     heap [k] = heap [c];
1660 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1661 root 1.248
1662     k = c;
1663 root 1.1 }
1664    
1665 root 1.243 heap [k] = he;
1666 root 1.248 ev_active (ANHE_w (he)) = k;
1667 root 1.1 }
1668 root 1.248 #endif
1669 root 1.1
1670 root 1.248 /* towards the root */
1671 root 1.284 inline_speed void
1672 root 1.248 upheap (ANHE *heap, int k)
1673 root 1.1 {
1674 root 1.241 ANHE he = heap [k];
1675 root 1.1
1676 root 1.179 for (;;)
1677 root 1.1 {
1678 root 1.248 int p = HPARENT (k);
1679 root 1.179
1680 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1681 root 1.179 break;
1682 root 1.1
1683 root 1.248 heap [k] = heap [p];
1684 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1685 root 1.248 k = p;
1686 root 1.1 }
1687    
1688 root 1.241 heap [k] = he;
1689     ev_active (ANHE_w (he)) = k;
1690 root 1.1 }
1691    
1692 root 1.288 /* move an element suitably so it is in a correct place */
1693 root 1.284 inline_size void
1694 root 1.241 adjustheap (ANHE *heap, int N, int k)
1695 root 1.84 {
1696 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1697 root 1.247 upheap (heap, k);
1698     else
1699     downheap (heap, N, k);
1700 root 1.84 }
1701    
1702 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1703 root 1.284 inline_size void
1704 root 1.248 reheap (ANHE *heap, int N)
1705     {
1706     int i;
1707 root 1.251
1708 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1709     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1710     for (i = 0; i < N; ++i)
1711     upheap (heap, i + HEAP0);
1712     }
1713    
1714 root 1.8 /*****************************************************************************/
1715    
1716 root 1.288 /* associate signal watchers to a signal signal */
1717 root 1.7 typedef struct
1718     {
1719 root 1.307 EV_ATOMIC_T pending;
1720 root 1.306 #if EV_MULTIPLICITY
1721     EV_P;
1722     #endif
1723 root 1.68 WL head;
1724 root 1.7 } ANSIG;
1725    
1726 root 1.306 static ANSIG signals [EV_NSIG - 1];
1727 root 1.7
1728 root 1.207 /*****************************************************************************/
1729    
1730 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1731 root 1.207
1732 root 1.379 static void noinline ecb_cold
1733 root 1.207 evpipe_init (EV_P)
1734     {
1735 root 1.288 if (!ev_is_active (&pipe_w))
1736 root 1.207 {
1737 root 1.336 # if EV_USE_EVENTFD
1738 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1739     if (evfd < 0 && errno == EINVAL)
1740     evfd = eventfd (0, 0);
1741    
1742     if (evfd >= 0)
1743 root 1.220 {
1744     evpipe [0] = -1;
1745 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1746 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1747 root 1.220 }
1748     else
1749 root 1.336 # endif
1750 root 1.220 {
1751     while (pipe (evpipe))
1752 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1753 root 1.207
1754 root 1.220 fd_intern (evpipe [0]);
1755     fd_intern (evpipe [1]);
1756 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1757 root 1.220 }
1758 root 1.207
1759 root 1.288 ev_io_start (EV_A_ &pipe_w);
1760 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1761 root 1.207 }
1762     }
1763    
1764 root 1.380 inline_speed void
1765 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1766 root 1.207 {
1767 root 1.383 if (expect_true (*flag))
1768 root 1.387 return;
1769 root 1.383
1770     *flag = 1;
1771    
1772 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1773 root 1.383
1774     pipe_write_skipped = 1;
1775 root 1.378
1776 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1777 root 1.214
1778 root 1.383 if (pipe_write_wanted)
1779     {
1780     int old_errno;
1781 root 1.378
1782 root 1.392 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1783 root 1.220
1784 root 1.383 old_errno = errno; /* save errno because write will clobber it */
1785 root 1.380
1786 root 1.220 #if EV_USE_EVENTFD
1787 root 1.383 if (evfd >= 0)
1788     {
1789     uint64_t counter = 1;
1790     write (evfd, &counter, sizeof (uint64_t));
1791     }
1792     else
1793 root 1.220 #endif
1794 root 1.383 {
1795     /* win32 people keep sending patches that change this write() to send() */
1796     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1797     /* so when you think this write should be a send instead, please find out */
1798     /* where your send() is from - it's definitely not the microsoft send, and */
1799     /* tell me. thank you. */
1800     write (evpipe [1], &(evpipe [1]), 1);
1801     }
1802 root 1.214
1803 root 1.383 errno = old_errno;
1804 root 1.207 }
1805     }
1806    
1807 root 1.288 /* called whenever the libev signal pipe */
1808     /* got some events (signal, async) */
1809 root 1.207 static void
1810     pipecb (EV_P_ ev_io *iow, int revents)
1811     {
1812 root 1.307 int i;
1813    
1814 root 1.378 if (revents & EV_READ)
1815     {
1816 root 1.220 #if EV_USE_EVENTFD
1817 root 1.378 if (evfd >= 0)
1818     {
1819     uint64_t counter;
1820     read (evfd, &counter, sizeof (uint64_t));
1821     }
1822     else
1823 root 1.220 #endif
1824 root 1.378 {
1825     char dummy;
1826     /* see discussion in evpipe_write when you think this read should be recv in win32 */
1827     read (evpipe [0], &dummy, 1);
1828     }
1829 root 1.220 }
1830 root 1.207
1831 root 1.378 pipe_write_skipped = 0;
1832    
1833 root 1.369 #if EV_SIGNAL_ENABLE
1834 root 1.307 if (sig_pending)
1835 root 1.372 {
1836 root 1.307 sig_pending = 0;
1837 root 1.207
1838 root 1.307 for (i = EV_NSIG - 1; i--; )
1839     if (expect_false (signals [i].pending))
1840     ev_feed_signal_event (EV_A_ i + 1);
1841 root 1.207 }
1842 root 1.369 #endif
1843 root 1.207
1844 root 1.209 #if EV_ASYNC_ENABLE
1845 root 1.307 if (async_pending)
1846 root 1.207 {
1847 root 1.307 async_pending = 0;
1848 root 1.207
1849     for (i = asynccnt; i--; )
1850     if (asyncs [i]->sent)
1851     {
1852     asyncs [i]->sent = 0;
1853     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1854     }
1855     }
1856 root 1.209 #endif
1857 root 1.207 }
1858    
1859     /*****************************************************************************/
1860    
1861 root 1.366 void
1862     ev_feed_signal (int signum)
1863 root 1.7 {
1864 root 1.207 #if EV_MULTIPLICITY
1865 root 1.306 EV_P = signals [signum - 1].loop;
1866 root 1.366
1867     if (!EV_A)
1868     return;
1869 root 1.207 #endif
1870    
1871 root 1.381 if (!ev_active (&pipe_w))
1872     return;
1873 root 1.378
1874 root 1.366 signals [signum - 1].pending = 1;
1875     evpipe_write (EV_A_ &sig_pending);
1876     }
1877    
1878     static void
1879     ev_sighandler (int signum)
1880     {
1881 root 1.322 #ifdef _WIN32
1882 root 1.218 signal (signum, ev_sighandler);
1883 root 1.67 #endif
1884    
1885 root 1.366 ev_feed_signal (signum);
1886 root 1.7 }
1887    
1888 root 1.140 void noinline
1889 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1890     {
1891 root 1.80 WL w;
1892    
1893 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1894     return;
1895    
1896     --signum;
1897    
1898 root 1.79 #if EV_MULTIPLICITY
1899 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1900     /* or, likely more useful, feeding a signal nobody is waiting for */
1901 root 1.79
1902 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1903 root 1.306 return;
1904 root 1.307 #endif
1905 root 1.306
1906 root 1.307 signals [signum].pending = 0;
1907 root 1.79
1908     for (w = signals [signum].head; w; w = w->next)
1909     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1910     }
1911    
1912 root 1.303 #if EV_USE_SIGNALFD
1913     static void
1914     sigfdcb (EV_P_ ev_io *iow, int revents)
1915     {
1916 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1917 root 1.303
1918     for (;;)
1919     {
1920     ssize_t res = read (sigfd, si, sizeof (si));
1921    
1922     /* not ISO-C, as res might be -1, but works with SuS */
1923     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1924     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1925    
1926     if (res < (ssize_t)sizeof (si))
1927     break;
1928     }
1929     }
1930     #endif
1931    
1932 root 1.336 #endif
1933    
1934 root 1.8 /*****************************************************************************/
1935    
1936 root 1.336 #if EV_CHILD_ENABLE
1937 root 1.182 static WL childs [EV_PID_HASHSIZE];
1938 root 1.71
1939 root 1.136 static ev_signal childev;
1940 root 1.59
1941 root 1.206 #ifndef WIFCONTINUED
1942     # define WIFCONTINUED(status) 0
1943     #endif
1944    
1945 root 1.288 /* handle a single child status event */
1946 root 1.284 inline_speed void
1947 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1948 root 1.47 {
1949 root 1.136 ev_child *w;
1950 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1951 root 1.47
1952 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1953 root 1.206 {
1954     if ((w->pid == pid || !w->pid)
1955     && (!traced || (w->flags & 1)))
1956     {
1957 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1958 root 1.206 w->rpid = pid;
1959     w->rstatus = status;
1960     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1961     }
1962     }
1963 root 1.47 }
1964    
1965 root 1.142 #ifndef WCONTINUED
1966     # define WCONTINUED 0
1967     #endif
1968    
1969 root 1.288 /* called on sigchld etc., calls waitpid */
1970 root 1.47 static void
1971 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1972 root 1.22 {
1973     int pid, status;
1974    
1975 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1976     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1977     if (!WCONTINUED
1978     || errno != EINVAL
1979     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1980     return;
1981    
1982 root 1.216 /* make sure we are called again until all children have been reaped */
1983 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1984     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1985 root 1.47
1986 root 1.216 child_reap (EV_A_ pid, pid, status);
1987 root 1.338 if ((EV_PID_HASHSIZE) > 1)
1988 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1989 root 1.22 }
1990    
1991 root 1.45 #endif
1992    
1993 root 1.22 /*****************************************************************************/
1994    
1995 root 1.357 #if EV_USE_IOCP
1996     # include "ev_iocp.c"
1997     #endif
1998 root 1.118 #if EV_USE_PORT
1999     # include "ev_port.c"
2000     #endif
2001 root 1.44 #if EV_USE_KQUEUE
2002     # include "ev_kqueue.c"
2003     #endif
2004 root 1.29 #if EV_USE_EPOLL
2005 root 1.1 # include "ev_epoll.c"
2006     #endif
2007 root 1.59 #if EV_USE_POLL
2008 root 1.41 # include "ev_poll.c"
2009     #endif
2010 root 1.29 #if EV_USE_SELECT
2011 root 1.1 # include "ev_select.c"
2012     #endif
2013    
2014 root 1.379 int ecb_cold
2015 root 1.24 ev_version_major (void)
2016     {
2017     return EV_VERSION_MAJOR;
2018     }
2019    
2020 root 1.379 int ecb_cold
2021 root 1.24 ev_version_minor (void)
2022     {
2023     return EV_VERSION_MINOR;
2024     }
2025    
2026 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2027 root 1.379 int inline_size ecb_cold
2028 root 1.51 enable_secure (void)
2029 root 1.41 {
2030 root 1.103 #ifdef _WIN32
2031 root 1.49 return 0;
2032     #else
2033 root 1.41 return getuid () != geteuid ()
2034     || getgid () != getegid ();
2035 root 1.49 #endif
2036 root 1.41 }
2037    
2038 root 1.379 unsigned int ecb_cold
2039 root 1.129 ev_supported_backends (void)
2040     {
2041 root 1.130 unsigned int flags = 0;
2042 root 1.129
2043     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2044     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2045     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2046     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2047     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2048    
2049     return flags;
2050     }
2051    
2052 root 1.379 unsigned int ecb_cold
2053 root 1.130 ev_recommended_backends (void)
2054 root 1.1 {
2055 root 1.131 unsigned int flags = ev_supported_backends ();
2056 root 1.129
2057     #ifndef __NetBSD__
2058     /* kqueue is borked on everything but netbsd apparently */
2059     /* it usually doesn't work correctly on anything but sockets and pipes */
2060     flags &= ~EVBACKEND_KQUEUE;
2061     #endif
2062     #ifdef __APPLE__
2063 root 1.278 /* only select works correctly on that "unix-certified" platform */
2064     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2065     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2066 root 1.129 #endif
2067 root 1.342 #ifdef __FreeBSD__
2068     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2069     #endif
2070 root 1.129
2071     return flags;
2072 root 1.51 }
2073    
2074 root 1.379 unsigned int ecb_cold
2075 root 1.134 ev_embeddable_backends (void)
2076     {
2077 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2078    
2079 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2080 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2081     flags &= ~EVBACKEND_EPOLL;
2082 root 1.196
2083     return flags;
2084 root 1.134 }
2085    
2086     unsigned int
2087 root 1.130 ev_backend (EV_P)
2088     {
2089     return backend;
2090     }
2091    
2092 root 1.338 #if EV_FEATURE_API
2093 root 1.162 unsigned int
2094 root 1.340 ev_iteration (EV_P)
2095 root 1.162 {
2096     return loop_count;
2097     }
2098    
2099 root 1.294 unsigned int
2100 root 1.340 ev_depth (EV_P)
2101 root 1.294 {
2102     return loop_depth;
2103     }
2104    
2105 root 1.193 void
2106     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2107     {
2108     io_blocktime = interval;
2109     }
2110    
2111     void
2112     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2113     {
2114     timeout_blocktime = interval;
2115     }
2116    
2117 root 1.297 void
2118     ev_set_userdata (EV_P_ void *data)
2119     {
2120     userdata = data;
2121     }
2122    
2123     void *
2124     ev_userdata (EV_P)
2125     {
2126     return userdata;
2127     }
2128    
2129 root 1.379 void
2130     ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2131 root 1.297 {
2132     invoke_cb = invoke_pending_cb;
2133     }
2134    
2135 root 1.379 void
2136     ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2137 root 1.297 {
2138 root 1.298 release_cb = release;
2139     acquire_cb = acquire;
2140 root 1.297 }
2141     #endif
2142    
2143 root 1.288 /* initialise a loop structure, must be zero-initialised */
2144 root 1.379 static void noinline ecb_cold
2145 root 1.108 loop_init (EV_P_ unsigned int flags)
2146 root 1.51 {
2147 root 1.130 if (!backend)
2148 root 1.23 {
2149 root 1.366 origflags = flags;
2150    
2151 root 1.279 #if EV_USE_REALTIME
2152     if (!have_realtime)
2153     {
2154     struct timespec ts;
2155    
2156     if (!clock_gettime (CLOCK_REALTIME, &ts))
2157     have_realtime = 1;
2158     }
2159     #endif
2160    
2161 root 1.29 #if EV_USE_MONOTONIC
2162 root 1.279 if (!have_monotonic)
2163     {
2164     struct timespec ts;
2165    
2166     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2167     have_monotonic = 1;
2168     }
2169 root 1.1 #endif
2170    
2171 root 1.306 /* pid check not overridable via env */
2172     #ifndef _WIN32
2173     if (flags & EVFLAG_FORKCHECK)
2174     curpid = getpid ();
2175     #endif
2176    
2177     if (!(flags & EVFLAG_NOENV)
2178     && !enable_secure ()
2179     && getenv ("LIBEV_FLAGS"))
2180     flags = atoi (getenv ("LIBEV_FLAGS"));
2181    
2182 root 1.378 ev_rt_now = ev_time ();
2183     mn_now = get_clock ();
2184     now_floor = mn_now;
2185     rtmn_diff = ev_rt_now - mn_now;
2186 root 1.338 #if EV_FEATURE_API
2187 root 1.378 invoke_cb = ev_invoke_pending;
2188 root 1.297 #endif
2189 root 1.1
2190 root 1.378 io_blocktime = 0.;
2191     timeout_blocktime = 0.;
2192     backend = 0;
2193     backend_fd = -1;
2194     sig_pending = 0;
2195 root 1.307 #if EV_ASYNC_ENABLE
2196 root 1.378 async_pending = 0;
2197 root 1.307 #endif
2198 root 1.378 pipe_write_skipped = 0;
2199     pipe_write_wanted = 0;
2200 root 1.209 #if EV_USE_INOTIFY
2201 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2202 root 1.209 #endif
2203 root 1.303 #if EV_USE_SIGNALFD
2204 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2205 root 1.303 #endif
2206 root 1.193
2207 root 1.366 if (!(flags & EVBACKEND_MASK))
2208 root 1.129 flags |= ev_recommended_backends ();
2209 root 1.41
2210 root 1.357 #if EV_USE_IOCP
2211     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2212     #endif
2213 root 1.118 #if EV_USE_PORT
2214 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2215 root 1.118 #endif
2216 root 1.44 #if EV_USE_KQUEUE
2217 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2218 root 1.44 #endif
2219 root 1.29 #if EV_USE_EPOLL
2220 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2221 root 1.41 #endif
2222 root 1.59 #if EV_USE_POLL
2223 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2224 root 1.1 #endif
2225 root 1.29 #if EV_USE_SELECT
2226 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2227 root 1.1 #endif
2228 root 1.70
2229 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2230    
2231 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2232 root 1.288 ev_init (&pipe_w, pipecb);
2233     ev_set_priority (&pipe_w, EV_MAXPRI);
2234 root 1.336 #endif
2235 root 1.56 }
2236     }
2237    
2238 root 1.288 /* free up a loop structure */
2239 root 1.379 void ecb_cold
2240 root 1.359 ev_loop_destroy (EV_P)
2241 root 1.56 {
2242 root 1.65 int i;
2243    
2244 root 1.364 #if EV_MULTIPLICITY
2245 root 1.363 /* mimic free (0) */
2246     if (!EV_A)
2247     return;
2248 root 1.364 #endif
2249 root 1.363
2250 root 1.361 #if EV_CLEANUP_ENABLE
2251     /* queue cleanup watchers (and execute them) */
2252     if (expect_false (cleanupcnt))
2253     {
2254     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2255     EV_INVOKE_PENDING;
2256     }
2257     #endif
2258    
2259 root 1.359 #if EV_CHILD_ENABLE
2260     if (ev_is_active (&childev))
2261     {
2262     ev_ref (EV_A); /* child watcher */
2263     ev_signal_stop (EV_A_ &childev);
2264     }
2265     #endif
2266    
2267 root 1.288 if (ev_is_active (&pipe_w))
2268 root 1.207 {
2269 root 1.303 /*ev_ref (EV_A);*/
2270     /*ev_io_stop (EV_A_ &pipe_w);*/
2271 root 1.207
2272 root 1.220 #if EV_USE_EVENTFD
2273     if (evfd >= 0)
2274     close (evfd);
2275     #endif
2276    
2277     if (evpipe [0] >= 0)
2278     {
2279 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2280     EV_WIN32_CLOSE_FD (evpipe [1]);
2281 root 1.220 }
2282 root 1.207 }
2283    
2284 root 1.303 #if EV_USE_SIGNALFD
2285     if (ev_is_active (&sigfd_w))
2286 root 1.317 close (sigfd);
2287 root 1.303 #endif
2288    
2289 root 1.152 #if EV_USE_INOTIFY
2290     if (fs_fd >= 0)
2291     close (fs_fd);
2292     #endif
2293    
2294     if (backend_fd >= 0)
2295     close (backend_fd);
2296    
2297 root 1.357 #if EV_USE_IOCP
2298     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2299     #endif
2300 root 1.118 #if EV_USE_PORT
2301 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2302 root 1.118 #endif
2303 root 1.56 #if EV_USE_KQUEUE
2304 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2305 root 1.56 #endif
2306     #if EV_USE_EPOLL
2307 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2308 root 1.56 #endif
2309 root 1.59 #if EV_USE_POLL
2310 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2311 root 1.56 #endif
2312     #if EV_USE_SELECT
2313 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2314 root 1.56 #endif
2315 root 1.1
2316 root 1.65 for (i = NUMPRI; i--; )
2317 root 1.164 {
2318     array_free (pending, [i]);
2319     #if EV_IDLE_ENABLE
2320     array_free (idle, [i]);
2321     #endif
2322     }
2323 root 1.65
2324 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2325 root 1.186
2326 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2327 root 1.284 array_free (rfeed, EMPTY);
2328 root 1.164 array_free (fdchange, EMPTY);
2329     array_free (timer, EMPTY);
2330 root 1.140 #if EV_PERIODIC_ENABLE
2331 root 1.164 array_free (periodic, EMPTY);
2332 root 1.93 #endif
2333 root 1.187 #if EV_FORK_ENABLE
2334     array_free (fork, EMPTY);
2335     #endif
2336 root 1.360 #if EV_CLEANUP_ENABLE
2337     array_free (cleanup, EMPTY);
2338     #endif
2339 root 1.164 array_free (prepare, EMPTY);
2340     array_free (check, EMPTY);
2341 root 1.209 #if EV_ASYNC_ENABLE
2342     array_free (async, EMPTY);
2343     #endif
2344 root 1.65
2345 root 1.130 backend = 0;
2346 root 1.359
2347     #if EV_MULTIPLICITY
2348     if (ev_is_default_loop (EV_A))
2349     #endif
2350     ev_default_loop_ptr = 0;
2351     #if EV_MULTIPLICITY
2352     else
2353     ev_free (EV_A);
2354     #endif
2355 root 1.56 }
2356 root 1.22
2357 root 1.226 #if EV_USE_INOTIFY
2358 root 1.284 inline_size void infy_fork (EV_P);
2359 root 1.226 #endif
2360 root 1.154
2361 root 1.284 inline_size void
2362 root 1.56 loop_fork (EV_P)
2363     {
2364 root 1.118 #if EV_USE_PORT
2365 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2366 root 1.56 #endif
2367     #if EV_USE_KQUEUE
2368 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2369 root 1.45 #endif
2370 root 1.118 #if EV_USE_EPOLL
2371 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2372 root 1.118 #endif
2373 root 1.154 #if EV_USE_INOTIFY
2374     infy_fork (EV_A);
2375     #endif
2376 root 1.70
2377 root 1.288 if (ev_is_active (&pipe_w))
2378 root 1.70 {
2379 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2380 root 1.70
2381     ev_ref (EV_A);
2382 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2383 root 1.220
2384     #if EV_USE_EVENTFD
2385     if (evfd >= 0)
2386     close (evfd);
2387     #endif
2388    
2389     if (evpipe [0] >= 0)
2390     {
2391 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2392     EV_WIN32_CLOSE_FD (evpipe [1]);
2393 root 1.220 }
2394 root 1.207
2395 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2396 root 1.207 evpipe_init (EV_A);
2397 root 1.208 /* now iterate over everything, in case we missed something */
2398 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
2399 root 1.337 #endif
2400 root 1.70 }
2401    
2402     postfork = 0;
2403 root 1.1 }
2404    
2405 root 1.55 #if EV_MULTIPLICITY
2406 root 1.250
2407 root 1.379 struct ev_loop * ecb_cold
2408 root 1.108 ev_loop_new (unsigned int flags)
2409 root 1.54 {
2410 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2411 root 1.69
2412 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2413 root 1.108 loop_init (EV_A_ flags);
2414 root 1.56
2415 root 1.130 if (ev_backend (EV_A))
2416 root 1.306 return EV_A;
2417 root 1.54
2418 root 1.359 ev_free (EV_A);
2419 root 1.55 return 0;
2420 root 1.54 }
2421    
2422 root 1.297 #endif /* multiplicity */
2423 root 1.248
2424     #if EV_VERIFY
2425 root 1.379 static void noinline ecb_cold
2426 root 1.251 verify_watcher (EV_P_ W w)
2427     {
2428 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2429 root 1.251
2430     if (w->pending)
2431 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2432 root 1.251 }
2433    
2434 root 1.379 static void noinline ecb_cold
2435 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2436     {
2437     int i;
2438    
2439     for (i = HEAP0; i < N + HEAP0; ++i)
2440     {
2441 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2442     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2443     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2444 root 1.251
2445     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2446     }
2447     }
2448    
2449 root 1.379 static void noinline ecb_cold
2450 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2451 root 1.248 {
2452     while (cnt--)
2453 root 1.251 {
2454 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2455 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2456     }
2457 root 1.248 }
2458 root 1.250 #endif
2459 root 1.248
2460 root 1.338 #if EV_FEATURE_API
2461 root 1.379 void ecb_cold
2462 root 1.340 ev_verify (EV_P)
2463 root 1.248 {
2464 root 1.250 #if EV_VERIFY
2465 root 1.248 int i;
2466 root 1.251 WL w;
2467    
2468     assert (activecnt >= -1);
2469    
2470     assert (fdchangemax >= fdchangecnt);
2471     for (i = 0; i < fdchangecnt; ++i)
2472 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2473 root 1.251
2474     assert (anfdmax >= 0);
2475     for (i = 0; i < anfdmax; ++i)
2476     for (w = anfds [i].head; w; w = w->next)
2477     {
2478     verify_watcher (EV_A_ (W)w);
2479 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2480     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2481 root 1.251 }
2482    
2483     assert (timermax >= timercnt);
2484     verify_heap (EV_A_ timers, timercnt);
2485 root 1.248
2486     #if EV_PERIODIC_ENABLE
2487 root 1.251 assert (periodicmax >= periodiccnt);
2488     verify_heap (EV_A_ periodics, periodiccnt);
2489 root 1.248 #endif
2490    
2491 root 1.251 for (i = NUMPRI; i--; )
2492     {
2493     assert (pendingmax [i] >= pendingcnt [i]);
2494 root 1.248 #if EV_IDLE_ENABLE
2495 root 1.252 assert (idleall >= 0);
2496 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2497     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2498 root 1.248 #endif
2499 root 1.251 }
2500    
2501 root 1.248 #if EV_FORK_ENABLE
2502 root 1.251 assert (forkmax >= forkcnt);
2503     array_verify (EV_A_ (W *)forks, forkcnt);
2504 root 1.248 #endif
2505 root 1.251
2506 root 1.360 #if EV_CLEANUP_ENABLE
2507     assert (cleanupmax >= cleanupcnt);
2508     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2509     #endif
2510    
2511 root 1.250 #if EV_ASYNC_ENABLE
2512 root 1.251 assert (asyncmax >= asynccnt);
2513     array_verify (EV_A_ (W *)asyncs, asynccnt);
2514 root 1.250 #endif
2515 root 1.251
2516 root 1.337 #if EV_PREPARE_ENABLE
2517 root 1.251 assert (preparemax >= preparecnt);
2518     array_verify (EV_A_ (W *)prepares, preparecnt);
2519 root 1.337 #endif
2520 root 1.251
2521 root 1.337 #if EV_CHECK_ENABLE
2522 root 1.251 assert (checkmax >= checkcnt);
2523     array_verify (EV_A_ (W *)checks, checkcnt);
2524 root 1.337 #endif
2525 root 1.251
2526     # if 0
2527 root 1.336 #if EV_CHILD_ENABLE
2528 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2529 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2530 root 1.336 #endif
2531 root 1.251 # endif
2532 root 1.248 #endif
2533     }
2534 root 1.297 #endif
2535 root 1.56
2536     #if EV_MULTIPLICITY
2537 root 1.379 struct ev_loop * ecb_cold
2538 root 1.54 #else
2539     int
2540 root 1.358 #endif
2541 root 1.116 ev_default_loop (unsigned int flags)
2542 root 1.54 {
2543 root 1.116 if (!ev_default_loop_ptr)
2544 root 1.56 {
2545     #if EV_MULTIPLICITY
2546 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2547 root 1.56 #else
2548 ayin 1.117 ev_default_loop_ptr = 1;
2549 root 1.54 #endif
2550    
2551 root 1.110 loop_init (EV_A_ flags);
2552 root 1.56
2553 root 1.130 if (ev_backend (EV_A))
2554 root 1.56 {
2555 root 1.336 #if EV_CHILD_ENABLE
2556 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2557     ev_set_priority (&childev, EV_MAXPRI);
2558     ev_signal_start (EV_A_ &childev);
2559     ev_unref (EV_A); /* child watcher should not keep loop alive */
2560     #endif
2561     }
2562     else
2563 root 1.116 ev_default_loop_ptr = 0;
2564 root 1.56 }
2565 root 1.8
2566 root 1.116 return ev_default_loop_ptr;
2567 root 1.1 }
2568    
2569 root 1.24 void
2570 root 1.359 ev_loop_fork (EV_P)
2571 root 1.1 {
2572 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2573 root 1.1 }
2574    
2575 root 1.8 /*****************************************************************************/
2576    
2577 root 1.168 void
2578     ev_invoke (EV_P_ void *w, int revents)
2579     {
2580     EV_CB_INVOKE ((W)w, revents);
2581     }
2582    
2583 root 1.300 unsigned int
2584     ev_pending_count (EV_P)
2585     {
2586     int pri;
2587     unsigned int count = 0;
2588    
2589     for (pri = NUMPRI; pri--; )
2590     count += pendingcnt [pri];
2591    
2592     return count;
2593     }
2594    
2595 root 1.297 void noinline
2596 root 1.296 ev_invoke_pending (EV_P)
2597 root 1.1 {
2598 root 1.42 int pri;
2599    
2600     for (pri = NUMPRI; pri--; )
2601     while (pendingcnt [pri])
2602     {
2603     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2604 root 1.1
2605 root 1.288 p->w->pending = 0;
2606     EV_CB_INVOKE (p->w, p->events);
2607     EV_FREQUENT_CHECK;
2608 root 1.42 }
2609 root 1.1 }
2610    
2611 root 1.234 #if EV_IDLE_ENABLE
2612 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2613     /* only when higher priorities are idle" logic */
2614 root 1.284 inline_size void
2615 root 1.234 idle_reify (EV_P)
2616     {
2617     if (expect_false (idleall))
2618     {
2619     int pri;
2620    
2621     for (pri = NUMPRI; pri--; )
2622     {
2623     if (pendingcnt [pri])
2624     break;
2625    
2626     if (idlecnt [pri])
2627     {
2628     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2629     break;
2630     }
2631     }
2632     }
2633     }
2634     #endif
2635    
2636 root 1.288 /* make timers pending */
2637 root 1.284 inline_size void
2638 root 1.51 timers_reify (EV_P)
2639 root 1.1 {
2640 root 1.248 EV_FREQUENT_CHECK;
2641    
2642 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2643 root 1.1 {
2644 root 1.284 do
2645     {
2646     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2647 root 1.1
2648 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2649    
2650     /* first reschedule or stop timer */
2651     if (w->repeat)
2652     {
2653     ev_at (w) += w->repeat;
2654     if (ev_at (w) < mn_now)
2655     ev_at (w) = mn_now;
2656 root 1.61
2657 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2658 root 1.90
2659 root 1.284 ANHE_at_cache (timers [HEAP0]);
2660     downheap (timers, timercnt, HEAP0);
2661     }
2662     else
2663     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2664 root 1.243
2665 root 1.284 EV_FREQUENT_CHECK;
2666     feed_reverse (EV_A_ (W)w);
2667 root 1.12 }
2668 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2669 root 1.30
2670 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2671 root 1.12 }
2672     }
2673 root 1.4
2674 root 1.140 #if EV_PERIODIC_ENABLE
2675 root 1.370
2676 root 1.373 static void noinline
2677 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2678     {
2679 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2680     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2681    
2682     /* the above almost always errs on the low side */
2683     while (at <= ev_rt_now)
2684     {
2685     ev_tstamp nat = at + w->interval;
2686    
2687     /* when resolution fails us, we use ev_rt_now */
2688     if (expect_false (nat == at))
2689     {
2690     at = ev_rt_now;
2691     break;
2692     }
2693    
2694     at = nat;
2695     }
2696    
2697     ev_at (w) = at;
2698 root 1.370 }
2699    
2700 root 1.288 /* make periodics pending */
2701 root 1.284 inline_size void
2702 root 1.51 periodics_reify (EV_P)
2703 root 1.12 {
2704 root 1.248 EV_FREQUENT_CHECK;
2705 root 1.250
2706 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2707 root 1.12 {
2708 root 1.284 int feed_count = 0;
2709    
2710     do
2711     {
2712     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2713 root 1.1
2714 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2715 root 1.61
2716 root 1.284 /* first reschedule or stop timer */
2717     if (w->reschedule_cb)
2718     {
2719     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2720 root 1.243
2721 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2722 root 1.243
2723 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2724     downheap (periodics, periodiccnt, HEAP0);
2725     }
2726     else if (w->interval)
2727 root 1.246 {
2728 root 1.370 periodic_recalc (EV_A_ w);
2729 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2730     downheap (periodics, periodiccnt, HEAP0);
2731 root 1.246 }
2732 root 1.284 else
2733     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2734 root 1.243
2735 root 1.284 EV_FREQUENT_CHECK;
2736     feed_reverse (EV_A_ (W)w);
2737 root 1.1 }
2738 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2739 root 1.12
2740 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2741 root 1.12 }
2742     }
2743    
2744 root 1.288 /* simply recalculate all periodics */
2745 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2746 root 1.379 static void noinline ecb_cold
2747 root 1.54 periodics_reschedule (EV_P)
2748 root 1.12 {
2749     int i;
2750    
2751 root 1.13 /* adjust periodics after time jump */
2752 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2753 root 1.12 {
2754 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2755 root 1.12
2756 root 1.77 if (w->reschedule_cb)
2757 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2758 root 1.77 else if (w->interval)
2759 root 1.370 periodic_recalc (EV_A_ w);
2760 root 1.242
2761 root 1.248 ANHE_at_cache (periodics [i]);
2762 root 1.77 }
2763 root 1.12
2764 root 1.248 reheap (periodics, periodiccnt);
2765 root 1.1 }
2766 root 1.93 #endif
2767 root 1.1
2768 root 1.288 /* adjust all timers by a given offset */
2769 root 1.379 static void noinline ecb_cold
2770 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
2771     {
2772     int i;
2773    
2774     for (i = 0; i < timercnt; ++i)
2775     {
2776     ANHE *he = timers + i + HEAP0;
2777     ANHE_w (*he)->at += adjust;
2778     ANHE_at_cache (*he);
2779     }
2780     }
2781    
2782 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2783 root 1.324 /* also detect if there was a timejump, and act accordingly */
2784 root 1.284 inline_speed void
2785 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2786 root 1.4 {
2787 root 1.40 #if EV_USE_MONOTONIC
2788     if (expect_true (have_monotonic))
2789     {
2790 root 1.289 int i;
2791 root 1.178 ev_tstamp odiff = rtmn_diff;
2792    
2793     mn_now = get_clock ();
2794    
2795     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2796     /* interpolate in the meantime */
2797     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2798 root 1.40 {
2799 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2800     return;
2801     }
2802    
2803     now_floor = mn_now;
2804     ev_rt_now = ev_time ();
2805 root 1.4
2806 root 1.178 /* loop a few times, before making important decisions.
2807     * on the choice of "4": one iteration isn't enough,
2808     * in case we get preempted during the calls to
2809     * ev_time and get_clock. a second call is almost guaranteed
2810     * to succeed in that case, though. and looping a few more times
2811     * doesn't hurt either as we only do this on time-jumps or
2812     * in the unlikely event of having been preempted here.
2813     */
2814     for (i = 4; --i; )
2815     {
2816 root 1.373 ev_tstamp diff;
2817 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2818 root 1.4
2819 root 1.373 diff = odiff - rtmn_diff;
2820    
2821     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2822 root 1.178 return; /* all is well */
2823 root 1.4
2824 root 1.178 ev_rt_now = ev_time ();
2825     mn_now = get_clock ();
2826     now_floor = mn_now;
2827     }
2828 root 1.4
2829 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2830     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2831 root 1.140 # if EV_PERIODIC_ENABLE
2832 root 1.178 periodics_reschedule (EV_A);
2833 root 1.93 # endif
2834 root 1.4 }
2835     else
2836 root 1.40 #endif
2837 root 1.4 {
2838 root 1.85 ev_rt_now = ev_time ();
2839 root 1.40
2840 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2841 root 1.13 {
2842 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2843     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2844 root 1.140 #if EV_PERIODIC_ENABLE
2845 root 1.54 periodics_reschedule (EV_A);
2846 root 1.93 #endif
2847 root 1.13 }
2848 root 1.4
2849 root 1.85 mn_now = ev_rt_now;
2850 root 1.4 }
2851     }
2852    
2853 root 1.51 void
2854 root 1.353 ev_run (EV_P_ int flags)
2855 root 1.1 {
2856 root 1.338 #if EV_FEATURE_API
2857 root 1.294 ++loop_depth;
2858 root 1.297 #endif
2859 root 1.294
2860 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2861 root 1.298
2862 root 1.353 loop_done = EVBREAK_CANCEL;
2863 root 1.1
2864 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2865 root 1.158
2866 root 1.161 do
2867 root 1.9 {
2868 root 1.250 #if EV_VERIFY >= 2
2869 root 1.340 ev_verify (EV_A);
2870 root 1.250 #endif
2871    
2872 root 1.158 #ifndef _WIN32
2873     if (expect_false (curpid)) /* penalise the forking check even more */
2874     if (expect_false (getpid () != curpid))
2875     {
2876     curpid = getpid ();
2877     postfork = 1;
2878     }
2879     #endif
2880    
2881 root 1.157 #if EV_FORK_ENABLE
2882     /* we might have forked, so queue fork handlers */
2883     if (expect_false (postfork))
2884     if (forkcnt)
2885     {
2886     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2887 root 1.297 EV_INVOKE_PENDING;
2888 root 1.157 }
2889     #endif
2890 root 1.147
2891 root 1.337 #if EV_PREPARE_ENABLE
2892 root 1.170 /* queue prepare watchers (and execute them) */
2893 root 1.40 if (expect_false (preparecnt))
2894 root 1.20 {
2895 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2896 root 1.297 EV_INVOKE_PENDING;
2897 root 1.20 }
2898 root 1.337 #endif
2899 root 1.9
2900 root 1.298 if (expect_false (loop_done))
2901     break;
2902    
2903 root 1.70 /* we might have forked, so reify kernel state if necessary */
2904     if (expect_false (postfork))
2905     loop_fork (EV_A);
2906    
2907 root 1.1 /* update fd-related kernel structures */
2908 root 1.51 fd_reify (EV_A);
2909 root 1.1
2910     /* calculate blocking time */
2911 root 1.135 {
2912 root 1.193 ev_tstamp waittime = 0.;
2913     ev_tstamp sleeptime = 0.;
2914 root 1.12
2915 root 1.353 /* remember old timestamp for io_blocktime calculation */
2916     ev_tstamp prev_mn_now = mn_now;
2917 root 1.293
2918 root 1.353 /* update time to cancel out callback processing overhead */
2919     time_update (EV_A_ 1e100);
2920 root 1.135
2921 root 1.378 /* from now on, we want a pipe-wake-up */
2922     pipe_write_wanted = 1;
2923    
2924 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2925 root 1.383
2926 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2927 root 1.353 {
2928 root 1.287 waittime = MAX_BLOCKTIME;
2929    
2930 root 1.135 if (timercnt)
2931     {
2932 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2933 root 1.193 if (waittime > to) waittime = to;
2934 root 1.135 }
2935 root 1.4
2936 root 1.140 #if EV_PERIODIC_ENABLE
2937 root 1.135 if (periodiccnt)
2938     {
2939 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2940 root 1.193 if (waittime > to) waittime = to;
2941 root 1.135 }
2942 root 1.93 #endif
2943 root 1.4
2944 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2945 root 1.193 if (expect_false (waittime < timeout_blocktime))
2946     waittime = timeout_blocktime;
2947    
2948 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
2949     /* to pass a minimum nonzero value to the backend */
2950     if (expect_false (waittime < backend_mintime))
2951     waittime = backend_mintime;
2952    
2953 root 1.293 /* extra check because io_blocktime is commonly 0 */
2954     if (expect_false (io_blocktime))
2955     {
2956     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2957 root 1.193
2958 root 1.376 if (sleeptime > waittime - backend_mintime)
2959     sleeptime = waittime - backend_mintime;
2960 root 1.193
2961 root 1.293 if (expect_true (sleeptime > 0.))
2962     {
2963     ev_sleep (sleeptime);
2964     waittime -= sleeptime;
2965     }
2966 root 1.193 }
2967 root 1.135 }
2968 root 1.1
2969 root 1.338 #if EV_FEATURE_API
2970 root 1.162 ++loop_count;
2971 root 1.297 #endif
2972 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2973 root 1.193 backend_poll (EV_A_ waittime);
2974 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2975 root 1.178
2976 root 1.384 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2977 root 1.378
2978     if (pipe_write_skipped)
2979     {
2980     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2981     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2982     }
2983    
2984    
2985 root 1.178 /* update ev_rt_now, do magic */
2986 root 1.193 time_update (EV_A_ waittime + sleeptime);
2987 root 1.135 }
2988 root 1.1
2989 root 1.9 /* queue pending timers and reschedule them */
2990 root 1.51 timers_reify (EV_A); /* relative timers called last */
2991 root 1.140 #if EV_PERIODIC_ENABLE
2992 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2993 root 1.93 #endif
2994 root 1.1
2995 root 1.164 #if EV_IDLE_ENABLE
2996 root 1.137 /* queue idle watchers unless other events are pending */
2997 root 1.164 idle_reify (EV_A);
2998     #endif
2999 root 1.9
3000 root 1.337 #if EV_CHECK_ENABLE
3001 root 1.20 /* queue check watchers, to be executed first */
3002 root 1.123 if (expect_false (checkcnt))
3003 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3004 root 1.337 #endif
3005 root 1.9
3006 root 1.297 EV_INVOKE_PENDING;
3007 root 1.1 }
3008 root 1.219 while (expect_true (
3009     activecnt
3010     && !loop_done
3011 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3012 root 1.219 ));
3013 root 1.13
3014 root 1.353 if (loop_done == EVBREAK_ONE)
3015     loop_done = EVBREAK_CANCEL;
3016 root 1.294
3017 root 1.338 #if EV_FEATURE_API
3018 root 1.294 --loop_depth;
3019 root 1.297 #endif
3020 root 1.51 }
3021    
3022     void
3023 root 1.353 ev_break (EV_P_ int how)
3024 root 1.51 {
3025     loop_done = how;
3026 root 1.1 }
3027    
3028 root 1.285 void
3029     ev_ref (EV_P)
3030     {
3031     ++activecnt;
3032     }
3033    
3034     void
3035     ev_unref (EV_P)
3036     {
3037     --activecnt;
3038     }
3039    
3040     void
3041     ev_now_update (EV_P)
3042     {
3043     time_update (EV_A_ 1e100);
3044     }
3045    
3046     void
3047     ev_suspend (EV_P)
3048     {
3049     ev_now_update (EV_A);
3050     }
3051    
3052     void
3053     ev_resume (EV_P)
3054     {
3055     ev_tstamp mn_prev = mn_now;
3056    
3057     ev_now_update (EV_A);
3058     timers_reschedule (EV_A_ mn_now - mn_prev);
3059 root 1.286 #if EV_PERIODIC_ENABLE
3060 root 1.288 /* TODO: really do this? */
3061 root 1.285 periodics_reschedule (EV_A);
3062 root 1.286 #endif
3063 root 1.285 }
3064    
3065 root 1.8 /*****************************************************************************/
3066 root 1.288 /* singly-linked list management, used when the expected list length is short */
3067 root 1.8
3068 root 1.284 inline_size void
3069 root 1.10 wlist_add (WL *head, WL elem)
3070 root 1.1 {
3071     elem->next = *head;
3072     *head = elem;
3073     }
3074    
3075 root 1.284 inline_size void
3076 root 1.10 wlist_del (WL *head, WL elem)
3077 root 1.1 {
3078     while (*head)
3079     {
3080 root 1.307 if (expect_true (*head == elem))
3081 root 1.1 {
3082     *head = elem->next;
3083 root 1.307 break;
3084 root 1.1 }
3085    
3086     head = &(*head)->next;
3087     }
3088     }
3089    
3090 root 1.288 /* internal, faster, version of ev_clear_pending */
3091 root 1.284 inline_speed void
3092 root 1.166 clear_pending (EV_P_ W w)
3093 root 1.16 {
3094     if (w->pending)
3095     {
3096 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3097 root 1.16 w->pending = 0;
3098     }
3099     }
3100    
3101 root 1.167 int
3102     ev_clear_pending (EV_P_ void *w)
3103 root 1.166 {
3104     W w_ = (W)w;
3105     int pending = w_->pending;
3106    
3107 root 1.172 if (expect_true (pending))
3108     {
3109     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3110 root 1.288 p->w = (W)&pending_w;
3111 root 1.172 w_->pending = 0;
3112     return p->events;
3113     }
3114     else
3115 root 1.167 return 0;
3116 root 1.166 }
3117    
3118 root 1.284 inline_size void
3119 root 1.164 pri_adjust (EV_P_ W w)
3120     {
3121 root 1.295 int pri = ev_priority (w);
3122 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3123     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3124 root 1.295 ev_set_priority (w, pri);
3125 root 1.164 }
3126    
3127 root 1.284 inline_speed void
3128 root 1.51 ev_start (EV_P_ W w, int active)
3129 root 1.1 {
3130 root 1.164 pri_adjust (EV_A_ w);
3131 root 1.1 w->active = active;
3132 root 1.51 ev_ref (EV_A);
3133 root 1.1 }
3134    
3135 root 1.284 inline_size void
3136 root 1.51 ev_stop (EV_P_ W w)
3137 root 1.1 {
3138 root 1.51 ev_unref (EV_A);
3139 root 1.1 w->active = 0;
3140     }
3141    
3142 root 1.8 /*****************************************************************************/
3143    
3144 root 1.171 void noinline
3145 root 1.136 ev_io_start (EV_P_ ev_io *w)
3146 root 1.1 {
3147 root 1.37 int fd = w->fd;
3148    
3149 root 1.123 if (expect_false (ev_is_active (w)))
3150 root 1.1 return;
3151    
3152 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3153 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3154 root 1.33
3155 root 1.248 EV_FREQUENT_CHECK;
3156    
3157 root 1.51 ev_start (EV_A_ (W)w, 1);
3158 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3159 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3160 root 1.1
3161 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3162 root 1.281 w->events &= ~EV__IOFDSET;
3163 root 1.248
3164     EV_FREQUENT_CHECK;
3165 root 1.1 }
3166    
3167 root 1.171 void noinline
3168 root 1.136 ev_io_stop (EV_P_ ev_io *w)
3169 root 1.1 {
3170 root 1.166 clear_pending (EV_A_ (W)w);
3171 root 1.123 if (expect_false (!ev_is_active (w)))
3172 root 1.1 return;
3173    
3174 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3175 root 1.89
3176 root 1.248 EV_FREQUENT_CHECK;
3177    
3178 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3179 root 1.51 ev_stop (EV_A_ (W)w);
3180 root 1.1
3181 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3182 root 1.248
3183     EV_FREQUENT_CHECK;
3184 root 1.1 }
3185    
3186 root 1.171 void noinline
3187 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
3188 root 1.1 {
3189 root 1.123 if (expect_false (ev_is_active (w)))
3190 root 1.1 return;
3191    
3192 root 1.228 ev_at (w) += mn_now;
3193 root 1.12
3194 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3195 root 1.13
3196 root 1.248 EV_FREQUENT_CHECK;
3197    
3198     ++timercnt;
3199     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3200 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3201     ANHE_w (timers [ev_active (w)]) = (WT)w;
3202 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3203 root 1.235 upheap (timers, ev_active (w));
3204 root 1.62
3205 root 1.248 EV_FREQUENT_CHECK;
3206    
3207 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3208 root 1.12 }
3209    
3210 root 1.171 void noinline
3211 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
3212 root 1.12 {
3213 root 1.166 clear_pending (EV_A_ (W)w);
3214 root 1.123 if (expect_false (!ev_is_active (w)))
3215 root 1.12 return;
3216    
3217 root 1.248 EV_FREQUENT_CHECK;
3218    
3219 root 1.230 {
3220     int active = ev_active (w);
3221 root 1.62
3222 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3223 root 1.151
3224 root 1.248 --timercnt;
3225    
3226     if (expect_true (active < timercnt + HEAP0))
3227 root 1.151 {
3228 root 1.248 timers [active] = timers [timercnt + HEAP0];
3229 root 1.181 adjustheap (timers, timercnt, active);
3230 root 1.151 }
3231 root 1.248 }
3232 root 1.228
3233     ev_at (w) -= mn_now;
3234 root 1.14
3235 root 1.51 ev_stop (EV_A_ (W)w);
3236 root 1.328
3237     EV_FREQUENT_CHECK;
3238 root 1.12 }
3239 root 1.4
3240 root 1.171 void noinline
3241 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
3242 root 1.14 {
3243 root 1.248 EV_FREQUENT_CHECK;
3244    
3245 root 1.14 if (ev_is_active (w))
3246     {
3247     if (w->repeat)
3248 root 1.99 {
3249 root 1.228 ev_at (w) = mn_now + w->repeat;
3250 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3251 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3252 root 1.99 }
3253 root 1.14 else
3254 root 1.51 ev_timer_stop (EV_A_ w);
3255 root 1.14 }
3256     else if (w->repeat)
3257 root 1.112 {
3258 root 1.229 ev_at (w) = w->repeat;
3259 root 1.112 ev_timer_start (EV_A_ w);
3260     }
3261 root 1.248
3262     EV_FREQUENT_CHECK;
3263 root 1.14 }
3264    
3265 root 1.301 ev_tstamp
3266     ev_timer_remaining (EV_P_ ev_timer *w)
3267     {
3268     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3269     }
3270    
3271 root 1.140 #if EV_PERIODIC_ENABLE
3272 root 1.171 void noinline
3273 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
3274 root 1.12 {
3275 root 1.123 if (expect_false (ev_is_active (w)))
3276 root 1.12 return;
3277 root 1.1
3278 root 1.77 if (w->reschedule_cb)
3279 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3280 root 1.77 else if (w->interval)
3281     {
3282 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3283 root 1.370 periodic_recalc (EV_A_ w);
3284 root 1.77 }
3285 root 1.173 else
3286 root 1.228 ev_at (w) = w->offset;
3287 root 1.12
3288 root 1.248 EV_FREQUENT_CHECK;
3289    
3290     ++periodiccnt;
3291     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3292 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3293     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3294 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3295 root 1.235 upheap (periodics, ev_active (w));
3296 root 1.62
3297 root 1.248 EV_FREQUENT_CHECK;
3298    
3299 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3300 root 1.1 }
3301    
3302 root 1.171 void noinline
3303 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
3304 root 1.1 {
3305 root 1.166 clear_pending (EV_A_ (W)w);
3306 root 1.123 if (expect_false (!ev_is_active (w)))
3307 root 1.1 return;
3308    
3309 root 1.248 EV_FREQUENT_CHECK;
3310    
3311 root 1.230 {
3312     int active = ev_active (w);
3313 root 1.62
3314 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3315 root 1.151
3316 root 1.248 --periodiccnt;
3317    
3318     if (expect_true (active < periodiccnt + HEAP0))
3319 root 1.151 {
3320 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3321 root 1.181 adjustheap (periodics, periodiccnt, active);
3322 root 1.151 }
3323 root 1.248 }
3324 root 1.228
3325 root 1.328 ev_stop (EV_A_ (W)w);
3326    
3327 root 1.248 EV_FREQUENT_CHECK;
3328 root 1.1 }
3329    
3330 root 1.171 void noinline
3331 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
3332 root 1.77 {
3333 root 1.84 /* TODO: use adjustheap and recalculation */
3334 root 1.77 ev_periodic_stop (EV_A_ w);
3335     ev_periodic_start (EV_A_ w);
3336     }
3337 root 1.93 #endif
3338 root 1.77
3339 root 1.56 #ifndef SA_RESTART
3340     # define SA_RESTART 0
3341     #endif
3342    
3343 root 1.336 #if EV_SIGNAL_ENABLE
3344    
3345 root 1.171 void noinline
3346 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
3347 root 1.56 {
3348 root 1.123 if (expect_false (ev_is_active (w)))
3349 root 1.56 return;
3350    
3351 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3352    
3353     #if EV_MULTIPLICITY
3354 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3355 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3356    
3357     signals [w->signum - 1].loop = EV_A;
3358     #endif
3359 root 1.56
3360 root 1.303 EV_FREQUENT_CHECK;
3361    
3362     #if EV_USE_SIGNALFD
3363     if (sigfd == -2)
3364     {
3365     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3366     if (sigfd < 0 && errno == EINVAL)
3367     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3368    
3369     if (sigfd >= 0)
3370     {
3371     fd_intern (sigfd); /* doing it twice will not hurt */
3372    
3373     sigemptyset (&sigfd_set);
3374    
3375     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3376     ev_set_priority (&sigfd_w, EV_MAXPRI);
3377     ev_io_start (EV_A_ &sigfd_w);
3378     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3379     }
3380     }
3381    
3382     if (sigfd >= 0)
3383     {
3384     /* TODO: check .head */
3385     sigaddset (&sigfd_set, w->signum);
3386     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3387 root 1.207
3388 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3389     }
3390 root 1.180 #endif
3391    
3392 root 1.56 ev_start (EV_A_ (W)w, 1);
3393 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3394 root 1.56
3395 root 1.63 if (!((WL)w)->next)
3396 root 1.304 # if EV_USE_SIGNALFD
3397 root 1.306 if (sigfd < 0) /*TODO*/
3398 root 1.304 # endif
3399 root 1.306 {
3400 root 1.322 # ifdef _WIN32
3401 root 1.317 evpipe_init (EV_A);
3402    
3403 root 1.306 signal (w->signum, ev_sighandler);
3404     # else
3405     struct sigaction sa;
3406    
3407     evpipe_init (EV_A);
3408    
3409     sa.sa_handler = ev_sighandler;
3410     sigfillset (&sa.sa_mask);
3411     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3412     sigaction (w->signum, &sa, 0);
3413    
3414 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3415     {
3416     sigemptyset (&sa.sa_mask);
3417     sigaddset (&sa.sa_mask, w->signum);
3418     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3419     }
3420 root 1.67 #endif
3421 root 1.306 }
3422 root 1.248
3423     EV_FREQUENT_CHECK;
3424 root 1.56 }
3425    
3426 root 1.171 void noinline
3427 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
3428 root 1.56 {
3429 root 1.166 clear_pending (EV_A_ (W)w);
3430 root 1.123 if (expect_false (!ev_is_active (w)))
3431 root 1.56 return;
3432    
3433 root 1.248 EV_FREQUENT_CHECK;
3434    
3435 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3436 root 1.56 ev_stop (EV_A_ (W)w);
3437    
3438     if (!signals [w->signum - 1].head)
3439 root 1.306 {
3440 root 1.307 #if EV_MULTIPLICITY
3441 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3442 root 1.307 #endif
3443     #if EV_USE_SIGNALFD
3444 root 1.306 if (sigfd >= 0)
3445     {
3446 root 1.321 sigset_t ss;
3447    
3448     sigemptyset (&ss);
3449     sigaddset (&ss, w->signum);
3450 root 1.306 sigdelset (&sigfd_set, w->signum);
3451 root 1.321
3452 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3453 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3454 root 1.306 }
3455     else
3456 root 1.307 #endif
3457 root 1.306 signal (w->signum, SIG_DFL);
3458     }
3459 root 1.248
3460     EV_FREQUENT_CHECK;
3461 root 1.56 }
3462    
3463 root 1.336 #endif
3464    
3465     #if EV_CHILD_ENABLE
3466    
3467 root 1.28 void
3468 root 1.136 ev_child_start (EV_P_ ev_child *w)
3469 root 1.22 {
3470 root 1.56 #if EV_MULTIPLICITY
3471 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3472 root 1.56 #endif
3473 root 1.123 if (expect_false (ev_is_active (w)))
3474 root 1.22 return;
3475    
3476 root 1.248 EV_FREQUENT_CHECK;
3477    
3478 root 1.51 ev_start (EV_A_ (W)w, 1);
3479 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3480 root 1.248
3481     EV_FREQUENT_CHECK;
3482 root 1.22 }
3483    
3484 root 1.28 void
3485 root 1.136 ev_child_stop (EV_P_ ev_child *w)
3486 root 1.22 {
3487 root 1.166 clear_pending (EV_A_ (W)w);
3488 root 1.123 if (expect_false (!ev_is_active (w)))
3489 root 1.22 return;
3490    
3491 root 1.248 EV_FREQUENT_CHECK;
3492    
3493 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3494 root 1.51 ev_stop (EV_A_ (W)w);
3495 root 1.248
3496     EV_FREQUENT_CHECK;
3497 root 1.22 }
3498    
3499 root 1.336 #endif
3500    
3501 root 1.140 #if EV_STAT_ENABLE
3502    
3503     # ifdef _WIN32
3504 root 1.146 # undef lstat
3505     # define lstat(a,b) _stati64 (a,b)
3506 root 1.140 # endif
3507    
3508 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3509     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3510     #define MIN_STAT_INTERVAL 0.1074891
3511 root 1.143
3512 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3513 root 1.152
3514     #if EV_USE_INOTIFY
3515 root 1.326
3516     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3517     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3518 root 1.152
3519     static void noinline
3520     infy_add (EV_P_ ev_stat *w)
3521     {
3522     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3523    
3524 root 1.318 if (w->wd >= 0)
3525 root 1.152 {
3526 root 1.318 struct statfs sfs;
3527    
3528     /* now local changes will be tracked by inotify, but remote changes won't */
3529     /* unless the filesystem is known to be local, we therefore still poll */
3530     /* also do poll on <2.6.25, but with normal frequency */
3531    
3532     if (!fs_2625)
3533     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3534     else if (!statfs (w->path, &sfs)
3535     && (sfs.f_type == 0x1373 /* devfs */
3536     || sfs.f_type == 0xEF53 /* ext2/3 */
3537     || sfs.f_type == 0x3153464a /* jfs */
3538     || sfs.f_type == 0x52654973 /* reiser3 */
3539     || sfs.f_type == 0x01021994 /* tempfs */
3540     || sfs.f_type == 0x58465342 /* xfs */))
3541     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3542     else
3543     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3544     }
3545     else
3546     {
3547     /* can't use inotify, continue to stat */
3548 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3549 root 1.152
3550 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3551 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3552 root 1.233 /* but an efficiency issue only */
3553 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3554 root 1.152 {
3555 root 1.153 char path [4096];
3556 root 1.152 strcpy (path, w->path);
3557    
3558     do
3559     {
3560     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3561     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3562    
3563     char *pend = strrchr (path, '/');
3564    
3565 root 1.275 if (!pend || pend == path)
3566     break;
3567 root 1.152
3568     *pend = 0;
3569 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3570 root 1.372 }
3571 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3572     }
3573     }
3574 root 1.275
3575     if (w->wd >= 0)
3576 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3577 root 1.152
3578 root 1.318 /* now re-arm timer, if required */
3579     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3580     ev_timer_again (EV_A_ &w->timer);
3581     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3582 root 1.152 }
3583    
3584     static void noinline
3585     infy_del (EV_P_ ev_stat *w)
3586     {
3587     int slot;
3588     int wd = w->wd;
3589    
3590     if (wd < 0)
3591     return;
3592    
3593     w->wd = -2;
3594 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3595 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3596    
3597     /* remove this watcher, if others are watching it, they will rearm */
3598     inotify_rm_watch (fs_fd, wd);
3599     }
3600    
3601     static void noinline
3602     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3603     {
3604     if (slot < 0)
3605 root 1.264 /* overflow, need to check for all hash slots */
3606 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3607 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3608     else
3609     {
3610     WL w_;
3611    
3612 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3613 root 1.152 {
3614     ev_stat *w = (ev_stat *)w_;
3615     w_ = w_->next; /* lets us remove this watcher and all before it */
3616    
3617     if (w->wd == wd || wd == -1)
3618     {
3619     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3620     {
3621 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3622 root 1.152 w->wd = -1;
3623     infy_add (EV_A_ w); /* re-add, no matter what */
3624     }
3625    
3626 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3627 root 1.152 }
3628     }
3629     }
3630     }
3631    
3632     static void
3633     infy_cb (EV_P_ ev_io *w, int revents)
3634     {
3635     char buf [EV_INOTIFY_BUFSIZE];
3636     int ofs;
3637     int len = read (fs_fd, buf, sizeof (buf));
3638    
3639 root 1.326 for (ofs = 0; ofs < len; )
3640     {
3641     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3642     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3643     ofs += sizeof (struct inotify_event) + ev->len;
3644     }
3645 root 1.152 }
3646    
3647 root 1.379 inline_size void ecb_cold
3648 root 1.330 ev_check_2625 (EV_P)
3649     {
3650     /* kernels < 2.6.25 are borked
3651     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3652     */
3653     if (ev_linux_version () < 0x020619)
3654 root 1.273 return;
3655 root 1.264
3656 root 1.273 fs_2625 = 1;
3657     }
3658 root 1.264
3659 root 1.315 inline_size int
3660     infy_newfd (void)
3661     {
3662     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3663     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3664     if (fd >= 0)
3665     return fd;
3666     #endif
3667     return inotify_init ();
3668     }
3669    
3670 root 1.284 inline_size void
3671 root 1.273 infy_init (EV_P)
3672     {
3673     if (fs_fd != -2)
3674     return;
3675 root 1.264
3676 root 1.273 fs_fd = -1;
3677 root 1.264
3678 root 1.330 ev_check_2625 (EV_A);
3679 root 1.264
3680 root 1.315 fs_fd = infy_newfd ();
3681 root 1.152
3682     if (fs_fd >= 0)
3683     {
3684 root 1.315 fd_intern (fs_fd);
3685 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3686     ev_set_priority (&fs_w, EV_MAXPRI);
3687     ev_io_start (EV_A_ &fs_w);
3688 root 1.317 ev_unref (EV_A);
3689 root 1.152 }
3690     }
3691    
3692 root 1.284 inline_size void
3693 root 1.154 infy_fork (EV_P)
3694     {
3695     int slot;
3696    
3697     if (fs_fd < 0)
3698     return;
3699    
3700 root 1.317 ev_ref (EV_A);
3701 root 1.315 ev_io_stop (EV_A_ &fs_w);
3702 root 1.154 close (fs_fd);
3703 root 1.315 fs_fd = infy_newfd ();
3704    
3705     if (fs_fd >= 0)
3706     {
3707     fd_intern (fs_fd);
3708     ev_io_set (&fs_w, fs_fd, EV_READ);
3709     ev_io_start (EV_A_ &fs_w);
3710 root 1.317 ev_unref (EV_A);
3711 root 1.315 }
3712 root 1.154
3713 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3714 root 1.154 {
3715     WL w_ = fs_hash [slot].head;
3716     fs_hash [slot].head = 0;
3717    
3718     while (w_)
3719     {
3720     ev_stat *w = (ev_stat *)w_;
3721     w_ = w_->next; /* lets us add this watcher */
3722    
3723     w->wd = -1;
3724    
3725     if (fs_fd >= 0)
3726     infy_add (EV_A_ w); /* re-add, no matter what */
3727     else
3728 root 1.318 {
3729     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3730     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3731     ev_timer_again (EV_A_ &w->timer);
3732     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3733     }
3734 root 1.154 }
3735     }
3736     }
3737    
3738 root 1.152 #endif
3739    
3740 root 1.255 #ifdef _WIN32
3741     # define EV_LSTAT(p,b) _stati64 (p, b)
3742     #else
3743     # define EV_LSTAT(p,b) lstat (p, b)
3744     #endif
3745    
3746 root 1.140 void
3747     ev_stat_stat (EV_P_ ev_stat *w)
3748     {
3749     if (lstat (w->path, &w->attr) < 0)
3750     w->attr.st_nlink = 0;
3751     else if (!w->attr.st_nlink)
3752     w->attr.st_nlink = 1;
3753     }
3754    
3755 root 1.157 static void noinline
3756 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3757     {
3758     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3759    
3760 root 1.320 ev_statdata prev = w->attr;
3761 root 1.140 ev_stat_stat (EV_A_ w);
3762    
3763 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3764     if (
3765 root 1.320 prev.st_dev != w->attr.st_dev
3766     || prev.st_ino != w->attr.st_ino
3767     || prev.st_mode != w->attr.st_mode
3768     || prev.st_nlink != w->attr.st_nlink
3769     || prev.st_uid != w->attr.st_uid
3770     || prev.st_gid != w->attr.st_gid
3771     || prev.st_rdev != w->attr.st_rdev
3772     || prev.st_size != w->attr.st_size
3773     || prev.st_atime != w->attr.st_atime
3774     || prev.st_mtime != w->attr.st_mtime
3775     || prev.st_ctime != w->attr.st_ctime
3776 root 1.156 ) {
3777 root 1.320 /* we only update w->prev on actual differences */
3778     /* in case we test more often than invoke the callback, */
3779     /* to ensure that prev is always different to attr */
3780     w->prev = prev;
3781    
3782 root 1.152 #if EV_USE_INOTIFY
3783 root 1.264 if (fs_fd >= 0)
3784     {
3785     infy_del (EV_A_ w);
3786     infy_add (EV_A_ w);
3787     ev_stat_stat (EV_A_ w); /* avoid race... */
3788     }
3789 root 1.152 #endif
3790    
3791     ev_feed_event (EV_A_ w, EV_STAT);
3792     }
3793 root 1.140 }
3794    
3795     void
3796     ev_stat_start (EV_P_ ev_stat *w)
3797     {
3798     if (expect_false (ev_is_active (w)))
3799     return;
3800    
3801     ev_stat_stat (EV_A_ w);
3802    
3803 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3804     w->interval = MIN_STAT_INTERVAL;
3805 root 1.143
3806 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3807 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3808 root 1.152
3809     #if EV_USE_INOTIFY
3810     infy_init (EV_A);
3811    
3812     if (fs_fd >= 0)
3813     infy_add (EV_A_ w);
3814     else
3815     #endif
3816 root 1.318 {
3817     ev_timer_again (EV_A_ &w->timer);
3818     ev_unref (EV_A);
3819     }
3820 root 1.140
3821     ev_start (EV_A_ (W)w, 1);
3822 root 1.248
3823     EV_FREQUENT_CHECK;
3824 root 1.140 }
3825    
3826     void
3827     ev_stat_stop (EV_P_ ev_stat *w)
3828     {
3829 root 1.166 clear_pending (EV_A_ (W)w);
3830 root 1.140 if (expect_false (!ev_is_active (w)))
3831     return;
3832    
3833 root 1.248 EV_FREQUENT_CHECK;
3834    
3835 root 1.152 #if EV_USE_INOTIFY
3836     infy_del (EV_A_ w);
3837     #endif
3838 root 1.318
3839     if (ev_is_active (&w->timer))
3840     {
3841     ev_ref (EV_A);
3842     ev_timer_stop (EV_A_ &w->timer);
3843     }
3844 root 1.140
3845 root 1.134 ev_stop (EV_A_ (W)w);
3846 root 1.248
3847     EV_FREQUENT_CHECK;
3848 root 1.134 }
3849     #endif
3850    
3851 root 1.164 #if EV_IDLE_ENABLE
3852 root 1.144 void
3853     ev_idle_start (EV_P_ ev_idle *w)
3854     {
3855     if (expect_false (ev_is_active (w)))
3856     return;
3857    
3858 root 1.164 pri_adjust (EV_A_ (W)w);
3859    
3860 root 1.248 EV_FREQUENT_CHECK;
3861    
3862 root 1.164 {
3863     int active = ++idlecnt [ABSPRI (w)];
3864    
3865     ++idleall;
3866     ev_start (EV_A_ (W)w, active);
3867    
3868     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3869     idles [ABSPRI (w)][active - 1] = w;
3870     }
3871 root 1.248
3872     EV_FREQUENT_CHECK;
3873 root 1.144 }
3874    
3875     void
3876     ev_idle_stop (EV_P_ ev_idle *w)
3877     {
3878 root 1.166 clear_pending (EV_A_ (W)w);
3879 root 1.144 if (expect_false (!ev_is_active (w)))
3880     return;
3881    
3882 root 1.248 EV_FREQUENT_CHECK;
3883    
3884 root 1.144 {
3885 root 1.230 int active = ev_active (w);
3886 root 1.164
3887     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3888 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3889 root 1.164
3890     ev_stop (EV_A_ (W)w);
3891     --idleall;
3892 root 1.144 }
3893 root 1.248
3894     EV_FREQUENT_CHECK;
3895 root 1.144 }
3896 root 1.164 #endif
3897 root 1.144
3898 root 1.337 #if EV_PREPARE_ENABLE
3899 root 1.144 void
3900     ev_prepare_start (EV_P_ ev_prepare *w)
3901     {
3902     if (expect_false (ev_is_active (w)))
3903     return;
3904    
3905 root 1.248 EV_FREQUENT_CHECK;
3906    
3907 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3908     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3909     prepares [preparecnt - 1] = w;
3910 root 1.248
3911     EV_FREQUENT_CHECK;
3912 root 1.144 }
3913    
3914     void
3915     ev_prepare_stop (EV_P_ ev_prepare *w)
3916     {
3917 root 1.166 clear_pending (EV_A_ (W)w);
3918 root 1.144 if (expect_false (!ev_is_active (w)))
3919     return;
3920    
3921 root 1.248 EV_FREQUENT_CHECK;
3922    
3923 root 1.144 {
3924 root 1.230 int active = ev_active (w);
3925    
3926 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3927 root 1.230 ev_active (prepares [active - 1]) = active;
3928 root 1.144 }
3929    
3930     ev_stop (EV_A_ (W)w);
3931 root 1.248
3932     EV_FREQUENT_CHECK;
3933 root 1.144 }
3934 root 1.337 #endif
3935 root 1.144
3936 root 1.337 #if EV_CHECK_ENABLE
3937 root 1.144 void
3938     ev_check_start (EV_P_ ev_check *w)
3939     {
3940     if (expect_false (ev_is_active (w)))
3941     return;
3942    
3943 root 1.248 EV_FREQUENT_CHECK;
3944    
3945 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3946     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3947     checks [checkcnt - 1] = w;
3948 root 1.248
3949     EV_FREQUENT_CHECK;
3950 root 1.144 }
3951    
3952     void
3953     ev_check_stop (EV_P_ ev_check *w)
3954     {
3955 root 1.166 clear_pending (EV_A_ (W)w);
3956 root 1.144 if (expect_false (!ev_is_active (w)))
3957     return;
3958    
3959 root 1.248 EV_FREQUENT_CHECK;
3960    
3961 root 1.144 {
3962 root 1.230 int active = ev_active (w);
3963    
3964 root 1.144 checks [active - 1] = checks [--checkcnt];
3965 root 1.230 ev_active (checks [active - 1]) = active;
3966 root 1.144 }
3967    
3968     ev_stop (EV_A_ (W)w);
3969 root 1.248
3970     EV_FREQUENT_CHECK;
3971 root 1.144 }
3972 root 1.337 #endif
3973 root 1.144
3974     #if EV_EMBED_ENABLE
3975     void noinline
3976     ev_embed_sweep (EV_P_ ev_embed *w)
3977     {
3978 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3979 root 1.144 }
3980    
3981     static void
3982 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
3983 root 1.144 {
3984     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3985    
3986     if (ev_cb (w))
3987     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3988     else
3989 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3990 root 1.144 }
3991    
3992 root 1.189 static void
3993     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3994     {
3995     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3996    
3997 root 1.195 {
3998 root 1.306 EV_P = w->other;
3999 root 1.195
4000     while (fdchangecnt)
4001     {
4002     fd_reify (EV_A);
4003 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4004 root 1.195 }
4005     }
4006     }
4007    
4008 root 1.261 static void
4009     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4010     {
4011     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4012    
4013 root 1.277 ev_embed_stop (EV_A_ w);
4014    
4015 root 1.261 {
4016 root 1.306 EV_P = w->other;
4017 root 1.261
4018     ev_loop_fork (EV_A);
4019 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4020 root 1.261 }
4021 root 1.277
4022     ev_embed_start (EV_A_ w);
4023 root 1.261 }
4024    
4025 root 1.195 #if 0
4026     static void
4027     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4028     {
4029     ev_idle_stop (EV_A_ idle);
4030 root 1.189 }
4031 root 1.195 #endif
4032 root 1.189
4033 root 1.144 void
4034     ev_embed_start (EV_P_ ev_embed *w)
4035     {
4036     if (expect_false (ev_is_active (w)))
4037     return;
4038    
4039     {
4040 root 1.306 EV_P = w->other;
4041 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4042 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4043 root 1.144 }
4044    
4045 root 1.248 EV_FREQUENT_CHECK;
4046    
4047 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4048     ev_io_start (EV_A_ &w->io);
4049    
4050 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4051     ev_set_priority (&w->prepare, EV_MINPRI);
4052     ev_prepare_start (EV_A_ &w->prepare);
4053    
4054 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4055     ev_fork_start (EV_A_ &w->fork);
4056    
4057 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4058    
4059 root 1.144 ev_start (EV_A_ (W)w, 1);
4060 root 1.248
4061     EV_FREQUENT_CHECK;
4062 root 1.144 }
4063    
4064     void
4065     ev_embed_stop (EV_P_ ev_embed *w)
4066     {
4067 root 1.166 clear_pending (EV_A_ (W)w);
4068 root 1.144 if (expect_false (!ev_is_active (w)))
4069     return;
4070    
4071 root 1.248 EV_FREQUENT_CHECK;
4072    
4073 root 1.261 ev_io_stop (EV_A_ &w->io);
4074 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4075 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4076 root 1.248
4077 root 1.328 ev_stop (EV_A_ (W)w);
4078    
4079 root 1.248 EV_FREQUENT_CHECK;
4080 root 1.144 }
4081     #endif
4082    
4083 root 1.147 #if EV_FORK_ENABLE
4084     void
4085     ev_fork_start (EV_P_ ev_fork *w)
4086     {
4087     if (expect_false (ev_is_active (w)))
4088     return;
4089    
4090 root 1.248 EV_FREQUENT_CHECK;
4091    
4092 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4093     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4094     forks [forkcnt - 1] = w;
4095 root 1.248
4096     EV_FREQUENT_CHECK;
4097 root 1.147 }
4098    
4099     void
4100     ev_fork_stop (EV_P_ ev_fork *w)
4101     {
4102 root 1.166 clear_pending (EV_A_ (W)w);
4103 root 1.147 if (expect_false (!ev_is_active (w)))
4104     return;
4105    
4106 root 1.248 EV_FREQUENT_CHECK;
4107    
4108 root 1.147 {
4109 root 1.230 int active = ev_active (w);
4110    
4111 root 1.147 forks [active - 1] = forks [--forkcnt];
4112 root 1.230 ev_active (forks [active - 1]) = active;
4113 root 1.147 }
4114    
4115     ev_stop (EV_A_ (W)w);
4116 root 1.248
4117     EV_FREQUENT_CHECK;
4118 root 1.147 }
4119     #endif
4120    
4121 root 1.360 #if EV_CLEANUP_ENABLE
4122     void
4123     ev_cleanup_start (EV_P_ ev_cleanup *w)
4124     {
4125     if (expect_false (ev_is_active (w)))
4126     return;
4127    
4128     EV_FREQUENT_CHECK;
4129    
4130     ev_start (EV_A_ (W)w, ++cleanupcnt);
4131     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4132     cleanups [cleanupcnt - 1] = w;
4133    
4134 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4135     ev_unref (EV_A);
4136 root 1.360 EV_FREQUENT_CHECK;
4137     }
4138    
4139     void
4140     ev_cleanup_stop (EV_P_ ev_cleanup *w)
4141     {
4142     clear_pending (EV_A_ (W)w);
4143     if (expect_false (!ev_is_active (w)))
4144     return;
4145    
4146     EV_FREQUENT_CHECK;
4147 root 1.362 ev_ref (EV_A);
4148 root 1.360
4149     {
4150     int active = ev_active (w);
4151    
4152     cleanups [active - 1] = cleanups [--cleanupcnt];
4153     ev_active (cleanups [active - 1]) = active;
4154     }
4155    
4156     ev_stop (EV_A_ (W)w);
4157    
4158     EV_FREQUENT_CHECK;
4159     }
4160     #endif
4161    
4162 root 1.207 #if EV_ASYNC_ENABLE
4163     void
4164     ev_async_start (EV_P_ ev_async *w)
4165     {
4166     if (expect_false (ev_is_active (w)))
4167     return;
4168    
4169 root 1.352 w->sent = 0;
4170    
4171 root 1.207 evpipe_init (EV_A);
4172    
4173 root 1.248 EV_FREQUENT_CHECK;
4174    
4175 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4176     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4177     asyncs [asynccnt - 1] = w;
4178 root 1.248
4179     EV_FREQUENT_CHECK;
4180 root 1.207 }
4181    
4182     void
4183     ev_async_stop (EV_P_ ev_async *w)
4184     {
4185     clear_pending (EV_A_ (W)w);
4186     if (expect_false (!ev_is_active (w)))
4187     return;
4188    
4189 root 1.248 EV_FREQUENT_CHECK;
4190    
4191 root 1.207 {
4192 root 1.230 int active = ev_active (w);
4193    
4194 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4195 root 1.230 ev_active (asyncs [active - 1]) = active;
4196 root 1.207 }
4197    
4198     ev_stop (EV_A_ (W)w);
4199 root 1.248
4200     EV_FREQUENT_CHECK;
4201 root 1.207 }
4202    
4203     void
4204     ev_async_send (EV_P_ ev_async *w)
4205     {
4206     w->sent = 1;
4207 root 1.307 evpipe_write (EV_A_ &async_pending);
4208 root 1.207 }
4209     #endif
4210    
4211 root 1.1 /*****************************************************************************/
4212 root 1.10
4213 root 1.16 struct ev_once
4214     {
4215 root 1.136 ev_io io;
4216     ev_timer to;
4217 root 1.16 void (*cb)(int revents, void *arg);
4218     void *arg;
4219     };
4220    
4221     static void
4222 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4223 root 1.16 {
4224     void (*cb)(int revents, void *arg) = once->cb;
4225     void *arg = once->arg;
4226    
4227 root 1.259 ev_io_stop (EV_A_ &once->io);
4228 root 1.51 ev_timer_stop (EV_A_ &once->to);
4229 root 1.69 ev_free (once);
4230 root 1.16
4231     cb (revents, arg);
4232     }
4233    
4234     static void
4235 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4236 root 1.16 {
4237 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4238    
4239     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4240 root 1.16 }
4241    
4242     static void
4243 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4244 root 1.16 {
4245 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4246    
4247     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4248 root 1.16 }
4249    
4250     void
4251 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4252 root 1.16 {
4253 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4254 root 1.16
4255 root 1.123 if (expect_false (!once))
4256 root 1.16 {
4257 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4258 root 1.123 return;
4259     }
4260    
4261     once->cb = cb;
4262     once->arg = arg;
4263 root 1.16
4264 root 1.123 ev_init (&once->io, once_cb_io);
4265     if (fd >= 0)
4266     {
4267     ev_io_set (&once->io, fd, events);
4268     ev_io_start (EV_A_ &once->io);
4269     }
4270 root 1.16
4271 root 1.123 ev_init (&once->to, once_cb_to);
4272     if (timeout >= 0.)
4273     {
4274     ev_timer_set (&once->to, timeout, 0.);
4275     ev_timer_start (EV_A_ &once->to);
4276 root 1.16 }
4277     }
4278    
4279 root 1.282 /*****************************************************************************/
4280    
4281 root 1.288 #if EV_WALK_ENABLE
4282 root 1.379 void ecb_cold
4283 root 1.282 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4284     {
4285     int i, j;
4286     ev_watcher_list *wl, *wn;
4287    
4288     if (types & (EV_IO | EV_EMBED))
4289     for (i = 0; i < anfdmax; ++i)
4290     for (wl = anfds [i].head; wl; )
4291     {
4292     wn = wl->next;
4293    
4294     #if EV_EMBED_ENABLE
4295     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4296     {
4297     if (types & EV_EMBED)
4298     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4299     }
4300     else
4301     #endif
4302     #if EV_USE_INOTIFY
4303     if (ev_cb ((ev_io *)wl) == infy_cb)
4304     ;
4305     else
4306     #endif
4307 root 1.288 if ((ev_io *)wl != &pipe_w)
4308 root 1.282 if (types & EV_IO)
4309     cb (EV_A_ EV_IO, wl);
4310    
4311     wl = wn;
4312     }
4313    
4314     if (types & (EV_TIMER | EV_STAT))
4315     for (i = timercnt + HEAP0; i-- > HEAP0; )
4316     #if EV_STAT_ENABLE
4317     /*TODO: timer is not always active*/
4318     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4319     {
4320     if (types & EV_STAT)
4321     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4322     }
4323     else
4324     #endif
4325     if (types & EV_TIMER)
4326     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4327    
4328     #if EV_PERIODIC_ENABLE
4329     if (types & EV_PERIODIC)
4330     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4331     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4332     #endif
4333    
4334     #if EV_IDLE_ENABLE
4335     if (types & EV_IDLE)
4336 root 1.390 for (j = NUMPRI; j--; )
4337 root 1.282 for (i = idlecnt [j]; i--; )
4338     cb (EV_A_ EV_IDLE, idles [j][i]);
4339     #endif
4340    
4341     #if EV_FORK_ENABLE
4342     if (types & EV_FORK)
4343     for (i = forkcnt; i--; )
4344     if (ev_cb (forks [i]) != embed_fork_cb)
4345     cb (EV_A_ EV_FORK, forks [i]);
4346     #endif
4347    
4348     #if EV_ASYNC_ENABLE
4349     if (types & EV_ASYNC)
4350     for (i = asynccnt; i--; )
4351     cb (EV_A_ EV_ASYNC, asyncs [i]);
4352     #endif
4353    
4354 root 1.337 #if EV_PREPARE_ENABLE
4355 root 1.282 if (types & EV_PREPARE)
4356     for (i = preparecnt; i--; )
4357 root 1.337 # if EV_EMBED_ENABLE
4358 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4359 root 1.337 # endif
4360     cb (EV_A_ EV_PREPARE, prepares [i]);
4361 root 1.282 #endif
4362    
4363 root 1.337 #if EV_CHECK_ENABLE
4364 root 1.282 if (types & EV_CHECK)
4365     for (i = checkcnt; i--; )
4366     cb (EV_A_ EV_CHECK, checks [i]);
4367 root 1.337 #endif
4368 root 1.282
4369 root 1.337 #if EV_SIGNAL_ENABLE
4370 root 1.282 if (types & EV_SIGNAL)
4371 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4372 root 1.282 for (wl = signals [i].head; wl; )
4373     {
4374     wn = wl->next;
4375     cb (EV_A_ EV_SIGNAL, wl);
4376     wl = wn;
4377     }
4378 root 1.337 #endif
4379 root 1.282
4380 root 1.337 #if EV_CHILD_ENABLE
4381 root 1.282 if (types & EV_CHILD)
4382 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4383 root 1.282 for (wl = childs [i]; wl; )
4384     {
4385     wn = wl->next;
4386     cb (EV_A_ EV_CHILD, wl);
4387     wl = wn;
4388     }
4389 root 1.337 #endif
4390 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4391     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4392     }
4393     #endif
4394    
4395 root 1.188 #if EV_MULTIPLICITY
4396     #include "ev_wrap.h"
4397     #endif
4398    
4399 root 1.354 EV_CPP(})
4400 root 1.87