ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.398
Committed: Sun Sep 25 21:27:35 2011 UTC (12 years, 7 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.397: +18 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
65     # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.354 EV_CPP(extern "C" {)
189    
190 root 1.103 #ifndef _WIN32
191 root 1.71 # include <sys/time.h>
192 root 1.45 # include <sys/wait.h>
193 root 1.140 # include <unistd.h>
194 root 1.103 #else
195 root 1.256 # include <io.h>
196 root 1.103 # define WIN32_LEAN_AND_MEAN
197     # include <windows.h>
198     # ifndef EV_SELECT_IS_WINSOCKET
199     # define EV_SELECT_IS_WINSOCKET 1
200     # endif
201 root 1.331 # undef EV_AVOID_STDIO
202 root 1.45 #endif
203 root 1.103
204 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
205     * a limit of 1024 into their select. Where people have brains,
206     * OS X engineers apparently have a vacuum. Or maybe they were
207     * ordered to have a vacuum, or they do anything for money.
208     * This might help. Or not.
209     */
210     #define _DARWIN_UNLIMITED_SELECT 1
211    
212 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
213 root 1.40
214 root 1.305 /* try to deduce the maximum number of signals on this platform */
215     #if defined (EV_NSIG)
216     /* use what's provided */
217     #elif defined (NSIG)
218     # define EV_NSIG (NSIG)
219     #elif defined(_NSIG)
220     # define EV_NSIG (_NSIG)
221     #elif defined (SIGMAX)
222     # define EV_NSIG (SIGMAX+1)
223     #elif defined (SIG_MAX)
224     # define EV_NSIG (SIG_MAX+1)
225     #elif defined (_SIG_MAX)
226     # define EV_NSIG (_SIG_MAX+1)
227     #elif defined (MAXSIG)
228     # define EV_NSIG (MAXSIG+1)
229     #elif defined (MAX_SIG)
230     # define EV_NSIG (MAX_SIG+1)
231     #elif defined (SIGARRAYSIZE)
232 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233 root 1.305 #elif defined (_sys_nsig)
234     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235     #else
236     # error "unable to find value for NSIG, please report"
237 root 1.336 /* to make it compile regardless, just remove the above line, */
238     /* but consider reporting it, too! :) */
239 root 1.306 # define EV_NSIG 65
240 root 1.305 #endif
241    
242 root 1.373 #ifndef EV_USE_FLOOR
243     # define EV_USE_FLOOR 0
244     #endif
245    
246 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
247     # if __linux && __GLIBC__ >= 2
248 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249 root 1.274 # else
250     # define EV_USE_CLOCK_SYSCALL 0
251     # endif
252     #endif
253    
254 root 1.29 #ifndef EV_USE_MONOTONIC
255 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
257 root 1.253 # else
258     # define EV_USE_MONOTONIC 0
259     # endif
260 root 1.37 #endif
261    
262 root 1.118 #ifndef EV_USE_REALTIME
263 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264 root 1.118 #endif
265    
266 root 1.193 #ifndef EV_USE_NANOSLEEP
267 root 1.253 # if _POSIX_C_SOURCE >= 199309L
268 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
269 root 1.253 # else
270     # define EV_USE_NANOSLEEP 0
271     # endif
272 root 1.193 #endif
273    
274 root 1.29 #ifndef EV_USE_SELECT
275 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
276 root 1.10 #endif
277    
278 root 1.59 #ifndef EV_USE_POLL
279 root 1.104 # ifdef _WIN32
280     # define EV_USE_POLL 0
281     # else
282 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
283 root 1.104 # endif
284 root 1.41 #endif
285    
286 root 1.29 #ifndef EV_USE_EPOLL
287 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
289 root 1.220 # else
290     # define EV_USE_EPOLL 0
291     # endif
292 root 1.10 #endif
293    
294 root 1.44 #ifndef EV_USE_KQUEUE
295     # define EV_USE_KQUEUE 0
296     #endif
297    
298 root 1.118 #ifndef EV_USE_PORT
299     # define EV_USE_PORT 0
300 root 1.40 #endif
301    
302 root 1.152 #ifndef EV_USE_INOTIFY
303 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
305 root 1.220 # else
306     # define EV_USE_INOTIFY 0
307     # endif
308 root 1.152 #endif
309    
310 root 1.149 #ifndef EV_PID_HASHSIZE
311 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312 root 1.149 #endif
313    
314 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
315 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316 root 1.152 #endif
317    
318 root 1.220 #ifndef EV_USE_EVENTFD
319     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
321 root 1.220 # else
322     # define EV_USE_EVENTFD 0
323     # endif
324     #endif
325    
326 root 1.303 #ifndef EV_USE_SIGNALFD
327 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
329 root 1.303 # else
330     # define EV_USE_SIGNALFD 0
331     # endif
332     #endif
333    
334 root 1.249 #if 0 /* debugging */
335 root 1.250 # define EV_VERIFY 3
336 root 1.249 # define EV_USE_4HEAP 1
337     # define EV_HEAP_CACHE_AT 1
338     #endif
339    
340 root 1.250 #ifndef EV_VERIFY
341 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342 root 1.250 #endif
343    
344 root 1.243 #ifndef EV_USE_4HEAP
345 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
346 root 1.243 #endif
347    
348     #ifndef EV_HEAP_CACHE_AT
349 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350 root 1.243 #endif
351    
352 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353     /* which makes programs even slower. might work on other unices, too. */
354     #if EV_USE_CLOCK_SYSCALL
355     # include <syscall.h>
356     # ifdef SYS_clock_gettime
357     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358     # undef EV_USE_MONOTONIC
359     # define EV_USE_MONOTONIC 1
360     # else
361     # undef EV_USE_CLOCK_SYSCALL
362     # define EV_USE_CLOCK_SYSCALL 0
363     # endif
364     #endif
365    
366 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
367 root 1.40
368 root 1.325 #ifdef _AIX
369     /* AIX has a completely broken poll.h header */
370     # undef EV_USE_POLL
371     # define EV_USE_POLL 0
372     #endif
373    
374 root 1.40 #ifndef CLOCK_MONOTONIC
375     # undef EV_USE_MONOTONIC
376     # define EV_USE_MONOTONIC 0
377     #endif
378    
379 root 1.31 #ifndef CLOCK_REALTIME
380 root 1.40 # undef EV_USE_REALTIME
381 root 1.31 # define EV_USE_REALTIME 0
382     #endif
383 root 1.40
384 root 1.152 #if !EV_STAT_ENABLE
385 root 1.185 # undef EV_USE_INOTIFY
386 root 1.152 # define EV_USE_INOTIFY 0
387     #endif
388    
389 root 1.193 #if !EV_USE_NANOSLEEP
390 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
391     # if !defined(_WIN32) && !defined(__hpux)
392 root 1.193 # include <sys/select.h>
393     # endif
394     #endif
395    
396 root 1.152 #if EV_USE_INOTIFY
397 root 1.273 # include <sys/statfs.h>
398 root 1.152 # include <sys/inotify.h>
399 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400     # ifndef IN_DONT_FOLLOW
401     # undef EV_USE_INOTIFY
402     # define EV_USE_INOTIFY 0
403     # endif
404 root 1.152 #endif
405    
406 root 1.185 #if EV_SELECT_IS_WINSOCKET
407     # include <winsock.h>
408     #endif
409    
410 root 1.220 #if EV_USE_EVENTFD
411     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412 root 1.221 # include <stdint.h>
413 root 1.303 # ifndef EFD_NONBLOCK
414     # define EFD_NONBLOCK O_NONBLOCK
415     # endif
416     # ifndef EFD_CLOEXEC
417 root 1.311 # ifdef O_CLOEXEC
418     # define EFD_CLOEXEC O_CLOEXEC
419     # else
420     # define EFD_CLOEXEC 02000000
421     # endif
422 root 1.303 # endif
423 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424 root 1.220 #endif
425    
426 root 1.303 #if EV_USE_SIGNALFD
427 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428     # include <stdint.h>
429     # ifndef SFD_NONBLOCK
430     # define SFD_NONBLOCK O_NONBLOCK
431     # endif
432     # ifndef SFD_CLOEXEC
433     # ifdef O_CLOEXEC
434     # define SFD_CLOEXEC O_CLOEXEC
435     # else
436     # define SFD_CLOEXEC 02000000
437     # endif
438     # endif
439 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440 root 1.314
441     struct signalfd_siginfo
442     {
443     uint32_t ssi_signo;
444     char pad[128 - sizeof (uint32_t)];
445     };
446 root 1.303 #endif
447    
448 root 1.40 /**/
449 root 1.1
450 root 1.250 #if EV_VERIFY >= 3
451 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
452 root 1.248 #else
453     # define EV_FREQUENT_CHECK do { } while (0)
454     #endif
455    
456 root 1.176 /*
457 root 1.373 * This is used to work around floating point rounding problems.
458 root 1.177 * This value is good at least till the year 4000.
459 root 1.176 */
460 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462 root 1.176
463 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
464 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465 root 1.1
466 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468 root 1.347
469 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470     /* ECB.H BEGIN */
471     /*
472     * libecb - http://software.schmorp.de/pkg/libecb
473     *
474     * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475     * Copyright (©) 2011 Emanuele Giaquinta
476     * All rights reserved.
477     *
478     * Redistribution and use in source and binary forms, with or without modifica-
479     * tion, are permitted provided that the following conditions are met:
480     *
481     * 1. Redistributions of source code must retain the above copyright notice,
482     * this list of conditions and the following disclaimer.
483     *
484     * 2. Redistributions in binary form must reproduce the above copyright
485     * notice, this list of conditions and the following disclaimer in the
486     * documentation and/or other materials provided with the distribution.
487     *
488     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497     * OF THE POSSIBILITY OF SUCH DAMAGE.
498     */
499    
500     #ifndef ECB_H
501     #define ECB_H
502    
503     #ifdef _WIN32
504     typedef signed char int8_t;
505     typedef unsigned char uint8_t;
506     typedef signed short int16_t;
507     typedef unsigned short uint16_t;
508     typedef signed int int32_t;
509     typedef unsigned int uint32_t;
510     #if __GNUC__
511     typedef signed long long int64_t;
512     typedef unsigned long long uint64_t;
513     #else /* _MSC_VER || __BORLANDC__ */
514     typedef signed __int64 int64_t;
515     typedef unsigned __int64 uint64_t;
516     #endif
517     #else
518     #include <inttypes.h>
519     #endif
520 root 1.379
521     /* many compilers define _GNUC_ to some versions but then only implement
522     * what their idiot authors think are the "more important" extensions,
523 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
524 root 1.379 * or so.
525     * we try to detect these and simply assume they are not gcc - if they have
526     * an issue with that they should have done it right in the first place.
527     */
528     #ifndef ECB_GCC_VERSION
529     #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530     #define ECB_GCC_VERSION(major,minor) 0
531     #else
532     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
533     #endif
534     #endif
535    
536 root 1.391 /*****************************************************************************/
537    
538     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540    
541     #if ECB_NO_THREADS || ECB_NO_SMP
542 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
543 root 1.40 #endif
544    
545 root 1.383 #ifndef ECB_MEMORY_FENCE
546 root 1.398 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__)
547 root 1.395 #if __i386__
548 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
549 root 1.391 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
550     #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
551 root 1.383 #elif __amd64
552     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
553     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
554 root 1.391 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
555 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
556     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
557     #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
558 root 1.393 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
559 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
560 root 1.393 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
561 root 1.392 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
562 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
563 root 1.383 #endif
564     #endif
565     #endif
566    
567     #ifndef ECB_MEMORY_FENCE
568 root 1.398 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
569 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
570 root 1.392 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
571     /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
572 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
573     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
574     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
575     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
576     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
577 root 1.388 #elif defined(_WIN32)
578     #include <WinNT.h>
579 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
580 root 1.383 #endif
581     #endif
582    
583     #ifndef ECB_MEMORY_FENCE
584 root 1.392 #if !ECB_AVOID_PTHREADS
585     /*
586     * if you get undefined symbol references to pthread_mutex_lock,
587     * or failure to find pthread.h, then you should implement
588     * the ECB_MEMORY_FENCE operations for your cpu/compiler
589     * OR provide pthread.h and link against the posix thread library
590     * of your system.
591     */
592     #include <pthread.h>
593     #define ECB_NEEDS_PTHREADS 1
594     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
595    
596     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
597     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
598     #endif
599     #endif
600 root 1.383
601 root 1.392 #if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
602 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
603 root 1.392 #endif
604    
605     #if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
606 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
607     #endif
608    
609 root 1.391 /*****************************************************************************/
610    
611     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
612    
613     #if __cplusplus
614     #define ecb_inline static inline
615     #elif ECB_GCC_VERSION(2,5)
616     #define ecb_inline static __inline__
617     #elif ECB_C99
618     #define ecb_inline static inline
619     #else
620     #define ecb_inline static
621     #endif
622    
623     #if ECB_GCC_VERSION(3,3)
624     #define ecb_restrict __restrict__
625     #elif ECB_C99
626     #define ecb_restrict restrict
627     #else
628     #define ecb_restrict
629     #endif
630    
631     typedef int ecb_bool;
632    
633     #define ECB_CONCAT_(a, b) a ## b
634     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
635     #define ECB_STRINGIFY_(a) # a
636     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
637    
638     #define ecb_function_ ecb_inline
639    
640 root 1.379 #if ECB_GCC_VERSION(3,1)
641     #define ecb_attribute(attrlist) __attribute__(attrlist)
642     #define ecb_is_constant(expr) __builtin_constant_p (expr)
643     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
644     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
645     #else
646     #define ecb_attribute(attrlist)
647     #define ecb_is_constant(expr) 0
648     #define ecb_expect(expr,value) (expr)
649     #define ecb_prefetch(addr,rw,locality)
650     #endif
651    
652 root 1.391 /* no emulation for ecb_decltype */
653     #if ECB_GCC_VERSION(4,5)
654     #define ecb_decltype(x) __decltype(x)
655     #elif ECB_GCC_VERSION(3,0)
656     #define ecb_decltype(x) __typeof(x)
657     #endif
658    
659 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
660     #define ecb_noreturn ecb_attribute ((__noreturn__))
661     #define ecb_unused ecb_attribute ((__unused__))
662     #define ecb_const ecb_attribute ((__const__))
663     #define ecb_pure ecb_attribute ((__pure__))
664    
665     #if ECB_GCC_VERSION(4,3)
666     #define ecb_artificial ecb_attribute ((__artificial__))
667     #define ecb_hot ecb_attribute ((__hot__))
668     #define ecb_cold ecb_attribute ((__cold__))
669     #else
670     #define ecb_artificial
671     #define ecb_hot
672     #define ecb_cold
673     #endif
674    
675     /* put around conditional expressions if you are very sure that the */
676     /* expression is mostly true or mostly false. note that these return */
677     /* booleans, not the expression. */
678     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
679     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
680 root 1.391 /* for compatibility to the rest of the world */
681     #define ecb_likely(expr) ecb_expect_true (expr)
682     #define ecb_unlikely(expr) ecb_expect_false (expr)
683    
684     /* count trailing zero bits and count # of one bits */
685     #if ECB_GCC_VERSION(3,4)
686     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
687     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
688     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
689     #define ecb_ctz32(x) __builtin_ctz (x)
690     #define ecb_ctz64(x) __builtin_ctzll (x)
691     #define ecb_popcount32(x) __builtin_popcount (x)
692     /* no popcountll */
693     #else
694     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
695     ecb_function_ int
696     ecb_ctz32 (uint32_t x)
697     {
698     int r = 0;
699    
700     x &= ~x + 1; /* this isolates the lowest bit */
701    
702     #if ECB_branchless_on_i386
703     r += !!(x & 0xaaaaaaaa) << 0;
704     r += !!(x & 0xcccccccc) << 1;
705     r += !!(x & 0xf0f0f0f0) << 2;
706     r += !!(x & 0xff00ff00) << 3;
707     r += !!(x & 0xffff0000) << 4;
708     #else
709     if (x & 0xaaaaaaaa) r += 1;
710     if (x & 0xcccccccc) r += 2;
711     if (x & 0xf0f0f0f0) r += 4;
712     if (x & 0xff00ff00) r += 8;
713     if (x & 0xffff0000) r += 16;
714     #endif
715    
716     return r;
717     }
718    
719     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
720     ecb_function_ int
721     ecb_ctz64 (uint64_t x)
722     {
723     int shift = x & 0xffffffffU ? 0 : 32;
724     return ecb_ctz32 (x >> shift) + shift;
725     }
726    
727     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
728     ecb_function_ int
729     ecb_popcount32 (uint32_t x)
730     {
731     x -= (x >> 1) & 0x55555555;
732     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
733     x = ((x >> 4) + x) & 0x0f0f0f0f;
734     x *= 0x01010101;
735    
736     return x >> 24;
737     }
738    
739     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
740     ecb_function_ int ecb_ld32 (uint32_t x)
741     {
742     int r = 0;
743    
744     if (x >> 16) { x >>= 16; r += 16; }
745     if (x >> 8) { x >>= 8; r += 8; }
746     if (x >> 4) { x >>= 4; r += 4; }
747     if (x >> 2) { x >>= 2; r += 2; }
748     if (x >> 1) { r += 1; }
749    
750     return r;
751     }
752    
753     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
754     ecb_function_ int ecb_ld64 (uint64_t x)
755     {
756     int r = 0;
757    
758     if (x >> 32) { x >>= 32; r += 32; }
759    
760     return r + ecb_ld32 (x);
761     }
762     #endif
763    
764     /* popcount64 is only available on 64 bit cpus as gcc builtin */
765     /* so for this version we are lazy */
766     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
767     ecb_function_ int
768     ecb_popcount64 (uint64_t x)
769     {
770     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
771     }
772    
773     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
774     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
775     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
776     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
777     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
778     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
779     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
780     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
781    
782     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
783     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
784     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
785     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
786     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
787     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
788     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
789     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
790    
791     #if ECB_GCC_VERSION(4,3)
792     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
793     #define ecb_bswap32(x) __builtin_bswap32 (x)
794     #define ecb_bswap64(x) __builtin_bswap64 (x)
795     #else
796     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
797     ecb_function_ uint16_t
798     ecb_bswap16 (uint16_t x)
799     {
800     return ecb_rotl16 (x, 8);
801     }
802    
803     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
804     ecb_function_ uint32_t
805     ecb_bswap32 (uint32_t x)
806     {
807     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
808     }
809    
810     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
811     ecb_function_ uint64_t
812     ecb_bswap64 (uint64_t x)
813     {
814     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
815     }
816     #endif
817    
818     #if ECB_GCC_VERSION(4,5)
819     #define ecb_unreachable() __builtin_unreachable ()
820     #else
821     /* this seems to work fine, but gcc always emits a warning for it :/ */
822     ecb_function_ void ecb_unreachable (void) ecb_noreturn;
823     ecb_function_ void ecb_unreachable (void) { }
824     #endif
825    
826     /* try to tell the compiler that some condition is definitely true */
827     #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
828    
829     ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
830     ecb_function_ unsigned char
831     ecb_byteorder_helper (void)
832     {
833     const uint32_t u = 0x11223344;
834     return *(unsigned char *)&u;
835     }
836    
837     ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
838     ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
839     ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
840     ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
841    
842     #if ECB_GCC_VERSION(3,0) || ECB_C99
843     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
844     #else
845     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
846     #endif
847    
848 root 1.398 #if __cplusplus
849     template<typename T>
850     static inline T ecb_div_rd (T val, T div)
851     {
852     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
853     }
854     template<typename T>
855     static inline T ecb_div_ru (T val, T div)
856     {
857     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
858     }
859     #else
860     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
861     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
862     #endif
863    
864 root 1.391 #if ecb_cplusplus_does_not_suck
865     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
866     template<typename T, int N>
867     static inline int ecb_array_length (const T (&arr)[N])
868     {
869     return N;
870     }
871     #else
872     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
873     #endif
874    
875     #endif
876    
877     /* ECB.H END */
878 root 1.379
879 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
880 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
881 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
882     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
883     * libev, in which casess the memory fences become nops.
884     * alternatively, you can remove this #error and link against libpthread,
885     * which will then provide the memory fences.
886     */
887     # error "memory fences not defined for your architecture, please report"
888     #endif
889    
890     #ifndef ECB_MEMORY_FENCE
891     # define ECB_MEMORY_FENCE do { } while (0)
892     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
893     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
894 root 1.392 #endif
895    
896 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
897     #define expect_true(cond) ecb_expect_true (cond)
898     #define noinline ecb_noinline
899    
900     #define inline_size ecb_inline
901 root 1.169
902 root 1.338 #if EV_FEATURE_CODE
903 root 1.379 # define inline_speed ecb_inline
904 root 1.338 #else
905 root 1.169 # define inline_speed static noinline
906     #endif
907 root 1.40
908 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
909    
910     #if EV_MINPRI == EV_MAXPRI
911     # define ABSPRI(w) (((W)w), 0)
912     #else
913     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
914     #endif
915 root 1.42
916 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
917 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
918 root 1.103
919 root 1.136 typedef ev_watcher *W;
920     typedef ev_watcher_list *WL;
921     typedef ev_watcher_time *WT;
922 root 1.10
923 root 1.229 #define ev_active(w) ((W)(w))->active
924 root 1.228 #define ev_at(w) ((WT)(w))->at
925    
926 root 1.279 #if EV_USE_REALTIME
927 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
928 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
929 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
930     #endif
931    
932     #if EV_USE_MONOTONIC
933 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
934 root 1.198 #endif
935 root 1.54
936 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
937     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
938     #endif
939     #ifndef EV_WIN32_HANDLE_TO_FD
940 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
941 root 1.313 #endif
942     #ifndef EV_WIN32_CLOSE_FD
943     # define EV_WIN32_CLOSE_FD(fd) close (fd)
944     #endif
945    
946 root 1.103 #ifdef _WIN32
947 root 1.98 # include "ev_win32.c"
948     #endif
949 root 1.67
950 root 1.53 /*****************************************************************************/
951 root 1.1
952 root 1.373 /* define a suitable floor function (only used by periodics atm) */
953    
954     #if EV_USE_FLOOR
955     # include <math.h>
956     # define ev_floor(v) floor (v)
957     #else
958    
959     #include <float.h>
960    
961     /* a floor() replacement function, should be independent of ev_tstamp type */
962     static ev_tstamp noinline
963     ev_floor (ev_tstamp v)
964     {
965     /* the choice of shift factor is not terribly important */
966     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
967     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
968     #else
969     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
970     #endif
971    
972     /* argument too large for an unsigned long? */
973     if (expect_false (v >= shift))
974     {
975     ev_tstamp f;
976    
977     if (v == v - 1.)
978     return v; /* very large number */
979    
980     f = shift * ev_floor (v * (1. / shift));
981     return f + ev_floor (v - f);
982     }
983    
984     /* special treatment for negative args? */
985     if (expect_false (v < 0.))
986     {
987     ev_tstamp f = -ev_floor (-v);
988    
989     return f - (f == v ? 0 : 1);
990     }
991    
992     /* fits into an unsigned long */
993     return (unsigned long)v;
994     }
995    
996     #endif
997    
998     /*****************************************************************************/
999    
1000 root 1.356 #ifdef __linux
1001     # include <sys/utsname.h>
1002     #endif
1003    
1004 root 1.379 static unsigned int noinline ecb_cold
1005 root 1.355 ev_linux_version (void)
1006     {
1007     #ifdef __linux
1008 root 1.359 unsigned int v = 0;
1009 root 1.355 struct utsname buf;
1010     int i;
1011     char *p = buf.release;
1012    
1013     if (uname (&buf))
1014     return 0;
1015    
1016     for (i = 3+1; --i; )
1017     {
1018     unsigned int c = 0;
1019    
1020     for (;;)
1021     {
1022     if (*p >= '0' && *p <= '9')
1023     c = c * 10 + *p++ - '0';
1024     else
1025     {
1026     p += *p == '.';
1027     break;
1028     }
1029     }
1030    
1031     v = (v << 8) | c;
1032     }
1033    
1034     return v;
1035     #else
1036     return 0;
1037     #endif
1038     }
1039    
1040     /*****************************************************************************/
1041    
1042 root 1.331 #if EV_AVOID_STDIO
1043 root 1.379 static void noinline ecb_cold
1044 root 1.331 ev_printerr (const char *msg)
1045     {
1046     write (STDERR_FILENO, msg, strlen (msg));
1047     }
1048     #endif
1049    
1050 root 1.70 static void (*syserr_cb)(const char *msg);
1051 root 1.69
1052 root 1.379 void ecb_cold
1053 root 1.141 ev_set_syserr_cb (void (*cb)(const char *msg))
1054 root 1.69 {
1055     syserr_cb = cb;
1056     }
1057    
1058 root 1.379 static void noinline ecb_cold
1059 root 1.269 ev_syserr (const char *msg)
1060 root 1.69 {
1061 root 1.70 if (!msg)
1062     msg = "(libev) system error";
1063    
1064 root 1.69 if (syserr_cb)
1065 root 1.70 syserr_cb (msg);
1066 root 1.69 else
1067     {
1068 root 1.330 #if EV_AVOID_STDIO
1069 root 1.331 ev_printerr (msg);
1070     ev_printerr (": ");
1071 root 1.365 ev_printerr (strerror (errno));
1072 root 1.331 ev_printerr ("\n");
1073 root 1.330 #else
1074 root 1.70 perror (msg);
1075 root 1.330 #endif
1076 root 1.69 abort ();
1077     }
1078     }
1079    
1080 root 1.224 static void *
1081     ev_realloc_emul (void *ptr, long size)
1082     {
1083 root 1.334 #if __GLIBC__
1084     return realloc (ptr, size);
1085     #else
1086 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
1087 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1088 root 1.224 * the single unix specification, so work around them here.
1089     */
1090 root 1.333
1091 root 1.224 if (size)
1092     return realloc (ptr, size);
1093    
1094     free (ptr);
1095     return 0;
1096 root 1.334 #endif
1097 root 1.224 }
1098    
1099     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1100 root 1.69
1101 root 1.379 void ecb_cold
1102 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
1103 root 1.69 {
1104     alloc = cb;
1105     }
1106    
1107 root 1.150 inline_speed void *
1108 root 1.155 ev_realloc (void *ptr, long size)
1109 root 1.69 {
1110 root 1.224 ptr = alloc (ptr, size);
1111 root 1.69
1112     if (!ptr && size)
1113     {
1114 root 1.330 #if EV_AVOID_STDIO
1115 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1116 root 1.330 #else
1117 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1118 root 1.330 #endif
1119 root 1.69 abort ();
1120     }
1121    
1122     return ptr;
1123     }
1124    
1125     #define ev_malloc(size) ev_realloc (0, (size))
1126     #define ev_free(ptr) ev_realloc ((ptr), 0)
1127    
1128     /*****************************************************************************/
1129    
1130 root 1.298 /* set in reify when reification needed */
1131     #define EV_ANFD_REIFY 1
1132    
1133 root 1.288 /* file descriptor info structure */
1134 root 1.53 typedef struct
1135     {
1136 root 1.68 WL head;
1137 root 1.288 unsigned char events; /* the events watched for */
1138 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1139 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1140 root 1.269 unsigned char unused;
1141     #if EV_USE_EPOLL
1142 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1143 root 1.269 #endif
1144 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1145 root 1.103 SOCKET handle;
1146     #endif
1147 root 1.357 #if EV_USE_IOCP
1148     OVERLAPPED or, ow;
1149     #endif
1150 root 1.53 } ANFD;
1151 root 1.1
1152 root 1.288 /* stores the pending event set for a given watcher */
1153 root 1.53 typedef struct
1154     {
1155     W w;
1156 root 1.288 int events; /* the pending event set for the given watcher */
1157 root 1.53 } ANPENDING;
1158 root 1.51
1159 root 1.155 #if EV_USE_INOTIFY
1160 root 1.241 /* hash table entry per inotify-id */
1161 root 1.152 typedef struct
1162     {
1163     WL head;
1164 root 1.155 } ANFS;
1165 root 1.152 #endif
1166    
1167 root 1.241 /* Heap Entry */
1168     #if EV_HEAP_CACHE_AT
1169 root 1.288 /* a heap element */
1170 root 1.241 typedef struct {
1171 root 1.243 ev_tstamp at;
1172 root 1.241 WT w;
1173     } ANHE;
1174    
1175 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1176     #define ANHE_at(he) (he).at /* access cached at, read-only */
1177     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1178 root 1.241 #else
1179 root 1.288 /* a heap element */
1180 root 1.241 typedef WT ANHE;
1181    
1182 root 1.248 #define ANHE_w(he) (he)
1183     #define ANHE_at(he) (he)->at
1184     #define ANHE_at_cache(he)
1185 root 1.241 #endif
1186    
1187 root 1.55 #if EV_MULTIPLICITY
1188 root 1.54
1189 root 1.80 struct ev_loop
1190     {
1191 root 1.86 ev_tstamp ev_rt_now;
1192 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1193 root 1.80 #define VAR(name,decl) decl;
1194     #include "ev_vars.h"
1195     #undef VAR
1196     };
1197     #include "ev_wrap.h"
1198    
1199 root 1.116 static struct ev_loop default_loop_struct;
1200     struct ev_loop *ev_default_loop_ptr;
1201 root 1.54
1202 root 1.53 #else
1203 root 1.54
1204 root 1.86 ev_tstamp ev_rt_now;
1205 root 1.80 #define VAR(name,decl) static decl;
1206     #include "ev_vars.h"
1207     #undef VAR
1208    
1209 root 1.116 static int ev_default_loop_ptr;
1210 root 1.54
1211 root 1.51 #endif
1212 root 1.1
1213 root 1.338 #if EV_FEATURE_API
1214 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1215     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1216 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1217     #else
1218 root 1.298 # define EV_RELEASE_CB (void)0
1219     # define EV_ACQUIRE_CB (void)0
1220 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1221     #endif
1222    
1223 root 1.353 #define EVBREAK_RECURSE 0x80
1224 root 1.298
1225 root 1.8 /*****************************************************************************/
1226    
1227 root 1.292 #ifndef EV_HAVE_EV_TIME
1228 root 1.141 ev_tstamp
1229 root 1.1 ev_time (void)
1230     {
1231 root 1.29 #if EV_USE_REALTIME
1232 root 1.279 if (expect_true (have_realtime))
1233     {
1234     struct timespec ts;
1235     clock_gettime (CLOCK_REALTIME, &ts);
1236     return ts.tv_sec + ts.tv_nsec * 1e-9;
1237     }
1238     #endif
1239    
1240 root 1.1 struct timeval tv;
1241     gettimeofday (&tv, 0);
1242     return tv.tv_sec + tv.tv_usec * 1e-6;
1243     }
1244 root 1.292 #endif
1245 root 1.1
1246 root 1.284 inline_size ev_tstamp
1247 root 1.1 get_clock (void)
1248     {
1249 root 1.29 #if EV_USE_MONOTONIC
1250 root 1.40 if (expect_true (have_monotonic))
1251 root 1.1 {
1252     struct timespec ts;
1253     clock_gettime (CLOCK_MONOTONIC, &ts);
1254     return ts.tv_sec + ts.tv_nsec * 1e-9;
1255     }
1256     #endif
1257    
1258     return ev_time ();
1259     }
1260    
1261 root 1.85 #if EV_MULTIPLICITY
1262 root 1.51 ev_tstamp
1263     ev_now (EV_P)
1264     {
1265 root 1.85 return ev_rt_now;
1266 root 1.51 }
1267 root 1.85 #endif
1268 root 1.51
1269 root 1.193 void
1270     ev_sleep (ev_tstamp delay)
1271     {
1272     if (delay > 0.)
1273     {
1274     #if EV_USE_NANOSLEEP
1275     struct timespec ts;
1276    
1277 root 1.348 EV_TS_SET (ts, delay);
1278 root 1.193 nanosleep (&ts, 0);
1279     #elif defined(_WIN32)
1280 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1281 root 1.193 #else
1282     struct timeval tv;
1283    
1284 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1285 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1286 root 1.257 /* by older ones */
1287 sf-exg 1.349 EV_TV_SET (tv, delay);
1288 root 1.193 select (0, 0, 0, 0, &tv);
1289     #endif
1290     }
1291     }
1292    
1293     /*****************************************************************************/
1294    
1295 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1296 root 1.232
1297 root 1.288 /* find a suitable new size for the given array, */
1298 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1299 root 1.284 inline_size int
1300 root 1.163 array_nextsize (int elem, int cur, int cnt)
1301     {
1302     int ncur = cur + 1;
1303    
1304     do
1305     ncur <<= 1;
1306     while (cnt > ncur);
1307    
1308 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
1309     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1310 root 1.163 {
1311     ncur *= elem;
1312 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1313 root 1.163 ncur = ncur - sizeof (void *) * 4;
1314     ncur /= elem;
1315     }
1316    
1317     return ncur;
1318     }
1319    
1320 root 1.379 static void * noinline ecb_cold
1321 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1322     {
1323     *cur = array_nextsize (elem, *cur, cnt);
1324     return ev_realloc (base, elem * *cur);
1325     }
1326 root 1.29
1327 root 1.265 #define array_init_zero(base,count) \
1328     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1329    
1330 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1331 root 1.163 if (expect_false ((cnt) > (cur))) \
1332 root 1.69 { \
1333 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1334 root 1.163 (base) = (type *)array_realloc \
1335     (sizeof (type), (base), &(cur), (cnt)); \
1336     init ((base) + (ocur_), (cur) - ocur_); \
1337 root 1.1 }
1338    
1339 root 1.163 #if 0
1340 root 1.74 #define array_slim(type,stem) \
1341 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1342     { \
1343     stem ## max = array_roundsize (stem ## cnt >> 1); \
1344 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1345 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1346     }
1347 root 1.163 #endif
1348 root 1.67
1349 root 1.65 #define array_free(stem, idx) \
1350 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1351 root 1.65
1352 root 1.8 /*****************************************************************************/
1353    
1354 root 1.288 /* dummy callback for pending events */
1355     static void noinline
1356     pendingcb (EV_P_ ev_prepare *w, int revents)
1357     {
1358     }
1359    
1360 root 1.140 void noinline
1361 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
1362 root 1.1 {
1363 root 1.78 W w_ = (W)w;
1364 root 1.171 int pri = ABSPRI (w_);
1365 root 1.78
1366 root 1.123 if (expect_false (w_->pending))
1367 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1368     else
1369 root 1.32 {
1370 root 1.171 w_->pending = ++pendingcnt [pri];
1371     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1372     pendings [pri][w_->pending - 1].w = w_;
1373     pendings [pri][w_->pending - 1].events = revents;
1374 root 1.32 }
1375 root 1.1 }
1376    
1377 root 1.284 inline_speed void
1378     feed_reverse (EV_P_ W w)
1379     {
1380     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1381     rfeeds [rfeedcnt++] = w;
1382     }
1383    
1384     inline_size void
1385     feed_reverse_done (EV_P_ int revents)
1386     {
1387     do
1388     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1389     while (rfeedcnt);
1390     }
1391    
1392     inline_speed void
1393 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1394 root 1.27 {
1395     int i;
1396    
1397     for (i = 0; i < eventcnt; ++i)
1398 root 1.78 ev_feed_event (EV_A_ events [i], type);
1399 root 1.27 }
1400    
1401 root 1.141 /*****************************************************************************/
1402    
1403 root 1.284 inline_speed void
1404 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1405 root 1.1 {
1406     ANFD *anfd = anfds + fd;
1407 root 1.136 ev_io *w;
1408 root 1.1
1409 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1410 root 1.1 {
1411 root 1.79 int ev = w->events & revents;
1412 root 1.1
1413     if (ev)
1414 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1415 root 1.1 }
1416     }
1417    
1418 root 1.298 /* do not submit kernel events for fds that have reify set */
1419     /* because that means they changed while we were polling for new events */
1420     inline_speed void
1421     fd_event (EV_P_ int fd, int revents)
1422     {
1423     ANFD *anfd = anfds + fd;
1424    
1425     if (expect_true (!anfd->reify))
1426 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1427 root 1.298 }
1428    
1429 root 1.79 void
1430     ev_feed_fd_event (EV_P_ int fd, int revents)
1431     {
1432 root 1.168 if (fd >= 0 && fd < anfdmax)
1433 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1434 root 1.79 }
1435    
1436 root 1.288 /* make sure the external fd watch events are in-sync */
1437     /* with the kernel/libev internal state */
1438 root 1.284 inline_size void
1439 root 1.51 fd_reify (EV_P)
1440 root 1.9 {
1441     int i;
1442    
1443 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1444     for (i = 0; i < fdchangecnt; ++i)
1445     {
1446     int fd = fdchanges [i];
1447     ANFD *anfd = anfds + fd;
1448    
1449 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1450 root 1.371 {
1451     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1452    
1453     if (handle != anfd->handle)
1454     {
1455     unsigned long arg;
1456    
1457     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1458    
1459     /* handle changed, but fd didn't - we need to do it in two steps */
1460     backend_modify (EV_A_ fd, anfd->events, 0);
1461     anfd->events = 0;
1462     anfd->handle = handle;
1463     }
1464     }
1465     }
1466     #endif
1467    
1468 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1469     {
1470     int fd = fdchanges [i];
1471     ANFD *anfd = anfds + fd;
1472 root 1.136 ev_io *w;
1473 root 1.27
1474 root 1.350 unsigned char o_events = anfd->events;
1475     unsigned char o_reify = anfd->reify;
1476 root 1.27
1477 root 1.350 anfd->reify = 0;
1478 root 1.27
1479 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1480     {
1481     anfd->events = 0;
1482 root 1.184
1483 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1484     anfd->events |= (unsigned char)w->events;
1485 root 1.27
1486 root 1.351 if (o_events != anfd->events)
1487 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1488     }
1489    
1490     if (o_reify & EV__IOFDSET)
1491     backend_modify (EV_A_ fd, o_events, anfd->events);
1492 root 1.27 }
1493    
1494     fdchangecnt = 0;
1495     }
1496    
1497 root 1.288 /* something about the given fd changed */
1498 root 1.284 inline_size void
1499 root 1.183 fd_change (EV_P_ int fd, int flags)
1500 root 1.27 {
1501 root 1.183 unsigned char reify = anfds [fd].reify;
1502 root 1.184 anfds [fd].reify |= flags;
1503 root 1.27
1504 root 1.183 if (expect_true (!reify))
1505     {
1506     ++fdchangecnt;
1507     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1508     fdchanges [fdchangecnt - 1] = fd;
1509     }
1510 root 1.9 }
1511    
1512 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1513 root 1.379 inline_speed void ecb_cold
1514 root 1.51 fd_kill (EV_P_ int fd)
1515 root 1.41 {
1516 root 1.136 ev_io *w;
1517 root 1.41
1518 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1519 root 1.41 {
1520 root 1.51 ev_io_stop (EV_A_ w);
1521 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1522 root 1.41 }
1523     }
1524    
1525 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1526 root 1.379 inline_size int ecb_cold
1527 root 1.71 fd_valid (int fd)
1528     {
1529 root 1.103 #ifdef _WIN32
1530 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1531 root 1.71 #else
1532     return fcntl (fd, F_GETFD) != -1;
1533     #endif
1534     }
1535    
1536 root 1.19 /* called on EBADF to verify fds */
1537 root 1.379 static void noinline ecb_cold
1538 root 1.51 fd_ebadf (EV_P)
1539 root 1.19 {
1540     int fd;
1541    
1542     for (fd = 0; fd < anfdmax; ++fd)
1543 root 1.27 if (anfds [fd].events)
1544 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1545 root 1.51 fd_kill (EV_A_ fd);
1546 root 1.41 }
1547    
1548     /* called on ENOMEM in select/poll to kill some fds and retry */
1549 root 1.379 static void noinline ecb_cold
1550 root 1.51 fd_enomem (EV_P)
1551 root 1.41 {
1552 root 1.62 int fd;
1553 root 1.41
1554 root 1.62 for (fd = anfdmax; fd--; )
1555 root 1.41 if (anfds [fd].events)
1556     {
1557 root 1.51 fd_kill (EV_A_ fd);
1558 root 1.307 break;
1559 root 1.41 }
1560 root 1.19 }
1561    
1562 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1563 root 1.140 static void noinline
1564 root 1.56 fd_rearm_all (EV_P)
1565     {
1566     int fd;
1567    
1568     for (fd = 0; fd < anfdmax; ++fd)
1569     if (anfds [fd].events)
1570     {
1571     anfds [fd].events = 0;
1572 root 1.268 anfds [fd].emask = 0;
1573 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1574 root 1.56 }
1575     }
1576    
1577 root 1.336 /* used to prepare libev internal fd's */
1578     /* this is not fork-safe */
1579     inline_speed void
1580     fd_intern (int fd)
1581     {
1582     #ifdef _WIN32
1583     unsigned long arg = 1;
1584     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1585     #else
1586     fcntl (fd, F_SETFD, FD_CLOEXEC);
1587     fcntl (fd, F_SETFL, O_NONBLOCK);
1588     #endif
1589     }
1590    
1591 root 1.8 /*****************************************************************************/
1592    
1593 root 1.235 /*
1594 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1595 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1596     * the branching factor of the d-tree.
1597     */
1598    
1599     /*
1600 root 1.235 * at the moment we allow libev the luxury of two heaps,
1601     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1602     * which is more cache-efficient.
1603     * the difference is about 5% with 50000+ watchers.
1604     */
1605 root 1.241 #if EV_USE_4HEAP
1606 root 1.235
1607 root 1.237 #define DHEAP 4
1608     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1609 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1610 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1611 root 1.235
1612     /* away from the root */
1613 root 1.284 inline_speed void
1614 root 1.241 downheap (ANHE *heap, int N, int k)
1615 root 1.235 {
1616 root 1.241 ANHE he = heap [k];
1617     ANHE *E = heap + N + HEAP0;
1618 root 1.235
1619     for (;;)
1620     {
1621     ev_tstamp minat;
1622 root 1.241 ANHE *minpos;
1623 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1624 root 1.235
1625 root 1.248 /* find minimum child */
1626 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1627 root 1.235 {
1628 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1629     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1630     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1631     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1632 root 1.235 }
1633 root 1.240 else if (pos < E)
1634 root 1.235 {
1635 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1636     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1637     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1638     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1639 root 1.235 }
1640 root 1.240 else
1641     break;
1642 root 1.235
1643 root 1.241 if (ANHE_at (he) <= minat)
1644 root 1.235 break;
1645    
1646 root 1.247 heap [k] = *minpos;
1647 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1648 root 1.235
1649     k = minpos - heap;
1650     }
1651    
1652 root 1.247 heap [k] = he;
1653 root 1.241 ev_active (ANHE_w (he)) = k;
1654 root 1.235 }
1655    
1656 root 1.248 #else /* 4HEAP */
1657 root 1.235
1658     #define HEAP0 1
1659 root 1.247 #define HPARENT(k) ((k) >> 1)
1660 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1661 root 1.235
1662 root 1.248 /* away from the root */
1663 root 1.284 inline_speed void
1664 root 1.248 downheap (ANHE *heap, int N, int k)
1665 root 1.1 {
1666 root 1.241 ANHE he = heap [k];
1667 root 1.1
1668 root 1.228 for (;;)
1669 root 1.1 {
1670 root 1.248 int c = k << 1;
1671 root 1.179
1672 root 1.309 if (c >= N + HEAP0)
1673 root 1.179 break;
1674    
1675 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1676     ? 1 : 0;
1677    
1678     if (ANHE_at (he) <= ANHE_at (heap [c]))
1679     break;
1680    
1681     heap [k] = heap [c];
1682 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1683 root 1.248
1684     k = c;
1685 root 1.1 }
1686    
1687 root 1.243 heap [k] = he;
1688 root 1.248 ev_active (ANHE_w (he)) = k;
1689 root 1.1 }
1690 root 1.248 #endif
1691 root 1.1
1692 root 1.248 /* towards the root */
1693 root 1.284 inline_speed void
1694 root 1.248 upheap (ANHE *heap, int k)
1695 root 1.1 {
1696 root 1.241 ANHE he = heap [k];
1697 root 1.1
1698 root 1.179 for (;;)
1699 root 1.1 {
1700 root 1.248 int p = HPARENT (k);
1701 root 1.179
1702 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1703 root 1.179 break;
1704 root 1.1
1705 root 1.248 heap [k] = heap [p];
1706 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1707 root 1.248 k = p;
1708 root 1.1 }
1709    
1710 root 1.241 heap [k] = he;
1711     ev_active (ANHE_w (he)) = k;
1712 root 1.1 }
1713    
1714 root 1.288 /* move an element suitably so it is in a correct place */
1715 root 1.284 inline_size void
1716 root 1.241 adjustheap (ANHE *heap, int N, int k)
1717 root 1.84 {
1718 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1719 root 1.247 upheap (heap, k);
1720     else
1721     downheap (heap, N, k);
1722 root 1.84 }
1723    
1724 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1725 root 1.284 inline_size void
1726 root 1.248 reheap (ANHE *heap, int N)
1727     {
1728     int i;
1729 root 1.251
1730 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1731     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1732     for (i = 0; i < N; ++i)
1733     upheap (heap, i + HEAP0);
1734     }
1735    
1736 root 1.8 /*****************************************************************************/
1737    
1738 root 1.288 /* associate signal watchers to a signal signal */
1739 root 1.7 typedef struct
1740     {
1741 root 1.307 EV_ATOMIC_T pending;
1742 root 1.306 #if EV_MULTIPLICITY
1743     EV_P;
1744     #endif
1745 root 1.68 WL head;
1746 root 1.7 } ANSIG;
1747    
1748 root 1.306 static ANSIG signals [EV_NSIG - 1];
1749 root 1.7
1750 root 1.207 /*****************************************************************************/
1751    
1752 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1753 root 1.207
1754 root 1.379 static void noinline ecb_cold
1755 root 1.207 evpipe_init (EV_P)
1756     {
1757 root 1.288 if (!ev_is_active (&pipe_w))
1758 root 1.207 {
1759 root 1.336 # if EV_USE_EVENTFD
1760 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1761     if (evfd < 0 && errno == EINVAL)
1762     evfd = eventfd (0, 0);
1763    
1764     if (evfd >= 0)
1765 root 1.220 {
1766     evpipe [0] = -1;
1767 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1768 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1769 root 1.220 }
1770     else
1771 root 1.336 # endif
1772 root 1.220 {
1773     while (pipe (evpipe))
1774 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1775 root 1.207
1776 root 1.220 fd_intern (evpipe [0]);
1777     fd_intern (evpipe [1]);
1778 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1779 root 1.220 }
1780 root 1.207
1781 root 1.288 ev_io_start (EV_A_ &pipe_w);
1782 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1783 root 1.207 }
1784     }
1785    
1786 root 1.380 inline_speed void
1787 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1788 root 1.207 {
1789 root 1.383 if (expect_true (*flag))
1790 root 1.387 return;
1791 root 1.383
1792     *flag = 1;
1793    
1794 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1795 root 1.383
1796     pipe_write_skipped = 1;
1797 root 1.378
1798 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1799 root 1.214
1800 root 1.383 if (pipe_write_wanted)
1801     {
1802     int old_errno;
1803 root 1.378
1804 root 1.392 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1805 root 1.220
1806 root 1.383 old_errno = errno; /* save errno because write will clobber it */
1807 root 1.380
1808 root 1.220 #if EV_USE_EVENTFD
1809 root 1.383 if (evfd >= 0)
1810     {
1811     uint64_t counter = 1;
1812     write (evfd, &counter, sizeof (uint64_t));
1813     }
1814     else
1815 root 1.220 #endif
1816 root 1.383 {
1817     /* win32 people keep sending patches that change this write() to send() */
1818     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1819     /* so when you think this write should be a send instead, please find out */
1820     /* where your send() is from - it's definitely not the microsoft send, and */
1821     /* tell me. thank you. */
1822     write (evpipe [1], &(evpipe [1]), 1);
1823     }
1824 root 1.214
1825 root 1.383 errno = old_errno;
1826 root 1.207 }
1827     }
1828    
1829 root 1.288 /* called whenever the libev signal pipe */
1830     /* got some events (signal, async) */
1831 root 1.207 static void
1832     pipecb (EV_P_ ev_io *iow, int revents)
1833     {
1834 root 1.307 int i;
1835    
1836 root 1.378 if (revents & EV_READ)
1837     {
1838 root 1.220 #if EV_USE_EVENTFD
1839 root 1.378 if (evfd >= 0)
1840     {
1841     uint64_t counter;
1842     read (evfd, &counter, sizeof (uint64_t));
1843     }
1844     else
1845 root 1.220 #endif
1846 root 1.378 {
1847     char dummy;
1848     /* see discussion in evpipe_write when you think this read should be recv in win32 */
1849     read (evpipe [0], &dummy, 1);
1850     }
1851 root 1.220 }
1852 root 1.207
1853 root 1.378 pipe_write_skipped = 0;
1854    
1855 root 1.369 #if EV_SIGNAL_ENABLE
1856 root 1.307 if (sig_pending)
1857 root 1.372 {
1858 root 1.307 sig_pending = 0;
1859 root 1.207
1860 root 1.307 for (i = EV_NSIG - 1; i--; )
1861     if (expect_false (signals [i].pending))
1862     ev_feed_signal_event (EV_A_ i + 1);
1863 root 1.207 }
1864 root 1.369 #endif
1865 root 1.207
1866 root 1.209 #if EV_ASYNC_ENABLE
1867 root 1.307 if (async_pending)
1868 root 1.207 {
1869 root 1.307 async_pending = 0;
1870 root 1.207
1871     for (i = asynccnt; i--; )
1872     if (asyncs [i]->sent)
1873     {
1874     asyncs [i]->sent = 0;
1875     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1876     }
1877     }
1878 root 1.209 #endif
1879 root 1.207 }
1880    
1881     /*****************************************************************************/
1882    
1883 root 1.366 void
1884     ev_feed_signal (int signum)
1885 root 1.7 {
1886 root 1.207 #if EV_MULTIPLICITY
1887 root 1.306 EV_P = signals [signum - 1].loop;
1888 root 1.366
1889     if (!EV_A)
1890     return;
1891 root 1.207 #endif
1892    
1893 root 1.381 if (!ev_active (&pipe_w))
1894     return;
1895 root 1.378
1896 root 1.366 signals [signum - 1].pending = 1;
1897     evpipe_write (EV_A_ &sig_pending);
1898     }
1899    
1900     static void
1901     ev_sighandler (int signum)
1902     {
1903 root 1.322 #ifdef _WIN32
1904 root 1.218 signal (signum, ev_sighandler);
1905 root 1.67 #endif
1906    
1907 root 1.366 ev_feed_signal (signum);
1908 root 1.7 }
1909    
1910 root 1.140 void noinline
1911 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1912     {
1913 root 1.80 WL w;
1914    
1915 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1916     return;
1917    
1918     --signum;
1919    
1920 root 1.79 #if EV_MULTIPLICITY
1921 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1922     /* or, likely more useful, feeding a signal nobody is waiting for */
1923 root 1.79
1924 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1925 root 1.306 return;
1926 root 1.307 #endif
1927 root 1.306
1928 root 1.307 signals [signum].pending = 0;
1929 root 1.79
1930     for (w = signals [signum].head; w; w = w->next)
1931     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1932     }
1933    
1934 root 1.303 #if EV_USE_SIGNALFD
1935     static void
1936     sigfdcb (EV_P_ ev_io *iow, int revents)
1937     {
1938 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1939 root 1.303
1940     for (;;)
1941     {
1942     ssize_t res = read (sigfd, si, sizeof (si));
1943    
1944     /* not ISO-C, as res might be -1, but works with SuS */
1945     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1946     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1947    
1948     if (res < (ssize_t)sizeof (si))
1949     break;
1950     }
1951     }
1952     #endif
1953    
1954 root 1.336 #endif
1955    
1956 root 1.8 /*****************************************************************************/
1957    
1958 root 1.336 #if EV_CHILD_ENABLE
1959 root 1.182 static WL childs [EV_PID_HASHSIZE];
1960 root 1.71
1961 root 1.136 static ev_signal childev;
1962 root 1.59
1963 root 1.206 #ifndef WIFCONTINUED
1964     # define WIFCONTINUED(status) 0
1965     #endif
1966    
1967 root 1.288 /* handle a single child status event */
1968 root 1.284 inline_speed void
1969 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1970 root 1.47 {
1971 root 1.136 ev_child *w;
1972 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1973 root 1.47
1974 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1975 root 1.206 {
1976     if ((w->pid == pid || !w->pid)
1977     && (!traced || (w->flags & 1)))
1978     {
1979 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1980 root 1.206 w->rpid = pid;
1981     w->rstatus = status;
1982     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1983     }
1984     }
1985 root 1.47 }
1986    
1987 root 1.142 #ifndef WCONTINUED
1988     # define WCONTINUED 0
1989     #endif
1990    
1991 root 1.288 /* called on sigchld etc., calls waitpid */
1992 root 1.47 static void
1993 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1994 root 1.22 {
1995     int pid, status;
1996    
1997 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1998     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1999     if (!WCONTINUED
2000     || errno != EINVAL
2001     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2002     return;
2003    
2004 root 1.216 /* make sure we are called again until all children have been reaped */
2005 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2006     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2007 root 1.47
2008 root 1.216 child_reap (EV_A_ pid, pid, status);
2009 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2010 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2011 root 1.22 }
2012    
2013 root 1.45 #endif
2014    
2015 root 1.22 /*****************************************************************************/
2016    
2017 root 1.357 #if EV_USE_IOCP
2018     # include "ev_iocp.c"
2019     #endif
2020 root 1.118 #if EV_USE_PORT
2021     # include "ev_port.c"
2022     #endif
2023 root 1.44 #if EV_USE_KQUEUE
2024     # include "ev_kqueue.c"
2025     #endif
2026 root 1.29 #if EV_USE_EPOLL
2027 root 1.1 # include "ev_epoll.c"
2028     #endif
2029 root 1.59 #if EV_USE_POLL
2030 root 1.41 # include "ev_poll.c"
2031     #endif
2032 root 1.29 #if EV_USE_SELECT
2033 root 1.1 # include "ev_select.c"
2034     #endif
2035    
2036 root 1.379 int ecb_cold
2037 root 1.24 ev_version_major (void)
2038     {
2039     return EV_VERSION_MAJOR;
2040     }
2041    
2042 root 1.379 int ecb_cold
2043 root 1.24 ev_version_minor (void)
2044     {
2045     return EV_VERSION_MINOR;
2046     }
2047    
2048 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2049 root 1.379 int inline_size ecb_cold
2050 root 1.51 enable_secure (void)
2051 root 1.41 {
2052 root 1.103 #ifdef _WIN32
2053 root 1.49 return 0;
2054     #else
2055 root 1.41 return getuid () != geteuid ()
2056     || getgid () != getegid ();
2057 root 1.49 #endif
2058 root 1.41 }
2059    
2060 root 1.379 unsigned int ecb_cold
2061 root 1.129 ev_supported_backends (void)
2062     {
2063 root 1.130 unsigned int flags = 0;
2064 root 1.129
2065     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2066     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2067     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2068     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2069     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2070    
2071     return flags;
2072     }
2073    
2074 root 1.379 unsigned int ecb_cold
2075 root 1.130 ev_recommended_backends (void)
2076 root 1.1 {
2077 root 1.131 unsigned int flags = ev_supported_backends ();
2078 root 1.129
2079     #ifndef __NetBSD__
2080     /* kqueue is borked on everything but netbsd apparently */
2081     /* it usually doesn't work correctly on anything but sockets and pipes */
2082     flags &= ~EVBACKEND_KQUEUE;
2083     #endif
2084     #ifdef __APPLE__
2085 root 1.278 /* only select works correctly on that "unix-certified" platform */
2086     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2087     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2088 root 1.129 #endif
2089 root 1.342 #ifdef __FreeBSD__
2090     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2091     #endif
2092 root 1.129
2093     return flags;
2094 root 1.51 }
2095    
2096 root 1.379 unsigned int ecb_cold
2097 root 1.134 ev_embeddable_backends (void)
2098     {
2099 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2100    
2101 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2102 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2103     flags &= ~EVBACKEND_EPOLL;
2104 root 1.196
2105     return flags;
2106 root 1.134 }
2107    
2108     unsigned int
2109 root 1.130 ev_backend (EV_P)
2110     {
2111     return backend;
2112     }
2113    
2114 root 1.338 #if EV_FEATURE_API
2115 root 1.162 unsigned int
2116 root 1.340 ev_iteration (EV_P)
2117 root 1.162 {
2118     return loop_count;
2119     }
2120    
2121 root 1.294 unsigned int
2122 root 1.340 ev_depth (EV_P)
2123 root 1.294 {
2124     return loop_depth;
2125     }
2126    
2127 root 1.193 void
2128     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2129     {
2130     io_blocktime = interval;
2131     }
2132    
2133     void
2134     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2135     {
2136     timeout_blocktime = interval;
2137     }
2138    
2139 root 1.297 void
2140     ev_set_userdata (EV_P_ void *data)
2141     {
2142     userdata = data;
2143     }
2144    
2145     void *
2146     ev_userdata (EV_P)
2147     {
2148     return userdata;
2149     }
2150    
2151 root 1.379 void
2152     ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2153 root 1.297 {
2154     invoke_cb = invoke_pending_cb;
2155     }
2156    
2157 root 1.379 void
2158     ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2159 root 1.297 {
2160 root 1.298 release_cb = release;
2161     acquire_cb = acquire;
2162 root 1.297 }
2163     #endif
2164    
2165 root 1.288 /* initialise a loop structure, must be zero-initialised */
2166 root 1.379 static void noinline ecb_cold
2167 root 1.108 loop_init (EV_P_ unsigned int flags)
2168 root 1.51 {
2169 root 1.130 if (!backend)
2170 root 1.23 {
2171 root 1.366 origflags = flags;
2172    
2173 root 1.279 #if EV_USE_REALTIME
2174     if (!have_realtime)
2175     {
2176     struct timespec ts;
2177    
2178     if (!clock_gettime (CLOCK_REALTIME, &ts))
2179     have_realtime = 1;
2180     }
2181     #endif
2182    
2183 root 1.29 #if EV_USE_MONOTONIC
2184 root 1.279 if (!have_monotonic)
2185     {
2186     struct timespec ts;
2187    
2188     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2189     have_monotonic = 1;
2190     }
2191 root 1.1 #endif
2192    
2193 root 1.306 /* pid check not overridable via env */
2194     #ifndef _WIN32
2195     if (flags & EVFLAG_FORKCHECK)
2196     curpid = getpid ();
2197     #endif
2198    
2199     if (!(flags & EVFLAG_NOENV)
2200     && !enable_secure ()
2201     && getenv ("LIBEV_FLAGS"))
2202     flags = atoi (getenv ("LIBEV_FLAGS"));
2203    
2204 root 1.378 ev_rt_now = ev_time ();
2205     mn_now = get_clock ();
2206     now_floor = mn_now;
2207     rtmn_diff = ev_rt_now - mn_now;
2208 root 1.338 #if EV_FEATURE_API
2209 root 1.378 invoke_cb = ev_invoke_pending;
2210 root 1.297 #endif
2211 root 1.1
2212 root 1.378 io_blocktime = 0.;
2213     timeout_blocktime = 0.;
2214     backend = 0;
2215     backend_fd = -1;
2216     sig_pending = 0;
2217 root 1.307 #if EV_ASYNC_ENABLE
2218 root 1.378 async_pending = 0;
2219 root 1.307 #endif
2220 root 1.378 pipe_write_skipped = 0;
2221     pipe_write_wanted = 0;
2222 root 1.209 #if EV_USE_INOTIFY
2223 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2224 root 1.209 #endif
2225 root 1.303 #if EV_USE_SIGNALFD
2226 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2227 root 1.303 #endif
2228 root 1.193
2229 root 1.366 if (!(flags & EVBACKEND_MASK))
2230 root 1.129 flags |= ev_recommended_backends ();
2231 root 1.41
2232 root 1.357 #if EV_USE_IOCP
2233     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2234     #endif
2235 root 1.118 #if EV_USE_PORT
2236 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2237 root 1.118 #endif
2238 root 1.44 #if EV_USE_KQUEUE
2239 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2240 root 1.44 #endif
2241 root 1.29 #if EV_USE_EPOLL
2242 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2243 root 1.41 #endif
2244 root 1.59 #if EV_USE_POLL
2245 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2246 root 1.1 #endif
2247 root 1.29 #if EV_USE_SELECT
2248 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2249 root 1.1 #endif
2250 root 1.70
2251 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2252    
2253 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2254 root 1.288 ev_init (&pipe_w, pipecb);
2255     ev_set_priority (&pipe_w, EV_MAXPRI);
2256 root 1.336 #endif
2257 root 1.56 }
2258     }
2259    
2260 root 1.288 /* free up a loop structure */
2261 root 1.379 void ecb_cold
2262 root 1.359 ev_loop_destroy (EV_P)
2263 root 1.56 {
2264 root 1.65 int i;
2265    
2266 root 1.364 #if EV_MULTIPLICITY
2267 root 1.363 /* mimic free (0) */
2268     if (!EV_A)
2269     return;
2270 root 1.364 #endif
2271 root 1.363
2272 root 1.361 #if EV_CLEANUP_ENABLE
2273     /* queue cleanup watchers (and execute them) */
2274     if (expect_false (cleanupcnt))
2275     {
2276     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2277     EV_INVOKE_PENDING;
2278     }
2279     #endif
2280    
2281 root 1.359 #if EV_CHILD_ENABLE
2282     if (ev_is_active (&childev))
2283     {
2284     ev_ref (EV_A); /* child watcher */
2285     ev_signal_stop (EV_A_ &childev);
2286     }
2287     #endif
2288    
2289 root 1.288 if (ev_is_active (&pipe_w))
2290 root 1.207 {
2291 root 1.303 /*ev_ref (EV_A);*/
2292     /*ev_io_stop (EV_A_ &pipe_w);*/
2293 root 1.207
2294 root 1.220 #if EV_USE_EVENTFD
2295     if (evfd >= 0)
2296     close (evfd);
2297     #endif
2298    
2299     if (evpipe [0] >= 0)
2300     {
2301 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2302     EV_WIN32_CLOSE_FD (evpipe [1]);
2303 root 1.220 }
2304 root 1.207 }
2305    
2306 root 1.303 #if EV_USE_SIGNALFD
2307     if (ev_is_active (&sigfd_w))
2308 root 1.317 close (sigfd);
2309 root 1.303 #endif
2310    
2311 root 1.152 #if EV_USE_INOTIFY
2312     if (fs_fd >= 0)
2313     close (fs_fd);
2314     #endif
2315    
2316     if (backend_fd >= 0)
2317     close (backend_fd);
2318    
2319 root 1.357 #if EV_USE_IOCP
2320     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2321     #endif
2322 root 1.118 #if EV_USE_PORT
2323 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2324 root 1.118 #endif
2325 root 1.56 #if EV_USE_KQUEUE
2326 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2327 root 1.56 #endif
2328     #if EV_USE_EPOLL
2329 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2330 root 1.56 #endif
2331 root 1.59 #if EV_USE_POLL
2332 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2333 root 1.56 #endif
2334     #if EV_USE_SELECT
2335 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2336 root 1.56 #endif
2337 root 1.1
2338 root 1.65 for (i = NUMPRI; i--; )
2339 root 1.164 {
2340     array_free (pending, [i]);
2341     #if EV_IDLE_ENABLE
2342     array_free (idle, [i]);
2343     #endif
2344     }
2345 root 1.65
2346 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2347 root 1.186
2348 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2349 root 1.284 array_free (rfeed, EMPTY);
2350 root 1.164 array_free (fdchange, EMPTY);
2351     array_free (timer, EMPTY);
2352 root 1.140 #if EV_PERIODIC_ENABLE
2353 root 1.164 array_free (periodic, EMPTY);
2354 root 1.93 #endif
2355 root 1.187 #if EV_FORK_ENABLE
2356     array_free (fork, EMPTY);
2357     #endif
2358 root 1.360 #if EV_CLEANUP_ENABLE
2359     array_free (cleanup, EMPTY);
2360     #endif
2361 root 1.164 array_free (prepare, EMPTY);
2362     array_free (check, EMPTY);
2363 root 1.209 #if EV_ASYNC_ENABLE
2364     array_free (async, EMPTY);
2365     #endif
2366 root 1.65
2367 root 1.130 backend = 0;
2368 root 1.359
2369     #if EV_MULTIPLICITY
2370     if (ev_is_default_loop (EV_A))
2371     #endif
2372     ev_default_loop_ptr = 0;
2373     #if EV_MULTIPLICITY
2374     else
2375     ev_free (EV_A);
2376     #endif
2377 root 1.56 }
2378 root 1.22
2379 root 1.226 #if EV_USE_INOTIFY
2380 root 1.284 inline_size void infy_fork (EV_P);
2381 root 1.226 #endif
2382 root 1.154
2383 root 1.284 inline_size void
2384 root 1.56 loop_fork (EV_P)
2385     {
2386 root 1.118 #if EV_USE_PORT
2387 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2388 root 1.56 #endif
2389     #if EV_USE_KQUEUE
2390 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2391 root 1.45 #endif
2392 root 1.118 #if EV_USE_EPOLL
2393 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2394 root 1.118 #endif
2395 root 1.154 #if EV_USE_INOTIFY
2396     infy_fork (EV_A);
2397     #endif
2398 root 1.70
2399 root 1.288 if (ev_is_active (&pipe_w))
2400 root 1.70 {
2401 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2402 root 1.70
2403     ev_ref (EV_A);
2404 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2405 root 1.220
2406     #if EV_USE_EVENTFD
2407     if (evfd >= 0)
2408     close (evfd);
2409     #endif
2410    
2411     if (evpipe [0] >= 0)
2412     {
2413 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2414     EV_WIN32_CLOSE_FD (evpipe [1]);
2415 root 1.220 }
2416 root 1.207
2417 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2418 root 1.207 evpipe_init (EV_A);
2419 root 1.208 /* now iterate over everything, in case we missed something */
2420 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
2421 root 1.337 #endif
2422 root 1.70 }
2423    
2424     postfork = 0;
2425 root 1.1 }
2426    
2427 root 1.55 #if EV_MULTIPLICITY
2428 root 1.250
2429 root 1.379 struct ev_loop * ecb_cold
2430 root 1.108 ev_loop_new (unsigned int flags)
2431 root 1.54 {
2432 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2433 root 1.69
2434 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2435 root 1.108 loop_init (EV_A_ flags);
2436 root 1.56
2437 root 1.130 if (ev_backend (EV_A))
2438 root 1.306 return EV_A;
2439 root 1.54
2440 root 1.359 ev_free (EV_A);
2441 root 1.55 return 0;
2442 root 1.54 }
2443    
2444 root 1.297 #endif /* multiplicity */
2445 root 1.248
2446     #if EV_VERIFY
2447 root 1.379 static void noinline ecb_cold
2448 root 1.251 verify_watcher (EV_P_ W w)
2449     {
2450 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2451 root 1.251
2452     if (w->pending)
2453 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2454 root 1.251 }
2455    
2456 root 1.379 static void noinline ecb_cold
2457 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2458     {
2459     int i;
2460    
2461     for (i = HEAP0; i < N + HEAP0; ++i)
2462     {
2463 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2464     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2465     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2466 root 1.251
2467     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2468     }
2469     }
2470    
2471 root 1.379 static void noinline ecb_cold
2472 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2473 root 1.248 {
2474     while (cnt--)
2475 root 1.251 {
2476 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2477 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2478     }
2479 root 1.248 }
2480 root 1.250 #endif
2481 root 1.248
2482 root 1.338 #if EV_FEATURE_API
2483 root 1.379 void ecb_cold
2484 root 1.340 ev_verify (EV_P)
2485 root 1.248 {
2486 root 1.250 #if EV_VERIFY
2487 root 1.248 int i;
2488 root 1.251 WL w;
2489    
2490     assert (activecnt >= -1);
2491    
2492     assert (fdchangemax >= fdchangecnt);
2493     for (i = 0; i < fdchangecnt; ++i)
2494 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2495 root 1.251
2496     assert (anfdmax >= 0);
2497     for (i = 0; i < anfdmax; ++i)
2498     for (w = anfds [i].head; w; w = w->next)
2499     {
2500     verify_watcher (EV_A_ (W)w);
2501 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2502     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2503 root 1.251 }
2504    
2505     assert (timermax >= timercnt);
2506     verify_heap (EV_A_ timers, timercnt);
2507 root 1.248
2508     #if EV_PERIODIC_ENABLE
2509 root 1.251 assert (periodicmax >= periodiccnt);
2510     verify_heap (EV_A_ periodics, periodiccnt);
2511 root 1.248 #endif
2512    
2513 root 1.251 for (i = NUMPRI; i--; )
2514     {
2515     assert (pendingmax [i] >= pendingcnt [i]);
2516 root 1.248 #if EV_IDLE_ENABLE
2517 root 1.252 assert (idleall >= 0);
2518 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2519     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2520 root 1.248 #endif
2521 root 1.251 }
2522    
2523 root 1.248 #if EV_FORK_ENABLE
2524 root 1.251 assert (forkmax >= forkcnt);
2525     array_verify (EV_A_ (W *)forks, forkcnt);
2526 root 1.248 #endif
2527 root 1.251
2528 root 1.360 #if EV_CLEANUP_ENABLE
2529     assert (cleanupmax >= cleanupcnt);
2530     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2531     #endif
2532    
2533 root 1.250 #if EV_ASYNC_ENABLE
2534 root 1.251 assert (asyncmax >= asynccnt);
2535     array_verify (EV_A_ (W *)asyncs, asynccnt);
2536 root 1.250 #endif
2537 root 1.251
2538 root 1.337 #if EV_PREPARE_ENABLE
2539 root 1.251 assert (preparemax >= preparecnt);
2540     array_verify (EV_A_ (W *)prepares, preparecnt);
2541 root 1.337 #endif
2542 root 1.251
2543 root 1.337 #if EV_CHECK_ENABLE
2544 root 1.251 assert (checkmax >= checkcnt);
2545     array_verify (EV_A_ (W *)checks, checkcnt);
2546 root 1.337 #endif
2547 root 1.251
2548     # if 0
2549 root 1.336 #if EV_CHILD_ENABLE
2550 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2551 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2552 root 1.336 #endif
2553 root 1.251 # endif
2554 root 1.248 #endif
2555     }
2556 root 1.297 #endif
2557 root 1.56
2558     #if EV_MULTIPLICITY
2559 root 1.379 struct ev_loop * ecb_cold
2560 root 1.54 #else
2561     int
2562 root 1.358 #endif
2563 root 1.116 ev_default_loop (unsigned int flags)
2564 root 1.54 {
2565 root 1.116 if (!ev_default_loop_ptr)
2566 root 1.56 {
2567     #if EV_MULTIPLICITY
2568 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2569 root 1.56 #else
2570 ayin 1.117 ev_default_loop_ptr = 1;
2571 root 1.54 #endif
2572    
2573 root 1.110 loop_init (EV_A_ flags);
2574 root 1.56
2575 root 1.130 if (ev_backend (EV_A))
2576 root 1.56 {
2577 root 1.336 #if EV_CHILD_ENABLE
2578 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2579     ev_set_priority (&childev, EV_MAXPRI);
2580     ev_signal_start (EV_A_ &childev);
2581     ev_unref (EV_A); /* child watcher should not keep loop alive */
2582     #endif
2583     }
2584     else
2585 root 1.116 ev_default_loop_ptr = 0;
2586 root 1.56 }
2587 root 1.8
2588 root 1.116 return ev_default_loop_ptr;
2589 root 1.1 }
2590    
2591 root 1.24 void
2592 root 1.359 ev_loop_fork (EV_P)
2593 root 1.1 {
2594 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2595 root 1.1 }
2596    
2597 root 1.8 /*****************************************************************************/
2598    
2599 root 1.168 void
2600     ev_invoke (EV_P_ void *w, int revents)
2601     {
2602     EV_CB_INVOKE ((W)w, revents);
2603     }
2604    
2605 root 1.300 unsigned int
2606     ev_pending_count (EV_P)
2607     {
2608     int pri;
2609     unsigned int count = 0;
2610    
2611     for (pri = NUMPRI; pri--; )
2612     count += pendingcnt [pri];
2613    
2614     return count;
2615     }
2616    
2617 root 1.297 void noinline
2618 root 1.296 ev_invoke_pending (EV_P)
2619 root 1.1 {
2620 root 1.42 int pri;
2621    
2622     for (pri = NUMPRI; pri--; )
2623     while (pendingcnt [pri])
2624     {
2625     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2626 root 1.1
2627 root 1.288 p->w->pending = 0;
2628     EV_CB_INVOKE (p->w, p->events);
2629     EV_FREQUENT_CHECK;
2630 root 1.42 }
2631 root 1.1 }
2632    
2633 root 1.234 #if EV_IDLE_ENABLE
2634 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2635     /* only when higher priorities are idle" logic */
2636 root 1.284 inline_size void
2637 root 1.234 idle_reify (EV_P)
2638     {
2639     if (expect_false (idleall))
2640     {
2641     int pri;
2642    
2643     for (pri = NUMPRI; pri--; )
2644     {
2645     if (pendingcnt [pri])
2646     break;
2647    
2648     if (idlecnt [pri])
2649     {
2650     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2651     break;
2652     }
2653     }
2654     }
2655     }
2656     #endif
2657    
2658 root 1.288 /* make timers pending */
2659 root 1.284 inline_size void
2660 root 1.51 timers_reify (EV_P)
2661 root 1.1 {
2662 root 1.248 EV_FREQUENT_CHECK;
2663    
2664 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2665 root 1.1 {
2666 root 1.284 do
2667     {
2668     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2669 root 1.1
2670 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2671    
2672     /* first reschedule or stop timer */
2673     if (w->repeat)
2674     {
2675     ev_at (w) += w->repeat;
2676     if (ev_at (w) < mn_now)
2677     ev_at (w) = mn_now;
2678 root 1.61
2679 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2680 root 1.90
2681 root 1.284 ANHE_at_cache (timers [HEAP0]);
2682     downheap (timers, timercnt, HEAP0);
2683     }
2684     else
2685     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2686 root 1.243
2687 root 1.284 EV_FREQUENT_CHECK;
2688     feed_reverse (EV_A_ (W)w);
2689 root 1.12 }
2690 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2691 root 1.30
2692 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2693 root 1.12 }
2694     }
2695 root 1.4
2696 root 1.140 #if EV_PERIODIC_ENABLE
2697 root 1.370
2698 root 1.373 static void noinline
2699 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2700     {
2701 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2702     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2703    
2704     /* the above almost always errs on the low side */
2705     while (at <= ev_rt_now)
2706     {
2707     ev_tstamp nat = at + w->interval;
2708    
2709     /* when resolution fails us, we use ev_rt_now */
2710     if (expect_false (nat == at))
2711     {
2712     at = ev_rt_now;
2713     break;
2714     }
2715    
2716     at = nat;
2717     }
2718    
2719     ev_at (w) = at;
2720 root 1.370 }
2721    
2722 root 1.288 /* make periodics pending */
2723 root 1.284 inline_size void
2724 root 1.51 periodics_reify (EV_P)
2725 root 1.12 {
2726 root 1.248 EV_FREQUENT_CHECK;
2727 root 1.250
2728 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2729 root 1.12 {
2730 root 1.284 int feed_count = 0;
2731    
2732     do
2733     {
2734     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2735 root 1.1
2736 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2737 root 1.61
2738 root 1.284 /* first reschedule or stop timer */
2739     if (w->reschedule_cb)
2740     {
2741     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2742 root 1.243
2743 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2744 root 1.243
2745 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2746     downheap (periodics, periodiccnt, HEAP0);
2747     }
2748     else if (w->interval)
2749 root 1.246 {
2750 root 1.370 periodic_recalc (EV_A_ w);
2751 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2752     downheap (periodics, periodiccnt, HEAP0);
2753 root 1.246 }
2754 root 1.284 else
2755     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2756 root 1.243
2757 root 1.284 EV_FREQUENT_CHECK;
2758     feed_reverse (EV_A_ (W)w);
2759 root 1.1 }
2760 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2761 root 1.12
2762 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2763 root 1.12 }
2764     }
2765    
2766 root 1.288 /* simply recalculate all periodics */
2767 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2768 root 1.379 static void noinline ecb_cold
2769 root 1.54 periodics_reschedule (EV_P)
2770 root 1.12 {
2771     int i;
2772    
2773 root 1.13 /* adjust periodics after time jump */
2774 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2775 root 1.12 {
2776 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2777 root 1.12
2778 root 1.77 if (w->reschedule_cb)
2779 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2780 root 1.77 else if (w->interval)
2781 root 1.370 periodic_recalc (EV_A_ w);
2782 root 1.242
2783 root 1.248 ANHE_at_cache (periodics [i]);
2784 root 1.77 }
2785 root 1.12
2786 root 1.248 reheap (periodics, periodiccnt);
2787 root 1.1 }
2788 root 1.93 #endif
2789 root 1.1
2790 root 1.288 /* adjust all timers by a given offset */
2791 root 1.379 static void noinline ecb_cold
2792 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
2793     {
2794     int i;
2795    
2796     for (i = 0; i < timercnt; ++i)
2797     {
2798     ANHE *he = timers + i + HEAP0;
2799     ANHE_w (*he)->at += adjust;
2800     ANHE_at_cache (*he);
2801     }
2802     }
2803    
2804 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2805 root 1.324 /* also detect if there was a timejump, and act accordingly */
2806 root 1.284 inline_speed void
2807 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2808 root 1.4 {
2809 root 1.40 #if EV_USE_MONOTONIC
2810     if (expect_true (have_monotonic))
2811     {
2812 root 1.289 int i;
2813 root 1.178 ev_tstamp odiff = rtmn_diff;
2814    
2815     mn_now = get_clock ();
2816    
2817     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2818     /* interpolate in the meantime */
2819     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2820 root 1.40 {
2821 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2822     return;
2823     }
2824    
2825     now_floor = mn_now;
2826     ev_rt_now = ev_time ();
2827 root 1.4
2828 root 1.178 /* loop a few times, before making important decisions.
2829     * on the choice of "4": one iteration isn't enough,
2830     * in case we get preempted during the calls to
2831     * ev_time and get_clock. a second call is almost guaranteed
2832     * to succeed in that case, though. and looping a few more times
2833     * doesn't hurt either as we only do this on time-jumps or
2834     * in the unlikely event of having been preempted here.
2835     */
2836     for (i = 4; --i; )
2837     {
2838 root 1.373 ev_tstamp diff;
2839 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2840 root 1.4
2841 root 1.373 diff = odiff - rtmn_diff;
2842    
2843     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2844 root 1.178 return; /* all is well */
2845 root 1.4
2846 root 1.178 ev_rt_now = ev_time ();
2847     mn_now = get_clock ();
2848     now_floor = mn_now;
2849     }
2850 root 1.4
2851 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2852     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2853 root 1.140 # if EV_PERIODIC_ENABLE
2854 root 1.178 periodics_reschedule (EV_A);
2855 root 1.93 # endif
2856 root 1.4 }
2857     else
2858 root 1.40 #endif
2859 root 1.4 {
2860 root 1.85 ev_rt_now = ev_time ();
2861 root 1.40
2862 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2863 root 1.13 {
2864 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2865     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2866 root 1.140 #if EV_PERIODIC_ENABLE
2867 root 1.54 periodics_reschedule (EV_A);
2868 root 1.93 #endif
2869 root 1.13 }
2870 root 1.4
2871 root 1.85 mn_now = ev_rt_now;
2872 root 1.4 }
2873     }
2874    
2875 root 1.51 void
2876 root 1.353 ev_run (EV_P_ int flags)
2877 root 1.1 {
2878 root 1.338 #if EV_FEATURE_API
2879 root 1.294 ++loop_depth;
2880 root 1.297 #endif
2881 root 1.294
2882 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2883 root 1.298
2884 root 1.353 loop_done = EVBREAK_CANCEL;
2885 root 1.1
2886 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2887 root 1.158
2888 root 1.161 do
2889 root 1.9 {
2890 root 1.250 #if EV_VERIFY >= 2
2891 root 1.340 ev_verify (EV_A);
2892 root 1.250 #endif
2893    
2894 root 1.158 #ifndef _WIN32
2895     if (expect_false (curpid)) /* penalise the forking check even more */
2896     if (expect_false (getpid () != curpid))
2897     {
2898     curpid = getpid ();
2899     postfork = 1;
2900     }
2901     #endif
2902    
2903 root 1.157 #if EV_FORK_ENABLE
2904     /* we might have forked, so queue fork handlers */
2905     if (expect_false (postfork))
2906     if (forkcnt)
2907     {
2908     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2909 root 1.297 EV_INVOKE_PENDING;
2910 root 1.157 }
2911     #endif
2912 root 1.147
2913 root 1.337 #if EV_PREPARE_ENABLE
2914 root 1.170 /* queue prepare watchers (and execute them) */
2915 root 1.40 if (expect_false (preparecnt))
2916 root 1.20 {
2917 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2918 root 1.297 EV_INVOKE_PENDING;
2919 root 1.20 }
2920 root 1.337 #endif
2921 root 1.9
2922 root 1.298 if (expect_false (loop_done))
2923     break;
2924    
2925 root 1.70 /* we might have forked, so reify kernel state if necessary */
2926     if (expect_false (postfork))
2927     loop_fork (EV_A);
2928    
2929 root 1.1 /* update fd-related kernel structures */
2930 root 1.51 fd_reify (EV_A);
2931 root 1.1
2932     /* calculate blocking time */
2933 root 1.135 {
2934 root 1.193 ev_tstamp waittime = 0.;
2935     ev_tstamp sleeptime = 0.;
2936 root 1.12
2937 root 1.353 /* remember old timestamp for io_blocktime calculation */
2938     ev_tstamp prev_mn_now = mn_now;
2939 root 1.293
2940 root 1.353 /* update time to cancel out callback processing overhead */
2941     time_update (EV_A_ 1e100);
2942 root 1.135
2943 root 1.378 /* from now on, we want a pipe-wake-up */
2944     pipe_write_wanted = 1;
2945    
2946 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2947 root 1.383
2948 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2949 root 1.353 {
2950 root 1.287 waittime = MAX_BLOCKTIME;
2951    
2952 root 1.135 if (timercnt)
2953     {
2954 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2955 root 1.193 if (waittime > to) waittime = to;
2956 root 1.135 }
2957 root 1.4
2958 root 1.140 #if EV_PERIODIC_ENABLE
2959 root 1.135 if (periodiccnt)
2960     {
2961 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2962 root 1.193 if (waittime > to) waittime = to;
2963 root 1.135 }
2964 root 1.93 #endif
2965 root 1.4
2966 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2967 root 1.193 if (expect_false (waittime < timeout_blocktime))
2968     waittime = timeout_blocktime;
2969    
2970 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
2971     /* to pass a minimum nonzero value to the backend */
2972     if (expect_false (waittime < backend_mintime))
2973     waittime = backend_mintime;
2974    
2975 root 1.293 /* extra check because io_blocktime is commonly 0 */
2976     if (expect_false (io_blocktime))
2977     {
2978     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2979 root 1.193
2980 root 1.376 if (sleeptime > waittime - backend_mintime)
2981     sleeptime = waittime - backend_mintime;
2982 root 1.193
2983 root 1.293 if (expect_true (sleeptime > 0.))
2984     {
2985     ev_sleep (sleeptime);
2986     waittime -= sleeptime;
2987     }
2988 root 1.193 }
2989 root 1.135 }
2990 root 1.1
2991 root 1.338 #if EV_FEATURE_API
2992 root 1.162 ++loop_count;
2993 root 1.297 #endif
2994 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2995 root 1.193 backend_poll (EV_A_ waittime);
2996 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2997 root 1.178
2998 root 1.384 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2999 root 1.378
3000     if (pipe_write_skipped)
3001     {
3002     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3003     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3004     }
3005    
3006    
3007 root 1.178 /* update ev_rt_now, do magic */
3008 root 1.193 time_update (EV_A_ waittime + sleeptime);
3009 root 1.135 }
3010 root 1.1
3011 root 1.9 /* queue pending timers and reschedule them */
3012 root 1.51 timers_reify (EV_A); /* relative timers called last */
3013 root 1.140 #if EV_PERIODIC_ENABLE
3014 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3015 root 1.93 #endif
3016 root 1.1
3017 root 1.164 #if EV_IDLE_ENABLE
3018 root 1.137 /* queue idle watchers unless other events are pending */
3019 root 1.164 idle_reify (EV_A);
3020     #endif
3021 root 1.9
3022 root 1.337 #if EV_CHECK_ENABLE
3023 root 1.20 /* queue check watchers, to be executed first */
3024 root 1.123 if (expect_false (checkcnt))
3025 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3026 root 1.337 #endif
3027 root 1.9
3028 root 1.297 EV_INVOKE_PENDING;
3029 root 1.1 }
3030 root 1.219 while (expect_true (
3031     activecnt
3032     && !loop_done
3033 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3034 root 1.219 ));
3035 root 1.13
3036 root 1.353 if (loop_done == EVBREAK_ONE)
3037     loop_done = EVBREAK_CANCEL;
3038 root 1.294
3039 root 1.338 #if EV_FEATURE_API
3040 root 1.294 --loop_depth;
3041 root 1.297 #endif
3042 root 1.51 }
3043    
3044     void
3045 root 1.353 ev_break (EV_P_ int how)
3046 root 1.51 {
3047     loop_done = how;
3048 root 1.1 }
3049    
3050 root 1.285 void
3051     ev_ref (EV_P)
3052     {
3053     ++activecnt;
3054     }
3055    
3056     void
3057     ev_unref (EV_P)
3058     {
3059     --activecnt;
3060     }
3061    
3062     void
3063     ev_now_update (EV_P)
3064     {
3065     time_update (EV_A_ 1e100);
3066     }
3067    
3068     void
3069     ev_suspend (EV_P)
3070     {
3071     ev_now_update (EV_A);
3072     }
3073    
3074     void
3075     ev_resume (EV_P)
3076     {
3077     ev_tstamp mn_prev = mn_now;
3078    
3079     ev_now_update (EV_A);
3080     timers_reschedule (EV_A_ mn_now - mn_prev);
3081 root 1.286 #if EV_PERIODIC_ENABLE
3082 root 1.288 /* TODO: really do this? */
3083 root 1.285 periodics_reschedule (EV_A);
3084 root 1.286 #endif
3085 root 1.285 }
3086    
3087 root 1.8 /*****************************************************************************/
3088 root 1.288 /* singly-linked list management, used when the expected list length is short */
3089 root 1.8
3090 root 1.284 inline_size void
3091 root 1.10 wlist_add (WL *head, WL elem)
3092 root 1.1 {
3093     elem->next = *head;
3094     *head = elem;
3095     }
3096    
3097 root 1.284 inline_size void
3098 root 1.10 wlist_del (WL *head, WL elem)
3099 root 1.1 {
3100     while (*head)
3101     {
3102 root 1.307 if (expect_true (*head == elem))
3103 root 1.1 {
3104     *head = elem->next;
3105 root 1.307 break;
3106 root 1.1 }
3107    
3108     head = &(*head)->next;
3109     }
3110     }
3111    
3112 root 1.288 /* internal, faster, version of ev_clear_pending */
3113 root 1.284 inline_speed void
3114 root 1.166 clear_pending (EV_P_ W w)
3115 root 1.16 {
3116     if (w->pending)
3117     {
3118 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3119 root 1.16 w->pending = 0;
3120     }
3121     }
3122    
3123 root 1.167 int
3124     ev_clear_pending (EV_P_ void *w)
3125 root 1.166 {
3126     W w_ = (W)w;
3127     int pending = w_->pending;
3128    
3129 root 1.172 if (expect_true (pending))
3130     {
3131     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3132 root 1.288 p->w = (W)&pending_w;
3133 root 1.172 w_->pending = 0;
3134     return p->events;
3135     }
3136     else
3137 root 1.167 return 0;
3138 root 1.166 }
3139    
3140 root 1.284 inline_size void
3141 root 1.164 pri_adjust (EV_P_ W w)
3142     {
3143 root 1.295 int pri = ev_priority (w);
3144 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3145     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3146 root 1.295 ev_set_priority (w, pri);
3147 root 1.164 }
3148    
3149 root 1.284 inline_speed void
3150 root 1.51 ev_start (EV_P_ W w, int active)
3151 root 1.1 {
3152 root 1.164 pri_adjust (EV_A_ w);
3153 root 1.1 w->active = active;
3154 root 1.51 ev_ref (EV_A);
3155 root 1.1 }
3156    
3157 root 1.284 inline_size void
3158 root 1.51 ev_stop (EV_P_ W w)
3159 root 1.1 {
3160 root 1.51 ev_unref (EV_A);
3161 root 1.1 w->active = 0;
3162     }
3163    
3164 root 1.8 /*****************************************************************************/
3165    
3166 root 1.171 void noinline
3167 root 1.136 ev_io_start (EV_P_ ev_io *w)
3168 root 1.1 {
3169 root 1.37 int fd = w->fd;
3170    
3171 root 1.123 if (expect_false (ev_is_active (w)))
3172 root 1.1 return;
3173    
3174 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3175 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3176 root 1.33
3177 root 1.248 EV_FREQUENT_CHECK;
3178    
3179 root 1.51 ev_start (EV_A_ (W)w, 1);
3180 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3181 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3182 root 1.1
3183 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3184 root 1.281 w->events &= ~EV__IOFDSET;
3185 root 1.248
3186     EV_FREQUENT_CHECK;
3187 root 1.1 }
3188    
3189 root 1.171 void noinline
3190 root 1.136 ev_io_stop (EV_P_ ev_io *w)
3191 root 1.1 {
3192 root 1.166 clear_pending (EV_A_ (W)w);
3193 root 1.123 if (expect_false (!ev_is_active (w)))
3194 root 1.1 return;
3195    
3196 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3197 root 1.89
3198 root 1.248 EV_FREQUENT_CHECK;
3199    
3200 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3201 root 1.51 ev_stop (EV_A_ (W)w);
3202 root 1.1
3203 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3204 root 1.248
3205     EV_FREQUENT_CHECK;
3206 root 1.1 }
3207    
3208 root 1.171 void noinline
3209 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
3210 root 1.1 {
3211 root 1.123 if (expect_false (ev_is_active (w)))
3212 root 1.1 return;
3213    
3214 root 1.228 ev_at (w) += mn_now;
3215 root 1.12
3216 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3217 root 1.13
3218 root 1.248 EV_FREQUENT_CHECK;
3219    
3220     ++timercnt;
3221     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3222 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3223     ANHE_w (timers [ev_active (w)]) = (WT)w;
3224 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3225 root 1.235 upheap (timers, ev_active (w));
3226 root 1.62
3227 root 1.248 EV_FREQUENT_CHECK;
3228    
3229 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3230 root 1.12 }
3231    
3232 root 1.171 void noinline
3233 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
3234 root 1.12 {
3235 root 1.166 clear_pending (EV_A_ (W)w);
3236 root 1.123 if (expect_false (!ev_is_active (w)))
3237 root 1.12 return;
3238    
3239 root 1.248 EV_FREQUENT_CHECK;
3240    
3241 root 1.230 {
3242     int active = ev_active (w);
3243 root 1.62
3244 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3245 root 1.151
3246 root 1.248 --timercnt;
3247    
3248     if (expect_true (active < timercnt + HEAP0))
3249 root 1.151 {
3250 root 1.248 timers [active] = timers [timercnt + HEAP0];
3251 root 1.181 adjustheap (timers, timercnt, active);
3252 root 1.151 }
3253 root 1.248 }
3254 root 1.228
3255     ev_at (w) -= mn_now;
3256 root 1.14
3257 root 1.51 ev_stop (EV_A_ (W)w);
3258 root 1.328
3259     EV_FREQUENT_CHECK;
3260 root 1.12 }
3261 root 1.4
3262 root 1.171 void noinline
3263 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
3264 root 1.14 {
3265 root 1.248 EV_FREQUENT_CHECK;
3266    
3267 root 1.14 if (ev_is_active (w))
3268     {
3269     if (w->repeat)
3270 root 1.99 {
3271 root 1.228 ev_at (w) = mn_now + w->repeat;
3272 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3273 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3274 root 1.99 }
3275 root 1.14 else
3276 root 1.51 ev_timer_stop (EV_A_ w);
3277 root 1.14 }
3278     else if (w->repeat)
3279 root 1.112 {
3280 root 1.229 ev_at (w) = w->repeat;
3281 root 1.112 ev_timer_start (EV_A_ w);
3282     }
3283 root 1.248
3284     EV_FREQUENT_CHECK;
3285 root 1.14 }
3286    
3287 root 1.301 ev_tstamp
3288     ev_timer_remaining (EV_P_ ev_timer *w)
3289     {
3290     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3291     }
3292    
3293 root 1.140 #if EV_PERIODIC_ENABLE
3294 root 1.171 void noinline
3295 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
3296 root 1.12 {
3297 root 1.123 if (expect_false (ev_is_active (w)))
3298 root 1.12 return;
3299 root 1.1
3300 root 1.77 if (w->reschedule_cb)
3301 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3302 root 1.77 else if (w->interval)
3303     {
3304 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3305 root 1.370 periodic_recalc (EV_A_ w);
3306 root 1.77 }
3307 root 1.173 else
3308 root 1.228 ev_at (w) = w->offset;
3309 root 1.12
3310 root 1.248 EV_FREQUENT_CHECK;
3311    
3312     ++periodiccnt;
3313     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3314 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3315     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3316 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3317 root 1.235 upheap (periodics, ev_active (w));
3318 root 1.62
3319 root 1.248 EV_FREQUENT_CHECK;
3320    
3321 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3322 root 1.1 }
3323    
3324 root 1.171 void noinline
3325 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
3326 root 1.1 {
3327 root 1.166 clear_pending (EV_A_ (W)w);
3328 root 1.123 if (expect_false (!ev_is_active (w)))
3329 root 1.1 return;
3330    
3331 root 1.248 EV_FREQUENT_CHECK;
3332    
3333 root 1.230 {
3334     int active = ev_active (w);
3335 root 1.62
3336 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3337 root 1.151
3338 root 1.248 --periodiccnt;
3339    
3340     if (expect_true (active < periodiccnt + HEAP0))
3341 root 1.151 {
3342 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3343 root 1.181 adjustheap (periodics, periodiccnt, active);
3344 root 1.151 }
3345 root 1.248 }
3346 root 1.228
3347 root 1.328 ev_stop (EV_A_ (W)w);
3348    
3349 root 1.248 EV_FREQUENT_CHECK;
3350 root 1.1 }
3351    
3352 root 1.171 void noinline
3353 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
3354 root 1.77 {
3355 root 1.84 /* TODO: use adjustheap and recalculation */
3356 root 1.77 ev_periodic_stop (EV_A_ w);
3357     ev_periodic_start (EV_A_ w);
3358     }
3359 root 1.93 #endif
3360 root 1.77
3361 root 1.56 #ifndef SA_RESTART
3362     # define SA_RESTART 0
3363     #endif
3364    
3365 root 1.336 #if EV_SIGNAL_ENABLE
3366    
3367 root 1.171 void noinline
3368 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
3369 root 1.56 {
3370 root 1.123 if (expect_false (ev_is_active (w)))
3371 root 1.56 return;
3372    
3373 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3374    
3375     #if EV_MULTIPLICITY
3376 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3377 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3378    
3379     signals [w->signum - 1].loop = EV_A;
3380     #endif
3381 root 1.56
3382 root 1.303 EV_FREQUENT_CHECK;
3383    
3384     #if EV_USE_SIGNALFD
3385     if (sigfd == -2)
3386     {
3387     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3388     if (sigfd < 0 && errno == EINVAL)
3389     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3390    
3391     if (sigfd >= 0)
3392     {
3393     fd_intern (sigfd); /* doing it twice will not hurt */
3394    
3395     sigemptyset (&sigfd_set);
3396    
3397     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3398     ev_set_priority (&sigfd_w, EV_MAXPRI);
3399     ev_io_start (EV_A_ &sigfd_w);
3400     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3401     }
3402     }
3403    
3404     if (sigfd >= 0)
3405     {
3406     /* TODO: check .head */
3407     sigaddset (&sigfd_set, w->signum);
3408     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3409 root 1.207
3410 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3411     }
3412 root 1.180 #endif
3413    
3414 root 1.56 ev_start (EV_A_ (W)w, 1);
3415 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3416 root 1.56
3417 root 1.63 if (!((WL)w)->next)
3418 root 1.304 # if EV_USE_SIGNALFD
3419 root 1.306 if (sigfd < 0) /*TODO*/
3420 root 1.304 # endif
3421 root 1.306 {
3422 root 1.322 # ifdef _WIN32
3423 root 1.317 evpipe_init (EV_A);
3424    
3425 root 1.306 signal (w->signum, ev_sighandler);
3426     # else
3427     struct sigaction sa;
3428    
3429     evpipe_init (EV_A);
3430    
3431     sa.sa_handler = ev_sighandler;
3432     sigfillset (&sa.sa_mask);
3433     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3434     sigaction (w->signum, &sa, 0);
3435    
3436 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3437     {
3438     sigemptyset (&sa.sa_mask);
3439     sigaddset (&sa.sa_mask, w->signum);
3440     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3441     }
3442 root 1.67 #endif
3443 root 1.306 }
3444 root 1.248
3445     EV_FREQUENT_CHECK;
3446 root 1.56 }
3447    
3448 root 1.171 void noinline
3449 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
3450 root 1.56 {
3451 root 1.166 clear_pending (EV_A_ (W)w);
3452 root 1.123 if (expect_false (!ev_is_active (w)))
3453 root 1.56 return;
3454    
3455 root 1.248 EV_FREQUENT_CHECK;
3456    
3457 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3458 root 1.56 ev_stop (EV_A_ (W)w);
3459    
3460     if (!signals [w->signum - 1].head)
3461 root 1.306 {
3462 root 1.307 #if EV_MULTIPLICITY
3463 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3464 root 1.307 #endif
3465     #if EV_USE_SIGNALFD
3466 root 1.306 if (sigfd >= 0)
3467     {
3468 root 1.321 sigset_t ss;
3469    
3470     sigemptyset (&ss);
3471     sigaddset (&ss, w->signum);
3472 root 1.306 sigdelset (&sigfd_set, w->signum);
3473 root 1.321
3474 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3475 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3476 root 1.306 }
3477     else
3478 root 1.307 #endif
3479 root 1.306 signal (w->signum, SIG_DFL);
3480     }
3481 root 1.248
3482     EV_FREQUENT_CHECK;
3483 root 1.56 }
3484    
3485 root 1.336 #endif
3486    
3487     #if EV_CHILD_ENABLE
3488    
3489 root 1.28 void
3490 root 1.136 ev_child_start (EV_P_ ev_child *w)
3491 root 1.22 {
3492 root 1.56 #if EV_MULTIPLICITY
3493 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3494 root 1.56 #endif
3495 root 1.123 if (expect_false (ev_is_active (w)))
3496 root 1.22 return;
3497    
3498 root 1.248 EV_FREQUENT_CHECK;
3499    
3500 root 1.51 ev_start (EV_A_ (W)w, 1);
3501 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3502 root 1.248
3503     EV_FREQUENT_CHECK;
3504 root 1.22 }
3505    
3506 root 1.28 void
3507 root 1.136 ev_child_stop (EV_P_ ev_child *w)
3508 root 1.22 {
3509 root 1.166 clear_pending (EV_A_ (W)w);
3510 root 1.123 if (expect_false (!ev_is_active (w)))
3511 root 1.22 return;
3512    
3513 root 1.248 EV_FREQUENT_CHECK;
3514    
3515 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3516 root 1.51 ev_stop (EV_A_ (W)w);
3517 root 1.248
3518     EV_FREQUENT_CHECK;
3519 root 1.22 }
3520    
3521 root 1.336 #endif
3522    
3523 root 1.140 #if EV_STAT_ENABLE
3524    
3525     # ifdef _WIN32
3526 root 1.146 # undef lstat
3527     # define lstat(a,b) _stati64 (a,b)
3528 root 1.140 # endif
3529    
3530 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3531     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3532     #define MIN_STAT_INTERVAL 0.1074891
3533 root 1.143
3534 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3535 root 1.152
3536     #if EV_USE_INOTIFY
3537 root 1.326
3538     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3539     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3540 root 1.152
3541     static void noinline
3542     infy_add (EV_P_ ev_stat *w)
3543     {
3544     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3545    
3546 root 1.318 if (w->wd >= 0)
3547 root 1.152 {
3548 root 1.318 struct statfs sfs;
3549    
3550     /* now local changes will be tracked by inotify, but remote changes won't */
3551     /* unless the filesystem is known to be local, we therefore still poll */
3552     /* also do poll on <2.6.25, but with normal frequency */
3553    
3554     if (!fs_2625)
3555     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3556     else if (!statfs (w->path, &sfs)
3557     && (sfs.f_type == 0x1373 /* devfs */
3558     || sfs.f_type == 0xEF53 /* ext2/3 */
3559     || sfs.f_type == 0x3153464a /* jfs */
3560     || sfs.f_type == 0x52654973 /* reiser3 */
3561     || sfs.f_type == 0x01021994 /* tempfs */
3562     || sfs.f_type == 0x58465342 /* xfs */))
3563     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3564     else
3565     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3566     }
3567     else
3568     {
3569     /* can't use inotify, continue to stat */
3570 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3571 root 1.152
3572 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3573 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3574 root 1.233 /* but an efficiency issue only */
3575 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3576 root 1.152 {
3577 root 1.153 char path [4096];
3578 root 1.152 strcpy (path, w->path);
3579    
3580     do
3581     {
3582     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3583     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3584    
3585     char *pend = strrchr (path, '/');
3586    
3587 root 1.275 if (!pend || pend == path)
3588     break;
3589 root 1.152
3590     *pend = 0;
3591 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3592 root 1.372 }
3593 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3594     }
3595     }
3596 root 1.275
3597     if (w->wd >= 0)
3598 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3599 root 1.152
3600 root 1.318 /* now re-arm timer, if required */
3601     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3602     ev_timer_again (EV_A_ &w->timer);
3603     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3604 root 1.152 }
3605    
3606     static void noinline
3607     infy_del (EV_P_ ev_stat *w)
3608     {
3609     int slot;
3610     int wd = w->wd;
3611    
3612     if (wd < 0)
3613     return;
3614    
3615     w->wd = -2;
3616 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3617 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3618    
3619     /* remove this watcher, if others are watching it, they will rearm */
3620     inotify_rm_watch (fs_fd, wd);
3621     }
3622    
3623     static void noinline
3624     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3625     {
3626     if (slot < 0)
3627 root 1.264 /* overflow, need to check for all hash slots */
3628 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3629 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3630     else
3631     {
3632     WL w_;
3633    
3634 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3635 root 1.152 {
3636     ev_stat *w = (ev_stat *)w_;
3637     w_ = w_->next; /* lets us remove this watcher and all before it */
3638    
3639     if (w->wd == wd || wd == -1)
3640     {
3641     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3642     {
3643 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3644 root 1.152 w->wd = -1;
3645     infy_add (EV_A_ w); /* re-add, no matter what */
3646     }
3647    
3648 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3649 root 1.152 }
3650     }
3651     }
3652     }
3653    
3654     static void
3655     infy_cb (EV_P_ ev_io *w, int revents)
3656     {
3657     char buf [EV_INOTIFY_BUFSIZE];
3658     int ofs;
3659     int len = read (fs_fd, buf, sizeof (buf));
3660    
3661 root 1.326 for (ofs = 0; ofs < len; )
3662     {
3663     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3664     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3665     ofs += sizeof (struct inotify_event) + ev->len;
3666     }
3667 root 1.152 }
3668    
3669 root 1.379 inline_size void ecb_cold
3670 root 1.330 ev_check_2625 (EV_P)
3671     {
3672     /* kernels < 2.6.25 are borked
3673     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3674     */
3675     if (ev_linux_version () < 0x020619)
3676 root 1.273 return;
3677 root 1.264
3678 root 1.273 fs_2625 = 1;
3679     }
3680 root 1.264
3681 root 1.315 inline_size int
3682     infy_newfd (void)
3683     {
3684     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3685     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3686     if (fd >= 0)
3687     return fd;
3688     #endif
3689     return inotify_init ();
3690     }
3691    
3692 root 1.284 inline_size void
3693 root 1.273 infy_init (EV_P)
3694     {
3695     if (fs_fd != -2)
3696     return;
3697 root 1.264
3698 root 1.273 fs_fd = -1;
3699 root 1.264
3700 root 1.330 ev_check_2625 (EV_A);
3701 root 1.264
3702 root 1.315 fs_fd = infy_newfd ();
3703 root 1.152
3704     if (fs_fd >= 0)
3705     {
3706 root 1.315 fd_intern (fs_fd);
3707 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3708     ev_set_priority (&fs_w, EV_MAXPRI);
3709     ev_io_start (EV_A_ &fs_w);
3710 root 1.317 ev_unref (EV_A);
3711 root 1.152 }
3712     }
3713    
3714 root 1.284 inline_size void
3715 root 1.154 infy_fork (EV_P)
3716     {
3717     int slot;
3718    
3719     if (fs_fd < 0)
3720     return;
3721    
3722 root 1.317 ev_ref (EV_A);
3723 root 1.315 ev_io_stop (EV_A_ &fs_w);
3724 root 1.154 close (fs_fd);
3725 root 1.315 fs_fd = infy_newfd ();
3726    
3727     if (fs_fd >= 0)
3728     {
3729     fd_intern (fs_fd);
3730     ev_io_set (&fs_w, fs_fd, EV_READ);
3731     ev_io_start (EV_A_ &fs_w);
3732 root 1.317 ev_unref (EV_A);
3733 root 1.315 }
3734 root 1.154
3735 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3736 root 1.154 {
3737     WL w_ = fs_hash [slot].head;
3738     fs_hash [slot].head = 0;
3739    
3740     while (w_)
3741     {
3742     ev_stat *w = (ev_stat *)w_;
3743     w_ = w_->next; /* lets us add this watcher */
3744    
3745     w->wd = -1;
3746    
3747     if (fs_fd >= 0)
3748     infy_add (EV_A_ w); /* re-add, no matter what */
3749     else
3750 root 1.318 {
3751     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3752     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3753     ev_timer_again (EV_A_ &w->timer);
3754     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3755     }
3756 root 1.154 }
3757     }
3758     }
3759    
3760 root 1.152 #endif
3761    
3762 root 1.255 #ifdef _WIN32
3763     # define EV_LSTAT(p,b) _stati64 (p, b)
3764     #else
3765     # define EV_LSTAT(p,b) lstat (p, b)
3766     #endif
3767    
3768 root 1.140 void
3769     ev_stat_stat (EV_P_ ev_stat *w)
3770     {
3771     if (lstat (w->path, &w->attr) < 0)
3772     w->attr.st_nlink = 0;
3773     else if (!w->attr.st_nlink)
3774     w->attr.st_nlink = 1;
3775     }
3776    
3777 root 1.157 static void noinline
3778 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3779     {
3780     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3781    
3782 root 1.320 ev_statdata prev = w->attr;
3783 root 1.140 ev_stat_stat (EV_A_ w);
3784    
3785 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3786     if (
3787 root 1.320 prev.st_dev != w->attr.st_dev
3788     || prev.st_ino != w->attr.st_ino
3789     || prev.st_mode != w->attr.st_mode
3790     || prev.st_nlink != w->attr.st_nlink
3791     || prev.st_uid != w->attr.st_uid
3792     || prev.st_gid != w->attr.st_gid
3793     || prev.st_rdev != w->attr.st_rdev
3794     || prev.st_size != w->attr.st_size
3795     || prev.st_atime != w->attr.st_atime
3796     || prev.st_mtime != w->attr.st_mtime
3797     || prev.st_ctime != w->attr.st_ctime
3798 root 1.156 ) {
3799 root 1.320 /* we only update w->prev on actual differences */
3800     /* in case we test more often than invoke the callback, */
3801     /* to ensure that prev is always different to attr */
3802     w->prev = prev;
3803    
3804 root 1.152 #if EV_USE_INOTIFY
3805 root 1.264 if (fs_fd >= 0)
3806     {
3807     infy_del (EV_A_ w);
3808     infy_add (EV_A_ w);
3809     ev_stat_stat (EV_A_ w); /* avoid race... */
3810     }
3811 root 1.152 #endif
3812    
3813     ev_feed_event (EV_A_ w, EV_STAT);
3814     }
3815 root 1.140 }
3816    
3817     void
3818     ev_stat_start (EV_P_ ev_stat *w)
3819     {
3820     if (expect_false (ev_is_active (w)))
3821     return;
3822    
3823     ev_stat_stat (EV_A_ w);
3824    
3825 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3826     w->interval = MIN_STAT_INTERVAL;
3827 root 1.143
3828 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3829 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3830 root 1.152
3831     #if EV_USE_INOTIFY
3832     infy_init (EV_A);
3833    
3834     if (fs_fd >= 0)
3835     infy_add (EV_A_ w);
3836     else
3837     #endif
3838 root 1.318 {
3839     ev_timer_again (EV_A_ &w->timer);
3840     ev_unref (EV_A);
3841     }
3842 root 1.140
3843     ev_start (EV_A_ (W)w, 1);
3844 root 1.248
3845     EV_FREQUENT_CHECK;
3846 root 1.140 }
3847    
3848     void
3849     ev_stat_stop (EV_P_ ev_stat *w)
3850     {
3851 root 1.166 clear_pending (EV_A_ (W)w);
3852 root 1.140 if (expect_false (!ev_is_active (w)))
3853     return;
3854    
3855 root 1.248 EV_FREQUENT_CHECK;
3856    
3857 root 1.152 #if EV_USE_INOTIFY
3858     infy_del (EV_A_ w);
3859     #endif
3860 root 1.318
3861     if (ev_is_active (&w->timer))
3862     {
3863     ev_ref (EV_A);
3864     ev_timer_stop (EV_A_ &w->timer);
3865     }
3866 root 1.140
3867 root 1.134 ev_stop (EV_A_ (W)w);
3868 root 1.248
3869     EV_FREQUENT_CHECK;
3870 root 1.134 }
3871     #endif
3872    
3873 root 1.164 #if EV_IDLE_ENABLE
3874 root 1.144 void
3875     ev_idle_start (EV_P_ ev_idle *w)
3876     {
3877     if (expect_false (ev_is_active (w)))
3878     return;
3879    
3880 root 1.164 pri_adjust (EV_A_ (W)w);
3881    
3882 root 1.248 EV_FREQUENT_CHECK;
3883    
3884 root 1.164 {
3885     int active = ++idlecnt [ABSPRI (w)];
3886    
3887     ++idleall;
3888     ev_start (EV_A_ (W)w, active);
3889    
3890     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3891     idles [ABSPRI (w)][active - 1] = w;
3892     }
3893 root 1.248
3894     EV_FREQUENT_CHECK;
3895 root 1.144 }
3896    
3897     void
3898     ev_idle_stop (EV_P_ ev_idle *w)
3899     {
3900 root 1.166 clear_pending (EV_A_ (W)w);
3901 root 1.144 if (expect_false (!ev_is_active (w)))
3902     return;
3903    
3904 root 1.248 EV_FREQUENT_CHECK;
3905    
3906 root 1.144 {
3907 root 1.230 int active = ev_active (w);
3908 root 1.164
3909     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3910 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3911 root 1.164
3912     ev_stop (EV_A_ (W)w);
3913     --idleall;
3914 root 1.144 }
3915 root 1.248
3916     EV_FREQUENT_CHECK;
3917 root 1.144 }
3918 root 1.164 #endif
3919 root 1.144
3920 root 1.337 #if EV_PREPARE_ENABLE
3921 root 1.144 void
3922     ev_prepare_start (EV_P_ ev_prepare *w)
3923     {
3924     if (expect_false (ev_is_active (w)))
3925     return;
3926    
3927 root 1.248 EV_FREQUENT_CHECK;
3928    
3929 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3930     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3931     prepares [preparecnt - 1] = w;
3932 root 1.248
3933     EV_FREQUENT_CHECK;
3934 root 1.144 }
3935    
3936     void
3937     ev_prepare_stop (EV_P_ ev_prepare *w)
3938     {
3939 root 1.166 clear_pending (EV_A_ (W)w);
3940 root 1.144 if (expect_false (!ev_is_active (w)))
3941     return;
3942    
3943 root 1.248 EV_FREQUENT_CHECK;
3944    
3945 root 1.144 {
3946 root 1.230 int active = ev_active (w);
3947    
3948 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3949 root 1.230 ev_active (prepares [active - 1]) = active;
3950 root 1.144 }
3951    
3952     ev_stop (EV_A_ (W)w);
3953 root 1.248
3954     EV_FREQUENT_CHECK;
3955 root 1.144 }
3956 root 1.337 #endif
3957 root 1.144
3958 root 1.337 #if EV_CHECK_ENABLE
3959 root 1.144 void
3960     ev_check_start (EV_P_ ev_check *w)
3961     {
3962     if (expect_false (ev_is_active (w)))
3963     return;
3964    
3965 root 1.248 EV_FREQUENT_CHECK;
3966    
3967 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3968     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3969     checks [checkcnt - 1] = w;
3970 root 1.248
3971     EV_FREQUENT_CHECK;
3972 root 1.144 }
3973    
3974     void
3975     ev_check_stop (EV_P_ ev_check *w)
3976     {
3977 root 1.166 clear_pending (EV_A_ (W)w);
3978 root 1.144 if (expect_false (!ev_is_active (w)))
3979     return;
3980    
3981 root 1.248 EV_FREQUENT_CHECK;
3982    
3983 root 1.144 {
3984 root 1.230 int active = ev_active (w);
3985    
3986 root 1.144 checks [active - 1] = checks [--checkcnt];
3987 root 1.230 ev_active (checks [active - 1]) = active;
3988 root 1.144 }
3989    
3990     ev_stop (EV_A_ (W)w);
3991 root 1.248
3992     EV_FREQUENT_CHECK;
3993 root 1.144 }
3994 root 1.337 #endif
3995 root 1.144
3996     #if EV_EMBED_ENABLE
3997     void noinline
3998     ev_embed_sweep (EV_P_ ev_embed *w)
3999     {
4000 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4001 root 1.144 }
4002    
4003     static void
4004 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4005 root 1.144 {
4006     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4007    
4008     if (ev_cb (w))
4009     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4010     else
4011 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4012 root 1.144 }
4013    
4014 root 1.189 static void
4015     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4016     {
4017     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4018    
4019 root 1.195 {
4020 root 1.306 EV_P = w->other;
4021 root 1.195
4022     while (fdchangecnt)
4023     {
4024     fd_reify (EV_A);
4025 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4026 root 1.195 }
4027     }
4028     }
4029    
4030 root 1.261 static void
4031     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4032     {
4033     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4034    
4035 root 1.277 ev_embed_stop (EV_A_ w);
4036    
4037 root 1.261 {
4038 root 1.306 EV_P = w->other;
4039 root 1.261
4040     ev_loop_fork (EV_A);
4041 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4042 root 1.261 }
4043 root 1.277
4044     ev_embed_start (EV_A_ w);
4045 root 1.261 }
4046    
4047 root 1.195 #if 0
4048     static void
4049     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4050     {
4051     ev_idle_stop (EV_A_ idle);
4052 root 1.189 }
4053 root 1.195 #endif
4054 root 1.189
4055 root 1.144 void
4056     ev_embed_start (EV_P_ ev_embed *w)
4057     {
4058     if (expect_false (ev_is_active (w)))
4059     return;
4060    
4061     {
4062 root 1.306 EV_P = w->other;
4063 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4064 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4065 root 1.144 }
4066    
4067 root 1.248 EV_FREQUENT_CHECK;
4068    
4069 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4070     ev_io_start (EV_A_ &w->io);
4071    
4072 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4073     ev_set_priority (&w->prepare, EV_MINPRI);
4074     ev_prepare_start (EV_A_ &w->prepare);
4075    
4076 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4077     ev_fork_start (EV_A_ &w->fork);
4078    
4079 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4080    
4081 root 1.144 ev_start (EV_A_ (W)w, 1);
4082 root 1.248
4083     EV_FREQUENT_CHECK;
4084 root 1.144 }
4085    
4086     void
4087     ev_embed_stop (EV_P_ ev_embed *w)
4088     {
4089 root 1.166 clear_pending (EV_A_ (W)w);
4090 root 1.144 if (expect_false (!ev_is_active (w)))
4091     return;
4092    
4093 root 1.248 EV_FREQUENT_CHECK;
4094    
4095 root 1.261 ev_io_stop (EV_A_ &w->io);
4096 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4097 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4098 root 1.248
4099 root 1.328 ev_stop (EV_A_ (W)w);
4100    
4101 root 1.248 EV_FREQUENT_CHECK;
4102 root 1.144 }
4103     #endif
4104    
4105 root 1.147 #if EV_FORK_ENABLE
4106     void
4107     ev_fork_start (EV_P_ ev_fork *w)
4108     {
4109     if (expect_false (ev_is_active (w)))
4110     return;
4111    
4112 root 1.248 EV_FREQUENT_CHECK;
4113    
4114 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4115     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4116     forks [forkcnt - 1] = w;
4117 root 1.248
4118     EV_FREQUENT_CHECK;
4119 root 1.147 }
4120    
4121     void
4122     ev_fork_stop (EV_P_ ev_fork *w)
4123     {
4124 root 1.166 clear_pending (EV_A_ (W)w);
4125 root 1.147 if (expect_false (!ev_is_active (w)))
4126     return;
4127    
4128 root 1.248 EV_FREQUENT_CHECK;
4129    
4130 root 1.147 {
4131 root 1.230 int active = ev_active (w);
4132    
4133 root 1.147 forks [active - 1] = forks [--forkcnt];
4134 root 1.230 ev_active (forks [active - 1]) = active;
4135 root 1.147 }
4136    
4137     ev_stop (EV_A_ (W)w);
4138 root 1.248
4139     EV_FREQUENT_CHECK;
4140 root 1.147 }
4141     #endif
4142    
4143 root 1.360 #if EV_CLEANUP_ENABLE
4144     void
4145     ev_cleanup_start (EV_P_ ev_cleanup *w)
4146     {
4147     if (expect_false (ev_is_active (w)))
4148     return;
4149    
4150     EV_FREQUENT_CHECK;
4151    
4152     ev_start (EV_A_ (W)w, ++cleanupcnt);
4153     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4154     cleanups [cleanupcnt - 1] = w;
4155    
4156 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4157     ev_unref (EV_A);
4158 root 1.360 EV_FREQUENT_CHECK;
4159     }
4160    
4161     void
4162     ev_cleanup_stop (EV_P_ ev_cleanup *w)
4163     {
4164     clear_pending (EV_A_ (W)w);
4165     if (expect_false (!ev_is_active (w)))
4166     return;
4167    
4168     EV_FREQUENT_CHECK;
4169 root 1.362 ev_ref (EV_A);
4170 root 1.360
4171     {
4172     int active = ev_active (w);
4173    
4174     cleanups [active - 1] = cleanups [--cleanupcnt];
4175     ev_active (cleanups [active - 1]) = active;
4176     }
4177    
4178     ev_stop (EV_A_ (W)w);
4179    
4180     EV_FREQUENT_CHECK;
4181     }
4182     #endif
4183    
4184 root 1.207 #if EV_ASYNC_ENABLE
4185     void
4186     ev_async_start (EV_P_ ev_async *w)
4187     {
4188     if (expect_false (ev_is_active (w)))
4189     return;
4190    
4191 root 1.352 w->sent = 0;
4192    
4193 root 1.207 evpipe_init (EV_A);
4194    
4195 root 1.248 EV_FREQUENT_CHECK;
4196    
4197 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4198     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4199     asyncs [asynccnt - 1] = w;
4200 root 1.248
4201     EV_FREQUENT_CHECK;
4202 root 1.207 }
4203    
4204     void
4205     ev_async_stop (EV_P_ ev_async *w)
4206     {
4207     clear_pending (EV_A_ (W)w);
4208     if (expect_false (!ev_is_active (w)))
4209     return;
4210    
4211 root 1.248 EV_FREQUENT_CHECK;
4212    
4213 root 1.207 {
4214 root 1.230 int active = ev_active (w);
4215    
4216 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4217 root 1.230 ev_active (asyncs [active - 1]) = active;
4218 root 1.207 }
4219    
4220     ev_stop (EV_A_ (W)w);
4221 root 1.248
4222     EV_FREQUENT_CHECK;
4223 root 1.207 }
4224    
4225     void
4226     ev_async_send (EV_P_ ev_async *w)
4227     {
4228     w->sent = 1;
4229 root 1.307 evpipe_write (EV_A_ &async_pending);
4230 root 1.207 }
4231     #endif
4232    
4233 root 1.1 /*****************************************************************************/
4234 root 1.10
4235 root 1.16 struct ev_once
4236     {
4237 root 1.136 ev_io io;
4238     ev_timer to;
4239 root 1.16 void (*cb)(int revents, void *arg);
4240     void *arg;
4241     };
4242    
4243     static void
4244 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4245 root 1.16 {
4246     void (*cb)(int revents, void *arg) = once->cb;
4247     void *arg = once->arg;
4248    
4249 root 1.259 ev_io_stop (EV_A_ &once->io);
4250 root 1.51 ev_timer_stop (EV_A_ &once->to);
4251 root 1.69 ev_free (once);
4252 root 1.16
4253     cb (revents, arg);
4254     }
4255    
4256     static void
4257 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4258 root 1.16 {
4259 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4260    
4261     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4262 root 1.16 }
4263    
4264     static void
4265 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4266 root 1.16 {
4267 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4268    
4269     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4270 root 1.16 }
4271    
4272     void
4273 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4274 root 1.16 {
4275 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4276 root 1.16
4277 root 1.123 if (expect_false (!once))
4278 root 1.16 {
4279 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4280 root 1.123 return;
4281     }
4282    
4283     once->cb = cb;
4284     once->arg = arg;
4285 root 1.16
4286 root 1.123 ev_init (&once->io, once_cb_io);
4287     if (fd >= 0)
4288     {
4289     ev_io_set (&once->io, fd, events);
4290     ev_io_start (EV_A_ &once->io);
4291     }
4292 root 1.16
4293 root 1.123 ev_init (&once->to, once_cb_to);
4294     if (timeout >= 0.)
4295     {
4296     ev_timer_set (&once->to, timeout, 0.);
4297     ev_timer_start (EV_A_ &once->to);
4298 root 1.16 }
4299     }
4300    
4301 root 1.282 /*****************************************************************************/
4302    
4303 root 1.288 #if EV_WALK_ENABLE
4304 root 1.379 void ecb_cold
4305 root 1.282 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4306     {
4307     int i, j;
4308     ev_watcher_list *wl, *wn;
4309    
4310     if (types & (EV_IO | EV_EMBED))
4311     for (i = 0; i < anfdmax; ++i)
4312     for (wl = anfds [i].head; wl; )
4313     {
4314     wn = wl->next;
4315    
4316     #if EV_EMBED_ENABLE
4317     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4318     {
4319     if (types & EV_EMBED)
4320     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4321     }
4322     else
4323     #endif
4324     #if EV_USE_INOTIFY
4325     if (ev_cb ((ev_io *)wl) == infy_cb)
4326     ;
4327     else
4328     #endif
4329 root 1.288 if ((ev_io *)wl != &pipe_w)
4330 root 1.282 if (types & EV_IO)
4331     cb (EV_A_ EV_IO, wl);
4332    
4333     wl = wn;
4334     }
4335    
4336     if (types & (EV_TIMER | EV_STAT))
4337     for (i = timercnt + HEAP0; i-- > HEAP0; )
4338     #if EV_STAT_ENABLE
4339     /*TODO: timer is not always active*/
4340     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4341     {
4342     if (types & EV_STAT)
4343     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4344     }
4345     else
4346     #endif
4347     if (types & EV_TIMER)
4348     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4349    
4350     #if EV_PERIODIC_ENABLE
4351     if (types & EV_PERIODIC)
4352     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4353     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4354     #endif
4355    
4356     #if EV_IDLE_ENABLE
4357     if (types & EV_IDLE)
4358 root 1.390 for (j = NUMPRI; j--; )
4359 root 1.282 for (i = idlecnt [j]; i--; )
4360     cb (EV_A_ EV_IDLE, idles [j][i]);
4361     #endif
4362    
4363     #if EV_FORK_ENABLE
4364     if (types & EV_FORK)
4365     for (i = forkcnt; i--; )
4366     if (ev_cb (forks [i]) != embed_fork_cb)
4367     cb (EV_A_ EV_FORK, forks [i]);
4368     #endif
4369    
4370     #if EV_ASYNC_ENABLE
4371     if (types & EV_ASYNC)
4372     for (i = asynccnt; i--; )
4373     cb (EV_A_ EV_ASYNC, asyncs [i]);
4374     #endif
4375    
4376 root 1.337 #if EV_PREPARE_ENABLE
4377 root 1.282 if (types & EV_PREPARE)
4378     for (i = preparecnt; i--; )
4379 root 1.337 # if EV_EMBED_ENABLE
4380 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4381 root 1.337 # endif
4382     cb (EV_A_ EV_PREPARE, prepares [i]);
4383 root 1.282 #endif
4384    
4385 root 1.337 #if EV_CHECK_ENABLE
4386 root 1.282 if (types & EV_CHECK)
4387     for (i = checkcnt; i--; )
4388     cb (EV_A_ EV_CHECK, checks [i]);
4389 root 1.337 #endif
4390 root 1.282
4391 root 1.337 #if EV_SIGNAL_ENABLE
4392 root 1.282 if (types & EV_SIGNAL)
4393 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4394 root 1.282 for (wl = signals [i].head; wl; )
4395     {
4396     wn = wl->next;
4397     cb (EV_A_ EV_SIGNAL, wl);
4398     wl = wn;
4399     }
4400 root 1.337 #endif
4401 root 1.282
4402 root 1.337 #if EV_CHILD_ENABLE
4403 root 1.282 if (types & EV_CHILD)
4404 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4405 root 1.282 for (wl = childs [i]; wl; )
4406     {
4407     wn = wl->next;
4408     cb (EV_A_ EV_CHILD, wl);
4409     wl = wn;
4410     }
4411 root 1.337 #endif
4412 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4413     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4414     }
4415     #endif
4416    
4417 root 1.188 #if EV_MULTIPLICITY
4418     #include "ev_wrap.h"
4419     #endif
4420    
4421 root 1.354 EV_CPP(})
4422 root 1.87