ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.401
Committed: Tue Dec 20 04:08:35 2011 UTC (12 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.400: +2 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
65     # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.103 #ifndef _WIN32
189 root 1.71 # include <sys/time.h>
190 root 1.45 # include <sys/wait.h>
191 root 1.140 # include <unistd.h>
192 root 1.103 #else
193 root 1.256 # include <io.h>
194 root 1.103 # define WIN32_LEAN_AND_MEAN
195     # include <windows.h>
196     # ifndef EV_SELECT_IS_WINSOCKET
197     # define EV_SELECT_IS_WINSOCKET 1
198     # endif
199 root 1.331 # undef EV_AVOID_STDIO
200 root 1.45 #endif
201 root 1.103
202 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
203     * a limit of 1024 into their select. Where people have brains,
204     * OS X engineers apparently have a vacuum. Or maybe they were
205     * ordered to have a vacuum, or they do anything for money.
206     * This might help. Or not.
207     */
208     #define _DARWIN_UNLIMITED_SELECT 1
209    
210 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
211 root 1.40
212 root 1.305 /* try to deduce the maximum number of signals on this platform */
213     #if defined (EV_NSIG)
214     /* use what's provided */
215     #elif defined (NSIG)
216     # define EV_NSIG (NSIG)
217     #elif defined(_NSIG)
218     # define EV_NSIG (_NSIG)
219     #elif defined (SIGMAX)
220     # define EV_NSIG (SIGMAX+1)
221     #elif defined (SIG_MAX)
222     # define EV_NSIG (SIG_MAX+1)
223     #elif defined (_SIG_MAX)
224     # define EV_NSIG (_SIG_MAX+1)
225     #elif defined (MAXSIG)
226     # define EV_NSIG (MAXSIG+1)
227     #elif defined (MAX_SIG)
228     # define EV_NSIG (MAX_SIG+1)
229     #elif defined (SIGARRAYSIZE)
230 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231 root 1.305 #elif defined (_sys_nsig)
232     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233     #else
234     # error "unable to find value for NSIG, please report"
235 root 1.336 /* to make it compile regardless, just remove the above line, */
236     /* but consider reporting it, too! :) */
237 root 1.306 # define EV_NSIG 65
238 root 1.305 #endif
239    
240 root 1.373 #ifndef EV_USE_FLOOR
241     # define EV_USE_FLOOR 0
242     #endif
243    
244 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
245     # if __linux && __GLIBC__ >= 2
246 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247 root 1.274 # else
248     # define EV_USE_CLOCK_SYSCALL 0
249     # endif
250     #endif
251    
252 root 1.29 #ifndef EV_USE_MONOTONIC
253 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
255 root 1.253 # else
256     # define EV_USE_MONOTONIC 0
257     # endif
258 root 1.37 #endif
259    
260 root 1.118 #ifndef EV_USE_REALTIME
261 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
262 root 1.118 #endif
263    
264 root 1.193 #ifndef EV_USE_NANOSLEEP
265 root 1.253 # if _POSIX_C_SOURCE >= 199309L
266 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
267 root 1.253 # else
268     # define EV_USE_NANOSLEEP 0
269     # endif
270 root 1.193 #endif
271    
272 root 1.29 #ifndef EV_USE_SELECT
273 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
274 root 1.10 #endif
275    
276 root 1.59 #ifndef EV_USE_POLL
277 root 1.104 # ifdef _WIN32
278     # define EV_USE_POLL 0
279     # else
280 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
281 root 1.104 # endif
282 root 1.41 #endif
283    
284 root 1.29 #ifndef EV_USE_EPOLL
285 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
287 root 1.220 # else
288     # define EV_USE_EPOLL 0
289     # endif
290 root 1.10 #endif
291    
292 root 1.44 #ifndef EV_USE_KQUEUE
293     # define EV_USE_KQUEUE 0
294     #endif
295    
296 root 1.118 #ifndef EV_USE_PORT
297     # define EV_USE_PORT 0
298 root 1.40 #endif
299    
300 root 1.152 #ifndef EV_USE_INOTIFY
301 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
303 root 1.220 # else
304     # define EV_USE_INOTIFY 0
305     # endif
306 root 1.152 #endif
307    
308 root 1.149 #ifndef EV_PID_HASHSIZE
309 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
310 root 1.149 #endif
311    
312 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
313 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314 root 1.152 #endif
315    
316 root 1.220 #ifndef EV_USE_EVENTFD
317     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
319 root 1.220 # else
320     # define EV_USE_EVENTFD 0
321     # endif
322     #endif
323    
324 root 1.303 #ifndef EV_USE_SIGNALFD
325 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
326 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
327 root 1.303 # else
328     # define EV_USE_SIGNALFD 0
329     # endif
330     #endif
331    
332 root 1.249 #if 0 /* debugging */
333 root 1.250 # define EV_VERIFY 3
334 root 1.249 # define EV_USE_4HEAP 1
335     # define EV_HEAP_CACHE_AT 1
336     #endif
337    
338 root 1.250 #ifndef EV_VERIFY
339 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340 root 1.250 #endif
341    
342 root 1.243 #ifndef EV_USE_4HEAP
343 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
344 root 1.243 #endif
345    
346     #ifndef EV_HEAP_CACHE_AT
347 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348 root 1.243 #endif
349    
350 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351     /* which makes programs even slower. might work on other unices, too. */
352     #if EV_USE_CLOCK_SYSCALL
353     # include <syscall.h>
354     # ifdef SYS_clock_gettime
355     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356     # undef EV_USE_MONOTONIC
357     # define EV_USE_MONOTONIC 1
358     # else
359     # undef EV_USE_CLOCK_SYSCALL
360     # define EV_USE_CLOCK_SYSCALL 0
361     # endif
362     #endif
363    
364 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
365 root 1.40
366 root 1.325 #ifdef _AIX
367     /* AIX has a completely broken poll.h header */
368     # undef EV_USE_POLL
369     # define EV_USE_POLL 0
370     #endif
371    
372 root 1.40 #ifndef CLOCK_MONOTONIC
373     # undef EV_USE_MONOTONIC
374     # define EV_USE_MONOTONIC 0
375     #endif
376    
377 root 1.31 #ifndef CLOCK_REALTIME
378 root 1.40 # undef EV_USE_REALTIME
379 root 1.31 # define EV_USE_REALTIME 0
380     #endif
381 root 1.40
382 root 1.152 #if !EV_STAT_ENABLE
383 root 1.185 # undef EV_USE_INOTIFY
384 root 1.152 # define EV_USE_INOTIFY 0
385     #endif
386    
387 root 1.193 #if !EV_USE_NANOSLEEP
388 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
389     # if !defined(_WIN32) && !defined(__hpux)
390 root 1.193 # include <sys/select.h>
391     # endif
392     #endif
393    
394 root 1.152 #if EV_USE_INOTIFY
395 root 1.273 # include <sys/statfs.h>
396 root 1.152 # include <sys/inotify.h>
397 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398     # ifndef IN_DONT_FOLLOW
399     # undef EV_USE_INOTIFY
400     # define EV_USE_INOTIFY 0
401     # endif
402 root 1.152 #endif
403    
404 root 1.185 #if EV_SELECT_IS_WINSOCKET
405     # include <winsock.h>
406     #endif
407    
408 root 1.220 #if EV_USE_EVENTFD
409     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410 root 1.221 # include <stdint.h>
411 root 1.303 # ifndef EFD_NONBLOCK
412     # define EFD_NONBLOCK O_NONBLOCK
413     # endif
414     # ifndef EFD_CLOEXEC
415 root 1.311 # ifdef O_CLOEXEC
416     # define EFD_CLOEXEC O_CLOEXEC
417     # else
418     # define EFD_CLOEXEC 02000000
419     # endif
420 root 1.303 # endif
421 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422 root 1.220 #endif
423    
424 root 1.303 #if EV_USE_SIGNALFD
425 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426     # include <stdint.h>
427     # ifndef SFD_NONBLOCK
428     # define SFD_NONBLOCK O_NONBLOCK
429     # endif
430     # ifndef SFD_CLOEXEC
431     # ifdef O_CLOEXEC
432     # define SFD_CLOEXEC O_CLOEXEC
433     # else
434     # define SFD_CLOEXEC 02000000
435     # endif
436     # endif
437 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438 root 1.314
439     struct signalfd_siginfo
440     {
441     uint32_t ssi_signo;
442     char pad[128 - sizeof (uint32_t)];
443     };
444 root 1.303 #endif
445    
446 root 1.40 /**/
447 root 1.1
448 root 1.250 #if EV_VERIFY >= 3
449 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
450 root 1.248 #else
451     # define EV_FREQUENT_CHECK do { } while (0)
452     #endif
453    
454 root 1.176 /*
455 root 1.373 * This is used to work around floating point rounding problems.
456 root 1.177 * This value is good at least till the year 4000.
457 root 1.176 */
458 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
460 root 1.176
461 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
462 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
463 root 1.1
464 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466 root 1.347
467 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468     /* ECB.H BEGIN */
469     /*
470     * libecb - http://software.schmorp.de/pkg/libecb
471     *
472     * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
473     * Copyright (©) 2011 Emanuele Giaquinta
474     * All rights reserved.
475     *
476     * Redistribution and use in source and binary forms, with or without modifica-
477     * tion, are permitted provided that the following conditions are met:
478     *
479     * 1. Redistributions of source code must retain the above copyright notice,
480     * this list of conditions and the following disclaimer.
481     *
482     * 2. Redistributions in binary form must reproduce the above copyright
483     * notice, this list of conditions and the following disclaimer in the
484     * documentation and/or other materials provided with the distribution.
485     *
486     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495     * OF THE POSSIBILITY OF SUCH DAMAGE.
496     */
497    
498     #ifndef ECB_H
499     #define ECB_H
500    
501     #ifdef _WIN32
502     typedef signed char int8_t;
503     typedef unsigned char uint8_t;
504     typedef signed short int16_t;
505     typedef unsigned short uint16_t;
506     typedef signed int int32_t;
507     typedef unsigned int uint32_t;
508     #if __GNUC__
509     typedef signed long long int64_t;
510     typedef unsigned long long uint64_t;
511     #else /* _MSC_VER || __BORLANDC__ */
512     typedef signed __int64 int64_t;
513     typedef unsigned __int64 uint64_t;
514     #endif
515     #else
516     #include <inttypes.h>
517     #endif
518 root 1.379
519     /* many compilers define _GNUC_ to some versions but then only implement
520     * what their idiot authors think are the "more important" extensions,
521 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
522 root 1.379 * or so.
523     * we try to detect these and simply assume they are not gcc - if they have
524     * an issue with that they should have done it right in the first place.
525     */
526     #ifndef ECB_GCC_VERSION
527     #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528     #define ECB_GCC_VERSION(major,minor) 0
529     #else
530     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
531     #endif
532     #endif
533    
534 root 1.391 /*****************************************************************************/
535    
536     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538    
539     #if ECB_NO_THREADS || ECB_NO_SMP
540 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
541 root 1.40 #endif
542    
543 root 1.383 #ifndef ECB_MEMORY_FENCE
544 root 1.398 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__)
545 root 1.395 #if __i386__
546 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 root 1.391 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548     #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 root 1.383 #elif __amd64
550     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 root 1.391 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555     #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 root 1.393 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 root 1.393 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 root 1.392 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 root 1.383 #endif
562     #endif
563     #endif
564    
565     #ifndef ECB_MEMORY_FENCE
566 root 1.398 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
567 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
568 root 1.392 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
569     /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
570 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
571     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
572     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
573     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
574     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
575 root 1.388 #elif defined(_WIN32)
576     #include <WinNT.h>
577 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
578 root 1.383 #endif
579     #endif
580    
581     #ifndef ECB_MEMORY_FENCE
582 root 1.392 #if !ECB_AVOID_PTHREADS
583     /*
584     * if you get undefined symbol references to pthread_mutex_lock,
585     * or failure to find pthread.h, then you should implement
586     * the ECB_MEMORY_FENCE operations for your cpu/compiler
587     * OR provide pthread.h and link against the posix thread library
588     * of your system.
589     */
590     #include <pthread.h>
591     #define ECB_NEEDS_PTHREADS 1
592     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
593    
594     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
595     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
596     #endif
597     #endif
598 root 1.383
599 root 1.392 #if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
600 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
601 root 1.392 #endif
602    
603     #if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
604 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
605     #endif
606    
607 root 1.391 /*****************************************************************************/
608    
609     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
610    
611     #if __cplusplus
612     #define ecb_inline static inline
613     #elif ECB_GCC_VERSION(2,5)
614     #define ecb_inline static __inline__
615     #elif ECB_C99
616     #define ecb_inline static inline
617     #else
618     #define ecb_inline static
619     #endif
620    
621     #if ECB_GCC_VERSION(3,3)
622     #define ecb_restrict __restrict__
623     #elif ECB_C99
624     #define ecb_restrict restrict
625     #else
626     #define ecb_restrict
627     #endif
628    
629     typedef int ecb_bool;
630    
631     #define ECB_CONCAT_(a, b) a ## b
632     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
633     #define ECB_STRINGIFY_(a) # a
634     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
635    
636     #define ecb_function_ ecb_inline
637    
638 root 1.379 #if ECB_GCC_VERSION(3,1)
639     #define ecb_attribute(attrlist) __attribute__(attrlist)
640     #define ecb_is_constant(expr) __builtin_constant_p (expr)
641     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
642     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
643     #else
644     #define ecb_attribute(attrlist)
645     #define ecb_is_constant(expr) 0
646     #define ecb_expect(expr,value) (expr)
647     #define ecb_prefetch(addr,rw,locality)
648     #endif
649    
650 root 1.391 /* no emulation for ecb_decltype */
651     #if ECB_GCC_VERSION(4,5)
652     #define ecb_decltype(x) __decltype(x)
653     #elif ECB_GCC_VERSION(3,0)
654     #define ecb_decltype(x) __typeof(x)
655     #endif
656    
657 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
658     #define ecb_noreturn ecb_attribute ((__noreturn__))
659     #define ecb_unused ecb_attribute ((__unused__))
660     #define ecb_const ecb_attribute ((__const__))
661     #define ecb_pure ecb_attribute ((__pure__))
662    
663     #if ECB_GCC_VERSION(4,3)
664     #define ecb_artificial ecb_attribute ((__artificial__))
665     #define ecb_hot ecb_attribute ((__hot__))
666     #define ecb_cold ecb_attribute ((__cold__))
667     #else
668     #define ecb_artificial
669     #define ecb_hot
670     #define ecb_cold
671     #endif
672    
673     /* put around conditional expressions if you are very sure that the */
674     /* expression is mostly true or mostly false. note that these return */
675     /* booleans, not the expression. */
676     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
677     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
678 root 1.391 /* for compatibility to the rest of the world */
679     #define ecb_likely(expr) ecb_expect_true (expr)
680     #define ecb_unlikely(expr) ecb_expect_false (expr)
681    
682     /* count trailing zero bits and count # of one bits */
683     #if ECB_GCC_VERSION(3,4)
684     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
685     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
686     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
687     #define ecb_ctz32(x) __builtin_ctz (x)
688     #define ecb_ctz64(x) __builtin_ctzll (x)
689     #define ecb_popcount32(x) __builtin_popcount (x)
690     /* no popcountll */
691     #else
692     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
693     ecb_function_ int
694     ecb_ctz32 (uint32_t x)
695     {
696     int r = 0;
697    
698     x &= ~x + 1; /* this isolates the lowest bit */
699    
700     #if ECB_branchless_on_i386
701     r += !!(x & 0xaaaaaaaa) << 0;
702     r += !!(x & 0xcccccccc) << 1;
703     r += !!(x & 0xf0f0f0f0) << 2;
704     r += !!(x & 0xff00ff00) << 3;
705     r += !!(x & 0xffff0000) << 4;
706     #else
707     if (x & 0xaaaaaaaa) r += 1;
708     if (x & 0xcccccccc) r += 2;
709     if (x & 0xf0f0f0f0) r += 4;
710     if (x & 0xff00ff00) r += 8;
711     if (x & 0xffff0000) r += 16;
712     #endif
713    
714     return r;
715     }
716    
717     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
718     ecb_function_ int
719     ecb_ctz64 (uint64_t x)
720     {
721     int shift = x & 0xffffffffU ? 0 : 32;
722     return ecb_ctz32 (x >> shift) + shift;
723     }
724    
725     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
726     ecb_function_ int
727     ecb_popcount32 (uint32_t x)
728     {
729     x -= (x >> 1) & 0x55555555;
730     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
731     x = ((x >> 4) + x) & 0x0f0f0f0f;
732     x *= 0x01010101;
733    
734     return x >> 24;
735     }
736    
737     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
738     ecb_function_ int ecb_ld32 (uint32_t x)
739     {
740     int r = 0;
741    
742     if (x >> 16) { x >>= 16; r += 16; }
743     if (x >> 8) { x >>= 8; r += 8; }
744     if (x >> 4) { x >>= 4; r += 4; }
745     if (x >> 2) { x >>= 2; r += 2; }
746     if (x >> 1) { r += 1; }
747    
748     return r;
749     }
750    
751     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
752     ecb_function_ int ecb_ld64 (uint64_t x)
753     {
754     int r = 0;
755    
756     if (x >> 32) { x >>= 32; r += 32; }
757    
758     return r + ecb_ld32 (x);
759     }
760     #endif
761    
762     /* popcount64 is only available on 64 bit cpus as gcc builtin */
763     /* so for this version we are lazy */
764     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
765     ecb_function_ int
766     ecb_popcount64 (uint64_t x)
767     {
768     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
769     }
770    
771     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
772     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
773     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
774     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
775     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
776     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
777     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
778     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
779    
780     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
781     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
782     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
783     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
784     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
785     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
786     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
787     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
788    
789     #if ECB_GCC_VERSION(4,3)
790     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
791     #define ecb_bswap32(x) __builtin_bswap32 (x)
792     #define ecb_bswap64(x) __builtin_bswap64 (x)
793     #else
794     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
795     ecb_function_ uint16_t
796     ecb_bswap16 (uint16_t x)
797     {
798     return ecb_rotl16 (x, 8);
799     }
800    
801     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
802     ecb_function_ uint32_t
803     ecb_bswap32 (uint32_t x)
804     {
805     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
806     }
807    
808     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
809     ecb_function_ uint64_t
810     ecb_bswap64 (uint64_t x)
811     {
812     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
813     }
814     #endif
815    
816     #if ECB_GCC_VERSION(4,5)
817     #define ecb_unreachable() __builtin_unreachable ()
818     #else
819     /* this seems to work fine, but gcc always emits a warning for it :/ */
820     ecb_function_ void ecb_unreachable (void) ecb_noreturn;
821     ecb_function_ void ecb_unreachable (void) { }
822     #endif
823    
824     /* try to tell the compiler that some condition is definitely true */
825     #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
826    
827     ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
828     ecb_function_ unsigned char
829     ecb_byteorder_helper (void)
830     {
831     const uint32_t u = 0x11223344;
832     return *(unsigned char *)&u;
833     }
834    
835     ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
836     ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
837     ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
838     ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
839    
840     #if ECB_GCC_VERSION(3,0) || ECB_C99
841     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
842     #else
843     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
844     #endif
845    
846 root 1.398 #if __cplusplus
847     template<typename T>
848     static inline T ecb_div_rd (T val, T div)
849     {
850     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
851     }
852     template<typename T>
853     static inline T ecb_div_ru (T val, T div)
854     {
855     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
856     }
857     #else
858     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
859     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
860     #endif
861    
862 root 1.391 #if ecb_cplusplus_does_not_suck
863     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
864     template<typename T, int N>
865     static inline int ecb_array_length (const T (&arr)[N])
866     {
867     return N;
868     }
869     #else
870     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
871     #endif
872    
873     #endif
874    
875     /* ECB.H END */
876 root 1.379
877 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
878 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
879 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
880     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
881     * libev, in which casess the memory fences become nops.
882     * alternatively, you can remove this #error and link against libpthread,
883     * which will then provide the memory fences.
884     */
885     # error "memory fences not defined for your architecture, please report"
886     #endif
887    
888     #ifndef ECB_MEMORY_FENCE
889     # define ECB_MEMORY_FENCE do { } while (0)
890     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
891     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
892 root 1.392 #endif
893    
894 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
895     #define expect_true(cond) ecb_expect_true (cond)
896     #define noinline ecb_noinline
897    
898     #define inline_size ecb_inline
899 root 1.169
900 root 1.338 #if EV_FEATURE_CODE
901 root 1.379 # define inline_speed ecb_inline
902 root 1.338 #else
903 root 1.169 # define inline_speed static noinline
904     #endif
905 root 1.40
906 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
907    
908     #if EV_MINPRI == EV_MAXPRI
909     # define ABSPRI(w) (((W)w), 0)
910     #else
911     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
912     #endif
913 root 1.42
914 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
915 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
916 root 1.103
917 root 1.136 typedef ev_watcher *W;
918     typedef ev_watcher_list *WL;
919     typedef ev_watcher_time *WT;
920 root 1.10
921 root 1.229 #define ev_active(w) ((W)(w))->active
922 root 1.228 #define ev_at(w) ((WT)(w))->at
923    
924 root 1.279 #if EV_USE_REALTIME
925 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
926 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
927 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
928     #endif
929    
930     #if EV_USE_MONOTONIC
931 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
932 root 1.198 #endif
933 root 1.54
934 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
935     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
936     #endif
937     #ifndef EV_WIN32_HANDLE_TO_FD
938 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
939 root 1.313 #endif
940     #ifndef EV_WIN32_CLOSE_FD
941     # define EV_WIN32_CLOSE_FD(fd) close (fd)
942     #endif
943    
944 root 1.103 #ifdef _WIN32
945 root 1.98 # include "ev_win32.c"
946     #endif
947 root 1.67
948 root 1.53 /*****************************************************************************/
949 root 1.1
950 root 1.373 /* define a suitable floor function (only used by periodics atm) */
951    
952     #if EV_USE_FLOOR
953     # include <math.h>
954     # define ev_floor(v) floor (v)
955     #else
956    
957     #include <float.h>
958    
959     /* a floor() replacement function, should be independent of ev_tstamp type */
960     static ev_tstamp noinline
961     ev_floor (ev_tstamp v)
962     {
963     /* the choice of shift factor is not terribly important */
964     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
965     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
966     #else
967     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
968     #endif
969    
970     /* argument too large for an unsigned long? */
971     if (expect_false (v >= shift))
972     {
973     ev_tstamp f;
974    
975     if (v == v - 1.)
976     return v; /* very large number */
977    
978     f = shift * ev_floor (v * (1. / shift));
979     return f + ev_floor (v - f);
980     }
981    
982     /* special treatment for negative args? */
983     if (expect_false (v < 0.))
984     {
985     ev_tstamp f = -ev_floor (-v);
986    
987     return f - (f == v ? 0 : 1);
988     }
989    
990     /* fits into an unsigned long */
991     return (unsigned long)v;
992     }
993    
994     #endif
995    
996     /*****************************************************************************/
997    
998 root 1.356 #ifdef __linux
999     # include <sys/utsname.h>
1000     #endif
1001    
1002 root 1.379 static unsigned int noinline ecb_cold
1003 root 1.355 ev_linux_version (void)
1004     {
1005     #ifdef __linux
1006 root 1.359 unsigned int v = 0;
1007 root 1.355 struct utsname buf;
1008     int i;
1009     char *p = buf.release;
1010    
1011     if (uname (&buf))
1012     return 0;
1013    
1014     for (i = 3+1; --i; )
1015     {
1016     unsigned int c = 0;
1017    
1018     for (;;)
1019     {
1020     if (*p >= '0' && *p <= '9')
1021     c = c * 10 + *p++ - '0';
1022     else
1023     {
1024     p += *p == '.';
1025     break;
1026     }
1027     }
1028    
1029     v = (v << 8) | c;
1030     }
1031    
1032     return v;
1033     #else
1034     return 0;
1035     #endif
1036     }
1037    
1038     /*****************************************************************************/
1039    
1040 root 1.331 #if EV_AVOID_STDIO
1041 root 1.379 static void noinline ecb_cold
1042 root 1.331 ev_printerr (const char *msg)
1043     {
1044     write (STDERR_FILENO, msg, strlen (msg));
1045     }
1046     #endif
1047    
1048 root 1.70 static void (*syserr_cb)(const char *msg);
1049 root 1.69
1050 root 1.379 void ecb_cold
1051 root 1.141 ev_set_syserr_cb (void (*cb)(const char *msg))
1052 root 1.69 {
1053     syserr_cb = cb;
1054     }
1055    
1056 root 1.379 static void noinline ecb_cold
1057 root 1.269 ev_syserr (const char *msg)
1058 root 1.69 {
1059 root 1.70 if (!msg)
1060     msg = "(libev) system error";
1061    
1062 root 1.69 if (syserr_cb)
1063 root 1.70 syserr_cb (msg);
1064 root 1.69 else
1065     {
1066 root 1.330 #if EV_AVOID_STDIO
1067 root 1.331 ev_printerr (msg);
1068     ev_printerr (": ");
1069 root 1.365 ev_printerr (strerror (errno));
1070 root 1.331 ev_printerr ("\n");
1071 root 1.330 #else
1072 root 1.70 perror (msg);
1073 root 1.330 #endif
1074 root 1.69 abort ();
1075     }
1076     }
1077    
1078 root 1.224 static void *
1079     ev_realloc_emul (void *ptr, long size)
1080     {
1081 root 1.334 #if __GLIBC__
1082     return realloc (ptr, size);
1083     #else
1084 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
1085 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1086 root 1.224 * the single unix specification, so work around them here.
1087     */
1088 root 1.333
1089 root 1.224 if (size)
1090     return realloc (ptr, size);
1091    
1092     free (ptr);
1093     return 0;
1094 root 1.334 #endif
1095 root 1.224 }
1096    
1097     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1098 root 1.69
1099 root 1.379 void ecb_cold
1100 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
1101 root 1.69 {
1102     alloc = cb;
1103     }
1104    
1105 root 1.150 inline_speed void *
1106 root 1.155 ev_realloc (void *ptr, long size)
1107 root 1.69 {
1108 root 1.224 ptr = alloc (ptr, size);
1109 root 1.69
1110     if (!ptr && size)
1111     {
1112 root 1.330 #if EV_AVOID_STDIO
1113 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1114 root 1.330 #else
1115 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1116 root 1.330 #endif
1117 root 1.69 abort ();
1118     }
1119    
1120     return ptr;
1121     }
1122    
1123     #define ev_malloc(size) ev_realloc (0, (size))
1124     #define ev_free(ptr) ev_realloc ((ptr), 0)
1125    
1126     /*****************************************************************************/
1127    
1128 root 1.298 /* set in reify when reification needed */
1129     #define EV_ANFD_REIFY 1
1130    
1131 root 1.288 /* file descriptor info structure */
1132 root 1.53 typedef struct
1133     {
1134 root 1.68 WL head;
1135 root 1.288 unsigned char events; /* the events watched for */
1136 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1137 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1138 root 1.269 unsigned char unused;
1139     #if EV_USE_EPOLL
1140 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1141 root 1.269 #endif
1142 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1143 root 1.103 SOCKET handle;
1144     #endif
1145 root 1.357 #if EV_USE_IOCP
1146     OVERLAPPED or, ow;
1147     #endif
1148 root 1.53 } ANFD;
1149 root 1.1
1150 root 1.288 /* stores the pending event set for a given watcher */
1151 root 1.53 typedef struct
1152     {
1153     W w;
1154 root 1.288 int events; /* the pending event set for the given watcher */
1155 root 1.53 } ANPENDING;
1156 root 1.51
1157 root 1.155 #if EV_USE_INOTIFY
1158 root 1.241 /* hash table entry per inotify-id */
1159 root 1.152 typedef struct
1160     {
1161     WL head;
1162 root 1.155 } ANFS;
1163 root 1.152 #endif
1164    
1165 root 1.241 /* Heap Entry */
1166     #if EV_HEAP_CACHE_AT
1167 root 1.288 /* a heap element */
1168 root 1.241 typedef struct {
1169 root 1.243 ev_tstamp at;
1170 root 1.241 WT w;
1171     } ANHE;
1172    
1173 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1174     #define ANHE_at(he) (he).at /* access cached at, read-only */
1175     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1176 root 1.241 #else
1177 root 1.288 /* a heap element */
1178 root 1.241 typedef WT ANHE;
1179    
1180 root 1.248 #define ANHE_w(he) (he)
1181     #define ANHE_at(he) (he)->at
1182     #define ANHE_at_cache(he)
1183 root 1.241 #endif
1184    
1185 root 1.55 #if EV_MULTIPLICITY
1186 root 1.54
1187 root 1.80 struct ev_loop
1188     {
1189 root 1.86 ev_tstamp ev_rt_now;
1190 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1191 root 1.80 #define VAR(name,decl) decl;
1192     #include "ev_vars.h"
1193     #undef VAR
1194     };
1195     #include "ev_wrap.h"
1196    
1197 root 1.116 static struct ev_loop default_loop_struct;
1198 root 1.401 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a defintiino despite extern */
1199 root 1.54
1200 root 1.53 #else
1201 root 1.54
1202 root 1.401 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a defintiino despite extern */
1203 root 1.80 #define VAR(name,decl) static decl;
1204     #include "ev_vars.h"
1205     #undef VAR
1206    
1207 root 1.116 static int ev_default_loop_ptr;
1208 root 1.54
1209 root 1.51 #endif
1210 root 1.1
1211 root 1.338 #if EV_FEATURE_API
1212 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1213     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1214 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1215     #else
1216 root 1.298 # define EV_RELEASE_CB (void)0
1217     # define EV_ACQUIRE_CB (void)0
1218 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1219     #endif
1220    
1221 root 1.353 #define EVBREAK_RECURSE 0x80
1222 root 1.298
1223 root 1.8 /*****************************************************************************/
1224    
1225 root 1.292 #ifndef EV_HAVE_EV_TIME
1226 root 1.141 ev_tstamp
1227 root 1.1 ev_time (void)
1228     {
1229 root 1.29 #if EV_USE_REALTIME
1230 root 1.279 if (expect_true (have_realtime))
1231     {
1232     struct timespec ts;
1233     clock_gettime (CLOCK_REALTIME, &ts);
1234     return ts.tv_sec + ts.tv_nsec * 1e-9;
1235     }
1236     #endif
1237    
1238 root 1.1 struct timeval tv;
1239     gettimeofday (&tv, 0);
1240     return tv.tv_sec + tv.tv_usec * 1e-6;
1241     }
1242 root 1.292 #endif
1243 root 1.1
1244 root 1.284 inline_size ev_tstamp
1245 root 1.1 get_clock (void)
1246     {
1247 root 1.29 #if EV_USE_MONOTONIC
1248 root 1.40 if (expect_true (have_monotonic))
1249 root 1.1 {
1250     struct timespec ts;
1251     clock_gettime (CLOCK_MONOTONIC, &ts);
1252     return ts.tv_sec + ts.tv_nsec * 1e-9;
1253     }
1254     #endif
1255    
1256     return ev_time ();
1257     }
1258    
1259 root 1.85 #if EV_MULTIPLICITY
1260 root 1.51 ev_tstamp
1261     ev_now (EV_P)
1262     {
1263 root 1.85 return ev_rt_now;
1264 root 1.51 }
1265 root 1.85 #endif
1266 root 1.51
1267 root 1.193 void
1268     ev_sleep (ev_tstamp delay)
1269     {
1270     if (delay > 0.)
1271     {
1272     #if EV_USE_NANOSLEEP
1273     struct timespec ts;
1274    
1275 root 1.348 EV_TS_SET (ts, delay);
1276 root 1.193 nanosleep (&ts, 0);
1277     #elif defined(_WIN32)
1278 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1279 root 1.193 #else
1280     struct timeval tv;
1281    
1282 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1283 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1284 root 1.257 /* by older ones */
1285 sf-exg 1.349 EV_TV_SET (tv, delay);
1286 root 1.193 select (0, 0, 0, 0, &tv);
1287     #endif
1288     }
1289     }
1290    
1291     /*****************************************************************************/
1292    
1293 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1294 root 1.232
1295 root 1.288 /* find a suitable new size for the given array, */
1296 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1297 root 1.284 inline_size int
1298 root 1.163 array_nextsize (int elem, int cur, int cnt)
1299     {
1300     int ncur = cur + 1;
1301    
1302     do
1303     ncur <<= 1;
1304     while (cnt > ncur);
1305    
1306 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1307 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1308 root 1.163 {
1309     ncur *= elem;
1310 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1311 root 1.163 ncur = ncur - sizeof (void *) * 4;
1312     ncur /= elem;
1313     }
1314    
1315     return ncur;
1316     }
1317    
1318 root 1.379 static void * noinline ecb_cold
1319 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1320     {
1321     *cur = array_nextsize (elem, *cur, cnt);
1322     return ev_realloc (base, elem * *cur);
1323     }
1324 root 1.29
1325 root 1.265 #define array_init_zero(base,count) \
1326     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1327    
1328 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1329 root 1.163 if (expect_false ((cnt) > (cur))) \
1330 root 1.69 { \
1331 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1332 root 1.163 (base) = (type *)array_realloc \
1333     (sizeof (type), (base), &(cur), (cnt)); \
1334     init ((base) + (ocur_), (cur) - ocur_); \
1335 root 1.1 }
1336    
1337 root 1.163 #if 0
1338 root 1.74 #define array_slim(type,stem) \
1339 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1340     { \
1341     stem ## max = array_roundsize (stem ## cnt >> 1); \
1342 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1343 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1344     }
1345 root 1.163 #endif
1346 root 1.67
1347 root 1.65 #define array_free(stem, idx) \
1348 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1349 root 1.65
1350 root 1.8 /*****************************************************************************/
1351    
1352 root 1.288 /* dummy callback for pending events */
1353     static void noinline
1354     pendingcb (EV_P_ ev_prepare *w, int revents)
1355     {
1356     }
1357    
1358 root 1.140 void noinline
1359 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
1360 root 1.1 {
1361 root 1.78 W w_ = (W)w;
1362 root 1.171 int pri = ABSPRI (w_);
1363 root 1.78
1364 root 1.123 if (expect_false (w_->pending))
1365 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1366     else
1367 root 1.32 {
1368 root 1.171 w_->pending = ++pendingcnt [pri];
1369     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1370     pendings [pri][w_->pending - 1].w = w_;
1371     pendings [pri][w_->pending - 1].events = revents;
1372 root 1.32 }
1373 root 1.1 }
1374    
1375 root 1.284 inline_speed void
1376     feed_reverse (EV_P_ W w)
1377     {
1378     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1379     rfeeds [rfeedcnt++] = w;
1380     }
1381    
1382     inline_size void
1383     feed_reverse_done (EV_P_ int revents)
1384     {
1385     do
1386     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1387     while (rfeedcnt);
1388     }
1389    
1390     inline_speed void
1391 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1392 root 1.27 {
1393     int i;
1394    
1395     for (i = 0; i < eventcnt; ++i)
1396 root 1.78 ev_feed_event (EV_A_ events [i], type);
1397 root 1.27 }
1398    
1399 root 1.141 /*****************************************************************************/
1400    
1401 root 1.284 inline_speed void
1402 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1403 root 1.1 {
1404     ANFD *anfd = anfds + fd;
1405 root 1.136 ev_io *w;
1406 root 1.1
1407 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1408 root 1.1 {
1409 root 1.79 int ev = w->events & revents;
1410 root 1.1
1411     if (ev)
1412 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1413 root 1.1 }
1414     }
1415    
1416 root 1.298 /* do not submit kernel events for fds that have reify set */
1417     /* because that means they changed while we were polling for new events */
1418     inline_speed void
1419     fd_event (EV_P_ int fd, int revents)
1420     {
1421     ANFD *anfd = anfds + fd;
1422    
1423     if (expect_true (!anfd->reify))
1424 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1425 root 1.298 }
1426    
1427 root 1.79 void
1428     ev_feed_fd_event (EV_P_ int fd, int revents)
1429     {
1430 root 1.168 if (fd >= 0 && fd < anfdmax)
1431 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1432 root 1.79 }
1433    
1434 root 1.288 /* make sure the external fd watch events are in-sync */
1435     /* with the kernel/libev internal state */
1436 root 1.284 inline_size void
1437 root 1.51 fd_reify (EV_P)
1438 root 1.9 {
1439     int i;
1440    
1441 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1442     for (i = 0; i < fdchangecnt; ++i)
1443     {
1444     int fd = fdchanges [i];
1445     ANFD *anfd = anfds + fd;
1446    
1447 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1448 root 1.371 {
1449     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1450    
1451     if (handle != anfd->handle)
1452     {
1453     unsigned long arg;
1454    
1455     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1456    
1457     /* handle changed, but fd didn't - we need to do it in two steps */
1458     backend_modify (EV_A_ fd, anfd->events, 0);
1459     anfd->events = 0;
1460     anfd->handle = handle;
1461     }
1462     }
1463     }
1464     #endif
1465    
1466 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1467     {
1468     int fd = fdchanges [i];
1469     ANFD *anfd = anfds + fd;
1470 root 1.136 ev_io *w;
1471 root 1.27
1472 root 1.350 unsigned char o_events = anfd->events;
1473     unsigned char o_reify = anfd->reify;
1474 root 1.27
1475 root 1.350 anfd->reify = 0;
1476 root 1.27
1477 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1478     {
1479     anfd->events = 0;
1480 root 1.184
1481 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1482     anfd->events |= (unsigned char)w->events;
1483 root 1.27
1484 root 1.351 if (o_events != anfd->events)
1485 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1486     }
1487    
1488     if (o_reify & EV__IOFDSET)
1489     backend_modify (EV_A_ fd, o_events, anfd->events);
1490 root 1.27 }
1491    
1492     fdchangecnt = 0;
1493     }
1494    
1495 root 1.288 /* something about the given fd changed */
1496 root 1.284 inline_size void
1497 root 1.183 fd_change (EV_P_ int fd, int flags)
1498 root 1.27 {
1499 root 1.183 unsigned char reify = anfds [fd].reify;
1500 root 1.184 anfds [fd].reify |= flags;
1501 root 1.27
1502 root 1.183 if (expect_true (!reify))
1503     {
1504     ++fdchangecnt;
1505     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1506     fdchanges [fdchangecnt - 1] = fd;
1507     }
1508 root 1.9 }
1509    
1510 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1511 root 1.379 inline_speed void ecb_cold
1512 root 1.51 fd_kill (EV_P_ int fd)
1513 root 1.41 {
1514 root 1.136 ev_io *w;
1515 root 1.41
1516 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1517 root 1.41 {
1518 root 1.51 ev_io_stop (EV_A_ w);
1519 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1520 root 1.41 }
1521     }
1522    
1523 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1524 root 1.379 inline_size int ecb_cold
1525 root 1.71 fd_valid (int fd)
1526     {
1527 root 1.103 #ifdef _WIN32
1528 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1529 root 1.71 #else
1530     return fcntl (fd, F_GETFD) != -1;
1531     #endif
1532     }
1533    
1534 root 1.19 /* called on EBADF to verify fds */
1535 root 1.379 static void noinline ecb_cold
1536 root 1.51 fd_ebadf (EV_P)
1537 root 1.19 {
1538     int fd;
1539    
1540     for (fd = 0; fd < anfdmax; ++fd)
1541 root 1.27 if (anfds [fd].events)
1542 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1543 root 1.51 fd_kill (EV_A_ fd);
1544 root 1.41 }
1545    
1546     /* called on ENOMEM in select/poll to kill some fds and retry */
1547 root 1.379 static void noinline ecb_cold
1548 root 1.51 fd_enomem (EV_P)
1549 root 1.41 {
1550 root 1.62 int fd;
1551 root 1.41
1552 root 1.62 for (fd = anfdmax; fd--; )
1553 root 1.41 if (anfds [fd].events)
1554     {
1555 root 1.51 fd_kill (EV_A_ fd);
1556 root 1.307 break;
1557 root 1.41 }
1558 root 1.19 }
1559    
1560 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1561 root 1.140 static void noinline
1562 root 1.56 fd_rearm_all (EV_P)
1563     {
1564     int fd;
1565    
1566     for (fd = 0; fd < anfdmax; ++fd)
1567     if (anfds [fd].events)
1568     {
1569     anfds [fd].events = 0;
1570 root 1.268 anfds [fd].emask = 0;
1571 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1572 root 1.56 }
1573     }
1574    
1575 root 1.336 /* used to prepare libev internal fd's */
1576     /* this is not fork-safe */
1577     inline_speed void
1578     fd_intern (int fd)
1579     {
1580     #ifdef _WIN32
1581     unsigned long arg = 1;
1582     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1583     #else
1584     fcntl (fd, F_SETFD, FD_CLOEXEC);
1585     fcntl (fd, F_SETFL, O_NONBLOCK);
1586     #endif
1587     }
1588    
1589 root 1.8 /*****************************************************************************/
1590    
1591 root 1.235 /*
1592 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1593 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1594     * the branching factor of the d-tree.
1595     */
1596    
1597     /*
1598 root 1.235 * at the moment we allow libev the luxury of two heaps,
1599     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1600     * which is more cache-efficient.
1601     * the difference is about 5% with 50000+ watchers.
1602     */
1603 root 1.241 #if EV_USE_4HEAP
1604 root 1.235
1605 root 1.237 #define DHEAP 4
1606     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1607 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1608 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1609 root 1.235
1610     /* away from the root */
1611 root 1.284 inline_speed void
1612 root 1.241 downheap (ANHE *heap, int N, int k)
1613 root 1.235 {
1614 root 1.241 ANHE he = heap [k];
1615     ANHE *E = heap + N + HEAP0;
1616 root 1.235
1617     for (;;)
1618     {
1619     ev_tstamp minat;
1620 root 1.241 ANHE *minpos;
1621 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1622 root 1.235
1623 root 1.248 /* find minimum child */
1624 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1625 root 1.235 {
1626 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1627     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1628     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1629     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1630 root 1.235 }
1631 root 1.240 else if (pos < E)
1632 root 1.235 {
1633 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1634     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1635     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1636     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1637 root 1.235 }
1638 root 1.240 else
1639     break;
1640 root 1.235
1641 root 1.241 if (ANHE_at (he) <= minat)
1642 root 1.235 break;
1643    
1644 root 1.247 heap [k] = *minpos;
1645 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1646 root 1.235
1647     k = minpos - heap;
1648     }
1649    
1650 root 1.247 heap [k] = he;
1651 root 1.241 ev_active (ANHE_w (he)) = k;
1652 root 1.235 }
1653    
1654 root 1.248 #else /* 4HEAP */
1655 root 1.235
1656     #define HEAP0 1
1657 root 1.247 #define HPARENT(k) ((k) >> 1)
1658 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1659 root 1.235
1660 root 1.248 /* away from the root */
1661 root 1.284 inline_speed void
1662 root 1.248 downheap (ANHE *heap, int N, int k)
1663 root 1.1 {
1664 root 1.241 ANHE he = heap [k];
1665 root 1.1
1666 root 1.228 for (;;)
1667 root 1.1 {
1668 root 1.248 int c = k << 1;
1669 root 1.179
1670 root 1.309 if (c >= N + HEAP0)
1671 root 1.179 break;
1672    
1673 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1674     ? 1 : 0;
1675    
1676     if (ANHE_at (he) <= ANHE_at (heap [c]))
1677     break;
1678    
1679     heap [k] = heap [c];
1680 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1681 root 1.248
1682     k = c;
1683 root 1.1 }
1684    
1685 root 1.243 heap [k] = he;
1686 root 1.248 ev_active (ANHE_w (he)) = k;
1687 root 1.1 }
1688 root 1.248 #endif
1689 root 1.1
1690 root 1.248 /* towards the root */
1691 root 1.284 inline_speed void
1692 root 1.248 upheap (ANHE *heap, int k)
1693 root 1.1 {
1694 root 1.241 ANHE he = heap [k];
1695 root 1.1
1696 root 1.179 for (;;)
1697 root 1.1 {
1698 root 1.248 int p = HPARENT (k);
1699 root 1.179
1700 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1701 root 1.179 break;
1702 root 1.1
1703 root 1.248 heap [k] = heap [p];
1704 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1705 root 1.248 k = p;
1706 root 1.1 }
1707    
1708 root 1.241 heap [k] = he;
1709     ev_active (ANHE_w (he)) = k;
1710 root 1.1 }
1711    
1712 root 1.288 /* move an element suitably so it is in a correct place */
1713 root 1.284 inline_size void
1714 root 1.241 adjustheap (ANHE *heap, int N, int k)
1715 root 1.84 {
1716 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1717 root 1.247 upheap (heap, k);
1718     else
1719     downheap (heap, N, k);
1720 root 1.84 }
1721    
1722 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1723 root 1.284 inline_size void
1724 root 1.248 reheap (ANHE *heap, int N)
1725     {
1726     int i;
1727 root 1.251
1728 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1729     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1730     for (i = 0; i < N; ++i)
1731     upheap (heap, i + HEAP0);
1732     }
1733    
1734 root 1.8 /*****************************************************************************/
1735    
1736 root 1.288 /* associate signal watchers to a signal signal */
1737 root 1.7 typedef struct
1738     {
1739 root 1.307 EV_ATOMIC_T pending;
1740 root 1.306 #if EV_MULTIPLICITY
1741     EV_P;
1742     #endif
1743 root 1.68 WL head;
1744 root 1.7 } ANSIG;
1745    
1746 root 1.306 static ANSIG signals [EV_NSIG - 1];
1747 root 1.7
1748 root 1.207 /*****************************************************************************/
1749    
1750 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1751 root 1.207
1752 root 1.379 static void noinline ecb_cold
1753 root 1.207 evpipe_init (EV_P)
1754     {
1755 root 1.288 if (!ev_is_active (&pipe_w))
1756 root 1.207 {
1757 root 1.336 # if EV_USE_EVENTFD
1758 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1759     if (evfd < 0 && errno == EINVAL)
1760     evfd = eventfd (0, 0);
1761    
1762     if (evfd >= 0)
1763 root 1.220 {
1764     evpipe [0] = -1;
1765 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1766 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1767 root 1.220 }
1768     else
1769 root 1.336 # endif
1770 root 1.220 {
1771     while (pipe (evpipe))
1772 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1773 root 1.207
1774 root 1.220 fd_intern (evpipe [0]);
1775     fd_intern (evpipe [1]);
1776 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1777 root 1.220 }
1778 root 1.207
1779 root 1.288 ev_io_start (EV_A_ &pipe_w);
1780 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1781 root 1.207 }
1782     }
1783    
1784 root 1.380 inline_speed void
1785 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1786 root 1.207 {
1787 root 1.383 if (expect_true (*flag))
1788 root 1.387 return;
1789 root 1.383
1790     *flag = 1;
1791    
1792 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1793 root 1.383
1794     pipe_write_skipped = 1;
1795 root 1.378
1796 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1797 root 1.214
1798 root 1.383 if (pipe_write_wanted)
1799     {
1800     int old_errno;
1801 root 1.378
1802 root 1.392 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1803 root 1.220
1804 root 1.383 old_errno = errno; /* save errno because write will clobber it */
1805 root 1.380
1806 root 1.220 #if EV_USE_EVENTFD
1807 root 1.383 if (evfd >= 0)
1808     {
1809     uint64_t counter = 1;
1810     write (evfd, &counter, sizeof (uint64_t));
1811     }
1812     else
1813 root 1.220 #endif
1814 root 1.383 {
1815     /* win32 people keep sending patches that change this write() to send() */
1816     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1817     /* so when you think this write should be a send instead, please find out */
1818     /* where your send() is from - it's definitely not the microsoft send, and */
1819     /* tell me. thank you. */
1820     write (evpipe [1], &(evpipe [1]), 1);
1821     }
1822 root 1.214
1823 root 1.383 errno = old_errno;
1824 root 1.207 }
1825     }
1826    
1827 root 1.288 /* called whenever the libev signal pipe */
1828     /* got some events (signal, async) */
1829 root 1.207 static void
1830     pipecb (EV_P_ ev_io *iow, int revents)
1831     {
1832 root 1.307 int i;
1833    
1834 root 1.378 if (revents & EV_READ)
1835     {
1836 root 1.220 #if EV_USE_EVENTFD
1837 root 1.378 if (evfd >= 0)
1838     {
1839     uint64_t counter;
1840     read (evfd, &counter, sizeof (uint64_t));
1841     }
1842     else
1843 root 1.220 #endif
1844 root 1.378 {
1845     char dummy;
1846     /* see discussion in evpipe_write when you think this read should be recv in win32 */
1847     read (evpipe [0], &dummy, 1);
1848     }
1849 root 1.220 }
1850 root 1.207
1851 root 1.378 pipe_write_skipped = 0;
1852    
1853 root 1.369 #if EV_SIGNAL_ENABLE
1854 root 1.307 if (sig_pending)
1855 root 1.372 {
1856 root 1.307 sig_pending = 0;
1857 root 1.207
1858 root 1.307 for (i = EV_NSIG - 1; i--; )
1859     if (expect_false (signals [i].pending))
1860     ev_feed_signal_event (EV_A_ i + 1);
1861 root 1.207 }
1862 root 1.369 #endif
1863 root 1.207
1864 root 1.209 #if EV_ASYNC_ENABLE
1865 root 1.307 if (async_pending)
1866 root 1.207 {
1867 root 1.307 async_pending = 0;
1868 root 1.207
1869     for (i = asynccnt; i--; )
1870     if (asyncs [i]->sent)
1871     {
1872     asyncs [i]->sent = 0;
1873     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1874     }
1875     }
1876 root 1.209 #endif
1877 root 1.207 }
1878    
1879     /*****************************************************************************/
1880    
1881 root 1.366 void
1882     ev_feed_signal (int signum)
1883 root 1.7 {
1884 root 1.207 #if EV_MULTIPLICITY
1885 root 1.306 EV_P = signals [signum - 1].loop;
1886 root 1.366
1887     if (!EV_A)
1888     return;
1889 root 1.207 #endif
1890    
1891 root 1.381 if (!ev_active (&pipe_w))
1892     return;
1893 root 1.378
1894 root 1.366 signals [signum - 1].pending = 1;
1895     evpipe_write (EV_A_ &sig_pending);
1896     }
1897    
1898     static void
1899     ev_sighandler (int signum)
1900     {
1901 root 1.322 #ifdef _WIN32
1902 root 1.218 signal (signum, ev_sighandler);
1903 root 1.67 #endif
1904    
1905 root 1.366 ev_feed_signal (signum);
1906 root 1.7 }
1907    
1908 root 1.140 void noinline
1909 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1910     {
1911 root 1.80 WL w;
1912    
1913 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1914     return;
1915    
1916     --signum;
1917    
1918 root 1.79 #if EV_MULTIPLICITY
1919 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1920     /* or, likely more useful, feeding a signal nobody is waiting for */
1921 root 1.79
1922 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1923 root 1.306 return;
1924 root 1.307 #endif
1925 root 1.306
1926 root 1.307 signals [signum].pending = 0;
1927 root 1.79
1928     for (w = signals [signum].head; w; w = w->next)
1929     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1930     }
1931    
1932 root 1.303 #if EV_USE_SIGNALFD
1933     static void
1934     sigfdcb (EV_P_ ev_io *iow, int revents)
1935     {
1936 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1937 root 1.303
1938     for (;;)
1939     {
1940     ssize_t res = read (sigfd, si, sizeof (si));
1941    
1942     /* not ISO-C, as res might be -1, but works with SuS */
1943     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1944     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1945    
1946     if (res < (ssize_t)sizeof (si))
1947     break;
1948     }
1949     }
1950     #endif
1951    
1952 root 1.336 #endif
1953    
1954 root 1.8 /*****************************************************************************/
1955    
1956 root 1.336 #if EV_CHILD_ENABLE
1957 root 1.182 static WL childs [EV_PID_HASHSIZE];
1958 root 1.71
1959 root 1.136 static ev_signal childev;
1960 root 1.59
1961 root 1.206 #ifndef WIFCONTINUED
1962     # define WIFCONTINUED(status) 0
1963     #endif
1964    
1965 root 1.288 /* handle a single child status event */
1966 root 1.284 inline_speed void
1967 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1968 root 1.47 {
1969 root 1.136 ev_child *w;
1970 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1971 root 1.47
1972 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1973 root 1.206 {
1974     if ((w->pid == pid || !w->pid)
1975     && (!traced || (w->flags & 1)))
1976     {
1977 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1978 root 1.206 w->rpid = pid;
1979     w->rstatus = status;
1980     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1981     }
1982     }
1983 root 1.47 }
1984    
1985 root 1.142 #ifndef WCONTINUED
1986     # define WCONTINUED 0
1987     #endif
1988    
1989 root 1.288 /* called on sigchld etc., calls waitpid */
1990 root 1.47 static void
1991 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1992 root 1.22 {
1993     int pid, status;
1994    
1995 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1996     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1997     if (!WCONTINUED
1998     || errno != EINVAL
1999     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2000     return;
2001    
2002 root 1.216 /* make sure we are called again until all children have been reaped */
2003 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2004     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2005 root 1.47
2006 root 1.216 child_reap (EV_A_ pid, pid, status);
2007 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2008 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2009 root 1.22 }
2010    
2011 root 1.45 #endif
2012    
2013 root 1.22 /*****************************************************************************/
2014    
2015 root 1.357 #if EV_USE_IOCP
2016     # include "ev_iocp.c"
2017     #endif
2018 root 1.118 #if EV_USE_PORT
2019     # include "ev_port.c"
2020     #endif
2021 root 1.44 #if EV_USE_KQUEUE
2022     # include "ev_kqueue.c"
2023     #endif
2024 root 1.29 #if EV_USE_EPOLL
2025 root 1.1 # include "ev_epoll.c"
2026     #endif
2027 root 1.59 #if EV_USE_POLL
2028 root 1.41 # include "ev_poll.c"
2029     #endif
2030 root 1.29 #if EV_USE_SELECT
2031 root 1.1 # include "ev_select.c"
2032     #endif
2033    
2034 root 1.379 int ecb_cold
2035 root 1.24 ev_version_major (void)
2036     {
2037     return EV_VERSION_MAJOR;
2038     }
2039    
2040 root 1.379 int ecb_cold
2041 root 1.24 ev_version_minor (void)
2042     {
2043     return EV_VERSION_MINOR;
2044     }
2045    
2046 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2047 root 1.379 int inline_size ecb_cold
2048 root 1.51 enable_secure (void)
2049 root 1.41 {
2050 root 1.103 #ifdef _WIN32
2051 root 1.49 return 0;
2052     #else
2053 root 1.41 return getuid () != geteuid ()
2054     || getgid () != getegid ();
2055 root 1.49 #endif
2056 root 1.41 }
2057    
2058 root 1.379 unsigned int ecb_cold
2059 root 1.129 ev_supported_backends (void)
2060     {
2061 root 1.130 unsigned int flags = 0;
2062 root 1.129
2063     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2064     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2065     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2066     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2067     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2068    
2069     return flags;
2070     }
2071    
2072 root 1.379 unsigned int ecb_cold
2073 root 1.130 ev_recommended_backends (void)
2074 root 1.1 {
2075 root 1.131 unsigned int flags = ev_supported_backends ();
2076 root 1.129
2077     #ifndef __NetBSD__
2078     /* kqueue is borked on everything but netbsd apparently */
2079     /* it usually doesn't work correctly on anything but sockets and pipes */
2080     flags &= ~EVBACKEND_KQUEUE;
2081     #endif
2082     #ifdef __APPLE__
2083 root 1.278 /* only select works correctly on that "unix-certified" platform */
2084     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2085     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2086 root 1.129 #endif
2087 root 1.342 #ifdef __FreeBSD__
2088     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2089     #endif
2090 root 1.129
2091     return flags;
2092 root 1.51 }
2093    
2094 root 1.379 unsigned int ecb_cold
2095 root 1.134 ev_embeddable_backends (void)
2096     {
2097 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2098    
2099 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2100 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2101     flags &= ~EVBACKEND_EPOLL;
2102 root 1.196
2103     return flags;
2104 root 1.134 }
2105    
2106     unsigned int
2107 root 1.130 ev_backend (EV_P)
2108     {
2109     return backend;
2110     }
2111    
2112 root 1.338 #if EV_FEATURE_API
2113 root 1.162 unsigned int
2114 root 1.340 ev_iteration (EV_P)
2115 root 1.162 {
2116     return loop_count;
2117     }
2118    
2119 root 1.294 unsigned int
2120 root 1.340 ev_depth (EV_P)
2121 root 1.294 {
2122     return loop_depth;
2123     }
2124    
2125 root 1.193 void
2126     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2127     {
2128     io_blocktime = interval;
2129     }
2130    
2131     void
2132     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2133     {
2134     timeout_blocktime = interval;
2135     }
2136    
2137 root 1.297 void
2138     ev_set_userdata (EV_P_ void *data)
2139     {
2140     userdata = data;
2141     }
2142    
2143     void *
2144     ev_userdata (EV_P)
2145     {
2146     return userdata;
2147     }
2148    
2149 root 1.379 void
2150     ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2151 root 1.297 {
2152     invoke_cb = invoke_pending_cb;
2153     }
2154    
2155 root 1.379 void
2156     ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2157 root 1.297 {
2158 root 1.298 release_cb = release;
2159     acquire_cb = acquire;
2160 root 1.297 }
2161     #endif
2162    
2163 root 1.288 /* initialise a loop structure, must be zero-initialised */
2164 root 1.379 static void noinline ecb_cold
2165 root 1.108 loop_init (EV_P_ unsigned int flags)
2166 root 1.51 {
2167 root 1.130 if (!backend)
2168 root 1.23 {
2169 root 1.366 origflags = flags;
2170    
2171 root 1.279 #if EV_USE_REALTIME
2172     if (!have_realtime)
2173     {
2174     struct timespec ts;
2175    
2176     if (!clock_gettime (CLOCK_REALTIME, &ts))
2177     have_realtime = 1;
2178     }
2179     #endif
2180    
2181 root 1.29 #if EV_USE_MONOTONIC
2182 root 1.279 if (!have_monotonic)
2183     {
2184     struct timespec ts;
2185    
2186     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2187     have_monotonic = 1;
2188     }
2189 root 1.1 #endif
2190    
2191 root 1.306 /* pid check not overridable via env */
2192     #ifndef _WIN32
2193     if (flags & EVFLAG_FORKCHECK)
2194     curpid = getpid ();
2195     #endif
2196    
2197     if (!(flags & EVFLAG_NOENV)
2198     && !enable_secure ()
2199     && getenv ("LIBEV_FLAGS"))
2200     flags = atoi (getenv ("LIBEV_FLAGS"));
2201    
2202 root 1.378 ev_rt_now = ev_time ();
2203     mn_now = get_clock ();
2204     now_floor = mn_now;
2205     rtmn_diff = ev_rt_now - mn_now;
2206 root 1.338 #if EV_FEATURE_API
2207 root 1.378 invoke_cb = ev_invoke_pending;
2208 root 1.297 #endif
2209 root 1.1
2210 root 1.378 io_blocktime = 0.;
2211     timeout_blocktime = 0.;
2212     backend = 0;
2213     backend_fd = -1;
2214     sig_pending = 0;
2215 root 1.307 #if EV_ASYNC_ENABLE
2216 root 1.378 async_pending = 0;
2217 root 1.307 #endif
2218 root 1.378 pipe_write_skipped = 0;
2219     pipe_write_wanted = 0;
2220 root 1.209 #if EV_USE_INOTIFY
2221 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2222 root 1.209 #endif
2223 root 1.303 #if EV_USE_SIGNALFD
2224 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2225 root 1.303 #endif
2226 root 1.193
2227 root 1.366 if (!(flags & EVBACKEND_MASK))
2228 root 1.129 flags |= ev_recommended_backends ();
2229 root 1.41
2230 root 1.357 #if EV_USE_IOCP
2231     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2232     #endif
2233 root 1.118 #if EV_USE_PORT
2234 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2235 root 1.118 #endif
2236 root 1.44 #if EV_USE_KQUEUE
2237 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2238 root 1.44 #endif
2239 root 1.29 #if EV_USE_EPOLL
2240 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2241 root 1.41 #endif
2242 root 1.59 #if EV_USE_POLL
2243 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2244 root 1.1 #endif
2245 root 1.29 #if EV_USE_SELECT
2246 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2247 root 1.1 #endif
2248 root 1.70
2249 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2250    
2251 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2252 root 1.288 ev_init (&pipe_w, pipecb);
2253     ev_set_priority (&pipe_w, EV_MAXPRI);
2254 root 1.336 #endif
2255 root 1.56 }
2256     }
2257    
2258 root 1.288 /* free up a loop structure */
2259 root 1.379 void ecb_cold
2260 root 1.359 ev_loop_destroy (EV_P)
2261 root 1.56 {
2262 root 1.65 int i;
2263    
2264 root 1.364 #if EV_MULTIPLICITY
2265 root 1.363 /* mimic free (0) */
2266     if (!EV_A)
2267     return;
2268 root 1.364 #endif
2269 root 1.363
2270 root 1.361 #if EV_CLEANUP_ENABLE
2271     /* queue cleanup watchers (and execute them) */
2272     if (expect_false (cleanupcnt))
2273     {
2274     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2275     EV_INVOKE_PENDING;
2276     }
2277     #endif
2278    
2279 root 1.359 #if EV_CHILD_ENABLE
2280     if (ev_is_active (&childev))
2281     {
2282     ev_ref (EV_A); /* child watcher */
2283     ev_signal_stop (EV_A_ &childev);
2284     }
2285     #endif
2286    
2287 root 1.288 if (ev_is_active (&pipe_w))
2288 root 1.207 {
2289 root 1.303 /*ev_ref (EV_A);*/
2290     /*ev_io_stop (EV_A_ &pipe_w);*/
2291 root 1.207
2292 root 1.220 #if EV_USE_EVENTFD
2293     if (evfd >= 0)
2294     close (evfd);
2295     #endif
2296    
2297     if (evpipe [0] >= 0)
2298     {
2299 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2300     EV_WIN32_CLOSE_FD (evpipe [1]);
2301 root 1.220 }
2302 root 1.207 }
2303    
2304 root 1.303 #if EV_USE_SIGNALFD
2305     if (ev_is_active (&sigfd_w))
2306 root 1.317 close (sigfd);
2307 root 1.303 #endif
2308    
2309 root 1.152 #if EV_USE_INOTIFY
2310     if (fs_fd >= 0)
2311     close (fs_fd);
2312     #endif
2313    
2314     if (backend_fd >= 0)
2315     close (backend_fd);
2316    
2317 root 1.357 #if EV_USE_IOCP
2318     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2319     #endif
2320 root 1.118 #if EV_USE_PORT
2321 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2322 root 1.118 #endif
2323 root 1.56 #if EV_USE_KQUEUE
2324 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2325 root 1.56 #endif
2326     #if EV_USE_EPOLL
2327 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2328 root 1.56 #endif
2329 root 1.59 #if EV_USE_POLL
2330 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2331 root 1.56 #endif
2332     #if EV_USE_SELECT
2333 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2334 root 1.56 #endif
2335 root 1.1
2336 root 1.65 for (i = NUMPRI; i--; )
2337 root 1.164 {
2338     array_free (pending, [i]);
2339     #if EV_IDLE_ENABLE
2340     array_free (idle, [i]);
2341     #endif
2342     }
2343 root 1.65
2344 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2345 root 1.186
2346 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2347 root 1.284 array_free (rfeed, EMPTY);
2348 root 1.164 array_free (fdchange, EMPTY);
2349     array_free (timer, EMPTY);
2350 root 1.140 #if EV_PERIODIC_ENABLE
2351 root 1.164 array_free (periodic, EMPTY);
2352 root 1.93 #endif
2353 root 1.187 #if EV_FORK_ENABLE
2354     array_free (fork, EMPTY);
2355     #endif
2356 root 1.360 #if EV_CLEANUP_ENABLE
2357     array_free (cleanup, EMPTY);
2358     #endif
2359 root 1.164 array_free (prepare, EMPTY);
2360     array_free (check, EMPTY);
2361 root 1.209 #if EV_ASYNC_ENABLE
2362     array_free (async, EMPTY);
2363     #endif
2364 root 1.65
2365 root 1.130 backend = 0;
2366 root 1.359
2367     #if EV_MULTIPLICITY
2368     if (ev_is_default_loop (EV_A))
2369     #endif
2370     ev_default_loop_ptr = 0;
2371     #if EV_MULTIPLICITY
2372     else
2373     ev_free (EV_A);
2374     #endif
2375 root 1.56 }
2376 root 1.22
2377 root 1.226 #if EV_USE_INOTIFY
2378 root 1.284 inline_size void infy_fork (EV_P);
2379 root 1.226 #endif
2380 root 1.154
2381 root 1.284 inline_size void
2382 root 1.56 loop_fork (EV_P)
2383     {
2384 root 1.118 #if EV_USE_PORT
2385 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2386 root 1.56 #endif
2387     #if EV_USE_KQUEUE
2388 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2389 root 1.45 #endif
2390 root 1.118 #if EV_USE_EPOLL
2391 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2392 root 1.118 #endif
2393 root 1.154 #if EV_USE_INOTIFY
2394     infy_fork (EV_A);
2395     #endif
2396 root 1.70
2397 root 1.288 if (ev_is_active (&pipe_w))
2398 root 1.70 {
2399 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2400 root 1.70
2401     ev_ref (EV_A);
2402 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2403 root 1.220
2404     #if EV_USE_EVENTFD
2405     if (evfd >= 0)
2406     close (evfd);
2407     #endif
2408    
2409     if (evpipe [0] >= 0)
2410     {
2411 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2412     EV_WIN32_CLOSE_FD (evpipe [1]);
2413 root 1.220 }
2414 root 1.207
2415 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2416 root 1.207 evpipe_init (EV_A);
2417 root 1.208 /* now iterate over everything, in case we missed something */
2418 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
2419 root 1.337 #endif
2420 root 1.70 }
2421    
2422     postfork = 0;
2423 root 1.1 }
2424    
2425 root 1.55 #if EV_MULTIPLICITY
2426 root 1.250
2427 root 1.379 struct ev_loop * ecb_cold
2428 root 1.108 ev_loop_new (unsigned int flags)
2429 root 1.54 {
2430 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2431 root 1.69
2432 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2433 root 1.108 loop_init (EV_A_ flags);
2434 root 1.56
2435 root 1.130 if (ev_backend (EV_A))
2436 root 1.306 return EV_A;
2437 root 1.54
2438 root 1.359 ev_free (EV_A);
2439 root 1.55 return 0;
2440 root 1.54 }
2441    
2442 root 1.297 #endif /* multiplicity */
2443 root 1.248
2444     #if EV_VERIFY
2445 root 1.379 static void noinline ecb_cold
2446 root 1.251 verify_watcher (EV_P_ W w)
2447     {
2448 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2449 root 1.251
2450     if (w->pending)
2451 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2452 root 1.251 }
2453    
2454 root 1.379 static void noinline ecb_cold
2455 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2456     {
2457     int i;
2458    
2459     for (i = HEAP0; i < N + HEAP0; ++i)
2460     {
2461 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2462     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2463     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2464 root 1.251
2465     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2466     }
2467     }
2468    
2469 root 1.379 static void noinline ecb_cold
2470 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2471 root 1.248 {
2472     while (cnt--)
2473 root 1.251 {
2474 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2475 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2476     }
2477 root 1.248 }
2478 root 1.250 #endif
2479 root 1.248
2480 root 1.338 #if EV_FEATURE_API
2481 root 1.379 void ecb_cold
2482 root 1.340 ev_verify (EV_P)
2483 root 1.248 {
2484 root 1.250 #if EV_VERIFY
2485 root 1.248 int i;
2486 root 1.251 WL w;
2487    
2488     assert (activecnt >= -1);
2489    
2490     assert (fdchangemax >= fdchangecnt);
2491     for (i = 0; i < fdchangecnt; ++i)
2492 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2493 root 1.251
2494     assert (anfdmax >= 0);
2495     for (i = 0; i < anfdmax; ++i)
2496     for (w = anfds [i].head; w; w = w->next)
2497     {
2498     verify_watcher (EV_A_ (W)w);
2499 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2500     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2501 root 1.251 }
2502    
2503     assert (timermax >= timercnt);
2504     verify_heap (EV_A_ timers, timercnt);
2505 root 1.248
2506     #if EV_PERIODIC_ENABLE
2507 root 1.251 assert (periodicmax >= periodiccnt);
2508     verify_heap (EV_A_ periodics, periodiccnt);
2509 root 1.248 #endif
2510    
2511 root 1.251 for (i = NUMPRI; i--; )
2512     {
2513     assert (pendingmax [i] >= pendingcnt [i]);
2514 root 1.248 #if EV_IDLE_ENABLE
2515 root 1.252 assert (idleall >= 0);
2516 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2517     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2518 root 1.248 #endif
2519 root 1.251 }
2520    
2521 root 1.248 #if EV_FORK_ENABLE
2522 root 1.251 assert (forkmax >= forkcnt);
2523     array_verify (EV_A_ (W *)forks, forkcnt);
2524 root 1.248 #endif
2525 root 1.251
2526 root 1.360 #if EV_CLEANUP_ENABLE
2527     assert (cleanupmax >= cleanupcnt);
2528     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2529     #endif
2530    
2531 root 1.250 #if EV_ASYNC_ENABLE
2532 root 1.251 assert (asyncmax >= asynccnt);
2533     array_verify (EV_A_ (W *)asyncs, asynccnt);
2534 root 1.250 #endif
2535 root 1.251
2536 root 1.337 #if EV_PREPARE_ENABLE
2537 root 1.251 assert (preparemax >= preparecnt);
2538     array_verify (EV_A_ (W *)prepares, preparecnt);
2539 root 1.337 #endif
2540 root 1.251
2541 root 1.337 #if EV_CHECK_ENABLE
2542 root 1.251 assert (checkmax >= checkcnt);
2543     array_verify (EV_A_ (W *)checks, checkcnt);
2544 root 1.337 #endif
2545 root 1.251
2546     # if 0
2547 root 1.336 #if EV_CHILD_ENABLE
2548 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2549 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2550 root 1.336 #endif
2551 root 1.251 # endif
2552 root 1.248 #endif
2553     }
2554 root 1.297 #endif
2555 root 1.56
2556     #if EV_MULTIPLICITY
2557 root 1.379 struct ev_loop * ecb_cold
2558 root 1.54 #else
2559     int
2560 root 1.358 #endif
2561 root 1.116 ev_default_loop (unsigned int flags)
2562 root 1.54 {
2563 root 1.116 if (!ev_default_loop_ptr)
2564 root 1.56 {
2565     #if EV_MULTIPLICITY
2566 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2567 root 1.56 #else
2568 ayin 1.117 ev_default_loop_ptr = 1;
2569 root 1.54 #endif
2570    
2571 root 1.110 loop_init (EV_A_ flags);
2572 root 1.56
2573 root 1.130 if (ev_backend (EV_A))
2574 root 1.56 {
2575 root 1.336 #if EV_CHILD_ENABLE
2576 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2577     ev_set_priority (&childev, EV_MAXPRI);
2578     ev_signal_start (EV_A_ &childev);
2579     ev_unref (EV_A); /* child watcher should not keep loop alive */
2580     #endif
2581     }
2582     else
2583 root 1.116 ev_default_loop_ptr = 0;
2584 root 1.56 }
2585 root 1.8
2586 root 1.116 return ev_default_loop_ptr;
2587 root 1.1 }
2588    
2589 root 1.24 void
2590 root 1.359 ev_loop_fork (EV_P)
2591 root 1.1 {
2592 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2593 root 1.1 }
2594    
2595 root 1.8 /*****************************************************************************/
2596    
2597 root 1.168 void
2598     ev_invoke (EV_P_ void *w, int revents)
2599     {
2600     EV_CB_INVOKE ((W)w, revents);
2601     }
2602    
2603 root 1.300 unsigned int
2604     ev_pending_count (EV_P)
2605     {
2606     int pri;
2607     unsigned int count = 0;
2608    
2609     for (pri = NUMPRI; pri--; )
2610     count += pendingcnt [pri];
2611    
2612     return count;
2613     }
2614    
2615 root 1.297 void noinline
2616 root 1.296 ev_invoke_pending (EV_P)
2617 root 1.1 {
2618 root 1.42 int pri;
2619    
2620     for (pri = NUMPRI; pri--; )
2621     while (pendingcnt [pri])
2622     {
2623     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2624 root 1.1
2625 root 1.288 p->w->pending = 0;
2626     EV_CB_INVOKE (p->w, p->events);
2627     EV_FREQUENT_CHECK;
2628 root 1.42 }
2629 root 1.1 }
2630    
2631 root 1.234 #if EV_IDLE_ENABLE
2632 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2633     /* only when higher priorities are idle" logic */
2634 root 1.284 inline_size void
2635 root 1.234 idle_reify (EV_P)
2636     {
2637     if (expect_false (idleall))
2638     {
2639     int pri;
2640    
2641     for (pri = NUMPRI; pri--; )
2642     {
2643     if (pendingcnt [pri])
2644     break;
2645    
2646     if (idlecnt [pri])
2647     {
2648     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2649     break;
2650     }
2651     }
2652     }
2653     }
2654     #endif
2655    
2656 root 1.288 /* make timers pending */
2657 root 1.284 inline_size void
2658 root 1.51 timers_reify (EV_P)
2659 root 1.1 {
2660 root 1.248 EV_FREQUENT_CHECK;
2661    
2662 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2663 root 1.1 {
2664 root 1.284 do
2665     {
2666     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2667 root 1.1
2668 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2669    
2670     /* first reschedule or stop timer */
2671     if (w->repeat)
2672     {
2673     ev_at (w) += w->repeat;
2674     if (ev_at (w) < mn_now)
2675     ev_at (w) = mn_now;
2676 root 1.61
2677 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2678 root 1.90
2679 root 1.284 ANHE_at_cache (timers [HEAP0]);
2680     downheap (timers, timercnt, HEAP0);
2681     }
2682     else
2683     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2684 root 1.243
2685 root 1.284 EV_FREQUENT_CHECK;
2686     feed_reverse (EV_A_ (W)w);
2687 root 1.12 }
2688 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2689 root 1.30
2690 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2691 root 1.12 }
2692     }
2693 root 1.4
2694 root 1.140 #if EV_PERIODIC_ENABLE
2695 root 1.370
2696 root 1.373 static void noinline
2697 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2698     {
2699 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2700     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2701    
2702     /* the above almost always errs on the low side */
2703     while (at <= ev_rt_now)
2704     {
2705     ev_tstamp nat = at + w->interval;
2706    
2707     /* when resolution fails us, we use ev_rt_now */
2708     if (expect_false (nat == at))
2709     {
2710     at = ev_rt_now;
2711     break;
2712     }
2713    
2714     at = nat;
2715     }
2716    
2717     ev_at (w) = at;
2718 root 1.370 }
2719    
2720 root 1.288 /* make periodics pending */
2721 root 1.284 inline_size void
2722 root 1.51 periodics_reify (EV_P)
2723 root 1.12 {
2724 root 1.248 EV_FREQUENT_CHECK;
2725 root 1.250
2726 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2727 root 1.12 {
2728 root 1.284 int feed_count = 0;
2729    
2730     do
2731     {
2732     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2733 root 1.1
2734 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2735 root 1.61
2736 root 1.284 /* first reschedule or stop timer */
2737     if (w->reschedule_cb)
2738     {
2739     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2740 root 1.243
2741 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2742 root 1.243
2743 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2744     downheap (periodics, periodiccnt, HEAP0);
2745     }
2746     else if (w->interval)
2747 root 1.246 {
2748 root 1.370 periodic_recalc (EV_A_ w);
2749 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2750     downheap (periodics, periodiccnt, HEAP0);
2751 root 1.246 }
2752 root 1.284 else
2753     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2754 root 1.243
2755 root 1.284 EV_FREQUENT_CHECK;
2756     feed_reverse (EV_A_ (W)w);
2757 root 1.1 }
2758 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2759 root 1.12
2760 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2761 root 1.12 }
2762     }
2763    
2764 root 1.288 /* simply recalculate all periodics */
2765 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2766 root 1.379 static void noinline ecb_cold
2767 root 1.54 periodics_reschedule (EV_P)
2768 root 1.12 {
2769     int i;
2770    
2771 root 1.13 /* adjust periodics after time jump */
2772 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2773 root 1.12 {
2774 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2775 root 1.12
2776 root 1.77 if (w->reschedule_cb)
2777 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2778 root 1.77 else if (w->interval)
2779 root 1.370 periodic_recalc (EV_A_ w);
2780 root 1.242
2781 root 1.248 ANHE_at_cache (periodics [i]);
2782 root 1.77 }
2783 root 1.12
2784 root 1.248 reheap (periodics, periodiccnt);
2785 root 1.1 }
2786 root 1.93 #endif
2787 root 1.1
2788 root 1.288 /* adjust all timers by a given offset */
2789 root 1.379 static void noinline ecb_cold
2790 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
2791     {
2792     int i;
2793    
2794     for (i = 0; i < timercnt; ++i)
2795     {
2796     ANHE *he = timers + i + HEAP0;
2797     ANHE_w (*he)->at += adjust;
2798     ANHE_at_cache (*he);
2799     }
2800     }
2801    
2802 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2803 root 1.324 /* also detect if there was a timejump, and act accordingly */
2804 root 1.284 inline_speed void
2805 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2806 root 1.4 {
2807 root 1.40 #if EV_USE_MONOTONIC
2808     if (expect_true (have_monotonic))
2809     {
2810 root 1.289 int i;
2811 root 1.178 ev_tstamp odiff = rtmn_diff;
2812    
2813     mn_now = get_clock ();
2814    
2815     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2816     /* interpolate in the meantime */
2817     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2818 root 1.40 {
2819 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2820     return;
2821     }
2822    
2823     now_floor = mn_now;
2824     ev_rt_now = ev_time ();
2825 root 1.4
2826 root 1.178 /* loop a few times, before making important decisions.
2827     * on the choice of "4": one iteration isn't enough,
2828     * in case we get preempted during the calls to
2829     * ev_time and get_clock. a second call is almost guaranteed
2830     * to succeed in that case, though. and looping a few more times
2831     * doesn't hurt either as we only do this on time-jumps or
2832     * in the unlikely event of having been preempted here.
2833     */
2834     for (i = 4; --i; )
2835     {
2836 root 1.373 ev_tstamp diff;
2837 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2838 root 1.4
2839 root 1.373 diff = odiff - rtmn_diff;
2840    
2841     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2842 root 1.178 return; /* all is well */
2843 root 1.4
2844 root 1.178 ev_rt_now = ev_time ();
2845     mn_now = get_clock ();
2846     now_floor = mn_now;
2847     }
2848 root 1.4
2849 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2850     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2851 root 1.140 # if EV_PERIODIC_ENABLE
2852 root 1.178 periodics_reschedule (EV_A);
2853 root 1.93 # endif
2854 root 1.4 }
2855     else
2856 root 1.40 #endif
2857 root 1.4 {
2858 root 1.85 ev_rt_now = ev_time ();
2859 root 1.40
2860 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2861 root 1.13 {
2862 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2863     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2864 root 1.140 #if EV_PERIODIC_ENABLE
2865 root 1.54 periodics_reschedule (EV_A);
2866 root 1.93 #endif
2867 root 1.13 }
2868 root 1.4
2869 root 1.85 mn_now = ev_rt_now;
2870 root 1.4 }
2871     }
2872    
2873 root 1.51 void
2874 root 1.353 ev_run (EV_P_ int flags)
2875 root 1.1 {
2876 root 1.338 #if EV_FEATURE_API
2877 root 1.294 ++loop_depth;
2878 root 1.297 #endif
2879 root 1.294
2880 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2881 root 1.298
2882 root 1.353 loop_done = EVBREAK_CANCEL;
2883 root 1.1
2884 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2885 root 1.158
2886 root 1.161 do
2887 root 1.9 {
2888 root 1.250 #if EV_VERIFY >= 2
2889 root 1.340 ev_verify (EV_A);
2890 root 1.250 #endif
2891    
2892 root 1.158 #ifndef _WIN32
2893     if (expect_false (curpid)) /* penalise the forking check even more */
2894     if (expect_false (getpid () != curpid))
2895     {
2896     curpid = getpid ();
2897     postfork = 1;
2898     }
2899     #endif
2900    
2901 root 1.157 #if EV_FORK_ENABLE
2902     /* we might have forked, so queue fork handlers */
2903     if (expect_false (postfork))
2904     if (forkcnt)
2905     {
2906     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2907 root 1.297 EV_INVOKE_PENDING;
2908 root 1.157 }
2909     #endif
2910 root 1.147
2911 root 1.337 #if EV_PREPARE_ENABLE
2912 root 1.170 /* queue prepare watchers (and execute them) */
2913 root 1.40 if (expect_false (preparecnt))
2914 root 1.20 {
2915 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2916 root 1.297 EV_INVOKE_PENDING;
2917 root 1.20 }
2918 root 1.337 #endif
2919 root 1.9
2920 root 1.298 if (expect_false (loop_done))
2921     break;
2922    
2923 root 1.70 /* we might have forked, so reify kernel state if necessary */
2924     if (expect_false (postfork))
2925     loop_fork (EV_A);
2926    
2927 root 1.1 /* update fd-related kernel structures */
2928 root 1.51 fd_reify (EV_A);
2929 root 1.1
2930     /* calculate blocking time */
2931 root 1.135 {
2932 root 1.193 ev_tstamp waittime = 0.;
2933     ev_tstamp sleeptime = 0.;
2934 root 1.12
2935 root 1.353 /* remember old timestamp for io_blocktime calculation */
2936     ev_tstamp prev_mn_now = mn_now;
2937 root 1.293
2938 root 1.353 /* update time to cancel out callback processing overhead */
2939     time_update (EV_A_ 1e100);
2940 root 1.135
2941 root 1.378 /* from now on, we want a pipe-wake-up */
2942     pipe_write_wanted = 1;
2943    
2944 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2945 root 1.383
2946 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2947 root 1.353 {
2948 root 1.287 waittime = MAX_BLOCKTIME;
2949    
2950 root 1.135 if (timercnt)
2951     {
2952 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2953 root 1.193 if (waittime > to) waittime = to;
2954 root 1.135 }
2955 root 1.4
2956 root 1.140 #if EV_PERIODIC_ENABLE
2957 root 1.135 if (periodiccnt)
2958     {
2959 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2960 root 1.193 if (waittime > to) waittime = to;
2961 root 1.135 }
2962 root 1.93 #endif
2963 root 1.4
2964 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2965 root 1.193 if (expect_false (waittime < timeout_blocktime))
2966     waittime = timeout_blocktime;
2967    
2968 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
2969     /* to pass a minimum nonzero value to the backend */
2970     if (expect_false (waittime < backend_mintime))
2971     waittime = backend_mintime;
2972    
2973 root 1.293 /* extra check because io_blocktime is commonly 0 */
2974     if (expect_false (io_blocktime))
2975     {
2976     sleeptime = io_blocktime - (mn_now - prev_mn_now);
2977 root 1.193
2978 root 1.376 if (sleeptime > waittime - backend_mintime)
2979     sleeptime = waittime - backend_mintime;
2980 root 1.193
2981 root 1.293 if (expect_true (sleeptime > 0.))
2982     {
2983     ev_sleep (sleeptime);
2984     waittime -= sleeptime;
2985     }
2986 root 1.193 }
2987 root 1.135 }
2988 root 1.1
2989 root 1.338 #if EV_FEATURE_API
2990 root 1.162 ++loop_count;
2991 root 1.297 #endif
2992 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2993 root 1.193 backend_poll (EV_A_ waittime);
2994 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2995 root 1.178
2996 root 1.384 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2997 root 1.378
2998     if (pipe_write_skipped)
2999     {
3000     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3001     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3002     }
3003    
3004    
3005 root 1.178 /* update ev_rt_now, do magic */
3006 root 1.193 time_update (EV_A_ waittime + sleeptime);
3007 root 1.135 }
3008 root 1.1
3009 root 1.9 /* queue pending timers and reschedule them */
3010 root 1.51 timers_reify (EV_A); /* relative timers called last */
3011 root 1.140 #if EV_PERIODIC_ENABLE
3012 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3013 root 1.93 #endif
3014 root 1.1
3015 root 1.164 #if EV_IDLE_ENABLE
3016 root 1.137 /* queue idle watchers unless other events are pending */
3017 root 1.164 idle_reify (EV_A);
3018     #endif
3019 root 1.9
3020 root 1.337 #if EV_CHECK_ENABLE
3021 root 1.20 /* queue check watchers, to be executed first */
3022 root 1.123 if (expect_false (checkcnt))
3023 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3024 root 1.337 #endif
3025 root 1.9
3026 root 1.297 EV_INVOKE_PENDING;
3027 root 1.1 }
3028 root 1.219 while (expect_true (
3029     activecnt
3030     && !loop_done
3031 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3032 root 1.219 ));
3033 root 1.13
3034 root 1.353 if (loop_done == EVBREAK_ONE)
3035     loop_done = EVBREAK_CANCEL;
3036 root 1.294
3037 root 1.338 #if EV_FEATURE_API
3038 root 1.294 --loop_depth;
3039 root 1.297 #endif
3040 root 1.51 }
3041    
3042     void
3043 root 1.353 ev_break (EV_P_ int how)
3044 root 1.51 {
3045     loop_done = how;
3046 root 1.1 }
3047    
3048 root 1.285 void
3049     ev_ref (EV_P)
3050     {
3051     ++activecnt;
3052     }
3053    
3054     void
3055     ev_unref (EV_P)
3056     {
3057     --activecnt;
3058     }
3059    
3060     void
3061     ev_now_update (EV_P)
3062     {
3063     time_update (EV_A_ 1e100);
3064     }
3065    
3066     void
3067     ev_suspend (EV_P)
3068     {
3069     ev_now_update (EV_A);
3070     }
3071    
3072     void
3073     ev_resume (EV_P)
3074     {
3075     ev_tstamp mn_prev = mn_now;
3076    
3077     ev_now_update (EV_A);
3078     timers_reschedule (EV_A_ mn_now - mn_prev);
3079 root 1.286 #if EV_PERIODIC_ENABLE
3080 root 1.288 /* TODO: really do this? */
3081 root 1.285 periodics_reschedule (EV_A);
3082 root 1.286 #endif
3083 root 1.285 }
3084    
3085 root 1.8 /*****************************************************************************/
3086 root 1.288 /* singly-linked list management, used when the expected list length is short */
3087 root 1.8
3088 root 1.284 inline_size void
3089 root 1.10 wlist_add (WL *head, WL elem)
3090 root 1.1 {
3091     elem->next = *head;
3092     *head = elem;
3093     }
3094    
3095 root 1.284 inline_size void
3096 root 1.10 wlist_del (WL *head, WL elem)
3097 root 1.1 {
3098     while (*head)
3099     {
3100 root 1.307 if (expect_true (*head == elem))
3101 root 1.1 {
3102     *head = elem->next;
3103 root 1.307 break;
3104 root 1.1 }
3105    
3106     head = &(*head)->next;
3107     }
3108     }
3109    
3110 root 1.288 /* internal, faster, version of ev_clear_pending */
3111 root 1.284 inline_speed void
3112 root 1.166 clear_pending (EV_P_ W w)
3113 root 1.16 {
3114     if (w->pending)
3115     {
3116 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3117 root 1.16 w->pending = 0;
3118     }
3119     }
3120    
3121 root 1.167 int
3122     ev_clear_pending (EV_P_ void *w)
3123 root 1.166 {
3124     W w_ = (W)w;
3125     int pending = w_->pending;
3126    
3127 root 1.172 if (expect_true (pending))
3128     {
3129     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3130 root 1.288 p->w = (W)&pending_w;
3131 root 1.172 w_->pending = 0;
3132     return p->events;
3133     }
3134     else
3135 root 1.167 return 0;
3136 root 1.166 }
3137    
3138 root 1.284 inline_size void
3139 root 1.164 pri_adjust (EV_P_ W w)
3140     {
3141 root 1.295 int pri = ev_priority (w);
3142 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3143     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3144 root 1.295 ev_set_priority (w, pri);
3145 root 1.164 }
3146    
3147 root 1.284 inline_speed void
3148 root 1.51 ev_start (EV_P_ W w, int active)
3149 root 1.1 {
3150 root 1.164 pri_adjust (EV_A_ w);
3151 root 1.1 w->active = active;
3152 root 1.51 ev_ref (EV_A);
3153 root 1.1 }
3154    
3155 root 1.284 inline_size void
3156 root 1.51 ev_stop (EV_P_ W w)
3157 root 1.1 {
3158 root 1.51 ev_unref (EV_A);
3159 root 1.1 w->active = 0;
3160     }
3161    
3162 root 1.8 /*****************************************************************************/
3163    
3164 root 1.171 void noinline
3165 root 1.136 ev_io_start (EV_P_ ev_io *w)
3166 root 1.1 {
3167 root 1.37 int fd = w->fd;
3168    
3169 root 1.123 if (expect_false (ev_is_active (w)))
3170 root 1.1 return;
3171    
3172 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3173 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3174 root 1.33
3175 root 1.248 EV_FREQUENT_CHECK;
3176    
3177 root 1.51 ev_start (EV_A_ (W)w, 1);
3178 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3179 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3180 root 1.1
3181 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3182 root 1.281 w->events &= ~EV__IOFDSET;
3183 root 1.248
3184     EV_FREQUENT_CHECK;
3185 root 1.1 }
3186    
3187 root 1.171 void noinline
3188 root 1.136 ev_io_stop (EV_P_ ev_io *w)
3189 root 1.1 {
3190 root 1.166 clear_pending (EV_A_ (W)w);
3191 root 1.123 if (expect_false (!ev_is_active (w)))
3192 root 1.1 return;
3193    
3194 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3195 root 1.89
3196 root 1.248 EV_FREQUENT_CHECK;
3197    
3198 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3199 root 1.51 ev_stop (EV_A_ (W)w);
3200 root 1.1
3201 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3202 root 1.248
3203     EV_FREQUENT_CHECK;
3204 root 1.1 }
3205    
3206 root 1.171 void noinline
3207 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
3208 root 1.1 {
3209 root 1.123 if (expect_false (ev_is_active (w)))
3210 root 1.1 return;
3211    
3212 root 1.228 ev_at (w) += mn_now;
3213 root 1.12
3214 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3215 root 1.13
3216 root 1.248 EV_FREQUENT_CHECK;
3217    
3218     ++timercnt;
3219     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3220 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3221     ANHE_w (timers [ev_active (w)]) = (WT)w;
3222 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3223 root 1.235 upheap (timers, ev_active (w));
3224 root 1.62
3225 root 1.248 EV_FREQUENT_CHECK;
3226    
3227 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3228 root 1.12 }
3229    
3230 root 1.171 void noinline
3231 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
3232 root 1.12 {
3233 root 1.166 clear_pending (EV_A_ (W)w);
3234 root 1.123 if (expect_false (!ev_is_active (w)))
3235 root 1.12 return;
3236    
3237 root 1.248 EV_FREQUENT_CHECK;
3238    
3239 root 1.230 {
3240     int active = ev_active (w);
3241 root 1.62
3242 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3243 root 1.151
3244 root 1.248 --timercnt;
3245    
3246     if (expect_true (active < timercnt + HEAP0))
3247 root 1.151 {
3248 root 1.248 timers [active] = timers [timercnt + HEAP0];
3249 root 1.181 adjustheap (timers, timercnt, active);
3250 root 1.151 }
3251 root 1.248 }
3252 root 1.228
3253     ev_at (w) -= mn_now;
3254 root 1.14
3255 root 1.51 ev_stop (EV_A_ (W)w);
3256 root 1.328
3257     EV_FREQUENT_CHECK;
3258 root 1.12 }
3259 root 1.4
3260 root 1.171 void noinline
3261 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
3262 root 1.14 {
3263 root 1.248 EV_FREQUENT_CHECK;
3264    
3265 root 1.14 if (ev_is_active (w))
3266     {
3267     if (w->repeat)
3268 root 1.99 {
3269 root 1.228 ev_at (w) = mn_now + w->repeat;
3270 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3271 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3272 root 1.99 }
3273 root 1.14 else
3274 root 1.51 ev_timer_stop (EV_A_ w);
3275 root 1.14 }
3276     else if (w->repeat)
3277 root 1.112 {
3278 root 1.229 ev_at (w) = w->repeat;
3279 root 1.112 ev_timer_start (EV_A_ w);
3280     }
3281 root 1.248
3282     EV_FREQUENT_CHECK;
3283 root 1.14 }
3284    
3285 root 1.301 ev_tstamp
3286     ev_timer_remaining (EV_P_ ev_timer *w)
3287     {
3288     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3289     }
3290    
3291 root 1.140 #if EV_PERIODIC_ENABLE
3292 root 1.171 void noinline
3293 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
3294 root 1.12 {
3295 root 1.123 if (expect_false (ev_is_active (w)))
3296 root 1.12 return;
3297 root 1.1
3298 root 1.77 if (w->reschedule_cb)
3299 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3300 root 1.77 else if (w->interval)
3301     {
3302 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3303 root 1.370 periodic_recalc (EV_A_ w);
3304 root 1.77 }
3305 root 1.173 else
3306 root 1.228 ev_at (w) = w->offset;
3307 root 1.12
3308 root 1.248 EV_FREQUENT_CHECK;
3309    
3310     ++periodiccnt;
3311     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3312 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3313     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3314 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3315 root 1.235 upheap (periodics, ev_active (w));
3316 root 1.62
3317 root 1.248 EV_FREQUENT_CHECK;
3318    
3319 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3320 root 1.1 }
3321    
3322 root 1.171 void noinline
3323 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
3324 root 1.1 {
3325 root 1.166 clear_pending (EV_A_ (W)w);
3326 root 1.123 if (expect_false (!ev_is_active (w)))
3327 root 1.1 return;
3328    
3329 root 1.248 EV_FREQUENT_CHECK;
3330    
3331 root 1.230 {
3332     int active = ev_active (w);
3333 root 1.62
3334 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3335 root 1.151
3336 root 1.248 --periodiccnt;
3337    
3338     if (expect_true (active < periodiccnt + HEAP0))
3339 root 1.151 {
3340 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3341 root 1.181 adjustheap (periodics, periodiccnt, active);
3342 root 1.151 }
3343 root 1.248 }
3344 root 1.228
3345 root 1.328 ev_stop (EV_A_ (W)w);
3346    
3347 root 1.248 EV_FREQUENT_CHECK;
3348 root 1.1 }
3349    
3350 root 1.171 void noinline
3351 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
3352 root 1.77 {
3353 root 1.84 /* TODO: use adjustheap and recalculation */
3354 root 1.77 ev_periodic_stop (EV_A_ w);
3355     ev_periodic_start (EV_A_ w);
3356     }
3357 root 1.93 #endif
3358 root 1.77
3359 root 1.56 #ifndef SA_RESTART
3360     # define SA_RESTART 0
3361     #endif
3362    
3363 root 1.336 #if EV_SIGNAL_ENABLE
3364    
3365 root 1.171 void noinline
3366 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
3367 root 1.56 {
3368 root 1.123 if (expect_false (ev_is_active (w)))
3369 root 1.56 return;
3370    
3371 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3372    
3373     #if EV_MULTIPLICITY
3374 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3375 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3376    
3377     signals [w->signum - 1].loop = EV_A;
3378     #endif
3379 root 1.56
3380 root 1.303 EV_FREQUENT_CHECK;
3381    
3382     #if EV_USE_SIGNALFD
3383     if (sigfd == -2)
3384     {
3385     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3386     if (sigfd < 0 && errno == EINVAL)
3387     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3388    
3389     if (sigfd >= 0)
3390     {
3391     fd_intern (sigfd); /* doing it twice will not hurt */
3392    
3393     sigemptyset (&sigfd_set);
3394    
3395     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3396     ev_set_priority (&sigfd_w, EV_MAXPRI);
3397     ev_io_start (EV_A_ &sigfd_w);
3398     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3399     }
3400     }
3401    
3402     if (sigfd >= 0)
3403     {
3404     /* TODO: check .head */
3405     sigaddset (&sigfd_set, w->signum);
3406     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3407 root 1.207
3408 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3409     }
3410 root 1.180 #endif
3411    
3412 root 1.56 ev_start (EV_A_ (W)w, 1);
3413 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3414 root 1.56
3415 root 1.63 if (!((WL)w)->next)
3416 root 1.304 # if EV_USE_SIGNALFD
3417 root 1.306 if (sigfd < 0) /*TODO*/
3418 root 1.304 # endif
3419 root 1.306 {
3420 root 1.322 # ifdef _WIN32
3421 root 1.317 evpipe_init (EV_A);
3422    
3423 root 1.306 signal (w->signum, ev_sighandler);
3424     # else
3425     struct sigaction sa;
3426    
3427     evpipe_init (EV_A);
3428    
3429     sa.sa_handler = ev_sighandler;
3430     sigfillset (&sa.sa_mask);
3431     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3432     sigaction (w->signum, &sa, 0);
3433    
3434 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3435     {
3436     sigemptyset (&sa.sa_mask);
3437     sigaddset (&sa.sa_mask, w->signum);
3438     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3439     }
3440 root 1.67 #endif
3441 root 1.306 }
3442 root 1.248
3443     EV_FREQUENT_CHECK;
3444 root 1.56 }
3445    
3446 root 1.171 void noinline
3447 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
3448 root 1.56 {
3449 root 1.166 clear_pending (EV_A_ (W)w);
3450 root 1.123 if (expect_false (!ev_is_active (w)))
3451 root 1.56 return;
3452    
3453 root 1.248 EV_FREQUENT_CHECK;
3454    
3455 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3456 root 1.56 ev_stop (EV_A_ (W)w);
3457    
3458     if (!signals [w->signum - 1].head)
3459 root 1.306 {
3460 root 1.307 #if EV_MULTIPLICITY
3461 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3462 root 1.307 #endif
3463     #if EV_USE_SIGNALFD
3464 root 1.306 if (sigfd >= 0)
3465     {
3466 root 1.321 sigset_t ss;
3467    
3468     sigemptyset (&ss);
3469     sigaddset (&ss, w->signum);
3470 root 1.306 sigdelset (&sigfd_set, w->signum);
3471 root 1.321
3472 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3473 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3474 root 1.306 }
3475     else
3476 root 1.307 #endif
3477 root 1.306 signal (w->signum, SIG_DFL);
3478     }
3479 root 1.248
3480     EV_FREQUENT_CHECK;
3481 root 1.56 }
3482    
3483 root 1.336 #endif
3484    
3485     #if EV_CHILD_ENABLE
3486    
3487 root 1.28 void
3488 root 1.136 ev_child_start (EV_P_ ev_child *w)
3489 root 1.22 {
3490 root 1.56 #if EV_MULTIPLICITY
3491 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3492 root 1.56 #endif
3493 root 1.123 if (expect_false (ev_is_active (w)))
3494 root 1.22 return;
3495    
3496 root 1.248 EV_FREQUENT_CHECK;
3497    
3498 root 1.51 ev_start (EV_A_ (W)w, 1);
3499 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3500 root 1.248
3501     EV_FREQUENT_CHECK;
3502 root 1.22 }
3503    
3504 root 1.28 void
3505 root 1.136 ev_child_stop (EV_P_ ev_child *w)
3506 root 1.22 {
3507 root 1.166 clear_pending (EV_A_ (W)w);
3508 root 1.123 if (expect_false (!ev_is_active (w)))
3509 root 1.22 return;
3510    
3511 root 1.248 EV_FREQUENT_CHECK;
3512    
3513 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3514 root 1.51 ev_stop (EV_A_ (W)w);
3515 root 1.248
3516     EV_FREQUENT_CHECK;
3517 root 1.22 }
3518    
3519 root 1.336 #endif
3520    
3521 root 1.140 #if EV_STAT_ENABLE
3522    
3523     # ifdef _WIN32
3524 root 1.146 # undef lstat
3525     # define lstat(a,b) _stati64 (a,b)
3526 root 1.140 # endif
3527    
3528 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3529     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3530     #define MIN_STAT_INTERVAL 0.1074891
3531 root 1.143
3532 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3533 root 1.152
3534     #if EV_USE_INOTIFY
3535 root 1.326
3536     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3537     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3538 root 1.152
3539     static void noinline
3540     infy_add (EV_P_ ev_stat *w)
3541     {
3542     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3543    
3544 root 1.318 if (w->wd >= 0)
3545 root 1.152 {
3546 root 1.318 struct statfs sfs;
3547    
3548     /* now local changes will be tracked by inotify, but remote changes won't */
3549     /* unless the filesystem is known to be local, we therefore still poll */
3550     /* also do poll on <2.6.25, but with normal frequency */
3551    
3552     if (!fs_2625)
3553     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3554     else if (!statfs (w->path, &sfs)
3555     && (sfs.f_type == 0x1373 /* devfs */
3556     || sfs.f_type == 0xEF53 /* ext2/3 */
3557     || sfs.f_type == 0x3153464a /* jfs */
3558     || sfs.f_type == 0x52654973 /* reiser3 */
3559     || sfs.f_type == 0x01021994 /* tempfs */
3560     || sfs.f_type == 0x58465342 /* xfs */))
3561     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3562     else
3563     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3564     }
3565     else
3566     {
3567     /* can't use inotify, continue to stat */
3568 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3569 root 1.152
3570 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3571 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3572 root 1.233 /* but an efficiency issue only */
3573 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3574 root 1.152 {
3575 root 1.153 char path [4096];
3576 root 1.152 strcpy (path, w->path);
3577    
3578     do
3579     {
3580     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3581     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3582    
3583     char *pend = strrchr (path, '/');
3584    
3585 root 1.275 if (!pend || pend == path)
3586     break;
3587 root 1.152
3588     *pend = 0;
3589 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3590 root 1.372 }
3591 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3592     }
3593     }
3594 root 1.275
3595     if (w->wd >= 0)
3596 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3597 root 1.152
3598 root 1.318 /* now re-arm timer, if required */
3599     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3600     ev_timer_again (EV_A_ &w->timer);
3601     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3602 root 1.152 }
3603    
3604     static void noinline
3605     infy_del (EV_P_ ev_stat *w)
3606     {
3607     int slot;
3608     int wd = w->wd;
3609    
3610     if (wd < 0)
3611     return;
3612    
3613     w->wd = -2;
3614 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3615 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3616    
3617     /* remove this watcher, if others are watching it, they will rearm */
3618     inotify_rm_watch (fs_fd, wd);
3619     }
3620    
3621     static void noinline
3622     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3623     {
3624     if (slot < 0)
3625 root 1.264 /* overflow, need to check for all hash slots */
3626 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3627 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3628     else
3629     {
3630     WL w_;
3631    
3632 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3633 root 1.152 {
3634     ev_stat *w = (ev_stat *)w_;
3635     w_ = w_->next; /* lets us remove this watcher and all before it */
3636    
3637     if (w->wd == wd || wd == -1)
3638     {
3639     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3640     {
3641 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3642 root 1.152 w->wd = -1;
3643     infy_add (EV_A_ w); /* re-add, no matter what */
3644     }
3645    
3646 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3647 root 1.152 }
3648     }
3649     }
3650     }
3651    
3652     static void
3653     infy_cb (EV_P_ ev_io *w, int revents)
3654     {
3655     char buf [EV_INOTIFY_BUFSIZE];
3656     int ofs;
3657     int len = read (fs_fd, buf, sizeof (buf));
3658    
3659 root 1.326 for (ofs = 0; ofs < len; )
3660     {
3661     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3662     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3663     ofs += sizeof (struct inotify_event) + ev->len;
3664     }
3665 root 1.152 }
3666    
3667 root 1.379 inline_size void ecb_cold
3668 root 1.330 ev_check_2625 (EV_P)
3669     {
3670     /* kernels < 2.6.25 are borked
3671     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3672     */
3673     if (ev_linux_version () < 0x020619)
3674 root 1.273 return;
3675 root 1.264
3676 root 1.273 fs_2625 = 1;
3677     }
3678 root 1.264
3679 root 1.315 inline_size int
3680     infy_newfd (void)
3681     {
3682     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3683     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3684     if (fd >= 0)
3685     return fd;
3686     #endif
3687     return inotify_init ();
3688     }
3689    
3690 root 1.284 inline_size void
3691 root 1.273 infy_init (EV_P)
3692     {
3693     if (fs_fd != -2)
3694     return;
3695 root 1.264
3696 root 1.273 fs_fd = -1;
3697 root 1.264
3698 root 1.330 ev_check_2625 (EV_A);
3699 root 1.264
3700 root 1.315 fs_fd = infy_newfd ();
3701 root 1.152
3702     if (fs_fd >= 0)
3703     {
3704 root 1.315 fd_intern (fs_fd);
3705 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3706     ev_set_priority (&fs_w, EV_MAXPRI);
3707     ev_io_start (EV_A_ &fs_w);
3708 root 1.317 ev_unref (EV_A);
3709 root 1.152 }
3710     }
3711    
3712 root 1.284 inline_size void
3713 root 1.154 infy_fork (EV_P)
3714     {
3715     int slot;
3716    
3717     if (fs_fd < 0)
3718     return;
3719    
3720 root 1.317 ev_ref (EV_A);
3721 root 1.315 ev_io_stop (EV_A_ &fs_w);
3722 root 1.154 close (fs_fd);
3723 root 1.315 fs_fd = infy_newfd ();
3724    
3725     if (fs_fd >= 0)
3726     {
3727     fd_intern (fs_fd);
3728     ev_io_set (&fs_w, fs_fd, EV_READ);
3729     ev_io_start (EV_A_ &fs_w);
3730 root 1.317 ev_unref (EV_A);
3731 root 1.315 }
3732 root 1.154
3733 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3734 root 1.154 {
3735     WL w_ = fs_hash [slot].head;
3736     fs_hash [slot].head = 0;
3737    
3738     while (w_)
3739     {
3740     ev_stat *w = (ev_stat *)w_;
3741     w_ = w_->next; /* lets us add this watcher */
3742    
3743     w->wd = -1;
3744    
3745     if (fs_fd >= 0)
3746     infy_add (EV_A_ w); /* re-add, no matter what */
3747     else
3748 root 1.318 {
3749     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3750     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3751     ev_timer_again (EV_A_ &w->timer);
3752     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3753     }
3754 root 1.154 }
3755     }
3756     }
3757    
3758 root 1.152 #endif
3759    
3760 root 1.255 #ifdef _WIN32
3761     # define EV_LSTAT(p,b) _stati64 (p, b)
3762     #else
3763     # define EV_LSTAT(p,b) lstat (p, b)
3764     #endif
3765    
3766 root 1.140 void
3767     ev_stat_stat (EV_P_ ev_stat *w)
3768     {
3769     if (lstat (w->path, &w->attr) < 0)
3770     w->attr.st_nlink = 0;
3771     else if (!w->attr.st_nlink)
3772     w->attr.st_nlink = 1;
3773     }
3774    
3775 root 1.157 static void noinline
3776 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3777     {
3778     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3779    
3780 root 1.320 ev_statdata prev = w->attr;
3781 root 1.140 ev_stat_stat (EV_A_ w);
3782    
3783 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3784     if (
3785 root 1.320 prev.st_dev != w->attr.st_dev
3786     || prev.st_ino != w->attr.st_ino
3787     || prev.st_mode != w->attr.st_mode
3788     || prev.st_nlink != w->attr.st_nlink
3789     || prev.st_uid != w->attr.st_uid
3790     || prev.st_gid != w->attr.st_gid
3791     || prev.st_rdev != w->attr.st_rdev
3792     || prev.st_size != w->attr.st_size
3793     || prev.st_atime != w->attr.st_atime
3794     || prev.st_mtime != w->attr.st_mtime
3795     || prev.st_ctime != w->attr.st_ctime
3796 root 1.156 ) {
3797 root 1.320 /* we only update w->prev on actual differences */
3798     /* in case we test more often than invoke the callback, */
3799     /* to ensure that prev is always different to attr */
3800     w->prev = prev;
3801    
3802 root 1.152 #if EV_USE_INOTIFY
3803 root 1.264 if (fs_fd >= 0)
3804     {
3805     infy_del (EV_A_ w);
3806     infy_add (EV_A_ w);
3807     ev_stat_stat (EV_A_ w); /* avoid race... */
3808     }
3809 root 1.152 #endif
3810    
3811     ev_feed_event (EV_A_ w, EV_STAT);
3812     }
3813 root 1.140 }
3814    
3815     void
3816     ev_stat_start (EV_P_ ev_stat *w)
3817     {
3818     if (expect_false (ev_is_active (w)))
3819     return;
3820    
3821     ev_stat_stat (EV_A_ w);
3822    
3823 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3824     w->interval = MIN_STAT_INTERVAL;
3825 root 1.143
3826 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3827 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3828 root 1.152
3829     #if EV_USE_INOTIFY
3830     infy_init (EV_A);
3831    
3832     if (fs_fd >= 0)
3833     infy_add (EV_A_ w);
3834     else
3835     #endif
3836 root 1.318 {
3837     ev_timer_again (EV_A_ &w->timer);
3838     ev_unref (EV_A);
3839     }
3840 root 1.140
3841     ev_start (EV_A_ (W)w, 1);
3842 root 1.248
3843     EV_FREQUENT_CHECK;
3844 root 1.140 }
3845    
3846     void
3847     ev_stat_stop (EV_P_ ev_stat *w)
3848     {
3849 root 1.166 clear_pending (EV_A_ (W)w);
3850 root 1.140 if (expect_false (!ev_is_active (w)))
3851     return;
3852    
3853 root 1.248 EV_FREQUENT_CHECK;
3854    
3855 root 1.152 #if EV_USE_INOTIFY
3856     infy_del (EV_A_ w);
3857     #endif
3858 root 1.318
3859     if (ev_is_active (&w->timer))
3860     {
3861     ev_ref (EV_A);
3862     ev_timer_stop (EV_A_ &w->timer);
3863     }
3864 root 1.140
3865 root 1.134 ev_stop (EV_A_ (W)w);
3866 root 1.248
3867     EV_FREQUENT_CHECK;
3868 root 1.134 }
3869     #endif
3870    
3871 root 1.164 #if EV_IDLE_ENABLE
3872 root 1.144 void
3873     ev_idle_start (EV_P_ ev_idle *w)
3874     {
3875     if (expect_false (ev_is_active (w)))
3876     return;
3877    
3878 root 1.164 pri_adjust (EV_A_ (W)w);
3879    
3880 root 1.248 EV_FREQUENT_CHECK;
3881    
3882 root 1.164 {
3883     int active = ++idlecnt [ABSPRI (w)];
3884    
3885     ++idleall;
3886     ev_start (EV_A_ (W)w, active);
3887    
3888     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3889     idles [ABSPRI (w)][active - 1] = w;
3890     }
3891 root 1.248
3892     EV_FREQUENT_CHECK;
3893 root 1.144 }
3894    
3895     void
3896     ev_idle_stop (EV_P_ ev_idle *w)
3897     {
3898 root 1.166 clear_pending (EV_A_ (W)w);
3899 root 1.144 if (expect_false (!ev_is_active (w)))
3900     return;
3901    
3902 root 1.248 EV_FREQUENT_CHECK;
3903    
3904 root 1.144 {
3905 root 1.230 int active = ev_active (w);
3906 root 1.164
3907     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3908 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3909 root 1.164
3910     ev_stop (EV_A_ (W)w);
3911     --idleall;
3912 root 1.144 }
3913 root 1.248
3914     EV_FREQUENT_CHECK;
3915 root 1.144 }
3916 root 1.164 #endif
3917 root 1.144
3918 root 1.337 #if EV_PREPARE_ENABLE
3919 root 1.144 void
3920     ev_prepare_start (EV_P_ ev_prepare *w)
3921     {
3922     if (expect_false (ev_is_active (w)))
3923     return;
3924    
3925 root 1.248 EV_FREQUENT_CHECK;
3926    
3927 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3928     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3929     prepares [preparecnt - 1] = w;
3930 root 1.248
3931     EV_FREQUENT_CHECK;
3932 root 1.144 }
3933    
3934     void
3935     ev_prepare_stop (EV_P_ ev_prepare *w)
3936     {
3937 root 1.166 clear_pending (EV_A_ (W)w);
3938 root 1.144 if (expect_false (!ev_is_active (w)))
3939     return;
3940    
3941 root 1.248 EV_FREQUENT_CHECK;
3942    
3943 root 1.144 {
3944 root 1.230 int active = ev_active (w);
3945    
3946 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3947 root 1.230 ev_active (prepares [active - 1]) = active;
3948 root 1.144 }
3949    
3950     ev_stop (EV_A_ (W)w);
3951 root 1.248
3952     EV_FREQUENT_CHECK;
3953 root 1.144 }
3954 root 1.337 #endif
3955 root 1.144
3956 root 1.337 #if EV_CHECK_ENABLE
3957 root 1.144 void
3958     ev_check_start (EV_P_ ev_check *w)
3959     {
3960     if (expect_false (ev_is_active (w)))
3961     return;
3962    
3963 root 1.248 EV_FREQUENT_CHECK;
3964    
3965 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
3966     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3967     checks [checkcnt - 1] = w;
3968 root 1.248
3969     EV_FREQUENT_CHECK;
3970 root 1.144 }
3971    
3972     void
3973     ev_check_stop (EV_P_ ev_check *w)
3974     {
3975 root 1.166 clear_pending (EV_A_ (W)w);
3976 root 1.144 if (expect_false (!ev_is_active (w)))
3977     return;
3978    
3979 root 1.248 EV_FREQUENT_CHECK;
3980    
3981 root 1.144 {
3982 root 1.230 int active = ev_active (w);
3983    
3984 root 1.144 checks [active - 1] = checks [--checkcnt];
3985 root 1.230 ev_active (checks [active - 1]) = active;
3986 root 1.144 }
3987    
3988     ev_stop (EV_A_ (W)w);
3989 root 1.248
3990     EV_FREQUENT_CHECK;
3991 root 1.144 }
3992 root 1.337 #endif
3993 root 1.144
3994     #if EV_EMBED_ENABLE
3995     void noinline
3996     ev_embed_sweep (EV_P_ ev_embed *w)
3997     {
3998 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
3999 root 1.144 }
4000    
4001     static void
4002 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4003 root 1.144 {
4004     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4005    
4006     if (ev_cb (w))
4007     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4008     else
4009 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4010 root 1.144 }
4011    
4012 root 1.189 static void
4013     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4014     {
4015     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4016    
4017 root 1.195 {
4018 root 1.306 EV_P = w->other;
4019 root 1.195
4020     while (fdchangecnt)
4021     {
4022     fd_reify (EV_A);
4023 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4024 root 1.195 }
4025     }
4026     }
4027    
4028 root 1.261 static void
4029     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4030     {
4031     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4032    
4033 root 1.277 ev_embed_stop (EV_A_ w);
4034    
4035 root 1.261 {
4036 root 1.306 EV_P = w->other;
4037 root 1.261
4038     ev_loop_fork (EV_A);
4039 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4040 root 1.261 }
4041 root 1.277
4042     ev_embed_start (EV_A_ w);
4043 root 1.261 }
4044    
4045 root 1.195 #if 0
4046     static void
4047     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4048     {
4049     ev_idle_stop (EV_A_ idle);
4050 root 1.189 }
4051 root 1.195 #endif
4052 root 1.189
4053 root 1.144 void
4054     ev_embed_start (EV_P_ ev_embed *w)
4055     {
4056     if (expect_false (ev_is_active (w)))
4057     return;
4058    
4059     {
4060 root 1.306 EV_P = w->other;
4061 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4062 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4063 root 1.144 }
4064    
4065 root 1.248 EV_FREQUENT_CHECK;
4066    
4067 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4068     ev_io_start (EV_A_ &w->io);
4069    
4070 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4071     ev_set_priority (&w->prepare, EV_MINPRI);
4072     ev_prepare_start (EV_A_ &w->prepare);
4073    
4074 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4075     ev_fork_start (EV_A_ &w->fork);
4076    
4077 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4078    
4079 root 1.144 ev_start (EV_A_ (W)w, 1);
4080 root 1.248
4081     EV_FREQUENT_CHECK;
4082 root 1.144 }
4083    
4084     void
4085     ev_embed_stop (EV_P_ ev_embed *w)
4086     {
4087 root 1.166 clear_pending (EV_A_ (W)w);
4088 root 1.144 if (expect_false (!ev_is_active (w)))
4089     return;
4090    
4091 root 1.248 EV_FREQUENT_CHECK;
4092    
4093 root 1.261 ev_io_stop (EV_A_ &w->io);
4094 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4095 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4096 root 1.248
4097 root 1.328 ev_stop (EV_A_ (W)w);
4098    
4099 root 1.248 EV_FREQUENT_CHECK;
4100 root 1.144 }
4101     #endif
4102    
4103 root 1.147 #if EV_FORK_ENABLE
4104     void
4105     ev_fork_start (EV_P_ ev_fork *w)
4106     {
4107     if (expect_false (ev_is_active (w)))
4108     return;
4109    
4110 root 1.248 EV_FREQUENT_CHECK;
4111    
4112 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4113     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4114     forks [forkcnt - 1] = w;
4115 root 1.248
4116     EV_FREQUENT_CHECK;
4117 root 1.147 }
4118    
4119     void
4120     ev_fork_stop (EV_P_ ev_fork *w)
4121     {
4122 root 1.166 clear_pending (EV_A_ (W)w);
4123 root 1.147 if (expect_false (!ev_is_active (w)))
4124     return;
4125    
4126 root 1.248 EV_FREQUENT_CHECK;
4127    
4128 root 1.147 {
4129 root 1.230 int active = ev_active (w);
4130    
4131 root 1.147 forks [active - 1] = forks [--forkcnt];
4132 root 1.230 ev_active (forks [active - 1]) = active;
4133 root 1.147 }
4134    
4135     ev_stop (EV_A_ (W)w);
4136 root 1.248
4137     EV_FREQUENT_CHECK;
4138 root 1.147 }
4139     #endif
4140    
4141 root 1.360 #if EV_CLEANUP_ENABLE
4142     void
4143     ev_cleanup_start (EV_P_ ev_cleanup *w)
4144     {
4145     if (expect_false (ev_is_active (w)))
4146     return;
4147    
4148     EV_FREQUENT_CHECK;
4149    
4150     ev_start (EV_A_ (W)w, ++cleanupcnt);
4151     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4152     cleanups [cleanupcnt - 1] = w;
4153    
4154 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4155     ev_unref (EV_A);
4156 root 1.360 EV_FREQUENT_CHECK;
4157     }
4158    
4159     void
4160     ev_cleanup_stop (EV_P_ ev_cleanup *w)
4161     {
4162     clear_pending (EV_A_ (W)w);
4163     if (expect_false (!ev_is_active (w)))
4164     return;
4165    
4166     EV_FREQUENT_CHECK;
4167 root 1.362 ev_ref (EV_A);
4168 root 1.360
4169     {
4170     int active = ev_active (w);
4171    
4172     cleanups [active - 1] = cleanups [--cleanupcnt];
4173     ev_active (cleanups [active - 1]) = active;
4174     }
4175    
4176     ev_stop (EV_A_ (W)w);
4177    
4178     EV_FREQUENT_CHECK;
4179     }
4180     #endif
4181    
4182 root 1.207 #if EV_ASYNC_ENABLE
4183     void
4184     ev_async_start (EV_P_ ev_async *w)
4185     {
4186     if (expect_false (ev_is_active (w)))
4187     return;
4188    
4189 root 1.352 w->sent = 0;
4190    
4191 root 1.207 evpipe_init (EV_A);
4192    
4193 root 1.248 EV_FREQUENT_CHECK;
4194    
4195 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4196     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4197     asyncs [asynccnt - 1] = w;
4198 root 1.248
4199     EV_FREQUENT_CHECK;
4200 root 1.207 }
4201    
4202     void
4203     ev_async_stop (EV_P_ ev_async *w)
4204     {
4205     clear_pending (EV_A_ (W)w);
4206     if (expect_false (!ev_is_active (w)))
4207     return;
4208    
4209 root 1.248 EV_FREQUENT_CHECK;
4210    
4211 root 1.207 {
4212 root 1.230 int active = ev_active (w);
4213    
4214 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4215 root 1.230 ev_active (asyncs [active - 1]) = active;
4216 root 1.207 }
4217    
4218     ev_stop (EV_A_ (W)w);
4219 root 1.248
4220     EV_FREQUENT_CHECK;
4221 root 1.207 }
4222    
4223     void
4224     ev_async_send (EV_P_ ev_async *w)
4225     {
4226     w->sent = 1;
4227 root 1.307 evpipe_write (EV_A_ &async_pending);
4228 root 1.207 }
4229     #endif
4230    
4231 root 1.1 /*****************************************************************************/
4232 root 1.10
4233 root 1.16 struct ev_once
4234     {
4235 root 1.136 ev_io io;
4236     ev_timer to;
4237 root 1.16 void (*cb)(int revents, void *arg);
4238     void *arg;
4239     };
4240    
4241     static void
4242 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4243 root 1.16 {
4244     void (*cb)(int revents, void *arg) = once->cb;
4245     void *arg = once->arg;
4246    
4247 root 1.259 ev_io_stop (EV_A_ &once->io);
4248 root 1.51 ev_timer_stop (EV_A_ &once->to);
4249 root 1.69 ev_free (once);
4250 root 1.16
4251     cb (revents, arg);
4252     }
4253    
4254     static void
4255 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4256 root 1.16 {
4257 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4258    
4259     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4260 root 1.16 }
4261    
4262     static void
4263 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4264 root 1.16 {
4265 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4266    
4267     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4268 root 1.16 }
4269    
4270     void
4271 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4272 root 1.16 {
4273 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4274 root 1.16
4275 root 1.123 if (expect_false (!once))
4276 root 1.16 {
4277 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4278 root 1.123 return;
4279     }
4280    
4281     once->cb = cb;
4282     once->arg = arg;
4283 root 1.16
4284 root 1.123 ev_init (&once->io, once_cb_io);
4285     if (fd >= 0)
4286     {
4287     ev_io_set (&once->io, fd, events);
4288     ev_io_start (EV_A_ &once->io);
4289     }
4290 root 1.16
4291 root 1.123 ev_init (&once->to, once_cb_to);
4292     if (timeout >= 0.)
4293     {
4294     ev_timer_set (&once->to, timeout, 0.);
4295     ev_timer_start (EV_A_ &once->to);
4296 root 1.16 }
4297     }
4298    
4299 root 1.282 /*****************************************************************************/
4300    
4301 root 1.288 #if EV_WALK_ENABLE
4302 root 1.379 void ecb_cold
4303 root 1.282 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4304     {
4305     int i, j;
4306     ev_watcher_list *wl, *wn;
4307    
4308     if (types & (EV_IO | EV_EMBED))
4309     for (i = 0; i < anfdmax; ++i)
4310     for (wl = anfds [i].head; wl; )
4311     {
4312     wn = wl->next;
4313    
4314     #if EV_EMBED_ENABLE
4315     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4316     {
4317     if (types & EV_EMBED)
4318     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4319     }
4320     else
4321     #endif
4322     #if EV_USE_INOTIFY
4323     if (ev_cb ((ev_io *)wl) == infy_cb)
4324     ;
4325     else
4326     #endif
4327 root 1.288 if ((ev_io *)wl != &pipe_w)
4328 root 1.282 if (types & EV_IO)
4329     cb (EV_A_ EV_IO, wl);
4330    
4331     wl = wn;
4332     }
4333    
4334     if (types & (EV_TIMER | EV_STAT))
4335     for (i = timercnt + HEAP0; i-- > HEAP0; )
4336     #if EV_STAT_ENABLE
4337     /*TODO: timer is not always active*/
4338     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4339     {
4340     if (types & EV_STAT)
4341     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4342     }
4343     else
4344     #endif
4345     if (types & EV_TIMER)
4346     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4347    
4348     #if EV_PERIODIC_ENABLE
4349     if (types & EV_PERIODIC)
4350     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4351     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4352     #endif
4353    
4354     #if EV_IDLE_ENABLE
4355     if (types & EV_IDLE)
4356 root 1.390 for (j = NUMPRI; j--; )
4357 root 1.282 for (i = idlecnt [j]; i--; )
4358     cb (EV_A_ EV_IDLE, idles [j][i]);
4359     #endif
4360    
4361     #if EV_FORK_ENABLE
4362     if (types & EV_FORK)
4363     for (i = forkcnt; i--; )
4364     if (ev_cb (forks [i]) != embed_fork_cb)
4365     cb (EV_A_ EV_FORK, forks [i]);
4366     #endif
4367    
4368     #if EV_ASYNC_ENABLE
4369     if (types & EV_ASYNC)
4370     for (i = asynccnt; i--; )
4371     cb (EV_A_ EV_ASYNC, asyncs [i]);
4372     #endif
4373    
4374 root 1.337 #if EV_PREPARE_ENABLE
4375 root 1.282 if (types & EV_PREPARE)
4376     for (i = preparecnt; i--; )
4377 root 1.337 # if EV_EMBED_ENABLE
4378 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4379 root 1.337 # endif
4380     cb (EV_A_ EV_PREPARE, prepares [i]);
4381 root 1.282 #endif
4382    
4383 root 1.337 #if EV_CHECK_ENABLE
4384 root 1.282 if (types & EV_CHECK)
4385     for (i = checkcnt; i--; )
4386     cb (EV_A_ EV_CHECK, checks [i]);
4387 root 1.337 #endif
4388 root 1.282
4389 root 1.337 #if EV_SIGNAL_ENABLE
4390 root 1.282 if (types & EV_SIGNAL)
4391 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4392 root 1.282 for (wl = signals [i].head; wl; )
4393     {
4394     wn = wl->next;
4395     cb (EV_A_ EV_SIGNAL, wl);
4396     wl = wn;
4397     }
4398 root 1.337 #endif
4399 root 1.282
4400 root 1.337 #if EV_CHILD_ENABLE
4401 root 1.282 if (types & EV_CHILD)
4402 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4403 root 1.282 for (wl = childs [i]; wl; )
4404     {
4405     wn = wl->next;
4406     cb (EV_A_ EV_CHILD, wl);
4407     wl = wn;
4408     }
4409 root 1.337 #endif
4410 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4411     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4412     }
4413     #endif
4414    
4415 root 1.188 #if EV_MULTIPLICITY
4416     #include "ev_wrap.h"
4417     #endif
4418