ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.407
Committed: Wed Jan 25 01:32:12 2012 UTC (12 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.406: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
65     # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.103 #ifndef _WIN32
189 root 1.71 # include <sys/time.h>
190 root 1.45 # include <sys/wait.h>
191 root 1.140 # include <unistd.h>
192 root 1.103 #else
193 root 1.256 # include <io.h>
194 root 1.103 # define WIN32_LEAN_AND_MEAN
195     # include <windows.h>
196     # ifndef EV_SELECT_IS_WINSOCKET
197     # define EV_SELECT_IS_WINSOCKET 1
198     # endif
199 root 1.331 # undef EV_AVOID_STDIO
200 root 1.45 #endif
201 root 1.103
202 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
203     * a limit of 1024 into their select. Where people have brains,
204     * OS X engineers apparently have a vacuum. Or maybe they were
205     * ordered to have a vacuum, or they do anything for money.
206     * This might help. Or not.
207     */
208     #define _DARWIN_UNLIMITED_SELECT 1
209    
210 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
211 root 1.40
212 root 1.305 /* try to deduce the maximum number of signals on this platform */
213     #if defined (EV_NSIG)
214     /* use what's provided */
215     #elif defined (NSIG)
216     # define EV_NSIG (NSIG)
217     #elif defined(_NSIG)
218     # define EV_NSIG (_NSIG)
219     #elif defined (SIGMAX)
220     # define EV_NSIG (SIGMAX+1)
221     #elif defined (SIG_MAX)
222     # define EV_NSIG (SIG_MAX+1)
223     #elif defined (_SIG_MAX)
224     # define EV_NSIG (_SIG_MAX+1)
225     #elif defined (MAXSIG)
226     # define EV_NSIG (MAXSIG+1)
227     #elif defined (MAX_SIG)
228     # define EV_NSIG (MAX_SIG+1)
229     #elif defined (SIGARRAYSIZE)
230 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231 root 1.305 #elif defined (_sys_nsig)
232     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233     #else
234     # error "unable to find value for NSIG, please report"
235 root 1.336 /* to make it compile regardless, just remove the above line, */
236     /* but consider reporting it, too! :) */
237 root 1.306 # define EV_NSIG 65
238 root 1.305 #endif
239    
240 root 1.373 #ifndef EV_USE_FLOOR
241     # define EV_USE_FLOOR 0
242     #endif
243    
244 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
245     # if __linux && __GLIBC__ >= 2
246 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247 root 1.274 # else
248     # define EV_USE_CLOCK_SYSCALL 0
249     # endif
250     #endif
251    
252 root 1.29 #ifndef EV_USE_MONOTONIC
253 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
255 root 1.253 # else
256     # define EV_USE_MONOTONIC 0
257     # endif
258 root 1.37 #endif
259    
260 root 1.118 #ifndef EV_USE_REALTIME
261 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
262 root 1.118 #endif
263    
264 root 1.193 #ifndef EV_USE_NANOSLEEP
265 root 1.253 # if _POSIX_C_SOURCE >= 199309L
266 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
267 root 1.253 # else
268     # define EV_USE_NANOSLEEP 0
269     # endif
270 root 1.193 #endif
271    
272 root 1.29 #ifndef EV_USE_SELECT
273 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
274 root 1.10 #endif
275    
276 root 1.59 #ifndef EV_USE_POLL
277 root 1.104 # ifdef _WIN32
278     # define EV_USE_POLL 0
279     # else
280 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
281 root 1.104 # endif
282 root 1.41 #endif
283    
284 root 1.29 #ifndef EV_USE_EPOLL
285 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
287 root 1.220 # else
288     # define EV_USE_EPOLL 0
289     # endif
290 root 1.10 #endif
291    
292 root 1.44 #ifndef EV_USE_KQUEUE
293     # define EV_USE_KQUEUE 0
294     #endif
295    
296 root 1.118 #ifndef EV_USE_PORT
297     # define EV_USE_PORT 0
298 root 1.40 #endif
299    
300 root 1.152 #ifndef EV_USE_INOTIFY
301 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
303 root 1.220 # else
304     # define EV_USE_INOTIFY 0
305     # endif
306 root 1.152 #endif
307    
308 root 1.149 #ifndef EV_PID_HASHSIZE
309 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
310 root 1.149 #endif
311    
312 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
313 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314 root 1.152 #endif
315    
316 root 1.220 #ifndef EV_USE_EVENTFD
317     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
319 root 1.220 # else
320     # define EV_USE_EVENTFD 0
321     # endif
322     #endif
323    
324 root 1.303 #ifndef EV_USE_SIGNALFD
325 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
326 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
327 root 1.303 # else
328     # define EV_USE_SIGNALFD 0
329     # endif
330     #endif
331    
332 root 1.249 #if 0 /* debugging */
333 root 1.250 # define EV_VERIFY 3
334 root 1.249 # define EV_USE_4HEAP 1
335     # define EV_HEAP_CACHE_AT 1
336     #endif
337    
338 root 1.250 #ifndef EV_VERIFY
339 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340 root 1.250 #endif
341    
342 root 1.243 #ifndef EV_USE_4HEAP
343 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
344 root 1.243 #endif
345    
346     #ifndef EV_HEAP_CACHE_AT
347 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348 root 1.243 #endif
349    
350 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351     /* which makes programs even slower. might work on other unices, too. */
352     #if EV_USE_CLOCK_SYSCALL
353     # include <syscall.h>
354     # ifdef SYS_clock_gettime
355     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356     # undef EV_USE_MONOTONIC
357     # define EV_USE_MONOTONIC 1
358     # else
359     # undef EV_USE_CLOCK_SYSCALL
360     # define EV_USE_CLOCK_SYSCALL 0
361     # endif
362     #endif
363    
364 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
365 root 1.40
366 root 1.325 #ifdef _AIX
367     /* AIX has a completely broken poll.h header */
368     # undef EV_USE_POLL
369     # define EV_USE_POLL 0
370     #endif
371    
372 root 1.40 #ifndef CLOCK_MONOTONIC
373     # undef EV_USE_MONOTONIC
374     # define EV_USE_MONOTONIC 0
375     #endif
376    
377 root 1.31 #ifndef CLOCK_REALTIME
378 root 1.40 # undef EV_USE_REALTIME
379 root 1.31 # define EV_USE_REALTIME 0
380     #endif
381 root 1.40
382 root 1.152 #if !EV_STAT_ENABLE
383 root 1.185 # undef EV_USE_INOTIFY
384 root 1.152 # define EV_USE_INOTIFY 0
385     #endif
386    
387 root 1.193 #if !EV_USE_NANOSLEEP
388 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
389     # if !defined(_WIN32) && !defined(__hpux)
390 root 1.193 # include <sys/select.h>
391     # endif
392     #endif
393    
394 root 1.152 #if EV_USE_INOTIFY
395 root 1.273 # include <sys/statfs.h>
396 root 1.152 # include <sys/inotify.h>
397 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398     # ifndef IN_DONT_FOLLOW
399     # undef EV_USE_INOTIFY
400     # define EV_USE_INOTIFY 0
401     # endif
402 root 1.152 #endif
403    
404 root 1.185 #if EV_SELECT_IS_WINSOCKET
405     # include <winsock.h>
406     #endif
407    
408 root 1.220 #if EV_USE_EVENTFD
409     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410 root 1.221 # include <stdint.h>
411 root 1.303 # ifndef EFD_NONBLOCK
412     # define EFD_NONBLOCK O_NONBLOCK
413     # endif
414     # ifndef EFD_CLOEXEC
415 root 1.311 # ifdef O_CLOEXEC
416     # define EFD_CLOEXEC O_CLOEXEC
417     # else
418     # define EFD_CLOEXEC 02000000
419     # endif
420 root 1.303 # endif
421 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422 root 1.220 #endif
423    
424 root 1.303 #if EV_USE_SIGNALFD
425 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426     # include <stdint.h>
427     # ifndef SFD_NONBLOCK
428     # define SFD_NONBLOCK O_NONBLOCK
429     # endif
430     # ifndef SFD_CLOEXEC
431     # ifdef O_CLOEXEC
432     # define SFD_CLOEXEC O_CLOEXEC
433     # else
434     # define SFD_CLOEXEC 02000000
435     # endif
436     # endif
437 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438 root 1.314
439     struct signalfd_siginfo
440     {
441     uint32_t ssi_signo;
442     char pad[128 - sizeof (uint32_t)];
443     };
444 root 1.303 #endif
445    
446 root 1.40 /**/
447 root 1.1
448 root 1.250 #if EV_VERIFY >= 3
449 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
450 root 1.248 #else
451     # define EV_FREQUENT_CHECK do { } while (0)
452     #endif
453    
454 root 1.176 /*
455 root 1.373 * This is used to work around floating point rounding problems.
456 root 1.177 * This value is good at least till the year 4000.
457 root 1.176 */
458 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
460 root 1.176
461 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
462 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
463 root 1.1
464 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466 root 1.347
467 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468     /* ECB.H BEGIN */
469     /*
470     * libecb - http://software.schmorp.de/pkg/libecb
471     *
472 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
473 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
474     * All rights reserved.
475     *
476     * Redistribution and use in source and binary forms, with or without modifica-
477     * tion, are permitted provided that the following conditions are met:
478     *
479     * 1. Redistributions of source code must retain the above copyright notice,
480     * this list of conditions and the following disclaimer.
481     *
482     * 2. Redistributions in binary form must reproduce the above copyright
483     * notice, this list of conditions and the following disclaimer in the
484     * documentation and/or other materials provided with the distribution.
485     *
486     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495     * OF THE POSSIBILITY OF SUCH DAMAGE.
496     */
497    
498     #ifndef ECB_H
499     #define ECB_H
500    
501     #ifdef _WIN32
502     typedef signed char int8_t;
503     typedef unsigned char uint8_t;
504     typedef signed short int16_t;
505     typedef unsigned short uint16_t;
506     typedef signed int int32_t;
507     typedef unsigned int uint32_t;
508     #if __GNUC__
509     typedef signed long long int64_t;
510     typedef unsigned long long uint64_t;
511     #else /* _MSC_VER || __BORLANDC__ */
512     typedef signed __int64 int64_t;
513     typedef unsigned __int64 uint64_t;
514     #endif
515     #else
516     #include <inttypes.h>
517     #endif
518 root 1.379
519     /* many compilers define _GNUC_ to some versions but then only implement
520     * what their idiot authors think are the "more important" extensions,
521 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
522 root 1.379 * or so.
523     * we try to detect these and simply assume they are not gcc - if they have
524     * an issue with that they should have done it right in the first place.
525     */
526     #ifndef ECB_GCC_VERSION
527     #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528     #define ECB_GCC_VERSION(major,minor) 0
529     #else
530     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
531     #endif
532     #endif
533    
534 root 1.391 /*****************************************************************************/
535    
536     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538    
539     #if ECB_NO_THREADS || ECB_NO_SMP
540 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
541 root 1.40 #endif
542    
543 root 1.383 #ifndef ECB_MEMORY_FENCE
544 root 1.404 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
545     #if __i386 || __i386__
546 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 root 1.391 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548     #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
550 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 root 1.391 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555     #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 root 1.393 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 root 1.393 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 root 1.392 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 root 1.404 #elif __sparc || __sparc__
562 root 1.405 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
563     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
564     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
565 root 1.383 #endif
566     #endif
567     #endif
568    
569     #ifndef ECB_MEMORY_FENCE
570 root 1.398 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
571 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
572 root 1.392 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
573     /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
574 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
575     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
576     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
577     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
578     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
579 root 1.388 #elif defined(_WIN32)
580     #include <WinNT.h>
581 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
582 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
583     #include <mbarrier.h>
584     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
585     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
586     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
587 root 1.383 #endif
588     #endif
589    
590     #ifndef ECB_MEMORY_FENCE
591 root 1.392 #if !ECB_AVOID_PTHREADS
592     /*
593     * if you get undefined symbol references to pthread_mutex_lock,
594     * or failure to find pthread.h, then you should implement
595     * the ECB_MEMORY_FENCE operations for your cpu/compiler
596     * OR provide pthread.h and link against the posix thread library
597     * of your system.
598     */
599     #include <pthread.h>
600     #define ECB_NEEDS_PTHREADS 1
601     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
602    
603     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
604     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
605     #endif
606     #endif
607 root 1.383
608 root 1.392 #if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
609 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
610 root 1.392 #endif
611    
612     #if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
613 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
614     #endif
615    
616 root 1.391 /*****************************************************************************/
617    
618     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
619    
620     #if __cplusplus
621     #define ecb_inline static inline
622     #elif ECB_GCC_VERSION(2,5)
623     #define ecb_inline static __inline__
624     #elif ECB_C99
625     #define ecb_inline static inline
626     #else
627     #define ecb_inline static
628     #endif
629    
630     #if ECB_GCC_VERSION(3,3)
631     #define ecb_restrict __restrict__
632     #elif ECB_C99
633     #define ecb_restrict restrict
634     #else
635     #define ecb_restrict
636     #endif
637    
638     typedef int ecb_bool;
639    
640     #define ECB_CONCAT_(a, b) a ## b
641     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
642     #define ECB_STRINGIFY_(a) # a
643     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
644    
645     #define ecb_function_ ecb_inline
646    
647 root 1.379 #if ECB_GCC_VERSION(3,1)
648     #define ecb_attribute(attrlist) __attribute__(attrlist)
649     #define ecb_is_constant(expr) __builtin_constant_p (expr)
650     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
651     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
652     #else
653     #define ecb_attribute(attrlist)
654     #define ecb_is_constant(expr) 0
655     #define ecb_expect(expr,value) (expr)
656     #define ecb_prefetch(addr,rw,locality)
657     #endif
658    
659 root 1.391 /* no emulation for ecb_decltype */
660     #if ECB_GCC_VERSION(4,5)
661     #define ecb_decltype(x) __decltype(x)
662     #elif ECB_GCC_VERSION(3,0)
663     #define ecb_decltype(x) __typeof(x)
664     #endif
665    
666 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
667     #define ecb_noreturn ecb_attribute ((__noreturn__))
668     #define ecb_unused ecb_attribute ((__unused__))
669     #define ecb_const ecb_attribute ((__const__))
670     #define ecb_pure ecb_attribute ((__pure__))
671    
672     #if ECB_GCC_VERSION(4,3)
673     #define ecb_artificial ecb_attribute ((__artificial__))
674     #define ecb_hot ecb_attribute ((__hot__))
675     #define ecb_cold ecb_attribute ((__cold__))
676     #else
677     #define ecb_artificial
678     #define ecb_hot
679     #define ecb_cold
680     #endif
681    
682     /* put around conditional expressions if you are very sure that the */
683     /* expression is mostly true or mostly false. note that these return */
684     /* booleans, not the expression. */
685     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
686     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
687 root 1.391 /* for compatibility to the rest of the world */
688     #define ecb_likely(expr) ecb_expect_true (expr)
689     #define ecb_unlikely(expr) ecb_expect_false (expr)
690    
691     /* count trailing zero bits and count # of one bits */
692     #if ECB_GCC_VERSION(3,4)
693     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
694     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
695     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
696     #define ecb_ctz32(x) __builtin_ctz (x)
697     #define ecb_ctz64(x) __builtin_ctzll (x)
698     #define ecb_popcount32(x) __builtin_popcount (x)
699     /* no popcountll */
700     #else
701     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
702     ecb_function_ int
703     ecb_ctz32 (uint32_t x)
704     {
705     int r = 0;
706    
707     x &= ~x + 1; /* this isolates the lowest bit */
708    
709     #if ECB_branchless_on_i386
710     r += !!(x & 0xaaaaaaaa) << 0;
711     r += !!(x & 0xcccccccc) << 1;
712     r += !!(x & 0xf0f0f0f0) << 2;
713     r += !!(x & 0xff00ff00) << 3;
714     r += !!(x & 0xffff0000) << 4;
715     #else
716     if (x & 0xaaaaaaaa) r += 1;
717     if (x & 0xcccccccc) r += 2;
718     if (x & 0xf0f0f0f0) r += 4;
719     if (x & 0xff00ff00) r += 8;
720     if (x & 0xffff0000) r += 16;
721     #endif
722    
723     return r;
724     }
725    
726     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
727     ecb_function_ int
728     ecb_ctz64 (uint64_t x)
729     {
730     int shift = x & 0xffffffffU ? 0 : 32;
731     return ecb_ctz32 (x >> shift) + shift;
732     }
733    
734     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
735     ecb_function_ int
736     ecb_popcount32 (uint32_t x)
737     {
738     x -= (x >> 1) & 0x55555555;
739     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
740     x = ((x >> 4) + x) & 0x0f0f0f0f;
741     x *= 0x01010101;
742    
743     return x >> 24;
744     }
745    
746     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
747     ecb_function_ int ecb_ld32 (uint32_t x)
748     {
749     int r = 0;
750    
751     if (x >> 16) { x >>= 16; r += 16; }
752     if (x >> 8) { x >>= 8; r += 8; }
753     if (x >> 4) { x >>= 4; r += 4; }
754     if (x >> 2) { x >>= 2; r += 2; }
755     if (x >> 1) { r += 1; }
756    
757     return r;
758     }
759    
760     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
761     ecb_function_ int ecb_ld64 (uint64_t x)
762     {
763     int r = 0;
764    
765     if (x >> 32) { x >>= 32; r += 32; }
766    
767     return r + ecb_ld32 (x);
768     }
769     #endif
770    
771 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
772     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
773     {
774     return ( (x * 0x0802U & 0x22110U)
775     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
776     }
777    
778     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
779     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
780     {
781     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
782     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
783     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
784     x = ( x >> 8 ) | ( x << 8);
785    
786     return x;
787     }
788    
789     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
790     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
791     {
792     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
793     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
794     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
795     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
796     x = ( x >> 16 ) | ( x << 16);
797    
798     return x;
799     }
800    
801 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
802     /* so for this version we are lazy */
803     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
804     ecb_function_ int
805     ecb_popcount64 (uint64_t x)
806     {
807     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
808     }
809    
810     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
811     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
812     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
813     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
814     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
815     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
816     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
817     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
818    
819     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
820     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
821     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
822     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
823     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
824     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
825     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
826     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
827    
828     #if ECB_GCC_VERSION(4,3)
829     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
830     #define ecb_bswap32(x) __builtin_bswap32 (x)
831     #define ecb_bswap64(x) __builtin_bswap64 (x)
832     #else
833     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
834     ecb_function_ uint16_t
835     ecb_bswap16 (uint16_t x)
836     {
837     return ecb_rotl16 (x, 8);
838     }
839    
840     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
841     ecb_function_ uint32_t
842     ecb_bswap32 (uint32_t x)
843     {
844     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
845     }
846    
847     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
848     ecb_function_ uint64_t
849     ecb_bswap64 (uint64_t x)
850     {
851     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
852     }
853     #endif
854    
855     #if ECB_GCC_VERSION(4,5)
856     #define ecb_unreachable() __builtin_unreachable ()
857     #else
858     /* this seems to work fine, but gcc always emits a warning for it :/ */
859     ecb_function_ void ecb_unreachable (void) ecb_noreturn;
860     ecb_function_ void ecb_unreachable (void) { }
861     #endif
862    
863     /* try to tell the compiler that some condition is definitely true */
864     #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
865    
866     ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
867     ecb_function_ unsigned char
868     ecb_byteorder_helper (void)
869     {
870     const uint32_t u = 0x11223344;
871     return *(unsigned char *)&u;
872     }
873    
874     ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
875     ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
876     ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
877     ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
878    
879     #if ECB_GCC_VERSION(3,0) || ECB_C99
880     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
881     #else
882     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
883     #endif
884    
885 root 1.398 #if __cplusplus
886     template<typename T>
887     static inline T ecb_div_rd (T val, T div)
888     {
889     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
890     }
891     template<typename T>
892     static inline T ecb_div_ru (T val, T div)
893     {
894     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
895     }
896     #else
897     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
898     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
899     #endif
900    
901 root 1.391 #if ecb_cplusplus_does_not_suck
902     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
903     template<typename T, int N>
904     static inline int ecb_array_length (const T (&arr)[N])
905     {
906     return N;
907     }
908     #else
909     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
910     #endif
911    
912     #endif
913    
914     /* ECB.H END */
915 root 1.379
916 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
917 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
918 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
919     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
920 sf-exg 1.402 * libev, in which cases the memory fences become nops.
921 root 1.396 * alternatively, you can remove this #error and link against libpthread,
922     * which will then provide the memory fences.
923     */
924     # error "memory fences not defined for your architecture, please report"
925     #endif
926    
927     #ifndef ECB_MEMORY_FENCE
928     # define ECB_MEMORY_FENCE do { } while (0)
929     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
930     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
931 root 1.392 #endif
932    
933 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
934     #define expect_true(cond) ecb_expect_true (cond)
935     #define noinline ecb_noinline
936    
937     #define inline_size ecb_inline
938 root 1.169
939 root 1.338 #if EV_FEATURE_CODE
940 root 1.379 # define inline_speed ecb_inline
941 root 1.338 #else
942 root 1.169 # define inline_speed static noinline
943     #endif
944 root 1.40
945 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
946    
947     #if EV_MINPRI == EV_MAXPRI
948     # define ABSPRI(w) (((W)w), 0)
949     #else
950     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
951     #endif
952 root 1.42
953 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
954 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
955 root 1.103
956 root 1.136 typedef ev_watcher *W;
957     typedef ev_watcher_list *WL;
958     typedef ev_watcher_time *WT;
959 root 1.10
960 root 1.229 #define ev_active(w) ((W)(w))->active
961 root 1.228 #define ev_at(w) ((WT)(w))->at
962    
963 root 1.279 #if EV_USE_REALTIME
964 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
965 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
966 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
967     #endif
968    
969     #if EV_USE_MONOTONIC
970 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
971 root 1.198 #endif
972 root 1.54
973 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
974     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
975     #endif
976     #ifndef EV_WIN32_HANDLE_TO_FD
977 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
978 root 1.313 #endif
979     #ifndef EV_WIN32_CLOSE_FD
980     # define EV_WIN32_CLOSE_FD(fd) close (fd)
981     #endif
982    
983 root 1.103 #ifdef _WIN32
984 root 1.98 # include "ev_win32.c"
985     #endif
986 root 1.67
987 root 1.53 /*****************************************************************************/
988 root 1.1
989 root 1.373 /* define a suitable floor function (only used by periodics atm) */
990    
991     #if EV_USE_FLOOR
992     # include <math.h>
993     # define ev_floor(v) floor (v)
994     #else
995    
996     #include <float.h>
997    
998     /* a floor() replacement function, should be independent of ev_tstamp type */
999     static ev_tstamp noinline
1000     ev_floor (ev_tstamp v)
1001     {
1002     /* the choice of shift factor is not terribly important */
1003     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1004     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1005     #else
1006     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1007     #endif
1008    
1009     /* argument too large for an unsigned long? */
1010     if (expect_false (v >= shift))
1011     {
1012     ev_tstamp f;
1013    
1014     if (v == v - 1.)
1015     return v; /* very large number */
1016    
1017     f = shift * ev_floor (v * (1. / shift));
1018     return f + ev_floor (v - f);
1019     }
1020    
1021     /* special treatment for negative args? */
1022     if (expect_false (v < 0.))
1023     {
1024     ev_tstamp f = -ev_floor (-v);
1025    
1026     return f - (f == v ? 0 : 1);
1027     }
1028    
1029     /* fits into an unsigned long */
1030     return (unsigned long)v;
1031     }
1032    
1033     #endif
1034    
1035     /*****************************************************************************/
1036    
1037 root 1.356 #ifdef __linux
1038     # include <sys/utsname.h>
1039     #endif
1040    
1041 root 1.379 static unsigned int noinline ecb_cold
1042 root 1.355 ev_linux_version (void)
1043     {
1044     #ifdef __linux
1045 root 1.359 unsigned int v = 0;
1046 root 1.355 struct utsname buf;
1047     int i;
1048     char *p = buf.release;
1049    
1050     if (uname (&buf))
1051     return 0;
1052    
1053     for (i = 3+1; --i; )
1054     {
1055     unsigned int c = 0;
1056    
1057     for (;;)
1058     {
1059     if (*p >= '0' && *p <= '9')
1060     c = c * 10 + *p++ - '0';
1061     else
1062     {
1063     p += *p == '.';
1064     break;
1065     }
1066     }
1067    
1068     v = (v << 8) | c;
1069     }
1070    
1071     return v;
1072     #else
1073     return 0;
1074     #endif
1075     }
1076    
1077     /*****************************************************************************/
1078    
1079 root 1.331 #if EV_AVOID_STDIO
1080 root 1.379 static void noinline ecb_cold
1081 root 1.331 ev_printerr (const char *msg)
1082     {
1083     write (STDERR_FILENO, msg, strlen (msg));
1084     }
1085     #endif
1086    
1087 root 1.70 static void (*syserr_cb)(const char *msg);
1088 root 1.69
1089 root 1.379 void ecb_cold
1090 root 1.141 ev_set_syserr_cb (void (*cb)(const char *msg))
1091 root 1.69 {
1092     syserr_cb = cb;
1093     }
1094    
1095 root 1.379 static void noinline ecb_cold
1096 root 1.269 ev_syserr (const char *msg)
1097 root 1.69 {
1098 root 1.70 if (!msg)
1099     msg = "(libev) system error";
1100    
1101 root 1.69 if (syserr_cb)
1102 root 1.70 syserr_cb (msg);
1103 root 1.69 else
1104     {
1105 root 1.330 #if EV_AVOID_STDIO
1106 root 1.331 ev_printerr (msg);
1107     ev_printerr (": ");
1108 root 1.365 ev_printerr (strerror (errno));
1109 root 1.331 ev_printerr ("\n");
1110 root 1.330 #else
1111 root 1.70 perror (msg);
1112 root 1.330 #endif
1113 root 1.69 abort ();
1114     }
1115     }
1116    
1117 root 1.224 static void *
1118     ev_realloc_emul (void *ptr, long size)
1119     {
1120 root 1.334 #if __GLIBC__
1121     return realloc (ptr, size);
1122     #else
1123 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
1124 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1125 root 1.224 * the single unix specification, so work around them here.
1126     */
1127 root 1.333
1128 root 1.224 if (size)
1129     return realloc (ptr, size);
1130    
1131     free (ptr);
1132     return 0;
1133 root 1.334 #endif
1134 root 1.224 }
1135    
1136     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1137 root 1.69
1138 root 1.379 void ecb_cold
1139 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
1140 root 1.69 {
1141     alloc = cb;
1142     }
1143    
1144 root 1.150 inline_speed void *
1145 root 1.155 ev_realloc (void *ptr, long size)
1146 root 1.69 {
1147 root 1.224 ptr = alloc (ptr, size);
1148 root 1.69
1149     if (!ptr && size)
1150     {
1151 root 1.330 #if EV_AVOID_STDIO
1152 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1153 root 1.330 #else
1154 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1155 root 1.330 #endif
1156 root 1.69 abort ();
1157     }
1158    
1159     return ptr;
1160     }
1161    
1162     #define ev_malloc(size) ev_realloc (0, (size))
1163     #define ev_free(ptr) ev_realloc ((ptr), 0)
1164    
1165     /*****************************************************************************/
1166    
1167 root 1.298 /* set in reify when reification needed */
1168     #define EV_ANFD_REIFY 1
1169    
1170 root 1.288 /* file descriptor info structure */
1171 root 1.53 typedef struct
1172     {
1173 root 1.68 WL head;
1174 root 1.288 unsigned char events; /* the events watched for */
1175 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1176 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1177 root 1.269 unsigned char unused;
1178     #if EV_USE_EPOLL
1179 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1180 root 1.269 #endif
1181 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1182 root 1.103 SOCKET handle;
1183     #endif
1184 root 1.357 #if EV_USE_IOCP
1185     OVERLAPPED or, ow;
1186     #endif
1187 root 1.53 } ANFD;
1188 root 1.1
1189 root 1.288 /* stores the pending event set for a given watcher */
1190 root 1.53 typedef struct
1191     {
1192     W w;
1193 root 1.288 int events; /* the pending event set for the given watcher */
1194 root 1.53 } ANPENDING;
1195 root 1.51
1196 root 1.155 #if EV_USE_INOTIFY
1197 root 1.241 /* hash table entry per inotify-id */
1198 root 1.152 typedef struct
1199     {
1200     WL head;
1201 root 1.155 } ANFS;
1202 root 1.152 #endif
1203    
1204 root 1.241 /* Heap Entry */
1205     #if EV_HEAP_CACHE_AT
1206 root 1.288 /* a heap element */
1207 root 1.241 typedef struct {
1208 root 1.243 ev_tstamp at;
1209 root 1.241 WT w;
1210     } ANHE;
1211    
1212 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1213     #define ANHE_at(he) (he).at /* access cached at, read-only */
1214     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1215 root 1.241 #else
1216 root 1.288 /* a heap element */
1217 root 1.241 typedef WT ANHE;
1218    
1219 root 1.248 #define ANHE_w(he) (he)
1220     #define ANHE_at(he) (he)->at
1221     #define ANHE_at_cache(he)
1222 root 1.241 #endif
1223    
1224 root 1.55 #if EV_MULTIPLICITY
1225 root 1.54
1226 root 1.80 struct ev_loop
1227     {
1228 root 1.86 ev_tstamp ev_rt_now;
1229 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1230 root 1.80 #define VAR(name,decl) decl;
1231     #include "ev_vars.h"
1232     #undef VAR
1233     };
1234     #include "ev_wrap.h"
1235    
1236 root 1.116 static struct ev_loop default_loop_struct;
1237 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1238 root 1.54
1239 root 1.53 #else
1240 root 1.54
1241 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1242 root 1.80 #define VAR(name,decl) static decl;
1243     #include "ev_vars.h"
1244     #undef VAR
1245    
1246 root 1.116 static int ev_default_loop_ptr;
1247 root 1.54
1248 root 1.51 #endif
1249 root 1.1
1250 root 1.338 #if EV_FEATURE_API
1251 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1252     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1253 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1254     #else
1255 root 1.298 # define EV_RELEASE_CB (void)0
1256     # define EV_ACQUIRE_CB (void)0
1257 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1258     #endif
1259    
1260 root 1.353 #define EVBREAK_RECURSE 0x80
1261 root 1.298
1262 root 1.8 /*****************************************************************************/
1263    
1264 root 1.292 #ifndef EV_HAVE_EV_TIME
1265 root 1.141 ev_tstamp
1266 root 1.1 ev_time (void)
1267     {
1268 root 1.29 #if EV_USE_REALTIME
1269 root 1.279 if (expect_true (have_realtime))
1270     {
1271     struct timespec ts;
1272     clock_gettime (CLOCK_REALTIME, &ts);
1273     return ts.tv_sec + ts.tv_nsec * 1e-9;
1274     }
1275     #endif
1276    
1277 root 1.1 struct timeval tv;
1278     gettimeofday (&tv, 0);
1279     return tv.tv_sec + tv.tv_usec * 1e-6;
1280     }
1281 root 1.292 #endif
1282 root 1.1
1283 root 1.284 inline_size ev_tstamp
1284 root 1.1 get_clock (void)
1285     {
1286 root 1.29 #if EV_USE_MONOTONIC
1287 root 1.40 if (expect_true (have_monotonic))
1288 root 1.1 {
1289     struct timespec ts;
1290     clock_gettime (CLOCK_MONOTONIC, &ts);
1291     return ts.tv_sec + ts.tv_nsec * 1e-9;
1292     }
1293     #endif
1294    
1295     return ev_time ();
1296     }
1297    
1298 root 1.85 #if EV_MULTIPLICITY
1299 root 1.51 ev_tstamp
1300     ev_now (EV_P)
1301     {
1302 root 1.85 return ev_rt_now;
1303 root 1.51 }
1304 root 1.85 #endif
1305 root 1.51
1306 root 1.193 void
1307     ev_sleep (ev_tstamp delay)
1308     {
1309     if (delay > 0.)
1310     {
1311     #if EV_USE_NANOSLEEP
1312     struct timespec ts;
1313    
1314 root 1.348 EV_TS_SET (ts, delay);
1315 root 1.193 nanosleep (&ts, 0);
1316     #elif defined(_WIN32)
1317 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1318 root 1.193 #else
1319     struct timeval tv;
1320    
1321 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1322 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1323 root 1.257 /* by older ones */
1324 sf-exg 1.349 EV_TV_SET (tv, delay);
1325 root 1.193 select (0, 0, 0, 0, &tv);
1326     #endif
1327     }
1328     }
1329    
1330     /*****************************************************************************/
1331    
1332 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1333 root 1.232
1334 root 1.288 /* find a suitable new size for the given array, */
1335 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1336 root 1.284 inline_size int
1337 root 1.163 array_nextsize (int elem, int cur, int cnt)
1338     {
1339     int ncur = cur + 1;
1340    
1341     do
1342     ncur <<= 1;
1343     while (cnt > ncur);
1344    
1345 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1346 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1347 root 1.163 {
1348     ncur *= elem;
1349 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1350 root 1.163 ncur = ncur - sizeof (void *) * 4;
1351     ncur /= elem;
1352     }
1353    
1354     return ncur;
1355     }
1356    
1357 root 1.379 static void * noinline ecb_cold
1358 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1359     {
1360     *cur = array_nextsize (elem, *cur, cnt);
1361     return ev_realloc (base, elem * *cur);
1362     }
1363 root 1.29
1364 root 1.265 #define array_init_zero(base,count) \
1365     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1366    
1367 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1368 root 1.163 if (expect_false ((cnt) > (cur))) \
1369 root 1.69 { \
1370 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1371 root 1.163 (base) = (type *)array_realloc \
1372     (sizeof (type), (base), &(cur), (cnt)); \
1373     init ((base) + (ocur_), (cur) - ocur_); \
1374 root 1.1 }
1375    
1376 root 1.163 #if 0
1377 root 1.74 #define array_slim(type,stem) \
1378 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1379     { \
1380     stem ## max = array_roundsize (stem ## cnt >> 1); \
1381 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1382 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1383     }
1384 root 1.163 #endif
1385 root 1.67
1386 root 1.65 #define array_free(stem, idx) \
1387 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1388 root 1.65
1389 root 1.8 /*****************************************************************************/
1390    
1391 root 1.288 /* dummy callback for pending events */
1392     static void noinline
1393     pendingcb (EV_P_ ev_prepare *w, int revents)
1394     {
1395     }
1396    
1397 root 1.140 void noinline
1398 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
1399 root 1.1 {
1400 root 1.78 W w_ = (W)w;
1401 root 1.171 int pri = ABSPRI (w_);
1402 root 1.78
1403 root 1.123 if (expect_false (w_->pending))
1404 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1405     else
1406 root 1.32 {
1407 root 1.171 w_->pending = ++pendingcnt [pri];
1408     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1409     pendings [pri][w_->pending - 1].w = w_;
1410     pendings [pri][w_->pending - 1].events = revents;
1411 root 1.32 }
1412 root 1.1 }
1413    
1414 root 1.284 inline_speed void
1415     feed_reverse (EV_P_ W w)
1416     {
1417     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1418     rfeeds [rfeedcnt++] = w;
1419     }
1420    
1421     inline_size void
1422     feed_reverse_done (EV_P_ int revents)
1423     {
1424     do
1425     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1426     while (rfeedcnt);
1427     }
1428    
1429     inline_speed void
1430 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1431 root 1.27 {
1432     int i;
1433    
1434     for (i = 0; i < eventcnt; ++i)
1435 root 1.78 ev_feed_event (EV_A_ events [i], type);
1436 root 1.27 }
1437    
1438 root 1.141 /*****************************************************************************/
1439    
1440 root 1.284 inline_speed void
1441 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1442 root 1.1 {
1443     ANFD *anfd = anfds + fd;
1444 root 1.136 ev_io *w;
1445 root 1.1
1446 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1447 root 1.1 {
1448 root 1.79 int ev = w->events & revents;
1449 root 1.1
1450     if (ev)
1451 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1452 root 1.1 }
1453     }
1454    
1455 root 1.298 /* do not submit kernel events for fds that have reify set */
1456     /* because that means they changed while we were polling for new events */
1457     inline_speed void
1458     fd_event (EV_P_ int fd, int revents)
1459     {
1460     ANFD *anfd = anfds + fd;
1461    
1462     if (expect_true (!anfd->reify))
1463 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1464 root 1.298 }
1465    
1466 root 1.79 void
1467     ev_feed_fd_event (EV_P_ int fd, int revents)
1468     {
1469 root 1.168 if (fd >= 0 && fd < anfdmax)
1470 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1471 root 1.79 }
1472    
1473 root 1.288 /* make sure the external fd watch events are in-sync */
1474     /* with the kernel/libev internal state */
1475 root 1.284 inline_size void
1476 root 1.51 fd_reify (EV_P)
1477 root 1.9 {
1478     int i;
1479    
1480 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1481     for (i = 0; i < fdchangecnt; ++i)
1482     {
1483     int fd = fdchanges [i];
1484     ANFD *anfd = anfds + fd;
1485    
1486 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1487 root 1.371 {
1488     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1489    
1490     if (handle != anfd->handle)
1491     {
1492     unsigned long arg;
1493    
1494     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1495    
1496     /* handle changed, but fd didn't - we need to do it in two steps */
1497     backend_modify (EV_A_ fd, anfd->events, 0);
1498     anfd->events = 0;
1499     anfd->handle = handle;
1500     }
1501     }
1502     }
1503     #endif
1504    
1505 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1506     {
1507     int fd = fdchanges [i];
1508     ANFD *anfd = anfds + fd;
1509 root 1.136 ev_io *w;
1510 root 1.27
1511 root 1.350 unsigned char o_events = anfd->events;
1512     unsigned char o_reify = anfd->reify;
1513 root 1.27
1514 root 1.350 anfd->reify = 0;
1515 root 1.27
1516 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1517     {
1518     anfd->events = 0;
1519 root 1.184
1520 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1521     anfd->events |= (unsigned char)w->events;
1522 root 1.27
1523 root 1.351 if (o_events != anfd->events)
1524 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1525     }
1526    
1527     if (o_reify & EV__IOFDSET)
1528     backend_modify (EV_A_ fd, o_events, anfd->events);
1529 root 1.27 }
1530    
1531     fdchangecnt = 0;
1532     }
1533    
1534 root 1.288 /* something about the given fd changed */
1535 root 1.284 inline_size void
1536 root 1.183 fd_change (EV_P_ int fd, int flags)
1537 root 1.27 {
1538 root 1.183 unsigned char reify = anfds [fd].reify;
1539 root 1.184 anfds [fd].reify |= flags;
1540 root 1.27
1541 root 1.183 if (expect_true (!reify))
1542     {
1543     ++fdchangecnt;
1544     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1545     fdchanges [fdchangecnt - 1] = fd;
1546     }
1547 root 1.9 }
1548    
1549 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1550 root 1.379 inline_speed void ecb_cold
1551 root 1.51 fd_kill (EV_P_ int fd)
1552 root 1.41 {
1553 root 1.136 ev_io *w;
1554 root 1.41
1555 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1556 root 1.41 {
1557 root 1.51 ev_io_stop (EV_A_ w);
1558 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1559 root 1.41 }
1560     }
1561    
1562 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1563 root 1.379 inline_size int ecb_cold
1564 root 1.71 fd_valid (int fd)
1565     {
1566 root 1.103 #ifdef _WIN32
1567 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1568 root 1.71 #else
1569     return fcntl (fd, F_GETFD) != -1;
1570     #endif
1571     }
1572    
1573 root 1.19 /* called on EBADF to verify fds */
1574 root 1.379 static void noinline ecb_cold
1575 root 1.51 fd_ebadf (EV_P)
1576 root 1.19 {
1577     int fd;
1578    
1579     for (fd = 0; fd < anfdmax; ++fd)
1580 root 1.27 if (anfds [fd].events)
1581 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1582 root 1.51 fd_kill (EV_A_ fd);
1583 root 1.41 }
1584    
1585     /* called on ENOMEM in select/poll to kill some fds and retry */
1586 root 1.379 static void noinline ecb_cold
1587 root 1.51 fd_enomem (EV_P)
1588 root 1.41 {
1589 root 1.62 int fd;
1590 root 1.41
1591 root 1.62 for (fd = anfdmax; fd--; )
1592 root 1.41 if (anfds [fd].events)
1593     {
1594 root 1.51 fd_kill (EV_A_ fd);
1595 root 1.307 break;
1596 root 1.41 }
1597 root 1.19 }
1598    
1599 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1600 root 1.140 static void noinline
1601 root 1.56 fd_rearm_all (EV_P)
1602     {
1603     int fd;
1604    
1605     for (fd = 0; fd < anfdmax; ++fd)
1606     if (anfds [fd].events)
1607     {
1608     anfds [fd].events = 0;
1609 root 1.268 anfds [fd].emask = 0;
1610 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1611 root 1.56 }
1612     }
1613    
1614 root 1.336 /* used to prepare libev internal fd's */
1615     /* this is not fork-safe */
1616     inline_speed void
1617     fd_intern (int fd)
1618     {
1619     #ifdef _WIN32
1620     unsigned long arg = 1;
1621     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1622     #else
1623     fcntl (fd, F_SETFD, FD_CLOEXEC);
1624     fcntl (fd, F_SETFL, O_NONBLOCK);
1625     #endif
1626     }
1627    
1628 root 1.8 /*****************************************************************************/
1629    
1630 root 1.235 /*
1631 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1632 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1633     * the branching factor of the d-tree.
1634     */
1635    
1636     /*
1637 root 1.235 * at the moment we allow libev the luxury of two heaps,
1638     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1639     * which is more cache-efficient.
1640     * the difference is about 5% with 50000+ watchers.
1641     */
1642 root 1.241 #if EV_USE_4HEAP
1643 root 1.235
1644 root 1.237 #define DHEAP 4
1645     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1646 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1647 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1648 root 1.235
1649     /* away from the root */
1650 root 1.284 inline_speed void
1651 root 1.241 downheap (ANHE *heap, int N, int k)
1652 root 1.235 {
1653 root 1.241 ANHE he = heap [k];
1654     ANHE *E = heap + N + HEAP0;
1655 root 1.235
1656     for (;;)
1657     {
1658     ev_tstamp minat;
1659 root 1.241 ANHE *minpos;
1660 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1661 root 1.235
1662 root 1.248 /* find minimum child */
1663 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1664 root 1.235 {
1665 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1666     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1667     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1668     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1669 root 1.235 }
1670 root 1.240 else if (pos < E)
1671 root 1.235 {
1672 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1673     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1674     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1675     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1676 root 1.235 }
1677 root 1.240 else
1678     break;
1679 root 1.235
1680 root 1.241 if (ANHE_at (he) <= minat)
1681 root 1.235 break;
1682    
1683 root 1.247 heap [k] = *minpos;
1684 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1685 root 1.235
1686     k = minpos - heap;
1687     }
1688    
1689 root 1.247 heap [k] = he;
1690 root 1.241 ev_active (ANHE_w (he)) = k;
1691 root 1.235 }
1692    
1693 root 1.248 #else /* 4HEAP */
1694 root 1.235
1695     #define HEAP0 1
1696 root 1.247 #define HPARENT(k) ((k) >> 1)
1697 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1698 root 1.235
1699 root 1.248 /* away from the root */
1700 root 1.284 inline_speed void
1701 root 1.248 downheap (ANHE *heap, int N, int k)
1702 root 1.1 {
1703 root 1.241 ANHE he = heap [k];
1704 root 1.1
1705 root 1.228 for (;;)
1706 root 1.1 {
1707 root 1.248 int c = k << 1;
1708 root 1.179
1709 root 1.309 if (c >= N + HEAP0)
1710 root 1.179 break;
1711    
1712 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1713     ? 1 : 0;
1714    
1715     if (ANHE_at (he) <= ANHE_at (heap [c]))
1716     break;
1717    
1718     heap [k] = heap [c];
1719 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1720 root 1.248
1721     k = c;
1722 root 1.1 }
1723    
1724 root 1.243 heap [k] = he;
1725 root 1.248 ev_active (ANHE_w (he)) = k;
1726 root 1.1 }
1727 root 1.248 #endif
1728 root 1.1
1729 root 1.248 /* towards the root */
1730 root 1.284 inline_speed void
1731 root 1.248 upheap (ANHE *heap, int k)
1732 root 1.1 {
1733 root 1.241 ANHE he = heap [k];
1734 root 1.1
1735 root 1.179 for (;;)
1736 root 1.1 {
1737 root 1.248 int p = HPARENT (k);
1738 root 1.179
1739 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1740 root 1.179 break;
1741 root 1.1
1742 root 1.248 heap [k] = heap [p];
1743 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1744 root 1.248 k = p;
1745 root 1.1 }
1746    
1747 root 1.241 heap [k] = he;
1748     ev_active (ANHE_w (he)) = k;
1749 root 1.1 }
1750    
1751 root 1.288 /* move an element suitably so it is in a correct place */
1752 root 1.284 inline_size void
1753 root 1.241 adjustheap (ANHE *heap, int N, int k)
1754 root 1.84 {
1755 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1756 root 1.247 upheap (heap, k);
1757     else
1758     downheap (heap, N, k);
1759 root 1.84 }
1760    
1761 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1762 root 1.284 inline_size void
1763 root 1.248 reheap (ANHE *heap, int N)
1764     {
1765     int i;
1766 root 1.251
1767 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1768     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1769     for (i = 0; i < N; ++i)
1770     upheap (heap, i + HEAP0);
1771     }
1772    
1773 root 1.8 /*****************************************************************************/
1774    
1775 root 1.288 /* associate signal watchers to a signal signal */
1776 root 1.7 typedef struct
1777     {
1778 root 1.307 EV_ATOMIC_T pending;
1779 root 1.306 #if EV_MULTIPLICITY
1780     EV_P;
1781     #endif
1782 root 1.68 WL head;
1783 root 1.7 } ANSIG;
1784    
1785 root 1.306 static ANSIG signals [EV_NSIG - 1];
1786 root 1.7
1787 root 1.207 /*****************************************************************************/
1788    
1789 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1790 root 1.207
1791 root 1.379 static void noinline ecb_cold
1792 root 1.207 evpipe_init (EV_P)
1793     {
1794 root 1.288 if (!ev_is_active (&pipe_w))
1795 root 1.207 {
1796 root 1.336 # if EV_USE_EVENTFD
1797 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1798     if (evfd < 0 && errno == EINVAL)
1799     evfd = eventfd (0, 0);
1800    
1801     if (evfd >= 0)
1802 root 1.220 {
1803     evpipe [0] = -1;
1804 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1805 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1806 root 1.220 }
1807     else
1808 root 1.336 # endif
1809 root 1.220 {
1810     while (pipe (evpipe))
1811 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1812 root 1.207
1813 root 1.220 fd_intern (evpipe [0]);
1814     fd_intern (evpipe [1]);
1815 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1816 root 1.220 }
1817 root 1.207
1818 root 1.288 ev_io_start (EV_A_ &pipe_w);
1819 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1820 root 1.207 }
1821     }
1822    
1823 root 1.380 inline_speed void
1824 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1825 root 1.207 {
1826 root 1.383 if (expect_true (*flag))
1827 root 1.387 return;
1828 root 1.383
1829     *flag = 1;
1830    
1831 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1832 root 1.383
1833     pipe_write_skipped = 1;
1834 root 1.378
1835 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1836 root 1.214
1837 root 1.383 if (pipe_write_wanted)
1838     {
1839     int old_errno;
1840 root 1.378
1841 root 1.392 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1842 root 1.220
1843 root 1.383 old_errno = errno; /* save errno because write will clobber it */
1844 root 1.380
1845 root 1.220 #if EV_USE_EVENTFD
1846 root 1.383 if (evfd >= 0)
1847     {
1848     uint64_t counter = 1;
1849     write (evfd, &counter, sizeof (uint64_t));
1850     }
1851     else
1852 root 1.220 #endif
1853 root 1.383 {
1854     /* win32 people keep sending patches that change this write() to send() */
1855     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1856     /* so when you think this write should be a send instead, please find out */
1857     /* where your send() is from - it's definitely not the microsoft send, and */
1858     /* tell me. thank you. */
1859     write (evpipe [1], &(evpipe [1]), 1);
1860     }
1861 root 1.214
1862 root 1.383 errno = old_errno;
1863 root 1.207 }
1864     }
1865    
1866 root 1.288 /* called whenever the libev signal pipe */
1867     /* got some events (signal, async) */
1868 root 1.207 static void
1869     pipecb (EV_P_ ev_io *iow, int revents)
1870     {
1871 root 1.307 int i;
1872    
1873 root 1.378 if (revents & EV_READ)
1874     {
1875 root 1.220 #if EV_USE_EVENTFD
1876 root 1.378 if (evfd >= 0)
1877     {
1878     uint64_t counter;
1879     read (evfd, &counter, sizeof (uint64_t));
1880     }
1881     else
1882 root 1.220 #endif
1883 root 1.378 {
1884     char dummy;
1885     /* see discussion in evpipe_write when you think this read should be recv in win32 */
1886     read (evpipe [0], &dummy, 1);
1887     }
1888 root 1.220 }
1889 root 1.207
1890 root 1.378 pipe_write_skipped = 0;
1891    
1892 root 1.369 #if EV_SIGNAL_ENABLE
1893 root 1.307 if (sig_pending)
1894 root 1.372 {
1895 root 1.307 sig_pending = 0;
1896 root 1.207
1897 root 1.307 for (i = EV_NSIG - 1; i--; )
1898     if (expect_false (signals [i].pending))
1899     ev_feed_signal_event (EV_A_ i + 1);
1900 root 1.207 }
1901 root 1.369 #endif
1902 root 1.207
1903 root 1.209 #if EV_ASYNC_ENABLE
1904 root 1.307 if (async_pending)
1905 root 1.207 {
1906 root 1.307 async_pending = 0;
1907 root 1.207
1908     for (i = asynccnt; i--; )
1909     if (asyncs [i]->sent)
1910     {
1911     asyncs [i]->sent = 0;
1912     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1913     }
1914     }
1915 root 1.209 #endif
1916 root 1.207 }
1917    
1918     /*****************************************************************************/
1919    
1920 root 1.366 void
1921     ev_feed_signal (int signum)
1922 root 1.7 {
1923 root 1.207 #if EV_MULTIPLICITY
1924 root 1.306 EV_P = signals [signum - 1].loop;
1925 root 1.366
1926     if (!EV_A)
1927     return;
1928 root 1.207 #endif
1929    
1930 root 1.381 if (!ev_active (&pipe_w))
1931     return;
1932 root 1.378
1933 root 1.366 signals [signum - 1].pending = 1;
1934     evpipe_write (EV_A_ &sig_pending);
1935     }
1936    
1937     static void
1938     ev_sighandler (int signum)
1939     {
1940 root 1.322 #ifdef _WIN32
1941 root 1.218 signal (signum, ev_sighandler);
1942 root 1.67 #endif
1943    
1944 root 1.366 ev_feed_signal (signum);
1945 root 1.7 }
1946    
1947 root 1.140 void noinline
1948 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1949     {
1950 root 1.80 WL w;
1951    
1952 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1953     return;
1954    
1955     --signum;
1956    
1957 root 1.79 #if EV_MULTIPLICITY
1958 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1959     /* or, likely more useful, feeding a signal nobody is waiting for */
1960 root 1.79
1961 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1962 root 1.306 return;
1963 root 1.307 #endif
1964 root 1.306
1965 root 1.307 signals [signum].pending = 0;
1966 root 1.79
1967     for (w = signals [signum].head; w; w = w->next)
1968     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1969     }
1970    
1971 root 1.303 #if EV_USE_SIGNALFD
1972     static void
1973     sigfdcb (EV_P_ ev_io *iow, int revents)
1974     {
1975 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1976 root 1.303
1977     for (;;)
1978     {
1979     ssize_t res = read (sigfd, si, sizeof (si));
1980    
1981     /* not ISO-C, as res might be -1, but works with SuS */
1982     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1983     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1984    
1985     if (res < (ssize_t)sizeof (si))
1986     break;
1987     }
1988     }
1989     #endif
1990    
1991 root 1.336 #endif
1992    
1993 root 1.8 /*****************************************************************************/
1994    
1995 root 1.336 #if EV_CHILD_ENABLE
1996 root 1.182 static WL childs [EV_PID_HASHSIZE];
1997 root 1.71
1998 root 1.136 static ev_signal childev;
1999 root 1.59
2000 root 1.206 #ifndef WIFCONTINUED
2001     # define WIFCONTINUED(status) 0
2002     #endif
2003    
2004 root 1.288 /* handle a single child status event */
2005 root 1.284 inline_speed void
2006 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2007 root 1.47 {
2008 root 1.136 ev_child *w;
2009 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2010 root 1.47
2011 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2012 root 1.206 {
2013     if ((w->pid == pid || !w->pid)
2014     && (!traced || (w->flags & 1)))
2015     {
2016 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2017 root 1.206 w->rpid = pid;
2018     w->rstatus = status;
2019     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2020     }
2021     }
2022 root 1.47 }
2023    
2024 root 1.142 #ifndef WCONTINUED
2025     # define WCONTINUED 0
2026     #endif
2027    
2028 root 1.288 /* called on sigchld etc., calls waitpid */
2029 root 1.47 static void
2030 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2031 root 1.22 {
2032     int pid, status;
2033    
2034 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2035     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2036     if (!WCONTINUED
2037     || errno != EINVAL
2038     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2039     return;
2040    
2041 root 1.216 /* make sure we are called again until all children have been reaped */
2042 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2043     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2044 root 1.47
2045 root 1.216 child_reap (EV_A_ pid, pid, status);
2046 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2047 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2048 root 1.22 }
2049    
2050 root 1.45 #endif
2051    
2052 root 1.22 /*****************************************************************************/
2053    
2054 root 1.357 #if EV_USE_IOCP
2055     # include "ev_iocp.c"
2056     #endif
2057 root 1.118 #if EV_USE_PORT
2058     # include "ev_port.c"
2059     #endif
2060 root 1.44 #if EV_USE_KQUEUE
2061     # include "ev_kqueue.c"
2062     #endif
2063 root 1.29 #if EV_USE_EPOLL
2064 root 1.1 # include "ev_epoll.c"
2065     #endif
2066 root 1.59 #if EV_USE_POLL
2067 root 1.41 # include "ev_poll.c"
2068     #endif
2069 root 1.29 #if EV_USE_SELECT
2070 root 1.1 # include "ev_select.c"
2071     #endif
2072    
2073 root 1.379 int ecb_cold
2074 root 1.24 ev_version_major (void)
2075     {
2076     return EV_VERSION_MAJOR;
2077     }
2078    
2079 root 1.379 int ecb_cold
2080 root 1.24 ev_version_minor (void)
2081     {
2082     return EV_VERSION_MINOR;
2083     }
2084    
2085 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2086 root 1.379 int inline_size ecb_cold
2087 root 1.51 enable_secure (void)
2088 root 1.41 {
2089 root 1.103 #ifdef _WIN32
2090 root 1.49 return 0;
2091     #else
2092 root 1.41 return getuid () != geteuid ()
2093     || getgid () != getegid ();
2094 root 1.49 #endif
2095 root 1.41 }
2096    
2097 root 1.379 unsigned int ecb_cold
2098 root 1.129 ev_supported_backends (void)
2099     {
2100 root 1.130 unsigned int flags = 0;
2101 root 1.129
2102     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2103     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2104     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2105     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2106     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2107    
2108     return flags;
2109     }
2110    
2111 root 1.379 unsigned int ecb_cold
2112 root 1.130 ev_recommended_backends (void)
2113 root 1.1 {
2114 root 1.131 unsigned int flags = ev_supported_backends ();
2115 root 1.129
2116     #ifndef __NetBSD__
2117     /* kqueue is borked on everything but netbsd apparently */
2118     /* it usually doesn't work correctly on anything but sockets and pipes */
2119     flags &= ~EVBACKEND_KQUEUE;
2120     #endif
2121     #ifdef __APPLE__
2122 root 1.278 /* only select works correctly on that "unix-certified" platform */
2123     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2124     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2125 root 1.129 #endif
2126 root 1.342 #ifdef __FreeBSD__
2127     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2128     #endif
2129 root 1.129
2130     return flags;
2131 root 1.51 }
2132    
2133 root 1.379 unsigned int ecb_cold
2134 root 1.134 ev_embeddable_backends (void)
2135     {
2136 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2137    
2138 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2139 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2140     flags &= ~EVBACKEND_EPOLL;
2141 root 1.196
2142     return flags;
2143 root 1.134 }
2144    
2145     unsigned int
2146 root 1.130 ev_backend (EV_P)
2147     {
2148     return backend;
2149     }
2150    
2151 root 1.338 #if EV_FEATURE_API
2152 root 1.162 unsigned int
2153 root 1.340 ev_iteration (EV_P)
2154 root 1.162 {
2155     return loop_count;
2156     }
2157    
2158 root 1.294 unsigned int
2159 root 1.340 ev_depth (EV_P)
2160 root 1.294 {
2161     return loop_depth;
2162     }
2163    
2164 root 1.193 void
2165     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2166     {
2167     io_blocktime = interval;
2168     }
2169    
2170     void
2171     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2172     {
2173     timeout_blocktime = interval;
2174     }
2175    
2176 root 1.297 void
2177     ev_set_userdata (EV_P_ void *data)
2178     {
2179     userdata = data;
2180     }
2181    
2182     void *
2183     ev_userdata (EV_P)
2184     {
2185     return userdata;
2186     }
2187    
2188 root 1.379 void
2189     ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2190 root 1.297 {
2191     invoke_cb = invoke_pending_cb;
2192     }
2193    
2194 root 1.379 void
2195     ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2196 root 1.297 {
2197 root 1.298 release_cb = release;
2198     acquire_cb = acquire;
2199 root 1.297 }
2200     #endif
2201    
2202 root 1.288 /* initialise a loop structure, must be zero-initialised */
2203 root 1.379 static void noinline ecb_cold
2204 root 1.108 loop_init (EV_P_ unsigned int flags)
2205 root 1.51 {
2206 root 1.130 if (!backend)
2207 root 1.23 {
2208 root 1.366 origflags = flags;
2209    
2210 root 1.279 #if EV_USE_REALTIME
2211     if (!have_realtime)
2212     {
2213     struct timespec ts;
2214    
2215     if (!clock_gettime (CLOCK_REALTIME, &ts))
2216     have_realtime = 1;
2217     }
2218     #endif
2219    
2220 root 1.29 #if EV_USE_MONOTONIC
2221 root 1.279 if (!have_monotonic)
2222     {
2223     struct timespec ts;
2224    
2225     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2226     have_monotonic = 1;
2227     }
2228 root 1.1 #endif
2229    
2230 root 1.306 /* pid check not overridable via env */
2231     #ifndef _WIN32
2232     if (flags & EVFLAG_FORKCHECK)
2233     curpid = getpid ();
2234     #endif
2235    
2236     if (!(flags & EVFLAG_NOENV)
2237     && !enable_secure ()
2238     && getenv ("LIBEV_FLAGS"))
2239     flags = atoi (getenv ("LIBEV_FLAGS"));
2240    
2241 root 1.378 ev_rt_now = ev_time ();
2242     mn_now = get_clock ();
2243     now_floor = mn_now;
2244     rtmn_diff = ev_rt_now - mn_now;
2245 root 1.338 #if EV_FEATURE_API
2246 root 1.378 invoke_cb = ev_invoke_pending;
2247 root 1.297 #endif
2248 root 1.1
2249 root 1.378 io_blocktime = 0.;
2250     timeout_blocktime = 0.;
2251     backend = 0;
2252     backend_fd = -1;
2253     sig_pending = 0;
2254 root 1.307 #if EV_ASYNC_ENABLE
2255 root 1.378 async_pending = 0;
2256 root 1.307 #endif
2257 root 1.378 pipe_write_skipped = 0;
2258     pipe_write_wanted = 0;
2259 root 1.209 #if EV_USE_INOTIFY
2260 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2261 root 1.209 #endif
2262 root 1.303 #if EV_USE_SIGNALFD
2263 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2264 root 1.303 #endif
2265 root 1.193
2266 root 1.366 if (!(flags & EVBACKEND_MASK))
2267 root 1.129 flags |= ev_recommended_backends ();
2268 root 1.41
2269 root 1.357 #if EV_USE_IOCP
2270     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2271     #endif
2272 root 1.118 #if EV_USE_PORT
2273 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2274 root 1.118 #endif
2275 root 1.44 #if EV_USE_KQUEUE
2276 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2277 root 1.44 #endif
2278 root 1.29 #if EV_USE_EPOLL
2279 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2280 root 1.41 #endif
2281 root 1.59 #if EV_USE_POLL
2282 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2283 root 1.1 #endif
2284 root 1.29 #if EV_USE_SELECT
2285 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2286 root 1.1 #endif
2287 root 1.70
2288 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2289    
2290 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2291 root 1.288 ev_init (&pipe_w, pipecb);
2292     ev_set_priority (&pipe_w, EV_MAXPRI);
2293 root 1.336 #endif
2294 root 1.56 }
2295     }
2296    
2297 root 1.288 /* free up a loop structure */
2298 root 1.379 void ecb_cold
2299 root 1.359 ev_loop_destroy (EV_P)
2300 root 1.56 {
2301 root 1.65 int i;
2302    
2303 root 1.364 #if EV_MULTIPLICITY
2304 root 1.363 /* mimic free (0) */
2305     if (!EV_A)
2306     return;
2307 root 1.364 #endif
2308 root 1.363
2309 root 1.361 #if EV_CLEANUP_ENABLE
2310     /* queue cleanup watchers (and execute them) */
2311     if (expect_false (cleanupcnt))
2312     {
2313     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2314     EV_INVOKE_PENDING;
2315     }
2316     #endif
2317    
2318 root 1.359 #if EV_CHILD_ENABLE
2319     if (ev_is_active (&childev))
2320     {
2321     ev_ref (EV_A); /* child watcher */
2322     ev_signal_stop (EV_A_ &childev);
2323     }
2324     #endif
2325    
2326 root 1.288 if (ev_is_active (&pipe_w))
2327 root 1.207 {
2328 root 1.303 /*ev_ref (EV_A);*/
2329     /*ev_io_stop (EV_A_ &pipe_w);*/
2330 root 1.207
2331 root 1.220 #if EV_USE_EVENTFD
2332     if (evfd >= 0)
2333     close (evfd);
2334     #endif
2335    
2336     if (evpipe [0] >= 0)
2337     {
2338 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2339     EV_WIN32_CLOSE_FD (evpipe [1]);
2340 root 1.220 }
2341 root 1.207 }
2342    
2343 root 1.303 #if EV_USE_SIGNALFD
2344     if (ev_is_active (&sigfd_w))
2345 root 1.317 close (sigfd);
2346 root 1.303 #endif
2347    
2348 root 1.152 #if EV_USE_INOTIFY
2349     if (fs_fd >= 0)
2350     close (fs_fd);
2351     #endif
2352    
2353     if (backend_fd >= 0)
2354     close (backend_fd);
2355    
2356 root 1.357 #if EV_USE_IOCP
2357     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2358     #endif
2359 root 1.118 #if EV_USE_PORT
2360 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2361 root 1.118 #endif
2362 root 1.56 #if EV_USE_KQUEUE
2363 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2364 root 1.56 #endif
2365     #if EV_USE_EPOLL
2366 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2367 root 1.56 #endif
2368 root 1.59 #if EV_USE_POLL
2369 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2370 root 1.56 #endif
2371     #if EV_USE_SELECT
2372 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2373 root 1.56 #endif
2374 root 1.1
2375 root 1.65 for (i = NUMPRI; i--; )
2376 root 1.164 {
2377     array_free (pending, [i]);
2378     #if EV_IDLE_ENABLE
2379     array_free (idle, [i]);
2380     #endif
2381     }
2382 root 1.65
2383 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2384 root 1.186
2385 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2386 root 1.284 array_free (rfeed, EMPTY);
2387 root 1.164 array_free (fdchange, EMPTY);
2388     array_free (timer, EMPTY);
2389 root 1.140 #if EV_PERIODIC_ENABLE
2390 root 1.164 array_free (periodic, EMPTY);
2391 root 1.93 #endif
2392 root 1.187 #if EV_FORK_ENABLE
2393     array_free (fork, EMPTY);
2394     #endif
2395 root 1.360 #if EV_CLEANUP_ENABLE
2396     array_free (cleanup, EMPTY);
2397     #endif
2398 root 1.164 array_free (prepare, EMPTY);
2399     array_free (check, EMPTY);
2400 root 1.209 #if EV_ASYNC_ENABLE
2401     array_free (async, EMPTY);
2402     #endif
2403 root 1.65
2404 root 1.130 backend = 0;
2405 root 1.359
2406     #if EV_MULTIPLICITY
2407     if (ev_is_default_loop (EV_A))
2408     #endif
2409     ev_default_loop_ptr = 0;
2410     #if EV_MULTIPLICITY
2411     else
2412     ev_free (EV_A);
2413     #endif
2414 root 1.56 }
2415 root 1.22
2416 root 1.226 #if EV_USE_INOTIFY
2417 root 1.284 inline_size void infy_fork (EV_P);
2418 root 1.226 #endif
2419 root 1.154
2420 root 1.284 inline_size void
2421 root 1.56 loop_fork (EV_P)
2422     {
2423 root 1.118 #if EV_USE_PORT
2424 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2425 root 1.56 #endif
2426     #if EV_USE_KQUEUE
2427 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2428 root 1.45 #endif
2429 root 1.118 #if EV_USE_EPOLL
2430 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2431 root 1.118 #endif
2432 root 1.154 #if EV_USE_INOTIFY
2433     infy_fork (EV_A);
2434     #endif
2435 root 1.70
2436 root 1.288 if (ev_is_active (&pipe_w))
2437 root 1.70 {
2438 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2439 root 1.70
2440     ev_ref (EV_A);
2441 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2442 root 1.220
2443     #if EV_USE_EVENTFD
2444     if (evfd >= 0)
2445     close (evfd);
2446     #endif
2447    
2448     if (evpipe [0] >= 0)
2449     {
2450 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2451     EV_WIN32_CLOSE_FD (evpipe [1]);
2452 root 1.220 }
2453 root 1.207
2454 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2455 root 1.207 evpipe_init (EV_A);
2456 root 1.208 /* now iterate over everything, in case we missed something */
2457 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
2458 root 1.337 #endif
2459 root 1.70 }
2460    
2461     postfork = 0;
2462 root 1.1 }
2463    
2464 root 1.55 #if EV_MULTIPLICITY
2465 root 1.250
2466 root 1.379 struct ev_loop * ecb_cold
2467 root 1.108 ev_loop_new (unsigned int flags)
2468 root 1.54 {
2469 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2470 root 1.69
2471 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2472 root 1.108 loop_init (EV_A_ flags);
2473 root 1.56
2474 root 1.130 if (ev_backend (EV_A))
2475 root 1.306 return EV_A;
2476 root 1.54
2477 root 1.359 ev_free (EV_A);
2478 root 1.55 return 0;
2479 root 1.54 }
2480    
2481 root 1.297 #endif /* multiplicity */
2482 root 1.248
2483     #if EV_VERIFY
2484 root 1.379 static void noinline ecb_cold
2485 root 1.251 verify_watcher (EV_P_ W w)
2486     {
2487 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2488 root 1.251
2489     if (w->pending)
2490 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2491 root 1.251 }
2492    
2493 root 1.379 static void noinline ecb_cold
2494 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2495     {
2496     int i;
2497    
2498     for (i = HEAP0; i < N + HEAP0; ++i)
2499     {
2500 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2501     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2502     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2503 root 1.251
2504     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2505     }
2506     }
2507    
2508 root 1.379 static void noinline ecb_cold
2509 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2510 root 1.248 {
2511     while (cnt--)
2512 root 1.251 {
2513 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2514 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2515     }
2516 root 1.248 }
2517 root 1.250 #endif
2518 root 1.248
2519 root 1.338 #if EV_FEATURE_API
2520 root 1.379 void ecb_cold
2521 root 1.340 ev_verify (EV_P)
2522 root 1.248 {
2523 root 1.250 #if EV_VERIFY
2524 root 1.248 int i;
2525 root 1.251 WL w;
2526    
2527     assert (activecnt >= -1);
2528    
2529     assert (fdchangemax >= fdchangecnt);
2530     for (i = 0; i < fdchangecnt; ++i)
2531 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2532 root 1.251
2533     assert (anfdmax >= 0);
2534     for (i = 0; i < anfdmax; ++i)
2535     for (w = anfds [i].head; w; w = w->next)
2536     {
2537     verify_watcher (EV_A_ (W)w);
2538 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2539     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2540 root 1.251 }
2541    
2542     assert (timermax >= timercnt);
2543     verify_heap (EV_A_ timers, timercnt);
2544 root 1.248
2545     #if EV_PERIODIC_ENABLE
2546 root 1.251 assert (periodicmax >= periodiccnt);
2547     verify_heap (EV_A_ periodics, periodiccnt);
2548 root 1.248 #endif
2549    
2550 root 1.251 for (i = NUMPRI; i--; )
2551     {
2552     assert (pendingmax [i] >= pendingcnt [i]);
2553 root 1.248 #if EV_IDLE_ENABLE
2554 root 1.252 assert (idleall >= 0);
2555 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2556     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2557 root 1.248 #endif
2558 root 1.251 }
2559    
2560 root 1.248 #if EV_FORK_ENABLE
2561 root 1.251 assert (forkmax >= forkcnt);
2562     array_verify (EV_A_ (W *)forks, forkcnt);
2563 root 1.248 #endif
2564 root 1.251
2565 root 1.360 #if EV_CLEANUP_ENABLE
2566     assert (cleanupmax >= cleanupcnt);
2567     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2568     #endif
2569    
2570 root 1.250 #if EV_ASYNC_ENABLE
2571 root 1.251 assert (asyncmax >= asynccnt);
2572     array_verify (EV_A_ (W *)asyncs, asynccnt);
2573 root 1.250 #endif
2574 root 1.251
2575 root 1.337 #if EV_PREPARE_ENABLE
2576 root 1.251 assert (preparemax >= preparecnt);
2577     array_verify (EV_A_ (W *)prepares, preparecnt);
2578 root 1.337 #endif
2579 root 1.251
2580 root 1.337 #if EV_CHECK_ENABLE
2581 root 1.251 assert (checkmax >= checkcnt);
2582     array_verify (EV_A_ (W *)checks, checkcnt);
2583 root 1.337 #endif
2584 root 1.251
2585     # if 0
2586 root 1.336 #if EV_CHILD_ENABLE
2587 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2588 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2589 root 1.336 #endif
2590 root 1.251 # endif
2591 root 1.248 #endif
2592     }
2593 root 1.297 #endif
2594 root 1.56
2595     #if EV_MULTIPLICITY
2596 root 1.379 struct ev_loop * ecb_cold
2597 root 1.54 #else
2598     int
2599 root 1.358 #endif
2600 root 1.116 ev_default_loop (unsigned int flags)
2601 root 1.54 {
2602 root 1.116 if (!ev_default_loop_ptr)
2603 root 1.56 {
2604     #if EV_MULTIPLICITY
2605 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2606 root 1.56 #else
2607 ayin 1.117 ev_default_loop_ptr = 1;
2608 root 1.54 #endif
2609    
2610 root 1.110 loop_init (EV_A_ flags);
2611 root 1.56
2612 root 1.130 if (ev_backend (EV_A))
2613 root 1.56 {
2614 root 1.336 #if EV_CHILD_ENABLE
2615 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2616     ev_set_priority (&childev, EV_MAXPRI);
2617     ev_signal_start (EV_A_ &childev);
2618     ev_unref (EV_A); /* child watcher should not keep loop alive */
2619     #endif
2620     }
2621     else
2622 root 1.116 ev_default_loop_ptr = 0;
2623 root 1.56 }
2624 root 1.8
2625 root 1.116 return ev_default_loop_ptr;
2626 root 1.1 }
2627    
2628 root 1.24 void
2629 root 1.359 ev_loop_fork (EV_P)
2630 root 1.1 {
2631 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2632 root 1.1 }
2633    
2634 root 1.8 /*****************************************************************************/
2635    
2636 root 1.168 void
2637     ev_invoke (EV_P_ void *w, int revents)
2638     {
2639     EV_CB_INVOKE ((W)w, revents);
2640     }
2641    
2642 root 1.300 unsigned int
2643     ev_pending_count (EV_P)
2644     {
2645     int pri;
2646     unsigned int count = 0;
2647    
2648     for (pri = NUMPRI; pri--; )
2649     count += pendingcnt [pri];
2650    
2651     return count;
2652     }
2653    
2654 root 1.297 void noinline
2655 root 1.296 ev_invoke_pending (EV_P)
2656 root 1.1 {
2657 root 1.42 int pri;
2658    
2659     for (pri = NUMPRI; pri--; )
2660     while (pendingcnt [pri])
2661     {
2662     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2663 root 1.1
2664 root 1.288 p->w->pending = 0;
2665     EV_CB_INVOKE (p->w, p->events);
2666     EV_FREQUENT_CHECK;
2667 root 1.42 }
2668 root 1.1 }
2669    
2670 root 1.234 #if EV_IDLE_ENABLE
2671 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2672     /* only when higher priorities are idle" logic */
2673 root 1.284 inline_size void
2674 root 1.234 idle_reify (EV_P)
2675     {
2676     if (expect_false (idleall))
2677     {
2678     int pri;
2679    
2680     for (pri = NUMPRI; pri--; )
2681     {
2682     if (pendingcnt [pri])
2683     break;
2684    
2685     if (idlecnt [pri])
2686     {
2687     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2688     break;
2689     }
2690     }
2691     }
2692     }
2693     #endif
2694    
2695 root 1.288 /* make timers pending */
2696 root 1.284 inline_size void
2697 root 1.51 timers_reify (EV_P)
2698 root 1.1 {
2699 root 1.248 EV_FREQUENT_CHECK;
2700    
2701 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2702 root 1.1 {
2703 root 1.284 do
2704     {
2705     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2706 root 1.1
2707 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2708    
2709     /* first reschedule or stop timer */
2710     if (w->repeat)
2711     {
2712     ev_at (w) += w->repeat;
2713     if (ev_at (w) < mn_now)
2714     ev_at (w) = mn_now;
2715 root 1.61
2716 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2717 root 1.90
2718 root 1.284 ANHE_at_cache (timers [HEAP0]);
2719     downheap (timers, timercnt, HEAP0);
2720     }
2721     else
2722     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2723 root 1.243
2724 root 1.284 EV_FREQUENT_CHECK;
2725     feed_reverse (EV_A_ (W)w);
2726 root 1.12 }
2727 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2728 root 1.30
2729 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2730 root 1.12 }
2731     }
2732 root 1.4
2733 root 1.140 #if EV_PERIODIC_ENABLE
2734 root 1.370
2735 root 1.373 static void noinline
2736 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2737     {
2738 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2739     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2740    
2741     /* the above almost always errs on the low side */
2742     while (at <= ev_rt_now)
2743     {
2744     ev_tstamp nat = at + w->interval;
2745    
2746     /* when resolution fails us, we use ev_rt_now */
2747     if (expect_false (nat == at))
2748     {
2749     at = ev_rt_now;
2750     break;
2751     }
2752    
2753     at = nat;
2754     }
2755    
2756     ev_at (w) = at;
2757 root 1.370 }
2758    
2759 root 1.288 /* make periodics pending */
2760 root 1.284 inline_size void
2761 root 1.51 periodics_reify (EV_P)
2762 root 1.12 {
2763 root 1.248 EV_FREQUENT_CHECK;
2764 root 1.250
2765 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2766 root 1.12 {
2767 root 1.284 int feed_count = 0;
2768    
2769     do
2770     {
2771     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2772 root 1.1
2773 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2774 root 1.61
2775 root 1.284 /* first reschedule or stop timer */
2776     if (w->reschedule_cb)
2777     {
2778     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2779 root 1.243
2780 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2781 root 1.243
2782 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2783     downheap (periodics, periodiccnt, HEAP0);
2784     }
2785     else if (w->interval)
2786 root 1.246 {
2787 root 1.370 periodic_recalc (EV_A_ w);
2788 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2789     downheap (periodics, periodiccnt, HEAP0);
2790 root 1.246 }
2791 root 1.284 else
2792     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2793 root 1.243
2794 root 1.284 EV_FREQUENT_CHECK;
2795     feed_reverse (EV_A_ (W)w);
2796 root 1.1 }
2797 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2798 root 1.12
2799 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2800 root 1.12 }
2801     }
2802    
2803 root 1.288 /* simply recalculate all periodics */
2804 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2805 root 1.379 static void noinline ecb_cold
2806 root 1.54 periodics_reschedule (EV_P)
2807 root 1.12 {
2808     int i;
2809    
2810 root 1.13 /* adjust periodics after time jump */
2811 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2812 root 1.12 {
2813 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2814 root 1.12
2815 root 1.77 if (w->reschedule_cb)
2816 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2817 root 1.77 else if (w->interval)
2818 root 1.370 periodic_recalc (EV_A_ w);
2819 root 1.242
2820 root 1.248 ANHE_at_cache (periodics [i]);
2821 root 1.77 }
2822 root 1.12
2823 root 1.248 reheap (periodics, periodiccnt);
2824 root 1.1 }
2825 root 1.93 #endif
2826 root 1.1
2827 root 1.288 /* adjust all timers by a given offset */
2828 root 1.379 static void noinline ecb_cold
2829 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
2830     {
2831     int i;
2832    
2833     for (i = 0; i < timercnt; ++i)
2834     {
2835     ANHE *he = timers + i + HEAP0;
2836     ANHE_w (*he)->at += adjust;
2837     ANHE_at_cache (*he);
2838     }
2839     }
2840    
2841 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2842 root 1.324 /* also detect if there was a timejump, and act accordingly */
2843 root 1.284 inline_speed void
2844 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2845 root 1.4 {
2846 root 1.40 #if EV_USE_MONOTONIC
2847     if (expect_true (have_monotonic))
2848     {
2849 root 1.289 int i;
2850 root 1.178 ev_tstamp odiff = rtmn_diff;
2851    
2852     mn_now = get_clock ();
2853    
2854     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2855     /* interpolate in the meantime */
2856     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2857 root 1.40 {
2858 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2859     return;
2860     }
2861    
2862     now_floor = mn_now;
2863     ev_rt_now = ev_time ();
2864 root 1.4
2865 root 1.178 /* loop a few times, before making important decisions.
2866     * on the choice of "4": one iteration isn't enough,
2867     * in case we get preempted during the calls to
2868     * ev_time and get_clock. a second call is almost guaranteed
2869     * to succeed in that case, though. and looping a few more times
2870     * doesn't hurt either as we only do this on time-jumps or
2871     * in the unlikely event of having been preempted here.
2872     */
2873     for (i = 4; --i; )
2874     {
2875 root 1.373 ev_tstamp diff;
2876 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2877 root 1.4
2878 root 1.373 diff = odiff - rtmn_diff;
2879    
2880     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2881 root 1.178 return; /* all is well */
2882 root 1.4
2883 root 1.178 ev_rt_now = ev_time ();
2884     mn_now = get_clock ();
2885     now_floor = mn_now;
2886     }
2887 root 1.4
2888 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2889     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2890 root 1.140 # if EV_PERIODIC_ENABLE
2891 root 1.178 periodics_reschedule (EV_A);
2892 root 1.93 # endif
2893 root 1.4 }
2894     else
2895 root 1.40 #endif
2896 root 1.4 {
2897 root 1.85 ev_rt_now = ev_time ();
2898 root 1.40
2899 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2900 root 1.13 {
2901 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2902     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2903 root 1.140 #if EV_PERIODIC_ENABLE
2904 root 1.54 periodics_reschedule (EV_A);
2905 root 1.93 #endif
2906 root 1.13 }
2907 root 1.4
2908 root 1.85 mn_now = ev_rt_now;
2909 root 1.4 }
2910     }
2911    
2912 root 1.51 void
2913 root 1.353 ev_run (EV_P_ int flags)
2914 root 1.1 {
2915 root 1.338 #if EV_FEATURE_API
2916 root 1.294 ++loop_depth;
2917 root 1.297 #endif
2918 root 1.294
2919 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2920 root 1.298
2921 root 1.353 loop_done = EVBREAK_CANCEL;
2922 root 1.1
2923 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2924 root 1.158
2925 root 1.161 do
2926 root 1.9 {
2927 root 1.250 #if EV_VERIFY >= 2
2928 root 1.340 ev_verify (EV_A);
2929 root 1.250 #endif
2930    
2931 root 1.158 #ifndef _WIN32
2932     if (expect_false (curpid)) /* penalise the forking check even more */
2933     if (expect_false (getpid () != curpid))
2934     {
2935     curpid = getpid ();
2936     postfork = 1;
2937     }
2938     #endif
2939    
2940 root 1.157 #if EV_FORK_ENABLE
2941     /* we might have forked, so queue fork handlers */
2942     if (expect_false (postfork))
2943     if (forkcnt)
2944     {
2945     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2946 root 1.297 EV_INVOKE_PENDING;
2947 root 1.157 }
2948     #endif
2949 root 1.147
2950 root 1.337 #if EV_PREPARE_ENABLE
2951 root 1.170 /* queue prepare watchers (and execute them) */
2952 root 1.40 if (expect_false (preparecnt))
2953 root 1.20 {
2954 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2955 root 1.297 EV_INVOKE_PENDING;
2956 root 1.20 }
2957 root 1.337 #endif
2958 root 1.9
2959 root 1.298 if (expect_false (loop_done))
2960     break;
2961    
2962 root 1.70 /* we might have forked, so reify kernel state if necessary */
2963     if (expect_false (postfork))
2964     loop_fork (EV_A);
2965    
2966 root 1.1 /* update fd-related kernel structures */
2967 root 1.51 fd_reify (EV_A);
2968 root 1.1
2969     /* calculate blocking time */
2970 root 1.135 {
2971 root 1.193 ev_tstamp waittime = 0.;
2972     ev_tstamp sleeptime = 0.;
2973 root 1.12
2974 root 1.353 /* remember old timestamp for io_blocktime calculation */
2975     ev_tstamp prev_mn_now = mn_now;
2976 root 1.293
2977 root 1.353 /* update time to cancel out callback processing overhead */
2978     time_update (EV_A_ 1e100);
2979 root 1.135
2980 root 1.378 /* from now on, we want a pipe-wake-up */
2981     pipe_write_wanted = 1;
2982    
2983 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2984 root 1.383
2985 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2986 root 1.353 {
2987 root 1.287 waittime = MAX_BLOCKTIME;
2988    
2989 root 1.135 if (timercnt)
2990     {
2991 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2992 root 1.193 if (waittime > to) waittime = to;
2993 root 1.135 }
2994 root 1.4
2995 root 1.140 #if EV_PERIODIC_ENABLE
2996 root 1.135 if (periodiccnt)
2997     {
2998 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2999 root 1.193 if (waittime > to) waittime = to;
3000 root 1.135 }
3001 root 1.93 #endif
3002 root 1.4
3003 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3004 root 1.193 if (expect_false (waittime < timeout_blocktime))
3005     waittime = timeout_blocktime;
3006    
3007 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3008     /* to pass a minimum nonzero value to the backend */
3009     if (expect_false (waittime < backend_mintime))
3010     waittime = backend_mintime;
3011    
3012 root 1.293 /* extra check because io_blocktime is commonly 0 */
3013     if (expect_false (io_blocktime))
3014     {
3015     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3016 root 1.193
3017 root 1.376 if (sleeptime > waittime - backend_mintime)
3018     sleeptime = waittime - backend_mintime;
3019 root 1.193
3020 root 1.293 if (expect_true (sleeptime > 0.))
3021     {
3022     ev_sleep (sleeptime);
3023     waittime -= sleeptime;
3024     }
3025 root 1.193 }
3026 root 1.135 }
3027 root 1.1
3028 root 1.338 #if EV_FEATURE_API
3029 root 1.162 ++loop_count;
3030 root 1.297 #endif
3031 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3032 root 1.193 backend_poll (EV_A_ waittime);
3033 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3034 root 1.178
3035 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3036 root 1.378
3037     if (pipe_write_skipped)
3038     {
3039     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3040     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3041     }
3042    
3043    
3044 root 1.178 /* update ev_rt_now, do magic */
3045 root 1.193 time_update (EV_A_ waittime + sleeptime);
3046 root 1.135 }
3047 root 1.1
3048 root 1.9 /* queue pending timers and reschedule them */
3049 root 1.51 timers_reify (EV_A); /* relative timers called last */
3050 root 1.140 #if EV_PERIODIC_ENABLE
3051 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3052 root 1.93 #endif
3053 root 1.1
3054 root 1.164 #if EV_IDLE_ENABLE
3055 root 1.137 /* queue idle watchers unless other events are pending */
3056 root 1.164 idle_reify (EV_A);
3057     #endif
3058 root 1.9
3059 root 1.337 #if EV_CHECK_ENABLE
3060 root 1.20 /* queue check watchers, to be executed first */
3061 root 1.123 if (expect_false (checkcnt))
3062 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3063 root 1.337 #endif
3064 root 1.9
3065 root 1.297 EV_INVOKE_PENDING;
3066 root 1.1 }
3067 root 1.219 while (expect_true (
3068     activecnt
3069     && !loop_done
3070 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3071 root 1.219 ));
3072 root 1.13
3073 root 1.353 if (loop_done == EVBREAK_ONE)
3074     loop_done = EVBREAK_CANCEL;
3075 root 1.294
3076 root 1.338 #if EV_FEATURE_API
3077 root 1.294 --loop_depth;
3078 root 1.297 #endif
3079 root 1.51 }
3080    
3081     void
3082 root 1.353 ev_break (EV_P_ int how)
3083 root 1.51 {
3084     loop_done = how;
3085 root 1.1 }
3086    
3087 root 1.285 void
3088     ev_ref (EV_P)
3089     {
3090     ++activecnt;
3091     }
3092    
3093     void
3094     ev_unref (EV_P)
3095     {
3096     --activecnt;
3097     }
3098    
3099     void
3100     ev_now_update (EV_P)
3101     {
3102     time_update (EV_A_ 1e100);
3103     }
3104    
3105     void
3106     ev_suspend (EV_P)
3107     {
3108     ev_now_update (EV_A);
3109     }
3110    
3111     void
3112     ev_resume (EV_P)
3113     {
3114     ev_tstamp mn_prev = mn_now;
3115    
3116     ev_now_update (EV_A);
3117     timers_reschedule (EV_A_ mn_now - mn_prev);
3118 root 1.286 #if EV_PERIODIC_ENABLE
3119 root 1.288 /* TODO: really do this? */
3120 root 1.285 periodics_reschedule (EV_A);
3121 root 1.286 #endif
3122 root 1.285 }
3123    
3124 root 1.8 /*****************************************************************************/
3125 root 1.288 /* singly-linked list management, used when the expected list length is short */
3126 root 1.8
3127 root 1.284 inline_size void
3128 root 1.10 wlist_add (WL *head, WL elem)
3129 root 1.1 {
3130     elem->next = *head;
3131     *head = elem;
3132     }
3133    
3134 root 1.284 inline_size void
3135 root 1.10 wlist_del (WL *head, WL elem)
3136 root 1.1 {
3137     while (*head)
3138     {
3139 root 1.307 if (expect_true (*head == elem))
3140 root 1.1 {
3141     *head = elem->next;
3142 root 1.307 break;
3143 root 1.1 }
3144    
3145     head = &(*head)->next;
3146     }
3147     }
3148    
3149 root 1.288 /* internal, faster, version of ev_clear_pending */
3150 root 1.284 inline_speed void
3151 root 1.166 clear_pending (EV_P_ W w)
3152 root 1.16 {
3153     if (w->pending)
3154     {
3155 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3156 root 1.16 w->pending = 0;
3157     }
3158     }
3159    
3160 root 1.167 int
3161     ev_clear_pending (EV_P_ void *w)
3162 root 1.166 {
3163     W w_ = (W)w;
3164     int pending = w_->pending;
3165    
3166 root 1.172 if (expect_true (pending))
3167     {
3168     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3169 root 1.288 p->w = (W)&pending_w;
3170 root 1.172 w_->pending = 0;
3171     return p->events;
3172     }
3173     else
3174 root 1.167 return 0;
3175 root 1.166 }
3176    
3177 root 1.284 inline_size void
3178 root 1.164 pri_adjust (EV_P_ W w)
3179     {
3180 root 1.295 int pri = ev_priority (w);
3181 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3182     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3183 root 1.295 ev_set_priority (w, pri);
3184 root 1.164 }
3185    
3186 root 1.284 inline_speed void
3187 root 1.51 ev_start (EV_P_ W w, int active)
3188 root 1.1 {
3189 root 1.164 pri_adjust (EV_A_ w);
3190 root 1.1 w->active = active;
3191 root 1.51 ev_ref (EV_A);
3192 root 1.1 }
3193    
3194 root 1.284 inline_size void
3195 root 1.51 ev_stop (EV_P_ W w)
3196 root 1.1 {
3197 root 1.51 ev_unref (EV_A);
3198 root 1.1 w->active = 0;
3199     }
3200    
3201 root 1.8 /*****************************************************************************/
3202    
3203 root 1.171 void noinline
3204 root 1.136 ev_io_start (EV_P_ ev_io *w)
3205 root 1.1 {
3206 root 1.37 int fd = w->fd;
3207    
3208 root 1.123 if (expect_false (ev_is_active (w)))
3209 root 1.1 return;
3210    
3211 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3212 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3213 root 1.33
3214 root 1.248 EV_FREQUENT_CHECK;
3215    
3216 root 1.51 ev_start (EV_A_ (W)w, 1);
3217 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3218 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3219 root 1.1
3220 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3221 root 1.281 w->events &= ~EV__IOFDSET;
3222 root 1.248
3223     EV_FREQUENT_CHECK;
3224 root 1.1 }
3225    
3226 root 1.171 void noinline
3227 root 1.136 ev_io_stop (EV_P_ ev_io *w)
3228 root 1.1 {
3229 root 1.166 clear_pending (EV_A_ (W)w);
3230 root 1.123 if (expect_false (!ev_is_active (w)))
3231 root 1.1 return;
3232    
3233 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3234 root 1.89
3235 root 1.248 EV_FREQUENT_CHECK;
3236    
3237 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3238 root 1.51 ev_stop (EV_A_ (W)w);
3239 root 1.1
3240 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3241 root 1.248
3242     EV_FREQUENT_CHECK;
3243 root 1.1 }
3244    
3245 root 1.171 void noinline
3246 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
3247 root 1.1 {
3248 root 1.123 if (expect_false (ev_is_active (w)))
3249 root 1.1 return;
3250    
3251 root 1.228 ev_at (w) += mn_now;
3252 root 1.12
3253 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3254 root 1.13
3255 root 1.248 EV_FREQUENT_CHECK;
3256    
3257     ++timercnt;
3258     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3259 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3260     ANHE_w (timers [ev_active (w)]) = (WT)w;
3261 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3262 root 1.235 upheap (timers, ev_active (w));
3263 root 1.62
3264 root 1.248 EV_FREQUENT_CHECK;
3265    
3266 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3267 root 1.12 }
3268    
3269 root 1.171 void noinline
3270 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
3271 root 1.12 {
3272 root 1.166 clear_pending (EV_A_ (W)w);
3273 root 1.123 if (expect_false (!ev_is_active (w)))
3274 root 1.12 return;
3275    
3276 root 1.248 EV_FREQUENT_CHECK;
3277    
3278 root 1.230 {
3279     int active = ev_active (w);
3280 root 1.62
3281 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3282 root 1.151
3283 root 1.248 --timercnt;
3284    
3285     if (expect_true (active < timercnt + HEAP0))
3286 root 1.151 {
3287 root 1.248 timers [active] = timers [timercnt + HEAP0];
3288 root 1.181 adjustheap (timers, timercnt, active);
3289 root 1.151 }
3290 root 1.248 }
3291 root 1.228
3292     ev_at (w) -= mn_now;
3293 root 1.14
3294 root 1.51 ev_stop (EV_A_ (W)w);
3295 root 1.328
3296     EV_FREQUENT_CHECK;
3297 root 1.12 }
3298 root 1.4
3299 root 1.171 void noinline
3300 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
3301 root 1.14 {
3302 root 1.248 EV_FREQUENT_CHECK;
3303    
3304 root 1.407 clear_pending (EV_A_ (W)w);
3305 root 1.406
3306 root 1.14 if (ev_is_active (w))
3307     {
3308     if (w->repeat)
3309 root 1.99 {
3310 root 1.228 ev_at (w) = mn_now + w->repeat;
3311 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3312 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3313 root 1.99 }
3314 root 1.14 else
3315 root 1.51 ev_timer_stop (EV_A_ w);
3316 root 1.14 }
3317     else if (w->repeat)
3318 root 1.112 {
3319 root 1.229 ev_at (w) = w->repeat;
3320 root 1.112 ev_timer_start (EV_A_ w);
3321     }
3322 root 1.248
3323     EV_FREQUENT_CHECK;
3324 root 1.14 }
3325    
3326 root 1.301 ev_tstamp
3327     ev_timer_remaining (EV_P_ ev_timer *w)
3328     {
3329     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3330     }
3331    
3332 root 1.140 #if EV_PERIODIC_ENABLE
3333 root 1.171 void noinline
3334 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
3335 root 1.12 {
3336 root 1.123 if (expect_false (ev_is_active (w)))
3337 root 1.12 return;
3338 root 1.1
3339 root 1.77 if (w->reschedule_cb)
3340 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3341 root 1.77 else if (w->interval)
3342     {
3343 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3344 root 1.370 periodic_recalc (EV_A_ w);
3345 root 1.77 }
3346 root 1.173 else
3347 root 1.228 ev_at (w) = w->offset;
3348 root 1.12
3349 root 1.248 EV_FREQUENT_CHECK;
3350    
3351     ++periodiccnt;
3352     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3353 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3354     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3355 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3356 root 1.235 upheap (periodics, ev_active (w));
3357 root 1.62
3358 root 1.248 EV_FREQUENT_CHECK;
3359    
3360 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3361 root 1.1 }
3362    
3363 root 1.171 void noinline
3364 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
3365 root 1.1 {
3366 root 1.166 clear_pending (EV_A_ (W)w);
3367 root 1.123 if (expect_false (!ev_is_active (w)))
3368 root 1.1 return;
3369    
3370 root 1.248 EV_FREQUENT_CHECK;
3371    
3372 root 1.230 {
3373     int active = ev_active (w);
3374 root 1.62
3375 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3376 root 1.151
3377 root 1.248 --periodiccnt;
3378    
3379     if (expect_true (active < periodiccnt + HEAP0))
3380 root 1.151 {
3381 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3382 root 1.181 adjustheap (periodics, periodiccnt, active);
3383 root 1.151 }
3384 root 1.248 }
3385 root 1.228
3386 root 1.328 ev_stop (EV_A_ (W)w);
3387    
3388 root 1.248 EV_FREQUENT_CHECK;
3389 root 1.1 }
3390    
3391 root 1.171 void noinline
3392 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
3393 root 1.77 {
3394 root 1.84 /* TODO: use adjustheap and recalculation */
3395 root 1.77 ev_periodic_stop (EV_A_ w);
3396     ev_periodic_start (EV_A_ w);
3397     }
3398 root 1.93 #endif
3399 root 1.77
3400 root 1.56 #ifndef SA_RESTART
3401     # define SA_RESTART 0
3402     #endif
3403    
3404 root 1.336 #if EV_SIGNAL_ENABLE
3405    
3406 root 1.171 void noinline
3407 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
3408 root 1.56 {
3409 root 1.123 if (expect_false (ev_is_active (w)))
3410 root 1.56 return;
3411    
3412 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3413    
3414     #if EV_MULTIPLICITY
3415 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3416 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3417    
3418     signals [w->signum - 1].loop = EV_A;
3419     #endif
3420 root 1.56
3421 root 1.303 EV_FREQUENT_CHECK;
3422    
3423     #if EV_USE_SIGNALFD
3424     if (sigfd == -2)
3425     {
3426     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3427     if (sigfd < 0 && errno == EINVAL)
3428     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3429    
3430     if (sigfd >= 0)
3431     {
3432     fd_intern (sigfd); /* doing it twice will not hurt */
3433    
3434     sigemptyset (&sigfd_set);
3435    
3436     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3437     ev_set_priority (&sigfd_w, EV_MAXPRI);
3438     ev_io_start (EV_A_ &sigfd_w);
3439     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3440     }
3441     }
3442    
3443     if (sigfd >= 0)
3444     {
3445     /* TODO: check .head */
3446     sigaddset (&sigfd_set, w->signum);
3447     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3448 root 1.207
3449 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3450     }
3451 root 1.180 #endif
3452    
3453 root 1.56 ev_start (EV_A_ (W)w, 1);
3454 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3455 root 1.56
3456 root 1.63 if (!((WL)w)->next)
3457 root 1.304 # if EV_USE_SIGNALFD
3458 root 1.306 if (sigfd < 0) /*TODO*/
3459 root 1.304 # endif
3460 root 1.306 {
3461 root 1.322 # ifdef _WIN32
3462 root 1.317 evpipe_init (EV_A);
3463    
3464 root 1.306 signal (w->signum, ev_sighandler);
3465     # else
3466     struct sigaction sa;
3467    
3468     evpipe_init (EV_A);
3469    
3470     sa.sa_handler = ev_sighandler;
3471     sigfillset (&sa.sa_mask);
3472     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3473     sigaction (w->signum, &sa, 0);
3474    
3475 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3476     {
3477     sigemptyset (&sa.sa_mask);
3478     sigaddset (&sa.sa_mask, w->signum);
3479     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3480     }
3481 root 1.67 #endif
3482 root 1.306 }
3483 root 1.248
3484     EV_FREQUENT_CHECK;
3485 root 1.56 }
3486    
3487 root 1.171 void noinline
3488 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
3489 root 1.56 {
3490 root 1.166 clear_pending (EV_A_ (W)w);
3491 root 1.123 if (expect_false (!ev_is_active (w)))
3492 root 1.56 return;
3493    
3494 root 1.248 EV_FREQUENT_CHECK;
3495    
3496 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3497 root 1.56 ev_stop (EV_A_ (W)w);
3498    
3499     if (!signals [w->signum - 1].head)
3500 root 1.306 {
3501 root 1.307 #if EV_MULTIPLICITY
3502 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3503 root 1.307 #endif
3504     #if EV_USE_SIGNALFD
3505 root 1.306 if (sigfd >= 0)
3506     {
3507 root 1.321 sigset_t ss;
3508    
3509     sigemptyset (&ss);
3510     sigaddset (&ss, w->signum);
3511 root 1.306 sigdelset (&sigfd_set, w->signum);
3512 root 1.321
3513 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3514 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3515 root 1.306 }
3516     else
3517 root 1.307 #endif
3518 root 1.306 signal (w->signum, SIG_DFL);
3519     }
3520 root 1.248
3521     EV_FREQUENT_CHECK;
3522 root 1.56 }
3523    
3524 root 1.336 #endif
3525    
3526     #if EV_CHILD_ENABLE
3527    
3528 root 1.28 void
3529 root 1.136 ev_child_start (EV_P_ ev_child *w)
3530 root 1.22 {
3531 root 1.56 #if EV_MULTIPLICITY
3532 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3533 root 1.56 #endif
3534 root 1.123 if (expect_false (ev_is_active (w)))
3535 root 1.22 return;
3536    
3537 root 1.248 EV_FREQUENT_CHECK;
3538    
3539 root 1.51 ev_start (EV_A_ (W)w, 1);
3540 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3541 root 1.248
3542     EV_FREQUENT_CHECK;
3543 root 1.22 }
3544    
3545 root 1.28 void
3546 root 1.136 ev_child_stop (EV_P_ ev_child *w)
3547 root 1.22 {
3548 root 1.166 clear_pending (EV_A_ (W)w);
3549 root 1.123 if (expect_false (!ev_is_active (w)))
3550 root 1.22 return;
3551    
3552 root 1.248 EV_FREQUENT_CHECK;
3553    
3554 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3555 root 1.51 ev_stop (EV_A_ (W)w);
3556 root 1.248
3557     EV_FREQUENT_CHECK;
3558 root 1.22 }
3559    
3560 root 1.336 #endif
3561    
3562 root 1.140 #if EV_STAT_ENABLE
3563    
3564     # ifdef _WIN32
3565 root 1.146 # undef lstat
3566     # define lstat(a,b) _stati64 (a,b)
3567 root 1.140 # endif
3568    
3569 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3570     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3571     #define MIN_STAT_INTERVAL 0.1074891
3572 root 1.143
3573 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3574 root 1.152
3575     #if EV_USE_INOTIFY
3576 root 1.326
3577     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3578     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3579 root 1.152
3580     static void noinline
3581     infy_add (EV_P_ ev_stat *w)
3582     {
3583     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3584    
3585 root 1.318 if (w->wd >= 0)
3586 root 1.152 {
3587 root 1.318 struct statfs sfs;
3588    
3589     /* now local changes will be tracked by inotify, but remote changes won't */
3590     /* unless the filesystem is known to be local, we therefore still poll */
3591     /* also do poll on <2.6.25, but with normal frequency */
3592    
3593     if (!fs_2625)
3594     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3595     else if (!statfs (w->path, &sfs)
3596     && (sfs.f_type == 0x1373 /* devfs */
3597     || sfs.f_type == 0xEF53 /* ext2/3 */
3598     || sfs.f_type == 0x3153464a /* jfs */
3599     || sfs.f_type == 0x52654973 /* reiser3 */
3600     || sfs.f_type == 0x01021994 /* tempfs */
3601     || sfs.f_type == 0x58465342 /* xfs */))
3602     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3603     else
3604     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3605     }
3606     else
3607     {
3608     /* can't use inotify, continue to stat */
3609 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3610 root 1.152
3611 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3612 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3613 root 1.233 /* but an efficiency issue only */
3614 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3615 root 1.152 {
3616 root 1.153 char path [4096];
3617 root 1.152 strcpy (path, w->path);
3618    
3619     do
3620     {
3621     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3622     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3623    
3624     char *pend = strrchr (path, '/');
3625    
3626 root 1.275 if (!pend || pend == path)
3627     break;
3628 root 1.152
3629     *pend = 0;
3630 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3631 root 1.372 }
3632 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3633     }
3634     }
3635 root 1.275
3636     if (w->wd >= 0)
3637 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3638 root 1.152
3639 root 1.318 /* now re-arm timer, if required */
3640     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3641     ev_timer_again (EV_A_ &w->timer);
3642     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3643 root 1.152 }
3644    
3645     static void noinline
3646     infy_del (EV_P_ ev_stat *w)
3647     {
3648     int slot;
3649     int wd = w->wd;
3650    
3651     if (wd < 0)
3652     return;
3653    
3654     w->wd = -2;
3655 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3656 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3657    
3658     /* remove this watcher, if others are watching it, they will rearm */
3659     inotify_rm_watch (fs_fd, wd);
3660     }
3661    
3662     static void noinline
3663     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3664     {
3665     if (slot < 0)
3666 root 1.264 /* overflow, need to check for all hash slots */
3667 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3668 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3669     else
3670     {
3671     WL w_;
3672    
3673 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3674 root 1.152 {
3675     ev_stat *w = (ev_stat *)w_;
3676     w_ = w_->next; /* lets us remove this watcher and all before it */
3677    
3678     if (w->wd == wd || wd == -1)
3679     {
3680     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3681     {
3682 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3683 root 1.152 w->wd = -1;
3684     infy_add (EV_A_ w); /* re-add, no matter what */
3685     }
3686    
3687 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3688 root 1.152 }
3689     }
3690     }
3691     }
3692    
3693     static void
3694     infy_cb (EV_P_ ev_io *w, int revents)
3695     {
3696     char buf [EV_INOTIFY_BUFSIZE];
3697     int ofs;
3698     int len = read (fs_fd, buf, sizeof (buf));
3699    
3700 root 1.326 for (ofs = 0; ofs < len; )
3701     {
3702     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3703     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3704     ofs += sizeof (struct inotify_event) + ev->len;
3705     }
3706 root 1.152 }
3707    
3708 root 1.379 inline_size void ecb_cold
3709 root 1.330 ev_check_2625 (EV_P)
3710     {
3711     /* kernels < 2.6.25 are borked
3712     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3713     */
3714     if (ev_linux_version () < 0x020619)
3715 root 1.273 return;
3716 root 1.264
3717 root 1.273 fs_2625 = 1;
3718     }
3719 root 1.264
3720 root 1.315 inline_size int
3721     infy_newfd (void)
3722     {
3723     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3724     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3725     if (fd >= 0)
3726     return fd;
3727     #endif
3728     return inotify_init ();
3729     }
3730    
3731 root 1.284 inline_size void
3732 root 1.273 infy_init (EV_P)
3733     {
3734     if (fs_fd != -2)
3735     return;
3736 root 1.264
3737 root 1.273 fs_fd = -1;
3738 root 1.264
3739 root 1.330 ev_check_2625 (EV_A);
3740 root 1.264
3741 root 1.315 fs_fd = infy_newfd ();
3742 root 1.152
3743     if (fs_fd >= 0)
3744     {
3745 root 1.315 fd_intern (fs_fd);
3746 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3747     ev_set_priority (&fs_w, EV_MAXPRI);
3748     ev_io_start (EV_A_ &fs_w);
3749 root 1.317 ev_unref (EV_A);
3750 root 1.152 }
3751     }
3752    
3753 root 1.284 inline_size void
3754 root 1.154 infy_fork (EV_P)
3755     {
3756     int slot;
3757    
3758     if (fs_fd < 0)
3759     return;
3760    
3761 root 1.317 ev_ref (EV_A);
3762 root 1.315 ev_io_stop (EV_A_ &fs_w);
3763 root 1.154 close (fs_fd);
3764 root 1.315 fs_fd = infy_newfd ();
3765    
3766     if (fs_fd >= 0)
3767     {
3768     fd_intern (fs_fd);
3769     ev_io_set (&fs_w, fs_fd, EV_READ);
3770     ev_io_start (EV_A_ &fs_w);
3771 root 1.317 ev_unref (EV_A);
3772 root 1.315 }
3773 root 1.154
3774 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3775 root 1.154 {
3776     WL w_ = fs_hash [slot].head;
3777     fs_hash [slot].head = 0;
3778    
3779     while (w_)
3780     {
3781     ev_stat *w = (ev_stat *)w_;
3782     w_ = w_->next; /* lets us add this watcher */
3783    
3784     w->wd = -1;
3785    
3786     if (fs_fd >= 0)
3787     infy_add (EV_A_ w); /* re-add, no matter what */
3788     else
3789 root 1.318 {
3790     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3791     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3792     ev_timer_again (EV_A_ &w->timer);
3793     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3794     }
3795 root 1.154 }
3796     }
3797     }
3798    
3799 root 1.152 #endif
3800    
3801 root 1.255 #ifdef _WIN32
3802     # define EV_LSTAT(p,b) _stati64 (p, b)
3803     #else
3804     # define EV_LSTAT(p,b) lstat (p, b)
3805     #endif
3806    
3807 root 1.140 void
3808     ev_stat_stat (EV_P_ ev_stat *w)
3809     {
3810     if (lstat (w->path, &w->attr) < 0)
3811     w->attr.st_nlink = 0;
3812     else if (!w->attr.st_nlink)
3813     w->attr.st_nlink = 1;
3814     }
3815    
3816 root 1.157 static void noinline
3817 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3818     {
3819     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3820    
3821 root 1.320 ev_statdata prev = w->attr;
3822 root 1.140 ev_stat_stat (EV_A_ w);
3823    
3824 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3825     if (
3826 root 1.320 prev.st_dev != w->attr.st_dev
3827     || prev.st_ino != w->attr.st_ino
3828     || prev.st_mode != w->attr.st_mode
3829     || prev.st_nlink != w->attr.st_nlink
3830     || prev.st_uid != w->attr.st_uid
3831     || prev.st_gid != w->attr.st_gid
3832     || prev.st_rdev != w->attr.st_rdev
3833     || prev.st_size != w->attr.st_size
3834     || prev.st_atime != w->attr.st_atime
3835     || prev.st_mtime != w->attr.st_mtime
3836     || prev.st_ctime != w->attr.st_ctime
3837 root 1.156 ) {
3838 root 1.320 /* we only update w->prev on actual differences */
3839     /* in case we test more often than invoke the callback, */
3840     /* to ensure that prev is always different to attr */
3841     w->prev = prev;
3842    
3843 root 1.152 #if EV_USE_INOTIFY
3844 root 1.264 if (fs_fd >= 0)
3845     {
3846     infy_del (EV_A_ w);
3847     infy_add (EV_A_ w);
3848     ev_stat_stat (EV_A_ w); /* avoid race... */
3849     }
3850 root 1.152 #endif
3851    
3852     ev_feed_event (EV_A_ w, EV_STAT);
3853     }
3854 root 1.140 }
3855    
3856     void
3857     ev_stat_start (EV_P_ ev_stat *w)
3858     {
3859     if (expect_false (ev_is_active (w)))
3860     return;
3861    
3862     ev_stat_stat (EV_A_ w);
3863    
3864 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3865     w->interval = MIN_STAT_INTERVAL;
3866 root 1.143
3867 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3868 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3869 root 1.152
3870     #if EV_USE_INOTIFY
3871     infy_init (EV_A);
3872    
3873     if (fs_fd >= 0)
3874     infy_add (EV_A_ w);
3875     else
3876     #endif
3877 root 1.318 {
3878     ev_timer_again (EV_A_ &w->timer);
3879     ev_unref (EV_A);
3880     }
3881 root 1.140
3882     ev_start (EV_A_ (W)w, 1);
3883 root 1.248
3884     EV_FREQUENT_CHECK;
3885 root 1.140 }
3886    
3887     void
3888     ev_stat_stop (EV_P_ ev_stat *w)
3889     {
3890 root 1.166 clear_pending (EV_A_ (W)w);
3891 root 1.140 if (expect_false (!ev_is_active (w)))
3892     return;
3893    
3894 root 1.248 EV_FREQUENT_CHECK;
3895    
3896 root 1.152 #if EV_USE_INOTIFY
3897     infy_del (EV_A_ w);
3898     #endif
3899 root 1.318
3900     if (ev_is_active (&w->timer))
3901     {
3902     ev_ref (EV_A);
3903     ev_timer_stop (EV_A_ &w->timer);
3904     }
3905 root 1.140
3906 root 1.134 ev_stop (EV_A_ (W)w);
3907 root 1.248
3908     EV_FREQUENT_CHECK;
3909 root 1.134 }
3910     #endif
3911    
3912 root 1.164 #if EV_IDLE_ENABLE
3913 root 1.144 void
3914     ev_idle_start (EV_P_ ev_idle *w)
3915     {
3916     if (expect_false (ev_is_active (w)))
3917     return;
3918    
3919 root 1.164 pri_adjust (EV_A_ (W)w);
3920    
3921 root 1.248 EV_FREQUENT_CHECK;
3922    
3923 root 1.164 {
3924     int active = ++idlecnt [ABSPRI (w)];
3925    
3926     ++idleall;
3927     ev_start (EV_A_ (W)w, active);
3928    
3929     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3930     idles [ABSPRI (w)][active - 1] = w;
3931     }
3932 root 1.248
3933     EV_FREQUENT_CHECK;
3934 root 1.144 }
3935    
3936     void
3937     ev_idle_stop (EV_P_ ev_idle *w)
3938     {
3939 root 1.166 clear_pending (EV_A_ (W)w);
3940 root 1.144 if (expect_false (!ev_is_active (w)))
3941     return;
3942    
3943 root 1.248 EV_FREQUENT_CHECK;
3944    
3945 root 1.144 {
3946 root 1.230 int active = ev_active (w);
3947 root 1.164
3948     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3949 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3950 root 1.164
3951     ev_stop (EV_A_ (W)w);
3952     --idleall;
3953 root 1.144 }
3954 root 1.248
3955     EV_FREQUENT_CHECK;
3956 root 1.144 }
3957 root 1.164 #endif
3958 root 1.144
3959 root 1.337 #if EV_PREPARE_ENABLE
3960 root 1.144 void
3961     ev_prepare_start (EV_P_ ev_prepare *w)
3962     {
3963     if (expect_false (ev_is_active (w)))
3964     return;
3965    
3966 root 1.248 EV_FREQUENT_CHECK;
3967    
3968 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3969     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3970     prepares [preparecnt - 1] = w;
3971 root 1.248
3972     EV_FREQUENT_CHECK;
3973 root 1.144 }
3974    
3975     void
3976     ev_prepare_stop (EV_P_ ev_prepare *w)
3977     {
3978 root 1.166 clear_pending (EV_A_ (W)w);
3979 root 1.144 if (expect_false (!ev_is_active (w)))
3980     return;
3981    
3982 root 1.248 EV_FREQUENT_CHECK;
3983    
3984 root 1.144 {
3985 root 1.230 int active = ev_active (w);
3986    
3987 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3988 root 1.230 ev_active (prepares [active - 1]) = active;
3989 root 1.144 }
3990    
3991     ev_stop (EV_A_ (W)w);
3992 root 1.248
3993     EV_FREQUENT_CHECK;
3994 root 1.144 }
3995 root 1.337 #endif
3996 root 1.144
3997 root 1.337 #if EV_CHECK_ENABLE
3998 root 1.144 void
3999     ev_check_start (EV_P_ ev_check *w)
4000     {
4001     if (expect_false (ev_is_active (w)))
4002     return;
4003    
4004 root 1.248 EV_FREQUENT_CHECK;
4005    
4006 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4007     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4008     checks [checkcnt - 1] = w;
4009 root 1.248
4010     EV_FREQUENT_CHECK;
4011 root 1.144 }
4012    
4013     void
4014     ev_check_stop (EV_P_ ev_check *w)
4015     {
4016 root 1.166 clear_pending (EV_A_ (W)w);
4017 root 1.144 if (expect_false (!ev_is_active (w)))
4018     return;
4019    
4020 root 1.248 EV_FREQUENT_CHECK;
4021    
4022 root 1.144 {
4023 root 1.230 int active = ev_active (w);
4024    
4025 root 1.144 checks [active - 1] = checks [--checkcnt];
4026 root 1.230 ev_active (checks [active - 1]) = active;
4027 root 1.144 }
4028    
4029     ev_stop (EV_A_ (W)w);
4030 root 1.248
4031     EV_FREQUENT_CHECK;
4032 root 1.144 }
4033 root 1.337 #endif
4034 root 1.144
4035     #if EV_EMBED_ENABLE
4036     void noinline
4037     ev_embed_sweep (EV_P_ ev_embed *w)
4038     {
4039 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4040 root 1.144 }
4041    
4042     static void
4043 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4044 root 1.144 {
4045     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4046    
4047     if (ev_cb (w))
4048     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4049     else
4050 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4051 root 1.144 }
4052    
4053 root 1.189 static void
4054     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4055     {
4056     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4057    
4058 root 1.195 {
4059 root 1.306 EV_P = w->other;
4060 root 1.195
4061     while (fdchangecnt)
4062     {
4063     fd_reify (EV_A);
4064 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4065 root 1.195 }
4066     }
4067     }
4068    
4069 root 1.261 static void
4070     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4071     {
4072     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4073    
4074 root 1.277 ev_embed_stop (EV_A_ w);
4075    
4076 root 1.261 {
4077 root 1.306 EV_P = w->other;
4078 root 1.261
4079     ev_loop_fork (EV_A);
4080 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4081 root 1.261 }
4082 root 1.277
4083     ev_embed_start (EV_A_ w);
4084 root 1.261 }
4085    
4086 root 1.195 #if 0
4087     static void
4088     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4089     {
4090     ev_idle_stop (EV_A_ idle);
4091 root 1.189 }
4092 root 1.195 #endif
4093 root 1.189
4094 root 1.144 void
4095     ev_embed_start (EV_P_ ev_embed *w)
4096     {
4097     if (expect_false (ev_is_active (w)))
4098     return;
4099    
4100     {
4101 root 1.306 EV_P = w->other;
4102 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4103 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4104 root 1.144 }
4105    
4106 root 1.248 EV_FREQUENT_CHECK;
4107    
4108 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4109     ev_io_start (EV_A_ &w->io);
4110    
4111 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4112     ev_set_priority (&w->prepare, EV_MINPRI);
4113     ev_prepare_start (EV_A_ &w->prepare);
4114    
4115 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4116     ev_fork_start (EV_A_ &w->fork);
4117    
4118 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4119    
4120 root 1.144 ev_start (EV_A_ (W)w, 1);
4121 root 1.248
4122     EV_FREQUENT_CHECK;
4123 root 1.144 }
4124    
4125     void
4126     ev_embed_stop (EV_P_ ev_embed *w)
4127     {
4128 root 1.166 clear_pending (EV_A_ (W)w);
4129 root 1.144 if (expect_false (!ev_is_active (w)))
4130     return;
4131    
4132 root 1.248 EV_FREQUENT_CHECK;
4133    
4134 root 1.261 ev_io_stop (EV_A_ &w->io);
4135 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4136 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4137 root 1.248
4138 root 1.328 ev_stop (EV_A_ (W)w);
4139    
4140 root 1.248 EV_FREQUENT_CHECK;
4141 root 1.144 }
4142     #endif
4143    
4144 root 1.147 #if EV_FORK_ENABLE
4145     void
4146     ev_fork_start (EV_P_ ev_fork *w)
4147     {
4148     if (expect_false (ev_is_active (w)))
4149     return;
4150    
4151 root 1.248 EV_FREQUENT_CHECK;
4152    
4153 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4154     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4155     forks [forkcnt - 1] = w;
4156 root 1.248
4157     EV_FREQUENT_CHECK;
4158 root 1.147 }
4159    
4160     void
4161     ev_fork_stop (EV_P_ ev_fork *w)
4162     {
4163 root 1.166 clear_pending (EV_A_ (W)w);
4164 root 1.147 if (expect_false (!ev_is_active (w)))
4165     return;
4166    
4167 root 1.248 EV_FREQUENT_CHECK;
4168    
4169 root 1.147 {
4170 root 1.230 int active = ev_active (w);
4171    
4172 root 1.147 forks [active - 1] = forks [--forkcnt];
4173 root 1.230 ev_active (forks [active - 1]) = active;
4174 root 1.147 }
4175    
4176     ev_stop (EV_A_ (W)w);
4177 root 1.248
4178     EV_FREQUENT_CHECK;
4179 root 1.147 }
4180     #endif
4181    
4182 root 1.360 #if EV_CLEANUP_ENABLE
4183     void
4184     ev_cleanup_start (EV_P_ ev_cleanup *w)
4185     {
4186     if (expect_false (ev_is_active (w)))
4187     return;
4188    
4189     EV_FREQUENT_CHECK;
4190    
4191     ev_start (EV_A_ (W)w, ++cleanupcnt);
4192     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4193     cleanups [cleanupcnt - 1] = w;
4194    
4195 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4196     ev_unref (EV_A);
4197 root 1.360 EV_FREQUENT_CHECK;
4198     }
4199    
4200     void
4201     ev_cleanup_stop (EV_P_ ev_cleanup *w)
4202     {
4203     clear_pending (EV_A_ (W)w);
4204     if (expect_false (!ev_is_active (w)))
4205     return;
4206    
4207     EV_FREQUENT_CHECK;
4208 root 1.362 ev_ref (EV_A);
4209 root 1.360
4210     {
4211     int active = ev_active (w);
4212    
4213     cleanups [active - 1] = cleanups [--cleanupcnt];
4214     ev_active (cleanups [active - 1]) = active;
4215     }
4216    
4217     ev_stop (EV_A_ (W)w);
4218    
4219     EV_FREQUENT_CHECK;
4220     }
4221     #endif
4222    
4223 root 1.207 #if EV_ASYNC_ENABLE
4224     void
4225     ev_async_start (EV_P_ ev_async *w)
4226     {
4227     if (expect_false (ev_is_active (w)))
4228     return;
4229    
4230 root 1.352 w->sent = 0;
4231    
4232 root 1.207 evpipe_init (EV_A);
4233    
4234 root 1.248 EV_FREQUENT_CHECK;
4235    
4236 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4237     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4238     asyncs [asynccnt - 1] = w;
4239 root 1.248
4240     EV_FREQUENT_CHECK;
4241 root 1.207 }
4242    
4243     void
4244     ev_async_stop (EV_P_ ev_async *w)
4245     {
4246     clear_pending (EV_A_ (W)w);
4247     if (expect_false (!ev_is_active (w)))
4248     return;
4249    
4250 root 1.248 EV_FREQUENT_CHECK;
4251    
4252 root 1.207 {
4253 root 1.230 int active = ev_active (w);
4254    
4255 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4256 root 1.230 ev_active (asyncs [active - 1]) = active;
4257 root 1.207 }
4258    
4259     ev_stop (EV_A_ (W)w);
4260 root 1.248
4261     EV_FREQUENT_CHECK;
4262 root 1.207 }
4263    
4264     void
4265     ev_async_send (EV_P_ ev_async *w)
4266     {
4267     w->sent = 1;
4268 root 1.307 evpipe_write (EV_A_ &async_pending);
4269 root 1.207 }
4270     #endif
4271    
4272 root 1.1 /*****************************************************************************/
4273 root 1.10
4274 root 1.16 struct ev_once
4275     {
4276 root 1.136 ev_io io;
4277     ev_timer to;
4278 root 1.16 void (*cb)(int revents, void *arg);
4279     void *arg;
4280     };
4281    
4282     static void
4283 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4284 root 1.16 {
4285     void (*cb)(int revents, void *arg) = once->cb;
4286     void *arg = once->arg;
4287    
4288 root 1.259 ev_io_stop (EV_A_ &once->io);
4289 root 1.51 ev_timer_stop (EV_A_ &once->to);
4290 root 1.69 ev_free (once);
4291 root 1.16
4292     cb (revents, arg);
4293     }
4294    
4295     static void
4296 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4297 root 1.16 {
4298 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4299    
4300     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4301 root 1.16 }
4302    
4303     static void
4304 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4305 root 1.16 {
4306 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4307    
4308     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4309 root 1.16 }
4310    
4311     void
4312 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4313 root 1.16 {
4314 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4315 root 1.16
4316 root 1.123 if (expect_false (!once))
4317 root 1.16 {
4318 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4319 root 1.123 return;
4320     }
4321    
4322     once->cb = cb;
4323     once->arg = arg;
4324 root 1.16
4325 root 1.123 ev_init (&once->io, once_cb_io);
4326     if (fd >= 0)
4327     {
4328     ev_io_set (&once->io, fd, events);
4329     ev_io_start (EV_A_ &once->io);
4330     }
4331 root 1.16
4332 root 1.123 ev_init (&once->to, once_cb_to);
4333     if (timeout >= 0.)
4334     {
4335     ev_timer_set (&once->to, timeout, 0.);
4336     ev_timer_start (EV_A_ &once->to);
4337 root 1.16 }
4338     }
4339    
4340 root 1.282 /*****************************************************************************/
4341    
4342 root 1.288 #if EV_WALK_ENABLE
4343 root 1.379 void ecb_cold
4344 root 1.282 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4345     {
4346     int i, j;
4347     ev_watcher_list *wl, *wn;
4348    
4349     if (types & (EV_IO | EV_EMBED))
4350     for (i = 0; i < anfdmax; ++i)
4351     for (wl = anfds [i].head; wl; )
4352     {
4353     wn = wl->next;
4354    
4355     #if EV_EMBED_ENABLE
4356     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4357     {
4358     if (types & EV_EMBED)
4359     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4360     }
4361     else
4362     #endif
4363     #if EV_USE_INOTIFY
4364     if (ev_cb ((ev_io *)wl) == infy_cb)
4365     ;
4366     else
4367     #endif
4368 root 1.288 if ((ev_io *)wl != &pipe_w)
4369 root 1.282 if (types & EV_IO)
4370     cb (EV_A_ EV_IO, wl);
4371    
4372     wl = wn;
4373     }
4374    
4375     if (types & (EV_TIMER | EV_STAT))
4376     for (i = timercnt + HEAP0; i-- > HEAP0; )
4377     #if EV_STAT_ENABLE
4378     /*TODO: timer is not always active*/
4379     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4380     {
4381     if (types & EV_STAT)
4382     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4383     }
4384     else
4385     #endif
4386     if (types & EV_TIMER)
4387     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4388    
4389     #if EV_PERIODIC_ENABLE
4390     if (types & EV_PERIODIC)
4391     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4392     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4393     #endif
4394    
4395     #if EV_IDLE_ENABLE
4396     if (types & EV_IDLE)
4397 root 1.390 for (j = NUMPRI; j--; )
4398 root 1.282 for (i = idlecnt [j]; i--; )
4399     cb (EV_A_ EV_IDLE, idles [j][i]);
4400     #endif
4401    
4402     #if EV_FORK_ENABLE
4403     if (types & EV_FORK)
4404     for (i = forkcnt; i--; )
4405     if (ev_cb (forks [i]) != embed_fork_cb)
4406     cb (EV_A_ EV_FORK, forks [i]);
4407     #endif
4408    
4409     #if EV_ASYNC_ENABLE
4410     if (types & EV_ASYNC)
4411     for (i = asynccnt; i--; )
4412     cb (EV_A_ EV_ASYNC, asyncs [i]);
4413     #endif
4414    
4415 root 1.337 #if EV_PREPARE_ENABLE
4416 root 1.282 if (types & EV_PREPARE)
4417     for (i = preparecnt; i--; )
4418 root 1.337 # if EV_EMBED_ENABLE
4419 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4420 root 1.337 # endif
4421     cb (EV_A_ EV_PREPARE, prepares [i]);
4422 root 1.282 #endif
4423    
4424 root 1.337 #if EV_CHECK_ENABLE
4425 root 1.282 if (types & EV_CHECK)
4426     for (i = checkcnt; i--; )
4427     cb (EV_A_ EV_CHECK, checks [i]);
4428 root 1.337 #endif
4429 root 1.282
4430 root 1.337 #if EV_SIGNAL_ENABLE
4431 root 1.282 if (types & EV_SIGNAL)
4432 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4433 root 1.282 for (wl = signals [i].head; wl; )
4434     {
4435     wn = wl->next;
4436     cb (EV_A_ EV_SIGNAL, wl);
4437     wl = wn;
4438     }
4439 root 1.337 #endif
4440 root 1.282
4441 root 1.337 #if EV_CHILD_ENABLE
4442 root 1.282 if (types & EV_CHILD)
4443 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4444 root 1.282 for (wl = childs [i]; wl; )
4445     {
4446     wn = wl->next;
4447     cb (EV_A_ EV_CHILD, wl);
4448     wl = wn;
4449     }
4450 root 1.337 #endif
4451 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4452     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4453     }
4454     #endif
4455    
4456 root 1.188 #if EV_MULTIPLICITY
4457     #include "ev_wrap.h"
4458     #endif
4459