ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.409
Committed: Sat Feb 4 15:17:34 2012 UTC (12 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.408: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
65     # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.103 #ifndef _WIN32
189 root 1.71 # include <sys/time.h>
190 root 1.45 # include <sys/wait.h>
191 root 1.140 # include <unistd.h>
192 root 1.103 #else
193 root 1.256 # include <io.h>
194 root 1.103 # define WIN32_LEAN_AND_MEAN
195     # include <windows.h>
196     # ifndef EV_SELECT_IS_WINSOCKET
197     # define EV_SELECT_IS_WINSOCKET 1
198     # endif
199 root 1.331 # undef EV_AVOID_STDIO
200 root 1.45 #endif
201 root 1.103
202 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
203     * a limit of 1024 into their select. Where people have brains,
204     * OS X engineers apparently have a vacuum. Or maybe they were
205     * ordered to have a vacuum, or they do anything for money.
206     * This might help. Or not.
207     */
208     #define _DARWIN_UNLIMITED_SELECT 1
209    
210 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
211 root 1.40
212 root 1.305 /* try to deduce the maximum number of signals on this platform */
213     #if defined (EV_NSIG)
214     /* use what's provided */
215     #elif defined (NSIG)
216     # define EV_NSIG (NSIG)
217     #elif defined(_NSIG)
218     # define EV_NSIG (_NSIG)
219     #elif defined (SIGMAX)
220     # define EV_NSIG (SIGMAX+1)
221     #elif defined (SIG_MAX)
222     # define EV_NSIG (SIG_MAX+1)
223     #elif defined (_SIG_MAX)
224     # define EV_NSIG (_SIG_MAX+1)
225     #elif defined (MAXSIG)
226     # define EV_NSIG (MAXSIG+1)
227     #elif defined (MAX_SIG)
228     # define EV_NSIG (MAX_SIG+1)
229     #elif defined (SIGARRAYSIZE)
230 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231 root 1.305 #elif defined (_sys_nsig)
232     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233     #else
234     # error "unable to find value for NSIG, please report"
235 root 1.336 /* to make it compile regardless, just remove the above line, */
236     /* but consider reporting it, too! :) */
237 root 1.306 # define EV_NSIG 65
238 root 1.305 #endif
239    
240 root 1.373 #ifndef EV_USE_FLOOR
241     # define EV_USE_FLOOR 0
242     #endif
243    
244 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
245     # if __linux && __GLIBC__ >= 2
246 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247 root 1.274 # else
248     # define EV_USE_CLOCK_SYSCALL 0
249     # endif
250     #endif
251    
252 root 1.29 #ifndef EV_USE_MONOTONIC
253 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
255 root 1.253 # else
256     # define EV_USE_MONOTONIC 0
257     # endif
258 root 1.37 #endif
259    
260 root 1.118 #ifndef EV_USE_REALTIME
261 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
262 root 1.118 #endif
263    
264 root 1.193 #ifndef EV_USE_NANOSLEEP
265 root 1.253 # if _POSIX_C_SOURCE >= 199309L
266 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
267 root 1.253 # else
268     # define EV_USE_NANOSLEEP 0
269     # endif
270 root 1.193 #endif
271    
272 root 1.29 #ifndef EV_USE_SELECT
273 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
274 root 1.10 #endif
275    
276 root 1.59 #ifndef EV_USE_POLL
277 root 1.104 # ifdef _WIN32
278     # define EV_USE_POLL 0
279     # else
280 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
281 root 1.104 # endif
282 root 1.41 #endif
283    
284 root 1.29 #ifndef EV_USE_EPOLL
285 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
287 root 1.220 # else
288     # define EV_USE_EPOLL 0
289     # endif
290 root 1.10 #endif
291    
292 root 1.44 #ifndef EV_USE_KQUEUE
293     # define EV_USE_KQUEUE 0
294     #endif
295    
296 root 1.118 #ifndef EV_USE_PORT
297     # define EV_USE_PORT 0
298 root 1.40 #endif
299    
300 root 1.152 #ifndef EV_USE_INOTIFY
301 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
303 root 1.220 # else
304     # define EV_USE_INOTIFY 0
305     # endif
306 root 1.152 #endif
307    
308 root 1.149 #ifndef EV_PID_HASHSIZE
309 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
310 root 1.149 #endif
311    
312 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
313 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314 root 1.152 #endif
315    
316 root 1.220 #ifndef EV_USE_EVENTFD
317     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
319 root 1.220 # else
320     # define EV_USE_EVENTFD 0
321     # endif
322     #endif
323    
324 root 1.303 #ifndef EV_USE_SIGNALFD
325 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
326 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
327 root 1.303 # else
328     # define EV_USE_SIGNALFD 0
329     # endif
330     #endif
331    
332 root 1.249 #if 0 /* debugging */
333 root 1.250 # define EV_VERIFY 3
334 root 1.249 # define EV_USE_4HEAP 1
335     # define EV_HEAP_CACHE_AT 1
336     #endif
337    
338 root 1.250 #ifndef EV_VERIFY
339 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340 root 1.250 #endif
341    
342 root 1.243 #ifndef EV_USE_4HEAP
343 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
344 root 1.243 #endif
345    
346     #ifndef EV_HEAP_CACHE_AT
347 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348 root 1.243 #endif
349    
350 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351     /* which makes programs even slower. might work on other unices, too. */
352     #if EV_USE_CLOCK_SYSCALL
353     # include <syscall.h>
354     # ifdef SYS_clock_gettime
355     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356     # undef EV_USE_MONOTONIC
357     # define EV_USE_MONOTONIC 1
358     # else
359     # undef EV_USE_CLOCK_SYSCALL
360     # define EV_USE_CLOCK_SYSCALL 0
361     # endif
362     #endif
363    
364 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
365 root 1.40
366 root 1.325 #ifdef _AIX
367     /* AIX has a completely broken poll.h header */
368     # undef EV_USE_POLL
369     # define EV_USE_POLL 0
370     #endif
371    
372 root 1.40 #ifndef CLOCK_MONOTONIC
373     # undef EV_USE_MONOTONIC
374     # define EV_USE_MONOTONIC 0
375     #endif
376    
377 root 1.31 #ifndef CLOCK_REALTIME
378 root 1.40 # undef EV_USE_REALTIME
379 root 1.31 # define EV_USE_REALTIME 0
380     #endif
381 root 1.40
382 root 1.152 #if !EV_STAT_ENABLE
383 root 1.185 # undef EV_USE_INOTIFY
384 root 1.152 # define EV_USE_INOTIFY 0
385     #endif
386    
387 root 1.193 #if !EV_USE_NANOSLEEP
388 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
389     # if !defined(_WIN32) && !defined(__hpux)
390 root 1.193 # include <sys/select.h>
391     # endif
392     #endif
393    
394 root 1.152 #if EV_USE_INOTIFY
395 root 1.273 # include <sys/statfs.h>
396 root 1.152 # include <sys/inotify.h>
397 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398     # ifndef IN_DONT_FOLLOW
399     # undef EV_USE_INOTIFY
400     # define EV_USE_INOTIFY 0
401     # endif
402 root 1.152 #endif
403    
404 root 1.185 #if EV_SELECT_IS_WINSOCKET
405     # include <winsock.h>
406     #endif
407    
408 root 1.220 #if EV_USE_EVENTFD
409     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410 root 1.221 # include <stdint.h>
411 root 1.303 # ifndef EFD_NONBLOCK
412     # define EFD_NONBLOCK O_NONBLOCK
413     # endif
414     # ifndef EFD_CLOEXEC
415 root 1.311 # ifdef O_CLOEXEC
416     # define EFD_CLOEXEC O_CLOEXEC
417     # else
418     # define EFD_CLOEXEC 02000000
419     # endif
420 root 1.303 # endif
421 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422 root 1.220 #endif
423    
424 root 1.303 #if EV_USE_SIGNALFD
425 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426     # include <stdint.h>
427     # ifndef SFD_NONBLOCK
428     # define SFD_NONBLOCK O_NONBLOCK
429     # endif
430     # ifndef SFD_CLOEXEC
431     # ifdef O_CLOEXEC
432     # define SFD_CLOEXEC O_CLOEXEC
433     # else
434     # define SFD_CLOEXEC 02000000
435     # endif
436     # endif
437 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438 root 1.314
439     struct signalfd_siginfo
440     {
441     uint32_t ssi_signo;
442     char pad[128 - sizeof (uint32_t)];
443     };
444 root 1.303 #endif
445    
446 root 1.40 /**/
447 root 1.1
448 root 1.250 #if EV_VERIFY >= 3
449 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
450 root 1.248 #else
451     # define EV_FREQUENT_CHECK do { } while (0)
452     #endif
453    
454 root 1.176 /*
455 root 1.373 * This is used to work around floating point rounding problems.
456 root 1.177 * This value is good at least till the year 4000.
457 root 1.176 */
458 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
460 root 1.176
461 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
462 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
463 root 1.1
464 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466 root 1.347
467 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468     /* ECB.H BEGIN */
469     /*
470     * libecb - http://software.schmorp.de/pkg/libecb
471     *
472 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
473 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
474     * All rights reserved.
475     *
476     * Redistribution and use in source and binary forms, with or without modifica-
477     * tion, are permitted provided that the following conditions are met:
478     *
479     * 1. Redistributions of source code must retain the above copyright notice,
480     * this list of conditions and the following disclaimer.
481     *
482     * 2. Redistributions in binary form must reproduce the above copyright
483     * notice, this list of conditions and the following disclaimer in the
484     * documentation and/or other materials provided with the distribution.
485     *
486     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495     * OF THE POSSIBILITY OF SUCH DAMAGE.
496     */
497    
498     #ifndef ECB_H
499     #define ECB_H
500    
501     #ifdef _WIN32
502     typedef signed char int8_t;
503     typedef unsigned char uint8_t;
504     typedef signed short int16_t;
505     typedef unsigned short uint16_t;
506     typedef signed int int32_t;
507     typedef unsigned int uint32_t;
508     #if __GNUC__
509     typedef signed long long int64_t;
510     typedef unsigned long long uint64_t;
511     #else /* _MSC_VER || __BORLANDC__ */
512     typedef signed __int64 int64_t;
513     typedef unsigned __int64 uint64_t;
514     #endif
515     #else
516     #include <inttypes.h>
517     #endif
518 root 1.379
519     /* many compilers define _GNUC_ to some versions but then only implement
520     * what their idiot authors think are the "more important" extensions,
521 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
522 root 1.379 * or so.
523     * we try to detect these and simply assume they are not gcc - if they have
524     * an issue with that they should have done it right in the first place.
525     */
526     #ifndef ECB_GCC_VERSION
527     #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528     #define ECB_GCC_VERSION(major,minor) 0
529     #else
530     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
531     #endif
532     #endif
533    
534 root 1.391 /*****************************************************************************/
535    
536     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538    
539     #if ECB_NO_THREADS || ECB_NO_SMP
540 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
541 root 1.40 #endif
542    
543 root 1.383 #ifndef ECB_MEMORY_FENCE
544 root 1.409 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
545 root 1.404 #if __i386 || __i386__
546 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 root 1.391 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548     #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
550 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 root 1.391 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555     #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 root 1.393 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 root 1.393 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 root 1.392 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 root 1.404 #elif __sparc || __sparc__
562 root 1.405 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
563 root 1.408 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
564 root 1.405 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
565 root 1.408 #elif defined(__s390__) || defined(__s390x__)
566     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
567 root 1.383 #endif
568     #endif
569     #endif
570    
571     #ifndef ECB_MEMORY_FENCE
572 root 1.398 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
573 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
574 root 1.392 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
575     /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
576 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
577     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
578     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
579     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
580     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
581 root 1.388 #elif defined(_WIN32)
582     #include <WinNT.h>
583 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
584 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
585     #include <mbarrier.h>
586     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
587     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
588     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
589 root 1.383 #endif
590     #endif
591    
592     #ifndef ECB_MEMORY_FENCE
593 root 1.392 #if !ECB_AVOID_PTHREADS
594     /*
595     * if you get undefined symbol references to pthread_mutex_lock,
596     * or failure to find pthread.h, then you should implement
597     * the ECB_MEMORY_FENCE operations for your cpu/compiler
598     * OR provide pthread.h and link against the posix thread library
599     * of your system.
600     */
601     #include <pthread.h>
602     #define ECB_NEEDS_PTHREADS 1
603     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
604    
605     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
606     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
607     #endif
608     #endif
609 root 1.383
610 root 1.392 #if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
611 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
612 root 1.392 #endif
613    
614     #if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
615 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
616     #endif
617    
618 root 1.391 /*****************************************************************************/
619    
620     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
621    
622     #if __cplusplus
623     #define ecb_inline static inline
624     #elif ECB_GCC_VERSION(2,5)
625     #define ecb_inline static __inline__
626     #elif ECB_C99
627     #define ecb_inline static inline
628     #else
629     #define ecb_inline static
630     #endif
631    
632     #if ECB_GCC_VERSION(3,3)
633     #define ecb_restrict __restrict__
634     #elif ECB_C99
635     #define ecb_restrict restrict
636     #else
637     #define ecb_restrict
638     #endif
639    
640     typedef int ecb_bool;
641    
642     #define ECB_CONCAT_(a, b) a ## b
643     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
644     #define ECB_STRINGIFY_(a) # a
645     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
646    
647     #define ecb_function_ ecb_inline
648    
649 root 1.379 #if ECB_GCC_VERSION(3,1)
650     #define ecb_attribute(attrlist) __attribute__(attrlist)
651     #define ecb_is_constant(expr) __builtin_constant_p (expr)
652     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
653     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
654     #else
655     #define ecb_attribute(attrlist)
656     #define ecb_is_constant(expr) 0
657     #define ecb_expect(expr,value) (expr)
658     #define ecb_prefetch(addr,rw,locality)
659     #endif
660    
661 root 1.391 /* no emulation for ecb_decltype */
662     #if ECB_GCC_VERSION(4,5)
663     #define ecb_decltype(x) __decltype(x)
664     #elif ECB_GCC_VERSION(3,0)
665     #define ecb_decltype(x) __typeof(x)
666     #endif
667    
668 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
669     #define ecb_noreturn ecb_attribute ((__noreturn__))
670     #define ecb_unused ecb_attribute ((__unused__))
671     #define ecb_const ecb_attribute ((__const__))
672     #define ecb_pure ecb_attribute ((__pure__))
673    
674     #if ECB_GCC_VERSION(4,3)
675     #define ecb_artificial ecb_attribute ((__artificial__))
676     #define ecb_hot ecb_attribute ((__hot__))
677     #define ecb_cold ecb_attribute ((__cold__))
678     #else
679     #define ecb_artificial
680     #define ecb_hot
681     #define ecb_cold
682     #endif
683    
684     /* put around conditional expressions if you are very sure that the */
685     /* expression is mostly true or mostly false. note that these return */
686     /* booleans, not the expression. */
687     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
688     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
689 root 1.391 /* for compatibility to the rest of the world */
690     #define ecb_likely(expr) ecb_expect_true (expr)
691     #define ecb_unlikely(expr) ecb_expect_false (expr)
692    
693     /* count trailing zero bits and count # of one bits */
694     #if ECB_GCC_VERSION(3,4)
695     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
696     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
697     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
698     #define ecb_ctz32(x) __builtin_ctz (x)
699     #define ecb_ctz64(x) __builtin_ctzll (x)
700     #define ecb_popcount32(x) __builtin_popcount (x)
701     /* no popcountll */
702     #else
703     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
704     ecb_function_ int
705     ecb_ctz32 (uint32_t x)
706     {
707     int r = 0;
708    
709     x &= ~x + 1; /* this isolates the lowest bit */
710    
711     #if ECB_branchless_on_i386
712     r += !!(x & 0xaaaaaaaa) << 0;
713     r += !!(x & 0xcccccccc) << 1;
714     r += !!(x & 0xf0f0f0f0) << 2;
715     r += !!(x & 0xff00ff00) << 3;
716     r += !!(x & 0xffff0000) << 4;
717     #else
718     if (x & 0xaaaaaaaa) r += 1;
719     if (x & 0xcccccccc) r += 2;
720     if (x & 0xf0f0f0f0) r += 4;
721     if (x & 0xff00ff00) r += 8;
722     if (x & 0xffff0000) r += 16;
723     #endif
724    
725     return r;
726     }
727    
728     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
729     ecb_function_ int
730     ecb_ctz64 (uint64_t x)
731     {
732     int shift = x & 0xffffffffU ? 0 : 32;
733     return ecb_ctz32 (x >> shift) + shift;
734     }
735    
736     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
737     ecb_function_ int
738     ecb_popcount32 (uint32_t x)
739     {
740     x -= (x >> 1) & 0x55555555;
741     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
742     x = ((x >> 4) + x) & 0x0f0f0f0f;
743     x *= 0x01010101;
744    
745     return x >> 24;
746     }
747    
748     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
749     ecb_function_ int ecb_ld32 (uint32_t x)
750     {
751     int r = 0;
752    
753     if (x >> 16) { x >>= 16; r += 16; }
754     if (x >> 8) { x >>= 8; r += 8; }
755     if (x >> 4) { x >>= 4; r += 4; }
756     if (x >> 2) { x >>= 2; r += 2; }
757     if (x >> 1) { r += 1; }
758    
759     return r;
760     }
761    
762     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
763     ecb_function_ int ecb_ld64 (uint64_t x)
764     {
765     int r = 0;
766    
767     if (x >> 32) { x >>= 32; r += 32; }
768    
769     return r + ecb_ld32 (x);
770     }
771     #endif
772    
773 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
774     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
775     {
776     return ( (x * 0x0802U & 0x22110U)
777     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
778     }
779    
780     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
781     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
782     {
783     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
784     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
785     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
786     x = ( x >> 8 ) | ( x << 8);
787    
788     return x;
789     }
790    
791     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
792     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
793     {
794     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
795     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
796     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
797     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
798     x = ( x >> 16 ) | ( x << 16);
799    
800     return x;
801     }
802    
803 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
804     /* so for this version we are lazy */
805     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
806     ecb_function_ int
807     ecb_popcount64 (uint64_t x)
808     {
809     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
810     }
811    
812     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
813     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
814     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
815     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
816     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
817     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
818     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
819     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
820    
821     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
822     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
823     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
824     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
825     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
826     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
827     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
828     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
829    
830     #if ECB_GCC_VERSION(4,3)
831     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
832     #define ecb_bswap32(x) __builtin_bswap32 (x)
833     #define ecb_bswap64(x) __builtin_bswap64 (x)
834     #else
835     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
836     ecb_function_ uint16_t
837     ecb_bswap16 (uint16_t x)
838     {
839     return ecb_rotl16 (x, 8);
840     }
841    
842     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
843     ecb_function_ uint32_t
844     ecb_bswap32 (uint32_t x)
845     {
846     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
847     }
848    
849     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
850     ecb_function_ uint64_t
851     ecb_bswap64 (uint64_t x)
852     {
853     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
854     }
855     #endif
856    
857     #if ECB_GCC_VERSION(4,5)
858     #define ecb_unreachable() __builtin_unreachable ()
859     #else
860     /* this seems to work fine, but gcc always emits a warning for it :/ */
861 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
862     ecb_inline void ecb_unreachable (void) { }
863 root 1.391 #endif
864    
865     /* try to tell the compiler that some condition is definitely true */
866     #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
867    
868 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
869     ecb_inline unsigned char
870 root 1.391 ecb_byteorder_helper (void)
871     {
872     const uint32_t u = 0x11223344;
873     return *(unsigned char *)&u;
874     }
875    
876 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
877     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
878     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
879     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
880 root 1.391
881     #if ECB_GCC_VERSION(3,0) || ECB_C99
882     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
883     #else
884     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
885     #endif
886    
887 root 1.398 #if __cplusplus
888     template<typename T>
889     static inline T ecb_div_rd (T val, T div)
890     {
891     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
892     }
893     template<typename T>
894     static inline T ecb_div_ru (T val, T div)
895     {
896     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
897     }
898     #else
899     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
900     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
901     #endif
902    
903 root 1.391 #if ecb_cplusplus_does_not_suck
904     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
905     template<typename T, int N>
906     static inline int ecb_array_length (const T (&arr)[N])
907     {
908     return N;
909     }
910     #else
911     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
912     #endif
913    
914     #endif
915    
916     /* ECB.H END */
917 root 1.379
918 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
919 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
920 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
921     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
922 sf-exg 1.402 * libev, in which cases the memory fences become nops.
923 root 1.396 * alternatively, you can remove this #error and link against libpthread,
924     * which will then provide the memory fences.
925     */
926     # error "memory fences not defined for your architecture, please report"
927     #endif
928    
929     #ifndef ECB_MEMORY_FENCE
930     # define ECB_MEMORY_FENCE do { } while (0)
931     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
932     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
933 root 1.392 #endif
934    
935 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
936     #define expect_true(cond) ecb_expect_true (cond)
937     #define noinline ecb_noinline
938    
939     #define inline_size ecb_inline
940 root 1.169
941 root 1.338 #if EV_FEATURE_CODE
942 root 1.379 # define inline_speed ecb_inline
943 root 1.338 #else
944 root 1.169 # define inline_speed static noinline
945     #endif
946 root 1.40
947 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
948    
949     #if EV_MINPRI == EV_MAXPRI
950     # define ABSPRI(w) (((W)w), 0)
951     #else
952     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
953     #endif
954 root 1.42
955 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
956 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
957 root 1.103
958 root 1.136 typedef ev_watcher *W;
959     typedef ev_watcher_list *WL;
960     typedef ev_watcher_time *WT;
961 root 1.10
962 root 1.229 #define ev_active(w) ((W)(w))->active
963 root 1.228 #define ev_at(w) ((WT)(w))->at
964    
965 root 1.279 #if EV_USE_REALTIME
966 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
967 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
968 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
969     #endif
970    
971     #if EV_USE_MONOTONIC
972 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
973 root 1.198 #endif
974 root 1.54
975 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
976     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
977     #endif
978     #ifndef EV_WIN32_HANDLE_TO_FD
979 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
980 root 1.313 #endif
981     #ifndef EV_WIN32_CLOSE_FD
982     # define EV_WIN32_CLOSE_FD(fd) close (fd)
983     #endif
984    
985 root 1.103 #ifdef _WIN32
986 root 1.98 # include "ev_win32.c"
987     #endif
988 root 1.67
989 root 1.53 /*****************************************************************************/
990 root 1.1
991 root 1.373 /* define a suitable floor function (only used by periodics atm) */
992    
993     #if EV_USE_FLOOR
994     # include <math.h>
995     # define ev_floor(v) floor (v)
996     #else
997    
998     #include <float.h>
999    
1000     /* a floor() replacement function, should be independent of ev_tstamp type */
1001     static ev_tstamp noinline
1002     ev_floor (ev_tstamp v)
1003     {
1004     /* the choice of shift factor is not terribly important */
1005     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1006     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1007     #else
1008     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1009     #endif
1010    
1011     /* argument too large for an unsigned long? */
1012     if (expect_false (v >= shift))
1013     {
1014     ev_tstamp f;
1015    
1016     if (v == v - 1.)
1017     return v; /* very large number */
1018    
1019     f = shift * ev_floor (v * (1. / shift));
1020     return f + ev_floor (v - f);
1021     }
1022    
1023     /* special treatment for negative args? */
1024     if (expect_false (v < 0.))
1025     {
1026     ev_tstamp f = -ev_floor (-v);
1027    
1028     return f - (f == v ? 0 : 1);
1029     }
1030    
1031     /* fits into an unsigned long */
1032     return (unsigned long)v;
1033     }
1034    
1035     #endif
1036    
1037     /*****************************************************************************/
1038    
1039 root 1.356 #ifdef __linux
1040     # include <sys/utsname.h>
1041     #endif
1042    
1043 root 1.379 static unsigned int noinline ecb_cold
1044 root 1.355 ev_linux_version (void)
1045     {
1046     #ifdef __linux
1047 root 1.359 unsigned int v = 0;
1048 root 1.355 struct utsname buf;
1049     int i;
1050     char *p = buf.release;
1051    
1052     if (uname (&buf))
1053     return 0;
1054    
1055     for (i = 3+1; --i; )
1056     {
1057     unsigned int c = 0;
1058    
1059     for (;;)
1060     {
1061     if (*p >= '0' && *p <= '9')
1062     c = c * 10 + *p++ - '0';
1063     else
1064     {
1065     p += *p == '.';
1066     break;
1067     }
1068     }
1069    
1070     v = (v << 8) | c;
1071     }
1072    
1073     return v;
1074     #else
1075     return 0;
1076     #endif
1077     }
1078    
1079     /*****************************************************************************/
1080    
1081 root 1.331 #if EV_AVOID_STDIO
1082 root 1.379 static void noinline ecb_cold
1083 root 1.331 ev_printerr (const char *msg)
1084     {
1085     write (STDERR_FILENO, msg, strlen (msg));
1086     }
1087     #endif
1088    
1089 root 1.70 static void (*syserr_cb)(const char *msg);
1090 root 1.69
1091 root 1.379 void ecb_cold
1092 root 1.141 ev_set_syserr_cb (void (*cb)(const char *msg))
1093 root 1.69 {
1094     syserr_cb = cb;
1095     }
1096    
1097 root 1.379 static void noinline ecb_cold
1098 root 1.269 ev_syserr (const char *msg)
1099 root 1.69 {
1100 root 1.70 if (!msg)
1101     msg = "(libev) system error";
1102    
1103 root 1.69 if (syserr_cb)
1104 root 1.70 syserr_cb (msg);
1105 root 1.69 else
1106     {
1107 root 1.330 #if EV_AVOID_STDIO
1108 root 1.331 ev_printerr (msg);
1109     ev_printerr (": ");
1110 root 1.365 ev_printerr (strerror (errno));
1111 root 1.331 ev_printerr ("\n");
1112 root 1.330 #else
1113 root 1.70 perror (msg);
1114 root 1.330 #endif
1115 root 1.69 abort ();
1116     }
1117     }
1118    
1119 root 1.224 static void *
1120     ev_realloc_emul (void *ptr, long size)
1121     {
1122 root 1.334 #if __GLIBC__
1123     return realloc (ptr, size);
1124     #else
1125 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
1126 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1127 root 1.224 * the single unix specification, so work around them here.
1128     */
1129 root 1.333
1130 root 1.224 if (size)
1131     return realloc (ptr, size);
1132    
1133     free (ptr);
1134     return 0;
1135 root 1.334 #endif
1136 root 1.224 }
1137    
1138     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1139 root 1.69
1140 root 1.379 void ecb_cold
1141 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
1142 root 1.69 {
1143     alloc = cb;
1144     }
1145    
1146 root 1.150 inline_speed void *
1147 root 1.155 ev_realloc (void *ptr, long size)
1148 root 1.69 {
1149 root 1.224 ptr = alloc (ptr, size);
1150 root 1.69
1151     if (!ptr && size)
1152     {
1153 root 1.330 #if EV_AVOID_STDIO
1154 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1155 root 1.330 #else
1156 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1157 root 1.330 #endif
1158 root 1.69 abort ();
1159     }
1160    
1161     return ptr;
1162     }
1163    
1164     #define ev_malloc(size) ev_realloc (0, (size))
1165     #define ev_free(ptr) ev_realloc ((ptr), 0)
1166    
1167     /*****************************************************************************/
1168    
1169 root 1.298 /* set in reify when reification needed */
1170     #define EV_ANFD_REIFY 1
1171    
1172 root 1.288 /* file descriptor info structure */
1173 root 1.53 typedef struct
1174     {
1175 root 1.68 WL head;
1176 root 1.288 unsigned char events; /* the events watched for */
1177 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1178 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1179 root 1.269 unsigned char unused;
1180     #if EV_USE_EPOLL
1181 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1182 root 1.269 #endif
1183 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1184 root 1.103 SOCKET handle;
1185     #endif
1186 root 1.357 #if EV_USE_IOCP
1187     OVERLAPPED or, ow;
1188     #endif
1189 root 1.53 } ANFD;
1190 root 1.1
1191 root 1.288 /* stores the pending event set for a given watcher */
1192 root 1.53 typedef struct
1193     {
1194     W w;
1195 root 1.288 int events; /* the pending event set for the given watcher */
1196 root 1.53 } ANPENDING;
1197 root 1.51
1198 root 1.155 #if EV_USE_INOTIFY
1199 root 1.241 /* hash table entry per inotify-id */
1200 root 1.152 typedef struct
1201     {
1202     WL head;
1203 root 1.155 } ANFS;
1204 root 1.152 #endif
1205    
1206 root 1.241 /* Heap Entry */
1207     #if EV_HEAP_CACHE_AT
1208 root 1.288 /* a heap element */
1209 root 1.241 typedef struct {
1210 root 1.243 ev_tstamp at;
1211 root 1.241 WT w;
1212     } ANHE;
1213    
1214 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1215     #define ANHE_at(he) (he).at /* access cached at, read-only */
1216     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1217 root 1.241 #else
1218 root 1.288 /* a heap element */
1219 root 1.241 typedef WT ANHE;
1220    
1221 root 1.248 #define ANHE_w(he) (he)
1222     #define ANHE_at(he) (he)->at
1223     #define ANHE_at_cache(he)
1224 root 1.241 #endif
1225    
1226 root 1.55 #if EV_MULTIPLICITY
1227 root 1.54
1228 root 1.80 struct ev_loop
1229     {
1230 root 1.86 ev_tstamp ev_rt_now;
1231 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1232 root 1.80 #define VAR(name,decl) decl;
1233     #include "ev_vars.h"
1234     #undef VAR
1235     };
1236     #include "ev_wrap.h"
1237    
1238 root 1.116 static struct ev_loop default_loop_struct;
1239 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1240 root 1.54
1241 root 1.53 #else
1242 root 1.54
1243 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1244 root 1.80 #define VAR(name,decl) static decl;
1245     #include "ev_vars.h"
1246     #undef VAR
1247    
1248 root 1.116 static int ev_default_loop_ptr;
1249 root 1.54
1250 root 1.51 #endif
1251 root 1.1
1252 root 1.338 #if EV_FEATURE_API
1253 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1254     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1255 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1256     #else
1257 root 1.298 # define EV_RELEASE_CB (void)0
1258     # define EV_ACQUIRE_CB (void)0
1259 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1260     #endif
1261    
1262 root 1.353 #define EVBREAK_RECURSE 0x80
1263 root 1.298
1264 root 1.8 /*****************************************************************************/
1265    
1266 root 1.292 #ifndef EV_HAVE_EV_TIME
1267 root 1.141 ev_tstamp
1268 root 1.1 ev_time (void)
1269     {
1270 root 1.29 #if EV_USE_REALTIME
1271 root 1.279 if (expect_true (have_realtime))
1272     {
1273     struct timespec ts;
1274     clock_gettime (CLOCK_REALTIME, &ts);
1275     return ts.tv_sec + ts.tv_nsec * 1e-9;
1276     }
1277     #endif
1278    
1279 root 1.1 struct timeval tv;
1280     gettimeofday (&tv, 0);
1281     return tv.tv_sec + tv.tv_usec * 1e-6;
1282     }
1283 root 1.292 #endif
1284 root 1.1
1285 root 1.284 inline_size ev_tstamp
1286 root 1.1 get_clock (void)
1287     {
1288 root 1.29 #if EV_USE_MONOTONIC
1289 root 1.40 if (expect_true (have_monotonic))
1290 root 1.1 {
1291     struct timespec ts;
1292     clock_gettime (CLOCK_MONOTONIC, &ts);
1293     return ts.tv_sec + ts.tv_nsec * 1e-9;
1294     }
1295     #endif
1296    
1297     return ev_time ();
1298     }
1299    
1300 root 1.85 #if EV_MULTIPLICITY
1301 root 1.51 ev_tstamp
1302     ev_now (EV_P)
1303     {
1304 root 1.85 return ev_rt_now;
1305 root 1.51 }
1306 root 1.85 #endif
1307 root 1.51
1308 root 1.193 void
1309     ev_sleep (ev_tstamp delay)
1310     {
1311     if (delay > 0.)
1312     {
1313     #if EV_USE_NANOSLEEP
1314     struct timespec ts;
1315    
1316 root 1.348 EV_TS_SET (ts, delay);
1317 root 1.193 nanosleep (&ts, 0);
1318     #elif defined(_WIN32)
1319 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1320 root 1.193 #else
1321     struct timeval tv;
1322    
1323 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1324 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1325 root 1.257 /* by older ones */
1326 sf-exg 1.349 EV_TV_SET (tv, delay);
1327 root 1.193 select (0, 0, 0, 0, &tv);
1328     #endif
1329     }
1330     }
1331    
1332     /*****************************************************************************/
1333    
1334 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1335 root 1.232
1336 root 1.288 /* find a suitable new size for the given array, */
1337 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1338 root 1.284 inline_size int
1339 root 1.163 array_nextsize (int elem, int cur, int cnt)
1340     {
1341     int ncur = cur + 1;
1342    
1343     do
1344     ncur <<= 1;
1345     while (cnt > ncur);
1346    
1347 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1348 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1349 root 1.163 {
1350     ncur *= elem;
1351 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1352 root 1.163 ncur = ncur - sizeof (void *) * 4;
1353     ncur /= elem;
1354     }
1355    
1356     return ncur;
1357     }
1358    
1359 root 1.379 static void * noinline ecb_cold
1360 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1361     {
1362     *cur = array_nextsize (elem, *cur, cnt);
1363     return ev_realloc (base, elem * *cur);
1364     }
1365 root 1.29
1366 root 1.265 #define array_init_zero(base,count) \
1367     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1368    
1369 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1370 root 1.163 if (expect_false ((cnt) > (cur))) \
1371 root 1.69 { \
1372 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1373 root 1.163 (base) = (type *)array_realloc \
1374     (sizeof (type), (base), &(cur), (cnt)); \
1375     init ((base) + (ocur_), (cur) - ocur_); \
1376 root 1.1 }
1377    
1378 root 1.163 #if 0
1379 root 1.74 #define array_slim(type,stem) \
1380 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1381     { \
1382     stem ## max = array_roundsize (stem ## cnt >> 1); \
1383 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1384 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1385     }
1386 root 1.163 #endif
1387 root 1.67
1388 root 1.65 #define array_free(stem, idx) \
1389 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1390 root 1.65
1391 root 1.8 /*****************************************************************************/
1392    
1393 root 1.288 /* dummy callback for pending events */
1394     static void noinline
1395     pendingcb (EV_P_ ev_prepare *w, int revents)
1396     {
1397     }
1398    
1399 root 1.140 void noinline
1400 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
1401 root 1.1 {
1402 root 1.78 W w_ = (W)w;
1403 root 1.171 int pri = ABSPRI (w_);
1404 root 1.78
1405 root 1.123 if (expect_false (w_->pending))
1406 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1407     else
1408 root 1.32 {
1409 root 1.171 w_->pending = ++pendingcnt [pri];
1410     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1411     pendings [pri][w_->pending - 1].w = w_;
1412     pendings [pri][w_->pending - 1].events = revents;
1413 root 1.32 }
1414 root 1.1 }
1415    
1416 root 1.284 inline_speed void
1417     feed_reverse (EV_P_ W w)
1418     {
1419     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1420     rfeeds [rfeedcnt++] = w;
1421     }
1422    
1423     inline_size void
1424     feed_reverse_done (EV_P_ int revents)
1425     {
1426     do
1427     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1428     while (rfeedcnt);
1429     }
1430    
1431     inline_speed void
1432 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1433 root 1.27 {
1434     int i;
1435    
1436     for (i = 0; i < eventcnt; ++i)
1437 root 1.78 ev_feed_event (EV_A_ events [i], type);
1438 root 1.27 }
1439    
1440 root 1.141 /*****************************************************************************/
1441    
1442 root 1.284 inline_speed void
1443 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1444 root 1.1 {
1445     ANFD *anfd = anfds + fd;
1446 root 1.136 ev_io *w;
1447 root 1.1
1448 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1449 root 1.1 {
1450 root 1.79 int ev = w->events & revents;
1451 root 1.1
1452     if (ev)
1453 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1454 root 1.1 }
1455     }
1456    
1457 root 1.298 /* do not submit kernel events for fds that have reify set */
1458     /* because that means they changed while we were polling for new events */
1459     inline_speed void
1460     fd_event (EV_P_ int fd, int revents)
1461     {
1462     ANFD *anfd = anfds + fd;
1463    
1464     if (expect_true (!anfd->reify))
1465 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1466 root 1.298 }
1467    
1468 root 1.79 void
1469     ev_feed_fd_event (EV_P_ int fd, int revents)
1470     {
1471 root 1.168 if (fd >= 0 && fd < anfdmax)
1472 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1473 root 1.79 }
1474    
1475 root 1.288 /* make sure the external fd watch events are in-sync */
1476     /* with the kernel/libev internal state */
1477 root 1.284 inline_size void
1478 root 1.51 fd_reify (EV_P)
1479 root 1.9 {
1480     int i;
1481    
1482 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1483     for (i = 0; i < fdchangecnt; ++i)
1484     {
1485     int fd = fdchanges [i];
1486     ANFD *anfd = anfds + fd;
1487    
1488 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1489 root 1.371 {
1490     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1491    
1492     if (handle != anfd->handle)
1493     {
1494     unsigned long arg;
1495    
1496     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1497    
1498     /* handle changed, but fd didn't - we need to do it in two steps */
1499     backend_modify (EV_A_ fd, anfd->events, 0);
1500     anfd->events = 0;
1501     anfd->handle = handle;
1502     }
1503     }
1504     }
1505     #endif
1506    
1507 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1508     {
1509     int fd = fdchanges [i];
1510     ANFD *anfd = anfds + fd;
1511 root 1.136 ev_io *w;
1512 root 1.27
1513 root 1.350 unsigned char o_events = anfd->events;
1514     unsigned char o_reify = anfd->reify;
1515 root 1.27
1516 root 1.350 anfd->reify = 0;
1517 root 1.27
1518 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1519     {
1520     anfd->events = 0;
1521 root 1.184
1522 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1523     anfd->events |= (unsigned char)w->events;
1524 root 1.27
1525 root 1.351 if (o_events != anfd->events)
1526 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1527     }
1528    
1529     if (o_reify & EV__IOFDSET)
1530     backend_modify (EV_A_ fd, o_events, anfd->events);
1531 root 1.27 }
1532    
1533     fdchangecnt = 0;
1534     }
1535    
1536 root 1.288 /* something about the given fd changed */
1537 root 1.284 inline_size void
1538 root 1.183 fd_change (EV_P_ int fd, int flags)
1539 root 1.27 {
1540 root 1.183 unsigned char reify = anfds [fd].reify;
1541 root 1.184 anfds [fd].reify |= flags;
1542 root 1.27
1543 root 1.183 if (expect_true (!reify))
1544     {
1545     ++fdchangecnt;
1546     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1547     fdchanges [fdchangecnt - 1] = fd;
1548     }
1549 root 1.9 }
1550    
1551 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1552 root 1.379 inline_speed void ecb_cold
1553 root 1.51 fd_kill (EV_P_ int fd)
1554 root 1.41 {
1555 root 1.136 ev_io *w;
1556 root 1.41
1557 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1558 root 1.41 {
1559 root 1.51 ev_io_stop (EV_A_ w);
1560 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1561 root 1.41 }
1562     }
1563    
1564 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1565 root 1.379 inline_size int ecb_cold
1566 root 1.71 fd_valid (int fd)
1567     {
1568 root 1.103 #ifdef _WIN32
1569 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1570 root 1.71 #else
1571     return fcntl (fd, F_GETFD) != -1;
1572     #endif
1573     }
1574    
1575 root 1.19 /* called on EBADF to verify fds */
1576 root 1.379 static void noinline ecb_cold
1577 root 1.51 fd_ebadf (EV_P)
1578 root 1.19 {
1579     int fd;
1580    
1581     for (fd = 0; fd < anfdmax; ++fd)
1582 root 1.27 if (anfds [fd].events)
1583 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1584 root 1.51 fd_kill (EV_A_ fd);
1585 root 1.41 }
1586    
1587     /* called on ENOMEM in select/poll to kill some fds and retry */
1588 root 1.379 static void noinline ecb_cold
1589 root 1.51 fd_enomem (EV_P)
1590 root 1.41 {
1591 root 1.62 int fd;
1592 root 1.41
1593 root 1.62 for (fd = anfdmax; fd--; )
1594 root 1.41 if (anfds [fd].events)
1595     {
1596 root 1.51 fd_kill (EV_A_ fd);
1597 root 1.307 break;
1598 root 1.41 }
1599 root 1.19 }
1600    
1601 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1602 root 1.140 static void noinline
1603 root 1.56 fd_rearm_all (EV_P)
1604     {
1605     int fd;
1606    
1607     for (fd = 0; fd < anfdmax; ++fd)
1608     if (anfds [fd].events)
1609     {
1610     anfds [fd].events = 0;
1611 root 1.268 anfds [fd].emask = 0;
1612 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1613 root 1.56 }
1614     }
1615    
1616 root 1.336 /* used to prepare libev internal fd's */
1617     /* this is not fork-safe */
1618     inline_speed void
1619     fd_intern (int fd)
1620     {
1621     #ifdef _WIN32
1622     unsigned long arg = 1;
1623     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1624     #else
1625     fcntl (fd, F_SETFD, FD_CLOEXEC);
1626     fcntl (fd, F_SETFL, O_NONBLOCK);
1627     #endif
1628     }
1629    
1630 root 1.8 /*****************************************************************************/
1631    
1632 root 1.235 /*
1633 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1634 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1635     * the branching factor of the d-tree.
1636     */
1637    
1638     /*
1639 root 1.235 * at the moment we allow libev the luxury of two heaps,
1640     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1641     * which is more cache-efficient.
1642     * the difference is about 5% with 50000+ watchers.
1643     */
1644 root 1.241 #if EV_USE_4HEAP
1645 root 1.235
1646 root 1.237 #define DHEAP 4
1647     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1648 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1649 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1650 root 1.235
1651     /* away from the root */
1652 root 1.284 inline_speed void
1653 root 1.241 downheap (ANHE *heap, int N, int k)
1654 root 1.235 {
1655 root 1.241 ANHE he = heap [k];
1656     ANHE *E = heap + N + HEAP0;
1657 root 1.235
1658     for (;;)
1659     {
1660     ev_tstamp minat;
1661 root 1.241 ANHE *minpos;
1662 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1663 root 1.235
1664 root 1.248 /* find minimum child */
1665 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1666 root 1.235 {
1667 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1668     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1669     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1670     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1671 root 1.235 }
1672 root 1.240 else if (pos < E)
1673 root 1.235 {
1674 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1675     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1676     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1677     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1678 root 1.235 }
1679 root 1.240 else
1680     break;
1681 root 1.235
1682 root 1.241 if (ANHE_at (he) <= minat)
1683 root 1.235 break;
1684    
1685 root 1.247 heap [k] = *minpos;
1686 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1687 root 1.235
1688     k = minpos - heap;
1689     }
1690    
1691 root 1.247 heap [k] = he;
1692 root 1.241 ev_active (ANHE_w (he)) = k;
1693 root 1.235 }
1694    
1695 root 1.248 #else /* 4HEAP */
1696 root 1.235
1697     #define HEAP0 1
1698 root 1.247 #define HPARENT(k) ((k) >> 1)
1699 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1700 root 1.235
1701 root 1.248 /* away from the root */
1702 root 1.284 inline_speed void
1703 root 1.248 downheap (ANHE *heap, int N, int k)
1704 root 1.1 {
1705 root 1.241 ANHE he = heap [k];
1706 root 1.1
1707 root 1.228 for (;;)
1708 root 1.1 {
1709 root 1.248 int c = k << 1;
1710 root 1.179
1711 root 1.309 if (c >= N + HEAP0)
1712 root 1.179 break;
1713    
1714 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1715     ? 1 : 0;
1716    
1717     if (ANHE_at (he) <= ANHE_at (heap [c]))
1718     break;
1719    
1720     heap [k] = heap [c];
1721 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1722 root 1.248
1723     k = c;
1724 root 1.1 }
1725    
1726 root 1.243 heap [k] = he;
1727 root 1.248 ev_active (ANHE_w (he)) = k;
1728 root 1.1 }
1729 root 1.248 #endif
1730 root 1.1
1731 root 1.248 /* towards the root */
1732 root 1.284 inline_speed void
1733 root 1.248 upheap (ANHE *heap, int k)
1734 root 1.1 {
1735 root 1.241 ANHE he = heap [k];
1736 root 1.1
1737 root 1.179 for (;;)
1738 root 1.1 {
1739 root 1.248 int p = HPARENT (k);
1740 root 1.179
1741 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1742 root 1.179 break;
1743 root 1.1
1744 root 1.248 heap [k] = heap [p];
1745 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1746 root 1.248 k = p;
1747 root 1.1 }
1748    
1749 root 1.241 heap [k] = he;
1750     ev_active (ANHE_w (he)) = k;
1751 root 1.1 }
1752    
1753 root 1.288 /* move an element suitably so it is in a correct place */
1754 root 1.284 inline_size void
1755 root 1.241 adjustheap (ANHE *heap, int N, int k)
1756 root 1.84 {
1757 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1758 root 1.247 upheap (heap, k);
1759     else
1760     downheap (heap, N, k);
1761 root 1.84 }
1762    
1763 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1764 root 1.284 inline_size void
1765 root 1.248 reheap (ANHE *heap, int N)
1766     {
1767     int i;
1768 root 1.251
1769 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1770     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1771     for (i = 0; i < N; ++i)
1772     upheap (heap, i + HEAP0);
1773     }
1774    
1775 root 1.8 /*****************************************************************************/
1776    
1777 root 1.288 /* associate signal watchers to a signal signal */
1778 root 1.7 typedef struct
1779     {
1780 root 1.307 EV_ATOMIC_T pending;
1781 root 1.306 #if EV_MULTIPLICITY
1782     EV_P;
1783     #endif
1784 root 1.68 WL head;
1785 root 1.7 } ANSIG;
1786    
1787 root 1.306 static ANSIG signals [EV_NSIG - 1];
1788 root 1.7
1789 root 1.207 /*****************************************************************************/
1790    
1791 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1792 root 1.207
1793 root 1.379 static void noinline ecb_cold
1794 root 1.207 evpipe_init (EV_P)
1795     {
1796 root 1.288 if (!ev_is_active (&pipe_w))
1797 root 1.207 {
1798 root 1.336 # if EV_USE_EVENTFD
1799 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1800     if (evfd < 0 && errno == EINVAL)
1801     evfd = eventfd (0, 0);
1802    
1803     if (evfd >= 0)
1804 root 1.220 {
1805     evpipe [0] = -1;
1806 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1807 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1808 root 1.220 }
1809     else
1810 root 1.336 # endif
1811 root 1.220 {
1812     while (pipe (evpipe))
1813 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1814 root 1.207
1815 root 1.220 fd_intern (evpipe [0]);
1816     fd_intern (evpipe [1]);
1817 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1818 root 1.220 }
1819 root 1.207
1820 root 1.288 ev_io_start (EV_A_ &pipe_w);
1821 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1822 root 1.207 }
1823     }
1824    
1825 root 1.380 inline_speed void
1826 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1827 root 1.207 {
1828 root 1.383 if (expect_true (*flag))
1829 root 1.387 return;
1830 root 1.383
1831     *flag = 1;
1832    
1833 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1834 root 1.383
1835     pipe_write_skipped = 1;
1836 root 1.378
1837 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1838 root 1.214
1839 root 1.383 if (pipe_write_wanted)
1840     {
1841     int old_errno;
1842 root 1.378
1843 root 1.392 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1844 root 1.220
1845 root 1.383 old_errno = errno; /* save errno because write will clobber it */
1846 root 1.380
1847 root 1.220 #if EV_USE_EVENTFD
1848 root 1.383 if (evfd >= 0)
1849     {
1850     uint64_t counter = 1;
1851     write (evfd, &counter, sizeof (uint64_t));
1852     }
1853     else
1854 root 1.220 #endif
1855 root 1.383 {
1856     /* win32 people keep sending patches that change this write() to send() */
1857     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1858     /* so when you think this write should be a send instead, please find out */
1859     /* where your send() is from - it's definitely not the microsoft send, and */
1860     /* tell me. thank you. */
1861     write (evpipe [1], &(evpipe [1]), 1);
1862     }
1863 root 1.214
1864 root 1.383 errno = old_errno;
1865 root 1.207 }
1866     }
1867    
1868 root 1.288 /* called whenever the libev signal pipe */
1869     /* got some events (signal, async) */
1870 root 1.207 static void
1871     pipecb (EV_P_ ev_io *iow, int revents)
1872     {
1873 root 1.307 int i;
1874    
1875 root 1.378 if (revents & EV_READ)
1876     {
1877 root 1.220 #if EV_USE_EVENTFD
1878 root 1.378 if (evfd >= 0)
1879     {
1880     uint64_t counter;
1881     read (evfd, &counter, sizeof (uint64_t));
1882     }
1883     else
1884 root 1.220 #endif
1885 root 1.378 {
1886     char dummy;
1887     /* see discussion in evpipe_write when you think this read should be recv in win32 */
1888     read (evpipe [0], &dummy, 1);
1889     }
1890 root 1.220 }
1891 root 1.207
1892 root 1.378 pipe_write_skipped = 0;
1893    
1894 root 1.369 #if EV_SIGNAL_ENABLE
1895 root 1.307 if (sig_pending)
1896 root 1.372 {
1897 root 1.307 sig_pending = 0;
1898 root 1.207
1899 root 1.307 for (i = EV_NSIG - 1; i--; )
1900     if (expect_false (signals [i].pending))
1901     ev_feed_signal_event (EV_A_ i + 1);
1902 root 1.207 }
1903 root 1.369 #endif
1904 root 1.207
1905 root 1.209 #if EV_ASYNC_ENABLE
1906 root 1.307 if (async_pending)
1907 root 1.207 {
1908 root 1.307 async_pending = 0;
1909 root 1.207
1910     for (i = asynccnt; i--; )
1911     if (asyncs [i]->sent)
1912     {
1913     asyncs [i]->sent = 0;
1914     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1915     }
1916     }
1917 root 1.209 #endif
1918 root 1.207 }
1919    
1920     /*****************************************************************************/
1921    
1922 root 1.366 void
1923     ev_feed_signal (int signum)
1924 root 1.7 {
1925 root 1.207 #if EV_MULTIPLICITY
1926 root 1.306 EV_P = signals [signum - 1].loop;
1927 root 1.366
1928     if (!EV_A)
1929     return;
1930 root 1.207 #endif
1931    
1932 root 1.381 if (!ev_active (&pipe_w))
1933     return;
1934 root 1.378
1935 root 1.366 signals [signum - 1].pending = 1;
1936     evpipe_write (EV_A_ &sig_pending);
1937     }
1938    
1939     static void
1940     ev_sighandler (int signum)
1941     {
1942 root 1.322 #ifdef _WIN32
1943 root 1.218 signal (signum, ev_sighandler);
1944 root 1.67 #endif
1945    
1946 root 1.366 ev_feed_signal (signum);
1947 root 1.7 }
1948    
1949 root 1.140 void noinline
1950 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1951     {
1952 root 1.80 WL w;
1953    
1954 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1955     return;
1956    
1957     --signum;
1958    
1959 root 1.79 #if EV_MULTIPLICITY
1960 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1961     /* or, likely more useful, feeding a signal nobody is waiting for */
1962 root 1.79
1963 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1964 root 1.306 return;
1965 root 1.307 #endif
1966 root 1.306
1967 root 1.307 signals [signum].pending = 0;
1968 root 1.79
1969     for (w = signals [signum].head; w; w = w->next)
1970     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1971     }
1972    
1973 root 1.303 #if EV_USE_SIGNALFD
1974     static void
1975     sigfdcb (EV_P_ ev_io *iow, int revents)
1976     {
1977 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1978 root 1.303
1979     for (;;)
1980     {
1981     ssize_t res = read (sigfd, si, sizeof (si));
1982    
1983     /* not ISO-C, as res might be -1, but works with SuS */
1984     for (sip = si; (char *)sip < (char *)si + res; ++sip)
1985     ev_feed_signal_event (EV_A_ sip->ssi_signo);
1986    
1987     if (res < (ssize_t)sizeof (si))
1988     break;
1989     }
1990     }
1991     #endif
1992    
1993 root 1.336 #endif
1994    
1995 root 1.8 /*****************************************************************************/
1996    
1997 root 1.336 #if EV_CHILD_ENABLE
1998 root 1.182 static WL childs [EV_PID_HASHSIZE];
1999 root 1.71
2000 root 1.136 static ev_signal childev;
2001 root 1.59
2002 root 1.206 #ifndef WIFCONTINUED
2003     # define WIFCONTINUED(status) 0
2004     #endif
2005    
2006 root 1.288 /* handle a single child status event */
2007 root 1.284 inline_speed void
2008 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2009 root 1.47 {
2010 root 1.136 ev_child *w;
2011 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2012 root 1.47
2013 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2014 root 1.206 {
2015     if ((w->pid == pid || !w->pid)
2016     && (!traced || (w->flags & 1)))
2017     {
2018 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2019 root 1.206 w->rpid = pid;
2020     w->rstatus = status;
2021     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2022     }
2023     }
2024 root 1.47 }
2025    
2026 root 1.142 #ifndef WCONTINUED
2027     # define WCONTINUED 0
2028     #endif
2029    
2030 root 1.288 /* called on sigchld etc., calls waitpid */
2031 root 1.47 static void
2032 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2033 root 1.22 {
2034     int pid, status;
2035    
2036 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2037     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2038     if (!WCONTINUED
2039     || errno != EINVAL
2040     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2041     return;
2042    
2043 root 1.216 /* make sure we are called again until all children have been reaped */
2044 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2045     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2046 root 1.47
2047 root 1.216 child_reap (EV_A_ pid, pid, status);
2048 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2049 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2050 root 1.22 }
2051    
2052 root 1.45 #endif
2053    
2054 root 1.22 /*****************************************************************************/
2055    
2056 root 1.357 #if EV_USE_IOCP
2057     # include "ev_iocp.c"
2058     #endif
2059 root 1.118 #if EV_USE_PORT
2060     # include "ev_port.c"
2061     #endif
2062 root 1.44 #if EV_USE_KQUEUE
2063     # include "ev_kqueue.c"
2064     #endif
2065 root 1.29 #if EV_USE_EPOLL
2066 root 1.1 # include "ev_epoll.c"
2067     #endif
2068 root 1.59 #if EV_USE_POLL
2069 root 1.41 # include "ev_poll.c"
2070     #endif
2071 root 1.29 #if EV_USE_SELECT
2072 root 1.1 # include "ev_select.c"
2073     #endif
2074    
2075 root 1.379 int ecb_cold
2076 root 1.24 ev_version_major (void)
2077     {
2078     return EV_VERSION_MAJOR;
2079     }
2080    
2081 root 1.379 int ecb_cold
2082 root 1.24 ev_version_minor (void)
2083     {
2084     return EV_VERSION_MINOR;
2085     }
2086    
2087 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2088 root 1.379 int inline_size ecb_cold
2089 root 1.51 enable_secure (void)
2090 root 1.41 {
2091 root 1.103 #ifdef _WIN32
2092 root 1.49 return 0;
2093     #else
2094 root 1.41 return getuid () != geteuid ()
2095     || getgid () != getegid ();
2096 root 1.49 #endif
2097 root 1.41 }
2098    
2099 root 1.379 unsigned int ecb_cold
2100 root 1.129 ev_supported_backends (void)
2101     {
2102 root 1.130 unsigned int flags = 0;
2103 root 1.129
2104     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2105     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2106     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2107     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2108     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2109    
2110     return flags;
2111     }
2112    
2113 root 1.379 unsigned int ecb_cold
2114 root 1.130 ev_recommended_backends (void)
2115 root 1.1 {
2116 root 1.131 unsigned int flags = ev_supported_backends ();
2117 root 1.129
2118     #ifndef __NetBSD__
2119     /* kqueue is borked on everything but netbsd apparently */
2120     /* it usually doesn't work correctly on anything but sockets and pipes */
2121     flags &= ~EVBACKEND_KQUEUE;
2122     #endif
2123     #ifdef __APPLE__
2124 root 1.278 /* only select works correctly on that "unix-certified" platform */
2125     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2126     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2127 root 1.129 #endif
2128 root 1.342 #ifdef __FreeBSD__
2129     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2130     #endif
2131 root 1.129
2132     return flags;
2133 root 1.51 }
2134    
2135 root 1.379 unsigned int ecb_cold
2136 root 1.134 ev_embeddable_backends (void)
2137     {
2138 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2139    
2140 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2141 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2142     flags &= ~EVBACKEND_EPOLL;
2143 root 1.196
2144     return flags;
2145 root 1.134 }
2146    
2147     unsigned int
2148 root 1.130 ev_backend (EV_P)
2149     {
2150     return backend;
2151     }
2152    
2153 root 1.338 #if EV_FEATURE_API
2154 root 1.162 unsigned int
2155 root 1.340 ev_iteration (EV_P)
2156 root 1.162 {
2157     return loop_count;
2158     }
2159    
2160 root 1.294 unsigned int
2161 root 1.340 ev_depth (EV_P)
2162 root 1.294 {
2163     return loop_depth;
2164     }
2165    
2166 root 1.193 void
2167     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2168     {
2169     io_blocktime = interval;
2170     }
2171    
2172     void
2173     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2174     {
2175     timeout_blocktime = interval;
2176     }
2177    
2178 root 1.297 void
2179     ev_set_userdata (EV_P_ void *data)
2180     {
2181     userdata = data;
2182     }
2183    
2184     void *
2185     ev_userdata (EV_P)
2186     {
2187     return userdata;
2188     }
2189    
2190 root 1.379 void
2191     ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2192 root 1.297 {
2193     invoke_cb = invoke_pending_cb;
2194     }
2195    
2196 root 1.379 void
2197     ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2198 root 1.297 {
2199 root 1.298 release_cb = release;
2200     acquire_cb = acquire;
2201 root 1.297 }
2202     #endif
2203    
2204 root 1.288 /* initialise a loop structure, must be zero-initialised */
2205 root 1.379 static void noinline ecb_cold
2206 root 1.108 loop_init (EV_P_ unsigned int flags)
2207 root 1.51 {
2208 root 1.130 if (!backend)
2209 root 1.23 {
2210 root 1.366 origflags = flags;
2211    
2212 root 1.279 #if EV_USE_REALTIME
2213     if (!have_realtime)
2214     {
2215     struct timespec ts;
2216    
2217     if (!clock_gettime (CLOCK_REALTIME, &ts))
2218     have_realtime = 1;
2219     }
2220     #endif
2221    
2222 root 1.29 #if EV_USE_MONOTONIC
2223 root 1.279 if (!have_monotonic)
2224     {
2225     struct timespec ts;
2226    
2227     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2228     have_monotonic = 1;
2229     }
2230 root 1.1 #endif
2231    
2232 root 1.306 /* pid check not overridable via env */
2233     #ifndef _WIN32
2234     if (flags & EVFLAG_FORKCHECK)
2235     curpid = getpid ();
2236     #endif
2237    
2238     if (!(flags & EVFLAG_NOENV)
2239     && !enable_secure ()
2240     && getenv ("LIBEV_FLAGS"))
2241     flags = atoi (getenv ("LIBEV_FLAGS"));
2242    
2243 root 1.378 ev_rt_now = ev_time ();
2244     mn_now = get_clock ();
2245     now_floor = mn_now;
2246     rtmn_diff = ev_rt_now - mn_now;
2247 root 1.338 #if EV_FEATURE_API
2248 root 1.378 invoke_cb = ev_invoke_pending;
2249 root 1.297 #endif
2250 root 1.1
2251 root 1.378 io_blocktime = 0.;
2252     timeout_blocktime = 0.;
2253     backend = 0;
2254     backend_fd = -1;
2255     sig_pending = 0;
2256 root 1.307 #if EV_ASYNC_ENABLE
2257 root 1.378 async_pending = 0;
2258 root 1.307 #endif
2259 root 1.378 pipe_write_skipped = 0;
2260     pipe_write_wanted = 0;
2261 root 1.209 #if EV_USE_INOTIFY
2262 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2263 root 1.209 #endif
2264 root 1.303 #if EV_USE_SIGNALFD
2265 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2266 root 1.303 #endif
2267 root 1.193
2268 root 1.366 if (!(flags & EVBACKEND_MASK))
2269 root 1.129 flags |= ev_recommended_backends ();
2270 root 1.41
2271 root 1.357 #if EV_USE_IOCP
2272     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2273     #endif
2274 root 1.118 #if EV_USE_PORT
2275 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2276 root 1.118 #endif
2277 root 1.44 #if EV_USE_KQUEUE
2278 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2279 root 1.44 #endif
2280 root 1.29 #if EV_USE_EPOLL
2281 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2282 root 1.41 #endif
2283 root 1.59 #if EV_USE_POLL
2284 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2285 root 1.1 #endif
2286 root 1.29 #if EV_USE_SELECT
2287 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2288 root 1.1 #endif
2289 root 1.70
2290 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2291    
2292 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2293 root 1.288 ev_init (&pipe_w, pipecb);
2294     ev_set_priority (&pipe_w, EV_MAXPRI);
2295 root 1.336 #endif
2296 root 1.56 }
2297     }
2298    
2299 root 1.288 /* free up a loop structure */
2300 root 1.379 void ecb_cold
2301 root 1.359 ev_loop_destroy (EV_P)
2302 root 1.56 {
2303 root 1.65 int i;
2304    
2305 root 1.364 #if EV_MULTIPLICITY
2306 root 1.363 /* mimic free (0) */
2307     if (!EV_A)
2308     return;
2309 root 1.364 #endif
2310 root 1.363
2311 root 1.361 #if EV_CLEANUP_ENABLE
2312     /* queue cleanup watchers (and execute them) */
2313     if (expect_false (cleanupcnt))
2314     {
2315     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2316     EV_INVOKE_PENDING;
2317     }
2318     #endif
2319    
2320 root 1.359 #if EV_CHILD_ENABLE
2321     if (ev_is_active (&childev))
2322     {
2323     ev_ref (EV_A); /* child watcher */
2324     ev_signal_stop (EV_A_ &childev);
2325     }
2326     #endif
2327    
2328 root 1.288 if (ev_is_active (&pipe_w))
2329 root 1.207 {
2330 root 1.303 /*ev_ref (EV_A);*/
2331     /*ev_io_stop (EV_A_ &pipe_w);*/
2332 root 1.207
2333 root 1.220 #if EV_USE_EVENTFD
2334     if (evfd >= 0)
2335     close (evfd);
2336     #endif
2337    
2338     if (evpipe [0] >= 0)
2339     {
2340 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2341     EV_WIN32_CLOSE_FD (evpipe [1]);
2342 root 1.220 }
2343 root 1.207 }
2344    
2345 root 1.303 #if EV_USE_SIGNALFD
2346     if (ev_is_active (&sigfd_w))
2347 root 1.317 close (sigfd);
2348 root 1.303 #endif
2349    
2350 root 1.152 #if EV_USE_INOTIFY
2351     if (fs_fd >= 0)
2352     close (fs_fd);
2353     #endif
2354    
2355     if (backend_fd >= 0)
2356     close (backend_fd);
2357    
2358 root 1.357 #if EV_USE_IOCP
2359     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2360     #endif
2361 root 1.118 #if EV_USE_PORT
2362 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2363 root 1.118 #endif
2364 root 1.56 #if EV_USE_KQUEUE
2365 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2366 root 1.56 #endif
2367     #if EV_USE_EPOLL
2368 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2369 root 1.56 #endif
2370 root 1.59 #if EV_USE_POLL
2371 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2372 root 1.56 #endif
2373     #if EV_USE_SELECT
2374 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2375 root 1.56 #endif
2376 root 1.1
2377 root 1.65 for (i = NUMPRI; i--; )
2378 root 1.164 {
2379     array_free (pending, [i]);
2380     #if EV_IDLE_ENABLE
2381     array_free (idle, [i]);
2382     #endif
2383     }
2384 root 1.65
2385 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2386 root 1.186
2387 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2388 root 1.284 array_free (rfeed, EMPTY);
2389 root 1.164 array_free (fdchange, EMPTY);
2390     array_free (timer, EMPTY);
2391 root 1.140 #if EV_PERIODIC_ENABLE
2392 root 1.164 array_free (periodic, EMPTY);
2393 root 1.93 #endif
2394 root 1.187 #if EV_FORK_ENABLE
2395     array_free (fork, EMPTY);
2396     #endif
2397 root 1.360 #if EV_CLEANUP_ENABLE
2398     array_free (cleanup, EMPTY);
2399     #endif
2400 root 1.164 array_free (prepare, EMPTY);
2401     array_free (check, EMPTY);
2402 root 1.209 #if EV_ASYNC_ENABLE
2403     array_free (async, EMPTY);
2404     #endif
2405 root 1.65
2406 root 1.130 backend = 0;
2407 root 1.359
2408     #if EV_MULTIPLICITY
2409     if (ev_is_default_loop (EV_A))
2410     #endif
2411     ev_default_loop_ptr = 0;
2412     #if EV_MULTIPLICITY
2413     else
2414     ev_free (EV_A);
2415     #endif
2416 root 1.56 }
2417 root 1.22
2418 root 1.226 #if EV_USE_INOTIFY
2419 root 1.284 inline_size void infy_fork (EV_P);
2420 root 1.226 #endif
2421 root 1.154
2422 root 1.284 inline_size void
2423 root 1.56 loop_fork (EV_P)
2424     {
2425 root 1.118 #if EV_USE_PORT
2426 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2427 root 1.56 #endif
2428     #if EV_USE_KQUEUE
2429 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2430 root 1.45 #endif
2431 root 1.118 #if EV_USE_EPOLL
2432 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2433 root 1.118 #endif
2434 root 1.154 #if EV_USE_INOTIFY
2435     infy_fork (EV_A);
2436     #endif
2437 root 1.70
2438 root 1.288 if (ev_is_active (&pipe_w))
2439 root 1.70 {
2440 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2441 root 1.70
2442     ev_ref (EV_A);
2443 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2444 root 1.220
2445     #if EV_USE_EVENTFD
2446     if (evfd >= 0)
2447     close (evfd);
2448     #endif
2449    
2450     if (evpipe [0] >= 0)
2451     {
2452 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2453     EV_WIN32_CLOSE_FD (evpipe [1]);
2454 root 1.220 }
2455 root 1.207
2456 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2457 root 1.207 evpipe_init (EV_A);
2458 root 1.208 /* now iterate over everything, in case we missed something */
2459 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
2460 root 1.337 #endif
2461 root 1.70 }
2462    
2463     postfork = 0;
2464 root 1.1 }
2465    
2466 root 1.55 #if EV_MULTIPLICITY
2467 root 1.250
2468 root 1.379 struct ev_loop * ecb_cold
2469 root 1.108 ev_loop_new (unsigned int flags)
2470 root 1.54 {
2471 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2472 root 1.69
2473 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2474 root 1.108 loop_init (EV_A_ flags);
2475 root 1.56
2476 root 1.130 if (ev_backend (EV_A))
2477 root 1.306 return EV_A;
2478 root 1.54
2479 root 1.359 ev_free (EV_A);
2480 root 1.55 return 0;
2481 root 1.54 }
2482    
2483 root 1.297 #endif /* multiplicity */
2484 root 1.248
2485     #if EV_VERIFY
2486 root 1.379 static void noinline ecb_cold
2487 root 1.251 verify_watcher (EV_P_ W w)
2488     {
2489 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2490 root 1.251
2491     if (w->pending)
2492 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2493 root 1.251 }
2494    
2495 root 1.379 static void noinline ecb_cold
2496 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2497     {
2498     int i;
2499    
2500     for (i = HEAP0; i < N + HEAP0; ++i)
2501     {
2502 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2503     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2504     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2505 root 1.251
2506     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2507     }
2508     }
2509    
2510 root 1.379 static void noinline ecb_cold
2511 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2512 root 1.248 {
2513     while (cnt--)
2514 root 1.251 {
2515 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2516 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2517     }
2518 root 1.248 }
2519 root 1.250 #endif
2520 root 1.248
2521 root 1.338 #if EV_FEATURE_API
2522 root 1.379 void ecb_cold
2523 root 1.340 ev_verify (EV_P)
2524 root 1.248 {
2525 root 1.250 #if EV_VERIFY
2526 root 1.248 int i;
2527 root 1.251 WL w;
2528    
2529     assert (activecnt >= -1);
2530    
2531     assert (fdchangemax >= fdchangecnt);
2532     for (i = 0; i < fdchangecnt; ++i)
2533 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2534 root 1.251
2535     assert (anfdmax >= 0);
2536     for (i = 0; i < anfdmax; ++i)
2537     for (w = anfds [i].head; w; w = w->next)
2538     {
2539     verify_watcher (EV_A_ (W)w);
2540 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2541     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2542 root 1.251 }
2543    
2544     assert (timermax >= timercnt);
2545     verify_heap (EV_A_ timers, timercnt);
2546 root 1.248
2547     #if EV_PERIODIC_ENABLE
2548 root 1.251 assert (periodicmax >= periodiccnt);
2549     verify_heap (EV_A_ periodics, periodiccnt);
2550 root 1.248 #endif
2551    
2552 root 1.251 for (i = NUMPRI; i--; )
2553     {
2554     assert (pendingmax [i] >= pendingcnt [i]);
2555 root 1.248 #if EV_IDLE_ENABLE
2556 root 1.252 assert (idleall >= 0);
2557 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2558     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2559 root 1.248 #endif
2560 root 1.251 }
2561    
2562 root 1.248 #if EV_FORK_ENABLE
2563 root 1.251 assert (forkmax >= forkcnt);
2564     array_verify (EV_A_ (W *)forks, forkcnt);
2565 root 1.248 #endif
2566 root 1.251
2567 root 1.360 #if EV_CLEANUP_ENABLE
2568     assert (cleanupmax >= cleanupcnt);
2569     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2570     #endif
2571    
2572 root 1.250 #if EV_ASYNC_ENABLE
2573 root 1.251 assert (asyncmax >= asynccnt);
2574     array_verify (EV_A_ (W *)asyncs, asynccnt);
2575 root 1.250 #endif
2576 root 1.251
2577 root 1.337 #if EV_PREPARE_ENABLE
2578 root 1.251 assert (preparemax >= preparecnt);
2579     array_verify (EV_A_ (W *)prepares, preparecnt);
2580 root 1.337 #endif
2581 root 1.251
2582 root 1.337 #if EV_CHECK_ENABLE
2583 root 1.251 assert (checkmax >= checkcnt);
2584     array_verify (EV_A_ (W *)checks, checkcnt);
2585 root 1.337 #endif
2586 root 1.251
2587     # if 0
2588 root 1.336 #if EV_CHILD_ENABLE
2589 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2590 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2591 root 1.336 #endif
2592 root 1.251 # endif
2593 root 1.248 #endif
2594     }
2595 root 1.297 #endif
2596 root 1.56
2597     #if EV_MULTIPLICITY
2598 root 1.379 struct ev_loop * ecb_cold
2599 root 1.54 #else
2600     int
2601 root 1.358 #endif
2602 root 1.116 ev_default_loop (unsigned int flags)
2603 root 1.54 {
2604 root 1.116 if (!ev_default_loop_ptr)
2605 root 1.56 {
2606     #if EV_MULTIPLICITY
2607 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2608 root 1.56 #else
2609 ayin 1.117 ev_default_loop_ptr = 1;
2610 root 1.54 #endif
2611    
2612 root 1.110 loop_init (EV_A_ flags);
2613 root 1.56
2614 root 1.130 if (ev_backend (EV_A))
2615 root 1.56 {
2616 root 1.336 #if EV_CHILD_ENABLE
2617 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2618     ev_set_priority (&childev, EV_MAXPRI);
2619     ev_signal_start (EV_A_ &childev);
2620     ev_unref (EV_A); /* child watcher should not keep loop alive */
2621     #endif
2622     }
2623     else
2624 root 1.116 ev_default_loop_ptr = 0;
2625 root 1.56 }
2626 root 1.8
2627 root 1.116 return ev_default_loop_ptr;
2628 root 1.1 }
2629    
2630 root 1.24 void
2631 root 1.359 ev_loop_fork (EV_P)
2632 root 1.1 {
2633 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2634 root 1.1 }
2635    
2636 root 1.8 /*****************************************************************************/
2637    
2638 root 1.168 void
2639     ev_invoke (EV_P_ void *w, int revents)
2640     {
2641     EV_CB_INVOKE ((W)w, revents);
2642     }
2643    
2644 root 1.300 unsigned int
2645     ev_pending_count (EV_P)
2646     {
2647     int pri;
2648     unsigned int count = 0;
2649    
2650     for (pri = NUMPRI; pri--; )
2651     count += pendingcnt [pri];
2652    
2653     return count;
2654     }
2655    
2656 root 1.297 void noinline
2657 root 1.296 ev_invoke_pending (EV_P)
2658 root 1.1 {
2659 root 1.42 int pri;
2660    
2661     for (pri = NUMPRI; pri--; )
2662     while (pendingcnt [pri])
2663     {
2664     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2665 root 1.1
2666 root 1.288 p->w->pending = 0;
2667     EV_CB_INVOKE (p->w, p->events);
2668     EV_FREQUENT_CHECK;
2669 root 1.42 }
2670 root 1.1 }
2671    
2672 root 1.234 #if EV_IDLE_ENABLE
2673 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2674     /* only when higher priorities are idle" logic */
2675 root 1.284 inline_size void
2676 root 1.234 idle_reify (EV_P)
2677     {
2678     if (expect_false (idleall))
2679     {
2680     int pri;
2681    
2682     for (pri = NUMPRI; pri--; )
2683     {
2684     if (pendingcnt [pri])
2685     break;
2686    
2687     if (idlecnt [pri])
2688     {
2689     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2690     break;
2691     }
2692     }
2693     }
2694     }
2695     #endif
2696    
2697 root 1.288 /* make timers pending */
2698 root 1.284 inline_size void
2699 root 1.51 timers_reify (EV_P)
2700 root 1.1 {
2701 root 1.248 EV_FREQUENT_CHECK;
2702    
2703 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2704 root 1.1 {
2705 root 1.284 do
2706     {
2707     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2708 root 1.1
2709 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2710    
2711     /* first reschedule or stop timer */
2712     if (w->repeat)
2713     {
2714     ev_at (w) += w->repeat;
2715     if (ev_at (w) < mn_now)
2716     ev_at (w) = mn_now;
2717 root 1.61
2718 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2719 root 1.90
2720 root 1.284 ANHE_at_cache (timers [HEAP0]);
2721     downheap (timers, timercnt, HEAP0);
2722     }
2723     else
2724     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2725 root 1.243
2726 root 1.284 EV_FREQUENT_CHECK;
2727     feed_reverse (EV_A_ (W)w);
2728 root 1.12 }
2729 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2730 root 1.30
2731 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2732 root 1.12 }
2733     }
2734 root 1.4
2735 root 1.140 #if EV_PERIODIC_ENABLE
2736 root 1.370
2737 root 1.373 static void noinline
2738 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2739     {
2740 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2741     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2742    
2743     /* the above almost always errs on the low side */
2744     while (at <= ev_rt_now)
2745     {
2746     ev_tstamp nat = at + w->interval;
2747    
2748     /* when resolution fails us, we use ev_rt_now */
2749     if (expect_false (nat == at))
2750     {
2751     at = ev_rt_now;
2752     break;
2753     }
2754    
2755     at = nat;
2756     }
2757    
2758     ev_at (w) = at;
2759 root 1.370 }
2760    
2761 root 1.288 /* make periodics pending */
2762 root 1.284 inline_size void
2763 root 1.51 periodics_reify (EV_P)
2764 root 1.12 {
2765 root 1.248 EV_FREQUENT_CHECK;
2766 root 1.250
2767 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2768 root 1.12 {
2769 root 1.284 int feed_count = 0;
2770    
2771     do
2772     {
2773     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2774 root 1.1
2775 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2776 root 1.61
2777 root 1.284 /* first reschedule or stop timer */
2778     if (w->reschedule_cb)
2779     {
2780     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2781 root 1.243
2782 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2783 root 1.243
2784 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2785     downheap (periodics, periodiccnt, HEAP0);
2786     }
2787     else if (w->interval)
2788 root 1.246 {
2789 root 1.370 periodic_recalc (EV_A_ w);
2790 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2791     downheap (periodics, periodiccnt, HEAP0);
2792 root 1.246 }
2793 root 1.284 else
2794     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2795 root 1.243
2796 root 1.284 EV_FREQUENT_CHECK;
2797     feed_reverse (EV_A_ (W)w);
2798 root 1.1 }
2799 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2800 root 1.12
2801 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2802 root 1.12 }
2803     }
2804    
2805 root 1.288 /* simply recalculate all periodics */
2806 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2807 root 1.379 static void noinline ecb_cold
2808 root 1.54 periodics_reschedule (EV_P)
2809 root 1.12 {
2810     int i;
2811    
2812 root 1.13 /* adjust periodics after time jump */
2813 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2814 root 1.12 {
2815 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2816 root 1.12
2817 root 1.77 if (w->reschedule_cb)
2818 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2819 root 1.77 else if (w->interval)
2820 root 1.370 periodic_recalc (EV_A_ w);
2821 root 1.242
2822 root 1.248 ANHE_at_cache (periodics [i]);
2823 root 1.77 }
2824 root 1.12
2825 root 1.248 reheap (periodics, periodiccnt);
2826 root 1.1 }
2827 root 1.93 #endif
2828 root 1.1
2829 root 1.288 /* adjust all timers by a given offset */
2830 root 1.379 static void noinline ecb_cold
2831 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
2832     {
2833     int i;
2834    
2835     for (i = 0; i < timercnt; ++i)
2836     {
2837     ANHE *he = timers + i + HEAP0;
2838     ANHE_w (*he)->at += adjust;
2839     ANHE_at_cache (*he);
2840     }
2841     }
2842    
2843 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2844 root 1.324 /* also detect if there was a timejump, and act accordingly */
2845 root 1.284 inline_speed void
2846 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2847 root 1.4 {
2848 root 1.40 #if EV_USE_MONOTONIC
2849     if (expect_true (have_monotonic))
2850     {
2851 root 1.289 int i;
2852 root 1.178 ev_tstamp odiff = rtmn_diff;
2853    
2854     mn_now = get_clock ();
2855    
2856     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2857     /* interpolate in the meantime */
2858     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2859 root 1.40 {
2860 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2861     return;
2862     }
2863    
2864     now_floor = mn_now;
2865     ev_rt_now = ev_time ();
2866 root 1.4
2867 root 1.178 /* loop a few times, before making important decisions.
2868     * on the choice of "4": one iteration isn't enough,
2869     * in case we get preempted during the calls to
2870     * ev_time and get_clock. a second call is almost guaranteed
2871     * to succeed in that case, though. and looping a few more times
2872     * doesn't hurt either as we only do this on time-jumps or
2873     * in the unlikely event of having been preempted here.
2874     */
2875     for (i = 4; --i; )
2876     {
2877 root 1.373 ev_tstamp diff;
2878 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2879 root 1.4
2880 root 1.373 diff = odiff - rtmn_diff;
2881    
2882     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2883 root 1.178 return; /* all is well */
2884 root 1.4
2885 root 1.178 ev_rt_now = ev_time ();
2886     mn_now = get_clock ();
2887     now_floor = mn_now;
2888     }
2889 root 1.4
2890 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2891     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2892 root 1.140 # if EV_PERIODIC_ENABLE
2893 root 1.178 periodics_reschedule (EV_A);
2894 root 1.93 # endif
2895 root 1.4 }
2896     else
2897 root 1.40 #endif
2898 root 1.4 {
2899 root 1.85 ev_rt_now = ev_time ();
2900 root 1.40
2901 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2902 root 1.13 {
2903 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2904     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2905 root 1.140 #if EV_PERIODIC_ENABLE
2906 root 1.54 periodics_reschedule (EV_A);
2907 root 1.93 #endif
2908 root 1.13 }
2909 root 1.4
2910 root 1.85 mn_now = ev_rt_now;
2911 root 1.4 }
2912     }
2913    
2914 root 1.51 void
2915 root 1.353 ev_run (EV_P_ int flags)
2916 root 1.1 {
2917 root 1.338 #if EV_FEATURE_API
2918 root 1.294 ++loop_depth;
2919 root 1.297 #endif
2920 root 1.294
2921 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2922 root 1.298
2923 root 1.353 loop_done = EVBREAK_CANCEL;
2924 root 1.1
2925 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2926 root 1.158
2927 root 1.161 do
2928 root 1.9 {
2929 root 1.250 #if EV_VERIFY >= 2
2930 root 1.340 ev_verify (EV_A);
2931 root 1.250 #endif
2932    
2933 root 1.158 #ifndef _WIN32
2934     if (expect_false (curpid)) /* penalise the forking check even more */
2935     if (expect_false (getpid () != curpid))
2936     {
2937     curpid = getpid ();
2938     postfork = 1;
2939     }
2940     #endif
2941    
2942 root 1.157 #if EV_FORK_ENABLE
2943     /* we might have forked, so queue fork handlers */
2944     if (expect_false (postfork))
2945     if (forkcnt)
2946     {
2947     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2948 root 1.297 EV_INVOKE_PENDING;
2949 root 1.157 }
2950     #endif
2951 root 1.147
2952 root 1.337 #if EV_PREPARE_ENABLE
2953 root 1.170 /* queue prepare watchers (and execute them) */
2954 root 1.40 if (expect_false (preparecnt))
2955 root 1.20 {
2956 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2957 root 1.297 EV_INVOKE_PENDING;
2958 root 1.20 }
2959 root 1.337 #endif
2960 root 1.9
2961 root 1.298 if (expect_false (loop_done))
2962     break;
2963    
2964 root 1.70 /* we might have forked, so reify kernel state if necessary */
2965     if (expect_false (postfork))
2966     loop_fork (EV_A);
2967    
2968 root 1.1 /* update fd-related kernel structures */
2969 root 1.51 fd_reify (EV_A);
2970 root 1.1
2971     /* calculate blocking time */
2972 root 1.135 {
2973 root 1.193 ev_tstamp waittime = 0.;
2974     ev_tstamp sleeptime = 0.;
2975 root 1.12
2976 root 1.353 /* remember old timestamp for io_blocktime calculation */
2977     ev_tstamp prev_mn_now = mn_now;
2978 root 1.293
2979 root 1.353 /* update time to cancel out callback processing overhead */
2980     time_update (EV_A_ 1e100);
2981 root 1.135
2982 root 1.378 /* from now on, we want a pipe-wake-up */
2983     pipe_write_wanted = 1;
2984    
2985 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2986 root 1.383
2987 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2988 root 1.353 {
2989 root 1.287 waittime = MAX_BLOCKTIME;
2990    
2991 root 1.135 if (timercnt)
2992     {
2993 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2994 root 1.193 if (waittime > to) waittime = to;
2995 root 1.135 }
2996 root 1.4
2997 root 1.140 #if EV_PERIODIC_ENABLE
2998 root 1.135 if (periodiccnt)
2999     {
3000 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3001 root 1.193 if (waittime > to) waittime = to;
3002 root 1.135 }
3003 root 1.93 #endif
3004 root 1.4
3005 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3006 root 1.193 if (expect_false (waittime < timeout_blocktime))
3007     waittime = timeout_blocktime;
3008    
3009 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3010     /* to pass a minimum nonzero value to the backend */
3011     if (expect_false (waittime < backend_mintime))
3012     waittime = backend_mintime;
3013    
3014 root 1.293 /* extra check because io_blocktime is commonly 0 */
3015     if (expect_false (io_blocktime))
3016     {
3017     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3018 root 1.193
3019 root 1.376 if (sleeptime > waittime - backend_mintime)
3020     sleeptime = waittime - backend_mintime;
3021 root 1.193
3022 root 1.293 if (expect_true (sleeptime > 0.))
3023     {
3024     ev_sleep (sleeptime);
3025     waittime -= sleeptime;
3026     }
3027 root 1.193 }
3028 root 1.135 }
3029 root 1.1
3030 root 1.338 #if EV_FEATURE_API
3031 root 1.162 ++loop_count;
3032 root 1.297 #endif
3033 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3034 root 1.193 backend_poll (EV_A_ waittime);
3035 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3036 root 1.178
3037 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3038 root 1.378
3039     if (pipe_write_skipped)
3040     {
3041     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3042     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3043     }
3044    
3045    
3046 root 1.178 /* update ev_rt_now, do magic */
3047 root 1.193 time_update (EV_A_ waittime + sleeptime);
3048 root 1.135 }
3049 root 1.1
3050 root 1.9 /* queue pending timers and reschedule them */
3051 root 1.51 timers_reify (EV_A); /* relative timers called last */
3052 root 1.140 #if EV_PERIODIC_ENABLE
3053 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3054 root 1.93 #endif
3055 root 1.1
3056 root 1.164 #if EV_IDLE_ENABLE
3057 root 1.137 /* queue idle watchers unless other events are pending */
3058 root 1.164 idle_reify (EV_A);
3059     #endif
3060 root 1.9
3061 root 1.337 #if EV_CHECK_ENABLE
3062 root 1.20 /* queue check watchers, to be executed first */
3063 root 1.123 if (expect_false (checkcnt))
3064 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3065 root 1.337 #endif
3066 root 1.9
3067 root 1.297 EV_INVOKE_PENDING;
3068 root 1.1 }
3069 root 1.219 while (expect_true (
3070     activecnt
3071     && !loop_done
3072 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3073 root 1.219 ));
3074 root 1.13
3075 root 1.353 if (loop_done == EVBREAK_ONE)
3076     loop_done = EVBREAK_CANCEL;
3077 root 1.294
3078 root 1.338 #if EV_FEATURE_API
3079 root 1.294 --loop_depth;
3080 root 1.297 #endif
3081 root 1.51 }
3082    
3083     void
3084 root 1.353 ev_break (EV_P_ int how)
3085 root 1.51 {
3086     loop_done = how;
3087 root 1.1 }
3088    
3089 root 1.285 void
3090     ev_ref (EV_P)
3091     {
3092     ++activecnt;
3093     }
3094    
3095     void
3096     ev_unref (EV_P)
3097     {
3098     --activecnt;
3099     }
3100    
3101     void
3102     ev_now_update (EV_P)
3103     {
3104     time_update (EV_A_ 1e100);
3105     }
3106    
3107     void
3108     ev_suspend (EV_P)
3109     {
3110     ev_now_update (EV_A);
3111     }
3112    
3113     void
3114     ev_resume (EV_P)
3115     {
3116     ev_tstamp mn_prev = mn_now;
3117    
3118     ev_now_update (EV_A);
3119     timers_reschedule (EV_A_ mn_now - mn_prev);
3120 root 1.286 #if EV_PERIODIC_ENABLE
3121 root 1.288 /* TODO: really do this? */
3122 root 1.285 periodics_reschedule (EV_A);
3123 root 1.286 #endif
3124 root 1.285 }
3125    
3126 root 1.8 /*****************************************************************************/
3127 root 1.288 /* singly-linked list management, used when the expected list length is short */
3128 root 1.8
3129 root 1.284 inline_size void
3130 root 1.10 wlist_add (WL *head, WL elem)
3131 root 1.1 {
3132     elem->next = *head;
3133     *head = elem;
3134     }
3135    
3136 root 1.284 inline_size void
3137 root 1.10 wlist_del (WL *head, WL elem)
3138 root 1.1 {
3139     while (*head)
3140     {
3141 root 1.307 if (expect_true (*head == elem))
3142 root 1.1 {
3143     *head = elem->next;
3144 root 1.307 break;
3145 root 1.1 }
3146    
3147     head = &(*head)->next;
3148     }
3149     }
3150    
3151 root 1.288 /* internal, faster, version of ev_clear_pending */
3152 root 1.284 inline_speed void
3153 root 1.166 clear_pending (EV_P_ W w)
3154 root 1.16 {
3155     if (w->pending)
3156     {
3157 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3158 root 1.16 w->pending = 0;
3159     }
3160     }
3161    
3162 root 1.167 int
3163     ev_clear_pending (EV_P_ void *w)
3164 root 1.166 {
3165     W w_ = (W)w;
3166     int pending = w_->pending;
3167    
3168 root 1.172 if (expect_true (pending))
3169     {
3170     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3171 root 1.288 p->w = (W)&pending_w;
3172 root 1.172 w_->pending = 0;
3173     return p->events;
3174     }
3175     else
3176 root 1.167 return 0;
3177 root 1.166 }
3178    
3179 root 1.284 inline_size void
3180 root 1.164 pri_adjust (EV_P_ W w)
3181     {
3182 root 1.295 int pri = ev_priority (w);
3183 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3184     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3185 root 1.295 ev_set_priority (w, pri);
3186 root 1.164 }
3187    
3188 root 1.284 inline_speed void
3189 root 1.51 ev_start (EV_P_ W w, int active)
3190 root 1.1 {
3191 root 1.164 pri_adjust (EV_A_ w);
3192 root 1.1 w->active = active;
3193 root 1.51 ev_ref (EV_A);
3194 root 1.1 }
3195    
3196 root 1.284 inline_size void
3197 root 1.51 ev_stop (EV_P_ W w)
3198 root 1.1 {
3199 root 1.51 ev_unref (EV_A);
3200 root 1.1 w->active = 0;
3201     }
3202    
3203 root 1.8 /*****************************************************************************/
3204    
3205 root 1.171 void noinline
3206 root 1.136 ev_io_start (EV_P_ ev_io *w)
3207 root 1.1 {
3208 root 1.37 int fd = w->fd;
3209    
3210 root 1.123 if (expect_false (ev_is_active (w)))
3211 root 1.1 return;
3212    
3213 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3214 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3215 root 1.33
3216 root 1.248 EV_FREQUENT_CHECK;
3217    
3218 root 1.51 ev_start (EV_A_ (W)w, 1);
3219 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3220 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3221 root 1.1
3222 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3223 root 1.281 w->events &= ~EV__IOFDSET;
3224 root 1.248
3225     EV_FREQUENT_CHECK;
3226 root 1.1 }
3227    
3228 root 1.171 void noinline
3229 root 1.136 ev_io_stop (EV_P_ ev_io *w)
3230 root 1.1 {
3231 root 1.166 clear_pending (EV_A_ (W)w);
3232 root 1.123 if (expect_false (!ev_is_active (w)))
3233 root 1.1 return;
3234    
3235 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3236 root 1.89
3237 root 1.248 EV_FREQUENT_CHECK;
3238    
3239 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3240 root 1.51 ev_stop (EV_A_ (W)w);
3241 root 1.1
3242 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3243 root 1.248
3244     EV_FREQUENT_CHECK;
3245 root 1.1 }
3246    
3247 root 1.171 void noinline
3248 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
3249 root 1.1 {
3250 root 1.123 if (expect_false (ev_is_active (w)))
3251 root 1.1 return;
3252    
3253 root 1.228 ev_at (w) += mn_now;
3254 root 1.12
3255 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3256 root 1.13
3257 root 1.248 EV_FREQUENT_CHECK;
3258    
3259     ++timercnt;
3260     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3261 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3262     ANHE_w (timers [ev_active (w)]) = (WT)w;
3263 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3264 root 1.235 upheap (timers, ev_active (w));
3265 root 1.62
3266 root 1.248 EV_FREQUENT_CHECK;
3267    
3268 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3269 root 1.12 }
3270    
3271 root 1.171 void noinline
3272 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
3273 root 1.12 {
3274 root 1.166 clear_pending (EV_A_ (W)w);
3275 root 1.123 if (expect_false (!ev_is_active (w)))
3276 root 1.12 return;
3277    
3278 root 1.248 EV_FREQUENT_CHECK;
3279    
3280 root 1.230 {
3281     int active = ev_active (w);
3282 root 1.62
3283 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3284 root 1.151
3285 root 1.248 --timercnt;
3286    
3287     if (expect_true (active < timercnt + HEAP0))
3288 root 1.151 {
3289 root 1.248 timers [active] = timers [timercnt + HEAP0];
3290 root 1.181 adjustheap (timers, timercnt, active);
3291 root 1.151 }
3292 root 1.248 }
3293 root 1.228
3294     ev_at (w) -= mn_now;
3295 root 1.14
3296 root 1.51 ev_stop (EV_A_ (W)w);
3297 root 1.328
3298     EV_FREQUENT_CHECK;
3299 root 1.12 }
3300 root 1.4
3301 root 1.171 void noinline
3302 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
3303 root 1.14 {
3304 root 1.248 EV_FREQUENT_CHECK;
3305    
3306 root 1.407 clear_pending (EV_A_ (W)w);
3307 root 1.406
3308 root 1.14 if (ev_is_active (w))
3309     {
3310     if (w->repeat)
3311 root 1.99 {
3312 root 1.228 ev_at (w) = mn_now + w->repeat;
3313 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3314 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3315 root 1.99 }
3316 root 1.14 else
3317 root 1.51 ev_timer_stop (EV_A_ w);
3318 root 1.14 }
3319     else if (w->repeat)
3320 root 1.112 {
3321 root 1.229 ev_at (w) = w->repeat;
3322 root 1.112 ev_timer_start (EV_A_ w);
3323     }
3324 root 1.248
3325     EV_FREQUENT_CHECK;
3326 root 1.14 }
3327    
3328 root 1.301 ev_tstamp
3329     ev_timer_remaining (EV_P_ ev_timer *w)
3330     {
3331     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3332     }
3333    
3334 root 1.140 #if EV_PERIODIC_ENABLE
3335 root 1.171 void noinline
3336 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
3337 root 1.12 {
3338 root 1.123 if (expect_false (ev_is_active (w)))
3339 root 1.12 return;
3340 root 1.1
3341 root 1.77 if (w->reschedule_cb)
3342 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3343 root 1.77 else if (w->interval)
3344     {
3345 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3346 root 1.370 periodic_recalc (EV_A_ w);
3347 root 1.77 }
3348 root 1.173 else
3349 root 1.228 ev_at (w) = w->offset;
3350 root 1.12
3351 root 1.248 EV_FREQUENT_CHECK;
3352    
3353     ++periodiccnt;
3354     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3355 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3356     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3357 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3358 root 1.235 upheap (periodics, ev_active (w));
3359 root 1.62
3360 root 1.248 EV_FREQUENT_CHECK;
3361    
3362 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3363 root 1.1 }
3364    
3365 root 1.171 void noinline
3366 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
3367 root 1.1 {
3368 root 1.166 clear_pending (EV_A_ (W)w);
3369 root 1.123 if (expect_false (!ev_is_active (w)))
3370 root 1.1 return;
3371    
3372 root 1.248 EV_FREQUENT_CHECK;
3373    
3374 root 1.230 {
3375     int active = ev_active (w);
3376 root 1.62
3377 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3378 root 1.151
3379 root 1.248 --periodiccnt;
3380    
3381     if (expect_true (active < periodiccnt + HEAP0))
3382 root 1.151 {
3383 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3384 root 1.181 adjustheap (periodics, periodiccnt, active);
3385 root 1.151 }
3386 root 1.248 }
3387 root 1.228
3388 root 1.328 ev_stop (EV_A_ (W)w);
3389    
3390 root 1.248 EV_FREQUENT_CHECK;
3391 root 1.1 }
3392    
3393 root 1.171 void noinline
3394 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
3395 root 1.77 {
3396 root 1.84 /* TODO: use adjustheap and recalculation */
3397 root 1.77 ev_periodic_stop (EV_A_ w);
3398     ev_periodic_start (EV_A_ w);
3399     }
3400 root 1.93 #endif
3401 root 1.77
3402 root 1.56 #ifndef SA_RESTART
3403     # define SA_RESTART 0
3404     #endif
3405    
3406 root 1.336 #if EV_SIGNAL_ENABLE
3407    
3408 root 1.171 void noinline
3409 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
3410 root 1.56 {
3411 root 1.123 if (expect_false (ev_is_active (w)))
3412 root 1.56 return;
3413    
3414 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3415    
3416     #if EV_MULTIPLICITY
3417 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3418 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3419    
3420     signals [w->signum - 1].loop = EV_A;
3421     #endif
3422 root 1.56
3423 root 1.303 EV_FREQUENT_CHECK;
3424    
3425     #if EV_USE_SIGNALFD
3426     if (sigfd == -2)
3427     {
3428     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3429     if (sigfd < 0 && errno == EINVAL)
3430     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3431    
3432     if (sigfd >= 0)
3433     {
3434     fd_intern (sigfd); /* doing it twice will not hurt */
3435    
3436     sigemptyset (&sigfd_set);
3437    
3438     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3439     ev_set_priority (&sigfd_w, EV_MAXPRI);
3440     ev_io_start (EV_A_ &sigfd_w);
3441     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3442     }
3443     }
3444    
3445     if (sigfd >= 0)
3446     {
3447     /* TODO: check .head */
3448     sigaddset (&sigfd_set, w->signum);
3449     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3450 root 1.207
3451 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3452     }
3453 root 1.180 #endif
3454    
3455 root 1.56 ev_start (EV_A_ (W)w, 1);
3456 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3457 root 1.56
3458 root 1.63 if (!((WL)w)->next)
3459 root 1.304 # if EV_USE_SIGNALFD
3460 root 1.306 if (sigfd < 0) /*TODO*/
3461 root 1.304 # endif
3462 root 1.306 {
3463 root 1.322 # ifdef _WIN32
3464 root 1.317 evpipe_init (EV_A);
3465    
3466 root 1.306 signal (w->signum, ev_sighandler);
3467     # else
3468     struct sigaction sa;
3469    
3470     evpipe_init (EV_A);
3471    
3472     sa.sa_handler = ev_sighandler;
3473     sigfillset (&sa.sa_mask);
3474     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3475     sigaction (w->signum, &sa, 0);
3476    
3477 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3478     {
3479     sigemptyset (&sa.sa_mask);
3480     sigaddset (&sa.sa_mask, w->signum);
3481     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3482     }
3483 root 1.67 #endif
3484 root 1.306 }
3485 root 1.248
3486     EV_FREQUENT_CHECK;
3487 root 1.56 }
3488    
3489 root 1.171 void noinline
3490 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
3491 root 1.56 {
3492 root 1.166 clear_pending (EV_A_ (W)w);
3493 root 1.123 if (expect_false (!ev_is_active (w)))
3494 root 1.56 return;
3495    
3496 root 1.248 EV_FREQUENT_CHECK;
3497    
3498 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3499 root 1.56 ev_stop (EV_A_ (W)w);
3500    
3501     if (!signals [w->signum - 1].head)
3502 root 1.306 {
3503 root 1.307 #if EV_MULTIPLICITY
3504 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3505 root 1.307 #endif
3506     #if EV_USE_SIGNALFD
3507 root 1.306 if (sigfd >= 0)
3508     {
3509 root 1.321 sigset_t ss;
3510    
3511     sigemptyset (&ss);
3512     sigaddset (&ss, w->signum);
3513 root 1.306 sigdelset (&sigfd_set, w->signum);
3514 root 1.321
3515 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3516 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3517 root 1.306 }
3518     else
3519 root 1.307 #endif
3520 root 1.306 signal (w->signum, SIG_DFL);
3521     }
3522 root 1.248
3523     EV_FREQUENT_CHECK;
3524 root 1.56 }
3525    
3526 root 1.336 #endif
3527    
3528     #if EV_CHILD_ENABLE
3529    
3530 root 1.28 void
3531 root 1.136 ev_child_start (EV_P_ ev_child *w)
3532 root 1.22 {
3533 root 1.56 #if EV_MULTIPLICITY
3534 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3535 root 1.56 #endif
3536 root 1.123 if (expect_false (ev_is_active (w)))
3537 root 1.22 return;
3538    
3539 root 1.248 EV_FREQUENT_CHECK;
3540    
3541 root 1.51 ev_start (EV_A_ (W)w, 1);
3542 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3543 root 1.248
3544     EV_FREQUENT_CHECK;
3545 root 1.22 }
3546    
3547 root 1.28 void
3548 root 1.136 ev_child_stop (EV_P_ ev_child *w)
3549 root 1.22 {
3550 root 1.166 clear_pending (EV_A_ (W)w);
3551 root 1.123 if (expect_false (!ev_is_active (w)))
3552 root 1.22 return;
3553    
3554 root 1.248 EV_FREQUENT_CHECK;
3555    
3556 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3557 root 1.51 ev_stop (EV_A_ (W)w);
3558 root 1.248
3559     EV_FREQUENT_CHECK;
3560 root 1.22 }
3561    
3562 root 1.336 #endif
3563    
3564 root 1.140 #if EV_STAT_ENABLE
3565    
3566     # ifdef _WIN32
3567 root 1.146 # undef lstat
3568     # define lstat(a,b) _stati64 (a,b)
3569 root 1.140 # endif
3570    
3571 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3572     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3573     #define MIN_STAT_INTERVAL 0.1074891
3574 root 1.143
3575 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3576 root 1.152
3577     #if EV_USE_INOTIFY
3578 root 1.326
3579     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3580     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3581 root 1.152
3582     static void noinline
3583     infy_add (EV_P_ ev_stat *w)
3584     {
3585     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3586    
3587 root 1.318 if (w->wd >= 0)
3588 root 1.152 {
3589 root 1.318 struct statfs sfs;
3590    
3591     /* now local changes will be tracked by inotify, but remote changes won't */
3592     /* unless the filesystem is known to be local, we therefore still poll */
3593     /* also do poll on <2.6.25, but with normal frequency */
3594    
3595     if (!fs_2625)
3596     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3597     else if (!statfs (w->path, &sfs)
3598     && (sfs.f_type == 0x1373 /* devfs */
3599     || sfs.f_type == 0xEF53 /* ext2/3 */
3600     || sfs.f_type == 0x3153464a /* jfs */
3601     || sfs.f_type == 0x52654973 /* reiser3 */
3602     || sfs.f_type == 0x01021994 /* tempfs */
3603     || sfs.f_type == 0x58465342 /* xfs */))
3604     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3605     else
3606     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3607     }
3608     else
3609     {
3610     /* can't use inotify, continue to stat */
3611 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3612 root 1.152
3613 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3614 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3615 root 1.233 /* but an efficiency issue only */
3616 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3617 root 1.152 {
3618 root 1.153 char path [4096];
3619 root 1.152 strcpy (path, w->path);
3620    
3621     do
3622     {
3623     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3624     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3625    
3626     char *pend = strrchr (path, '/');
3627    
3628 root 1.275 if (!pend || pend == path)
3629     break;
3630 root 1.152
3631     *pend = 0;
3632 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3633 root 1.372 }
3634 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3635     }
3636     }
3637 root 1.275
3638     if (w->wd >= 0)
3639 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3640 root 1.152
3641 root 1.318 /* now re-arm timer, if required */
3642     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3643     ev_timer_again (EV_A_ &w->timer);
3644     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3645 root 1.152 }
3646    
3647     static void noinline
3648     infy_del (EV_P_ ev_stat *w)
3649     {
3650     int slot;
3651     int wd = w->wd;
3652    
3653     if (wd < 0)
3654     return;
3655    
3656     w->wd = -2;
3657 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3658 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3659    
3660     /* remove this watcher, if others are watching it, they will rearm */
3661     inotify_rm_watch (fs_fd, wd);
3662     }
3663    
3664     static void noinline
3665     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3666     {
3667     if (slot < 0)
3668 root 1.264 /* overflow, need to check for all hash slots */
3669 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3670 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3671     else
3672     {
3673     WL w_;
3674    
3675 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3676 root 1.152 {
3677     ev_stat *w = (ev_stat *)w_;
3678     w_ = w_->next; /* lets us remove this watcher and all before it */
3679    
3680     if (w->wd == wd || wd == -1)
3681     {
3682     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3683     {
3684 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3685 root 1.152 w->wd = -1;
3686     infy_add (EV_A_ w); /* re-add, no matter what */
3687     }
3688    
3689 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3690 root 1.152 }
3691     }
3692     }
3693     }
3694    
3695     static void
3696     infy_cb (EV_P_ ev_io *w, int revents)
3697     {
3698     char buf [EV_INOTIFY_BUFSIZE];
3699     int ofs;
3700     int len = read (fs_fd, buf, sizeof (buf));
3701    
3702 root 1.326 for (ofs = 0; ofs < len; )
3703     {
3704     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3705     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3706     ofs += sizeof (struct inotify_event) + ev->len;
3707     }
3708 root 1.152 }
3709    
3710 root 1.379 inline_size void ecb_cold
3711 root 1.330 ev_check_2625 (EV_P)
3712     {
3713     /* kernels < 2.6.25 are borked
3714     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3715     */
3716     if (ev_linux_version () < 0x020619)
3717 root 1.273 return;
3718 root 1.264
3719 root 1.273 fs_2625 = 1;
3720     }
3721 root 1.264
3722 root 1.315 inline_size int
3723     infy_newfd (void)
3724     {
3725     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3726     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3727     if (fd >= 0)
3728     return fd;
3729     #endif
3730     return inotify_init ();
3731     }
3732    
3733 root 1.284 inline_size void
3734 root 1.273 infy_init (EV_P)
3735     {
3736     if (fs_fd != -2)
3737     return;
3738 root 1.264
3739 root 1.273 fs_fd = -1;
3740 root 1.264
3741 root 1.330 ev_check_2625 (EV_A);
3742 root 1.264
3743 root 1.315 fs_fd = infy_newfd ();
3744 root 1.152
3745     if (fs_fd >= 0)
3746     {
3747 root 1.315 fd_intern (fs_fd);
3748 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3749     ev_set_priority (&fs_w, EV_MAXPRI);
3750     ev_io_start (EV_A_ &fs_w);
3751 root 1.317 ev_unref (EV_A);
3752 root 1.152 }
3753     }
3754    
3755 root 1.284 inline_size void
3756 root 1.154 infy_fork (EV_P)
3757     {
3758     int slot;
3759    
3760     if (fs_fd < 0)
3761     return;
3762    
3763 root 1.317 ev_ref (EV_A);
3764 root 1.315 ev_io_stop (EV_A_ &fs_w);
3765 root 1.154 close (fs_fd);
3766 root 1.315 fs_fd = infy_newfd ();
3767    
3768     if (fs_fd >= 0)
3769     {
3770     fd_intern (fs_fd);
3771     ev_io_set (&fs_w, fs_fd, EV_READ);
3772     ev_io_start (EV_A_ &fs_w);
3773 root 1.317 ev_unref (EV_A);
3774 root 1.315 }
3775 root 1.154
3776 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3777 root 1.154 {
3778     WL w_ = fs_hash [slot].head;
3779     fs_hash [slot].head = 0;
3780    
3781     while (w_)
3782     {
3783     ev_stat *w = (ev_stat *)w_;
3784     w_ = w_->next; /* lets us add this watcher */
3785    
3786     w->wd = -1;
3787    
3788     if (fs_fd >= 0)
3789     infy_add (EV_A_ w); /* re-add, no matter what */
3790     else
3791 root 1.318 {
3792     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3793     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3794     ev_timer_again (EV_A_ &w->timer);
3795     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3796     }
3797 root 1.154 }
3798     }
3799     }
3800    
3801 root 1.152 #endif
3802    
3803 root 1.255 #ifdef _WIN32
3804     # define EV_LSTAT(p,b) _stati64 (p, b)
3805     #else
3806     # define EV_LSTAT(p,b) lstat (p, b)
3807     #endif
3808    
3809 root 1.140 void
3810     ev_stat_stat (EV_P_ ev_stat *w)
3811     {
3812     if (lstat (w->path, &w->attr) < 0)
3813     w->attr.st_nlink = 0;
3814     else if (!w->attr.st_nlink)
3815     w->attr.st_nlink = 1;
3816     }
3817    
3818 root 1.157 static void noinline
3819 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3820     {
3821     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3822    
3823 root 1.320 ev_statdata prev = w->attr;
3824 root 1.140 ev_stat_stat (EV_A_ w);
3825    
3826 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3827     if (
3828 root 1.320 prev.st_dev != w->attr.st_dev
3829     || prev.st_ino != w->attr.st_ino
3830     || prev.st_mode != w->attr.st_mode
3831     || prev.st_nlink != w->attr.st_nlink
3832     || prev.st_uid != w->attr.st_uid
3833     || prev.st_gid != w->attr.st_gid
3834     || prev.st_rdev != w->attr.st_rdev
3835     || prev.st_size != w->attr.st_size
3836     || prev.st_atime != w->attr.st_atime
3837     || prev.st_mtime != w->attr.st_mtime
3838     || prev.st_ctime != w->attr.st_ctime
3839 root 1.156 ) {
3840 root 1.320 /* we only update w->prev on actual differences */
3841     /* in case we test more often than invoke the callback, */
3842     /* to ensure that prev is always different to attr */
3843     w->prev = prev;
3844    
3845 root 1.152 #if EV_USE_INOTIFY
3846 root 1.264 if (fs_fd >= 0)
3847     {
3848     infy_del (EV_A_ w);
3849     infy_add (EV_A_ w);
3850     ev_stat_stat (EV_A_ w); /* avoid race... */
3851     }
3852 root 1.152 #endif
3853    
3854     ev_feed_event (EV_A_ w, EV_STAT);
3855     }
3856 root 1.140 }
3857    
3858     void
3859     ev_stat_start (EV_P_ ev_stat *w)
3860     {
3861     if (expect_false (ev_is_active (w)))
3862     return;
3863    
3864     ev_stat_stat (EV_A_ w);
3865    
3866 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3867     w->interval = MIN_STAT_INTERVAL;
3868 root 1.143
3869 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3870 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3871 root 1.152
3872     #if EV_USE_INOTIFY
3873     infy_init (EV_A);
3874    
3875     if (fs_fd >= 0)
3876     infy_add (EV_A_ w);
3877     else
3878     #endif
3879 root 1.318 {
3880     ev_timer_again (EV_A_ &w->timer);
3881     ev_unref (EV_A);
3882     }
3883 root 1.140
3884     ev_start (EV_A_ (W)w, 1);
3885 root 1.248
3886     EV_FREQUENT_CHECK;
3887 root 1.140 }
3888    
3889     void
3890     ev_stat_stop (EV_P_ ev_stat *w)
3891     {
3892 root 1.166 clear_pending (EV_A_ (W)w);
3893 root 1.140 if (expect_false (!ev_is_active (w)))
3894     return;
3895    
3896 root 1.248 EV_FREQUENT_CHECK;
3897    
3898 root 1.152 #if EV_USE_INOTIFY
3899     infy_del (EV_A_ w);
3900     #endif
3901 root 1.318
3902     if (ev_is_active (&w->timer))
3903     {
3904     ev_ref (EV_A);
3905     ev_timer_stop (EV_A_ &w->timer);
3906     }
3907 root 1.140
3908 root 1.134 ev_stop (EV_A_ (W)w);
3909 root 1.248
3910     EV_FREQUENT_CHECK;
3911 root 1.134 }
3912     #endif
3913    
3914 root 1.164 #if EV_IDLE_ENABLE
3915 root 1.144 void
3916     ev_idle_start (EV_P_ ev_idle *w)
3917     {
3918     if (expect_false (ev_is_active (w)))
3919     return;
3920    
3921 root 1.164 pri_adjust (EV_A_ (W)w);
3922    
3923 root 1.248 EV_FREQUENT_CHECK;
3924    
3925 root 1.164 {
3926     int active = ++idlecnt [ABSPRI (w)];
3927    
3928     ++idleall;
3929     ev_start (EV_A_ (W)w, active);
3930    
3931     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3932     idles [ABSPRI (w)][active - 1] = w;
3933     }
3934 root 1.248
3935     EV_FREQUENT_CHECK;
3936 root 1.144 }
3937    
3938     void
3939     ev_idle_stop (EV_P_ ev_idle *w)
3940     {
3941 root 1.166 clear_pending (EV_A_ (W)w);
3942 root 1.144 if (expect_false (!ev_is_active (w)))
3943     return;
3944    
3945 root 1.248 EV_FREQUENT_CHECK;
3946    
3947 root 1.144 {
3948 root 1.230 int active = ev_active (w);
3949 root 1.164
3950     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3951 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3952 root 1.164
3953     ev_stop (EV_A_ (W)w);
3954     --idleall;
3955 root 1.144 }
3956 root 1.248
3957     EV_FREQUENT_CHECK;
3958 root 1.144 }
3959 root 1.164 #endif
3960 root 1.144
3961 root 1.337 #if EV_PREPARE_ENABLE
3962 root 1.144 void
3963     ev_prepare_start (EV_P_ ev_prepare *w)
3964     {
3965     if (expect_false (ev_is_active (w)))
3966     return;
3967    
3968 root 1.248 EV_FREQUENT_CHECK;
3969    
3970 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3971     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3972     prepares [preparecnt - 1] = w;
3973 root 1.248
3974     EV_FREQUENT_CHECK;
3975 root 1.144 }
3976    
3977     void
3978     ev_prepare_stop (EV_P_ ev_prepare *w)
3979     {
3980 root 1.166 clear_pending (EV_A_ (W)w);
3981 root 1.144 if (expect_false (!ev_is_active (w)))
3982     return;
3983    
3984 root 1.248 EV_FREQUENT_CHECK;
3985    
3986 root 1.144 {
3987 root 1.230 int active = ev_active (w);
3988    
3989 root 1.144 prepares [active - 1] = prepares [--preparecnt];
3990 root 1.230 ev_active (prepares [active - 1]) = active;
3991 root 1.144 }
3992    
3993     ev_stop (EV_A_ (W)w);
3994 root 1.248
3995     EV_FREQUENT_CHECK;
3996 root 1.144 }
3997 root 1.337 #endif
3998 root 1.144
3999 root 1.337 #if EV_CHECK_ENABLE
4000 root 1.144 void
4001     ev_check_start (EV_P_ ev_check *w)
4002     {
4003     if (expect_false (ev_is_active (w)))
4004     return;
4005    
4006 root 1.248 EV_FREQUENT_CHECK;
4007    
4008 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4009     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4010     checks [checkcnt - 1] = w;
4011 root 1.248
4012     EV_FREQUENT_CHECK;
4013 root 1.144 }
4014    
4015     void
4016     ev_check_stop (EV_P_ ev_check *w)
4017     {
4018 root 1.166 clear_pending (EV_A_ (W)w);
4019 root 1.144 if (expect_false (!ev_is_active (w)))
4020     return;
4021    
4022 root 1.248 EV_FREQUENT_CHECK;
4023    
4024 root 1.144 {
4025 root 1.230 int active = ev_active (w);
4026    
4027 root 1.144 checks [active - 1] = checks [--checkcnt];
4028 root 1.230 ev_active (checks [active - 1]) = active;
4029 root 1.144 }
4030    
4031     ev_stop (EV_A_ (W)w);
4032 root 1.248
4033     EV_FREQUENT_CHECK;
4034 root 1.144 }
4035 root 1.337 #endif
4036 root 1.144
4037     #if EV_EMBED_ENABLE
4038     void noinline
4039     ev_embed_sweep (EV_P_ ev_embed *w)
4040     {
4041 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4042 root 1.144 }
4043    
4044     static void
4045 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4046 root 1.144 {
4047     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4048    
4049     if (ev_cb (w))
4050     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4051     else
4052 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4053 root 1.144 }
4054    
4055 root 1.189 static void
4056     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4057     {
4058     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4059    
4060 root 1.195 {
4061 root 1.306 EV_P = w->other;
4062 root 1.195
4063     while (fdchangecnt)
4064     {
4065     fd_reify (EV_A);
4066 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4067 root 1.195 }
4068     }
4069     }
4070    
4071 root 1.261 static void
4072     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4073     {
4074     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4075    
4076 root 1.277 ev_embed_stop (EV_A_ w);
4077    
4078 root 1.261 {
4079 root 1.306 EV_P = w->other;
4080 root 1.261
4081     ev_loop_fork (EV_A);
4082 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4083 root 1.261 }
4084 root 1.277
4085     ev_embed_start (EV_A_ w);
4086 root 1.261 }
4087    
4088 root 1.195 #if 0
4089     static void
4090     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4091     {
4092     ev_idle_stop (EV_A_ idle);
4093 root 1.189 }
4094 root 1.195 #endif
4095 root 1.189
4096 root 1.144 void
4097     ev_embed_start (EV_P_ ev_embed *w)
4098     {
4099     if (expect_false (ev_is_active (w)))
4100     return;
4101    
4102     {
4103 root 1.306 EV_P = w->other;
4104 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4105 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4106 root 1.144 }
4107    
4108 root 1.248 EV_FREQUENT_CHECK;
4109    
4110 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4111     ev_io_start (EV_A_ &w->io);
4112    
4113 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4114     ev_set_priority (&w->prepare, EV_MINPRI);
4115     ev_prepare_start (EV_A_ &w->prepare);
4116    
4117 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4118     ev_fork_start (EV_A_ &w->fork);
4119    
4120 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4121    
4122 root 1.144 ev_start (EV_A_ (W)w, 1);
4123 root 1.248
4124     EV_FREQUENT_CHECK;
4125 root 1.144 }
4126    
4127     void
4128     ev_embed_stop (EV_P_ ev_embed *w)
4129     {
4130 root 1.166 clear_pending (EV_A_ (W)w);
4131 root 1.144 if (expect_false (!ev_is_active (w)))
4132     return;
4133    
4134 root 1.248 EV_FREQUENT_CHECK;
4135    
4136 root 1.261 ev_io_stop (EV_A_ &w->io);
4137 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4138 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4139 root 1.248
4140 root 1.328 ev_stop (EV_A_ (W)w);
4141    
4142 root 1.248 EV_FREQUENT_CHECK;
4143 root 1.144 }
4144     #endif
4145    
4146 root 1.147 #if EV_FORK_ENABLE
4147     void
4148     ev_fork_start (EV_P_ ev_fork *w)
4149     {
4150     if (expect_false (ev_is_active (w)))
4151     return;
4152    
4153 root 1.248 EV_FREQUENT_CHECK;
4154    
4155 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4156     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4157     forks [forkcnt - 1] = w;
4158 root 1.248
4159     EV_FREQUENT_CHECK;
4160 root 1.147 }
4161    
4162     void
4163     ev_fork_stop (EV_P_ ev_fork *w)
4164     {
4165 root 1.166 clear_pending (EV_A_ (W)w);
4166 root 1.147 if (expect_false (!ev_is_active (w)))
4167     return;
4168    
4169 root 1.248 EV_FREQUENT_CHECK;
4170    
4171 root 1.147 {
4172 root 1.230 int active = ev_active (w);
4173    
4174 root 1.147 forks [active - 1] = forks [--forkcnt];
4175 root 1.230 ev_active (forks [active - 1]) = active;
4176 root 1.147 }
4177    
4178     ev_stop (EV_A_ (W)w);
4179 root 1.248
4180     EV_FREQUENT_CHECK;
4181 root 1.147 }
4182     #endif
4183    
4184 root 1.360 #if EV_CLEANUP_ENABLE
4185     void
4186     ev_cleanup_start (EV_P_ ev_cleanup *w)
4187     {
4188     if (expect_false (ev_is_active (w)))
4189     return;
4190    
4191     EV_FREQUENT_CHECK;
4192    
4193     ev_start (EV_A_ (W)w, ++cleanupcnt);
4194     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4195     cleanups [cleanupcnt - 1] = w;
4196    
4197 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4198     ev_unref (EV_A);
4199 root 1.360 EV_FREQUENT_CHECK;
4200     }
4201    
4202     void
4203     ev_cleanup_stop (EV_P_ ev_cleanup *w)
4204     {
4205     clear_pending (EV_A_ (W)w);
4206     if (expect_false (!ev_is_active (w)))
4207     return;
4208    
4209     EV_FREQUENT_CHECK;
4210 root 1.362 ev_ref (EV_A);
4211 root 1.360
4212     {
4213     int active = ev_active (w);
4214    
4215     cleanups [active - 1] = cleanups [--cleanupcnt];
4216     ev_active (cleanups [active - 1]) = active;
4217     }
4218    
4219     ev_stop (EV_A_ (W)w);
4220    
4221     EV_FREQUENT_CHECK;
4222     }
4223     #endif
4224    
4225 root 1.207 #if EV_ASYNC_ENABLE
4226     void
4227     ev_async_start (EV_P_ ev_async *w)
4228     {
4229     if (expect_false (ev_is_active (w)))
4230     return;
4231    
4232 root 1.352 w->sent = 0;
4233    
4234 root 1.207 evpipe_init (EV_A);
4235    
4236 root 1.248 EV_FREQUENT_CHECK;
4237    
4238 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4239     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4240     asyncs [asynccnt - 1] = w;
4241 root 1.248
4242     EV_FREQUENT_CHECK;
4243 root 1.207 }
4244    
4245     void
4246     ev_async_stop (EV_P_ ev_async *w)
4247     {
4248     clear_pending (EV_A_ (W)w);
4249     if (expect_false (!ev_is_active (w)))
4250     return;
4251    
4252 root 1.248 EV_FREQUENT_CHECK;
4253    
4254 root 1.207 {
4255 root 1.230 int active = ev_active (w);
4256    
4257 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4258 root 1.230 ev_active (asyncs [active - 1]) = active;
4259 root 1.207 }
4260    
4261     ev_stop (EV_A_ (W)w);
4262 root 1.248
4263     EV_FREQUENT_CHECK;
4264 root 1.207 }
4265    
4266     void
4267     ev_async_send (EV_P_ ev_async *w)
4268     {
4269     w->sent = 1;
4270 root 1.307 evpipe_write (EV_A_ &async_pending);
4271 root 1.207 }
4272     #endif
4273    
4274 root 1.1 /*****************************************************************************/
4275 root 1.10
4276 root 1.16 struct ev_once
4277     {
4278 root 1.136 ev_io io;
4279     ev_timer to;
4280 root 1.16 void (*cb)(int revents, void *arg);
4281     void *arg;
4282     };
4283    
4284     static void
4285 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4286 root 1.16 {
4287     void (*cb)(int revents, void *arg) = once->cb;
4288     void *arg = once->arg;
4289    
4290 root 1.259 ev_io_stop (EV_A_ &once->io);
4291 root 1.51 ev_timer_stop (EV_A_ &once->to);
4292 root 1.69 ev_free (once);
4293 root 1.16
4294     cb (revents, arg);
4295     }
4296    
4297     static void
4298 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4299 root 1.16 {
4300 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4301    
4302     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4303 root 1.16 }
4304    
4305     static void
4306 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4307 root 1.16 {
4308 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4309    
4310     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4311 root 1.16 }
4312    
4313     void
4314 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4315 root 1.16 {
4316 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4317 root 1.16
4318 root 1.123 if (expect_false (!once))
4319 root 1.16 {
4320 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4321 root 1.123 return;
4322     }
4323    
4324     once->cb = cb;
4325     once->arg = arg;
4326 root 1.16
4327 root 1.123 ev_init (&once->io, once_cb_io);
4328     if (fd >= 0)
4329     {
4330     ev_io_set (&once->io, fd, events);
4331     ev_io_start (EV_A_ &once->io);
4332     }
4333 root 1.16
4334 root 1.123 ev_init (&once->to, once_cb_to);
4335     if (timeout >= 0.)
4336     {
4337     ev_timer_set (&once->to, timeout, 0.);
4338     ev_timer_start (EV_A_ &once->to);
4339 root 1.16 }
4340     }
4341    
4342 root 1.282 /*****************************************************************************/
4343    
4344 root 1.288 #if EV_WALK_ENABLE
4345 root 1.379 void ecb_cold
4346 root 1.282 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4347     {
4348     int i, j;
4349     ev_watcher_list *wl, *wn;
4350    
4351     if (types & (EV_IO | EV_EMBED))
4352     for (i = 0; i < anfdmax; ++i)
4353     for (wl = anfds [i].head; wl; )
4354     {
4355     wn = wl->next;
4356    
4357     #if EV_EMBED_ENABLE
4358     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4359     {
4360     if (types & EV_EMBED)
4361     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4362     }
4363     else
4364     #endif
4365     #if EV_USE_INOTIFY
4366     if (ev_cb ((ev_io *)wl) == infy_cb)
4367     ;
4368     else
4369     #endif
4370 root 1.288 if ((ev_io *)wl != &pipe_w)
4371 root 1.282 if (types & EV_IO)
4372     cb (EV_A_ EV_IO, wl);
4373    
4374     wl = wn;
4375     }
4376    
4377     if (types & (EV_TIMER | EV_STAT))
4378     for (i = timercnt + HEAP0; i-- > HEAP0; )
4379     #if EV_STAT_ENABLE
4380     /*TODO: timer is not always active*/
4381     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4382     {
4383     if (types & EV_STAT)
4384     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4385     }
4386     else
4387     #endif
4388     if (types & EV_TIMER)
4389     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4390    
4391     #if EV_PERIODIC_ENABLE
4392     if (types & EV_PERIODIC)
4393     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4394     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4395     #endif
4396    
4397     #if EV_IDLE_ENABLE
4398     if (types & EV_IDLE)
4399 root 1.390 for (j = NUMPRI; j--; )
4400 root 1.282 for (i = idlecnt [j]; i--; )
4401     cb (EV_A_ EV_IDLE, idles [j][i]);
4402     #endif
4403    
4404     #if EV_FORK_ENABLE
4405     if (types & EV_FORK)
4406     for (i = forkcnt; i--; )
4407     if (ev_cb (forks [i]) != embed_fork_cb)
4408     cb (EV_A_ EV_FORK, forks [i]);
4409     #endif
4410    
4411     #if EV_ASYNC_ENABLE
4412     if (types & EV_ASYNC)
4413     for (i = asynccnt; i--; )
4414     cb (EV_A_ EV_ASYNC, asyncs [i]);
4415     #endif
4416    
4417 root 1.337 #if EV_PREPARE_ENABLE
4418 root 1.282 if (types & EV_PREPARE)
4419     for (i = preparecnt; i--; )
4420 root 1.337 # if EV_EMBED_ENABLE
4421 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4422 root 1.337 # endif
4423     cb (EV_A_ EV_PREPARE, prepares [i]);
4424 root 1.282 #endif
4425    
4426 root 1.337 #if EV_CHECK_ENABLE
4427 root 1.282 if (types & EV_CHECK)
4428     for (i = checkcnt; i--; )
4429     cb (EV_A_ EV_CHECK, checks [i]);
4430 root 1.337 #endif
4431 root 1.282
4432 root 1.337 #if EV_SIGNAL_ENABLE
4433 root 1.282 if (types & EV_SIGNAL)
4434 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4435 root 1.282 for (wl = signals [i].head; wl; )
4436     {
4437     wn = wl->next;
4438     cb (EV_A_ EV_SIGNAL, wl);
4439     wl = wn;
4440     }
4441 root 1.337 #endif
4442 root 1.282
4443 root 1.337 #if EV_CHILD_ENABLE
4444 root 1.282 if (types & EV_CHILD)
4445 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4446 root 1.282 for (wl = childs [i]; wl; )
4447     {
4448     wn = wl->next;
4449     cb (EV_A_ EV_CHILD, wl);
4450     wl = wn;
4451     }
4452 root 1.337 #endif
4453 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4454     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4455     }
4456     #endif
4457    
4458 root 1.188 #if EV_MULTIPLICITY
4459     #include "ev_wrap.h"
4460     #endif
4461