ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.411
Committed: Tue Feb 21 04:34:02 2012 UTC (12 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.410: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
65     # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206     # include <windows.h>
207     # ifndef EV_SELECT_IS_WINSOCKET
208     # define EV_SELECT_IS_WINSOCKET 1
209     # endif
210 root 1.331 # undef EV_AVOID_STDIO
211 root 1.45 #endif
212 root 1.103
213 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
214     * a limit of 1024 into their select. Where people have brains,
215     * OS X engineers apparently have a vacuum. Or maybe they were
216     * ordered to have a vacuum, or they do anything for money.
217     * This might help. Or not.
218     */
219     #define _DARWIN_UNLIMITED_SELECT 1
220    
221 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
222 root 1.40
223 root 1.305 /* try to deduce the maximum number of signals on this platform */
224     #if defined (EV_NSIG)
225     /* use what's provided */
226     #elif defined (NSIG)
227     # define EV_NSIG (NSIG)
228     #elif defined(_NSIG)
229     # define EV_NSIG (_NSIG)
230     #elif defined (SIGMAX)
231     # define EV_NSIG (SIGMAX+1)
232     #elif defined (SIG_MAX)
233     # define EV_NSIG (SIG_MAX+1)
234     #elif defined (_SIG_MAX)
235     # define EV_NSIG (_SIG_MAX+1)
236     #elif defined (MAXSIG)
237     # define EV_NSIG (MAXSIG+1)
238     #elif defined (MAX_SIG)
239     # define EV_NSIG (MAX_SIG+1)
240     #elif defined (SIGARRAYSIZE)
241 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242 root 1.305 #elif defined (_sys_nsig)
243     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244     #else
245     # error "unable to find value for NSIG, please report"
246 root 1.336 /* to make it compile regardless, just remove the above line, */
247     /* but consider reporting it, too! :) */
248 root 1.306 # define EV_NSIG 65
249 root 1.305 #endif
250    
251 root 1.373 #ifndef EV_USE_FLOOR
252     # define EV_USE_FLOOR 0
253     #endif
254    
255 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
256     # if __linux && __GLIBC__ >= 2
257 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258 root 1.274 # else
259     # define EV_USE_CLOCK_SYSCALL 0
260     # endif
261     #endif
262    
263 root 1.29 #ifndef EV_USE_MONOTONIC
264 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
266 root 1.253 # else
267     # define EV_USE_MONOTONIC 0
268     # endif
269 root 1.37 #endif
270    
271 root 1.118 #ifndef EV_USE_REALTIME
272 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273 root 1.118 #endif
274    
275 root 1.193 #ifndef EV_USE_NANOSLEEP
276 root 1.253 # if _POSIX_C_SOURCE >= 199309L
277 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
278 root 1.253 # else
279     # define EV_USE_NANOSLEEP 0
280     # endif
281 root 1.193 #endif
282    
283 root 1.29 #ifndef EV_USE_SELECT
284 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
285 root 1.10 #endif
286    
287 root 1.59 #ifndef EV_USE_POLL
288 root 1.104 # ifdef _WIN32
289     # define EV_USE_POLL 0
290     # else
291 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
292 root 1.104 # endif
293 root 1.41 #endif
294    
295 root 1.29 #ifndef EV_USE_EPOLL
296 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
298 root 1.220 # else
299     # define EV_USE_EPOLL 0
300     # endif
301 root 1.10 #endif
302    
303 root 1.44 #ifndef EV_USE_KQUEUE
304     # define EV_USE_KQUEUE 0
305     #endif
306    
307 root 1.118 #ifndef EV_USE_PORT
308     # define EV_USE_PORT 0
309 root 1.40 #endif
310    
311 root 1.152 #ifndef EV_USE_INOTIFY
312 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
314 root 1.220 # else
315     # define EV_USE_INOTIFY 0
316     # endif
317 root 1.152 #endif
318    
319 root 1.149 #ifndef EV_PID_HASHSIZE
320 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321 root 1.149 #endif
322    
323 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
324 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325 root 1.152 #endif
326    
327 root 1.220 #ifndef EV_USE_EVENTFD
328     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
330 root 1.220 # else
331     # define EV_USE_EVENTFD 0
332     # endif
333     #endif
334    
335 root 1.303 #ifndef EV_USE_SIGNALFD
336 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
338 root 1.303 # else
339     # define EV_USE_SIGNALFD 0
340     # endif
341     #endif
342    
343 root 1.249 #if 0 /* debugging */
344 root 1.250 # define EV_VERIFY 3
345 root 1.249 # define EV_USE_4HEAP 1
346     # define EV_HEAP_CACHE_AT 1
347     #endif
348    
349 root 1.250 #ifndef EV_VERIFY
350 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351 root 1.250 #endif
352    
353 root 1.243 #ifndef EV_USE_4HEAP
354 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
355 root 1.243 #endif
356    
357     #ifndef EV_HEAP_CACHE_AT
358 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359 root 1.243 #endif
360    
361 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362     /* which makes programs even slower. might work on other unices, too. */
363     #if EV_USE_CLOCK_SYSCALL
364     # include <syscall.h>
365     # ifdef SYS_clock_gettime
366     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367     # undef EV_USE_MONOTONIC
368     # define EV_USE_MONOTONIC 1
369     # else
370     # undef EV_USE_CLOCK_SYSCALL
371     # define EV_USE_CLOCK_SYSCALL 0
372     # endif
373     #endif
374    
375 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
376 root 1.40
377 root 1.325 #ifdef _AIX
378     /* AIX has a completely broken poll.h header */
379     # undef EV_USE_POLL
380     # define EV_USE_POLL 0
381     #endif
382    
383 root 1.40 #ifndef CLOCK_MONOTONIC
384     # undef EV_USE_MONOTONIC
385     # define EV_USE_MONOTONIC 0
386     #endif
387    
388 root 1.31 #ifndef CLOCK_REALTIME
389 root 1.40 # undef EV_USE_REALTIME
390 root 1.31 # define EV_USE_REALTIME 0
391     #endif
392 root 1.40
393 root 1.152 #if !EV_STAT_ENABLE
394 root 1.185 # undef EV_USE_INOTIFY
395 root 1.152 # define EV_USE_INOTIFY 0
396     #endif
397    
398 root 1.193 #if !EV_USE_NANOSLEEP
399 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
400     # if !defined(_WIN32) && !defined(__hpux)
401 root 1.193 # include <sys/select.h>
402     # endif
403     #endif
404    
405 root 1.152 #if EV_USE_INOTIFY
406 root 1.273 # include <sys/statfs.h>
407 root 1.152 # include <sys/inotify.h>
408 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409     # ifndef IN_DONT_FOLLOW
410     # undef EV_USE_INOTIFY
411     # define EV_USE_INOTIFY 0
412     # endif
413 root 1.152 #endif
414    
415 root 1.185 #if EV_SELECT_IS_WINSOCKET
416     # include <winsock.h>
417     #endif
418    
419 root 1.220 #if EV_USE_EVENTFD
420     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421 root 1.221 # include <stdint.h>
422 root 1.303 # ifndef EFD_NONBLOCK
423     # define EFD_NONBLOCK O_NONBLOCK
424     # endif
425     # ifndef EFD_CLOEXEC
426 root 1.311 # ifdef O_CLOEXEC
427     # define EFD_CLOEXEC O_CLOEXEC
428     # else
429     # define EFD_CLOEXEC 02000000
430     # endif
431 root 1.303 # endif
432 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433 root 1.220 #endif
434    
435 root 1.303 #if EV_USE_SIGNALFD
436 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437     # include <stdint.h>
438     # ifndef SFD_NONBLOCK
439     # define SFD_NONBLOCK O_NONBLOCK
440     # endif
441     # ifndef SFD_CLOEXEC
442     # ifdef O_CLOEXEC
443     # define SFD_CLOEXEC O_CLOEXEC
444     # else
445     # define SFD_CLOEXEC 02000000
446     # endif
447     # endif
448 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449 root 1.314
450     struct signalfd_siginfo
451     {
452     uint32_t ssi_signo;
453     char pad[128 - sizeof (uint32_t)];
454     };
455 root 1.303 #endif
456    
457 root 1.40 /**/
458 root 1.1
459 root 1.250 #if EV_VERIFY >= 3
460 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
461 root 1.248 #else
462     # define EV_FREQUENT_CHECK do { } while (0)
463     #endif
464    
465 root 1.176 /*
466 root 1.373 * This is used to work around floating point rounding problems.
467 root 1.177 * This value is good at least till the year 4000.
468 root 1.176 */
469 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
471 root 1.176
472 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
473 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
474 root 1.1
475 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477 root 1.347
478 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479     /* ECB.H BEGIN */
480     /*
481     * libecb - http://software.schmorp.de/pkg/libecb
482     *
483 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
485     * All rights reserved.
486     *
487     * Redistribution and use in source and binary forms, with or without modifica-
488     * tion, are permitted provided that the following conditions are met:
489     *
490     * 1. Redistributions of source code must retain the above copyright notice,
491     * this list of conditions and the following disclaimer.
492     *
493     * 2. Redistributions in binary form must reproduce the above copyright
494     * notice, this list of conditions and the following disclaimer in the
495     * documentation and/or other materials provided with the distribution.
496     *
497     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506     * OF THE POSSIBILITY OF SUCH DAMAGE.
507     */
508    
509     #ifndef ECB_H
510     #define ECB_H
511    
512     #ifdef _WIN32
513     typedef signed char int8_t;
514     typedef unsigned char uint8_t;
515     typedef signed short int16_t;
516     typedef unsigned short uint16_t;
517     typedef signed int int32_t;
518     typedef unsigned int uint32_t;
519     #if __GNUC__
520     typedef signed long long int64_t;
521     typedef unsigned long long uint64_t;
522     #else /* _MSC_VER || __BORLANDC__ */
523     typedef signed __int64 int64_t;
524     typedef unsigned __int64 uint64_t;
525     #endif
526     #else
527     #include <inttypes.h>
528     #endif
529 root 1.379
530     /* many compilers define _GNUC_ to some versions but then only implement
531     * what their idiot authors think are the "more important" extensions,
532 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
533 root 1.379 * or so.
534     * we try to detect these and simply assume they are not gcc - if they have
535     * an issue with that they should have done it right in the first place.
536     */
537     #ifndef ECB_GCC_VERSION
538     #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539     #define ECB_GCC_VERSION(major,minor) 0
540     #else
541     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
542     #endif
543     #endif
544    
545 root 1.391 /*****************************************************************************/
546    
547     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549    
550 root 1.410 #if ECB_NO_THREADS
551     # define ECB_NO_SMP 1
552     #endif
553    
554 root 1.391 #if ECB_NO_THREADS || ECB_NO_SMP
555 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
556 root 1.40 #endif
557    
558 root 1.383 #ifndef ECB_MEMORY_FENCE
559 root 1.409 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 root 1.404 #if __i386 || __i386__
561 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 root 1.391 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563     #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 root 1.391 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570     #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 root 1.393 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 root 1.393 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 root 1.392 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 root 1.404 #elif __sparc || __sparc__
577 root 1.405 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 root 1.408 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 root 1.405 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 root 1.408 #elif defined(__s390__) || defined(__s390x__)
581     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 root 1.383 #endif
583     #endif
584     #endif
585    
586     #ifndef ECB_MEMORY_FENCE
587 root 1.398 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
588 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
589 root 1.392 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
590     /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
591 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
592     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
593     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
594     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
595     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
596 root 1.388 #elif defined(_WIN32)
597     #include <WinNT.h>
598 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
599 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600     #include <mbarrier.h>
601     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
602     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
603     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
604 root 1.383 #endif
605     #endif
606    
607     #ifndef ECB_MEMORY_FENCE
608 root 1.392 #if !ECB_AVOID_PTHREADS
609     /*
610     * if you get undefined symbol references to pthread_mutex_lock,
611     * or failure to find pthread.h, then you should implement
612     * the ECB_MEMORY_FENCE operations for your cpu/compiler
613     * OR provide pthread.h and link against the posix thread library
614     * of your system.
615     */
616     #include <pthread.h>
617     #define ECB_NEEDS_PTHREADS 1
618     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
619    
620     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
621     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
622     #endif
623     #endif
624 root 1.383
625 root 1.392 #if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
626 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
627 root 1.392 #endif
628    
629     #if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
630 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
631     #endif
632    
633 root 1.391 /*****************************************************************************/
634    
635     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
636    
637     #if __cplusplus
638     #define ecb_inline static inline
639     #elif ECB_GCC_VERSION(2,5)
640     #define ecb_inline static __inline__
641     #elif ECB_C99
642     #define ecb_inline static inline
643     #else
644     #define ecb_inline static
645     #endif
646    
647     #if ECB_GCC_VERSION(3,3)
648     #define ecb_restrict __restrict__
649     #elif ECB_C99
650     #define ecb_restrict restrict
651     #else
652     #define ecb_restrict
653     #endif
654    
655     typedef int ecb_bool;
656    
657     #define ECB_CONCAT_(a, b) a ## b
658     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
659     #define ECB_STRINGIFY_(a) # a
660     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
661    
662     #define ecb_function_ ecb_inline
663    
664 root 1.379 #if ECB_GCC_VERSION(3,1)
665     #define ecb_attribute(attrlist) __attribute__(attrlist)
666     #define ecb_is_constant(expr) __builtin_constant_p (expr)
667     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
668     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
669     #else
670     #define ecb_attribute(attrlist)
671     #define ecb_is_constant(expr) 0
672     #define ecb_expect(expr,value) (expr)
673     #define ecb_prefetch(addr,rw,locality)
674     #endif
675    
676 root 1.391 /* no emulation for ecb_decltype */
677     #if ECB_GCC_VERSION(4,5)
678     #define ecb_decltype(x) __decltype(x)
679     #elif ECB_GCC_VERSION(3,0)
680     #define ecb_decltype(x) __typeof(x)
681     #endif
682    
683 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
684     #define ecb_noreturn ecb_attribute ((__noreturn__))
685     #define ecb_unused ecb_attribute ((__unused__))
686     #define ecb_const ecb_attribute ((__const__))
687     #define ecb_pure ecb_attribute ((__pure__))
688    
689     #if ECB_GCC_VERSION(4,3)
690     #define ecb_artificial ecb_attribute ((__artificial__))
691     #define ecb_hot ecb_attribute ((__hot__))
692     #define ecb_cold ecb_attribute ((__cold__))
693     #else
694     #define ecb_artificial
695     #define ecb_hot
696     #define ecb_cold
697     #endif
698    
699     /* put around conditional expressions if you are very sure that the */
700     /* expression is mostly true or mostly false. note that these return */
701     /* booleans, not the expression. */
702     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
703     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
704 root 1.391 /* for compatibility to the rest of the world */
705     #define ecb_likely(expr) ecb_expect_true (expr)
706     #define ecb_unlikely(expr) ecb_expect_false (expr)
707    
708     /* count trailing zero bits and count # of one bits */
709     #if ECB_GCC_VERSION(3,4)
710     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
711     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
712     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
713     #define ecb_ctz32(x) __builtin_ctz (x)
714     #define ecb_ctz64(x) __builtin_ctzll (x)
715     #define ecb_popcount32(x) __builtin_popcount (x)
716     /* no popcountll */
717     #else
718     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
719     ecb_function_ int
720     ecb_ctz32 (uint32_t x)
721     {
722     int r = 0;
723    
724     x &= ~x + 1; /* this isolates the lowest bit */
725    
726     #if ECB_branchless_on_i386
727     r += !!(x & 0xaaaaaaaa) << 0;
728     r += !!(x & 0xcccccccc) << 1;
729     r += !!(x & 0xf0f0f0f0) << 2;
730     r += !!(x & 0xff00ff00) << 3;
731     r += !!(x & 0xffff0000) << 4;
732     #else
733     if (x & 0xaaaaaaaa) r += 1;
734     if (x & 0xcccccccc) r += 2;
735     if (x & 0xf0f0f0f0) r += 4;
736     if (x & 0xff00ff00) r += 8;
737     if (x & 0xffff0000) r += 16;
738     #endif
739    
740     return r;
741     }
742    
743     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
744     ecb_function_ int
745     ecb_ctz64 (uint64_t x)
746     {
747     int shift = x & 0xffffffffU ? 0 : 32;
748     return ecb_ctz32 (x >> shift) + shift;
749     }
750    
751     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
752     ecb_function_ int
753     ecb_popcount32 (uint32_t x)
754     {
755     x -= (x >> 1) & 0x55555555;
756     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
757     x = ((x >> 4) + x) & 0x0f0f0f0f;
758     x *= 0x01010101;
759    
760     return x >> 24;
761     }
762    
763     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
764     ecb_function_ int ecb_ld32 (uint32_t x)
765     {
766     int r = 0;
767    
768     if (x >> 16) { x >>= 16; r += 16; }
769     if (x >> 8) { x >>= 8; r += 8; }
770     if (x >> 4) { x >>= 4; r += 4; }
771     if (x >> 2) { x >>= 2; r += 2; }
772     if (x >> 1) { r += 1; }
773    
774     return r;
775     }
776    
777     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
778     ecb_function_ int ecb_ld64 (uint64_t x)
779     {
780     int r = 0;
781    
782     if (x >> 32) { x >>= 32; r += 32; }
783    
784     return r + ecb_ld32 (x);
785     }
786     #endif
787    
788 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
789     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
790     {
791     return ( (x * 0x0802U & 0x22110U)
792     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
793     }
794    
795     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
796     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
797     {
798     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
799     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
800     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
801     x = ( x >> 8 ) | ( x << 8);
802    
803     return x;
804     }
805    
806     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
807     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
808     {
809     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
810     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
811     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
812     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
813     x = ( x >> 16 ) | ( x << 16);
814    
815     return x;
816     }
817    
818 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
819     /* so for this version we are lazy */
820     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
821     ecb_function_ int
822     ecb_popcount64 (uint64_t x)
823     {
824     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
825     }
826    
827     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
828     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
829     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
830     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
831     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
832     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
833     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
834     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
835    
836     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
837     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
838     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
839     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
840     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
841     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
842     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
843     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
844    
845     #if ECB_GCC_VERSION(4,3)
846     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
847     #define ecb_bswap32(x) __builtin_bswap32 (x)
848     #define ecb_bswap64(x) __builtin_bswap64 (x)
849     #else
850     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
851     ecb_function_ uint16_t
852     ecb_bswap16 (uint16_t x)
853     {
854     return ecb_rotl16 (x, 8);
855     }
856    
857     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
858     ecb_function_ uint32_t
859     ecb_bswap32 (uint32_t x)
860     {
861     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
862     }
863    
864     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
865     ecb_function_ uint64_t
866     ecb_bswap64 (uint64_t x)
867     {
868     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
869     }
870     #endif
871    
872     #if ECB_GCC_VERSION(4,5)
873     #define ecb_unreachable() __builtin_unreachable ()
874     #else
875     /* this seems to work fine, but gcc always emits a warning for it :/ */
876 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
877     ecb_inline void ecb_unreachable (void) { }
878 root 1.391 #endif
879    
880     /* try to tell the compiler that some condition is definitely true */
881     #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
882    
883 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
884     ecb_inline unsigned char
885 root 1.391 ecb_byteorder_helper (void)
886     {
887     const uint32_t u = 0x11223344;
888     return *(unsigned char *)&u;
889     }
890    
891 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
892     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
893     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
894     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
895 root 1.391
896     #if ECB_GCC_VERSION(3,0) || ECB_C99
897     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
898     #else
899     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
900     #endif
901    
902 root 1.398 #if __cplusplus
903     template<typename T>
904     static inline T ecb_div_rd (T val, T div)
905     {
906     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
907     }
908     template<typename T>
909     static inline T ecb_div_ru (T val, T div)
910     {
911     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
912     }
913     #else
914     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
915     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
916     #endif
917    
918 root 1.391 #if ecb_cplusplus_does_not_suck
919     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
920     template<typename T, int N>
921     static inline int ecb_array_length (const T (&arr)[N])
922     {
923     return N;
924     }
925     #else
926     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
927     #endif
928    
929     #endif
930    
931     /* ECB.H END */
932 root 1.379
933 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
934 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
935 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
936     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
937 sf-exg 1.402 * libev, in which cases the memory fences become nops.
938 root 1.396 * alternatively, you can remove this #error and link against libpthread,
939     * which will then provide the memory fences.
940     */
941     # error "memory fences not defined for your architecture, please report"
942     #endif
943    
944     #ifndef ECB_MEMORY_FENCE
945     # define ECB_MEMORY_FENCE do { } while (0)
946     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
947     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
948 root 1.392 #endif
949    
950 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
951     #define expect_true(cond) ecb_expect_true (cond)
952     #define noinline ecb_noinline
953    
954     #define inline_size ecb_inline
955 root 1.169
956 root 1.338 #if EV_FEATURE_CODE
957 root 1.379 # define inline_speed ecb_inline
958 root 1.338 #else
959 root 1.169 # define inline_speed static noinline
960     #endif
961 root 1.40
962 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
963    
964     #if EV_MINPRI == EV_MAXPRI
965     # define ABSPRI(w) (((W)w), 0)
966     #else
967     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
968     #endif
969 root 1.42
970 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
971 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
972 root 1.103
973 root 1.136 typedef ev_watcher *W;
974     typedef ev_watcher_list *WL;
975     typedef ev_watcher_time *WT;
976 root 1.10
977 root 1.229 #define ev_active(w) ((W)(w))->active
978 root 1.228 #define ev_at(w) ((WT)(w))->at
979    
980 root 1.279 #if EV_USE_REALTIME
981 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
982 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
983 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
984     #endif
985    
986     #if EV_USE_MONOTONIC
987 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
988 root 1.198 #endif
989 root 1.54
990 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
991     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
992     #endif
993     #ifndef EV_WIN32_HANDLE_TO_FD
994 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
995 root 1.313 #endif
996     #ifndef EV_WIN32_CLOSE_FD
997     # define EV_WIN32_CLOSE_FD(fd) close (fd)
998     #endif
999    
1000 root 1.103 #ifdef _WIN32
1001 root 1.98 # include "ev_win32.c"
1002     #endif
1003 root 1.67
1004 root 1.53 /*****************************************************************************/
1005 root 1.1
1006 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1007    
1008     #if EV_USE_FLOOR
1009     # include <math.h>
1010     # define ev_floor(v) floor (v)
1011     #else
1012    
1013     #include <float.h>
1014    
1015     /* a floor() replacement function, should be independent of ev_tstamp type */
1016     static ev_tstamp noinline
1017     ev_floor (ev_tstamp v)
1018     {
1019     /* the choice of shift factor is not terribly important */
1020     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1021     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1022     #else
1023     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1024     #endif
1025    
1026     /* argument too large for an unsigned long? */
1027     if (expect_false (v >= shift))
1028     {
1029     ev_tstamp f;
1030    
1031     if (v == v - 1.)
1032     return v; /* very large number */
1033    
1034     f = shift * ev_floor (v * (1. / shift));
1035     return f + ev_floor (v - f);
1036     }
1037    
1038     /* special treatment for negative args? */
1039     if (expect_false (v < 0.))
1040     {
1041     ev_tstamp f = -ev_floor (-v);
1042    
1043     return f - (f == v ? 0 : 1);
1044     }
1045    
1046     /* fits into an unsigned long */
1047     return (unsigned long)v;
1048     }
1049    
1050     #endif
1051    
1052     /*****************************************************************************/
1053    
1054 root 1.356 #ifdef __linux
1055     # include <sys/utsname.h>
1056     #endif
1057    
1058 root 1.379 static unsigned int noinline ecb_cold
1059 root 1.355 ev_linux_version (void)
1060     {
1061     #ifdef __linux
1062 root 1.359 unsigned int v = 0;
1063 root 1.355 struct utsname buf;
1064     int i;
1065     char *p = buf.release;
1066    
1067     if (uname (&buf))
1068     return 0;
1069    
1070     for (i = 3+1; --i; )
1071     {
1072     unsigned int c = 0;
1073    
1074     for (;;)
1075     {
1076     if (*p >= '0' && *p <= '9')
1077     c = c * 10 + *p++ - '0';
1078     else
1079     {
1080     p += *p == '.';
1081     break;
1082     }
1083     }
1084    
1085     v = (v << 8) | c;
1086     }
1087    
1088     return v;
1089     #else
1090     return 0;
1091     #endif
1092     }
1093    
1094     /*****************************************************************************/
1095    
1096 root 1.331 #if EV_AVOID_STDIO
1097 root 1.379 static void noinline ecb_cold
1098 root 1.331 ev_printerr (const char *msg)
1099     {
1100     write (STDERR_FILENO, msg, strlen (msg));
1101     }
1102     #endif
1103    
1104 root 1.70 static void (*syserr_cb)(const char *msg);
1105 root 1.69
1106 root 1.379 void ecb_cold
1107 root 1.141 ev_set_syserr_cb (void (*cb)(const char *msg))
1108 root 1.69 {
1109     syserr_cb = cb;
1110     }
1111    
1112 root 1.379 static void noinline ecb_cold
1113 root 1.269 ev_syserr (const char *msg)
1114 root 1.69 {
1115 root 1.70 if (!msg)
1116     msg = "(libev) system error";
1117    
1118 root 1.69 if (syserr_cb)
1119 root 1.70 syserr_cb (msg);
1120 root 1.69 else
1121     {
1122 root 1.330 #if EV_AVOID_STDIO
1123 root 1.331 ev_printerr (msg);
1124     ev_printerr (": ");
1125 root 1.365 ev_printerr (strerror (errno));
1126 root 1.331 ev_printerr ("\n");
1127 root 1.330 #else
1128 root 1.70 perror (msg);
1129 root 1.330 #endif
1130 root 1.69 abort ();
1131     }
1132     }
1133    
1134 root 1.224 static void *
1135     ev_realloc_emul (void *ptr, long size)
1136     {
1137 root 1.334 #if __GLIBC__
1138     return realloc (ptr, size);
1139     #else
1140 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
1141 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1142 root 1.224 * the single unix specification, so work around them here.
1143     */
1144 root 1.333
1145 root 1.224 if (size)
1146     return realloc (ptr, size);
1147    
1148     free (ptr);
1149     return 0;
1150 root 1.334 #endif
1151 root 1.224 }
1152    
1153     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1154 root 1.69
1155 root 1.379 void ecb_cold
1156 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
1157 root 1.69 {
1158     alloc = cb;
1159     }
1160    
1161 root 1.150 inline_speed void *
1162 root 1.155 ev_realloc (void *ptr, long size)
1163 root 1.69 {
1164 root 1.224 ptr = alloc (ptr, size);
1165 root 1.69
1166     if (!ptr && size)
1167     {
1168 root 1.330 #if EV_AVOID_STDIO
1169 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1170 root 1.330 #else
1171 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1172 root 1.330 #endif
1173 root 1.69 abort ();
1174     }
1175    
1176     return ptr;
1177     }
1178    
1179     #define ev_malloc(size) ev_realloc (0, (size))
1180     #define ev_free(ptr) ev_realloc ((ptr), 0)
1181    
1182     /*****************************************************************************/
1183    
1184 root 1.298 /* set in reify when reification needed */
1185     #define EV_ANFD_REIFY 1
1186    
1187 root 1.288 /* file descriptor info structure */
1188 root 1.53 typedef struct
1189     {
1190 root 1.68 WL head;
1191 root 1.288 unsigned char events; /* the events watched for */
1192 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1193 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1194 root 1.269 unsigned char unused;
1195     #if EV_USE_EPOLL
1196 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1197 root 1.269 #endif
1198 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1199 root 1.103 SOCKET handle;
1200     #endif
1201 root 1.357 #if EV_USE_IOCP
1202     OVERLAPPED or, ow;
1203     #endif
1204 root 1.53 } ANFD;
1205 root 1.1
1206 root 1.288 /* stores the pending event set for a given watcher */
1207 root 1.53 typedef struct
1208     {
1209     W w;
1210 root 1.288 int events; /* the pending event set for the given watcher */
1211 root 1.53 } ANPENDING;
1212 root 1.51
1213 root 1.155 #if EV_USE_INOTIFY
1214 root 1.241 /* hash table entry per inotify-id */
1215 root 1.152 typedef struct
1216     {
1217     WL head;
1218 root 1.155 } ANFS;
1219 root 1.152 #endif
1220    
1221 root 1.241 /* Heap Entry */
1222     #if EV_HEAP_CACHE_AT
1223 root 1.288 /* a heap element */
1224 root 1.241 typedef struct {
1225 root 1.243 ev_tstamp at;
1226 root 1.241 WT w;
1227     } ANHE;
1228    
1229 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1230     #define ANHE_at(he) (he).at /* access cached at, read-only */
1231     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1232 root 1.241 #else
1233 root 1.288 /* a heap element */
1234 root 1.241 typedef WT ANHE;
1235    
1236 root 1.248 #define ANHE_w(he) (he)
1237     #define ANHE_at(he) (he)->at
1238     #define ANHE_at_cache(he)
1239 root 1.241 #endif
1240    
1241 root 1.55 #if EV_MULTIPLICITY
1242 root 1.54
1243 root 1.80 struct ev_loop
1244     {
1245 root 1.86 ev_tstamp ev_rt_now;
1246 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1247 root 1.80 #define VAR(name,decl) decl;
1248     #include "ev_vars.h"
1249     #undef VAR
1250     };
1251     #include "ev_wrap.h"
1252    
1253 root 1.116 static struct ev_loop default_loop_struct;
1254 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1255 root 1.54
1256 root 1.53 #else
1257 root 1.54
1258 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1259 root 1.80 #define VAR(name,decl) static decl;
1260     #include "ev_vars.h"
1261     #undef VAR
1262    
1263 root 1.116 static int ev_default_loop_ptr;
1264 root 1.54
1265 root 1.51 #endif
1266 root 1.1
1267 root 1.338 #if EV_FEATURE_API
1268 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1269     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1270 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1271     #else
1272 root 1.298 # define EV_RELEASE_CB (void)0
1273     # define EV_ACQUIRE_CB (void)0
1274 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1275     #endif
1276    
1277 root 1.353 #define EVBREAK_RECURSE 0x80
1278 root 1.298
1279 root 1.8 /*****************************************************************************/
1280    
1281 root 1.292 #ifndef EV_HAVE_EV_TIME
1282 root 1.141 ev_tstamp
1283 root 1.1 ev_time (void)
1284     {
1285 root 1.29 #if EV_USE_REALTIME
1286 root 1.279 if (expect_true (have_realtime))
1287     {
1288     struct timespec ts;
1289     clock_gettime (CLOCK_REALTIME, &ts);
1290     return ts.tv_sec + ts.tv_nsec * 1e-9;
1291     }
1292     #endif
1293    
1294 root 1.1 struct timeval tv;
1295     gettimeofday (&tv, 0);
1296     return tv.tv_sec + tv.tv_usec * 1e-6;
1297     }
1298 root 1.292 #endif
1299 root 1.1
1300 root 1.284 inline_size ev_tstamp
1301 root 1.1 get_clock (void)
1302     {
1303 root 1.29 #if EV_USE_MONOTONIC
1304 root 1.40 if (expect_true (have_monotonic))
1305 root 1.1 {
1306     struct timespec ts;
1307     clock_gettime (CLOCK_MONOTONIC, &ts);
1308     return ts.tv_sec + ts.tv_nsec * 1e-9;
1309     }
1310     #endif
1311    
1312     return ev_time ();
1313     }
1314    
1315 root 1.85 #if EV_MULTIPLICITY
1316 root 1.51 ev_tstamp
1317     ev_now (EV_P)
1318     {
1319 root 1.85 return ev_rt_now;
1320 root 1.51 }
1321 root 1.85 #endif
1322 root 1.51
1323 root 1.193 void
1324     ev_sleep (ev_tstamp delay)
1325     {
1326     if (delay > 0.)
1327     {
1328     #if EV_USE_NANOSLEEP
1329     struct timespec ts;
1330    
1331 root 1.348 EV_TS_SET (ts, delay);
1332 root 1.193 nanosleep (&ts, 0);
1333     #elif defined(_WIN32)
1334 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1335 root 1.193 #else
1336     struct timeval tv;
1337    
1338 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1339 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1340 root 1.257 /* by older ones */
1341 sf-exg 1.349 EV_TV_SET (tv, delay);
1342 root 1.193 select (0, 0, 0, 0, &tv);
1343     #endif
1344     }
1345     }
1346    
1347     /*****************************************************************************/
1348    
1349 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1350 root 1.232
1351 root 1.288 /* find a suitable new size for the given array, */
1352 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1353 root 1.284 inline_size int
1354 root 1.163 array_nextsize (int elem, int cur, int cnt)
1355     {
1356     int ncur = cur + 1;
1357    
1358     do
1359     ncur <<= 1;
1360     while (cnt > ncur);
1361    
1362 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1363 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1364 root 1.163 {
1365     ncur *= elem;
1366 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1367 root 1.163 ncur = ncur - sizeof (void *) * 4;
1368     ncur /= elem;
1369     }
1370    
1371     return ncur;
1372     }
1373    
1374 root 1.379 static void * noinline ecb_cold
1375 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1376     {
1377     *cur = array_nextsize (elem, *cur, cnt);
1378     return ev_realloc (base, elem * *cur);
1379     }
1380 root 1.29
1381 root 1.265 #define array_init_zero(base,count) \
1382     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1383    
1384 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1385 root 1.163 if (expect_false ((cnt) > (cur))) \
1386 root 1.69 { \
1387 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1388 root 1.163 (base) = (type *)array_realloc \
1389     (sizeof (type), (base), &(cur), (cnt)); \
1390     init ((base) + (ocur_), (cur) - ocur_); \
1391 root 1.1 }
1392    
1393 root 1.163 #if 0
1394 root 1.74 #define array_slim(type,stem) \
1395 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1396     { \
1397     stem ## max = array_roundsize (stem ## cnt >> 1); \
1398 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1399 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1400     }
1401 root 1.163 #endif
1402 root 1.67
1403 root 1.65 #define array_free(stem, idx) \
1404 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1405 root 1.65
1406 root 1.8 /*****************************************************************************/
1407    
1408 root 1.288 /* dummy callback for pending events */
1409     static void noinline
1410     pendingcb (EV_P_ ev_prepare *w, int revents)
1411     {
1412     }
1413    
1414 root 1.140 void noinline
1415 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
1416 root 1.1 {
1417 root 1.78 W w_ = (W)w;
1418 root 1.171 int pri = ABSPRI (w_);
1419 root 1.78
1420 root 1.123 if (expect_false (w_->pending))
1421 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1422     else
1423 root 1.32 {
1424 root 1.171 w_->pending = ++pendingcnt [pri];
1425     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1426     pendings [pri][w_->pending - 1].w = w_;
1427     pendings [pri][w_->pending - 1].events = revents;
1428 root 1.32 }
1429 root 1.1 }
1430    
1431 root 1.284 inline_speed void
1432     feed_reverse (EV_P_ W w)
1433     {
1434     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1435     rfeeds [rfeedcnt++] = w;
1436     }
1437    
1438     inline_size void
1439     feed_reverse_done (EV_P_ int revents)
1440     {
1441     do
1442     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1443     while (rfeedcnt);
1444     }
1445    
1446     inline_speed void
1447 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1448 root 1.27 {
1449     int i;
1450    
1451     for (i = 0; i < eventcnt; ++i)
1452 root 1.78 ev_feed_event (EV_A_ events [i], type);
1453 root 1.27 }
1454    
1455 root 1.141 /*****************************************************************************/
1456    
1457 root 1.284 inline_speed void
1458 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1459 root 1.1 {
1460     ANFD *anfd = anfds + fd;
1461 root 1.136 ev_io *w;
1462 root 1.1
1463 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1464 root 1.1 {
1465 root 1.79 int ev = w->events & revents;
1466 root 1.1
1467     if (ev)
1468 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1469 root 1.1 }
1470     }
1471    
1472 root 1.298 /* do not submit kernel events for fds that have reify set */
1473     /* because that means they changed while we were polling for new events */
1474     inline_speed void
1475     fd_event (EV_P_ int fd, int revents)
1476     {
1477     ANFD *anfd = anfds + fd;
1478    
1479     if (expect_true (!anfd->reify))
1480 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1481 root 1.298 }
1482    
1483 root 1.79 void
1484     ev_feed_fd_event (EV_P_ int fd, int revents)
1485     {
1486 root 1.168 if (fd >= 0 && fd < anfdmax)
1487 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1488 root 1.79 }
1489    
1490 root 1.288 /* make sure the external fd watch events are in-sync */
1491     /* with the kernel/libev internal state */
1492 root 1.284 inline_size void
1493 root 1.51 fd_reify (EV_P)
1494 root 1.9 {
1495     int i;
1496    
1497 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1498     for (i = 0; i < fdchangecnt; ++i)
1499     {
1500     int fd = fdchanges [i];
1501     ANFD *anfd = anfds + fd;
1502    
1503 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1504 root 1.371 {
1505     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1506    
1507     if (handle != anfd->handle)
1508     {
1509     unsigned long arg;
1510    
1511     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1512    
1513     /* handle changed, but fd didn't - we need to do it in two steps */
1514     backend_modify (EV_A_ fd, anfd->events, 0);
1515     anfd->events = 0;
1516     anfd->handle = handle;
1517     }
1518     }
1519     }
1520     #endif
1521    
1522 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1523     {
1524     int fd = fdchanges [i];
1525     ANFD *anfd = anfds + fd;
1526 root 1.136 ev_io *w;
1527 root 1.27
1528 root 1.350 unsigned char o_events = anfd->events;
1529     unsigned char o_reify = anfd->reify;
1530 root 1.27
1531 root 1.350 anfd->reify = 0;
1532 root 1.27
1533 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1534     {
1535     anfd->events = 0;
1536 root 1.184
1537 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1538     anfd->events |= (unsigned char)w->events;
1539 root 1.27
1540 root 1.351 if (o_events != anfd->events)
1541 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1542     }
1543    
1544     if (o_reify & EV__IOFDSET)
1545     backend_modify (EV_A_ fd, o_events, anfd->events);
1546 root 1.27 }
1547    
1548     fdchangecnt = 0;
1549     }
1550    
1551 root 1.288 /* something about the given fd changed */
1552 root 1.284 inline_size void
1553 root 1.183 fd_change (EV_P_ int fd, int flags)
1554 root 1.27 {
1555 root 1.183 unsigned char reify = anfds [fd].reify;
1556 root 1.184 anfds [fd].reify |= flags;
1557 root 1.27
1558 root 1.183 if (expect_true (!reify))
1559     {
1560     ++fdchangecnt;
1561     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1562     fdchanges [fdchangecnt - 1] = fd;
1563     }
1564 root 1.9 }
1565    
1566 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1567 root 1.379 inline_speed void ecb_cold
1568 root 1.51 fd_kill (EV_P_ int fd)
1569 root 1.41 {
1570 root 1.136 ev_io *w;
1571 root 1.41
1572 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1573 root 1.41 {
1574 root 1.51 ev_io_stop (EV_A_ w);
1575 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1576 root 1.41 }
1577     }
1578    
1579 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1580 root 1.379 inline_size int ecb_cold
1581 root 1.71 fd_valid (int fd)
1582     {
1583 root 1.103 #ifdef _WIN32
1584 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1585 root 1.71 #else
1586     return fcntl (fd, F_GETFD) != -1;
1587     #endif
1588     }
1589    
1590 root 1.19 /* called on EBADF to verify fds */
1591 root 1.379 static void noinline ecb_cold
1592 root 1.51 fd_ebadf (EV_P)
1593 root 1.19 {
1594     int fd;
1595    
1596     for (fd = 0; fd < anfdmax; ++fd)
1597 root 1.27 if (anfds [fd].events)
1598 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1599 root 1.51 fd_kill (EV_A_ fd);
1600 root 1.41 }
1601    
1602     /* called on ENOMEM in select/poll to kill some fds and retry */
1603 root 1.379 static void noinline ecb_cold
1604 root 1.51 fd_enomem (EV_P)
1605 root 1.41 {
1606 root 1.62 int fd;
1607 root 1.41
1608 root 1.62 for (fd = anfdmax; fd--; )
1609 root 1.41 if (anfds [fd].events)
1610     {
1611 root 1.51 fd_kill (EV_A_ fd);
1612 root 1.307 break;
1613 root 1.41 }
1614 root 1.19 }
1615    
1616 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1617 root 1.140 static void noinline
1618 root 1.56 fd_rearm_all (EV_P)
1619     {
1620     int fd;
1621    
1622     for (fd = 0; fd < anfdmax; ++fd)
1623     if (anfds [fd].events)
1624     {
1625     anfds [fd].events = 0;
1626 root 1.268 anfds [fd].emask = 0;
1627 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1628 root 1.56 }
1629     }
1630    
1631 root 1.336 /* used to prepare libev internal fd's */
1632     /* this is not fork-safe */
1633     inline_speed void
1634     fd_intern (int fd)
1635     {
1636     #ifdef _WIN32
1637     unsigned long arg = 1;
1638     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1639     #else
1640     fcntl (fd, F_SETFD, FD_CLOEXEC);
1641     fcntl (fd, F_SETFL, O_NONBLOCK);
1642     #endif
1643     }
1644    
1645 root 1.8 /*****************************************************************************/
1646    
1647 root 1.235 /*
1648 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1649 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1650     * the branching factor of the d-tree.
1651     */
1652    
1653     /*
1654 root 1.235 * at the moment we allow libev the luxury of two heaps,
1655     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1656     * which is more cache-efficient.
1657     * the difference is about 5% with 50000+ watchers.
1658     */
1659 root 1.241 #if EV_USE_4HEAP
1660 root 1.235
1661 root 1.237 #define DHEAP 4
1662     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1663 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1664 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1665 root 1.235
1666     /* away from the root */
1667 root 1.284 inline_speed void
1668 root 1.241 downheap (ANHE *heap, int N, int k)
1669 root 1.235 {
1670 root 1.241 ANHE he = heap [k];
1671     ANHE *E = heap + N + HEAP0;
1672 root 1.235
1673     for (;;)
1674     {
1675     ev_tstamp minat;
1676 root 1.241 ANHE *minpos;
1677 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1678 root 1.235
1679 root 1.248 /* find minimum child */
1680 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1681 root 1.235 {
1682 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1683     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1684     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1685     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1686 root 1.235 }
1687 root 1.240 else if (pos < E)
1688 root 1.235 {
1689 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1690     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1691     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1692     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1693 root 1.235 }
1694 root 1.240 else
1695     break;
1696 root 1.235
1697 root 1.241 if (ANHE_at (he) <= minat)
1698 root 1.235 break;
1699    
1700 root 1.247 heap [k] = *minpos;
1701 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1702 root 1.235
1703     k = minpos - heap;
1704     }
1705    
1706 root 1.247 heap [k] = he;
1707 root 1.241 ev_active (ANHE_w (he)) = k;
1708 root 1.235 }
1709    
1710 root 1.248 #else /* 4HEAP */
1711 root 1.235
1712     #define HEAP0 1
1713 root 1.247 #define HPARENT(k) ((k) >> 1)
1714 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1715 root 1.235
1716 root 1.248 /* away from the root */
1717 root 1.284 inline_speed void
1718 root 1.248 downheap (ANHE *heap, int N, int k)
1719 root 1.1 {
1720 root 1.241 ANHE he = heap [k];
1721 root 1.1
1722 root 1.228 for (;;)
1723 root 1.1 {
1724 root 1.248 int c = k << 1;
1725 root 1.179
1726 root 1.309 if (c >= N + HEAP0)
1727 root 1.179 break;
1728    
1729 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1730     ? 1 : 0;
1731    
1732     if (ANHE_at (he) <= ANHE_at (heap [c]))
1733     break;
1734    
1735     heap [k] = heap [c];
1736 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1737 root 1.248
1738     k = c;
1739 root 1.1 }
1740    
1741 root 1.243 heap [k] = he;
1742 root 1.248 ev_active (ANHE_w (he)) = k;
1743 root 1.1 }
1744 root 1.248 #endif
1745 root 1.1
1746 root 1.248 /* towards the root */
1747 root 1.284 inline_speed void
1748 root 1.248 upheap (ANHE *heap, int k)
1749 root 1.1 {
1750 root 1.241 ANHE he = heap [k];
1751 root 1.1
1752 root 1.179 for (;;)
1753 root 1.1 {
1754 root 1.248 int p = HPARENT (k);
1755 root 1.179
1756 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1757 root 1.179 break;
1758 root 1.1
1759 root 1.248 heap [k] = heap [p];
1760 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1761 root 1.248 k = p;
1762 root 1.1 }
1763    
1764 root 1.241 heap [k] = he;
1765     ev_active (ANHE_w (he)) = k;
1766 root 1.1 }
1767    
1768 root 1.288 /* move an element suitably so it is in a correct place */
1769 root 1.284 inline_size void
1770 root 1.241 adjustheap (ANHE *heap, int N, int k)
1771 root 1.84 {
1772 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1773 root 1.247 upheap (heap, k);
1774     else
1775     downheap (heap, N, k);
1776 root 1.84 }
1777    
1778 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1779 root 1.284 inline_size void
1780 root 1.248 reheap (ANHE *heap, int N)
1781     {
1782     int i;
1783 root 1.251
1784 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1785     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1786     for (i = 0; i < N; ++i)
1787     upheap (heap, i + HEAP0);
1788     }
1789    
1790 root 1.8 /*****************************************************************************/
1791    
1792 root 1.288 /* associate signal watchers to a signal signal */
1793 root 1.7 typedef struct
1794     {
1795 root 1.307 EV_ATOMIC_T pending;
1796 root 1.306 #if EV_MULTIPLICITY
1797     EV_P;
1798     #endif
1799 root 1.68 WL head;
1800 root 1.7 } ANSIG;
1801    
1802 root 1.306 static ANSIG signals [EV_NSIG - 1];
1803 root 1.7
1804 root 1.207 /*****************************************************************************/
1805    
1806 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1807 root 1.207
1808 root 1.379 static void noinline ecb_cold
1809 root 1.207 evpipe_init (EV_P)
1810     {
1811 root 1.288 if (!ev_is_active (&pipe_w))
1812 root 1.207 {
1813 root 1.336 # if EV_USE_EVENTFD
1814 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1815     if (evfd < 0 && errno == EINVAL)
1816     evfd = eventfd (0, 0);
1817    
1818     if (evfd >= 0)
1819 root 1.220 {
1820     evpipe [0] = -1;
1821 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1822 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1823 root 1.220 }
1824     else
1825 root 1.336 # endif
1826 root 1.220 {
1827     while (pipe (evpipe))
1828 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1829 root 1.207
1830 root 1.220 fd_intern (evpipe [0]);
1831     fd_intern (evpipe [1]);
1832 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1833 root 1.220 }
1834 root 1.207
1835 root 1.288 ev_io_start (EV_A_ &pipe_w);
1836 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1837 root 1.207 }
1838     }
1839    
1840 root 1.380 inline_speed void
1841 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1842 root 1.207 {
1843 root 1.383 if (expect_true (*flag))
1844 root 1.387 return;
1845 root 1.383
1846     *flag = 1;
1847    
1848 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1849 root 1.383
1850     pipe_write_skipped = 1;
1851 root 1.378
1852 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1853 root 1.214
1854 root 1.383 if (pipe_write_wanted)
1855     {
1856     int old_errno;
1857 root 1.378
1858 root 1.392 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1859 root 1.220
1860 root 1.383 old_errno = errno; /* save errno because write will clobber it */
1861 root 1.380
1862 root 1.220 #if EV_USE_EVENTFD
1863 root 1.383 if (evfd >= 0)
1864     {
1865     uint64_t counter = 1;
1866     write (evfd, &counter, sizeof (uint64_t));
1867     }
1868     else
1869 root 1.220 #endif
1870 root 1.383 {
1871     /* win32 people keep sending patches that change this write() to send() */
1872     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1873     /* so when you think this write should be a send instead, please find out */
1874     /* where your send() is from - it's definitely not the microsoft send, and */
1875     /* tell me. thank you. */
1876 root 1.411 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1877     /* check the ev documentation on how to use this flag */
1878 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
1879     }
1880 root 1.214
1881 root 1.383 errno = old_errno;
1882 root 1.207 }
1883     }
1884    
1885 root 1.288 /* called whenever the libev signal pipe */
1886     /* got some events (signal, async) */
1887 root 1.207 static void
1888     pipecb (EV_P_ ev_io *iow, int revents)
1889     {
1890 root 1.307 int i;
1891    
1892 root 1.378 if (revents & EV_READ)
1893     {
1894 root 1.220 #if EV_USE_EVENTFD
1895 root 1.378 if (evfd >= 0)
1896     {
1897     uint64_t counter;
1898     read (evfd, &counter, sizeof (uint64_t));
1899     }
1900     else
1901 root 1.220 #endif
1902 root 1.378 {
1903     char dummy;
1904     /* see discussion in evpipe_write when you think this read should be recv in win32 */
1905     read (evpipe [0], &dummy, 1);
1906     }
1907 root 1.220 }
1908 root 1.207
1909 root 1.378 pipe_write_skipped = 0;
1910    
1911 root 1.369 #if EV_SIGNAL_ENABLE
1912 root 1.307 if (sig_pending)
1913 root 1.372 {
1914 root 1.307 sig_pending = 0;
1915 root 1.207
1916 root 1.307 for (i = EV_NSIG - 1; i--; )
1917     if (expect_false (signals [i].pending))
1918     ev_feed_signal_event (EV_A_ i + 1);
1919 root 1.207 }
1920 root 1.369 #endif
1921 root 1.207
1922 root 1.209 #if EV_ASYNC_ENABLE
1923 root 1.307 if (async_pending)
1924 root 1.207 {
1925 root 1.307 async_pending = 0;
1926 root 1.207
1927     for (i = asynccnt; i--; )
1928     if (asyncs [i]->sent)
1929     {
1930     asyncs [i]->sent = 0;
1931     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1932     }
1933     }
1934 root 1.209 #endif
1935 root 1.207 }
1936    
1937     /*****************************************************************************/
1938    
1939 root 1.366 void
1940     ev_feed_signal (int signum)
1941 root 1.7 {
1942 root 1.207 #if EV_MULTIPLICITY
1943 root 1.306 EV_P = signals [signum - 1].loop;
1944 root 1.366
1945     if (!EV_A)
1946     return;
1947 root 1.207 #endif
1948    
1949 root 1.381 if (!ev_active (&pipe_w))
1950     return;
1951 root 1.378
1952 root 1.366 signals [signum - 1].pending = 1;
1953     evpipe_write (EV_A_ &sig_pending);
1954     }
1955    
1956     static void
1957     ev_sighandler (int signum)
1958     {
1959 root 1.322 #ifdef _WIN32
1960 root 1.218 signal (signum, ev_sighandler);
1961 root 1.67 #endif
1962    
1963 root 1.366 ev_feed_signal (signum);
1964 root 1.7 }
1965    
1966 root 1.140 void noinline
1967 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1968     {
1969 root 1.80 WL w;
1970    
1971 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1972     return;
1973    
1974     --signum;
1975    
1976 root 1.79 #if EV_MULTIPLICITY
1977 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1978     /* or, likely more useful, feeding a signal nobody is waiting for */
1979 root 1.79
1980 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1981 root 1.306 return;
1982 root 1.307 #endif
1983 root 1.306
1984 root 1.307 signals [signum].pending = 0;
1985 root 1.79
1986     for (w = signals [signum].head; w; w = w->next)
1987     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1988     }
1989    
1990 root 1.303 #if EV_USE_SIGNALFD
1991     static void
1992     sigfdcb (EV_P_ ev_io *iow, int revents)
1993     {
1994 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1995 root 1.303
1996     for (;;)
1997     {
1998     ssize_t res = read (sigfd, si, sizeof (si));
1999    
2000     /* not ISO-C, as res might be -1, but works with SuS */
2001     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2002     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2003    
2004     if (res < (ssize_t)sizeof (si))
2005     break;
2006     }
2007     }
2008     #endif
2009    
2010 root 1.336 #endif
2011    
2012 root 1.8 /*****************************************************************************/
2013    
2014 root 1.336 #if EV_CHILD_ENABLE
2015 root 1.182 static WL childs [EV_PID_HASHSIZE];
2016 root 1.71
2017 root 1.136 static ev_signal childev;
2018 root 1.59
2019 root 1.206 #ifndef WIFCONTINUED
2020     # define WIFCONTINUED(status) 0
2021     #endif
2022    
2023 root 1.288 /* handle a single child status event */
2024 root 1.284 inline_speed void
2025 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2026 root 1.47 {
2027 root 1.136 ev_child *w;
2028 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2029 root 1.47
2030 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2031 root 1.206 {
2032     if ((w->pid == pid || !w->pid)
2033     && (!traced || (w->flags & 1)))
2034     {
2035 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2036 root 1.206 w->rpid = pid;
2037     w->rstatus = status;
2038     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2039     }
2040     }
2041 root 1.47 }
2042    
2043 root 1.142 #ifndef WCONTINUED
2044     # define WCONTINUED 0
2045     #endif
2046    
2047 root 1.288 /* called on sigchld etc., calls waitpid */
2048 root 1.47 static void
2049 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2050 root 1.22 {
2051     int pid, status;
2052    
2053 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2054     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2055     if (!WCONTINUED
2056     || errno != EINVAL
2057     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2058     return;
2059    
2060 root 1.216 /* make sure we are called again until all children have been reaped */
2061 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2062     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2063 root 1.47
2064 root 1.216 child_reap (EV_A_ pid, pid, status);
2065 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2066 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2067 root 1.22 }
2068    
2069 root 1.45 #endif
2070    
2071 root 1.22 /*****************************************************************************/
2072    
2073 root 1.357 #if EV_USE_IOCP
2074     # include "ev_iocp.c"
2075     #endif
2076 root 1.118 #if EV_USE_PORT
2077     # include "ev_port.c"
2078     #endif
2079 root 1.44 #if EV_USE_KQUEUE
2080     # include "ev_kqueue.c"
2081     #endif
2082 root 1.29 #if EV_USE_EPOLL
2083 root 1.1 # include "ev_epoll.c"
2084     #endif
2085 root 1.59 #if EV_USE_POLL
2086 root 1.41 # include "ev_poll.c"
2087     #endif
2088 root 1.29 #if EV_USE_SELECT
2089 root 1.1 # include "ev_select.c"
2090     #endif
2091    
2092 root 1.379 int ecb_cold
2093 root 1.24 ev_version_major (void)
2094     {
2095     return EV_VERSION_MAJOR;
2096     }
2097    
2098 root 1.379 int ecb_cold
2099 root 1.24 ev_version_minor (void)
2100     {
2101     return EV_VERSION_MINOR;
2102     }
2103    
2104 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2105 root 1.379 int inline_size ecb_cold
2106 root 1.51 enable_secure (void)
2107 root 1.41 {
2108 root 1.103 #ifdef _WIN32
2109 root 1.49 return 0;
2110     #else
2111 root 1.41 return getuid () != geteuid ()
2112     || getgid () != getegid ();
2113 root 1.49 #endif
2114 root 1.41 }
2115    
2116 root 1.379 unsigned int ecb_cold
2117 root 1.129 ev_supported_backends (void)
2118     {
2119 root 1.130 unsigned int flags = 0;
2120 root 1.129
2121     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2122     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2123     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2124     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2125     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2126    
2127     return flags;
2128     }
2129    
2130 root 1.379 unsigned int ecb_cold
2131 root 1.130 ev_recommended_backends (void)
2132 root 1.1 {
2133 root 1.131 unsigned int flags = ev_supported_backends ();
2134 root 1.129
2135     #ifndef __NetBSD__
2136     /* kqueue is borked on everything but netbsd apparently */
2137     /* it usually doesn't work correctly on anything but sockets and pipes */
2138     flags &= ~EVBACKEND_KQUEUE;
2139     #endif
2140     #ifdef __APPLE__
2141 root 1.278 /* only select works correctly on that "unix-certified" platform */
2142     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2143     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2144 root 1.129 #endif
2145 root 1.342 #ifdef __FreeBSD__
2146     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2147     #endif
2148 root 1.129
2149     return flags;
2150 root 1.51 }
2151    
2152 root 1.379 unsigned int ecb_cold
2153 root 1.134 ev_embeddable_backends (void)
2154     {
2155 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2156    
2157 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2158 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2159     flags &= ~EVBACKEND_EPOLL;
2160 root 1.196
2161     return flags;
2162 root 1.134 }
2163    
2164     unsigned int
2165 root 1.130 ev_backend (EV_P)
2166     {
2167     return backend;
2168     }
2169    
2170 root 1.338 #if EV_FEATURE_API
2171 root 1.162 unsigned int
2172 root 1.340 ev_iteration (EV_P)
2173 root 1.162 {
2174     return loop_count;
2175     }
2176    
2177 root 1.294 unsigned int
2178 root 1.340 ev_depth (EV_P)
2179 root 1.294 {
2180     return loop_depth;
2181     }
2182    
2183 root 1.193 void
2184     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2185     {
2186     io_blocktime = interval;
2187     }
2188    
2189     void
2190     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2191     {
2192     timeout_blocktime = interval;
2193     }
2194    
2195 root 1.297 void
2196     ev_set_userdata (EV_P_ void *data)
2197     {
2198     userdata = data;
2199     }
2200    
2201     void *
2202     ev_userdata (EV_P)
2203     {
2204     return userdata;
2205     }
2206    
2207 root 1.379 void
2208     ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2209 root 1.297 {
2210     invoke_cb = invoke_pending_cb;
2211     }
2212    
2213 root 1.379 void
2214     ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2215 root 1.297 {
2216 root 1.298 release_cb = release;
2217     acquire_cb = acquire;
2218 root 1.297 }
2219     #endif
2220    
2221 root 1.288 /* initialise a loop structure, must be zero-initialised */
2222 root 1.379 static void noinline ecb_cold
2223 root 1.108 loop_init (EV_P_ unsigned int flags)
2224 root 1.51 {
2225 root 1.130 if (!backend)
2226 root 1.23 {
2227 root 1.366 origflags = flags;
2228    
2229 root 1.279 #if EV_USE_REALTIME
2230     if (!have_realtime)
2231     {
2232     struct timespec ts;
2233    
2234     if (!clock_gettime (CLOCK_REALTIME, &ts))
2235     have_realtime = 1;
2236     }
2237     #endif
2238    
2239 root 1.29 #if EV_USE_MONOTONIC
2240 root 1.279 if (!have_monotonic)
2241     {
2242     struct timespec ts;
2243    
2244     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2245     have_monotonic = 1;
2246     }
2247 root 1.1 #endif
2248    
2249 root 1.306 /* pid check not overridable via env */
2250     #ifndef _WIN32
2251     if (flags & EVFLAG_FORKCHECK)
2252     curpid = getpid ();
2253     #endif
2254    
2255     if (!(flags & EVFLAG_NOENV)
2256     && !enable_secure ()
2257     && getenv ("LIBEV_FLAGS"))
2258     flags = atoi (getenv ("LIBEV_FLAGS"));
2259    
2260 root 1.378 ev_rt_now = ev_time ();
2261     mn_now = get_clock ();
2262     now_floor = mn_now;
2263     rtmn_diff = ev_rt_now - mn_now;
2264 root 1.338 #if EV_FEATURE_API
2265 root 1.378 invoke_cb = ev_invoke_pending;
2266 root 1.297 #endif
2267 root 1.1
2268 root 1.378 io_blocktime = 0.;
2269     timeout_blocktime = 0.;
2270     backend = 0;
2271     backend_fd = -1;
2272     sig_pending = 0;
2273 root 1.307 #if EV_ASYNC_ENABLE
2274 root 1.378 async_pending = 0;
2275 root 1.307 #endif
2276 root 1.378 pipe_write_skipped = 0;
2277     pipe_write_wanted = 0;
2278 root 1.209 #if EV_USE_INOTIFY
2279 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2280 root 1.209 #endif
2281 root 1.303 #if EV_USE_SIGNALFD
2282 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2283 root 1.303 #endif
2284 root 1.193
2285 root 1.366 if (!(flags & EVBACKEND_MASK))
2286 root 1.129 flags |= ev_recommended_backends ();
2287 root 1.41
2288 root 1.357 #if EV_USE_IOCP
2289     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2290     #endif
2291 root 1.118 #if EV_USE_PORT
2292 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2293 root 1.118 #endif
2294 root 1.44 #if EV_USE_KQUEUE
2295 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2296 root 1.44 #endif
2297 root 1.29 #if EV_USE_EPOLL
2298 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2299 root 1.41 #endif
2300 root 1.59 #if EV_USE_POLL
2301 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2302 root 1.1 #endif
2303 root 1.29 #if EV_USE_SELECT
2304 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2305 root 1.1 #endif
2306 root 1.70
2307 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2308    
2309 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2310 root 1.288 ev_init (&pipe_w, pipecb);
2311     ev_set_priority (&pipe_w, EV_MAXPRI);
2312 root 1.336 #endif
2313 root 1.56 }
2314     }
2315    
2316 root 1.288 /* free up a loop structure */
2317 root 1.379 void ecb_cold
2318 root 1.359 ev_loop_destroy (EV_P)
2319 root 1.56 {
2320 root 1.65 int i;
2321    
2322 root 1.364 #if EV_MULTIPLICITY
2323 root 1.363 /* mimic free (0) */
2324     if (!EV_A)
2325     return;
2326 root 1.364 #endif
2327 root 1.363
2328 root 1.361 #if EV_CLEANUP_ENABLE
2329     /* queue cleanup watchers (and execute them) */
2330     if (expect_false (cleanupcnt))
2331     {
2332     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2333     EV_INVOKE_PENDING;
2334     }
2335     #endif
2336    
2337 root 1.359 #if EV_CHILD_ENABLE
2338     if (ev_is_active (&childev))
2339     {
2340     ev_ref (EV_A); /* child watcher */
2341     ev_signal_stop (EV_A_ &childev);
2342     }
2343     #endif
2344    
2345 root 1.288 if (ev_is_active (&pipe_w))
2346 root 1.207 {
2347 root 1.303 /*ev_ref (EV_A);*/
2348     /*ev_io_stop (EV_A_ &pipe_w);*/
2349 root 1.207
2350 root 1.220 #if EV_USE_EVENTFD
2351     if (evfd >= 0)
2352     close (evfd);
2353     #endif
2354    
2355     if (evpipe [0] >= 0)
2356     {
2357 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2358     EV_WIN32_CLOSE_FD (evpipe [1]);
2359 root 1.220 }
2360 root 1.207 }
2361    
2362 root 1.303 #if EV_USE_SIGNALFD
2363     if (ev_is_active (&sigfd_w))
2364 root 1.317 close (sigfd);
2365 root 1.303 #endif
2366    
2367 root 1.152 #if EV_USE_INOTIFY
2368     if (fs_fd >= 0)
2369     close (fs_fd);
2370     #endif
2371    
2372     if (backend_fd >= 0)
2373     close (backend_fd);
2374    
2375 root 1.357 #if EV_USE_IOCP
2376     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2377     #endif
2378 root 1.118 #if EV_USE_PORT
2379 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2380 root 1.118 #endif
2381 root 1.56 #if EV_USE_KQUEUE
2382 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2383 root 1.56 #endif
2384     #if EV_USE_EPOLL
2385 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2386 root 1.56 #endif
2387 root 1.59 #if EV_USE_POLL
2388 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2389 root 1.56 #endif
2390     #if EV_USE_SELECT
2391 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2392 root 1.56 #endif
2393 root 1.1
2394 root 1.65 for (i = NUMPRI; i--; )
2395 root 1.164 {
2396     array_free (pending, [i]);
2397     #if EV_IDLE_ENABLE
2398     array_free (idle, [i]);
2399     #endif
2400     }
2401 root 1.65
2402 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2403 root 1.186
2404 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2405 root 1.284 array_free (rfeed, EMPTY);
2406 root 1.164 array_free (fdchange, EMPTY);
2407     array_free (timer, EMPTY);
2408 root 1.140 #if EV_PERIODIC_ENABLE
2409 root 1.164 array_free (periodic, EMPTY);
2410 root 1.93 #endif
2411 root 1.187 #if EV_FORK_ENABLE
2412     array_free (fork, EMPTY);
2413     #endif
2414 root 1.360 #if EV_CLEANUP_ENABLE
2415     array_free (cleanup, EMPTY);
2416     #endif
2417 root 1.164 array_free (prepare, EMPTY);
2418     array_free (check, EMPTY);
2419 root 1.209 #if EV_ASYNC_ENABLE
2420     array_free (async, EMPTY);
2421     #endif
2422 root 1.65
2423 root 1.130 backend = 0;
2424 root 1.359
2425     #if EV_MULTIPLICITY
2426     if (ev_is_default_loop (EV_A))
2427     #endif
2428     ev_default_loop_ptr = 0;
2429     #if EV_MULTIPLICITY
2430     else
2431     ev_free (EV_A);
2432     #endif
2433 root 1.56 }
2434 root 1.22
2435 root 1.226 #if EV_USE_INOTIFY
2436 root 1.284 inline_size void infy_fork (EV_P);
2437 root 1.226 #endif
2438 root 1.154
2439 root 1.284 inline_size void
2440 root 1.56 loop_fork (EV_P)
2441     {
2442 root 1.118 #if EV_USE_PORT
2443 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2444 root 1.56 #endif
2445     #if EV_USE_KQUEUE
2446 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2447 root 1.45 #endif
2448 root 1.118 #if EV_USE_EPOLL
2449 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2450 root 1.118 #endif
2451 root 1.154 #if EV_USE_INOTIFY
2452     infy_fork (EV_A);
2453     #endif
2454 root 1.70
2455 root 1.288 if (ev_is_active (&pipe_w))
2456 root 1.70 {
2457 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2458 root 1.70
2459     ev_ref (EV_A);
2460 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2461 root 1.220
2462     #if EV_USE_EVENTFD
2463     if (evfd >= 0)
2464     close (evfd);
2465     #endif
2466    
2467     if (evpipe [0] >= 0)
2468     {
2469 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2470     EV_WIN32_CLOSE_FD (evpipe [1]);
2471 root 1.220 }
2472 root 1.207
2473 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2474 root 1.207 evpipe_init (EV_A);
2475 root 1.208 /* now iterate over everything, in case we missed something */
2476 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
2477 root 1.337 #endif
2478 root 1.70 }
2479    
2480     postfork = 0;
2481 root 1.1 }
2482    
2483 root 1.55 #if EV_MULTIPLICITY
2484 root 1.250
2485 root 1.379 struct ev_loop * ecb_cold
2486 root 1.108 ev_loop_new (unsigned int flags)
2487 root 1.54 {
2488 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2489 root 1.69
2490 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2491 root 1.108 loop_init (EV_A_ flags);
2492 root 1.56
2493 root 1.130 if (ev_backend (EV_A))
2494 root 1.306 return EV_A;
2495 root 1.54
2496 root 1.359 ev_free (EV_A);
2497 root 1.55 return 0;
2498 root 1.54 }
2499    
2500 root 1.297 #endif /* multiplicity */
2501 root 1.248
2502     #if EV_VERIFY
2503 root 1.379 static void noinline ecb_cold
2504 root 1.251 verify_watcher (EV_P_ W w)
2505     {
2506 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2507 root 1.251
2508     if (w->pending)
2509 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2510 root 1.251 }
2511    
2512 root 1.379 static void noinline ecb_cold
2513 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2514     {
2515     int i;
2516    
2517     for (i = HEAP0; i < N + HEAP0; ++i)
2518     {
2519 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2520     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2521     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2522 root 1.251
2523     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2524     }
2525     }
2526    
2527 root 1.379 static void noinline ecb_cold
2528 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2529 root 1.248 {
2530     while (cnt--)
2531 root 1.251 {
2532 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2533 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2534     }
2535 root 1.248 }
2536 root 1.250 #endif
2537 root 1.248
2538 root 1.338 #if EV_FEATURE_API
2539 root 1.379 void ecb_cold
2540 root 1.340 ev_verify (EV_P)
2541 root 1.248 {
2542 root 1.250 #if EV_VERIFY
2543 root 1.248 int i;
2544 root 1.251 WL w;
2545    
2546     assert (activecnt >= -1);
2547    
2548     assert (fdchangemax >= fdchangecnt);
2549     for (i = 0; i < fdchangecnt; ++i)
2550 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2551 root 1.251
2552     assert (anfdmax >= 0);
2553     for (i = 0; i < anfdmax; ++i)
2554     for (w = anfds [i].head; w; w = w->next)
2555     {
2556     verify_watcher (EV_A_ (W)w);
2557 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2558     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2559 root 1.251 }
2560    
2561     assert (timermax >= timercnt);
2562     verify_heap (EV_A_ timers, timercnt);
2563 root 1.248
2564     #if EV_PERIODIC_ENABLE
2565 root 1.251 assert (periodicmax >= periodiccnt);
2566     verify_heap (EV_A_ periodics, periodiccnt);
2567 root 1.248 #endif
2568    
2569 root 1.251 for (i = NUMPRI; i--; )
2570     {
2571     assert (pendingmax [i] >= pendingcnt [i]);
2572 root 1.248 #if EV_IDLE_ENABLE
2573 root 1.252 assert (idleall >= 0);
2574 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2575     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2576 root 1.248 #endif
2577 root 1.251 }
2578    
2579 root 1.248 #if EV_FORK_ENABLE
2580 root 1.251 assert (forkmax >= forkcnt);
2581     array_verify (EV_A_ (W *)forks, forkcnt);
2582 root 1.248 #endif
2583 root 1.251
2584 root 1.360 #if EV_CLEANUP_ENABLE
2585     assert (cleanupmax >= cleanupcnt);
2586     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2587     #endif
2588    
2589 root 1.250 #if EV_ASYNC_ENABLE
2590 root 1.251 assert (asyncmax >= asynccnt);
2591     array_verify (EV_A_ (W *)asyncs, asynccnt);
2592 root 1.250 #endif
2593 root 1.251
2594 root 1.337 #if EV_PREPARE_ENABLE
2595 root 1.251 assert (preparemax >= preparecnt);
2596     array_verify (EV_A_ (W *)prepares, preparecnt);
2597 root 1.337 #endif
2598 root 1.251
2599 root 1.337 #if EV_CHECK_ENABLE
2600 root 1.251 assert (checkmax >= checkcnt);
2601     array_verify (EV_A_ (W *)checks, checkcnt);
2602 root 1.337 #endif
2603 root 1.251
2604     # if 0
2605 root 1.336 #if EV_CHILD_ENABLE
2606 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2607 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2608 root 1.336 #endif
2609 root 1.251 # endif
2610 root 1.248 #endif
2611     }
2612 root 1.297 #endif
2613 root 1.56
2614     #if EV_MULTIPLICITY
2615 root 1.379 struct ev_loop * ecb_cold
2616 root 1.54 #else
2617     int
2618 root 1.358 #endif
2619 root 1.116 ev_default_loop (unsigned int flags)
2620 root 1.54 {
2621 root 1.116 if (!ev_default_loop_ptr)
2622 root 1.56 {
2623     #if EV_MULTIPLICITY
2624 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2625 root 1.56 #else
2626 ayin 1.117 ev_default_loop_ptr = 1;
2627 root 1.54 #endif
2628    
2629 root 1.110 loop_init (EV_A_ flags);
2630 root 1.56
2631 root 1.130 if (ev_backend (EV_A))
2632 root 1.56 {
2633 root 1.336 #if EV_CHILD_ENABLE
2634 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2635     ev_set_priority (&childev, EV_MAXPRI);
2636     ev_signal_start (EV_A_ &childev);
2637     ev_unref (EV_A); /* child watcher should not keep loop alive */
2638     #endif
2639     }
2640     else
2641 root 1.116 ev_default_loop_ptr = 0;
2642 root 1.56 }
2643 root 1.8
2644 root 1.116 return ev_default_loop_ptr;
2645 root 1.1 }
2646    
2647 root 1.24 void
2648 root 1.359 ev_loop_fork (EV_P)
2649 root 1.1 {
2650 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2651 root 1.1 }
2652    
2653 root 1.8 /*****************************************************************************/
2654    
2655 root 1.168 void
2656     ev_invoke (EV_P_ void *w, int revents)
2657     {
2658     EV_CB_INVOKE ((W)w, revents);
2659     }
2660    
2661 root 1.300 unsigned int
2662     ev_pending_count (EV_P)
2663     {
2664     int pri;
2665     unsigned int count = 0;
2666    
2667     for (pri = NUMPRI; pri--; )
2668     count += pendingcnt [pri];
2669    
2670     return count;
2671     }
2672    
2673 root 1.297 void noinline
2674 root 1.296 ev_invoke_pending (EV_P)
2675 root 1.1 {
2676 root 1.42 int pri;
2677    
2678     for (pri = NUMPRI; pri--; )
2679     while (pendingcnt [pri])
2680     {
2681     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2682 root 1.1
2683 root 1.288 p->w->pending = 0;
2684     EV_CB_INVOKE (p->w, p->events);
2685     EV_FREQUENT_CHECK;
2686 root 1.42 }
2687 root 1.1 }
2688    
2689 root 1.234 #if EV_IDLE_ENABLE
2690 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2691     /* only when higher priorities are idle" logic */
2692 root 1.284 inline_size void
2693 root 1.234 idle_reify (EV_P)
2694     {
2695     if (expect_false (idleall))
2696     {
2697     int pri;
2698    
2699     for (pri = NUMPRI; pri--; )
2700     {
2701     if (pendingcnt [pri])
2702     break;
2703    
2704     if (idlecnt [pri])
2705     {
2706     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2707     break;
2708     }
2709     }
2710     }
2711     }
2712     #endif
2713    
2714 root 1.288 /* make timers pending */
2715 root 1.284 inline_size void
2716 root 1.51 timers_reify (EV_P)
2717 root 1.1 {
2718 root 1.248 EV_FREQUENT_CHECK;
2719    
2720 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2721 root 1.1 {
2722 root 1.284 do
2723     {
2724     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2725 root 1.1
2726 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2727    
2728     /* first reschedule or stop timer */
2729     if (w->repeat)
2730     {
2731     ev_at (w) += w->repeat;
2732     if (ev_at (w) < mn_now)
2733     ev_at (w) = mn_now;
2734 root 1.61
2735 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2736 root 1.90
2737 root 1.284 ANHE_at_cache (timers [HEAP0]);
2738     downheap (timers, timercnt, HEAP0);
2739     }
2740     else
2741     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2742 root 1.243
2743 root 1.284 EV_FREQUENT_CHECK;
2744     feed_reverse (EV_A_ (W)w);
2745 root 1.12 }
2746 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2747 root 1.30
2748 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2749 root 1.12 }
2750     }
2751 root 1.4
2752 root 1.140 #if EV_PERIODIC_ENABLE
2753 root 1.370
2754 root 1.373 static void noinline
2755 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2756     {
2757 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2758     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2759    
2760     /* the above almost always errs on the low side */
2761     while (at <= ev_rt_now)
2762     {
2763     ev_tstamp nat = at + w->interval;
2764    
2765     /* when resolution fails us, we use ev_rt_now */
2766     if (expect_false (nat == at))
2767     {
2768     at = ev_rt_now;
2769     break;
2770     }
2771    
2772     at = nat;
2773     }
2774    
2775     ev_at (w) = at;
2776 root 1.370 }
2777    
2778 root 1.288 /* make periodics pending */
2779 root 1.284 inline_size void
2780 root 1.51 periodics_reify (EV_P)
2781 root 1.12 {
2782 root 1.248 EV_FREQUENT_CHECK;
2783 root 1.250
2784 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2785 root 1.12 {
2786 root 1.284 int feed_count = 0;
2787    
2788     do
2789     {
2790     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2791 root 1.1
2792 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2793 root 1.61
2794 root 1.284 /* first reschedule or stop timer */
2795     if (w->reschedule_cb)
2796     {
2797     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2798 root 1.243
2799 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2800 root 1.243
2801 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2802     downheap (periodics, periodiccnt, HEAP0);
2803     }
2804     else if (w->interval)
2805 root 1.246 {
2806 root 1.370 periodic_recalc (EV_A_ w);
2807 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2808     downheap (periodics, periodiccnt, HEAP0);
2809 root 1.246 }
2810 root 1.284 else
2811     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2812 root 1.243
2813 root 1.284 EV_FREQUENT_CHECK;
2814     feed_reverse (EV_A_ (W)w);
2815 root 1.1 }
2816 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2817 root 1.12
2818 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2819 root 1.12 }
2820     }
2821    
2822 root 1.288 /* simply recalculate all periodics */
2823 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2824 root 1.379 static void noinline ecb_cold
2825 root 1.54 periodics_reschedule (EV_P)
2826 root 1.12 {
2827     int i;
2828    
2829 root 1.13 /* adjust periodics after time jump */
2830 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2831 root 1.12 {
2832 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2833 root 1.12
2834 root 1.77 if (w->reschedule_cb)
2835 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2836 root 1.77 else if (w->interval)
2837 root 1.370 periodic_recalc (EV_A_ w);
2838 root 1.242
2839 root 1.248 ANHE_at_cache (periodics [i]);
2840 root 1.77 }
2841 root 1.12
2842 root 1.248 reheap (periodics, periodiccnt);
2843 root 1.1 }
2844 root 1.93 #endif
2845 root 1.1
2846 root 1.288 /* adjust all timers by a given offset */
2847 root 1.379 static void noinline ecb_cold
2848 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
2849     {
2850     int i;
2851    
2852     for (i = 0; i < timercnt; ++i)
2853     {
2854     ANHE *he = timers + i + HEAP0;
2855     ANHE_w (*he)->at += adjust;
2856     ANHE_at_cache (*he);
2857     }
2858     }
2859    
2860 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2861 root 1.324 /* also detect if there was a timejump, and act accordingly */
2862 root 1.284 inline_speed void
2863 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2864 root 1.4 {
2865 root 1.40 #if EV_USE_MONOTONIC
2866     if (expect_true (have_monotonic))
2867     {
2868 root 1.289 int i;
2869 root 1.178 ev_tstamp odiff = rtmn_diff;
2870    
2871     mn_now = get_clock ();
2872    
2873     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2874     /* interpolate in the meantime */
2875     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2876 root 1.40 {
2877 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2878     return;
2879     }
2880    
2881     now_floor = mn_now;
2882     ev_rt_now = ev_time ();
2883 root 1.4
2884 root 1.178 /* loop a few times, before making important decisions.
2885     * on the choice of "4": one iteration isn't enough,
2886     * in case we get preempted during the calls to
2887     * ev_time and get_clock. a second call is almost guaranteed
2888     * to succeed in that case, though. and looping a few more times
2889     * doesn't hurt either as we only do this on time-jumps or
2890     * in the unlikely event of having been preempted here.
2891     */
2892     for (i = 4; --i; )
2893     {
2894 root 1.373 ev_tstamp diff;
2895 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2896 root 1.4
2897 root 1.373 diff = odiff - rtmn_diff;
2898    
2899     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2900 root 1.178 return; /* all is well */
2901 root 1.4
2902 root 1.178 ev_rt_now = ev_time ();
2903     mn_now = get_clock ();
2904     now_floor = mn_now;
2905     }
2906 root 1.4
2907 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2908     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2909 root 1.140 # if EV_PERIODIC_ENABLE
2910 root 1.178 periodics_reschedule (EV_A);
2911 root 1.93 # endif
2912 root 1.4 }
2913     else
2914 root 1.40 #endif
2915 root 1.4 {
2916 root 1.85 ev_rt_now = ev_time ();
2917 root 1.40
2918 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2919 root 1.13 {
2920 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2921     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2922 root 1.140 #if EV_PERIODIC_ENABLE
2923 root 1.54 periodics_reschedule (EV_A);
2924 root 1.93 #endif
2925 root 1.13 }
2926 root 1.4
2927 root 1.85 mn_now = ev_rt_now;
2928 root 1.4 }
2929     }
2930    
2931 root 1.51 void
2932 root 1.353 ev_run (EV_P_ int flags)
2933 root 1.1 {
2934 root 1.338 #if EV_FEATURE_API
2935 root 1.294 ++loop_depth;
2936 root 1.297 #endif
2937 root 1.294
2938 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2939 root 1.298
2940 root 1.353 loop_done = EVBREAK_CANCEL;
2941 root 1.1
2942 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2943 root 1.158
2944 root 1.161 do
2945 root 1.9 {
2946 root 1.250 #if EV_VERIFY >= 2
2947 root 1.340 ev_verify (EV_A);
2948 root 1.250 #endif
2949    
2950 root 1.158 #ifndef _WIN32
2951     if (expect_false (curpid)) /* penalise the forking check even more */
2952     if (expect_false (getpid () != curpid))
2953     {
2954     curpid = getpid ();
2955     postfork = 1;
2956     }
2957     #endif
2958    
2959 root 1.157 #if EV_FORK_ENABLE
2960     /* we might have forked, so queue fork handlers */
2961     if (expect_false (postfork))
2962     if (forkcnt)
2963     {
2964     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2965 root 1.297 EV_INVOKE_PENDING;
2966 root 1.157 }
2967     #endif
2968 root 1.147
2969 root 1.337 #if EV_PREPARE_ENABLE
2970 root 1.170 /* queue prepare watchers (and execute them) */
2971 root 1.40 if (expect_false (preparecnt))
2972 root 1.20 {
2973 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2974 root 1.297 EV_INVOKE_PENDING;
2975 root 1.20 }
2976 root 1.337 #endif
2977 root 1.9
2978 root 1.298 if (expect_false (loop_done))
2979     break;
2980    
2981 root 1.70 /* we might have forked, so reify kernel state if necessary */
2982     if (expect_false (postfork))
2983     loop_fork (EV_A);
2984    
2985 root 1.1 /* update fd-related kernel structures */
2986 root 1.51 fd_reify (EV_A);
2987 root 1.1
2988     /* calculate blocking time */
2989 root 1.135 {
2990 root 1.193 ev_tstamp waittime = 0.;
2991     ev_tstamp sleeptime = 0.;
2992 root 1.12
2993 root 1.353 /* remember old timestamp for io_blocktime calculation */
2994     ev_tstamp prev_mn_now = mn_now;
2995 root 1.293
2996 root 1.353 /* update time to cancel out callback processing overhead */
2997     time_update (EV_A_ 1e100);
2998 root 1.135
2999 root 1.378 /* from now on, we want a pipe-wake-up */
3000     pipe_write_wanted = 1;
3001    
3002 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3003 root 1.383
3004 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3005 root 1.353 {
3006 root 1.287 waittime = MAX_BLOCKTIME;
3007    
3008 root 1.135 if (timercnt)
3009     {
3010 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3011 root 1.193 if (waittime > to) waittime = to;
3012 root 1.135 }
3013 root 1.4
3014 root 1.140 #if EV_PERIODIC_ENABLE
3015 root 1.135 if (periodiccnt)
3016     {
3017 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3018 root 1.193 if (waittime > to) waittime = to;
3019 root 1.135 }
3020 root 1.93 #endif
3021 root 1.4
3022 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3023 root 1.193 if (expect_false (waittime < timeout_blocktime))
3024     waittime = timeout_blocktime;
3025    
3026 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3027     /* to pass a minimum nonzero value to the backend */
3028     if (expect_false (waittime < backend_mintime))
3029     waittime = backend_mintime;
3030    
3031 root 1.293 /* extra check because io_blocktime is commonly 0 */
3032     if (expect_false (io_blocktime))
3033     {
3034     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3035 root 1.193
3036 root 1.376 if (sleeptime > waittime - backend_mintime)
3037     sleeptime = waittime - backend_mintime;
3038 root 1.193
3039 root 1.293 if (expect_true (sleeptime > 0.))
3040     {
3041     ev_sleep (sleeptime);
3042     waittime -= sleeptime;
3043     }
3044 root 1.193 }
3045 root 1.135 }
3046 root 1.1
3047 root 1.338 #if EV_FEATURE_API
3048 root 1.162 ++loop_count;
3049 root 1.297 #endif
3050 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3051 root 1.193 backend_poll (EV_A_ waittime);
3052 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3053 root 1.178
3054 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3055 root 1.378
3056     if (pipe_write_skipped)
3057     {
3058     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3059     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3060     }
3061    
3062    
3063 root 1.178 /* update ev_rt_now, do magic */
3064 root 1.193 time_update (EV_A_ waittime + sleeptime);
3065 root 1.135 }
3066 root 1.1
3067 root 1.9 /* queue pending timers and reschedule them */
3068 root 1.51 timers_reify (EV_A); /* relative timers called last */
3069 root 1.140 #if EV_PERIODIC_ENABLE
3070 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3071 root 1.93 #endif
3072 root 1.1
3073 root 1.164 #if EV_IDLE_ENABLE
3074 root 1.137 /* queue idle watchers unless other events are pending */
3075 root 1.164 idle_reify (EV_A);
3076     #endif
3077 root 1.9
3078 root 1.337 #if EV_CHECK_ENABLE
3079 root 1.20 /* queue check watchers, to be executed first */
3080 root 1.123 if (expect_false (checkcnt))
3081 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3082 root 1.337 #endif
3083 root 1.9
3084 root 1.297 EV_INVOKE_PENDING;
3085 root 1.1 }
3086 root 1.219 while (expect_true (
3087     activecnt
3088     && !loop_done
3089 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3090 root 1.219 ));
3091 root 1.13
3092 root 1.353 if (loop_done == EVBREAK_ONE)
3093     loop_done = EVBREAK_CANCEL;
3094 root 1.294
3095 root 1.338 #if EV_FEATURE_API
3096 root 1.294 --loop_depth;
3097 root 1.297 #endif
3098 root 1.51 }
3099    
3100     void
3101 root 1.353 ev_break (EV_P_ int how)
3102 root 1.51 {
3103     loop_done = how;
3104 root 1.1 }
3105    
3106 root 1.285 void
3107     ev_ref (EV_P)
3108     {
3109     ++activecnt;
3110     }
3111    
3112     void
3113     ev_unref (EV_P)
3114     {
3115     --activecnt;
3116     }
3117    
3118     void
3119     ev_now_update (EV_P)
3120     {
3121     time_update (EV_A_ 1e100);
3122     }
3123    
3124     void
3125     ev_suspend (EV_P)
3126     {
3127     ev_now_update (EV_A);
3128     }
3129    
3130     void
3131     ev_resume (EV_P)
3132     {
3133     ev_tstamp mn_prev = mn_now;
3134    
3135     ev_now_update (EV_A);
3136     timers_reschedule (EV_A_ mn_now - mn_prev);
3137 root 1.286 #if EV_PERIODIC_ENABLE
3138 root 1.288 /* TODO: really do this? */
3139 root 1.285 periodics_reschedule (EV_A);
3140 root 1.286 #endif
3141 root 1.285 }
3142    
3143 root 1.8 /*****************************************************************************/
3144 root 1.288 /* singly-linked list management, used when the expected list length is short */
3145 root 1.8
3146 root 1.284 inline_size void
3147 root 1.10 wlist_add (WL *head, WL elem)
3148 root 1.1 {
3149     elem->next = *head;
3150     *head = elem;
3151     }
3152    
3153 root 1.284 inline_size void
3154 root 1.10 wlist_del (WL *head, WL elem)
3155 root 1.1 {
3156     while (*head)
3157     {
3158 root 1.307 if (expect_true (*head == elem))
3159 root 1.1 {
3160     *head = elem->next;
3161 root 1.307 break;
3162 root 1.1 }
3163    
3164     head = &(*head)->next;
3165     }
3166     }
3167    
3168 root 1.288 /* internal, faster, version of ev_clear_pending */
3169 root 1.284 inline_speed void
3170 root 1.166 clear_pending (EV_P_ W w)
3171 root 1.16 {
3172     if (w->pending)
3173     {
3174 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3175 root 1.16 w->pending = 0;
3176     }
3177     }
3178    
3179 root 1.167 int
3180     ev_clear_pending (EV_P_ void *w)
3181 root 1.166 {
3182     W w_ = (W)w;
3183     int pending = w_->pending;
3184    
3185 root 1.172 if (expect_true (pending))
3186     {
3187     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3188 root 1.288 p->w = (W)&pending_w;
3189 root 1.172 w_->pending = 0;
3190     return p->events;
3191     }
3192     else
3193 root 1.167 return 0;
3194 root 1.166 }
3195    
3196 root 1.284 inline_size void
3197 root 1.164 pri_adjust (EV_P_ W w)
3198     {
3199 root 1.295 int pri = ev_priority (w);
3200 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3201     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3202 root 1.295 ev_set_priority (w, pri);
3203 root 1.164 }
3204    
3205 root 1.284 inline_speed void
3206 root 1.51 ev_start (EV_P_ W w, int active)
3207 root 1.1 {
3208 root 1.164 pri_adjust (EV_A_ w);
3209 root 1.1 w->active = active;
3210 root 1.51 ev_ref (EV_A);
3211 root 1.1 }
3212    
3213 root 1.284 inline_size void
3214 root 1.51 ev_stop (EV_P_ W w)
3215 root 1.1 {
3216 root 1.51 ev_unref (EV_A);
3217 root 1.1 w->active = 0;
3218     }
3219    
3220 root 1.8 /*****************************************************************************/
3221    
3222 root 1.171 void noinline
3223 root 1.136 ev_io_start (EV_P_ ev_io *w)
3224 root 1.1 {
3225 root 1.37 int fd = w->fd;
3226    
3227 root 1.123 if (expect_false (ev_is_active (w)))
3228 root 1.1 return;
3229    
3230 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3231 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3232 root 1.33
3233 root 1.248 EV_FREQUENT_CHECK;
3234    
3235 root 1.51 ev_start (EV_A_ (W)w, 1);
3236 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3237 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3238 root 1.1
3239 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3240 root 1.281 w->events &= ~EV__IOFDSET;
3241 root 1.248
3242     EV_FREQUENT_CHECK;
3243 root 1.1 }
3244    
3245 root 1.171 void noinline
3246 root 1.136 ev_io_stop (EV_P_ ev_io *w)
3247 root 1.1 {
3248 root 1.166 clear_pending (EV_A_ (W)w);
3249 root 1.123 if (expect_false (!ev_is_active (w)))
3250 root 1.1 return;
3251    
3252 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3253 root 1.89
3254 root 1.248 EV_FREQUENT_CHECK;
3255    
3256 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3257 root 1.51 ev_stop (EV_A_ (W)w);
3258 root 1.1
3259 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3260 root 1.248
3261     EV_FREQUENT_CHECK;
3262 root 1.1 }
3263    
3264 root 1.171 void noinline
3265 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
3266 root 1.1 {
3267 root 1.123 if (expect_false (ev_is_active (w)))
3268 root 1.1 return;
3269    
3270 root 1.228 ev_at (w) += mn_now;
3271 root 1.12
3272 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3273 root 1.13
3274 root 1.248 EV_FREQUENT_CHECK;
3275    
3276     ++timercnt;
3277     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3278 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3279     ANHE_w (timers [ev_active (w)]) = (WT)w;
3280 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3281 root 1.235 upheap (timers, ev_active (w));
3282 root 1.62
3283 root 1.248 EV_FREQUENT_CHECK;
3284    
3285 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3286 root 1.12 }
3287    
3288 root 1.171 void noinline
3289 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
3290 root 1.12 {
3291 root 1.166 clear_pending (EV_A_ (W)w);
3292 root 1.123 if (expect_false (!ev_is_active (w)))
3293 root 1.12 return;
3294    
3295 root 1.248 EV_FREQUENT_CHECK;
3296    
3297 root 1.230 {
3298     int active = ev_active (w);
3299 root 1.62
3300 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3301 root 1.151
3302 root 1.248 --timercnt;
3303    
3304     if (expect_true (active < timercnt + HEAP0))
3305 root 1.151 {
3306 root 1.248 timers [active] = timers [timercnt + HEAP0];
3307 root 1.181 adjustheap (timers, timercnt, active);
3308 root 1.151 }
3309 root 1.248 }
3310 root 1.228
3311     ev_at (w) -= mn_now;
3312 root 1.14
3313 root 1.51 ev_stop (EV_A_ (W)w);
3314 root 1.328
3315     EV_FREQUENT_CHECK;
3316 root 1.12 }
3317 root 1.4
3318 root 1.171 void noinline
3319 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
3320 root 1.14 {
3321 root 1.248 EV_FREQUENT_CHECK;
3322    
3323 root 1.407 clear_pending (EV_A_ (W)w);
3324 root 1.406
3325 root 1.14 if (ev_is_active (w))
3326     {
3327     if (w->repeat)
3328 root 1.99 {
3329 root 1.228 ev_at (w) = mn_now + w->repeat;
3330 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3331 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3332 root 1.99 }
3333 root 1.14 else
3334 root 1.51 ev_timer_stop (EV_A_ w);
3335 root 1.14 }
3336     else if (w->repeat)
3337 root 1.112 {
3338 root 1.229 ev_at (w) = w->repeat;
3339 root 1.112 ev_timer_start (EV_A_ w);
3340     }
3341 root 1.248
3342     EV_FREQUENT_CHECK;
3343 root 1.14 }
3344    
3345 root 1.301 ev_tstamp
3346     ev_timer_remaining (EV_P_ ev_timer *w)
3347     {
3348     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3349     }
3350    
3351 root 1.140 #if EV_PERIODIC_ENABLE
3352 root 1.171 void noinline
3353 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
3354 root 1.12 {
3355 root 1.123 if (expect_false (ev_is_active (w)))
3356 root 1.12 return;
3357 root 1.1
3358 root 1.77 if (w->reschedule_cb)
3359 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3360 root 1.77 else if (w->interval)
3361     {
3362 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3363 root 1.370 periodic_recalc (EV_A_ w);
3364 root 1.77 }
3365 root 1.173 else
3366 root 1.228 ev_at (w) = w->offset;
3367 root 1.12
3368 root 1.248 EV_FREQUENT_CHECK;
3369    
3370     ++periodiccnt;
3371     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3372 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3373     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3374 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3375 root 1.235 upheap (periodics, ev_active (w));
3376 root 1.62
3377 root 1.248 EV_FREQUENT_CHECK;
3378    
3379 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3380 root 1.1 }
3381    
3382 root 1.171 void noinline
3383 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
3384 root 1.1 {
3385 root 1.166 clear_pending (EV_A_ (W)w);
3386 root 1.123 if (expect_false (!ev_is_active (w)))
3387 root 1.1 return;
3388    
3389 root 1.248 EV_FREQUENT_CHECK;
3390    
3391 root 1.230 {
3392     int active = ev_active (w);
3393 root 1.62
3394 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3395 root 1.151
3396 root 1.248 --periodiccnt;
3397    
3398     if (expect_true (active < periodiccnt + HEAP0))
3399 root 1.151 {
3400 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3401 root 1.181 adjustheap (periodics, periodiccnt, active);
3402 root 1.151 }
3403 root 1.248 }
3404 root 1.228
3405 root 1.328 ev_stop (EV_A_ (W)w);
3406    
3407 root 1.248 EV_FREQUENT_CHECK;
3408 root 1.1 }
3409    
3410 root 1.171 void noinline
3411 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
3412 root 1.77 {
3413 root 1.84 /* TODO: use adjustheap and recalculation */
3414 root 1.77 ev_periodic_stop (EV_A_ w);
3415     ev_periodic_start (EV_A_ w);
3416     }
3417 root 1.93 #endif
3418 root 1.77
3419 root 1.56 #ifndef SA_RESTART
3420     # define SA_RESTART 0
3421     #endif
3422    
3423 root 1.336 #if EV_SIGNAL_ENABLE
3424    
3425 root 1.171 void noinline
3426 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
3427 root 1.56 {
3428 root 1.123 if (expect_false (ev_is_active (w)))
3429 root 1.56 return;
3430    
3431 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3432    
3433     #if EV_MULTIPLICITY
3434 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3435 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3436    
3437     signals [w->signum - 1].loop = EV_A;
3438     #endif
3439 root 1.56
3440 root 1.303 EV_FREQUENT_CHECK;
3441    
3442     #if EV_USE_SIGNALFD
3443     if (sigfd == -2)
3444     {
3445     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3446     if (sigfd < 0 && errno == EINVAL)
3447     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3448    
3449     if (sigfd >= 0)
3450     {
3451     fd_intern (sigfd); /* doing it twice will not hurt */
3452    
3453     sigemptyset (&sigfd_set);
3454    
3455     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3456     ev_set_priority (&sigfd_w, EV_MAXPRI);
3457     ev_io_start (EV_A_ &sigfd_w);
3458     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3459     }
3460     }
3461    
3462     if (sigfd >= 0)
3463     {
3464     /* TODO: check .head */
3465     sigaddset (&sigfd_set, w->signum);
3466     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3467 root 1.207
3468 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3469     }
3470 root 1.180 #endif
3471    
3472 root 1.56 ev_start (EV_A_ (W)w, 1);
3473 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3474 root 1.56
3475 root 1.63 if (!((WL)w)->next)
3476 root 1.304 # if EV_USE_SIGNALFD
3477 root 1.306 if (sigfd < 0) /*TODO*/
3478 root 1.304 # endif
3479 root 1.306 {
3480 root 1.322 # ifdef _WIN32
3481 root 1.317 evpipe_init (EV_A);
3482    
3483 root 1.306 signal (w->signum, ev_sighandler);
3484     # else
3485     struct sigaction sa;
3486    
3487     evpipe_init (EV_A);
3488    
3489     sa.sa_handler = ev_sighandler;
3490     sigfillset (&sa.sa_mask);
3491     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3492     sigaction (w->signum, &sa, 0);
3493    
3494 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3495     {
3496     sigemptyset (&sa.sa_mask);
3497     sigaddset (&sa.sa_mask, w->signum);
3498     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3499     }
3500 root 1.67 #endif
3501 root 1.306 }
3502 root 1.248
3503     EV_FREQUENT_CHECK;
3504 root 1.56 }
3505    
3506 root 1.171 void noinline
3507 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
3508 root 1.56 {
3509 root 1.166 clear_pending (EV_A_ (W)w);
3510 root 1.123 if (expect_false (!ev_is_active (w)))
3511 root 1.56 return;
3512    
3513 root 1.248 EV_FREQUENT_CHECK;
3514    
3515 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3516 root 1.56 ev_stop (EV_A_ (W)w);
3517    
3518     if (!signals [w->signum - 1].head)
3519 root 1.306 {
3520 root 1.307 #if EV_MULTIPLICITY
3521 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3522 root 1.307 #endif
3523     #if EV_USE_SIGNALFD
3524 root 1.306 if (sigfd >= 0)
3525     {
3526 root 1.321 sigset_t ss;
3527    
3528     sigemptyset (&ss);
3529     sigaddset (&ss, w->signum);
3530 root 1.306 sigdelset (&sigfd_set, w->signum);
3531 root 1.321
3532 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3533 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3534 root 1.306 }
3535     else
3536 root 1.307 #endif
3537 root 1.306 signal (w->signum, SIG_DFL);
3538     }
3539 root 1.248
3540     EV_FREQUENT_CHECK;
3541 root 1.56 }
3542    
3543 root 1.336 #endif
3544    
3545     #if EV_CHILD_ENABLE
3546    
3547 root 1.28 void
3548 root 1.136 ev_child_start (EV_P_ ev_child *w)
3549 root 1.22 {
3550 root 1.56 #if EV_MULTIPLICITY
3551 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3552 root 1.56 #endif
3553 root 1.123 if (expect_false (ev_is_active (w)))
3554 root 1.22 return;
3555    
3556 root 1.248 EV_FREQUENT_CHECK;
3557    
3558 root 1.51 ev_start (EV_A_ (W)w, 1);
3559 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3560 root 1.248
3561     EV_FREQUENT_CHECK;
3562 root 1.22 }
3563    
3564 root 1.28 void
3565 root 1.136 ev_child_stop (EV_P_ ev_child *w)
3566 root 1.22 {
3567 root 1.166 clear_pending (EV_A_ (W)w);
3568 root 1.123 if (expect_false (!ev_is_active (w)))
3569 root 1.22 return;
3570    
3571 root 1.248 EV_FREQUENT_CHECK;
3572    
3573 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3574 root 1.51 ev_stop (EV_A_ (W)w);
3575 root 1.248
3576     EV_FREQUENT_CHECK;
3577 root 1.22 }
3578    
3579 root 1.336 #endif
3580    
3581 root 1.140 #if EV_STAT_ENABLE
3582    
3583     # ifdef _WIN32
3584 root 1.146 # undef lstat
3585     # define lstat(a,b) _stati64 (a,b)
3586 root 1.140 # endif
3587    
3588 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3589     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3590     #define MIN_STAT_INTERVAL 0.1074891
3591 root 1.143
3592 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3593 root 1.152
3594     #if EV_USE_INOTIFY
3595 root 1.326
3596     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3597     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3598 root 1.152
3599     static void noinline
3600     infy_add (EV_P_ ev_stat *w)
3601     {
3602     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3603    
3604 root 1.318 if (w->wd >= 0)
3605 root 1.152 {
3606 root 1.318 struct statfs sfs;
3607    
3608     /* now local changes will be tracked by inotify, but remote changes won't */
3609     /* unless the filesystem is known to be local, we therefore still poll */
3610     /* also do poll on <2.6.25, but with normal frequency */
3611    
3612     if (!fs_2625)
3613     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3614     else if (!statfs (w->path, &sfs)
3615     && (sfs.f_type == 0x1373 /* devfs */
3616     || sfs.f_type == 0xEF53 /* ext2/3 */
3617     || sfs.f_type == 0x3153464a /* jfs */
3618     || sfs.f_type == 0x52654973 /* reiser3 */
3619     || sfs.f_type == 0x01021994 /* tempfs */
3620     || sfs.f_type == 0x58465342 /* xfs */))
3621     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3622     else
3623     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3624     }
3625     else
3626     {
3627     /* can't use inotify, continue to stat */
3628 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3629 root 1.152
3630 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3631 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3632 root 1.233 /* but an efficiency issue only */
3633 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3634 root 1.152 {
3635 root 1.153 char path [4096];
3636 root 1.152 strcpy (path, w->path);
3637    
3638     do
3639     {
3640     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3641     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3642    
3643     char *pend = strrchr (path, '/');
3644    
3645 root 1.275 if (!pend || pend == path)
3646     break;
3647 root 1.152
3648     *pend = 0;
3649 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3650 root 1.372 }
3651 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3652     }
3653     }
3654 root 1.275
3655     if (w->wd >= 0)
3656 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3657 root 1.152
3658 root 1.318 /* now re-arm timer, if required */
3659     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3660     ev_timer_again (EV_A_ &w->timer);
3661     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3662 root 1.152 }
3663    
3664     static void noinline
3665     infy_del (EV_P_ ev_stat *w)
3666     {
3667     int slot;
3668     int wd = w->wd;
3669    
3670     if (wd < 0)
3671     return;
3672    
3673     w->wd = -2;
3674 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3675 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3676    
3677     /* remove this watcher, if others are watching it, they will rearm */
3678     inotify_rm_watch (fs_fd, wd);
3679     }
3680    
3681     static void noinline
3682     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3683     {
3684     if (slot < 0)
3685 root 1.264 /* overflow, need to check for all hash slots */
3686 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3687 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3688     else
3689     {
3690     WL w_;
3691    
3692 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3693 root 1.152 {
3694     ev_stat *w = (ev_stat *)w_;
3695     w_ = w_->next; /* lets us remove this watcher and all before it */
3696    
3697     if (w->wd == wd || wd == -1)
3698     {
3699     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3700     {
3701 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3702 root 1.152 w->wd = -1;
3703     infy_add (EV_A_ w); /* re-add, no matter what */
3704     }
3705    
3706 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3707 root 1.152 }
3708     }
3709     }
3710     }
3711    
3712     static void
3713     infy_cb (EV_P_ ev_io *w, int revents)
3714     {
3715     char buf [EV_INOTIFY_BUFSIZE];
3716     int ofs;
3717     int len = read (fs_fd, buf, sizeof (buf));
3718    
3719 root 1.326 for (ofs = 0; ofs < len; )
3720     {
3721     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3722     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3723     ofs += sizeof (struct inotify_event) + ev->len;
3724     }
3725 root 1.152 }
3726    
3727 root 1.379 inline_size void ecb_cold
3728 root 1.330 ev_check_2625 (EV_P)
3729     {
3730     /* kernels < 2.6.25 are borked
3731     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3732     */
3733     if (ev_linux_version () < 0x020619)
3734 root 1.273 return;
3735 root 1.264
3736 root 1.273 fs_2625 = 1;
3737     }
3738 root 1.264
3739 root 1.315 inline_size int
3740     infy_newfd (void)
3741     {
3742     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3743     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3744     if (fd >= 0)
3745     return fd;
3746     #endif
3747     return inotify_init ();
3748     }
3749    
3750 root 1.284 inline_size void
3751 root 1.273 infy_init (EV_P)
3752     {
3753     if (fs_fd != -2)
3754     return;
3755 root 1.264
3756 root 1.273 fs_fd = -1;
3757 root 1.264
3758 root 1.330 ev_check_2625 (EV_A);
3759 root 1.264
3760 root 1.315 fs_fd = infy_newfd ();
3761 root 1.152
3762     if (fs_fd >= 0)
3763     {
3764 root 1.315 fd_intern (fs_fd);
3765 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3766     ev_set_priority (&fs_w, EV_MAXPRI);
3767     ev_io_start (EV_A_ &fs_w);
3768 root 1.317 ev_unref (EV_A);
3769 root 1.152 }
3770     }
3771    
3772 root 1.284 inline_size void
3773 root 1.154 infy_fork (EV_P)
3774     {
3775     int slot;
3776    
3777     if (fs_fd < 0)
3778     return;
3779    
3780 root 1.317 ev_ref (EV_A);
3781 root 1.315 ev_io_stop (EV_A_ &fs_w);
3782 root 1.154 close (fs_fd);
3783 root 1.315 fs_fd = infy_newfd ();
3784    
3785     if (fs_fd >= 0)
3786     {
3787     fd_intern (fs_fd);
3788     ev_io_set (&fs_w, fs_fd, EV_READ);
3789     ev_io_start (EV_A_ &fs_w);
3790 root 1.317 ev_unref (EV_A);
3791 root 1.315 }
3792 root 1.154
3793 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3794 root 1.154 {
3795     WL w_ = fs_hash [slot].head;
3796     fs_hash [slot].head = 0;
3797    
3798     while (w_)
3799     {
3800     ev_stat *w = (ev_stat *)w_;
3801     w_ = w_->next; /* lets us add this watcher */
3802    
3803     w->wd = -1;
3804    
3805     if (fs_fd >= 0)
3806     infy_add (EV_A_ w); /* re-add, no matter what */
3807     else
3808 root 1.318 {
3809     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3810     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3811     ev_timer_again (EV_A_ &w->timer);
3812     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3813     }
3814 root 1.154 }
3815     }
3816     }
3817    
3818 root 1.152 #endif
3819    
3820 root 1.255 #ifdef _WIN32
3821     # define EV_LSTAT(p,b) _stati64 (p, b)
3822     #else
3823     # define EV_LSTAT(p,b) lstat (p, b)
3824     #endif
3825    
3826 root 1.140 void
3827     ev_stat_stat (EV_P_ ev_stat *w)
3828     {
3829     if (lstat (w->path, &w->attr) < 0)
3830     w->attr.st_nlink = 0;
3831     else if (!w->attr.st_nlink)
3832     w->attr.st_nlink = 1;
3833     }
3834    
3835 root 1.157 static void noinline
3836 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3837     {
3838     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3839    
3840 root 1.320 ev_statdata prev = w->attr;
3841 root 1.140 ev_stat_stat (EV_A_ w);
3842    
3843 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3844     if (
3845 root 1.320 prev.st_dev != w->attr.st_dev
3846     || prev.st_ino != w->attr.st_ino
3847     || prev.st_mode != w->attr.st_mode
3848     || prev.st_nlink != w->attr.st_nlink
3849     || prev.st_uid != w->attr.st_uid
3850     || prev.st_gid != w->attr.st_gid
3851     || prev.st_rdev != w->attr.st_rdev
3852     || prev.st_size != w->attr.st_size
3853     || prev.st_atime != w->attr.st_atime
3854     || prev.st_mtime != w->attr.st_mtime
3855     || prev.st_ctime != w->attr.st_ctime
3856 root 1.156 ) {
3857 root 1.320 /* we only update w->prev on actual differences */
3858     /* in case we test more often than invoke the callback, */
3859     /* to ensure that prev is always different to attr */
3860     w->prev = prev;
3861    
3862 root 1.152 #if EV_USE_INOTIFY
3863 root 1.264 if (fs_fd >= 0)
3864     {
3865     infy_del (EV_A_ w);
3866     infy_add (EV_A_ w);
3867     ev_stat_stat (EV_A_ w); /* avoid race... */
3868     }
3869 root 1.152 #endif
3870    
3871     ev_feed_event (EV_A_ w, EV_STAT);
3872     }
3873 root 1.140 }
3874    
3875     void
3876     ev_stat_start (EV_P_ ev_stat *w)
3877     {
3878     if (expect_false (ev_is_active (w)))
3879     return;
3880    
3881     ev_stat_stat (EV_A_ w);
3882    
3883 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3884     w->interval = MIN_STAT_INTERVAL;
3885 root 1.143
3886 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3887 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3888 root 1.152
3889     #if EV_USE_INOTIFY
3890     infy_init (EV_A);
3891    
3892     if (fs_fd >= 0)
3893     infy_add (EV_A_ w);
3894     else
3895     #endif
3896 root 1.318 {
3897     ev_timer_again (EV_A_ &w->timer);
3898     ev_unref (EV_A);
3899     }
3900 root 1.140
3901     ev_start (EV_A_ (W)w, 1);
3902 root 1.248
3903     EV_FREQUENT_CHECK;
3904 root 1.140 }
3905    
3906     void
3907     ev_stat_stop (EV_P_ ev_stat *w)
3908     {
3909 root 1.166 clear_pending (EV_A_ (W)w);
3910 root 1.140 if (expect_false (!ev_is_active (w)))
3911     return;
3912    
3913 root 1.248 EV_FREQUENT_CHECK;
3914    
3915 root 1.152 #if EV_USE_INOTIFY
3916     infy_del (EV_A_ w);
3917     #endif
3918 root 1.318
3919     if (ev_is_active (&w->timer))
3920     {
3921     ev_ref (EV_A);
3922     ev_timer_stop (EV_A_ &w->timer);
3923     }
3924 root 1.140
3925 root 1.134 ev_stop (EV_A_ (W)w);
3926 root 1.248
3927     EV_FREQUENT_CHECK;
3928 root 1.134 }
3929     #endif
3930    
3931 root 1.164 #if EV_IDLE_ENABLE
3932 root 1.144 void
3933     ev_idle_start (EV_P_ ev_idle *w)
3934     {
3935     if (expect_false (ev_is_active (w)))
3936     return;
3937    
3938 root 1.164 pri_adjust (EV_A_ (W)w);
3939    
3940 root 1.248 EV_FREQUENT_CHECK;
3941    
3942 root 1.164 {
3943     int active = ++idlecnt [ABSPRI (w)];
3944    
3945     ++idleall;
3946     ev_start (EV_A_ (W)w, active);
3947    
3948     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3949     idles [ABSPRI (w)][active - 1] = w;
3950     }
3951 root 1.248
3952     EV_FREQUENT_CHECK;
3953 root 1.144 }
3954    
3955     void
3956     ev_idle_stop (EV_P_ ev_idle *w)
3957     {
3958 root 1.166 clear_pending (EV_A_ (W)w);
3959 root 1.144 if (expect_false (!ev_is_active (w)))
3960     return;
3961    
3962 root 1.248 EV_FREQUENT_CHECK;
3963    
3964 root 1.144 {
3965 root 1.230 int active = ev_active (w);
3966 root 1.164
3967     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3968 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3969 root 1.164
3970     ev_stop (EV_A_ (W)w);
3971     --idleall;
3972 root 1.144 }
3973 root 1.248
3974     EV_FREQUENT_CHECK;
3975 root 1.144 }
3976 root 1.164 #endif
3977 root 1.144
3978 root 1.337 #if EV_PREPARE_ENABLE
3979 root 1.144 void
3980     ev_prepare_start (EV_P_ ev_prepare *w)
3981     {
3982     if (expect_false (ev_is_active (w)))
3983     return;
3984    
3985 root 1.248 EV_FREQUENT_CHECK;
3986    
3987 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3988     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3989     prepares [preparecnt - 1] = w;
3990 root 1.248
3991     EV_FREQUENT_CHECK;
3992 root 1.144 }
3993    
3994     void
3995     ev_prepare_stop (EV_P_ ev_prepare *w)
3996     {
3997 root 1.166 clear_pending (EV_A_ (W)w);
3998 root 1.144 if (expect_false (!ev_is_active (w)))
3999     return;
4000    
4001 root 1.248 EV_FREQUENT_CHECK;
4002    
4003 root 1.144 {
4004 root 1.230 int active = ev_active (w);
4005    
4006 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4007 root 1.230 ev_active (prepares [active - 1]) = active;
4008 root 1.144 }
4009    
4010     ev_stop (EV_A_ (W)w);
4011 root 1.248
4012     EV_FREQUENT_CHECK;
4013 root 1.144 }
4014 root 1.337 #endif
4015 root 1.144
4016 root 1.337 #if EV_CHECK_ENABLE
4017 root 1.144 void
4018     ev_check_start (EV_P_ ev_check *w)
4019     {
4020     if (expect_false (ev_is_active (w)))
4021     return;
4022    
4023 root 1.248 EV_FREQUENT_CHECK;
4024    
4025 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4026     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4027     checks [checkcnt - 1] = w;
4028 root 1.248
4029     EV_FREQUENT_CHECK;
4030 root 1.144 }
4031    
4032     void
4033     ev_check_stop (EV_P_ ev_check *w)
4034     {
4035 root 1.166 clear_pending (EV_A_ (W)w);
4036 root 1.144 if (expect_false (!ev_is_active (w)))
4037     return;
4038    
4039 root 1.248 EV_FREQUENT_CHECK;
4040    
4041 root 1.144 {
4042 root 1.230 int active = ev_active (w);
4043    
4044 root 1.144 checks [active - 1] = checks [--checkcnt];
4045 root 1.230 ev_active (checks [active - 1]) = active;
4046 root 1.144 }
4047    
4048     ev_stop (EV_A_ (W)w);
4049 root 1.248
4050     EV_FREQUENT_CHECK;
4051 root 1.144 }
4052 root 1.337 #endif
4053 root 1.144
4054     #if EV_EMBED_ENABLE
4055     void noinline
4056     ev_embed_sweep (EV_P_ ev_embed *w)
4057     {
4058 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4059 root 1.144 }
4060    
4061     static void
4062 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4063 root 1.144 {
4064     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4065    
4066     if (ev_cb (w))
4067     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4068     else
4069 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4070 root 1.144 }
4071    
4072 root 1.189 static void
4073     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4074     {
4075     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4076    
4077 root 1.195 {
4078 root 1.306 EV_P = w->other;
4079 root 1.195
4080     while (fdchangecnt)
4081     {
4082     fd_reify (EV_A);
4083 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4084 root 1.195 }
4085     }
4086     }
4087    
4088 root 1.261 static void
4089     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4090     {
4091     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4092    
4093 root 1.277 ev_embed_stop (EV_A_ w);
4094    
4095 root 1.261 {
4096 root 1.306 EV_P = w->other;
4097 root 1.261
4098     ev_loop_fork (EV_A);
4099 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4100 root 1.261 }
4101 root 1.277
4102     ev_embed_start (EV_A_ w);
4103 root 1.261 }
4104    
4105 root 1.195 #if 0
4106     static void
4107     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4108     {
4109     ev_idle_stop (EV_A_ idle);
4110 root 1.189 }
4111 root 1.195 #endif
4112 root 1.189
4113 root 1.144 void
4114     ev_embed_start (EV_P_ ev_embed *w)
4115     {
4116     if (expect_false (ev_is_active (w)))
4117     return;
4118    
4119     {
4120 root 1.306 EV_P = w->other;
4121 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4122 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4123 root 1.144 }
4124    
4125 root 1.248 EV_FREQUENT_CHECK;
4126    
4127 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4128     ev_io_start (EV_A_ &w->io);
4129    
4130 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4131     ev_set_priority (&w->prepare, EV_MINPRI);
4132     ev_prepare_start (EV_A_ &w->prepare);
4133    
4134 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4135     ev_fork_start (EV_A_ &w->fork);
4136    
4137 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4138    
4139 root 1.144 ev_start (EV_A_ (W)w, 1);
4140 root 1.248
4141     EV_FREQUENT_CHECK;
4142 root 1.144 }
4143    
4144     void
4145     ev_embed_stop (EV_P_ ev_embed *w)
4146     {
4147 root 1.166 clear_pending (EV_A_ (W)w);
4148 root 1.144 if (expect_false (!ev_is_active (w)))
4149     return;
4150    
4151 root 1.248 EV_FREQUENT_CHECK;
4152    
4153 root 1.261 ev_io_stop (EV_A_ &w->io);
4154 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4155 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4156 root 1.248
4157 root 1.328 ev_stop (EV_A_ (W)w);
4158    
4159 root 1.248 EV_FREQUENT_CHECK;
4160 root 1.144 }
4161     #endif
4162    
4163 root 1.147 #if EV_FORK_ENABLE
4164     void
4165     ev_fork_start (EV_P_ ev_fork *w)
4166     {
4167     if (expect_false (ev_is_active (w)))
4168     return;
4169    
4170 root 1.248 EV_FREQUENT_CHECK;
4171    
4172 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4173     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4174     forks [forkcnt - 1] = w;
4175 root 1.248
4176     EV_FREQUENT_CHECK;
4177 root 1.147 }
4178    
4179     void
4180     ev_fork_stop (EV_P_ ev_fork *w)
4181     {
4182 root 1.166 clear_pending (EV_A_ (W)w);
4183 root 1.147 if (expect_false (!ev_is_active (w)))
4184     return;
4185    
4186 root 1.248 EV_FREQUENT_CHECK;
4187    
4188 root 1.147 {
4189 root 1.230 int active = ev_active (w);
4190    
4191 root 1.147 forks [active - 1] = forks [--forkcnt];
4192 root 1.230 ev_active (forks [active - 1]) = active;
4193 root 1.147 }
4194    
4195     ev_stop (EV_A_ (W)w);
4196 root 1.248
4197     EV_FREQUENT_CHECK;
4198 root 1.147 }
4199     #endif
4200    
4201 root 1.360 #if EV_CLEANUP_ENABLE
4202     void
4203     ev_cleanup_start (EV_P_ ev_cleanup *w)
4204     {
4205     if (expect_false (ev_is_active (w)))
4206     return;
4207    
4208     EV_FREQUENT_CHECK;
4209    
4210     ev_start (EV_A_ (W)w, ++cleanupcnt);
4211     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4212     cleanups [cleanupcnt - 1] = w;
4213    
4214 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4215     ev_unref (EV_A);
4216 root 1.360 EV_FREQUENT_CHECK;
4217     }
4218    
4219     void
4220     ev_cleanup_stop (EV_P_ ev_cleanup *w)
4221     {
4222     clear_pending (EV_A_ (W)w);
4223     if (expect_false (!ev_is_active (w)))
4224     return;
4225    
4226     EV_FREQUENT_CHECK;
4227 root 1.362 ev_ref (EV_A);
4228 root 1.360
4229     {
4230     int active = ev_active (w);
4231    
4232     cleanups [active - 1] = cleanups [--cleanupcnt];
4233     ev_active (cleanups [active - 1]) = active;
4234     }
4235    
4236     ev_stop (EV_A_ (W)w);
4237    
4238     EV_FREQUENT_CHECK;
4239     }
4240     #endif
4241    
4242 root 1.207 #if EV_ASYNC_ENABLE
4243     void
4244     ev_async_start (EV_P_ ev_async *w)
4245     {
4246     if (expect_false (ev_is_active (w)))
4247     return;
4248    
4249 root 1.352 w->sent = 0;
4250    
4251 root 1.207 evpipe_init (EV_A);
4252    
4253 root 1.248 EV_FREQUENT_CHECK;
4254    
4255 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4256     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4257     asyncs [asynccnt - 1] = w;
4258 root 1.248
4259     EV_FREQUENT_CHECK;
4260 root 1.207 }
4261    
4262     void
4263     ev_async_stop (EV_P_ ev_async *w)
4264     {
4265     clear_pending (EV_A_ (W)w);
4266     if (expect_false (!ev_is_active (w)))
4267     return;
4268    
4269 root 1.248 EV_FREQUENT_CHECK;
4270    
4271 root 1.207 {
4272 root 1.230 int active = ev_active (w);
4273    
4274 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4275 root 1.230 ev_active (asyncs [active - 1]) = active;
4276 root 1.207 }
4277    
4278     ev_stop (EV_A_ (W)w);
4279 root 1.248
4280     EV_FREQUENT_CHECK;
4281 root 1.207 }
4282    
4283     void
4284     ev_async_send (EV_P_ ev_async *w)
4285     {
4286     w->sent = 1;
4287 root 1.307 evpipe_write (EV_A_ &async_pending);
4288 root 1.207 }
4289     #endif
4290    
4291 root 1.1 /*****************************************************************************/
4292 root 1.10
4293 root 1.16 struct ev_once
4294     {
4295 root 1.136 ev_io io;
4296     ev_timer to;
4297 root 1.16 void (*cb)(int revents, void *arg);
4298     void *arg;
4299     };
4300    
4301     static void
4302 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4303 root 1.16 {
4304     void (*cb)(int revents, void *arg) = once->cb;
4305     void *arg = once->arg;
4306    
4307 root 1.259 ev_io_stop (EV_A_ &once->io);
4308 root 1.51 ev_timer_stop (EV_A_ &once->to);
4309 root 1.69 ev_free (once);
4310 root 1.16
4311     cb (revents, arg);
4312     }
4313    
4314     static void
4315 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4316 root 1.16 {
4317 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4318    
4319     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4320 root 1.16 }
4321    
4322     static void
4323 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4324 root 1.16 {
4325 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4326    
4327     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4328 root 1.16 }
4329    
4330     void
4331 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4332 root 1.16 {
4333 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4334 root 1.16
4335 root 1.123 if (expect_false (!once))
4336 root 1.16 {
4337 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4338 root 1.123 return;
4339     }
4340    
4341     once->cb = cb;
4342     once->arg = arg;
4343 root 1.16
4344 root 1.123 ev_init (&once->io, once_cb_io);
4345     if (fd >= 0)
4346     {
4347     ev_io_set (&once->io, fd, events);
4348     ev_io_start (EV_A_ &once->io);
4349     }
4350 root 1.16
4351 root 1.123 ev_init (&once->to, once_cb_to);
4352     if (timeout >= 0.)
4353     {
4354     ev_timer_set (&once->to, timeout, 0.);
4355     ev_timer_start (EV_A_ &once->to);
4356 root 1.16 }
4357     }
4358    
4359 root 1.282 /*****************************************************************************/
4360    
4361 root 1.288 #if EV_WALK_ENABLE
4362 root 1.379 void ecb_cold
4363 root 1.282 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4364     {
4365     int i, j;
4366     ev_watcher_list *wl, *wn;
4367    
4368     if (types & (EV_IO | EV_EMBED))
4369     for (i = 0; i < anfdmax; ++i)
4370     for (wl = anfds [i].head; wl; )
4371     {
4372     wn = wl->next;
4373    
4374     #if EV_EMBED_ENABLE
4375     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4376     {
4377     if (types & EV_EMBED)
4378     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4379     }
4380     else
4381     #endif
4382     #if EV_USE_INOTIFY
4383     if (ev_cb ((ev_io *)wl) == infy_cb)
4384     ;
4385     else
4386     #endif
4387 root 1.288 if ((ev_io *)wl != &pipe_w)
4388 root 1.282 if (types & EV_IO)
4389     cb (EV_A_ EV_IO, wl);
4390    
4391     wl = wn;
4392     }
4393    
4394     if (types & (EV_TIMER | EV_STAT))
4395     for (i = timercnt + HEAP0; i-- > HEAP0; )
4396     #if EV_STAT_ENABLE
4397     /*TODO: timer is not always active*/
4398     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4399     {
4400     if (types & EV_STAT)
4401     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4402     }
4403     else
4404     #endif
4405     if (types & EV_TIMER)
4406     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4407    
4408     #if EV_PERIODIC_ENABLE
4409     if (types & EV_PERIODIC)
4410     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4411     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4412     #endif
4413    
4414     #if EV_IDLE_ENABLE
4415     if (types & EV_IDLE)
4416 root 1.390 for (j = NUMPRI; j--; )
4417 root 1.282 for (i = idlecnt [j]; i--; )
4418     cb (EV_A_ EV_IDLE, idles [j][i]);
4419     #endif
4420    
4421     #if EV_FORK_ENABLE
4422     if (types & EV_FORK)
4423     for (i = forkcnt; i--; )
4424     if (ev_cb (forks [i]) != embed_fork_cb)
4425     cb (EV_A_ EV_FORK, forks [i]);
4426     #endif
4427    
4428     #if EV_ASYNC_ENABLE
4429     if (types & EV_ASYNC)
4430     for (i = asynccnt; i--; )
4431     cb (EV_A_ EV_ASYNC, asyncs [i]);
4432     #endif
4433    
4434 root 1.337 #if EV_PREPARE_ENABLE
4435 root 1.282 if (types & EV_PREPARE)
4436     for (i = preparecnt; i--; )
4437 root 1.337 # if EV_EMBED_ENABLE
4438 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4439 root 1.337 # endif
4440     cb (EV_A_ EV_PREPARE, prepares [i]);
4441 root 1.282 #endif
4442    
4443 root 1.337 #if EV_CHECK_ENABLE
4444 root 1.282 if (types & EV_CHECK)
4445     for (i = checkcnt; i--; )
4446     cb (EV_A_ EV_CHECK, checks [i]);
4447 root 1.337 #endif
4448 root 1.282
4449 root 1.337 #if EV_SIGNAL_ENABLE
4450 root 1.282 if (types & EV_SIGNAL)
4451 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4452 root 1.282 for (wl = signals [i].head; wl; )
4453     {
4454     wn = wl->next;
4455     cb (EV_A_ EV_SIGNAL, wl);
4456     wl = wn;
4457     }
4458 root 1.337 #endif
4459 root 1.282
4460 root 1.337 #if EV_CHILD_ENABLE
4461 root 1.282 if (types & EV_CHILD)
4462 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4463 root 1.282 for (wl = childs [i]; wl; )
4464     {
4465     wn = wl->next;
4466     cb (EV_A_ EV_CHILD, wl);
4467     wl = wn;
4468     }
4469 root 1.337 #endif
4470 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4471     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4472     }
4473     #endif
4474    
4475 root 1.188 #if EV_MULTIPLICITY
4476     #include "ev_wrap.h"
4477     #endif
4478