ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.412
Committed: Wed Feb 22 01:53:00 2012 UTC (12 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.411: +2 -0 lines
Log Message:
mips addition by Anton Kirilov

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.290 # elif !defined(EV_USE_CLOCK_SYSCALL)
65     # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206     # include <windows.h>
207     # ifndef EV_SELECT_IS_WINSOCKET
208     # define EV_SELECT_IS_WINSOCKET 1
209     # endif
210 root 1.331 # undef EV_AVOID_STDIO
211 root 1.45 #endif
212 root 1.103
213 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
214     * a limit of 1024 into their select. Where people have brains,
215     * OS X engineers apparently have a vacuum. Or maybe they were
216     * ordered to have a vacuum, or they do anything for money.
217     * This might help. Or not.
218     */
219     #define _DARWIN_UNLIMITED_SELECT 1
220    
221 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
222 root 1.40
223 root 1.305 /* try to deduce the maximum number of signals on this platform */
224     #if defined (EV_NSIG)
225     /* use what's provided */
226     #elif defined (NSIG)
227     # define EV_NSIG (NSIG)
228     #elif defined(_NSIG)
229     # define EV_NSIG (_NSIG)
230     #elif defined (SIGMAX)
231     # define EV_NSIG (SIGMAX+1)
232     #elif defined (SIG_MAX)
233     # define EV_NSIG (SIG_MAX+1)
234     #elif defined (_SIG_MAX)
235     # define EV_NSIG (_SIG_MAX+1)
236     #elif defined (MAXSIG)
237     # define EV_NSIG (MAXSIG+1)
238     #elif defined (MAX_SIG)
239     # define EV_NSIG (MAX_SIG+1)
240     #elif defined (SIGARRAYSIZE)
241 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242 root 1.305 #elif defined (_sys_nsig)
243     # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244     #else
245     # error "unable to find value for NSIG, please report"
246 root 1.336 /* to make it compile regardless, just remove the above line, */
247     /* but consider reporting it, too! :) */
248 root 1.306 # define EV_NSIG 65
249 root 1.305 #endif
250    
251 root 1.373 #ifndef EV_USE_FLOOR
252     # define EV_USE_FLOOR 0
253     #endif
254    
255 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
256     # if __linux && __GLIBC__ >= 2
257 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258 root 1.274 # else
259     # define EV_USE_CLOCK_SYSCALL 0
260     # endif
261     #endif
262    
263 root 1.29 #ifndef EV_USE_MONOTONIC
264 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
266 root 1.253 # else
267     # define EV_USE_MONOTONIC 0
268     # endif
269 root 1.37 #endif
270    
271 root 1.118 #ifndef EV_USE_REALTIME
272 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273 root 1.118 #endif
274    
275 root 1.193 #ifndef EV_USE_NANOSLEEP
276 root 1.253 # if _POSIX_C_SOURCE >= 199309L
277 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
278 root 1.253 # else
279     # define EV_USE_NANOSLEEP 0
280     # endif
281 root 1.193 #endif
282    
283 root 1.29 #ifndef EV_USE_SELECT
284 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
285 root 1.10 #endif
286    
287 root 1.59 #ifndef EV_USE_POLL
288 root 1.104 # ifdef _WIN32
289     # define EV_USE_POLL 0
290     # else
291 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
292 root 1.104 # endif
293 root 1.41 #endif
294    
295 root 1.29 #ifndef EV_USE_EPOLL
296 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
298 root 1.220 # else
299     # define EV_USE_EPOLL 0
300     # endif
301 root 1.10 #endif
302    
303 root 1.44 #ifndef EV_USE_KQUEUE
304     # define EV_USE_KQUEUE 0
305     #endif
306    
307 root 1.118 #ifndef EV_USE_PORT
308     # define EV_USE_PORT 0
309 root 1.40 #endif
310    
311 root 1.152 #ifndef EV_USE_INOTIFY
312 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
314 root 1.220 # else
315     # define EV_USE_INOTIFY 0
316     # endif
317 root 1.152 #endif
318    
319 root 1.149 #ifndef EV_PID_HASHSIZE
320 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321 root 1.149 #endif
322    
323 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
324 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325 root 1.152 #endif
326    
327 root 1.220 #ifndef EV_USE_EVENTFD
328     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
330 root 1.220 # else
331     # define EV_USE_EVENTFD 0
332     # endif
333     #endif
334    
335 root 1.303 #ifndef EV_USE_SIGNALFD
336 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
338 root 1.303 # else
339     # define EV_USE_SIGNALFD 0
340     # endif
341     #endif
342    
343 root 1.249 #if 0 /* debugging */
344 root 1.250 # define EV_VERIFY 3
345 root 1.249 # define EV_USE_4HEAP 1
346     # define EV_HEAP_CACHE_AT 1
347     #endif
348    
349 root 1.250 #ifndef EV_VERIFY
350 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351 root 1.250 #endif
352    
353 root 1.243 #ifndef EV_USE_4HEAP
354 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
355 root 1.243 #endif
356    
357     #ifndef EV_HEAP_CACHE_AT
358 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359 root 1.243 #endif
360    
361 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362     /* which makes programs even slower. might work on other unices, too. */
363     #if EV_USE_CLOCK_SYSCALL
364     # include <syscall.h>
365     # ifdef SYS_clock_gettime
366     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367     # undef EV_USE_MONOTONIC
368     # define EV_USE_MONOTONIC 1
369     # else
370     # undef EV_USE_CLOCK_SYSCALL
371     # define EV_USE_CLOCK_SYSCALL 0
372     # endif
373     #endif
374    
375 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
376 root 1.40
377 root 1.325 #ifdef _AIX
378     /* AIX has a completely broken poll.h header */
379     # undef EV_USE_POLL
380     # define EV_USE_POLL 0
381     #endif
382    
383 root 1.40 #ifndef CLOCK_MONOTONIC
384     # undef EV_USE_MONOTONIC
385     # define EV_USE_MONOTONIC 0
386     #endif
387    
388 root 1.31 #ifndef CLOCK_REALTIME
389 root 1.40 # undef EV_USE_REALTIME
390 root 1.31 # define EV_USE_REALTIME 0
391     #endif
392 root 1.40
393 root 1.152 #if !EV_STAT_ENABLE
394 root 1.185 # undef EV_USE_INOTIFY
395 root 1.152 # define EV_USE_INOTIFY 0
396     #endif
397    
398 root 1.193 #if !EV_USE_NANOSLEEP
399 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
400     # if !defined(_WIN32) && !defined(__hpux)
401 root 1.193 # include <sys/select.h>
402     # endif
403     #endif
404    
405 root 1.152 #if EV_USE_INOTIFY
406 root 1.273 # include <sys/statfs.h>
407 root 1.152 # include <sys/inotify.h>
408 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409     # ifndef IN_DONT_FOLLOW
410     # undef EV_USE_INOTIFY
411     # define EV_USE_INOTIFY 0
412     # endif
413 root 1.152 #endif
414    
415 root 1.185 #if EV_SELECT_IS_WINSOCKET
416     # include <winsock.h>
417     #endif
418    
419 root 1.220 #if EV_USE_EVENTFD
420     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421 root 1.221 # include <stdint.h>
422 root 1.303 # ifndef EFD_NONBLOCK
423     # define EFD_NONBLOCK O_NONBLOCK
424     # endif
425     # ifndef EFD_CLOEXEC
426 root 1.311 # ifdef O_CLOEXEC
427     # define EFD_CLOEXEC O_CLOEXEC
428     # else
429     # define EFD_CLOEXEC 02000000
430     # endif
431 root 1.303 # endif
432 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433 root 1.220 #endif
434    
435 root 1.303 #if EV_USE_SIGNALFD
436 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437     # include <stdint.h>
438     # ifndef SFD_NONBLOCK
439     # define SFD_NONBLOCK O_NONBLOCK
440     # endif
441     # ifndef SFD_CLOEXEC
442     # ifdef O_CLOEXEC
443     # define SFD_CLOEXEC O_CLOEXEC
444     # else
445     # define SFD_CLOEXEC 02000000
446     # endif
447     # endif
448 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449 root 1.314
450     struct signalfd_siginfo
451     {
452     uint32_t ssi_signo;
453     char pad[128 - sizeof (uint32_t)];
454     };
455 root 1.303 #endif
456    
457 root 1.40 /**/
458 root 1.1
459 root 1.250 #if EV_VERIFY >= 3
460 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
461 root 1.248 #else
462     # define EV_FREQUENT_CHECK do { } while (0)
463     #endif
464    
465 root 1.176 /*
466 root 1.373 * This is used to work around floating point rounding problems.
467 root 1.177 * This value is good at least till the year 4000.
468 root 1.176 */
469 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
471 root 1.176
472 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
473 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
474 root 1.1
475 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477 root 1.347
478 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479     /* ECB.H BEGIN */
480     /*
481     * libecb - http://software.schmorp.de/pkg/libecb
482     *
483 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
485     * All rights reserved.
486     *
487     * Redistribution and use in source and binary forms, with or without modifica-
488     * tion, are permitted provided that the following conditions are met:
489     *
490     * 1. Redistributions of source code must retain the above copyright notice,
491     * this list of conditions and the following disclaimer.
492     *
493     * 2. Redistributions in binary form must reproduce the above copyright
494     * notice, this list of conditions and the following disclaimer in the
495     * documentation and/or other materials provided with the distribution.
496     *
497     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506     * OF THE POSSIBILITY OF SUCH DAMAGE.
507     */
508    
509     #ifndef ECB_H
510     #define ECB_H
511    
512     #ifdef _WIN32
513     typedef signed char int8_t;
514     typedef unsigned char uint8_t;
515     typedef signed short int16_t;
516     typedef unsigned short uint16_t;
517     typedef signed int int32_t;
518     typedef unsigned int uint32_t;
519     #if __GNUC__
520     typedef signed long long int64_t;
521     typedef unsigned long long uint64_t;
522     #else /* _MSC_VER || __BORLANDC__ */
523     typedef signed __int64 int64_t;
524     typedef unsigned __int64 uint64_t;
525     #endif
526     #else
527     #include <inttypes.h>
528     #endif
529 root 1.379
530     /* many compilers define _GNUC_ to some versions but then only implement
531     * what their idiot authors think are the "more important" extensions,
532 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
533 root 1.379 * or so.
534     * we try to detect these and simply assume they are not gcc - if they have
535     * an issue with that they should have done it right in the first place.
536     */
537     #ifndef ECB_GCC_VERSION
538     #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539     #define ECB_GCC_VERSION(major,minor) 0
540     #else
541     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
542     #endif
543     #endif
544    
545 root 1.391 /*****************************************************************************/
546    
547     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549    
550 root 1.410 #if ECB_NO_THREADS
551     # define ECB_NO_SMP 1
552     #endif
553    
554 root 1.391 #if ECB_NO_THREADS || ECB_NO_SMP
555 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
556 root 1.40 #endif
557    
558 root 1.383 #ifndef ECB_MEMORY_FENCE
559 root 1.409 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 root 1.404 #if __i386 || __i386__
561 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 root 1.391 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563     #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 root 1.391 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570     #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 root 1.393 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 root 1.393 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 root 1.392 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 root 1.404 #elif __sparc || __sparc__
577 root 1.405 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 root 1.408 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 root 1.405 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 root 1.408 #elif defined(__s390__) || defined(__s390x__)
581     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 root 1.412 #elif defined(__mips__)
583     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 root 1.383 #endif
585     #endif
586     #endif
587    
588     #ifndef ECB_MEMORY_FENCE
589 root 1.398 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
590 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
591 root 1.392 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
592     /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
593 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
594     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
595     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
596     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
597     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
598 root 1.388 #elif defined(_WIN32)
599     #include <WinNT.h>
600 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
601 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
602     #include <mbarrier.h>
603     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
604     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
605     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
606 root 1.383 #endif
607     #endif
608    
609     #ifndef ECB_MEMORY_FENCE
610 root 1.392 #if !ECB_AVOID_PTHREADS
611     /*
612     * if you get undefined symbol references to pthread_mutex_lock,
613     * or failure to find pthread.h, then you should implement
614     * the ECB_MEMORY_FENCE operations for your cpu/compiler
615     * OR provide pthread.h and link against the posix thread library
616     * of your system.
617     */
618     #include <pthread.h>
619     #define ECB_NEEDS_PTHREADS 1
620     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
621    
622     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
623     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
624     #endif
625     #endif
626 root 1.383
627 root 1.392 #if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
628 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
629 root 1.392 #endif
630    
631     #if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
632 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
633     #endif
634    
635 root 1.391 /*****************************************************************************/
636    
637     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
638    
639     #if __cplusplus
640     #define ecb_inline static inline
641     #elif ECB_GCC_VERSION(2,5)
642     #define ecb_inline static __inline__
643     #elif ECB_C99
644     #define ecb_inline static inline
645     #else
646     #define ecb_inline static
647     #endif
648    
649     #if ECB_GCC_VERSION(3,3)
650     #define ecb_restrict __restrict__
651     #elif ECB_C99
652     #define ecb_restrict restrict
653     #else
654     #define ecb_restrict
655     #endif
656    
657     typedef int ecb_bool;
658    
659     #define ECB_CONCAT_(a, b) a ## b
660     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
661     #define ECB_STRINGIFY_(a) # a
662     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
663    
664     #define ecb_function_ ecb_inline
665    
666 root 1.379 #if ECB_GCC_VERSION(3,1)
667     #define ecb_attribute(attrlist) __attribute__(attrlist)
668     #define ecb_is_constant(expr) __builtin_constant_p (expr)
669     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
670     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
671     #else
672     #define ecb_attribute(attrlist)
673     #define ecb_is_constant(expr) 0
674     #define ecb_expect(expr,value) (expr)
675     #define ecb_prefetch(addr,rw,locality)
676     #endif
677    
678 root 1.391 /* no emulation for ecb_decltype */
679     #if ECB_GCC_VERSION(4,5)
680     #define ecb_decltype(x) __decltype(x)
681     #elif ECB_GCC_VERSION(3,0)
682     #define ecb_decltype(x) __typeof(x)
683     #endif
684    
685 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
686     #define ecb_noreturn ecb_attribute ((__noreturn__))
687     #define ecb_unused ecb_attribute ((__unused__))
688     #define ecb_const ecb_attribute ((__const__))
689     #define ecb_pure ecb_attribute ((__pure__))
690    
691     #if ECB_GCC_VERSION(4,3)
692     #define ecb_artificial ecb_attribute ((__artificial__))
693     #define ecb_hot ecb_attribute ((__hot__))
694     #define ecb_cold ecb_attribute ((__cold__))
695     #else
696     #define ecb_artificial
697     #define ecb_hot
698     #define ecb_cold
699     #endif
700    
701     /* put around conditional expressions if you are very sure that the */
702     /* expression is mostly true or mostly false. note that these return */
703     /* booleans, not the expression. */
704     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
705     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
706 root 1.391 /* for compatibility to the rest of the world */
707     #define ecb_likely(expr) ecb_expect_true (expr)
708     #define ecb_unlikely(expr) ecb_expect_false (expr)
709    
710     /* count trailing zero bits and count # of one bits */
711     #if ECB_GCC_VERSION(3,4)
712     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
713     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
714     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
715     #define ecb_ctz32(x) __builtin_ctz (x)
716     #define ecb_ctz64(x) __builtin_ctzll (x)
717     #define ecb_popcount32(x) __builtin_popcount (x)
718     /* no popcountll */
719     #else
720     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
721     ecb_function_ int
722     ecb_ctz32 (uint32_t x)
723     {
724     int r = 0;
725    
726     x &= ~x + 1; /* this isolates the lowest bit */
727    
728     #if ECB_branchless_on_i386
729     r += !!(x & 0xaaaaaaaa) << 0;
730     r += !!(x & 0xcccccccc) << 1;
731     r += !!(x & 0xf0f0f0f0) << 2;
732     r += !!(x & 0xff00ff00) << 3;
733     r += !!(x & 0xffff0000) << 4;
734     #else
735     if (x & 0xaaaaaaaa) r += 1;
736     if (x & 0xcccccccc) r += 2;
737     if (x & 0xf0f0f0f0) r += 4;
738     if (x & 0xff00ff00) r += 8;
739     if (x & 0xffff0000) r += 16;
740     #endif
741    
742     return r;
743     }
744    
745     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
746     ecb_function_ int
747     ecb_ctz64 (uint64_t x)
748     {
749     int shift = x & 0xffffffffU ? 0 : 32;
750     return ecb_ctz32 (x >> shift) + shift;
751     }
752    
753     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
754     ecb_function_ int
755     ecb_popcount32 (uint32_t x)
756     {
757     x -= (x >> 1) & 0x55555555;
758     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
759     x = ((x >> 4) + x) & 0x0f0f0f0f;
760     x *= 0x01010101;
761    
762     return x >> 24;
763     }
764    
765     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
766     ecb_function_ int ecb_ld32 (uint32_t x)
767     {
768     int r = 0;
769    
770     if (x >> 16) { x >>= 16; r += 16; }
771     if (x >> 8) { x >>= 8; r += 8; }
772     if (x >> 4) { x >>= 4; r += 4; }
773     if (x >> 2) { x >>= 2; r += 2; }
774     if (x >> 1) { r += 1; }
775    
776     return r;
777     }
778    
779     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
780     ecb_function_ int ecb_ld64 (uint64_t x)
781     {
782     int r = 0;
783    
784     if (x >> 32) { x >>= 32; r += 32; }
785    
786     return r + ecb_ld32 (x);
787     }
788     #endif
789    
790 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
791     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
792     {
793     return ( (x * 0x0802U & 0x22110U)
794     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
795     }
796    
797     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
798     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
799     {
800     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
801     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
802     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
803     x = ( x >> 8 ) | ( x << 8);
804    
805     return x;
806     }
807    
808     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
809     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
810     {
811     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
812     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
813     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
814     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
815     x = ( x >> 16 ) | ( x << 16);
816    
817     return x;
818     }
819    
820 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
821     /* so for this version we are lazy */
822     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
823     ecb_function_ int
824     ecb_popcount64 (uint64_t x)
825     {
826     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
827     }
828    
829     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
830     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
831     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
832     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
833     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
834     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
835     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
836     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
837    
838     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
839     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
840     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
841     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
842     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
843     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
844     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
845     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
846    
847     #if ECB_GCC_VERSION(4,3)
848     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
849     #define ecb_bswap32(x) __builtin_bswap32 (x)
850     #define ecb_bswap64(x) __builtin_bswap64 (x)
851     #else
852     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
853     ecb_function_ uint16_t
854     ecb_bswap16 (uint16_t x)
855     {
856     return ecb_rotl16 (x, 8);
857     }
858    
859     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
860     ecb_function_ uint32_t
861     ecb_bswap32 (uint32_t x)
862     {
863     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
864     }
865    
866     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
867     ecb_function_ uint64_t
868     ecb_bswap64 (uint64_t x)
869     {
870     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
871     }
872     #endif
873    
874     #if ECB_GCC_VERSION(4,5)
875     #define ecb_unreachable() __builtin_unreachable ()
876     #else
877     /* this seems to work fine, but gcc always emits a warning for it :/ */
878 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
879     ecb_inline void ecb_unreachable (void) { }
880 root 1.391 #endif
881    
882     /* try to tell the compiler that some condition is definitely true */
883     #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
884    
885 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
886     ecb_inline unsigned char
887 root 1.391 ecb_byteorder_helper (void)
888     {
889     const uint32_t u = 0x11223344;
890     return *(unsigned char *)&u;
891     }
892    
893 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
894     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
895     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
896     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
897 root 1.391
898     #if ECB_GCC_VERSION(3,0) || ECB_C99
899     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
900     #else
901     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
902     #endif
903    
904 root 1.398 #if __cplusplus
905     template<typename T>
906     static inline T ecb_div_rd (T val, T div)
907     {
908     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
909     }
910     template<typename T>
911     static inline T ecb_div_ru (T val, T div)
912     {
913     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
914     }
915     #else
916     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
917     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
918     #endif
919    
920 root 1.391 #if ecb_cplusplus_does_not_suck
921     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
922     template<typename T, int N>
923     static inline int ecb_array_length (const T (&arr)[N])
924     {
925     return N;
926     }
927     #else
928     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
929     #endif
930    
931     #endif
932    
933     /* ECB.H END */
934 root 1.379
935 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
936 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
937 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
938     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
939 sf-exg 1.402 * libev, in which cases the memory fences become nops.
940 root 1.396 * alternatively, you can remove this #error and link against libpthread,
941     * which will then provide the memory fences.
942     */
943     # error "memory fences not defined for your architecture, please report"
944     #endif
945    
946     #ifndef ECB_MEMORY_FENCE
947     # define ECB_MEMORY_FENCE do { } while (0)
948     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
949     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
950 root 1.392 #endif
951    
952 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
953     #define expect_true(cond) ecb_expect_true (cond)
954     #define noinline ecb_noinline
955    
956     #define inline_size ecb_inline
957 root 1.169
958 root 1.338 #if EV_FEATURE_CODE
959 root 1.379 # define inline_speed ecb_inline
960 root 1.338 #else
961 root 1.169 # define inline_speed static noinline
962     #endif
963 root 1.40
964 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
965    
966     #if EV_MINPRI == EV_MAXPRI
967     # define ABSPRI(w) (((W)w), 0)
968     #else
969     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
970     #endif
971 root 1.42
972 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
973 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
974 root 1.103
975 root 1.136 typedef ev_watcher *W;
976     typedef ev_watcher_list *WL;
977     typedef ev_watcher_time *WT;
978 root 1.10
979 root 1.229 #define ev_active(w) ((W)(w))->active
980 root 1.228 #define ev_at(w) ((WT)(w))->at
981    
982 root 1.279 #if EV_USE_REALTIME
983 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
984 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
985 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
986     #endif
987    
988     #if EV_USE_MONOTONIC
989 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
990 root 1.198 #endif
991 root 1.54
992 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
993     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
994     #endif
995     #ifndef EV_WIN32_HANDLE_TO_FD
996 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
997 root 1.313 #endif
998     #ifndef EV_WIN32_CLOSE_FD
999     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1000     #endif
1001    
1002 root 1.103 #ifdef _WIN32
1003 root 1.98 # include "ev_win32.c"
1004     #endif
1005 root 1.67
1006 root 1.53 /*****************************************************************************/
1007 root 1.1
1008 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1009    
1010     #if EV_USE_FLOOR
1011     # include <math.h>
1012     # define ev_floor(v) floor (v)
1013     #else
1014    
1015     #include <float.h>
1016    
1017     /* a floor() replacement function, should be independent of ev_tstamp type */
1018     static ev_tstamp noinline
1019     ev_floor (ev_tstamp v)
1020     {
1021     /* the choice of shift factor is not terribly important */
1022     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1023     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1024     #else
1025     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1026     #endif
1027    
1028     /* argument too large for an unsigned long? */
1029     if (expect_false (v >= shift))
1030     {
1031     ev_tstamp f;
1032    
1033     if (v == v - 1.)
1034     return v; /* very large number */
1035    
1036     f = shift * ev_floor (v * (1. / shift));
1037     return f + ev_floor (v - f);
1038     }
1039    
1040     /* special treatment for negative args? */
1041     if (expect_false (v < 0.))
1042     {
1043     ev_tstamp f = -ev_floor (-v);
1044    
1045     return f - (f == v ? 0 : 1);
1046     }
1047    
1048     /* fits into an unsigned long */
1049     return (unsigned long)v;
1050     }
1051    
1052     #endif
1053    
1054     /*****************************************************************************/
1055    
1056 root 1.356 #ifdef __linux
1057     # include <sys/utsname.h>
1058     #endif
1059    
1060 root 1.379 static unsigned int noinline ecb_cold
1061 root 1.355 ev_linux_version (void)
1062     {
1063     #ifdef __linux
1064 root 1.359 unsigned int v = 0;
1065 root 1.355 struct utsname buf;
1066     int i;
1067     char *p = buf.release;
1068    
1069     if (uname (&buf))
1070     return 0;
1071    
1072     for (i = 3+1; --i; )
1073     {
1074     unsigned int c = 0;
1075    
1076     for (;;)
1077     {
1078     if (*p >= '0' && *p <= '9')
1079     c = c * 10 + *p++ - '0';
1080     else
1081     {
1082     p += *p == '.';
1083     break;
1084     }
1085     }
1086    
1087     v = (v << 8) | c;
1088     }
1089    
1090     return v;
1091     #else
1092     return 0;
1093     #endif
1094     }
1095    
1096     /*****************************************************************************/
1097    
1098 root 1.331 #if EV_AVOID_STDIO
1099 root 1.379 static void noinline ecb_cold
1100 root 1.331 ev_printerr (const char *msg)
1101     {
1102     write (STDERR_FILENO, msg, strlen (msg));
1103     }
1104     #endif
1105    
1106 root 1.70 static void (*syserr_cb)(const char *msg);
1107 root 1.69
1108 root 1.379 void ecb_cold
1109 root 1.141 ev_set_syserr_cb (void (*cb)(const char *msg))
1110 root 1.69 {
1111     syserr_cb = cb;
1112     }
1113    
1114 root 1.379 static void noinline ecb_cold
1115 root 1.269 ev_syserr (const char *msg)
1116 root 1.69 {
1117 root 1.70 if (!msg)
1118     msg = "(libev) system error";
1119    
1120 root 1.69 if (syserr_cb)
1121 root 1.70 syserr_cb (msg);
1122 root 1.69 else
1123     {
1124 root 1.330 #if EV_AVOID_STDIO
1125 root 1.331 ev_printerr (msg);
1126     ev_printerr (": ");
1127 root 1.365 ev_printerr (strerror (errno));
1128 root 1.331 ev_printerr ("\n");
1129 root 1.330 #else
1130 root 1.70 perror (msg);
1131 root 1.330 #endif
1132 root 1.69 abort ();
1133     }
1134     }
1135    
1136 root 1.224 static void *
1137     ev_realloc_emul (void *ptr, long size)
1138     {
1139 root 1.334 #if __GLIBC__
1140     return realloc (ptr, size);
1141     #else
1142 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
1143 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1144 root 1.224 * the single unix specification, so work around them here.
1145     */
1146 root 1.333
1147 root 1.224 if (size)
1148     return realloc (ptr, size);
1149    
1150     free (ptr);
1151     return 0;
1152 root 1.334 #endif
1153 root 1.224 }
1154    
1155     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1156 root 1.69
1157 root 1.379 void ecb_cold
1158 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
1159 root 1.69 {
1160     alloc = cb;
1161     }
1162    
1163 root 1.150 inline_speed void *
1164 root 1.155 ev_realloc (void *ptr, long size)
1165 root 1.69 {
1166 root 1.224 ptr = alloc (ptr, size);
1167 root 1.69
1168     if (!ptr && size)
1169     {
1170 root 1.330 #if EV_AVOID_STDIO
1171 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1172 root 1.330 #else
1173 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1174 root 1.330 #endif
1175 root 1.69 abort ();
1176     }
1177    
1178     return ptr;
1179     }
1180    
1181     #define ev_malloc(size) ev_realloc (0, (size))
1182     #define ev_free(ptr) ev_realloc ((ptr), 0)
1183    
1184     /*****************************************************************************/
1185    
1186 root 1.298 /* set in reify when reification needed */
1187     #define EV_ANFD_REIFY 1
1188    
1189 root 1.288 /* file descriptor info structure */
1190 root 1.53 typedef struct
1191     {
1192 root 1.68 WL head;
1193 root 1.288 unsigned char events; /* the events watched for */
1194 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1195 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1196 root 1.269 unsigned char unused;
1197     #if EV_USE_EPOLL
1198 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1199 root 1.269 #endif
1200 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1201 root 1.103 SOCKET handle;
1202     #endif
1203 root 1.357 #if EV_USE_IOCP
1204     OVERLAPPED or, ow;
1205     #endif
1206 root 1.53 } ANFD;
1207 root 1.1
1208 root 1.288 /* stores the pending event set for a given watcher */
1209 root 1.53 typedef struct
1210     {
1211     W w;
1212 root 1.288 int events; /* the pending event set for the given watcher */
1213 root 1.53 } ANPENDING;
1214 root 1.51
1215 root 1.155 #if EV_USE_INOTIFY
1216 root 1.241 /* hash table entry per inotify-id */
1217 root 1.152 typedef struct
1218     {
1219     WL head;
1220 root 1.155 } ANFS;
1221 root 1.152 #endif
1222    
1223 root 1.241 /* Heap Entry */
1224     #if EV_HEAP_CACHE_AT
1225 root 1.288 /* a heap element */
1226 root 1.241 typedef struct {
1227 root 1.243 ev_tstamp at;
1228 root 1.241 WT w;
1229     } ANHE;
1230    
1231 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1232     #define ANHE_at(he) (he).at /* access cached at, read-only */
1233     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1234 root 1.241 #else
1235 root 1.288 /* a heap element */
1236 root 1.241 typedef WT ANHE;
1237    
1238 root 1.248 #define ANHE_w(he) (he)
1239     #define ANHE_at(he) (he)->at
1240     #define ANHE_at_cache(he)
1241 root 1.241 #endif
1242    
1243 root 1.55 #if EV_MULTIPLICITY
1244 root 1.54
1245 root 1.80 struct ev_loop
1246     {
1247 root 1.86 ev_tstamp ev_rt_now;
1248 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1249 root 1.80 #define VAR(name,decl) decl;
1250     #include "ev_vars.h"
1251     #undef VAR
1252     };
1253     #include "ev_wrap.h"
1254    
1255 root 1.116 static struct ev_loop default_loop_struct;
1256 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1257 root 1.54
1258 root 1.53 #else
1259 root 1.54
1260 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1261 root 1.80 #define VAR(name,decl) static decl;
1262     #include "ev_vars.h"
1263     #undef VAR
1264    
1265 root 1.116 static int ev_default_loop_ptr;
1266 root 1.54
1267 root 1.51 #endif
1268 root 1.1
1269 root 1.338 #if EV_FEATURE_API
1270 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1271     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1272 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1273     #else
1274 root 1.298 # define EV_RELEASE_CB (void)0
1275     # define EV_ACQUIRE_CB (void)0
1276 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1277     #endif
1278    
1279 root 1.353 #define EVBREAK_RECURSE 0x80
1280 root 1.298
1281 root 1.8 /*****************************************************************************/
1282    
1283 root 1.292 #ifndef EV_HAVE_EV_TIME
1284 root 1.141 ev_tstamp
1285 root 1.1 ev_time (void)
1286     {
1287 root 1.29 #if EV_USE_REALTIME
1288 root 1.279 if (expect_true (have_realtime))
1289     {
1290     struct timespec ts;
1291     clock_gettime (CLOCK_REALTIME, &ts);
1292     return ts.tv_sec + ts.tv_nsec * 1e-9;
1293     }
1294     #endif
1295    
1296 root 1.1 struct timeval tv;
1297     gettimeofday (&tv, 0);
1298     return tv.tv_sec + tv.tv_usec * 1e-6;
1299     }
1300 root 1.292 #endif
1301 root 1.1
1302 root 1.284 inline_size ev_tstamp
1303 root 1.1 get_clock (void)
1304     {
1305 root 1.29 #if EV_USE_MONOTONIC
1306 root 1.40 if (expect_true (have_monotonic))
1307 root 1.1 {
1308     struct timespec ts;
1309     clock_gettime (CLOCK_MONOTONIC, &ts);
1310     return ts.tv_sec + ts.tv_nsec * 1e-9;
1311     }
1312     #endif
1313    
1314     return ev_time ();
1315     }
1316    
1317 root 1.85 #if EV_MULTIPLICITY
1318 root 1.51 ev_tstamp
1319     ev_now (EV_P)
1320     {
1321 root 1.85 return ev_rt_now;
1322 root 1.51 }
1323 root 1.85 #endif
1324 root 1.51
1325 root 1.193 void
1326     ev_sleep (ev_tstamp delay)
1327     {
1328     if (delay > 0.)
1329     {
1330     #if EV_USE_NANOSLEEP
1331     struct timespec ts;
1332    
1333 root 1.348 EV_TS_SET (ts, delay);
1334 root 1.193 nanosleep (&ts, 0);
1335     #elif defined(_WIN32)
1336 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1337 root 1.193 #else
1338     struct timeval tv;
1339    
1340 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1341 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1342 root 1.257 /* by older ones */
1343 sf-exg 1.349 EV_TV_SET (tv, delay);
1344 root 1.193 select (0, 0, 0, 0, &tv);
1345     #endif
1346     }
1347     }
1348    
1349     /*****************************************************************************/
1350    
1351 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1352 root 1.232
1353 root 1.288 /* find a suitable new size for the given array, */
1354 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1355 root 1.284 inline_size int
1356 root 1.163 array_nextsize (int elem, int cur, int cnt)
1357     {
1358     int ncur = cur + 1;
1359    
1360     do
1361     ncur <<= 1;
1362     while (cnt > ncur);
1363    
1364 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1365 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1366 root 1.163 {
1367     ncur *= elem;
1368 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1369 root 1.163 ncur = ncur - sizeof (void *) * 4;
1370     ncur /= elem;
1371     }
1372    
1373     return ncur;
1374     }
1375    
1376 root 1.379 static void * noinline ecb_cold
1377 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1378     {
1379     *cur = array_nextsize (elem, *cur, cnt);
1380     return ev_realloc (base, elem * *cur);
1381     }
1382 root 1.29
1383 root 1.265 #define array_init_zero(base,count) \
1384     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1385    
1386 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1387 root 1.163 if (expect_false ((cnt) > (cur))) \
1388 root 1.69 { \
1389 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1390 root 1.163 (base) = (type *)array_realloc \
1391     (sizeof (type), (base), &(cur), (cnt)); \
1392     init ((base) + (ocur_), (cur) - ocur_); \
1393 root 1.1 }
1394    
1395 root 1.163 #if 0
1396 root 1.74 #define array_slim(type,stem) \
1397 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1398     { \
1399     stem ## max = array_roundsize (stem ## cnt >> 1); \
1400 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1401 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1402     }
1403 root 1.163 #endif
1404 root 1.67
1405 root 1.65 #define array_free(stem, idx) \
1406 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1407 root 1.65
1408 root 1.8 /*****************************************************************************/
1409    
1410 root 1.288 /* dummy callback for pending events */
1411     static void noinline
1412     pendingcb (EV_P_ ev_prepare *w, int revents)
1413     {
1414     }
1415    
1416 root 1.140 void noinline
1417 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
1418 root 1.1 {
1419 root 1.78 W w_ = (W)w;
1420 root 1.171 int pri = ABSPRI (w_);
1421 root 1.78
1422 root 1.123 if (expect_false (w_->pending))
1423 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1424     else
1425 root 1.32 {
1426 root 1.171 w_->pending = ++pendingcnt [pri];
1427     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1428     pendings [pri][w_->pending - 1].w = w_;
1429     pendings [pri][w_->pending - 1].events = revents;
1430 root 1.32 }
1431 root 1.1 }
1432    
1433 root 1.284 inline_speed void
1434     feed_reverse (EV_P_ W w)
1435     {
1436     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1437     rfeeds [rfeedcnt++] = w;
1438     }
1439    
1440     inline_size void
1441     feed_reverse_done (EV_P_ int revents)
1442     {
1443     do
1444     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1445     while (rfeedcnt);
1446     }
1447    
1448     inline_speed void
1449 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1450 root 1.27 {
1451     int i;
1452    
1453     for (i = 0; i < eventcnt; ++i)
1454 root 1.78 ev_feed_event (EV_A_ events [i], type);
1455 root 1.27 }
1456    
1457 root 1.141 /*****************************************************************************/
1458    
1459 root 1.284 inline_speed void
1460 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1461 root 1.1 {
1462     ANFD *anfd = anfds + fd;
1463 root 1.136 ev_io *w;
1464 root 1.1
1465 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1466 root 1.1 {
1467 root 1.79 int ev = w->events & revents;
1468 root 1.1
1469     if (ev)
1470 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1471 root 1.1 }
1472     }
1473    
1474 root 1.298 /* do not submit kernel events for fds that have reify set */
1475     /* because that means they changed while we were polling for new events */
1476     inline_speed void
1477     fd_event (EV_P_ int fd, int revents)
1478     {
1479     ANFD *anfd = anfds + fd;
1480    
1481     if (expect_true (!anfd->reify))
1482 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1483 root 1.298 }
1484    
1485 root 1.79 void
1486     ev_feed_fd_event (EV_P_ int fd, int revents)
1487     {
1488 root 1.168 if (fd >= 0 && fd < anfdmax)
1489 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1490 root 1.79 }
1491    
1492 root 1.288 /* make sure the external fd watch events are in-sync */
1493     /* with the kernel/libev internal state */
1494 root 1.284 inline_size void
1495 root 1.51 fd_reify (EV_P)
1496 root 1.9 {
1497     int i;
1498    
1499 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1500     for (i = 0; i < fdchangecnt; ++i)
1501     {
1502     int fd = fdchanges [i];
1503     ANFD *anfd = anfds + fd;
1504    
1505 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1506 root 1.371 {
1507     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1508    
1509     if (handle != anfd->handle)
1510     {
1511     unsigned long arg;
1512    
1513     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1514    
1515     /* handle changed, but fd didn't - we need to do it in two steps */
1516     backend_modify (EV_A_ fd, anfd->events, 0);
1517     anfd->events = 0;
1518     anfd->handle = handle;
1519     }
1520     }
1521     }
1522     #endif
1523    
1524 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1525     {
1526     int fd = fdchanges [i];
1527     ANFD *anfd = anfds + fd;
1528 root 1.136 ev_io *w;
1529 root 1.27
1530 root 1.350 unsigned char o_events = anfd->events;
1531     unsigned char o_reify = anfd->reify;
1532 root 1.27
1533 root 1.350 anfd->reify = 0;
1534 root 1.27
1535 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1536     {
1537     anfd->events = 0;
1538 root 1.184
1539 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1540     anfd->events |= (unsigned char)w->events;
1541 root 1.27
1542 root 1.351 if (o_events != anfd->events)
1543 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1544     }
1545    
1546     if (o_reify & EV__IOFDSET)
1547     backend_modify (EV_A_ fd, o_events, anfd->events);
1548 root 1.27 }
1549    
1550     fdchangecnt = 0;
1551     }
1552    
1553 root 1.288 /* something about the given fd changed */
1554 root 1.284 inline_size void
1555 root 1.183 fd_change (EV_P_ int fd, int flags)
1556 root 1.27 {
1557 root 1.183 unsigned char reify = anfds [fd].reify;
1558 root 1.184 anfds [fd].reify |= flags;
1559 root 1.27
1560 root 1.183 if (expect_true (!reify))
1561     {
1562     ++fdchangecnt;
1563     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1564     fdchanges [fdchangecnt - 1] = fd;
1565     }
1566 root 1.9 }
1567    
1568 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1569 root 1.379 inline_speed void ecb_cold
1570 root 1.51 fd_kill (EV_P_ int fd)
1571 root 1.41 {
1572 root 1.136 ev_io *w;
1573 root 1.41
1574 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1575 root 1.41 {
1576 root 1.51 ev_io_stop (EV_A_ w);
1577 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1578 root 1.41 }
1579     }
1580    
1581 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1582 root 1.379 inline_size int ecb_cold
1583 root 1.71 fd_valid (int fd)
1584     {
1585 root 1.103 #ifdef _WIN32
1586 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1587 root 1.71 #else
1588     return fcntl (fd, F_GETFD) != -1;
1589     #endif
1590     }
1591    
1592 root 1.19 /* called on EBADF to verify fds */
1593 root 1.379 static void noinline ecb_cold
1594 root 1.51 fd_ebadf (EV_P)
1595 root 1.19 {
1596     int fd;
1597    
1598     for (fd = 0; fd < anfdmax; ++fd)
1599 root 1.27 if (anfds [fd].events)
1600 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1601 root 1.51 fd_kill (EV_A_ fd);
1602 root 1.41 }
1603    
1604     /* called on ENOMEM in select/poll to kill some fds and retry */
1605 root 1.379 static void noinline ecb_cold
1606 root 1.51 fd_enomem (EV_P)
1607 root 1.41 {
1608 root 1.62 int fd;
1609 root 1.41
1610 root 1.62 for (fd = anfdmax; fd--; )
1611 root 1.41 if (anfds [fd].events)
1612     {
1613 root 1.51 fd_kill (EV_A_ fd);
1614 root 1.307 break;
1615 root 1.41 }
1616 root 1.19 }
1617    
1618 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1619 root 1.140 static void noinline
1620 root 1.56 fd_rearm_all (EV_P)
1621     {
1622     int fd;
1623    
1624     for (fd = 0; fd < anfdmax; ++fd)
1625     if (anfds [fd].events)
1626     {
1627     anfds [fd].events = 0;
1628 root 1.268 anfds [fd].emask = 0;
1629 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1630 root 1.56 }
1631     }
1632    
1633 root 1.336 /* used to prepare libev internal fd's */
1634     /* this is not fork-safe */
1635     inline_speed void
1636     fd_intern (int fd)
1637     {
1638     #ifdef _WIN32
1639     unsigned long arg = 1;
1640     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1641     #else
1642     fcntl (fd, F_SETFD, FD_CLOEXEC);
1643     fcntl (fd, F_SETFL, O_NONBLOCK);
1644     #endif
1645     }
1646    
1647 root 1.8 /*****************************************************************************/
1648    
1649 root 1.235 /*
1650 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1651 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1652     * the branching factor of the d-tree.
1653     */
1654    
1655     /*
1656 root 1.235 * at the moment we allow libev the luxury of two heaps,
1657     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1658     * which is more cache-efficient.
1659     * the difference is about 5% with 50000+ watchers.
1660     */
1661 root 1.241 #if EV_USE_4HEAP
1662 root 1.235
1663 root 1.237 #define DHEAP 4
1664     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1665 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1666 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1667 root 1.235
1668     /* away from the root */
1669 root 1.284 inline_speed void
1670 root 1.241 downheap (ANHE *heap, int N, int k)
1671 root 1.235 {
1672 root 1.241 ANHE he = heap [k];
1673     ANHE *E = heap + N + HEAP0;
1674 root 1.235
1675     for (;;)
1676     {
1677     ev_tstamp minat;
1678 root 1.241 ANHE *minpos;
1679 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1680 root 1.235
1681 root 1.248 /* find minimum child */
1682 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1683 root 1.235 {
1684 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1685     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1686     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1687     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1688 root 1.235 }
1689 root 1.240 else if (pos < E)
1690 root 1.235 {
1691 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1692     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1693     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1694     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1695 root 1.235 }
1696 root 1.240 else
1697     break;
1698 root 1.235
1699 root 1.241 if (ANHE_at (he) <= minat)
1700 root 1.235 break;
1701    
1702 root 1.247 heap [k] = *minpos;
1703 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1704 root 1.235
1705     k = minpos - heap;
1706     }
1707    
1708 root 1.247 heap [k] = he;
1709 root 1.241 ev_active (ANHE_w (he)) = k;
1710 root 1.235 }
1711    
1712 root 1.248 #else /* 4HEAP */
1713 root 1.235
1714     #define HEAP0 1
1715 root 1.247 #define HPARENT(k) ((k) >> 1)
1716 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1717 root 1.235
1718 root 1.248 /* away from the root */
1719 root 1.284 inline_speed void
1720 root 1.248 downheap (ANHE *heap, int N, int k)
1721 root 1.1 {
1722 root 1.241 ANHE he = heap [k];
1723 root 1.1
1724 root 1.228 for (;;)
1725 root 1.1 {
1726 root 1.248 int c = k << 1;
1727 root 1.179
1728 root 1.309 if (c >= N + HEAP0)
1729 root 1.179 break;
1730    
1731 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1732     ? 1 : 0;
1733    
1734     if (ANHE_at (he) <= ANHE_at (heap [c]))
1735     break;
1736    
1737     heap [k] = heap [c];
1738 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1739 root 1.248
1740     k = c;
1741 root 1.1 }
1742    
1743 root 1.243 heap [k] = he;
1744 root 1.248 ev_active (ANHE_w (he)) = k;
1745 root 1.1 }
1746 root 1.248 #endif
1747 root 1.1
1748 root 1.248 /* towards the root */
1749 root 1.284 inline_speed void
1750 root 1.248 upheap (ANHE *heap, int k)
1751 root 1.1 {
1752 root 1.241 ANHE he = heap [k];
1753 root 1.1
1754 root 1.179 for (;;)
1755 root 1.1 {
1756 root 1.248 int p = HPARENT (k);
1757 root 1.179
1758 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1759 root 1.179 break;
1760 root 1.1
1761 root 1.248 heap [k] = heap [p];
1762 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1763 root 1.248 k = p;
1764 root 1.1 }
1765    
1766 root 1.241 heap [k] = he;
1767     ev_active (ANHE_w (he)) = k;
1768 root 1.1 }
1769    
1770 root 1.288 /* move an element suitably so it is in a correct place */
1771 root 1.284 inline_size void
1772 root 1.241 adjustheap (ANHE *heap, int N, int k)
1773 root 1.84 {
1774 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1775 root 1.247 upheap (heap, k);
1776     else
1777     downheap (heap, N, k);
1778 root 1.84 }
1779    
1780 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1781 root 1.284 inline_size void
1782 root 1.248 reheap (ANHE *heap, int N)
1783     {
1784     int i;
1785 root 1.251
1786 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1787     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1788     for (i = 0; i < N; ++i)
1789     upheap (heap, i + HEAP0);
1790     }
1791    
1792 root 1.8 /*****************************************************************************/
1793    
1794 root 1.288 /* associate signal watchers to a signal signal */
1795 root 1.7 typedef struct
1796     {
1797 root 1.307 EV_ATOMIC_T pending;
1798 root 1.306 #if EV_MULTIPLICITY
1799     EV_P;
1800     #endif
1801 root 1.68 WL head;
1802 root 1.7 } ANSIG;
1803    
1804 root 1.306 static ANSIG signals [EV_NSIG - 1];
1805 root 1.7
1806 root 1.207 /*****************************************************************************/
1807    
1808 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1809 root 1.207
1810 root 1.379 static void noinline ecb_cold
1811 root 1.207 evpipe_init (EV_P)
1812     {
1813 root 1.288 if (!ev_is_active (&pipe_w))
1814 root 1.207 {
1815 root 1.336 # if EV_USE_EVENTFD
1816 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1817     if (evfd < 0 && errno == EINVAL)
1818     evfd = eventfd (0, 0);
1819    
1820     if (evfd >= 0)
1821 root 1.220 {
1822     evpipe [0] = -1;
1823 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1824 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1825 root 1.220 }
1826     else
1827 root 1.336 # endif
1828 root 1.220 {
1829     while (pipe (evpipe))
1830 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1831 root 1.207
1832 root 1.220 fd_intern (evpipe [0]);
1833     fd_intern (evpipe [1]);
1834 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1835 root 1.220 }
1836 root 1.207
1837 root 1.288 ev_io_start (EV_A_ &pipe_w);
1838 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1839 root 1.207 }
1840     }
1841    
1842 root 1.380 inline_speed void
1843 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1844 root 1.207 {
1845 root 1.383 if (expect_true (*flag))
1846 root 1.387 return;
1847 root 1.383
1848     *flag = 1;
1849    
1850 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1851 root 1.383
1852     pipe_write_skipped = 1;
1853 root 1.378
1854 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1855 root 1.214
1856 root 1.383 if (pipe_write_wanted)
1857     {
1858     int old_errno;
1859 root 1.378
1860 root 1.392 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1861 root 1.220
1862 root 1.383 old_errno = errno; /* save errno because write will clobber it */
1863 root 1.380
1864 root 1.220 #if EV_USE_EVENTFD
1865 root 1.383 if (evfd >= 0)
1866     {
1867     uint64_t counter = 1;
1868     write (evfd, &counter, sizeof (uint64_t));
1869     }
1870     else
1871 root 1.220 #endif
1872 root 1.383 {
1873     /* win32 people keep sending patches that change this write() to send() */
1874     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1875     /* so when you think this write should be a send instead, please find out */
1876     /* where your send() is from - it's definitely not the microsoft send, and */
1877     /* tell me. thank you. */
1878 root 1.411 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1879     /* check the ev documentation on how to use this flag */
1880 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
1881     }
1882 root 1.214
1883 root 1.383 errno = old_errno;
1884 root 1.207 }
1885     }
1886    
1887 root 1.288 /* called whenever the libev signal pipe */
1888     /* got some events (signal, async) */
1889 root 1.207 static void
1890     pipecb (EV_P_ ev_io *iow, int revents)
1891     {
1892 root 1.307 int i;
1893    
1894 root 1.378 if (revents & EV_READ)
1895     {
1896 root 1.220 #if EV_USE_EVENTFD
1897 root 1.378 if (evfd >= 0)
1898     {
1899     uint64_t counter;
1900     read (evfd, &counter, sizeof (uint64_t));
1901     }
1902     else
1903 root 1.220 #endif
1904 root 1.378 {
1905     char dummy;
1906     /* see discussion in evpipe_write when you think this read should be recv in win32 */
1907     read (evpipe [0], &dummy, 1);
1908     }
1909 root 1.220 }
1910 root 1.207
1911 root 1.378 pipe_write_skipped = 0;
1912    
1913 root 1.369 #if EV_SIGNAL_ENABLE
1914 root 1.307 if (sig_pending)
1915 root 1.372 {
1916 root 1.307 sig_pending = 0;
1917 root 1.207
1918 root 1.307 for (i = EV_NSIG - 1; i--; )
1919     if (expect_false (signals [i].pending))
1920     ev_feed_signal_event (EV_A_ i + 1);
1921 root 1.207 }
1922 root 1.369 #endif
1923 root 1.207
1924 root 1.209 #if EV_ASYNC_ENABLE
1925 root 1.307 if (async_pending)
1926 root 1.207 {
1927 root 1.307 async_pending = 0;
1928 root 1.207
1929     for (i = asynccnt; i--; )
1930     if (asyncs [i]->sent)
1931     {
1932     asyncs [i]->sent = 0;
1933     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1934     }
1935     }
1936 root 1.209 #endif
1937 root 1.207 }
1938    
1939     /*****************************************************************************/
1940    
1941 root 1.366 void
1942     ev_feed_signal (int signum)
1943 root 1.7 {
1944 root 1.207 #if EV_MULTIPLICITY
1945 root 1.306 EV_P = signals [signum - 1].loop;
1946 root 1.366
1947     if (!EV_A)
1948     return;
1949 root 1.207 #endif
1950    
1951 root 1.381 if (!ev_active (&pipe_w))
1952     return;
1953 root 1.378
1954 root 1.366 signals [signum - 1].pending = 1;
1955     evpipe_write (EV_A_ &sig_pending);
1956     }
1957    
1958     static void
1959     ev_sighandler (int signum)
1960     {
1961 root 1.322 #ifdef _WIN32
1962 root 1.218 signal (signum, ev_sighandler);
1963 root 1.67 #endif
1964    
1965 root 1.366 ev_feed_signal (signum);
1966 root 1.7 }
1967    
1968 root 1.140 void noinline
1969 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1970     {
1971 root 1.80 WL w;
1972    
1973 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1974     return;
1975    
1976     --signum;
1977    
1978 root 1.79 #if EV_MULTIPLICITY
1979 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1980     /* or, likely more useful, feeding a signal nobody is waiting for */
1981 root 1.79
1982 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1983 root 1.306 return;
1984 root 1.307 #endif
1985 root 1.306
1986 root 1.307 signals [signum].pending = 0;
1987 root 1.79
1988     for (w = signals [signum].head; w; w = w->next)
1989     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1990     }
1991    
1992 root 1.303 #if EV_USE_SIGNALFD
1993     static void
1994     sigfdcb (EV_P_ ev_io *iow, int revents)
1995     {
1996 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1997 root 1.303
1998     for (;;)
1999     {
2000     ssize_t res = read (sigfd, si, sizeof (si));
2001    
2002     /* not ISO-C, as res might be -1, but works with SuS */
2003     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2004     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2005    
2006     if (res < (ssize_t)sizeof (si))
2007     break;
2008     }
2009     }
2010     #endif
2011    
2012 root 1.336 #endif
2013    
2014 root 1.8 /*****************************************************************************/
2015    
2016 root 1.336 #if EV_CHILD_ENABLE
2017 root 1.182 static WL childs [EV_PID_HASHSIZE];
2018 root 1.71
2019 root 1.136 static ev_signal childev;
2020 root 1.59
2021 root 1.206 #ifndef WIFCONTINUED
2022     # define WIFCONTINUED(status) 0
2023     #endif
2024    
2025 root 1.288 /* handle a single child status event */
2026 root 1.284 inline_speed void
2027 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2028 root 1.47 {
2029 root 1.136 ev_child *w;
2030 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2031 root 1.47
2032 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2033 root 1.206 {
2034     if ((w->pid == pid || !w->pid)
2035     && (!traced || (w->flags & 1)))
2036     {
2037 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2038 root 1.206 w->rpid = pid;
2039     w->rstatus = status;
2040     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2041     }
2042     }
2043 root 1.47 }
2044    
2045 root 1.142 #ifndef WCONTINUED
2046     # define WCONTINUED 0
2047     #endif
2048    
2049 root 1.288 /* called on sigchld etc., calls waitpid */
2050 root 1.47 static void
2051 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2052 root 1.22 {
2053     int pid, status;
2054    
2055 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2056     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2057     if (!WCONTINUED
2058     || errno != EINVAL
2059     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2060     return;
2061    
2062 root 1.216 /* make sure we are called again until all children have been reaped */
2063 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2064     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2065 root 1.47
2066 root 1.216 child_reap (EV_A_ pid, pid, status);
2067 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2068 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2069 root 1.22 }
2070    
2071 root 1.45 #endif
2072    
2073 root 1.22 /*****************************************************************************/
2074    
2075 root 1.357 #if EV_USE_IOCP
2076     # include "ev_iocp.c"
2077     #endif
2078 root 1.118 #if EV_USE_PORT
2079     # include "ev_port.c"
2080     #endif
2081 root 1.44 #if EV_USE_KQUEUE
2082     # include "ev_kqueue.c"
2083     #endif
2084 root 1.29 #if EV_USE_EPOLL
2085 root 1.1 # include "ev_epoll.c"
2086     #endif
2087 root 1.59 #if EV_USE_POLL
2088 root 1.41 # include "ev_poll.c"
2089     #endif
2090 root 1.29 #if EV_USE_SELECT
2091 root 1.1 # include "ev_select.c"
2092     #endif
2093    
2094 root 1.379 int ecb_cold
2095 root 1.24 ev_version_major (void)
2096     {
2097     return EV_VERSION_MAJOR;
2098     }
2099    
2100 root 1.379 int ecb_cold
2101 root 1.24 ev_version_minor (void)
2102     {
2103     return EV_VERSION_MINOR;
2104     }
2105    
2106 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2107 root 1.379 int inline_size ecb_cold
2108 root 1.51 enable_secure (void)
2109 root 1.41 {
2110 root 1.103 #ifdef _WIN32
2111 root 1.49 return 0;
2112     #else
2113 root 1.41 return getuid () != geteuid ()
2114     || getgid () != getegid ();
2115 root 1.49 #endif
2116 root 1.41 }
2117    
2118 root 1.379 unsigned int ecb_cold
2119 root 1.129 ev_supported_backends (void)
2120     {
2121 root 1.130 unsigned int flags = 0;
2122 root 1.129
2123     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2124     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2125     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2126     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2127     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2128    
2129     return flags;
2130     }
2131    
2132 root 1.379 unsigned int ecb_cold
2133 root 1.130 ev_recommended_backends (void)
2134 root 1.1 {
2135 root 1.131 unsigned int flags = ev_supported_backends ();
2136 root 1.129
2137     #ifndef __NetBSD__
2138     /* kqueue is borked on everything but netbsd apparently */
2139     /* it usually doesn't work correctly on anything but sockets and pipes */
2140     flags &= ~EVBACKEND_KQUEUE;
2141     #endif
2142     #ifdef __APPLE__
2143 root 1.278 /* only select works correctly on that "unix-certified" platform */
2144     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2145     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2146 root 1.129 #endif
2147 root 1.342 #ifdef __FreeBSD__
2148     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2149     #endif
2150 root 1.129
2151     return flags;
2152 root 1.51 }
2153    
2154 root 1.379 unsigned int ecb_cold
2155 root 1.134 ev_embeddable_backends (void)
2156     {
2157 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2158    
2159 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2160 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2161     flags &= ~EVBACKEND_EPOLL;
2162 root 1.196
2163     return flags;
2164 root 1.134 }
2165    
2166     unsigned int
2167 root 1.130 ev_backend (EV_P)
2168     {
2169     return backend;
2170     }
2171    
2172 root 1.338 #if EV_FEATURE_API
2173 root 1.162 unsigned int
2174 root 1.340 ev_iteration (EV_P)
2175 root 1.162 {
2176     return loop_count;
2177     }
2178    
2179 root 1.294 unsigned int
2180 root 1.340 ev_depth (EV_P)
2181 root 1.294 {
2182     return loop_depth;
2183     }
2184    
2185 root 1.193 void
2186     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2187     {
2188     io_blocktime = interval;
2189     }
2190    
2191     void
2192     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2193     {
2194     timeout_blocktime = interval;
2195     }
2196    
2197 root 1.297 void
2198     ev_set_userdata (EV_P_ void *data)
2199     {
2200     userdata = data;
2201     }
2202    
2203     void *
2204     ev_userdata (EV_P)
2205     {
2206     return userdata;
2207     }
2208    
2209 root 1.379 void
2210     ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2211 root 1.297 {
2212     invoke_cb = invoke_pending_cb;
2213     }
2214    
2215 root 1.379 void
2216     ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2217 root 1.297 {
2218 root 1.298 release_cb = release;
2219     acquire_cb = acquire;
2220 root 1.297 }
2221     #endif
2222    
2223 root 1.288 /* initialise a loop structure, must be zero-initialised */
2224 root 1.379 static void noinline ecb_cold
2225 root 1.108 loop_init (EV_P_ unsigned int flags)
2226 root 1.51 {
2227 root 1.130 if (!backend)
2228 root 1.23 {
2229 root 1.366 origflags = flags;
2230    
2231 root 1.279 #if EV_USE_REALTIME
2232     if (!have_realtime)
2233     {
2234     struct timespec ts;
2235    
2236     if (!clock_gettime (CLOCK_REALTIME, &ts))
2237     have_realtime = 1;
2238     }
2239     #endif
2240    
2241 root 1.29 #if EV_USE_MONOTONIC
2242 root 1.279 if (!have_monotonic)
2243     {
2244     struct timespec ts;
2245    
2246     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2247     have_monotonic = 1;
2248     }
2249 root 1.1 #endif
2250    
2251 root 1.306 /* pid check not overridable via env */
2252     #ifndef _WIN32
2253     if (flags & EVFLAG_FORKCHECK)
2254     curpid = getpid ();
2255     #endif
2256    
2257     if (!(flags & EVFLAG_NOENV)
2258     && !enable_secure ()
2259     && getenv ("LIBEV_FLAGS"))
2260     flags = atoi (getenv ("LIBEV_FLAGS"));
2261    
2262 root 1.378 ev_rt_now = ev_time ();
2263     mn_now = get_clock ();
2264     now_floor = mn_now;
2265     rtmn_diff = ev_rt_now - mn_now;
2266 root 1.338 #if EV_FEATURE_API
2267 root 1.378 invoke_cb = ev_invoke_pending;
2268 root 1.297 #endif
2269 root 1.1
2270 root 1.378 io_blocktime = 0.;
2271     timeout_blocktime = 0.;
2272     backend = 0;
2273     backend_fd = -1;
2274     sig_pending = 0;
2275 root 1.307 #if EV_ASYNC_ENABLE
2276 root 1.378 async_pending = 0;
2277 root 1.307 #endif
2278 root 1.378 pipe_write_skipped = 0;
2279     pipe_write_wanted = 0;
2280 root 1.209 #if EV_USE_INOTIFY
2281 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2282 root 1.209 #endif
2283 root 1.303 #if EV_USE_SIGNALFD
2284 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2285 root 1.303 #endif
2286 root 1.193
2287 root 1.366 if (!(flags & EVBACKEND_MASK))
2288 root 1.129 flags |= ev_recommended_backends ();
2289 root 1.41
2290 root 1.357 #if EV_USE_IOCP
2291     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2292     #endif
2293 root 1.118 #if EV_USE_PORT
2294 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2295 root 1.118 #endif
2296 root 1.44 #if EV_USE_KQUEUE
2297 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2298 root 1.44 #endif
2299 root 1.29 #if EV_USE_EPOLL
2300 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2301 root 1.41 #endif
2302 root 1.59 #if EV_USE_POLL
2303 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2304 root 1.1 #endif
2305 root 1.29 #if EV_USE_SELECT
2306 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2307 root 1.1 #endif
2308 root 1.70
2309 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2310    
2311 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2312 root 1.288 ev_init (&pipe_w, pipecb);
2313     ev_set_priority (&pipe_w, EV_MAXPRI);
2314 root 1.336 #endif
2315 root 1.56 }
2316     }
2317    
2318 root 1.288 /* free up a loop structure */
2319 root 1.379 void ecb_cold
2320 root 1.359 ev_loop_destroy (EV_P)
2321 root 1.56 {
2322 root 1.65 int i;
2323    
2324 root 1.364 #if EV_MULTIPLICITY
2325 root 1.363 /* mimic free (0) */
2326     if (!EV_A)
2327     return;
2328 root 1.364 #endif
2329 root 1.363
2330 root 1.361 #if EV_CLEANUP_ENABLE
2331     /* queue cleanup watchers (and execute them) */
2332     if (expect_false (cleanupcnt))
2333     {
2334     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2335     EV_INVOKE_PENDING;
2336     }
2337     #endif
2338    
2339 root 1.359 #if EV_CHILD_ENABLE
2340     if (ev_is_active (&childev))
2341     {
2342     ev_ref (EV_A); /* child watcher */
2343     ev_signal_stop (EV_A_ &childev);
2344     }
2345     #endif
2346    
2347 root 1.288 if (ev_is_active (&pipe_w))
2348 root 1.207 {
2349 root 1.303 /*ev_ref (EV_A);*/
2350     /*ev_io_stop (EV_A_ &pipe_w);*/
2351 root 1.207
2352 root 1.220 #if EV_USE_EVENTFD
2353     if (evfd >= 0)
2354     close (evfd);
2355     #endif
2356    
2357     if (evpipe [0] >= 0)
2358     {
2359 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2360     EV_WIN32_CLOSE_FD (evpipe [1]);
2361 root 1.220 }
2362 root 1.207 }
2363    
2364 root 1.303 #if EV_USE_SIGNALFD
2365     if (ev_is_active (&sigfd_w))
2366 root 1.317 close (sigfd);
2367 root 1.303 #endif
2368    
2369 root 1.152 #if EV_USE_INOTIFY
2370     if (fs_fd >= 0)
2371     close (fs_fd);
2372     #endif
2373    
2374     if (backend_fd >= 0)
2375     close (backend_fd);
2376    
2377 root 1.357 #if EV_USE_IOCP
2378     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2379     #endif
2380 root 1.118 #if EV_USE_PORT
2381 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2382 root 1.118 #endif
2383 root 1.56 #if EV_USE_KQUEUE
2384 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2385 root 1.56 #endif
2386     #if EV_USE_EPOLL
2387 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2388 root 1.56 #endif
2389 root 1.59 #if EV_USE_POLL
2390 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2391 root 1.56 #endif
2392     #if EV_USE_SELECT
2393 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2394 root 1.56 #endif
2395 root 1.1
2396 root 1.65 for (i = NUMPRI; i--; )
2397 root 1.164 {
2398     array_free (pending, [i]);
2399     #if EV_IDLE_ENABLE
2400     array_free (idle, [i]);
2401     #endif
2402     }
2403 root 1.65
2404 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2405 root 1.186
2406 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2407 root 1.284 array_free (rfeed, EMPTY);
2408 root 1.164 array_free (fdchange, EMPTY);
2409     array_free (timer, EMPTY);
2410 root 1.140 #if EV_PERIODIC_ENABLE
2411 root 1.164 array_free (periodic, EMPTY);
2412 root 1.93 #endif
2413 root 1.187 #if EV_FORK_ENABLE
2414     array_free (fork, EMPTY);
2415     #endif
2416 root 1.360 #if EV_CLEANUP_ENABLE
2417     array_free (cleanup, EMPTY);
2418     #endif
2419 root 1.164 array_free (prepare, EMPTY);
2420     array_free (check, EMPTY);
2421 root 1.209 #if EV_ASYNC_ENABLE
2422     array_free (async, EMPTY);
2423     #endif
2424 root 1.65
2425 root 1.130 backend = 0;
2426 root 1.359
2427     #if EV_MULTIPLICITY
2428     if (ev_is_default_loop (EV_A))
2429     #endif
2430     ev_default_loop_ptr = 0;
2431     #if EV_MULTIPLICITY
2432     else
2433     ev_free (EV_A);
2434     #endif
2435 root 1.56 }
2436 root 1.22
2437 root 1.226 #if EV_USE_INOTIFY
2438 root 1.284 inline_size void infy_fork (EV_P);
2439 root 1.226 #endif
2440 root 1.154
2441 root 1.284 inline_size void
2442 root 1.56 loop_fork (EV_P)
2443     {
2444 root 1.118 #if EV_USE_PORT
2445 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2446 root 1.56 #endif
2447     #if EV_USE_KQUEUE
2448 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2449 root 1.45 #endif
2450 root 1.118 #if EV_USE_EPOLL
2451 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2452 root 1.118 #endif
2453 root 1.154 #if EV_USE_INOTIFY
2454     infy_fork (EV_A);
2455     #endif
2456 root 1.70
2457 root 1.288 if (ev_is_active (&pipe_w))
2458 root 1.70 {
2459 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2460 root 1.70
2461     ev_ref (EV_A);
2462 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2463 root 1.220
2464     #if EV_USE_EVENTFD
2465     if (evfd >= 0)
2466     close (evfd);
2467     #endif
2468    
2469     if (evpipe [0] >= 0)
2470     {
2471 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2472     EV_WIN32_CLOSE_FD (evpipe [1]);
2473 root 1.220 }
2474 root 1.207
2475 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2476 root 1.207 evpipe_init (EV_A);
2477 root 1.208 /* now iterate over everything, in case we missed something */
2478 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
2479 root 1.337 #endif
2480 root 1.70 }
2481    
2482     postfork = 0;
2483 root 1.1 }
2484    
2485 root 1.55 #if EV_MULTIPLICITY
2486 root 1.250
2487 root 1.379 struct ev_loop * ecb_cold
2488 root 1.108 ev_loop_new (unsigned int flags)
2489 root 1.54 {
2490 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2491 root 1.69
2492 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2493 root 1.108 loop_init (EV_A_ flags);
2494 root 1.56
2495 root 1.130 if (ev_backend (EV_A))
2496 root 1.306 return EV_A;
2497 root 1.54
2498 root 1.359 ev_free (EV_A);
2499 root 1.55 return 0;
2500 root 1.54 }
2501    
2502 root 1.297 #endif /* multiplicity */
2503 root 1.248
2504     #if EV_VERIFY
2505 root 1.379 static void noinline ecb_cold
2506 root 1.251 verify_watcher (EV_P_ W w)
2507     {
2508 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2509 root 1.251
2510     if (w->pending)
2511 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2512 root 1.251 }
2513    
2514 root 1.379 static void noinline ecb_cold
2515 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2516     {
2517     int i;
2518    
2519     for (i = HEAP0; i < N + HEAP0; ++i)
2520     {
2521 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2522     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2523     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2524 root 1.251
2525     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2526     }
2527     }
2528    
2529 root 1.379 static void noinline ecb_cold
2530 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2531 root 1.248 {
2532     while (cnt--)
2533 root 1.251 {
2534 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2535 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2536     }
2537 root 1.248 }
2538 root 1.250 #endif
2539 root 1.248
2540 root 1.338 #if EV_FEATURE_API
2541 root 1.379 void ecb_cold
2542 root 1.340 ev_verify (EV_P)
2543 root 1.248 {
2544 root 1.250 #if EV_VERIFY
2545 root 1.248 int i;
2546 root 1.251 WL w;
2547    
2548     assert (activecnt >= -1);
2549    
2550     assert (fdchangemax >= fdchangecnt);
2551     for (i = 0; i < fdchangecnt; ++i)
2552 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2553 root 1.251
2554     assert (anfdmax >= 0);
2555     for (i = 0; i < anfdmax; ++i)
2556     for (w = anfds [i].head; w; w = w->next)
2557     {
2558     verify_watcher (EV_A_ (W)w);
2559 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2560     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2561 root 1.251 }
2562    
2563     assert (timermax >= timercnt);
2564     verify_heap (EV_A_ timers, timercnt);
2565 root 1.248
2566     #if EV_PERIODIC_ENABLE
2567 root 1.251 assert (periodicmax >= periodiccnt);
2568     verify_heap (EV_A_ periodics, periodiccnt);
2569 root 1.248 #endif
2570    
2571 root 1.251 for (i = NUMPRI; i--; )
2572     {
2573     assert (pendingmax [i] >= pendingcnt [i]);
2574 root 1.248 #if EV_IDLE_ENABLE
2575 root 1.252 assert (idleall >= 0);
2576 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2577     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2578 root 1.248 #endif
2579 root 1.251 }
2580    
2581 root 1.248 #if EV_FORK_ENABLE
2582 root 1.251 assert (forkmax >= forkcnt);
2583     array_verify (EV_A_ (W *)forks, forkcnt);
2584 root 1.248 #endif
2585 root 1.251
2586 root 1.360 #if EV_CLEANUP_ENABLE
2587     assert (cleanupmax >= cleanupcnt);
2588     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2589     #endif
2590    
2591 root 1.250 #if EV_ASYNC_ENABLE
2592 root 1.251 assert (asyncmax >= asynccnt);
2593     array_verify (EV_A_ (W *)asyncs, asynccnt);
2594 root 1.250 #endif
2595 root 1.251
2596 root 1.337 #if EV_PREPARE_ENABLE
2597 root 1.251 assert (preparemax >= preparecnt);
2598     array_verify (EV_A_ (W *)prepares, preparecnt);
2599 root 1.337 #endif
2600 root 1.251
2601 root 1.337 #if EV_CHECK_ENABLE
2602 root 1.251 assert (checkmax >= checkcnt);
2603     array_verify (EV_A_ (W *)checks, checkcnt);
2604 root 1.337 #endif
2605 root 1.251
2606     # if 0
2607 root 1.336 #if EV_CHILD_ENABLE
2608 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2609 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2610 root 1.336 #endif
2611 root 1.251 # endif
2612 root 1.248 #endif
2613     }
2614 root 1.297 #endif
2615 root 1.56
2616     #if EV_MULTIPLICITY
2617 root 1.379 struct ev_loop * ecb_cold
2618 root 1.54 #else
2619     int
2620 root 1.358 #endif
2621 root 1.116 ev_default_loop (unsigned int flags)
2622 root 1.54 {
2623 root 1.116 if (!ev_default_loop_ptr)
2624 root 1.56 {
2625     #if EV_MULTIPLICITY
2626 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2627 root 1.56 #else
2628 ayin 1.117 ev_default_loop_ptr = 1;
2629 root 1.54 #endif
2630    
2631 root 1.110 loop_init (EV_A_ flags);
2632 root 1.56
2633 root 1.130 if (ev_backend (EV_A))
2634 root 1.56 {
2635 root 1.336 #if EV_CHILD_ENABLE
2636 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2637     ev_set_priority (&childev, EV_MAXPRI);
2638     ev_signal_start (EV_A_ &childev);
2639     ev_unref (EV_A); /* child watcher should not keep loop alive */
2640     #endif
2641     }
2642     else
2643 root 1.116 ev_default_loop_ptr = 0;
2644 root 1.56 }
2645 root 1.8
2646 root 1.116 return ev_default_loop_ptr;
2647 root 1.1 }
2648    
2649 root 1.24 void
2650 root 1.359 ev_loop_fork (EV_P)
2651 root 1.1 {
2652 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2653 root 1.1 }
2654    
2655 root 1.8 /*****************************************************************************/
2656    
2657 root 1.168 void
2658     ev_invoke (EV_P_ void *w, int revents)
2659     {
2660     EV_CB_INVOKE ((W)w, revents);
2661     }
2662    
2663 root 1.300 unsigned int
2664     ev_pending_count (EV_P)
2665     {
2666     int pri;
2667     unsigned int count = 0;
2668    
2669     for (pri = NUMPRI; pri--; )
2670     count += pendingcnt [pri];
2671    
2672     return count;
2673     }
2674    
2675 root 1.297 void noinline
2676 root 1.296 ev_invoke_pending (EV_P)
2677 root 1.1 {
2678 root 1.42 int pri;
2679    
2680     for (pri = NUMPRI; pri--; )
2681     while (pendingcnt [pri])
2682     {
2683     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2684 root 1.1
2685 root 1.288 p->w->pending = 0;
2686     EV_CB_INVOKE (p->w, p->events);
2687     EV_FREQUENT_CHECK;
2688 root 1.42 }
2689 root 1.1 }
2690    
2691 root 1.234 #if EV_IDLE_ENABLE
2692 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2693     /* only when higher priorities are idle" logic */
2694 root 1.284 inline_size void
2695 root 1.234 idle_reify (EV_P)
2696     {
2697     if (expect_false (idleall))
2698     {
2699     int pri;
2700    
2701     for (pri = NUMPRI; pri--; )
2702     {
2703     if (pendingcnt [pri])
2704     break;
2705    
2706     if (idlecnt [pri])
2707     {
2708     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2709     break;
2710     }
2711     }
2712     }
2713     }
2714     #endif
2715    
2716 root 1.288 /* make timers pending */
2717 root 1.284 inline_size void
2718 root 1.51 timers_reify (EV_P)
2719 root 1.1 {
2720 root 1.248 EV_FREQUENT_CHECK;
2721    
2722 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2723 root 1.1 {
2724 root 1.284 do
2725     {
2726     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2727 root 1.1
2728 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2729    
2730     /* first reschedule or stop timer */
2731     if (w->repeat)
2732     {
2733     ev_at (w) += w->repeat;
2734     if (ev_at (w) < mn_now)
2735     ev_at (w) = mn_now;
2736 root 1.61
2737 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2738 root 1.90
2739 root 1.284 ANHE_at_cache (timers [HEAP0]);
2740     downheap (timers, timercnt, HEAP0);
2741     }
2742     else
2743     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2744 root 1.243
2745 root 1.284 EV_FREQUENT_CHECK;
2746     feed_reverse (EV_A_ (W)w);
2747 root 1.12 }
2748 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2749 root 1.30
2750 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2751 root 1.12 }
2752     }
2753 root 1.4
2754 root 1.140 #if EV_PERIODIC_ENABLE
2755 root 1.370
2756 root 1.373 static void noinline
2757 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2758     {
2759 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2760     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2761    
2762     /* the above almost always errs on the low side */
2763     while (at <= ev_rt_now)
2764     {
2765     ev_tstamp nat = at + w->interval;
2766    
2767     /* when resolution fails us, we use ev_rt_now */
2768     if (expect_false (nat == at))
2769     {
2770     at = ev_rt_now;
2771     break;
2772     }
2773    
2774     at = nat;
2775     }
2776    
2777     ev_at (w) = at;
2778 root 1.370 }
2779    
2780 root 1.288 /* make periodics pending */
2781 root 1.284 inline_size void
2782 root 1.51 periodics_reify (EV_P)
2783 root 1.12 {
2784 root 1.248 EV_FREQUENT_CHECK;
2785 root 1.250
2786 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2787 root 1.12 {
2788 root 1.284 int feed_count = 0;
2789    
2790     do
2791     {
2792     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2793 root 1.1
2794 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2795 root 1.61
2796 root 1.284 /* first reschedule or stop timer */
2797     if (w->reschedule_cb)
2798     {
2799     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2800 root 1.243
2801 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2802 root 1.243
2803 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2804     downheap (periodics, periodiccnt, HEAP0);
2805     }
2806     else if (w->interval)
2807 root 1.246 {
2808 root 1.370 periodic_recalc (EV_A_ w);
2809 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2810     downheap (periodics, periodiccnt, HEAP0);
2811 root 1.246 }
2812 root 1.284 else
2813     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2814 root 1.243
2815 root 1.284 EV_FREQUENT_CHECK;
2816     feed_reverse (EV_A_ (W)w);
2817 root 1.1 }
2818 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2819 root 1.12
2820 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2821 root 1.12 }
2822     }
2823    
2824 root 1.288 /* simply recalculate all periodics */
2825 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2826 root 1.379 static void noinline ecb_cold
2827 root 1.54 periodics_reschedule (EV_P)
2828 root 1.12 {
2829     int i;
2830    
2831 root 1.13 /* adjust periodics after time jump */
2832 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2833 root 1.12 {
2834 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2835 root 1.12
2836 root 1.77 if (w->reschedule_cb)
2837 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2838 root 1.77 else if (w->interval)
2839 root 1.370 periodic_recalc (EV_A_ w);
2840 root 1.242
2841 root 1.248 ANHE_at_cache (periodics [i]);
2842 root 1.77 }
2843 root 1.12
2844 root 1.248 reheap (periodics, periodiccnt);
2845 root 1.1 }
2846 root 1.93 #endif
2847 root 1.1
2848 root 1.288 /* adjust all timers by a given offset */
2849 root 1.379 static void noinline ecb_cold
2850 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
2851     {
2852     int i;
2853    
2854     for (i = 0; i < timercnt; ++i)
2855     {
2856     ANHE *he = timers + i + HEAP0;
2857     ANHE_w (*he)->at += adjust;
2858     ANHE_at_cache (*he);
2859     }
2860     }
2861    
2862 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2863 root 1.324 /* also detect if there was a timejump, and act accordingly */
2864 root 1.284 inline_speed void
2865 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2866 root 1.4 {
2867 root 1.40 #if EV_USE_MONOTONIC
2868     if (expect_true (have_monotonic))
2869     {
2870 root 1.289 int i;
2871 root 1.178 ev_tstamp odiff = rtmn_diff;
2872    
2873     mn_now = get_clock ();
2874    
2875     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2876     /* interpolate in the meantime */
2877     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2878 root 1.40 {
2879 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2880     return;
2881     }
2882    
2883     now_floor = mn_now;
2884     ev_rt_now = ev_time ();
2885 root 1.4
2886 root 1.178 /* loop a few times, before making important decisions.
2887     * on the choice of "4": one iteration isn't enough,
2888     * in case we get preempted during the calls to
2889     * ev_time and get_clock. a second call is almost guaranteed
2890     * to succeed in that case, though. and looping a few more times
2891     * doesn't hurt either as we only do this on time-jumps or
2892     * in the unlikely event of having been preempted here.
2893     */
2894     for (i = 4; --i; )
2895     {
2896 root 1.373 ev_tstamp diff;
2897 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2898 root 1.4
2899 root 1.373 diff = odiff - rtmn_diff;
2900    
2901     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2902 root 1.178 return; /* all is well */
2903 root 1.4
2904 root 1.178 ev_rt_now = ev_time ();
2905     mn_now = get_clock ();
2906     now_floor = mn_now;
2907     }
2908 root 1.4
2909 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2910     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2911 root 1.140 # if EV_PERIODIC_ENABLE
2912 root 1.178 periodics_reschedule (EV_A);
2913 root 1.93 # endif
2914 root 1.4 }
2915     else
2916 root 1.40 #endif
2917 root 1.4 {
2918 root 1.85 ev_rt_now = ev_time ();
2919 root 1.40
2920 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2921 root 1.13 {
2922 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2923     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2924 root 1.140 #if EV_PERIODIC_ENABLE
2925 root 1.54 periodics_reschedule (EV_A);
2926 root 1.93 #endif
2927 root 1.13 }
2928 root 1.4
2929 root 1.85 mn_now = ev_rt_now;
2930 root 1.4 }
2931     }
2932    
2933 root 1.51 void
2934 root 1.353 ev_run (EV_P_ int flags)
2935 root 1.1 {
2936 root 1.338 #if EV_FEATURE_API
2937 root 1.294 ++loop_depth;
2938 root 1.297 #endif
2939 root 1.294
2940 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2941 root 1.298
2942 root 1.353 loop_done = EVBREAK_CANCEL;
2943 root 1.1
2944 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2945 root 1.158
2946 root 1.161 do
2947 root 1.9 {
2948 root 1.250 #if EV_VERIFY >= 2
2949 root 1.340 ev_verify (EV_A);
2950 root 1.250 #endif
2951    
2952 root 1.158 #ifndef _WIN32
2953     if (expect_false (curpid)) /* penalise the forking check even more */
2954     if (expect_false (getpid () != curpid))
2955     {
2956     curpid = getpid ();
2957     postfork = 1;
2958     }
2959     #endif
2960    
2961 root 1.157 #if EV_FORK_ENABLE
2962     /* we might have forked, so queue fork handlers */
2963     if (expect_false (postfork))
2964     if (forkcnt)
2965     {
2966     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2967 root 1.297 EV_INVOKE_PENDING;
2968 root 1.157 }
2969     #endif
2970 root 1.147
2971 root 1.337 #if EV_PREPARE_ENABLE
2972 root 1.170 /* queue prepare watchers (and execute them) */
2973 root 1.40 if (expect_false (preparecnt))
2974 root 1.20 {
2975 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2976 root 1.297 EV_INVOKE_PENDING;
2977 root 1.20 }
2978 root 1.337 #endif
2979 root 1.9
2980 root 1.298 if (expect_false (loop_done))
2981     break;
2982    
2983 root 1.70 /* we might have forked, so reify kernel state if necessary */
2984     if (expect_false (postfork))
2985     loop_fork (EV_A);
2986    
2987 root 1.1 /* update fd-related kernel structures */
2988 root 1.51 fd_reify (EV_A);
2989 root 1.1
2990     /* calculate blocking time */
2991 root 1.135 {
2992 root 1.193 ev_tstamp waittime = 0.;
2993     ev_tstamp sleeptime = 0.;
2994 root 1.12
2995 root 1.353 /* remember old timestamp for io_blocktime calculation */
2996     ev_tstamp prev_mn_now = mn_now;
2997 root 1.293
2998 root 1.353 /* update time to cancel out callback processing overhead */
2999     time_update (EV_A_ 1e100);
3000 root 1.135
3001 root 1.378 /* from now on, we want a pipe-wake-up */
3002     pipe_write_wanted = 1;
3003    
3004 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3005 root 1.383
3006 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3007 root 1.353 {
3008 root 1.287 waittime = MAX_BLOCKTIME;
3009    
3010 root 1.135 if (timercnt)
3011     {
3012 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3013 root 1.193 if (waittime > to) waittime = to;
3014 root 1.135 }
3015 root 1.4
3016 root 1.140 #if EV_PERIODIC_ENABLE
3017 root 1.135 if (periodiccnt)
3018     {
3019 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3020 root 1.193 if (waittime > to) waittime = to;
3021 root 1.135 }
3022 root 1.93 #endif
3023 root 1.4
3024 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3025 root 1.193 if (expect_false (waittime < timeout_blocktime))
3026     waittime = timeout_blocktime;
3027    
3028 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3029     /* to pass a minimum nonzero value to the backend */
3030     if (expect_false (waittime < backend_mintime))
3031     waittime = backend_mintime;
3032    
3033 root 1.293 /* extra check because io_blocktime is commonly 0 */
3034     if (expect_false (io_blocktime))
3035     {
3036     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3037 root 1.193
3038 root 1.376 if (sleeptime > waittime - backend_mintime)
3039     sleeptime = waittime - backend_mintime;
3040 root 1.193
3041 root 1.293 if (expect_true (sleeptime > 0.))
3042     {
3043     ev_sleep (sleeptime);
3044     waittime -= sleeptime;
3045     }
3046 root 1.193 }
3047 root 1.135 }
3048 root 1.1
3049 root 1.338 #if EV_FEATURE_API
3050 root 1.162 ++loop_count;
3051 root 1.297 #endif
3052 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3053 root 1.193 backend_poll (EV_A_ waittime);
3054 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3055 root 1.178
3056 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3057 root 1.378
3058     if (pipe_write_skipped)
3059     {
3060     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3061     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3062     }
3063    
3064    
3065 root 1.178 /* update ev_rt_now, do magic */
3066 root 1.193 time_update (EV_A_ waittime + sleeptime);
3067 root 1.135 }
3068 root 1.1
3069 root 1.9 /* queue pending timers and reschedule them */
3070 root 1.51 timers_reify (EV_A); /* relative timers called last */
3071 root 1.140 #if EV_PERIODIC_ENABLE
3072 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3073 root 1.93 #endif
3074 root 1.1
3075 root 1.164 #if EV_IDLE_ENABLE
3076 root 1.137 /* queue idle watchers unless other events are pending */
3077 root 1.164 idle_reify (EV_A);
3078     #endif
3079 root 1.9
3080 root 1.337 #if EV_CHECK_ENABLE
3081 root 1.20 /* queue check watchers, to be executed first */
3082 root 1.123 if (expect_false (checkcnt))
3083 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3084 root 1.337 #endif
3085 root 1.9
3086 root 1.297 EV_INVOKE_PENDING;
3087 root 1.1 }
3088 root 1.219 while (expect_true (
3089     activecnt
3090     && !loop_done
3091 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3092 root 1.219 ));
3093 root 1.13
3094 root 1.353 if (loop_done == EVBREAK_ONE)
3095     loop_done = EVBREAK_CANCEL;
3096 root 1.294
3097 root 1.338 #if EV_FEATURE_API
3098 root 1.294 --loop_depth;
3099 root 1.297 #endif
3100 root 1.51 }
3101    
3102     void
3103 root 1.353 ev_break (EV_P_ int how)
3104 root 1.51 {
3105     loop_done = how;
3106 root 1.1 }
3107    
3108 root 1.285 void
3109     ev_ref (EV_P)
3110     {
3111     ++activecnt;
3112     }
3113    
3114     void
3115     ev_unref (EV_P)
3116     {
3117     --activecnt;
3118     }
3119    
3120     void
3121     ev_now_update (EV_P)
3122     {
3123     time_update (EV_A_ 1e100);
3124     }
3125    
3126     void
3127     ev_suspend (EV_P)
3128     {
3129     ev_now_update (EV_A);
3130     }
3131    
3132     void
3133     ev_resume (EV_P)
3134     {
3135     ev_tstamp mn_prev = mn_now;
3136    
3137     ev_now_update (EV_A);
3138     timers_reschedule (EV_A_ mn_now - mn_prev);
3139 root 1.286 #if EV_PERIODIC_ENABLE
3140 root 1.288 /* TODO: really do this? */
3141 root 1.285 periodics_reschedule (EV_A);
3142 root 1.286 #endif
3143 root 1.285 }
3144    
3145 root 1.8 /*****************************************************************************/
3146 root 1.288 /* singly-linked list management, used when the expected list length is short */
3147 root 1.8
3148 root 1.284 inline_size void
3149 root 1.10 wlist_add (WL *head, WL elem)
3150 root 1.1 {
3151     elem->next = *head;
3152     *head = elem;
3153     }
3154    
3155 root 1.284 inline_size void
3156 root 1.10 wlist_del (WL *head, WL elem)
3157 root 1.1 {
3158     while (*head)
3159     {
3160 root 1.307 if (expect_true (*head == elem))
3161 root 1.1 {
3162     *head = elem->next;
3163 root 1.307 break;
3164 root 1.1 }
3165    
3166     head = &(*head)->next;
3167     }
3168     }
3169    
3170 root 1.288 /* internal, faster, version of ev_clear_pending */
3171 root 1.284 inline_speed void
3172 root 1.166 clear_pending (EV_P_ W w)
3173 root 1.16 {
3174     if (w->pending)
3175     {
3176 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3177 root 1.16 w->pending = 0;
3178     }
3179     }
3180    
3181 root 1.167 int
3182     ev_clear_pending (EV_P_ void *w)
3183 root 1.166 {
3184     W w_ = (W)w;
3185     int pending = w_->pending;
3186    
3187 root 1.172 if (expect_true (pending))
3188     {
3189     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3190 root 1.288 p->w = (W)&pending_w;
3191 root 1.172 w_->pending = 0;
3192     return p->events;
3193     }
3194     else
3195 root 1.167 return 0;
3196 root 1.166 }
3197    
3198 root 1.284 inline_size void
3199 root 1.164 pri_adjust (EV_P_ W w)
3200     {
3201 root 1.295 int pri = ev_priority (w);
3202 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3203     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3204 root 1.295 ev_set_priority (w, pri);
3205 root 1.164 }
3206    
3207 root 1.284 inline_speed void
3208 root 1.51 ev_start (EV_P_ W w, int active)
3209 root 1.1 {
3210 root 1.164 pri_adjust (EV_A_ w);
3211 root 1.1 w->active = active;
3212 root 1.51 ev_ref (EV_A);
3213 root 1.1 }
3214    
3215 root 1.284 inline_size void
3216 root 1.51 ev_stop (EV_P_ W w)
3217 root 1.1 {
3218 root 1.51 ev_unref (EV_A);
3219 root 1.1 w->active = 0;
3220     }
3221    
3222 root 1.8 /*****************************************************************************/
3223    
3224 root 1.171 void noinline
3225 root 1.136 ev_io_start (EV_P_ ev_io *w)
3226 root 1.1 {
3227 root 1.37 int fd = w->fd;
3228    
3229 root 1.123 if (expect_false (ev_is_active (w)))
3230 root 1.1 return;
3231    
3232 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3233 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3234 root 1.33
3235 root 1.248 EV_FREQUENT_CHECK;
3236    
3237 root 1.51 ev_start (EV_A_ (W)w, 1);
3238 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3239 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3240 root 1.1
3241 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3242 root 1.281 w->events &= ~EV__IOFDSET;
3243 root 1.248
3244     EV_FREQUENT_CHECK;
3245 root 1.1 }
3246    
3247 root 1.171 void noinline
3248 root 1.136 ev_io_stop (EV_P_ ev_io *w)
3249 root 1.1 {
3250 root 1.166 clear_pending (EV_A_ (W)w);
3251 root 1.123 if (expect_false (!ev_is_active (w)))
3252 root 1.1 return;
3253    
3254 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3255 root 1.89
3256 root 1.248 EV_FREQUENT_CHECK;
3257    
3258 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3259 root 1.51 ev_stop (EV_A_ (W)w);
3260 root 1.1
3261 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3262 root 1.248
3263     EV_FREQUENT_CHECK;
3264 root 1.1 }
3265    
3266 root 1.171 void noinline
3267 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
3268 root 1.1 {
3269 root 1.123 if (expect_false (ev_is_active (w)))
3270 root 1.1 return;
3271    
3272 root 1.228 ev_at (w) += mn_now;
3273 root 1.12
3274 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3275 root 1.13
3276 root 1.248 EV_FREQUENT_CHECK;
3277    
3278     ++timercnt;
3279     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3280 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3281     ANHE_w (timers [ev_active (w)]) = (WT)w;
3282 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3283 root 1.235 upheap (timers, ev_active (w));
3284 root 1.62
3285 root 1.248 EV_FREQUENT_CHECK;
3286    
3287 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3288 root 1.12 }
3289    
3290 root 1.171 void noinline
3291 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
3292 root 1.12 {
3293 root 1.166 clear_pending (EV_A_ (W)w);
3294 root 1.123 if (expect_false (!ev_is_active (w)))
3295 root 1.12 return;
3296    
3297 root 1.248 EV_FREQUENT_CHECK;
3298    
3299 root 1.230 {
3300     int active = ev_active (w);
3301 root 1.62
3302 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3303 root 1.151
3304 root 1.248 --timercnt;
3305    
3306     if (expect_true (active < timercnt + HEAP0))
3307 root 1.151 {
3308 root 1.248 timers [active] = timers [timercnt + HEAP0];
3309 root 1.181 adjustheap (timers, timercnt, active);
3310 root 1.151 }
3311 root 1.248 }
3312 root 1.228
3313     ev_at (w) -= mn_now;
3314 root 1.14
3315 root 1.51 ev_stop (EV_A_ (W)w);
3316 root 1.328
3317     EV_FREQUENT_CHECK;
3318 root 1.12 }
3319 root 1.4
3320 root 1.171 void noinline
3321 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
3322 root 1.14 {
3323 root 1.248 EV_FREQUENT_CHECK;
3324    
3325 root 1.407 clear_pending (EV_A_ (W)w);
3326 root 1.406
3327 root 1.14 if (ev_is_active (w))
3328     {
3329     if (w->repeat)
3330 root 1.99 {
3331 root 1.228 ev_at (w) = mn_now + w->repeat;
3332 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3333 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3334 root 1.99 }
3335 root 1.14 else
3336 root 1.51 ev_timer_stop (EV_A_ w);
3337 root 1.14 }
3338     else if (w->repeat)
3339 root 1.112 {
3340 root 1.229 ev_at (w) = w->repeat;
3341 root 1.112 ev_timer_start (EV_A_ w);
3342     }
3343 root 1.248
3344     EV_FREQUENT_CHECK;
3345 root 1.14 }
3346    
3347 root 1.301 ev_tstamp
3348     ev_timer_remaining (EV_P_ ev_timer *w)
3349     {
3350     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3351     }
3352    
3353 root 1.140 #if EV_PERIODIC_ENABLE
3354 root 1.171 void noinline
3355 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
3356 root 1.12 {
3357 root 1.123 if (expect_false (ev_is_active (w)))
3358 root 1.12 return;
3359 root 1.1
3360 root 1.77 if (w->reschedule_cb)
3361 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3362 root 1.77 else if (w->interval)
3363     {
3364 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3365 root 1.370 periodic_recalc (EV_A_ w);
3366 root 1.77 }
3367 root 1.173 else
3368 root 1.228 ev_at (w) = w->offset;
3369 root 1.12
3370 root 1.248 EV_FREQUENT_CHECK;
3371    
3372     ++periodiccnt;
3373     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3374 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3375     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3376 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3377 root 1.235 upheap (periodics, ev_active (w));
3378 root 1.62
3379 root 1.248 EV_FREQUENT_CHECK;
3380    
3381 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3382 root 1.1 }
3383    
3384 root 1.171 void noinline
3385 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
3386 root 1.1 {
3387 root 1.166 clear_pending (EV_A_ (W)w);
3388 root 1.123 if (expect_false (!ev_is_active (w)))
3389 root 1.1 return;
3390    
3391 root 1.248 EV_FREQUENT_CHECK;
3392    
3393 root 1.230 {
3394     int active = ev_active (w);
3395 root 1.62
3396 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3397 root 1.151
3398 root 1.248 --periodiccnt;
3399    
3400     if (expect_true (active < periodiccnt + HEAP0))
3401 root 1.151 {
3402 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3403 root 1.181 adjustheap (periodics, periodiccnt, active);
3404 root 1.151 }
3405 root 1.248 }
3406 root 1.228
3407 root 1.328 ev_stop (EV_A_ (W)w);
3408    
3409 root 1.248 EV_FREQUENT_CHECK;
3410 root 1.1 }
3411    
3412 root 1.171 void noinline
3413 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
3414 root 1.77 {
3415 root 1.84 /* TODO: use adjustheap and recalculation */
3416 root 1.77 ev_periodic_stop (EV_A_ w);
3417     ev_periodic_start (EV_A_ w);
3418     }
3419 root 1.93 #endif
3420 root 1.77
3421 root 1.56 #ifndef SA_RESTART
3422     # define SA_RESTART 0
3423     #endif
3424    
3425 root 1.336 #if EV_SIGNAL_ENABLE
3426    
3427 root 1.171 void noinline
3428 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
3429 root 1.56 {
3430 root 1.123 if (expect_false (ev_is_active (w)))
3431 root 1.56 return;
3432    
3433 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3434    
3435     #if EV_MULTIPLICITY
3436 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3437 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3438    
3439     signals [w->signum - 1].loop = EV_A;
3440     #endif
3441 root 1.56
3442 root 1.303 EV_FREQUENT_CHECK;
3443    
3444     #if EV_USE_SIGNALFD
3445     if (sigfd == -2)
3446     {
3447     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3448     if (sigfd < 0 && errno == EINVAL)
3449     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3450    
3451     if (sigfd >= 0)
3452     {
3453     fd_intern (sigfd); /* doing it twice will not hurt */
3454    
3455     sigemptyset (&sigfd_set);
3456    
3457     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3458     ev_set_priority (&sigfd_w, EV_MAXPRI);
3459     ev_io_start (EV_A_ &sigfd_w);
3460     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3461     }
3462     }
3463    
3464     if (sigfd >= 0)
3465     {
3466     /* TODO: check .head */
3467     sigaddset (&sigfd_set, w->signum);
3468     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3469 root 1.207
3470 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3471     }
3472 root 1.180 #endif
3473    
3474 root 1.56 ev_start (EV_A_ (W)w, 1);
3475 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3476 root 1.56
3477 root 1.63 if (!((WL)w)->next)
3478 root 1.304 # if EV_USE_SIGNALFD
3479 root 1.306 if (sigfd < 0) /*TODO*/
3480 root 1.304 # endif
3481 root 1.306 {
3482 root 1.322 # ifdef _WIN32
3483 root 1.317 evpipe_init (EV_A);
3484    
3485 root 1.306 signal (w->signum, ev_sighandler);
3486     # else
3487     struct sigaction sa;
3488    
3489     evpipe_init (EV_A);
3490    
3491     sa.sa_handler = ev_sighandler;
3492     sigfillset (&sa.sa_mask);
3493     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3494     sigaction (w->signum, &sa, 0);
3495    
3496 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3497     {
3498     sigemptyset (&sa.sa_mask);
3499     sigaddset (&sa.sa_mask, w->signum);
3500     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3501     }
3502 root 1.67 #endif
3503 root 1.306 }
3504 root 1.248
3505     EV_FREQUENT_CHECK;
3506 root 1.56 }
3507    
3508 root 1.171 void noinline
3509 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
3510 root 1.56 {
3511 root 1.166 clear_pending (EV_A_ (W)w);
3512 root 1.123 if (expect_false (!ev_is_active (w)))
3513 root 1.56 return;
3514    
3515 root 1.248 EV_FREQUENT_CHECK;
3516    
3517 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3518 root 1.56 ev_stop (EV_A_ (W)w);
3519    
3520     if (!signals [w->signum - 1].head)
3521 root 1.306 {
3522 root 1.307 #if EV_MULTIPLICITY
3523 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3524 root 1.307 #endif
3525     #if EV_USE_SIGNALFD
3526 root 1.306 if (sigfd >= 0)
3527     {
3528 root 1.321 sigset_t ss;
3529    
3530     sigemptyset (&ss);
3531     sigaddset (&ss, w->signum);
3532 root 1.306 sigdelset (&sigfd_set, w->signum);
3533 root 1.321
3534 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3535 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3536 root 1.306 }
3537     else
3538 root 1.307 #endif
3539 root 1.306 signal (w->signum, SIG_DFL);
3540     }
3541 root 1.248
3542     EV_FREQUENT_CHECK;
3543 root 1.56 }
3544    
3545 root 1.336 #endif
3546    
3547     #if EV_CHILD_ENABLE
3548    
3549 root 1.28 void
3550 root 1.136 ev_child_start (EV_P_ ev_child *w)
3551 root 1.22 {
3552 root 1.56 #if EV_MULTIPLICITY
3553 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3554 root 1.56 #endif
3555 root 1.123 if (expect_false (ev_is_active (w)))
3556 root 1.22 return;
3557    
3558 root 1.248 EV_FREQUENT_CHECK;
3559    
3560 root 1.51 ev_start (EV_A_ (W)w, 1);
3561 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3562 root 1.248
3563     EV_FREQUENT_CHECK;
3564 root 1.22 }
3565    
3566 root 1.28 void
3567 root 1.136 ev_child_stop (EV_P_ ev_child *w)
3568 root 1.22 {
3569 root 1.166 clear_pending (EV_A_ (W)w);
3570 root 1.123 if (expect_false (!ev_is_active (w)))
3571 root 1.22 return;
3572    
3573 root 1.248 EV_FREQUENT_CHECK;
3574    
3575 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3576 root 1.51 ev_stop (EV_A_ (W)w);
3577 root 1.248
3578     EV_FREQUENT_CHECK;
3579 root 1.22 }
3580    
3581 root 1.336 #endif
3582    
3583 root 1.140 #if EV_STAT_ENABLE
3584    
3585     # ifdef _WIN32
3586 root 1.146 # undef lstat
3587     # define lstat(a,b) _stati64 (a,b)
3588 root 1.140 # endif
3589    
3590 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3591     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3592     #define MIN_STAT_INTERVAL 0.1074891
3593 root 1.143
3594 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3595 root 1.152
3596     #if EV_USE_INOTIFY
3597 root 1.326
3598     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3599     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3600 root 1.152
3601     static void noinline
3602     infy_add (EV_P_ ev_stat *w)
3603     {
3604     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3605    
3606 root 1.318 if (w->wd >= 0)
3607 root 1.152 {
3608 root 1.318 struct statfs sfs;
3609    
3610     /* now local changes will be tracked by inotify, but remote changes won't */
3611     /* unless the filesystem is known to be local, we therefore still poll */
3612     /* also do poll on <2.6.25, but with normal frequency */
3613    
3614     if (!fs_2625)
3615     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3616     else if (!statfs (w->path, &sfs)
3617     && (sfs.f_type == 0x1373 /* devfs */
3618     || sfs.f_type == 0xEF53 /* ext2/3 */
3619     || sfs.f_type == 0x3153464a /* jfs */
3620     || sfs.f_type == 0x52654973 /* reiser3 */
3621     || sfs.f_type == 0x01021994 /* tempfs */
3622     || sfs.f_type == 0x58465342 /* xfs */))
3623     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3624     else
3625     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3626     }
3627     else
3628     {
3629     /* can't use inotify, continue to stat */
3630 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3631 root 1.152
3632 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3633 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3634 root 1.233 /* but an efficiency issue only */
3635 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3636 root 1.152 {
3637 root 1.153 char path [4096];
3638 root 1.152 strcpy (path, w->path);
3639    
3640     do
3641     {
3642     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3643     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3644    
3645     char *pend = strrchr (path, '/');
3646    
3647 root 1.275 if (!pend || pend == path)
3648     break;
3649 root 1.152
3650     *pend = 0;
3651 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3652 root 1.372 }
3653 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3654     }
3655     }
3656 root 1.275
3657     if (w->wd >= 0)
3658 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3659 root 1.152
3660 root 1.318 /* now re-arm timer, if required */
3661     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3662     ev_timer_again (EV_A_ &w->timer);
3663     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3664 root 1.152 }
3665    
3666     static void noinline
3667     infy_del (EV_P_ ev_stat *w)
3668     {
3669     int slot;
3670     int wd = w->wd;
3671    
3672     if (wd < 0)
3673     return;
3674    
3675     w->wd = -2;
3676 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3677 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3678    
3679     /* remove this watcher, if others are watching it, they will rearm */
3680     inotify_rm_watch (fs_fd, wd);
3681     }
3682    
3683     static void noinline
3684     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3685     {
3686     if (slot < 0)
3687 root 1.264 /* overflow, need to check for all hash slots */
3688 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3689 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3690     else
3691     {
3692     WL w_;
3693    
3694 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3695 root 1.152 {
3696     ev_stat *w = (ev_stat *)w_;
3697     w_ = w_->next; /* lets us remove this watcher and all before it */
3698    
3699     if (w->wd == wd || wd == -1)
3700     {
3701     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3702     {
3703 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3704 root 1.152 w->wd = -1;
3705     infy_add (EV_A_ w); /* re-add, no matter what */
3706     }
3707    
3708 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3709 root 1.152 }
3710     }
3711     }
3712     }
3713    
3714     static void
3715     infy_cb (EV_P_ ev_io *w, int revents)
3716     {
3717     char buf [EV_INOTIFY_BUFSIZE];
3718     int ofs;
3719     int len = read (fs_fd, buf, sizeof (buf));
3720    
3721 root 1.326 for (ofs = 0; ofs < len; )
3722     {
3723     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3724     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3725     ofs += sizeof (struct inotify_event) + ev->len;
3726     }
3727 root 1.152 }
3728    
3729 root 1.379 inline_size void ecb_cold
3730 root 1.330 ev_check_2625 (EV_P)
3731     {
3732     /* kernels < 2.6.25 are borked
3733     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3734     */
3735     if (ev_linux_version () < 0x020619)
3736 root 1.273 return;
3737 root 1.264
3738 root 1.273 fs_2625 = 1;
3739     }
3740 root 1.264
3741 root 1.315 inline_size int
3742     infy_newfd (void)
3743     {
3744     #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3745     int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3746     if (fd >= 0)
3747     return fd;
3748     #endif
3749     return inotify_init ();
3750     }
3751    
3752 root 1.284 inline_size void
3753 root 1.273 infy_init (EV_P)
3754     {
3755     if (fs_fd != -2)
3756     return;
3757 root 1.264
3758 root 1.273 fs_fd = -1;
3759 root 1.264
3760 root 1.330 ev_check_2625 (EV_A);
3761 root 1.264
3762 root 1.315 fs_fd = infy_newfd ();
3763 root 1.152
3764     if (fs_fd >= 0)
3765     {
3766 root 1.315 fd_intern (fs_fd);
3767 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3768     ev_set_priority (&fs_w, EV_MAXPRI);
3769     ev_io_start (EV_A_ &fs_w);
3770 root 1.317 ev_unref (EV_A);
3771 root 1.152 }
3772     }
3773    
3774 root 1.284 inline_size void
3775 root 1.154 infy_fork (EV_P)
3776     {
3777     int slot;
3778    
3779     if (fs_fd < 0)
3780     return;
3781    
3782 root 1.317 ev_ref (EV_A);
3783 root 1.315 ev_io_stop (EV_A_ &fs_w);
3784 root 1.154 close (fs_fd);
3785 root 1.315 fs_fd = infy_newfd ();
3786    
3787     if (fs_fd >= 0)
3788     {
3789     fd_intern (fs_fd);
3790     ev_io_set (&fs_w, fs_fd, EV_READ);
3791     ev_io_start (EV_A_ &fs_w);
3792 root 1.317 ev_unref (EV_A);
3793 root 1.315 }
3794 root 1.154
3795 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3796 root 1.154 {
3797     WL w_ = fs_hash [slot].head;
3798     fs_hash [slot].head = 0;
3799    
3800     while (w_)
3801     {
3802     ev_stat *w = (ev_stat *)w_;
3803     w_ = w_->next; /* lets us add this watcher */
3804    
3805     w->wd = -1;
3806    
3807     if (fs_fd >= 0)
3808     infy_add (EV_A_ w); /* re-add, no matter what */
3809     else
3810 root 1.318 {
3811     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3812     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3813     ev_timer_again (EV_A_ &w->timer);
3814     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3815     }
3816 root 1.154 }
3817     }
3818     }
3819    
3820 root 1.152 #endif
3821    
3822 root 1.255 #ifdef _WIN32
3823     # define EV_LSTAT(p,b) _stati64 (p, b)
3824     #else
3825     # define EV_LSTAT(p,b) lstat (p, b)
3826     #endif
3827    
3828 root 1.140 void
3829     ev_stat_stat (EV_P_ ev_stat *w)
3830     {
3831     if (lstat (w->path, &w->attr) < 0)
3832     w->attr.st_nlink = 0;
3833     else if (!w->attr.st_nlink)
3834     w->attr.st_nlink = 1;
3835     }
3836    
3837 root 1.157 static void noinline
3838 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3839     {
3840     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3841    
3842 root 1.320 ev_statdata prev = w->attr;
3843 root 1.140 ev_stat_stat (EV_A_ w);
3844    
3845 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3846     if (
3847 root 1.320 prev.st_dev != w->attr.st_dev
3848     || prev.st_ino != w->attr.st_ino
3849     || prev.st_mode != w->attr.st_mode
3850     || prev.st_nlink != w->attr.st_nlink
3851     || prev.st_uid != w->attr.st_uid
3852     || prev.st_gid != w->attr.st_gid
3853     || prev.st_rdev != w->attr.st_rdev
3854     || prev.st_size != w->attr.st_size
3855     || prev.st_atime != w->attr.st_atime
3856     || prev.st_mtime != w->attr.st_mtime
3857     || prev.st_ctime != w->attr.st_ctime
3858 root 1.156 ) {
3859 root 1.320 /* we only update w->prev on actual differences */
3860     /* in case we test more often than invoke the callback, */
3861     /* to ensure that prev is always different to attr */
3862     w->prev = prev;
3863    
3864 root 1.152 #if EV_USE_INOTIFY
3865 root 1.264 if (fs_fd >= 0)
3866     {
3867     infy_del (EV_A_ w);
3868     infy_add (EV_A_ w);
3869     ev_stat_stat (EV_A_ w); /* avoid race... */
3870     }
3871 root 1.152 #endif
3872    
3873     ev_feed_event (EV_A_ w, EV_STAT);
3874     }
3875 root 1.140 }
3876    
3877     void
3878     ev_stat_start (EV_P_ ev_stat *w)
3879     {
3880     if (expect_false (ev_is_active (w)))
3881     return;
3882    
3883     ev_stat_stat (EV_A_ w);
3884    
3885 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3886     w->interval = MIN_STAT_INTERVAL;
3887 root 1.143
3888 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3889 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3890 root 1.152
3891     #if EV_USE_INOTIFY
3892     infy_init (EV_A);
3893    
3894     if (fs_fd >= 0)
3895     infy_add (EV_A_ w);
3896     else
3897     #endif
3898 root 1.318 {
3899     ev_timer_again (EV_A_ &w->timer);
3900     ev_unref (EV_A);
3901     }
3902 root 1.140
3903     ev_start (EV_A_ (W)w, 1);
3904 root 1.248
3905     EV_FREQUENT_CHECK;
3906 root 1.140 }
3907    
3908     void
3909     ev_stat_stop (EV_P_ ev_stat *w)
3910     {
3911 root 1.166 clear_pending (EV_A_ (W)w);
3912 root 1.140 if (expect_false (!ev_is_active (w)))
3913     return;
3914    
3915 root 1.248 EV_FREQUENT_CHECK;
3916    
3917 root 1.152 #if EV_USE_INOTIFY
3918     infy_del (EV_A_ w);
3919     #endif
3920 root 1.318
3921     if (ev_is_active (&w->timer))
3922     {
3923     ev_ref (EV_A);
3924     ev_timer_stop (EV_A_ &w->timer);
3925     }
3926 root 1.140
3927 root 1.134 ev_stop (EV_A_ (W)w);
3928 root 1.248
3929     EV_FREQUENT_CHECK;
3930 root 1.134 }
3931     #endif
3932    
3933 root 1.164 #if EV_IDLE_ENABLE
3934 root 1.144 void
3935     ev_idle_start (EV_P_ ev_idle *w)
3936     {
3937     if (expect_false (ev_is_active (w)))
3938     return;
3939    
3940 root 1.164 pri_adjust (EV_A_ (W)w);
3941    
3942 root 1.248 EV_FREQUENT_CHECK;
3943    
3944 root 1.164 {
3945     int active = ++idlecnt [ABSPRI (w)];
3946    
3947     ++idleall;
3948     ev_start (EV_A_ (W)w, active);
3949    
3950     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3951     idles [ABSPRI (w)][active - 1] = w;
3952     }
3953 root 1.248
3954     EV_FREQUENT_CHECK;
3955 root 1.144 }
3956    
3957     void
3958     ev_idle_stop (EV_P_ ev_idle *w)
3959     {
3960 root 1.166 clear_pending (EV_A_ (W)w);
3961 root 1.144 if (expect_false (!ev_is_active (w)))
3962     return;
3963    
3964 root 1.248 EV_FREQUENT_CHECK;
3965    
3966 root 1.144 {
3967 root 1.230 int active = ev_active (w);
3968 root 1.164
3969     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3970 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3971 root 1.164
3972     ev_stop (EV_A_ (W)w);
3973     --idleall;
3974 root 1.144 }
3975 root 1.248
3976     EV_FREQUENT_CHECK;
3977 root 1.144 }
3978 root 1.164 #endif
3979 root 1.144
3980 root 1.337 #if EV_PREPARE_ENABLE
3981 root 1.144 void
3982     ev_prepare_start (EV_P_ ev_prepare *w)
3983     {
3984     if (expect_false (ev_is_active (w)))
3985     return;
3986    
3987 root 1.248 EV_FREQUENT_CHECK;
3988    
3989 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3990     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3991     prepares [preparecnt - 1] = w;
3992 root 1.248
3993     EV_FREQUENT_CHECK;
3994 root 1.144 }
3995    
3996     void
3997     ev_prepare_stop (EV_P_ ev_prepare *w)
3998     {
3999 root 1.166 clear_pending (EV_A_ (W)w);
4000 root 1.144 if (expect_false (!ev_is_active (w)))
4001     return;
4002    
4003 root 1.248 EV_FREQUENT_CHECK;
4004    
4005 root 1.144 {
4006 root 1.230 int active = ev_active (w);
4007    
4008 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4009 root 1.230 ev_active (prepares [active - 1]) = active;
4010 root 1.144 }
4011    
4012     ev_stop (EV_A_ (W)w);
4013 root 1.248
4014     EV_FREQUENT_CHECK;
4015 root 1.144 }
4016 root 1.337 #endif
4017 root 1.144
4018 root 1.337 #if EV_CHECK_ENABLE
4019 root 1.144 void
4020     ev_check_start (EV_P_ ev_check *w)
4021     {
4022     if (expect_false (ev_is_active (w)))
4023     return;
4024    
4025 root 1.248 EV_FREQUENT_CHECK;
4026    
4027 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4028     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4029     checks [checkcnt - 1] = w;
4030 root 1.248
4031     EV_FREQUENT_CHECK;
4032 root 1.144 }
4033    
4034     void
4035     ev_check_stop (EV_P_ ev_check *w)
4036     {
4037 root 1.166 clear_pending (EV_A_ (W)w);
4038 root 1.144 if (expect_false (!ev_is_active (w)))
4039     return;
4040    
4041 root 1.248 EV_FREQUENT_CHECK;
4042    
4043 root 1.144 {
4044 root 1.230 int active = ev_active (w);
4045    
4046 root 1.144 checks [active - 1] = checks [--checkcnt];
4047 root 1.230 ev_active (checks [active - 1]) = active;
4048 root 1.144 }
4049    
4050     ev_stop (EV_A_ (W)w);
4051 root 1.248
4052     EV_FREQUENT_CHECK;
4053 root 1.144 }
4054 root 1.337 #endif
4055 root 1.144
4056     #if EV_EMBED_ENABLE
4057     void noinline
4058     ev_embed_sweep (EV_P_ ev_embed *w)
4059     {
4060 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4061 root 1.144 }
4062    
4063     static void
4064 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4065 root 1.144 {
4066     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4067    
4068     if (ev_cb (w))
4069     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4070     else
4071 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4072 root 1.144 }
4073    
4074 root 1.189 static void
4075     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4076     {
4077     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4078    
4079 root 1.195 {
4080 root 1.306 EV_P = w->other;
4081 root 1.195
4082     while (fdchangecnt)
4083     {
4084     fd_reify (EV_A);
4085 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4086 root 1.195 }
4087     }
4088     }
4089    
4090 root 1.261 static void
4091     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4092     {
4093     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4094    
4095 root 1.277 ev_embed_stop (EV_A_ w);
4096    
4097 root 1.261 {
4098 root 1.306 EV_P = w->other;
4099 root 1.261
4100     ev_loop_fork (EV_A);
4101 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4102 root 1.261 }
4103 root 1.277
4104     ev_embed_start (EV_A_ w);
4105 root 1.261 }
4106    
4107 root 1.195 #if 0
4108     static void
4109     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4110     {
4111     ev_idle_stop (EV_A_ idle);
4112 root 1.189 }
4113 root 1.195 #endif
4114 root 1.189
4115 root 1.144 void
4116     ev_embed_start (EV_P_ ev_embed *w)
4117     {
4118     if (expect_false (ev_is_active (w)))
4119     return;
4120    
4121     {
4122 root 1.306 EV_P = w->other;
4123 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4124 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4125 root 1.144 }
4126    
4127 root 1.248 EV_FREQUENT_CHECK;
4128    
4129 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4130     ev_io_start (EV_A_ &w->io);
4131    
4132 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4133     ev_set_priority (&w->prepare, EV_MINPRI);
4134     ev_prepare_start (EV_A_ &w->prepare);
4135    
4136 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4137     ev_fork_start (EV_A_ &w->fork);
4138    
4139 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4140    
4141 root 1.144 ev_start (EV_A_ (W)w, 1);
4142 root 1.248
4143     EV_FREQUENT_CHECK;
4144 root 1.144 }
4145    
4146     void
4147     ev_embed_stop (EV_P_ ev_embed *w)
4148     {
4149 root 1.166 clear_pending (EV_A_ (W)w);
4150 root 1.144 if (expect_false (!ev_is_active (w)))
4151     return;
4152    
4153 root 1.248 EV_FREQUENT_CHECK;
4154    
4155 root 1.261 ev_io_stop (EV_A_ &w->io);
4156 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4157 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4158 root 1.248
4159 root 1.328 ev_stop (EV_A_ (W)w);
4160    
4161 root 1.248 EV_FREQUENT_CHECK;
4162 root 1.144 }
4163     #endif
4164    
4165 root 1.147 #if EV_FORK_ENABLE
4166     void
4167     ev_fork_start (EV_P_ ev_fork *w)
4168     {
4169     if (expect_false (ev_is_active (w)))
4170     return;
4171    
4172 root 1.248 EV_FREQUENT_CHECK;
4173    
4174 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4175     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4176     forks [forkcnt - 1] = w;
4177 root 1.248
4178     EV_FREQUENT_CHECK;
4179 root 1.147 }
4180    
4181     void
4182     ev_fork_stop (EV_P_ ev_fork *w)
4183     {
4184 root 1.166 clear_pending (EV_A_ (W)w);
4185 root 1.147 if (expect_false (!ev_is_active (w)))
4186     return;
4187    
4188 root 1.248 EV_FREQUENT_CHECK;
4189    
4190 root 1.147 {
4191 root 1.230 int active = ev_active (w);
4192    
4193 root 1.147 forks [active - 1] = forks [--forkcnt];
4194 root 1.230 ev_active (forks [active - 1]) = active;
4195 root 1.147 }
4196    
4197     ev_stop (EV_A_ (W)w);
4198 root 1.248
4199     EV_FREQUENT_CHECK;
4200 root 1.147 }
4201     #endif
4202    
4203 root 1.360 #if EV_CLEANUP_ENABLE
4204     void
4205     ev_cleanup_start (EV_P_ ev_cleanup *w)
4206     {
4207     if (expect_false (ev_is_active (w)))
4208     return;
4209    
4210     EV_FREQUENT_CHECK;
4211    
4212     ev_start (EV_A_ (W)w, ++cleanupcnt);
4213     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4214     cleanups [cleanupcnt - 1] = w;
4215    
4216 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4217     ev_unref (EV_A);
4218 root 1.360 EV_FREQUENT_CHECK;
4219     }
4220    
4221     void
4222     ev_cleanup_stop (EV_P_ ev_cleanup *w)
4223     {
4224     clear_pending (EV_A_ (W)w);
4225     if (expect_false (!ev_is_active (w)))
4226     return;
4227    
4228     EV_FREQUENT_CHECK;
4229 root 1.362 ev_ref (EV_A);
4230 root 1.360
4231     {
4232     int active = ev_active (w);
4233    
4234     cleanups [active - 1] = cleanups [--cleanupcnt];
4235     ev_active (cleanups [active - 1]) = active;
4236     }
4237    
4238     ev_stop (EV_A_ (W)w);
4239    
4240     EV_FREQUENT_CHECK;
4241     }
4242     #endif
4243    
4244 root 1.207 #if EV_ASYNC_ENABLE
4245     void
4246     ev_async_start (EV_P_ ev_async *w)
4247     {
4248     if (expect_false (ev_is_active (w)))
4249     return;
4250    
4251 root 1.352 w->sent = 0;
4252    
4253 root 1.207 evpipe_init (EV_A);
4254    
4255 root 1.248 EV_FREQUENT_CHECK;
4256    
4257 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4258     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4259     asyncs [asynccnt - 1] = w;
4260 root 1.248
4261     EV_FREQUENT_CHECK;
4262 root 1.207 }
4263    
4264     void
4265     ev_async_stop (EV_P_ ev_async *w)
4266     {
4267     clear_pending (EV_A_ (W)w);
4268     if (expect_false (!ev_is_active (w)))
4269     return;
4270    
4271 root 1.248 EV_FREQUENT_CHECK;
4272    
4273 root 1.207 {
4274 root 1.230 int active = ev_active (w);
4275    
4276 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4277 root 1.230 ev_active (asyncs [active - 1]) = active;
4278 root 1.207 }
4279    
4280     ev_stop (EV_A_ (W)w);
4281 root 1.248
4282     EV_FREQUENT_CHECK;
4283 root 1.207 }
4284    
4285     void
4286     ev_async_send (EV_P_ ev_async *w)
4287     {
4288     w->sent = 1;
4289 root 1.307 evpipe_write (EV_A_ &async_pending);
4290 root 1.207 }
4291     #endif
4292    
4293 root 1.1 /*****************************************************************************/
4294 root 1.10
4295 root 1.16 struct ev_once
4296     {
4297 root 1.136 ev_io io;
4298     ev_timer to;
4299 root 1.16 void (*cb)(int revents, void *arg);
4300     void *arg;
4301     };
4302    
4303     static void
4304 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4305 root 1.16 {
4306     void (*cb)(int revents, void *arg) = once->cb;
4307     void *arg = once->arg;
4308    
4309 root 1.259 ev_io_stop (EV_A_ &once->io);
4310 root 1.51 ev_timer_stop (EV_A_ &once->to);
4311 root 1.69 ev_free (once);
4312 root 1.16
4313     cb (revents, arg);
4314     }
4315    
4316     static void
4317 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4318 root 1.16 {
4319 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4320    
4321     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4322 root 1.16 }
4323    
4324     static void
4325 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4326 root 1.16 {
4327 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4328    
4329     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4330 root 1.16 }
4331    
4332     void
4333 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4334 root 1.16 {
4335 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4336 root 1.16
4337 root 1.123 if (expect_false (!once))
4338 root 1.16 {
4339 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4340 root 1.123 return;
4341     }
4342    
4343     once->cb = cb;
4344     once->arg = arg;
4345 root 1.16
4346 root 1.123 ev_init (&once->io, once_cb_io);
4347     if (fd >= 0)
4348     {
4349     ev_io_set (&once->io, fd, events);
4350     ev_io_start (EV_A_ &once->io);
4351     }
4352 root 1.16
4353 root 1.123 ev_init (&once->to, once_cb_to);
4354     if (timeout >= 0.)
4355     {
4356     ev_timer_set (&once->to, timeout, 0.);
4357     ev_timer_start (EV_A_ &once->to);
4358 root 1.16 }
4359     }
4360    
4361 root 1.282 /*****************************************************************************/
4362    
4363 root 1.288 #if EV_WALK_ENABLE
4364 root 1.379 void ecb_cold
4365 root 1.282 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4366     {
4367     int i, j;
4368     ev_watcher_list *wl, *wn;
4369    
4370     if (types & (EV_IO | EV_EMBED))
4371     for (i = 0; i < anfdmax; ++i)
4372     for (wl = anfds [i].head; wl; )
4373     {
4374     wn = wl->next;
4375    
4376     #if EV_EMBED_ENABLE
4377     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4378     {
4379     if (types & EV_EMBED)
4380     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4381     }
4382     else
4383     #endif
4384     #if EV_USE_INOTIFY
4385     if (ev_cb ((ev_io *)wl) == infy_cb)
4386     ;
4387     else
4388     #endif
4389 root 1.288 if ((ev_io *)wl != &pipe_w)
4390 root 1.282 if (types & EV_IO)
4391     cb (EV_A_ EV_IO, wl);
4392    
4393     wl = wn;
4394     }
4395    
4396     if (types & (EV_TIMER | EV_STAT))
4397     for (i = timercnt + HEAP0; i-- > HEAP0; )
4398     #if EV_STAT_ENABLE
4399     /*TODO: timer is not always active*/
4400     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4401     {
4402     if (types & EV_STAT)
4403     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4404     }
4405     else
4406     #endif
4407     if (types & EV_TIMER)
4408     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4409    
4410     #if EV_PERIODIC_ENABLE
4411     if (types & EV_PERIODIC)
4412     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4413     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4414     #endif
4415    
4416     #if EV_IDLE_ENABLE
4417     if (types & EV_IDLE)
4418 root 1.390 for (j = NUMPRI; j--; )
4419 root 1.282 for (i = idlecnt [j]; i--; )
4420     cb (EV_A_ EV_IDLE, idles [j][i]);
4421     #endif
4422    
4423     #if EV_FORK_ENABLE
4424     if (types & EV_FORK)
4425     for (i = forkcnt; i--; )
4426     if (ev_cb (forks [i]) != embed_fork_cb)
4427     cb (EV_A_ EV_FORK, forks [i]);
4428     #endif
4429    
4430     #if EV_ASYNC_ENABLE
4431     if (types & EV_ASYNC)
4432     for (i = asynccnt; i--; )
4433     cb (EV_A_ EV_ASYNC, asyncs [i]);
4434     #endif
4435    
4436 root 1.337 #if EV_PREPARE_ENABLE
4437 root 1.282 if (types & EV_PREPARE)
4438     for (i = preparecnt; i--; )
4439 root 1.337 # if EV_EMBED_ENABLE
4440 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4441 root 1.337 # endif
4442     cb (EV_A_ EV_PREPARE, prepares [i]);
4443 root 1.282 #endif
4444    
4445 root 1.337 #if EV_CHECK_ENABLE
4446 root 1.282 if (types & EV_CHECK)
4447     for (i = checkcnt; i--; )
4448     cb (EV_A_ EV_CHECK, checks [i]);
4449 root 1.337 #endif
4450 root 1.282
4451 root 1.337 #if EV_SIGNAL_ENABLE
4452 root 1.282 if (types & EV_SIGNAL)
4453 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4454 root 1.282 for (wl = signals [i].head; wl; )
4455     {
4456     wn = wl->next;
4457     cb (EV_A_ EV_SIGNAL, wl);
4458     wl = wn;
4459     }
4460 root 1.337 #endif
4461 root 1.282
4462 root 1.337 #if EV_CHILD_ENABLE
4463 root 1.282 if (types & EV_CHILD)
4464 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4465 root 1.282 for (wl = childs [i]; wl; )
4466     {
4467     wn = wl->next;
4468     cb (EV_A_ EV_CHILD, wl);
4469     wl = wn;
4470     }
4471 root 1.337 #endif
4472 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4473     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4474     }
4475     #endif
4476    
4477 root 1.188 #if EV_MULTIPLICITY
4478     #include "ev_wrap.h"
4479     #endif
4480