ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.416
Committed: Mon Apr 2 20:12:16 2012 UTC (12 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.415: +15 -15 lines
Log Message:
cosmetics, he says

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.366 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206     # include <windows.h>
207     # ifndef EV_SELECT_IS_WINSOCKET
208     # define EV_SELECT_IS_WINSOCKET 1
209     # endif
210 root 1.331 # undef EV_AVOID_STDIO
211 root 1.45 #endif
212 root 1.103
213 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
214     * a limit of 1024 into their select. Where people have brains,
215     * OS X engineers apparently have a vacuum. Or maybe they were
216     * ordered to have a vacuum, or they do anything for money.
217     * This might help. Or not.
218     */
219     #define _DARWIN_UNLIMITED_SELECT 1
220    
221 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
222 root 1.40
223 root 1.305 /* try to deduce the maximum number of signals on this platform */
224 root 1.416 #if defined EV_NSIG
225 root 1.305 /* use what's provided */
226 root 1.416 #elif defined NSIG
227 root 1.305 # define EV_NSIG (NSIG)
228 root 1.416 #elif defined _NSIG
229 root 1.305 # define EV_NSIG (_NSIG)
230 root 1.416 #elif defined SIGMAX
231 root 1.305 # define EV_NSIG (SIGMAX+1)
232 root 1.416 #elif defined SIG_MAX
233 root 1.305 # define EV_NSIG (SIG_MAX+1)
234 root 1.416 #elif defined _SIG_MAX
235 root 1.305 # define EV_NSIG (_SIG_MAX+1)
236 root 1.416 #elif defined MAXSIG
237 root 1.305 # define EV_NSIG (MAXSIG+1)
238 root 1.416 #elif defined MAX_SIG
239 root 1.305 # define EV_NSIG (MAX_SIG+1)
240 root 1.416 #elif defined SIGARRAYSIZE
241 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242 root 1.416 #elif defined _sys_nsig
243 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244     #else
245     # error "unable to find value for NSIG, please report"
246 root 1.336 /* to make it compile regardless, just remove the above line, */
247     /* but consider reporting it, too! :) */
248 root 1.306 # define EV_NSIG 65
249 root 1.305 #endif
250    
251 root 1.373 #ifndef EV_USE_FLOOR
252     # define EV_USE_FLOOR 0
253     #endif
254    
255 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
256     # if __linux && __GLIBC__ >= 2
257 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258 root 1.274 # else
259     # define EV_USE_CLOCK_SYSCALL 0
260     # endif
261     #endif
262    
263 root 1.29 #ifndef EV_USE_MONOTONIC
264 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
266 root 1.253 # else
267     # define EV_USE_MONOTONIC 0
268     # endif
269 root 1.37 #endif
270    
271 root 1.118 #ifndef EV_USE_REALTIME
272 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273 root 1.118 #endif
274    
275 root 1.193 #ifndef EV_USE_NANOSLEEP
276 root 1.253 # if _POSIX_C_SOURCE >= 199309L
277 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
278 root 1.253 # else
279     # define EV_USE_NANOSLEEP 0
280     # endif
281 root 1.193 #endif
282    
283 root 1.29 #ifndef EV_USE_SELECT
284 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
285 root 1.10 #endif
286    
287 root 1.59 #ifndef EV_USE_POLL
288 root 1.104 # ifdef _WIN32
289     # define EV_USE_POLL 0
290     # else
291 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
292 root 1.104 # endif
293 root 1.41 #endif
294    
295 root 1.29 #ifndef EV_USE_EPOLL
296 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
298 root 1.220 # else
299     # define EV_USE_EPOLL 0
300     # endif
301 root 1.10 #endif
302    
303 root 1.44 #ifndef EV_USE_KQUEUE
304     # define EV_USE_KQUEUE 0
305     #endif
306    
307 root 1.118 #ifndef EV_USE_PORT
308     # define EV_USE_PORT 0
309 root 1.40 #endif
310    
311 root 1.152 #ifndef EV_USE_INOTIFY
312 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
314 root 1.220 # else
315     # define EV_USE_INOTIFY 0
316     # endif
317 root 1.152 #endif
318    
319 root 1.149 #ifndef EV_PID_HASHSIZE
320 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321 root 1.149 #endif
322    
323 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
324 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325 root 1.152 #endif
326    
327 root 1.220 #ifndef EV_USE_EVENTFD
328     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
330 root 1.220 # else
331     # define EV_USE_EVENTFD 0
332     # endif
333     #endif
334    
335 root 1.303 #ifndef EV_USE_SIGNALFD
336 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
338 root 1.303 # else
339     # define EV_USE_SIGNALFD 0
340     # endif
341     #endif
342    
343 root 1.249 #if 0 /* debugging */
344 root 1.250 # define EV_VERIFY 3
345 root 1.249 # define EV_USE_4HEAP 1
346     # define EV_HEAP_CACHE_AT 1
347     #endif
348    
349 root 1.250 #ifndef EV_VERIFY
350 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351 root 1.250 #endif
352    
353 root 1.243 #ifndef EV_USE_4HEAP
354 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
355 root 1.243 #endif
356    
357     #ifndef EV_HEAP_CACHE_AT
358 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359 root 1.243 #endif
360    
361 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362     /* which makes programs even slower. might work on other unices, too. */
363     #if EV_USE_CLOCK_SYSCALL
364     # include <syscall.h>
365     # ifdef SYS_clock_gettime
366     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367     # undef EV_USE_MONOTONIC
368     # define EV_USE_MONOTONIC 1
369     # else
370     # undef EV_USE_CLOCK_SYSCALL
371     # define EV_USE_CLOCK_SYSCALL 0
372     # endif
373     #endif
374    
375 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
376 root 1.40
377 root 1.325 #ifdef _AIX
378     /* AIX has a completely broken poll.h header */
379     # undef EV_USE_POLL
380     # define EV_USE_POLL 0
381     #endif
382    
383 root 1.40 #ifndef CLOCK_MONOTONIC
384     # undef EV_USE_MONOTONIC
385     # define EV_USE_MONOTONIC 0
386     #endif
387    
388 root 1.31 #ifndef CLOCK_REALTIME
389 root 1.40 # undef EV_USE_REALTIME
390 root 1.31 # define EV_USE_REALTIME 0
391     #endif
392 root 1.40
393 root 1.152 #if !EV_STAT_ENABLE
394 root 1.185 # undef EV_USE_INOTIFY
395 root 1.152 # define EV_USE_INOTIFY 0
396     #endif
397    
398 root 1.193 #if !EV_USE_NANOSLEEP
399 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
400 root 1.416 # if !defined _WIN32 && !defined __hpux
401 root 1.193 # include <sys/select.h>
402     # endif
403     #endif
404    
405 root 1.152 #if EV_USE_INOTIFY
406 root 1.273 # include <sys/statfs.h>
407 root 1.152 # include <sys/inotify.h>
408 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409     # ifndef IN_DONT_FOLLOW
410     # undef EV_USE_INOTIFY
411     # define EV_USE_INOTIFY 0
412     # endif
413 root 1.152 #endif
414    
415 root 1.185 #if EV_SELECT_IS_WINSOCKET
416     # include <winsock.h>
417     #endif
418    
419 root 1.220 #if EV_USE_EVENTFD
420     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421 root 1.221 # include <stdint.h>
422 root 1.303 # ifndef EFD_NONBLOCK
423     # define EFD_NONBLOCK O_NONBLOCK
424     # endif
425     # ifndef EFD_CLOEXEC
426 root 1.311 # ifdef O_CLOEXEC
427     # define EFD_CLOEXEC O_CLOEXEC
428     # else
429     # define EFD_CLOEXEC 02000000
430     # endif
431 root 1.303 # endif
432 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433 root 1.220 #endif
434    
435 root 1.303 #if EV_USE_SIGNALFD
436 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437     # include <stdint.h>
438     # ifndef SFD_NONBLOCK
439     # define SFD_NONBLOCK O_NONBLOCK
440     # endif
441     # ifndef SFD_CLOEXEC
442     # ifdef O_CLOEXEC
443     # define SFD_CLOEXEC O_CLOEXEC
444     # else
445     # define SFD_CLOEXEC 02000000
446     # endif
447     # endif
448 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449 root 1.314
450     struct signalfd_siginfo
451     {
452     uint32_t ssi_signo;
453     char pad[128 - sizeof (uint32_t)];
454     };
455 root 1.303 #endif
456    
457 root 1.40 /**/
458 root 1.1
459 root 1.250 #if EV_VERIFY >= 3
460 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
461 root 1.248 #else
462     # define EV_FREQUENT_CHECK do { } while (0)
463     #endif
464    
465 root 1.176 /*
466 root 1.373 * This is used to work around floating point rounding problems.
467 root 1.177 * This value is good at least till the year 4000.
468 root 1.176 */
469 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
471 root 1.176
472 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
473 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
474 root 1.1
475 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477 root 1.347
478 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479     /* ECB.H BEGIN */
480     /*
481     * libecb - http://software.schmorp.de/pkg/libecb
482     *
483 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
485     * All rights reserved.
486     *
487     * Redistribution and use in source and binary forms, with or without modifica-
488     * tion, are permitted provided that the following conditions are met:
489     *
490     * 1. Redistributions of source code must retain the above copyright notice,
491     * this list of conditions and the following disclaimer.
492     *
493     * 2. Redistributions in binary form must reproduce the above copyright
494     * notice, this list of conditions and the following disclaimer in the
495     * documentation and/or other materials provided with the distribution.
496     *
497     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506     * OF THE POSSIBILITY OF SUCH DAMAGE.
507     */
508    
509     #ifndef ECB_H
510     #define ECB_H
511    
512     #ifdef _WIN32
513     typedef signed char int8_t;
514     typedef unsigned char uint8_t;
515     typedef signed short int16_t;
516     typedef unsigned short uint16_t;
517     typedef signed int int32_t;
518     typedef unsigned int uint32_t;
519     #if __GNUC__
520     typedef signed long long int64_t;
521     typedef unsigned long long uint64_t;
522     #else /* _MSC_VER || __BORLANDC__ */
523     typedef signed __int64 int64_t;
524     typedef unsigned __int64 uint64_t;
525     #endif
526     #else
527     #include <inttypes.h>
528     #endif
529 root 1.379
530     /* many compilers define _GNUC_ to some versions but then only implement
531     * what their idiot authors think are the "more important" extensions,
532 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
533 root 1.379 * or so.
534     * we try to detect these and simply assume they are not gcc - if they have
535     * an issue with that they should have done it right in the first place.
536     */
537     #ifndef ECB_GCC_VERSION
538     #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539     #define ECB_GCC_VERSION(major,minor) 0
540     #else
541     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
542     #endif
543     #endif
544    
545 root 1.391 /*****************************************************************************/
546    
547     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549    
550 root 1.410 #if ECB_NO_THREADS
551     # define ECB_NO_SMP 1
552     #endif
553    
554 root 1.391 #if ECB_NO_THREADS || ECB_NO_SMP
555 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
556 root 1.40 #endif
557    
558 root 1.383 #ifndef ECB_MEMORY_FENCE
559 root 1.409 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 root 1.404 #if __i386 || __i386__
561 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 root 1.391 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563     #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 root 1.391 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570     #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 root 1.393 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 root 1.393 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 root 1.392 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 root 1.404 #elif __sparc || __sparc__
577 root 1.405 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 root 1.408 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 root 1.405 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 root 1.408 #elif defined(__s390__) || defined(__s390x__)
581     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 root 1.412 #elif defined(__mips__)
583     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 root 1.383 #endif
585     #endif
586     #endif
587    
588     #ifndef ECB_MEMORY_FENCE
589 root 1.398 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
590 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
591 root 1.392 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
592     /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
593 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
594     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
595     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
596     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
597     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
598 root 1.388 #elif defined(_WIN32)
599     #include <WinNT.h>
600 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
601 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
602     #include <mbarrier.h>
603     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
604     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
605     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
606 root 1.413 #elif __xlC__
607 root 1.414 #define ECB_MEMORY_FENCE __sync ()
608 root 1.383 #endif
609     #endif
610    
611     #ifndef ECB_MEMORY_FENCE
612 root 1.392 #if !ECB_AVOID_PTHREADS
613     /*
614     * if you get undefined symbol references to pthread_mutex_lock,
615     * or failure to find pthread.h, then you should implement
616     * the ECB_MEMORY_FENCE operations for your cpu/compiler
617     * OR provide pthread.h and link against the posix thread library
618     * of your system.
619     */
620     #include <pthread.h>
621     #define ECB_NEEDS_PTHREADS 1
622     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
623    
624     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
625     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
626     #endif
627     #endif
628 root 1.383
629 root 1.392 #if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
630 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
631 root 1.392 #endif
632    
633     #if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
634 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
635     #endif
636    
637 root 1.391 /*****************************************************************************/
638    
639     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
640    
641     #if __cplusplus
642     #define ecb_inline static inline
643     #elif ECB_GCC_VERSION(2,5)
644     #define ecb_inline static __inline__
645     #elif ECB_C99
646     #define ecb_inline static inline
647     #else
648     #define ecb_inline static
649     #endif
650    
651     #if ECB_GCC_VERSION(3,3)
652     #define ecb_restrict __restrict__
653     #elif ECB_C99
654     #define ecb_restrict restrict
655     #else
656     #define ecb_restrict
657     #endif
658    
659     typedef int ecb_bool;
660    
661     #define ECB_CONCAT_(a, b) a ## b
662     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
663     #define ECB_STRINGIFY_(a) # a
664     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
665    
666     #define ecb_function_ ecb_inline
667    
668 root 1.379 #if ECB_GCC_VERSION(3,1)
669     #define ecb_attribute(attrlist) __attribute__(attrlist)
670     #define ecb_is_constant(expr) __builtin_constant_p (expr)
671     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
672     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
673     #else
674     #define ecb_attribute(attrlist)
675     #define ecb_is_constant(expr) 0
676     #define ecb_expect(expr,value) (expr)
677     #define ecb_prefetch(addr,rw,locality)
678     #endif
679    
680 root 1.391 /* no emulation for ecb_decltype */
681     #if ECB_GCC_VERSION(4,5)
682     #define ecb_decltype(x) __decltype(x)
683     #elif ECB_GCC_VERSION(3,0)
684     #define ecb_decltype(x) __typeof(x)
685     #endif
686    
687 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
688     #define ecb_noreturn ecb_attribute ((__noreturn__))
689     #define ecb_unused ecb_attribute ((__unused__))
690     #define ecb_const ecb_attribute ((__const__))
691     #define ecb_pure ecb_attribute ((__pure__))
692    
693     #if ECB_GCC_VERSION(4,3)
694     #define ecb_artificial ecb_attribute ((__artificial__))
695     #define ecb_hot ecb_attribute ((__hot__))
696     #define ecb_cold ecb_attribute ((__cold__))
697     #else
698     #define ecb_artificial
699     #define ecb_hot
700     #define ecb_cold
701     #endif
702    
703     /* put around conditional expressions if you are very sure that the */
704     /* expression is mostly true or mostly false. note that these return */
705     /* booleans, not the expression. */
706     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
707     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
708 root 1.391 /* for compatibility to the rest of the world */
709     #define ecb_likely(expr) ecb_expect_true (expr)
710     #define ecb_unlikely(expr) ecb_expect_false (expr)
711    
712     /* count trailing zero bits and count # of one bits */
713     #if ECB_GCC_VERSION(3,4)
714     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
715     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
716     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
717     #define ecb_ctz32(x) __builtin_ctz (x)
718     #define ecb_ctz64(x) __builtin_ctzll (x)
719     #define ecb_popcount32(x) __builtin_popcount (x)
720     /* no popcountll */
721     #else
722     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
723     ecb_function_ int
724     ecb_ctz32 (uint32_t x)
725     {
726     int r = 0;
727    
728     x &= ~x + 1; /* this isolates the lowest bit */
729    
730     #if ECB_branchless_on_i386
731     r += !!(x & 0xaaaaaaaa) << 0;
732     r += !!(x & 0xcccccccc) << 1;
733     r += !!(x & 0xf0f0f0f0) << 2;
734     r += !!(x & 0xff00ff00) << 3;
735     r += !!(x & 0xffff0000) << 4;
736     #else
737     if (x & 0xaaaaaaaa) r += 1;
738     if (x & 0xcccccccc) r += 2;
739     if (x & 0xf0f0f0f0) r += 4;
740     if (x & 0xff00ff00) r += 8;
741     if (x & 0xffff0000) r += 16;
742     #endif
743    
744     return r;
745     }
746    
747     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
748     ecb_function_ int
749     ecb_ctz64 (uint64_t x)
750     {
751     int shift = x & 0xffffffffU ? 0 : 32;
752     return ecb_ctz32 (x >> shift) + shift;
753     }
754    
755     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
756     ecb_function_ int
757     ecb_popcount32 (uint32_t x)
758     {
759     x -= (x >> 1) & 0x55555555;
760     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
761     x = ((x >> 4) + x) & 0x0f0f0f0f;
762     x *= 0x01010101;
763    
764     return x >> 24;
765     }
766    
767     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
768     ecb_function_ int ecb_ld32 (uint32_t x)
769     {
770     int r = 0;
771    
772     if (x >> 16) { x >>= 16; r += 16; }
773     if (x >> 8) { x >>= 8; r += 8; }
774     if (x >> 4) { x >>= 4; r += 4; }
775     if (x >> 2) { x >>= 2; r += 2; }
776     if (x >> 1) { r += 1; }
777    
778     return r;
779     }
780    
781     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
782     ecb_function_ int ecb_ld64 (uint64_t x)
783     {
784     int r = 0;
785    
786     if (x >> 32) { x >>= 32; r += 32; }
787    
788     return r + ecb_ld32 (x);
789     }
790     #endif
791    
792 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
793     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
794     {
795     return ( (x * 0x0802U & 0x22110U)
796     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
797     }
798    
799     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
800     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
801     {
802     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
803     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
804     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
805     x = ( x >> 8 ) | ( x << 8);
806    
807     return x;
808     }
809    
810     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
811     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
812     {
813     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
814     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
815     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
816     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
817     x = ( x >> 16 ) | ( x << 16);
818    
819     return x;
820     }
821    
822 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
823     /* so for this version we are lazy */
824     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
825     ecb_function_ int
826     ecb_popcount64 (uint64_t x)
827     {
828     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
829     }
830    
831     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
832     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
833     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
834     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
835     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
836     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
837     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
838     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
839    
840     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
841     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
842     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
843     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
844     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
845     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
846     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
847     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
848    
849     #if ECB_GCC_VERSION(4,3)
850     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
851     #define ecb_bswap32(x) __builtin_bswap32 (x)
852     #define ecb_bswap64(x) __builtin_bswap64 (x)
853     #else
854     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
855     ecb_function_ uint16_t
856     ecb_bswap16 (uint16_t x)
857     {
858     return ecb_rotl16 (x, 8);
859     }
860    
861     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
862     ecb_function_ uint32_t
863     ecb_bswap32 (uint32_t x)
864     {
865     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
866     }
867    
868     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
869     ecb_function_ uint64_t
870     ecb_bswap64 (uint64_t x)
871     {
872     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
873     }
874     #endif
875    
876     #if ECB_GCC_VERSION(4,5)
877     #define ecb_unreachable() __builtin_unreachable ()
878     #else
879     /* this seems to work fine, but gcc always emits a warning for it :/ */
880 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
881     ecb_inline void ecb_unreachable (void) { }
882 root 1.391 #endif
883    
884     /* try to tell the compiler that some condition is definitely true */
885     #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
886    
887 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
888     ecb_inline unsigned char
889 root 1.391 ecb_byteorder_helper (void)
890     {
891     const uint32_t u = 0x11223344;
892     return *(unsigned char *)&u;
893     }
894    
895 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
896     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
897     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
898     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
899 root 1.391
900     #if ECB_GCC_VERSION(3,0) || ECB_C99
901     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
902     #else
903     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
904     #endif
905    
906 root 1.398 #if __cplusplus
907     template<typename T>
908     static inline T ecb_div_rd (T val, T div)
909     {
910     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
911     }
912     template<typename T>
913     static inline T ecb_div_ru (T val, T div)
914     {
915     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
916     }
917     #else
918     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
919     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
920     #endif
921    
922 root 1.391 #if ecb_cplusplus_does_not_suck
923     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
924     template<typename T, int N>
925     static inline int ecb_array_length (const T (&arr)[N])
926     {
927     return N;
928     }
929     #else
930     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
931     #endif
932    
933     #endif
934    
935     /* ECB.H END */
936 root 1.379
937 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
938 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
939 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
940     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
941 sf-exg 1.402 * libev, in which cases the memory fences become nops.
942 root 1.396 * alternatively, you can remove this #error and link against libpthread,
943     * which will then provide the memory fences.
944     */
945     # error "memory fences not defined for your architecture, please report"
946     #endif
947    
948     #ifndef ECB_MEMORY_FENCE
949     # define ECB_MEMORY_FENCE do { } while (0)
950     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
951     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
952 root 1.392 #endif
953    
954 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
955     #define expect_true(cond) ecb_expect_true (cond)
956     #define noinline ecb_noinline
957    
958     #define inline_size ecb_inline
959 root 1.169
960 root 1.338 #if EV_FEATURE_CODE
961 root 1.379 # define inline_speed ecb_inline
962 root 1.338 #else
963 root 1.169 # define inline_speed static noinline
964     #endif
965 root 1.40
966 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
967    
968     #if EV_MINPRI == EV_MAXPRI
969     # define ABSPRI(w) (((W)w), 0)
970     #else
971     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
972     #endif
973 root 1.42
974 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
975 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
976 root 1.103
977 root 1.136 typedef ev_watcher *W;
978     typedef ev_watcher_list *WL;
979     typedef ev_watcher_time *WT;
980 root 1.10
981 root 1.229 #define ev_active(w) ((W)(w))->active
982 root 1.228 #define ev_at(w) ((WT)(w))->at
983    
984 root 1.279 #if EV_USE_REALTIME
985 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
986 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
987 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
988     #endif
989    
990     #if EV_USE_MONOTONIC
991 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
992 root 1.198 #endif
993 root 1.54
994 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
995     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
996     #endif
997     #ifndef EV_WIN32_HANDLE_TO_FD
998 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
999 root 1.313 #endif
1000     #ifndef EV_WIN32_CLOSE_FD
1001     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1002     #endif
1003    
1004 root 1.103 #ifdef _WIN32
1005 root 1.98 # include "ev_win32.c"
1006     #endif
1007 root 1.67
1008 root 1.53 /*****************************************************************************/
1009 root 1.1
1010 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1011    
1012     #if EV_USE_FLOOR
1013     # include <math.h>
1014     # define ev_floor(v) floor (v)
1015     #else
1016    
1017     #include <float.h>
1018    
1019     /* a floor() replacement function, should be independent of ev_tstamp type */
1020     static ev_tstamp noinline
1021     ev_floor (ev_tstamp v)
1022     {
1023     /* the choice of shift factor is not terribly important */
1024     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1025     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1026     #else
1027     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1028     #endif
1029    
1030     /* argument too large for an unsigned long? */
1031     if (expect_false (v >= shift))
1032     {
1033     ev_tstamp f;
1034    
1035     if (v == v - 1.)
1036     return v; /* very large number */
1037    
1038     f = shift * ev_floor (v * (1. / shift));
1039     return f + ev_floor (v - f);
1040     }
1041    
1042     /* special treatment for negative args? */
1043     if (expect_false (v < 0.))
1044     {
1045     ev_tstamp f = -ev_floor (-v);
1046    
1047     return f - (f == v ? 0 : 1);
1048     }
1049    
1050     /* fits into an unsigned long */
1051     return (unsigned long)v;
1052     }
1053    
1054     #endif
1055    
1056     /*****************************************************************************/
1057    
1058 root 1.356 #ifdef __linux
1059     # include <sys/utsname.h>
1060     #endif
1061    
1062 root 1.379 static unsigned int noinline ecb_cold
1063 root 1.355 ev_linux_version (void)
1064     {
1065     #ifdef __linux
1066 root 1.359 unsigned int v = 0;
1067 root 1.355 struct utsname buf;
1068     int i;
1069     char *p = buf.release;
1070    
1071     if (uname (&buf))
1072     return 0;
1073    
1074     for (i = 3+1; --i; )
1075     {
1076     unsigned int c = 0;
1077    
1078     for (;;)
1079     {
1080     if (*p >= '0' && *p <= '9')
1081     c = c * 10 + *p++ - '0';
1082     else
1083     {
1084     p += *p == '.';
1085     break;
1086     }
1087     }
1088    
1089     v = (v << 8) | c;
1090     }
1091    
1092     return v;
1093     #else
1094     return 0;
1095     #endif
1096     }
1097    
1098     /*****************************************************************************/
1099    
1100 root 1.331 #if EV_AVOID_STDIO
1101 root 1.379 static void noinline ecb_cold
1102 root 1.331 ev_printerr (const char *msg)
1103     {
1104     write (STDERR_FILENO, msg, strlen (msg));
1105     }
1106     #endif
1107    
1108 root 1.70 static void (*syserr_cb)(const char *msg);
1109 root 1.69
1110 root 1.379 void ecb_cold
1111 root 1.141 ev_set_syserr_cb (void (*cb)(const char *msg))
1112 root 1.69 {
1113     syserr_cb = cb;
1114     }
1115    
1116 root 1.379 static void noinline ecb_cold
1117 root 1.269 ev_syserr (const char *msg)
1118 root 1.69 {
1119 root 1.70 if (!msg)
1120     msg = "(libev) system error";
1121    
1122 root 1.69 if (syserr_cb)
1123 root 1.70 syserr_cb (msg);
1124 root 1.69 else
1125     {
1126 root 1.330 #if EV_AVOID_STDIO
1127 root 1.331 ev_printerr (msg);
1128     ev_printerr (": ");
1129 root 1.365 ev_printerr (strerror (errno));
1130 root 1.331 ev_printerr ("\n");
1131 root 1.330 #else
1132 root 1.70 perror (msg);
1133 root 1.330 #endif
1134 root 1.69 abort ();
1135     }
1136     }
1137    
1138 root 1.224 static void *
1139     ev_realloc_emul (void *ptr, long size)
1140     {
1141 root 1.334 #if __GLIBC__
1142     return realloc (ptr, size);
1143     #else
1144 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
1145 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1146 root 1.224 * the single unix specification, so work around them here.
1147     */
1148 root 1.333
1149 root 1.224 if (size)
1150     return realloc (ptr, size);
1151    
1152     free (ptr);
1153     return 0;
1154 root 1.334 #endif
1155 root 1.224 }
1156    
1157     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1158 root 1.69
1159 root 1.379 void ecb_cold
1160 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
1161 root 1.69 {
1162     alloc = cb;
1163     }
1164    
1165 root 1.150 inline_speed void *
1166 root 1.155 ev_realloc (void *ptr, long size)
1167 root 1.69 {
1168 root 1.224 ptr = alloc (ptr, size);
1169 root 1.69
1170     if (!ptr && size)
1171     {
1172 root 1.330 #if EV_AVOID_STDIO
1173 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1174 root 1.330 #else
1175 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1176 root 1.330 #endif
1177 root 1.69 abort ();
1178     }
1179    
1180     return ptr;
1181     }
1182    
1183     #define ev_malloc(size) ev_realloc (0, (size))
1184     #define ev_free(ptr) ev_realloc ((ptr), 0)
1185    
1186     /*****************************************************************************/
1187    
1188 root 1.298 /* set in reify when reification needed */
1189     #define EV_ANFD_REIFY 1
1190    
1191 root 1.288 /* file descriptor info structure */
1192 root 1.53 typedef struct
1193     {
1194 root 1.68 WL head;
1195 root 1.288 unsigned char events; /* the events watched for */
1196 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1197 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1198 root 1.269 unsigned char unused;
1199     #if EV_USE_EPOLL
1200 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1201 root 1.269 #endif
1202 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1203 root 1.103 SOCKET handle;
1204     #endif
1205 root 1.357 #if EV_USE_IOCP
1206     OVERLAPPED or, ow;
1207     #endif
1208 root 1.53 } ANFD;
1209 root 1.1
1210 root 1.288 /* stores the pending event set for a given watcher */
1211 root 1.53 typedef struct
1212     {
1213     W w;
1214 root 1.288 int events; /* the pending event set for the given watcher */
1215 root 1.53 } ANPENDING;
1216 root 1.51
1217 root 1.155 #if EV_USE_INOTIFY
1218 root 1.241 /* hash table entry per inotify-id */
1219 root 1.152 typedef struct
1220     {
1221     WL head;
1222 root 1.155 } ANFS;
1223 root 1.152 #endif
1224    
1225 root 1.241 /* Heap Entry */
1226     #if EV_HEAP_CACHE_AT
1227 root 1.288 /* a heap element */
1228 root 1.241 typedef struct {
1229 root 1.243 ev_tstamp at;
1230 root 1.241 WT w;
1231     } ANHE;
1232    
1233 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1234     #define ANHE_at(he) (he).at /* access cached at, read-only */
1235     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1236 root 1.241 #else
1237 root 1.288 /* a heap element */
1238 root 1.241 typedef WT ANHE;
1239    
1240 root 1.248 #define ANHE_w(he) (he)
1241     #define ANHE_at(he) (he)->at
1242     #define ANHE_at_cache(he)
1243 root 1.241 #endif
1244    
1245 root 1.55 #if EV_MULTIPLICITY
1246 root 1.54
1247 root 1.80 struct ev_loop
1248     {
1249 root 1.86 ev_tstamp ev_rt_now;
1250 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1251 root 1.80 #define VAR(name,decl) decl;
1252     #include "ev_vars.h"
1253     #undef VAR
1254     };
1255     #include "ev_wrap.h"
1256    
1257 root 1.116 static struct ev_loop default_loop_struct;
1258 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1259 root 1.54
1260 root 1.53 #else
1261 root 1.54
1262 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1263 root 1.80 #define VAR(name,decl) static decl;
1264     #include "ev_vars.h"
1265     #undef VAR
1266    
1267 root 1.116 static int ev_default_loop_ptr;
1268 root 1.54
1269 root 1.51 #endif
1270 root 1.1
1271 root 1.338 #if EV_FEATURE_API
1272 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1273     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1274 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1275     #else
1276 root 1.298 # define EV_RELEASE_CB (void)0
1277     # define EV_ACQUIRE_CB (void)0
1278 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1279     #endif
1280    
1281 root 1.353 #define EVBREAK_RECURSE 0x80
1282 root 1.298
1283 root 1.8 /*****************************************************************************/
1284    
1285 root 1.292 #ifndef EV_HAVE_EV_TIME
1286 root 1.141 ev_tstamp
1287 root 1.1 ev_time (void)
1288     {
1289 root 1.29 #if EV_USE_REALTIME
1290 root 1.279 if (expect_true (have_realtime))
1291     {
1292     struct timespec ts;
1293     clock_gettime (CLOCK_REALTIME, &ts);
1294     return ts.tv_sec + ts.tv_nsec * 1e-9;
1295     }
1296     #endif
1297    
1298 root 1.1 struct timeval tv;
1299     gettimeofday (&tv, 0);
1300     return tv.tv_sec + tv.tv_usec * 1e-6;
1301     }
1302 root 1.292 #endif
1303 root 1.1
1304 root 1.284 inline_size ev_tstamp
1305 root 1.1 get_clock (void)
1306     {
1307 root 1.29 #if EV_USE_MONOTONIC
1308 root 1.40 if (expect_true (have_monotonic))
1309 root 1.1 {
1310     struct timespec ts;
1311     clock_gettime (CLOCK_MONOTONIC, &ts);
1312     return ts.tv_sec + ts.tv_nsec * 1e-9;
1313     }
1314     #endif
1315    
1316     return ev_time ();
1317     }
1318    
1319 root 1.85 #if EV_MULTIPLICITY
1320 root 1.51 ev_tstamp
1321     ev_now (EV_P)
1322     {
1323 root 1.85 return ev_rt_now;
1324 root 1.51 }
1325 root 1.85 #endif
1326 root 1.51
1327 root 1.193 void
1328     ev_sleep (ev_tstamp delay)
1329     {
1330     if (delay > 0.)
1331     {
1332     #if EV_USE_NANOSLEEP
1333     struct timespec ts;
1334    
1335 root 1.348 EV_TS_SET (ts, delay);
1336 root 1.193 nanosleep (&ts, 0);
1337 root 1.416 #elif defined _WIN32
1338 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1339 root 1.193 #else
1340     struct timeval tv;
1341    
1342 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1343 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1344 root 1.257 /* by older ones */
1345 sf-exg 1.349 EV_TV_SET (tv, delay);
1346 root 1.193 select (0, 0, 0, 0, &tv);
1347     #endif
1348     }
1349     }
1350    
1351     /*****************************************************************************/
1352    
1353 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1354 root 1.232
1355 root 1.288 /* find a suitable new size for the given array, */
1356 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1357 root 1.284 inline_size int
1358 root 1.163 array_nextsize (int elem, int cur, int cnt)
1359     {
1360     int ncur = cur + 1;
1361    
1362     do
1363     ncur <<= 1;
1364     while (cnt > ncur);
1365    
1366 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1367 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1368 root 1.163 {
1369     ncur *= elem;
1370 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1371 root 1.163 ncur = ncur - sizeof (void *) * 4;
1372     ncur /= elem;
1373     }
1374    
1375     return ncur;
1376     }
1377    
1378 root 1.379 static void * noinline ecb_cold
1379 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1380     {
1381     *cur = array_nextsize (elem, *cur, cnt);
1382     return ev_realloc (base, elem * *cur);
1383     }
1384 root 1.29
1385 root 1.265 #define array_init_zero(base,count) \
1386     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1387    
1388 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1389 root 1.163 if (expect_false ((cnt) > (cur))) \
1390 root 1.69 { \
1391 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1392 root 1.163 (base) = (type *)array_realloc \
1393     (sizeof (type), (base), &(cur), (cnt)); \
1394     init ((base) + (ocur_), (cur) - ocur_); \
1395 root 1.1 }
1396    
1397 root 1.163 #if 0
1398 root 1.74 #define array_slim(type,stem) \
1399 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1400     { \
1401     stem ## max = array_roundsize (stem ## cnt >> 1); \
1402 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1403 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1404     }
1405 root 1.163 #endif
1406 root 1.67
1407 root 1.65 #define array_free(stem, idx) \
1408 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1409 root 1.65
1410 root 1.8 /*****************************************************************************/
1411    
1412 root 1.288 /* dummy callback for pending events */
1413     static void noinline
1414     pendingcb (EV_P_ ev_prepare *w, int revents)
1415     {
1416     }
1417    
1418 root 1.140 void noinline
1419 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
1420 root 1.1 {
1421 root 1.78 W w_ = (W)w;
1422 root 1.171 int pri = ABSPRI (w_);
1423 root 1.78
1424 root 1.123 if (expect_false (w_->pending))
1425 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1426     else
1427 root 1.32 {
1428 root 1.171 w_->pending = ++pendingcnt [pri];
1429     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1430     pendings [pri][w_->pending - 1].w = w_;
1431     pendings [pri][w_->pending - 1].events = revents;
1432 root 1.32 }
1433 root 1.1 }
1434    
1435 root 1.284 inline_speed void
1436     feed_reverse (EV_P_ W w)
1437     {
1438     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1439     rfeeds [rfeedcnt++] = w;
1440     }
1441    
1442     inline_size void
1443     feed_reverse_done (EV_P_ int revents)
1444     {
1445     do
1446     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1447     while (rfeedcnt);
1448     }
1449    
1450     inline_speed void
1451 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1452 root 1.27 {
1453     int i;
1454    
1455     for (i = 0; i < eventcnt; ++i)
1456 root 1.78 ev_feed_event (EV_A_ events [i], type);
1457 root 1.27 }
1458    
1459 root 1.141 /*****************************************************************************/
1460    
1461 root 1.284 inline_speed void
1462 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1463 root 1.1 {
1464     ANFD *anfd = anfds + fd;
1465 root 1.136 ev_io *w;
1466 root 1.1
1467 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1468 root 1.1 {
1469 root 1.79 int ev = w->events & revents;
1470 root 1.1
1471     if (ev)
1472 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1473 root 1.1 }
1474     }
1475    
1476 root 1.298 /* do not submit kernel events for fds that have reify set */
1477     /* because that means they changed while we were polling for new events */
1478     inline_speed void
1479     fd_event (EV_P_ int fd, int revents)
1480     {
1481     ANFD *anfd = anfds + fd;
1482    
1483     if (expect_true (!anfd->reify))
1484 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1485 root 1.298 }
1486    
1487 root 1.79 void
1488     ev_feed_fd_event (EV_P_ int fd, int revents)
1489     {
1490 root 1.168 if (fd >= 0 && fd < anfdmax)
1491 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1492 root 1.79 }
1493    
1494 root 1.288 /* make sure the external fd watch events are in-sync */
1495     /* with the kernel/libev internal state */
1496 root 1.284 inline_size void
1497 root 1.51 fd_reify (EV_P)
1498 root 1.9 {
1499     int i;
1500    
1501 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1502     for (i = 0; i < fdchangecnt; ++i)
1503     {
1504     int fd = fdchanges [i];
1505     ANFD *anfd = anfds + fd;
1506    
1507 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1508 root 1.371 {
1509     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1510    
1511     if (handle != anfd->handle)
1512     {
1513     unsigned long arg;
1514    
1515     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1516    
1517     /* handle changed, but fd didn't - we need to do it in two steps */
1518     backend_modify (EV_A_ fd, anfd->events, 0);
1519     anfd->events = 0;
1520     anfd->handle = handle;
1521     }
1522     }
1523     }
1524     #endif
1525    
1526 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1527     {
1528     int fd = fdchanges [i];
1529     ANFD *anfd = anfds + fd;
1530 root 1.136 ev_io *w;
1531 root 1.27
1532 root 1.350 unsigned char o_events = anfd->events;
1533     unsigned char o_reify = anfd->reify;
1534 root 1.27
1535 root 1.350 anfd->reify = 0;
1536 root 1.27
1537 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1538     {
1539     anfd->events = 0;
1540 root 1.184
1541 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1542     anfd->events |= (unsigned char)w->events;
1543 root 1.27
1544 root 1.351 if (o_events != anfd->events)
1545 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1546     }
1547    
1548     if (o_reify & EV__IOFDSET)
1549     backend_modify (EV_A_ fd, o_events, anfd->events);
1550 root 1.27 }
1551    
1552     fdchangecnt = 0;
1553     }
1554    
1555 root 1.288 /* something about the given fd changed */
1556 root 1.284 inline_size void
1557 root 1.183 fd_change (EV_P_ int fd, int flags)
1558 root 1.27 {
1559 root 1.183 unsigned char reify = anfds [fd].reify;
1560 root 1.184 anfds [fd].reify |= flags;
1561 root 1.27
1562 root 1.183 if (expect_true (!reify))
1563     {
1564     ++fdchangecnt;
1565     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1566     fdchanges [fdchangecnt - 1] = fd;
1567     }
1568 root 1.9 }
1569    
1570 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1571 root 1.379 inline_speed void ecb_cold
1572 root 1.51 fd_kill (EV_P_ int fd)
1573 root 1.41 {
1574 root 1.136 ev_io *w;
1575 root 1.41
1576 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1577 root 1.41 {
1578 root 1.51 ev_io_stop (EV_A_ w);
1579 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1580 root 1.41 }
1581     }
1582    
1583 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1584 root 1.379 inline_size int ecb_cold
1585 root 1.71 fd_valid (int fd)
1586     {
1587 root 1.103 #ifdef _WIN32
1588 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1589 root 1.71 #else
1590     return fcntl (fd, F_GETFD) != -1;
1591     #endif
1592     }
1593    
1594 root 1.19 /* called on EBADF to verify fds */
1595 root 1.379 static void noinline ecb_cold
1596 root 1.51 fd_ebadf (EV_P)
1597 root 1.19 {
1598     int fd;
1599    
1600     for (fd = 0; fd < anfdmax; ++fd)
1601 root 1.27 if (anfds [fd].events)
1602 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1603 root 1.51 fd_kill (EV_A_ fd);
1604 root 1.41 }
1605    
1606     /* called on ENOMEM in select/poll to kill some fds and retry */
1607 root 1.379 static void noinline ecb_cold
1608 root 1.51 fd_enomem (EV_P)
1609 root 1.41 {
1610 root 1.62 int fd;
1611 root 1.41
1612 root 1.62 for (fd = anfdmax; fd--; )
1613 root 1.41 if (anfds [fd].events)
1614     {
1615 root 1.51 fd_kill (EV_A_ fd);
1616 root 1.307 break;
1617 root 1.41 }
1618 root 1.19 }
1619    
1620 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1621 root 1.140 static void noinline
1622 root 1.56 fd_rearm_all (EV_P)
1623     {
1624     int fd;
1625    
1626     for (fd = 0; fd < anfdmax; ++fd)
1627     if (anfds [fd].events)
1628     {
1629     anfds [fd].events = 0;
1630 root 1.268 anfds [fd].emask = 0;
1631 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1632 root 1.56 }
1633     }
1634    
1635 root 1.336 /* used to prepare libev internal fd's */
1636     /* this is not fork-safe */
1637     inline_speed void
1638     fd_intern (int fd)
1639     {
1640     #ifdef _WIN32
1641     unsigned long arg = 1;
1642     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1643     #else
1644     fcntl (fd, F_SETFD, FD_CLOEXEC);
1645     fcntl (fd, F_SETFL, O_NONBLOCK);
1646     #endif
1647     }
1648    
1649 root 1.8 /*****************************************************************************/
1650    
1651 root 1.235 /*
1652 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1653 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1654     * the branching factor of the d-tree.
1655     */
1656    
1657     /*
1658 root 1.235 * at the moment we allow libev the luxury of two heaps,
1659     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1660     * which is more cache-efficient.
1661     * the difference is about 5% with 50000+ watchers.
1662     */
1663 root 1.241 #if EV_USE_4HEAP
1664 root 1.235
1665 root 1.237 #define DHEAP 4
1666     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1667 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1668 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1669 root 1.235
1670     /* away from the root */
1671 root 1.284 inline_speed void
1672 root 1.241 downheap (ANHE *heap, int N, int k)
1673 root 1.235 {
1674 root 1.241 ANHE he = heap [k];
1675     ANHE *E = heap + N + HEAP0;
1676 root 1.235
1677     for (;;)
1678     {
1679     ev_tstamp minat;
1680 root 1.241 ANHE *minpos;
1681 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1682 root 1.235
1683 root 1.248 /* find minimum child */
1684 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1685 root 1.235 {
1686 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1687     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1688     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1689     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1690 root 1.235 }
1691 root 1.240 else if (pos < E)
1692 root 1.235 {
1693 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1694     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1695     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1696     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1697 root 1.235 }
1698 root 1.240 else
1699     break;
1700 root 1.235
1701 root 1.241 if (ANHE_at (he) <= minat)
1702 root 1.235 break;
1703    
1704 root 1.247 heap [k] = *minpos;
1705 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1706 root 1.235
1707     k = minpos - heap;
1708     }
1709    
1710 root 1.247 heap [k] = he;
1711 root 1.241 ev_active (ANHE_w (he)) = k;
1712 root 1.235 }
1713    
1714 root 1.248 #else /* 4HEAP */
1715 root 1.235
1716     #define HEAP0 1
1717 root 1.247 #define HPARENT(k) ((k) >> 1)
1718 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1719 root 1.235
1720 root 1.248 /* away from the root */
1721 root 1.284 inline_speed void
1722 root 1.248 downheap (ANHE *heap, int N, int k)
1723 root 1.1 {
1724 root 1.241 ANHE he = heap [k];
1725 root 1.1
1726 root 1.228 for (;;)
1727 root 1.1 {
1728 root 1.248 int c = k << 1;
1729 root 1.179
1730 root 1.309 if (c >= N + HEAP0)
1731 root 1.179 break;
1732    
1733 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1734     ? 1 : 0;
1735    
1736     if (ANHE_at (he) <= ANHE_at (heap [c]))
1737     break;
1738    
1739     heap [k] = heap [c];
1740 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1741 root 1.248
1742     k = c;
1743 root 1.1 }
1744    
1745 root 1.243 heap [k] = he;
1746 root 1.248 ev_active (ANHE_w (he)) = k;
1747 root 1.1 }
1748 root 1.248 #endif
1749 root 1.1
1750 root 1.248 /* towards the root */
1751 root 1.284 inline_speed void
1752 root 1.248 upheap (ANHE *heap, int k)
1753 root 1.1 {
1754 root 1.241 ANHE he = heap [k];
1755 root 1.1
1756 root 1.179 for (;;)
1757 root 1.1 {
1758 root 1.248 int p = HPARENT (k);
1759 root 1.179
1760 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1761 root 1.179 break;
1762 root 1.1
1763 root 1.248 heap [k] = heap [p];
1764 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1765 root 1.248 k = p;
1766 root 1.1 }
1767    
1768 root 1.241 heap [k] = he;
1769     ev_active (ANHE_w (he)) = k;
1770 root 1.1 }
1771    
1772 root 1.288 /* move an element suitably so it is in a correct place */
1773 root 1.284 inline_size void
1774 root 1.241 adjustheap (ANHE *heap, int N, int k)
1775 root 1.84 {
1776 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1777 root 1.247 upheap (heap, k);
1778     else
1779     downheap (heap, N, k);
1780 root 1.84 }
1781    
1782 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1783 root 1.284 inline_size void
1784 root 1.248 reheap (ANHE *heap, int N)
1785     {
1786     int i;
1787 root 1.251
1788 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1789     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1790     for (i = 0; i < N; ++i)
1791     upheap (heap, i + HEAP0);
1792     }
1793    
1794 root 1.8 /*****************************************************************************/
1795    
1796 root 1.288 /* associate signal watchers to a signal signal */
1797 root 1.7 typedef struct
1798     {
1799 root 1.307 EV_ATOMIC_T pending;
1800 root 1.306 #if EV_MULTIPLICITY
1801     EV_P;
1802     #endif
1803 root 1.68 WL head;
1804 root 1.7 } ANSIG;
1805    
1806 root 1.306 static ANSIG signals [EV_NSIG - 1];
1807 root 1.7
1808 root 1.207 /*****************************************************************************/
1809    
1810 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1811 root 1.207
1812 root 1.379 static void noinline ecb_cold
1813 root 1.207 evpipe_init (EV_P)
1814     {
1815 root 1.288 if (!ev_is_active (&pipe_w))
1816 root 1.207 {
1817 root 1.336 # if EV_USE_EVENTFD
1818 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1819     if (evfd < 0 && errno == EINVAL)
1820     evfd = eventfd (0, 0);
1821    
1822     if (evfd >= 0)
1823 root 1.220 {
1824     evpipe [0] = -1;
1825 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1826 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1827 root 1.220 }
1828     else
1829 root 1.336 # endif
1830 root 1.220 {
1831     while (pipe (evpipe))
1832 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1833 root 1.207
1834 root 1.220 fd_intern (evpipe [0]);
1835     fd_intern (evpipe [1]);
1836 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1837 root 1.220 }
1838 root 1.207
1839 root 1.288 ev_io_start (EV_A_ &pipe_w);
1840 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1841 root 1.207 }
1842     }
1843    
1844 root 1.380 inline_speed void
1845 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1846 root 1.207 {
1847 root 1.383 if (expect_true (*flag))
1848 root 1.387 return;
1849 root 1.383
1850     *flag = 1;
1851    
1852 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1853 root 1.383
1854     pipe_write_skipped = 1;
1855 root 1.378
1856 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1857 root 1.214
1858 root 1.383 if (pipe_write_wanted)
1859     {
1860     int old_errno;
1861 root 1.378
1862 root 1.392 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1863 root 1.220
1864 root 1.383 old_errno = errno; /* save errno because write will clobber it */
1865 root 1.380
1866 root 1.220 #if EV_USE_EVENTFD
1867 root 1.383 if (evfd >= 0)
1868     {
1869     uint64_t counter = 1;
1870     write (evfd, &counter, sizeof (uint64_t));
1871     }
1872     else
1873 root 1.220 #endif
1874 root 1.383 {
1875     /* win32 people keep sending patches that change this write() to send() */
1876     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1877     /* so when you think this write should be a send instead, please find out */
1878     /* where your send() is from - it's definitely not the microsoft send, and */
1879     /* tell me. thank you. */
1880 root 1.411 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1881     /* check the ev documentation on how to use this flag */
1882 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
1883     }
1884 root 1.214
1885 root 1.383 errno = old_errno;
1886 root 1.207 }
1887     }
1888    
1889 root 1.288 /* called whenever the libev signal pipe */
1890     /* got some events (signal, async) */
1891 root 1.207 static void
1892     pipecb (EV_P_ ev_io *iow, int revents)
1893     {
1894 root 1.307 int i;
1895    
1896 root 1.378 if (revents & EV_READ)
1897     {
1898 root 1.220 #if EV_USE_EVENTFD
1899 root 1.378 if (evfd >= 0)
1900     {
1901     uint64_t counter;
1902     read (evfd, &counter, sizeof (uint64_t));
1903     }
1904     else
1905 root 1.220 #endif
1906 root 1.378 {
1907     char dummy;
1908     /* see discussion in evpipe_write when you think this read should be recv in win32 */
1909     read (evpipe [0], &dummy, 1);
1910     }
1911 root 1.220 }
1912 root 1.207
1913 root 1.378 pipe_write_skipped = 0;
1914    
1915 root 1.369 #if EV_SIGNAL_ENABLE
1916 root 1.307 if (sig_pending)
1917 root 1.372 {
1918 root 1.307 sig_pending = 0;
1919 root 1.207
1920 root 1.307 for (i = EV_NSIG - 1; i--; )
1921     if (expect_false (signals [i].pending))
1922     ev_feed_signal_event (EV_A_ i + 1);
1923 root 1.207 }
1924 root 1.369 #endif
1925 root 1.207
1926 root 1.209 #if EV_ASYNC_ENABLE
1927 root 1.307 if (async_pending)
1928 root 1.207 {
1929 root 1.307 async_pending = 0;
1930 root 1.207
1931     for (i = asynccnt; i--; )
1932     if (asyncs [i]->sent)
1933     {
1934     asyncs [i]->sent = 0;
1935     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1936     }
1937     }
1938 root 1.209 #endif
1939 root 1.207 }
1940    
1941     /*****************************************************************************/
1942    
1943 root 1.366 void
1944     ev_feed_signal (int signum)
1945 root 1.7 {
1946 root 1.207 #if EV_MULTIPLICITY
1947 root 1.306 EV_P = signals [signum - 1].loop;
1948 root 1.366
1949     if (!EV_A)
1950     return;
1951 root 1.207 #endif
1952    
1953 root 1.381 if (!ev_active (&pipe_w))
1954     return;
1955 root 1.378
1956 root 1.366 signals [signum - 1].pending = 1;
1957     evpipe_write (EV_A_ &sig_pending);
1958     }
1959    
1960     static void
1961     ev_sighandler (int signum)
1962     {
1963 root 1.322 #ifdef _WIN32
1964 root 1.218 signal (signum, ev_sighandler);
1965 root 1.67 #endif
1966    
1967 root 1.366 ev_feed_signal (signum);
1968 root 1.7 }
1969    
1970 root 1.140 void noinline
1971 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1972     {
1973 root 1.80 WL w;
1974    
1975 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1976     return;
1977    
1978     --signum;
1979    
1980 root 1.79 #if EV_MULTIPLICITY
1981 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1982     /* or, likely more useful, feeding a signal nobody is waiting for */
1983 root 1.79
1984 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1985 root 1.306 return;
1986 root 1.307 #endif
1987 root 1.306
1988 root 1.307 signals [signum].pending = 0;
1989 root 1.79
1990     for (w = signals [signum].head; w; w = w->next)
1991     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1992     }
1993    
1994 root 1.303 #if EV_USE_SIGNALFD
1995     static void
1996     sigfdcb (EV_P_ ev_io *iow, int revents)
1997     {
1998 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1999 root 1.303
2000     for (;;)
2001     {
2002     ssize_t res = read (sigfd, si, sizeof (si));
2003    
2004     /* not ISO-C, as res might be -1, but works with SuS */
2005     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2006     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2007    
2008     if (res < (ssize_t)sizeof (si))
2009     break;
2010     }
2011     }
2012     #endif
2013    
2014 root 1.336 #endif
2015    
2016 root 1.8 /*****************************************************************************/
2017    
2018 root 1.336 #if EV_CHILD_ENABLE
2019 root 1.182 static WL childs [EV_PID_HASHSIZE];
2020 root 1.71
2021 root 1.136 static ev_signal childev;
2022 root 1.59
2023 root 1.206 #ifndef WIFCONTINUED
2024     # define WIFCONTINUED(status) 0
2025     #endif
2026    
2027 root 1.288 /* handle a single child status event */
2028 root 1.284 inline_speed void
2029 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2030 root 1.47 {
2031 root 1.136 ev_child *w;
2032 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2033 root 1.47
2034 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2035 root 1.206 {
2036     if ((w->pid == pid || !w->pid)
2037     && (!traced || (w->flags & 1)))
2038     {
2039 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2040 root 1.206 w->rpid = pid;
2041     w->rstatus = status;
2042     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2043     }
2044     }
2045 root 1.47 }
2046    
2047 root 1.142 #ifndef WCONTINUED
2048     # define WCONTINUED 0
2049     #endif
2050    
2051 root 1.288 /* called on sigchld etc., calls waitpid */
2052 root 1.47 static void
2053 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2054 root 1.22 {
2055     int pid, status;
2056    
2057 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2058     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2059     if (!WCONTINUED
2060     || errno != EINVAL
2061     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2062     return;
2063    
2064 root 1.216 /* make sure we are called again until all children have been reaped */
2065 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2066     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2067 root 1.47
2068 root 1.216 child_reap (EV_A_ pid, pid, status);
2069 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2070 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2071 root 1.22 }
2072    
2073 root 1.45 #endif
2074    
2075 root 1.22 /*****************************************************************************/
2076    
2077 root 1.357 #if EV_USE_IOCP
2078     # include "ev_iocp.c"
2079     #endif
2080 root 1.118 #if EV_USE_PORT
2081     # include "ev_port.c"
2082     #endif
2083 root 1.44 #if EV_USE_KQUEUE
2084     # include "ev_kqueue.c"
2085     #endif
2086 root 1.29 #if EV_USE_EPOLL
2087 root 1.1 # include "ev_epoll.c"
2088     #endif
2089 root 1.59 #if EV_USE_POLL
2090 root 1.41 # include "ev_poll.c"
2091     #endif
2092 root 1.29 #if EV_USE_SELECT
2093 root 1.1 # include "ev_select.c"
2094     #endif
2095    
2096 root 1.379 int ecb_cold
2097 root 1.24 ev_version_major (void)
2098     {
2099     return EV_VERSION_MAJOR;
2100     }
2101    
2102 root 1.379 int ecb_cold
2103 root 1.24 ev_version_minor (void)
2104     {
2105     return EV_VERSION_MINOR;
2106     }
2107    
2108 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2109 root 1.379 int inline_size ecb_cold
2110 root 1.51 enable_secure (void)
2111 root 1.41 {
2112 root 1.103 #ifdef _WIN32
2113 root 1.49 return 0;
2114     #else
2115 root 1.41 return getuid () != geteuid ()
2116     || getgid () != getegid ();
2117 root 1.49 #endif
2118 root 1.41 }
2119    
2120 root 1.379 unsigned int ecb_cold
2121 root 1.129 ev_supported_backends (void)
2122     {
2123 root 1.130 unsigned int flags = 0;
2124 root 1.129
2125     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2126     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2127     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2128     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2129     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2130    
2131     return flags;
2132     }
2133    
2134 root 1.379 unsigned int ecb_cold
2135 root 1.130 ev_recommended_backends (void)
2136 root 1.1 {
2137 root 1.131 unsigned int flags = ev_supported_backends ();
2138 root 1.129
2139     #ifndef __NetBSD__
2140     /* kqueue is borked on everything but netbsd apparently */
2141     /* it usually doesn't work correctly on anything but sockets and pipes */
2142     flags &= ~EVBACKEND_KQUEUE;
2143     #endif
2144     #ifdef __APPLE__
2145 root 1.278 /* only select works correctly on that "unix-certified" platform */
2146     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2147     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2148 root 1.129 #endif
2149 root 1.342 #ifdef __FreeBSD__
2150     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2151     #endif
2152 root 1.129
2153     return flags;
2154 root 1.51 }
2155    
2156 root 1.379 unsigned int ecb_cold
2157 root 1.134 ev_embeddable_backends (void)
2158     {
2159 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2160    
2161 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2162 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2163     flags &= ~EVBACKEND_EPOLL;
2164 root 1.196
2165     return flags;
2166 root 1.134 }
2167    
2168     unsigned int
2169 root 1.130 ev_backend (EV_P)
2170     {
2171     return backend;
2172     }
2173    
2174 root 1.338 #if EV_FEATURE_API
2175 root 1.162 unsigned int
2176 root 1.340 ev_iteration (EV_P)
2177 root 1.162 {
2178     return loop_count;
2179     }
2180    
2181 root 1.294 unsigned int
2182 root 1.340 ev_depth (EV_P)
2183 root 1.294 {
2184     return loop_depth;
2185     }
2186    
2187 root 1.193 void
2188     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2189     {
2190     io_blocktime = interval;
2191     }
2192    
2193     void
2194     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2195     {
2196     timeout_blocktime = interval;
2197     }
2198    
2199 root 1.297 void
2200     ev_set_userdata (EV_P_ void *data)
2201     {
2202     userdata = data;
2203     }
2204    
2205     void *
2206     ev_userdata (EV_P)
2207     {
2208     return userdata;
2209     }
2210    
2211 root 1.379 void
2212     ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2213 root 1.297 {
2214     invoke_cb = invoke_pending_cb;
2215     }
2216    
2217 root 1.379 void
2218     ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2219 root 1.297 {
2220 root 1.298 release_cb = release;
2221     acquire_cb = acquire;
2222 root 1.297 }
2223     #endif
2224    
2225 root 1.288 /* initialise a loop structure, must be zero-initialised */
2226 root 1.379 static void noinline ecb_cold
2227 root 1.108 loop_init (EV_P_ unsigned int flags)
2228 root 1.51 {
2229 root 1.130 if (!backend)
2230 root 1.23 {
2231 root 1.366 origflags = flags;
2232    
2233 root 1.279 #if EV_USE_REALTIME
2234     if (!have_realtime)
2235     {
2236     struct timespec ts;
2237    
2238     if (!clock_gettime (CLOCK_REALTIME, &ts))
2239     have_realtime = 1;
2240     }
2241     #endif
2242    
2243 root 1.29 #if EV_USE_MONOTONIC
2244 root 1.279 if (!have_monotonic)
2245     {
2246     struct timespec ts;
2247    
2248     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2249     have_monotonic = 1;
2250     }
2251 root 1.1 #endif
2252    
2253 root 1.306 /* pid check not overridable via env */
2254     #ifndef _WIN32
2255     if (flags & EVFLAG_FORKCHECK)
2256     curpid = getpid ();
2257     #endif
2258    
2259     if (!(flags & EVFLAG_NOENV)
2260     && !enable_secure ()
2261     && getenv ("LIBEV_FLAGS"))
2262     flags = atoi (getenv ("LIBEV_FLAGS"));
2263    
2264 root 1.378 ev_rt_now = ev_time ();
2265     mn_now = get_clock ();
2266     now_floor = mn_now;
2267     rtmn_diff = ev_rt_now - mn_now;
2268 root 1.338 #if EV_FEATURE_API
2269 root 1.378 invoke_cb = ev_invoke_pending;
2270 root 1.297 #endif
2271 root 1.1
2272 root 1.378 io_blocktime = 0.;
2273     timeout_blocktime = 0.;
2274     backend = 0;
2275     backend_fd = -1;
2276     sig_pending = 0;
2277 root 1.307 #if EV_ASYNC_ENABLE
2278 root 1.378 async_pending = 0;
2279 root 1.307 #endif
2280 root 1.378 pipe_write_skipped = 0;
2281     pipe_write_wanted = 0;
2282 root 1.209 #if EV_USE_INOTIFY
2283 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2284 root 1.209 #endif
2285 root 1.303 #if EV_USE_SIGNALFD
2286 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2287 root 1.303 #endif
2288 root 1.193
2289 root 1.366 if (!(flags & EVBACKEND_MASK))
2290 root 1.129 flags |= ev_recommended_backends ();
2291 root 1.41
2292 root 1.357 #if EV_USE_IOCP
2293     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2294     #endif
2295 root 1.118 #if EV_USE_PORT
2296 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2297 root 1.118 #endif
2298 root 1.44 #if EV_USE_KQUEUE
2299 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2300 root 1.44 #endif
2301 root 1.29 #if EV_USE_EPOLL
2302 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2303 root 1.41 #endif
2304 root 1.59 #if EV_USE_POLL
2305 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2306 root 1.1 #endif
2307 root 1.29 #if EV_USE_SELECT
2308 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2309 root 1.1 #endif
2310 root 1.70
2311 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2312    
2313 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2314 root 1.288 ev_init (&pipe_w, pipecb);
2315     ev_set_priority (&pipe_w, EV_MAXPRI);
2316 root 1.336 #endif
2317 root 1.56 }
2318     }
2319    
2320 root 1.288 /* free up a loop structure */
2321 root 1.379 void ecb_cold
2322 root 1.359 ev_loop_destroy (EV_P)
2323 root 1.56 {
2324 root 1.65 int i;
2325    
2326 root 1.364 #if EV_MULTIPLICITY
2327 root 1.363 /* mimic free (0) */
2328     if (!EV_A)
2329     return;
2330 root 1.364 #endif
2331 root 1.363
2332 root 1.361 #if EV_CLEANUP_ENABLE
2333     /* queue cleanup watchers (and execute them) */
2334     if (expect_false (cleanupcnt))
2335     {
2336     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2337     EV_INVOKE_PENDING;
2338     }
2339     #endif
2340    
2341 root 1.359 #if EV_CHILD_ENABLE
2342     if (ev_is_active (&childev))
2343     {
2344     ev_ref (EV_A); /* child watcher */
2345     ev_signal_stop (EV_A_ &childev);
2346     }
2347     #endif
2348    
2349 root 1.288 if (ev_is_active (&pipe_w))
2350 root 1.207 {
2351 root 1.303 /*ev_ref (EV_A);*/
2352     /*ev_io_stop (EV_A_ &pipe_w);*/
2353 root 1.207
2354 root 1.220 #if EV_USE_EVENTFD
2355     if (evfd >= 0)
2356     close (evfd);
2357     #endif
2358    
2359     if (evpipe [0] >= 0)
2360     {
2361 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2362     EV_WIN32_CLOSE_FD (evpipe [1]);
2363 root 1.220 }
2364 root 1.207 }
2365    
2366 root 1.303 #if EV_USE_SIGNALFD
2367     if (ev_is_active (&sigfd_w))
2368 root 1.317 close (sigfd);
2369 root 1.303 #endif
2370    
2371 root 1.152 #if EV_USE_INOTIFY
2372     if (fs_fd >= 0)
2373     close (fs_fd);
2374     #endif
2375    
2376     if (backend_fd >= 0)
2377     close (backend_fd);
2378    
2379 root 1.357 #if EV_USE_IOCP
2380     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2381     #endif
2382 root 1.118 #if EV_USE_PORT
2383 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2384 root 1.118 #endif
2385 root 1.56 #if EV_USE_KQUEUE
2386 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2387 root 1.56 #endif
2388     #if EV_USE_EPOLL
2389 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2390 root 1.56 #endif
2391 root 1.59 #if EV_USE_POLL
2392 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2393 root 1.56 #endif
2394     #if EV_USE_SELECT
2395 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2396 root 1.56 #endif
2397 root 1.1
2398 root 1.65 for (i = NUMPRI; i--; )
2399 root 1.164 {
2400     array_free (pending, [i]);
2401     #if EV_IDLE_ENABLE
2402     array_free (idle, [i]);
2403     #endif
2404     }
2405 root 1.65
2406 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2407 root 1.186
2408 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2409 root 1.284 array_free (rfeed, EMPTY);
2410 root 1.164 array_free (fdchange, EMPTY);
2411     array_free (timer, EMPTY);
2412 root 1.140 #if EV_PERIODIC_ENABLE
2413 root 1.164 array_free (periodic, EMPTY);
2414 root 1.93 #endif
2415 root 1.187 #if EV_FORK_ENABLE
2416     array_free (fork, EMPTY);
2417     #endif
2418 root 1.360 #if EV_CLEANUP_ENABLE
2419     array_free (cleanup, EMPTY);
2420     #endif
2421 root 1.164 array_free (prepare, EMPTY);
2422     array_free (check, EMPTY);
2423 root 1.209 #if EV_ASYNC_ENABLE
2424     array_free (async, EMPTY);
2425     #endif
2426 root 1.65
2427 root 1.130 backend = 0;
2428 root 1.359
2429     #if EV_MULTIPLICITY
2430     if (ev_is_default_loop (EV_A))
2431     #endif
2432     ev_default_loop_ptr = 0;
2433     #if EV_MULTIPLICITY
2434     else
2435     ev_free (EV_A);
2436     #endif
2437 root 1.56 }
2438 root 1.22
2439 root 1.226 #if EV_USE_INOTIFY
2440 root 1.284 inline_size void infy_fork (EV_P);
2441 root 1.226 #endif
2442 root 1.154
2443 root 1.284 inline_size void
2444 root 1.56 loop_fork (EV_P)
2445     {
2446 root 1.118 #if EV_USE_PORT
2447 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2448 root 1.56 #endif
2449     #if EV_USE_KQUEUE
2450 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2451 root 1.45 #endif
2452 root 1.118 #if EV_USE_EPOLL
2453 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2454 root 1.118 #endif
2455 root 1.154 #if EV_USE_INOTIFY
2456     infy_fork (EV_A);
2457     #endif
2458 root 1.70
2459 root 1.288 if (ev_is_active (&pipe_w))
2460 root 1.70 {
2461 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2462 root 1.70
2463     ev_ref (EV_A);
2464 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2465 root 1.220
2466     #if EV_USE_EVENTFD
2467     if (evfd >= 0)
2468     close (evfd);
2469     #endif
2470    
2471     if (evpipe [0] >= 0)
2472     {
2473 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2474     EV_WIN32_CLOSE_FD (evpipe [1]);
2475 root 1.220 }
2476 root 1.207
2477 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2478 root 1.207 evpipe_init (EV_A);
2479 root 1.208 /* now iterate over everything, in case we missed something */
2480 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
2481 root 1.337 #endif
2482 root 1.70 }
2483    
2484     postfork = 0;
2485 root 1.1 }
2486    
2487 root 1.55 #if EV_MULTIPLICITY
2488 root 1.250
2489 root 1.379 struct ev_loop * ecb_cold
2490 root 1.108 ev_loop_new (unsigned int flags)
2491 root 1.54 {
2492 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2493 root 1.69
2494 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2495 root 1.108 loop_init (EV_A_ flags);
2496 root 1.56
2497 root 1.130 if (ev_backend (EV_A))
2498 root 1.306 return EV_A;
2499 root 1.54
2500 root 1.359 ev_free (EV_A);
2501 root 1.55 return 0;
2502 root 1.54 }
2503    
2504 root 1.297 #endif /* multiplicity */
2505 root 1.248
2506     #if EV_VERIFY
2507 root 1.379 static void noinline ecb_cold
2508 root 1.251 verify_watcher (EV_P_ W w)
2509     {
2510 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2511 root 1.251
2512     if (w->pending)
2513 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2514 root 1.251 }
2515    
2516 root 1.379 static void noinline ecb_cold
2517 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2518     {
2519     int i;
2520    
2521     for (i = HEAP0; i < N + HEAP0; ++i)
2522     {
2523 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2524     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2525     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2526 root 1.251
2527     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2528     }
2529     }
2530    
2531 root 1.379 static void noinline ecb_cold
2532 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2533 root 1.248 {
2534     while (cnt--)
2535 root 1.251 {
2536 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2537 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2538     }
2539 root 1.248 }
2540 root 1.250 #endif
2541 root 1.248
2542 root 1.338 #if EV_FEATURE_API
2543 root 1.379 void ecb_cold
2544 root 1.340 ev_verify (EV_P)
2545 root 1.248 {
2546 root 1.250 #if EV_VERIFY
2547 root 1.248 int i;
2548 root 1.251 WL w;
2549    
2550     assert (activecnt >= -1);
2551    
2552     assert (fdchangemax >= fdchangecnt);
2553     for (i = 0; i < fdchangecnt; ++i)
2554 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2555 root 1.251
2556     assert (anfdmax >= 0);
2557     for (i = 0; i < anfdmax; ++i)
2558     for (w = anfds [i].head; w; w = w->next)
2559     {
2560     verify_watcher (EV_A_ (W)w);
2561 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2562     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2563 root 1.251 }
2564    
2565     assert (timermax >= timercnt);
2566     verify_heap (EV_A_ timers, timercnt);
2567 root 1.248
2568     #if EV_PERIODIC_ENABLE
2569 root 1.251 assert (periodicmax >= periodiccnt);
2570     verify_heap (EV_A_ periodics, periodiccnt);
2571 root 1.248 #endif
2572    
2573 root 1.251 for (i = NUMPRI; i--; )
2574     {
2575     assert (pendingmax [i] >= pendingcnt [i]);
2576 root 1.248 #if EV_IDLE_ENABLE
2577 root 1.252 assert (idleall >= 0);
2578 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2579     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2580 root 1.248 #endif
2581 root 1.251 }
2582    
2583 root 1.248 #if EV_FORK_ENABLE
2584 root 1.251 assert (forkmax >= forkcnt);
2585     array_verify (EV_A_ (W *)forks, forkcnt);
2586 root 1.248 #endif
2587 root 1.251
2588 root 1.360 #if EV_CLEANUP_ENABLE
2589     assert (cleanupmax >= cleanupcnt);
2590     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2591     #endif
2592    
2593 root 1.250 #if EV_ASYNC_ENABLE
2594 root 1.251 assert (asyncmax >= asynccnt);
2595     array_verify (EV_A_ (W *)asyncs, asynccnt);
2596 root 1.250 #endif
2597 root 1.251
2598 root 1.337 #if EV_PREPARE_ENABLE
2599 root 1.251 assert (preparemax >= preparecnt);
2600     array_verify (EV_A_ (W *)prepares, preparecnt);
2601 root 1.337 #endif
2602 root 1.251
2603 root 1.337 #if EV_CHECK_ENABLE
2604 root 1.251 assert (checkmax >= checkcnt);
2605     array_verify (EV_A_ (W *)checks, checkcnt);
2606 root 1.337 #endif
2607 root 1.251
2608     # if 0
2609 root 1.336 #if EV_CHILD_ENABLE
2610 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2611 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2612 root 1.336 #endif
2613 root 1.251 # endif
2614 root 1.248 #endif
2615     }
2616 root 1.297 #endif
2617 root 1.56
2618     #if EV_MULTIPLICITY
2619 root 1.379 struct ev_loop * ecb_cold
2620 root 1.54 #else
2621     int
2622 root 1.358 #endif
2623 root 1.116 ev_default_loop (unsigned int flags)
2624 root 1.54 {
2625 root 1.116 if (!ev_default_loop_ptr)
2626 root 1.56 {
2627     #if EV_MULTIPLICITY
2628 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2629 root 1.56 #else
2630 ayin 1.117 ev_default_loop_ptr = 1;
2631 root 1.54 #endif
2632    
2633 root 1.110 loop_init (EV_A_ flags);
2634 root 1.56
2635 root 1.130 if (ev_backend (EV_A))
2636 root 1.56 {
2637 root 1.336 #if EV_CHILD_ENABLE
2638 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2639     ev_set_priority (&childev, EV_MAXPRI);
2640     ev_signal_start (EV_A_ &childev);
2641     ev_unref (EV_A); /* child watcher should not keep loop alive */
2642     #endif
2643     }
2644     else
2645 root 1.116 ev_default_loop_ptr = 0;
2646 root 1.56 }
2647 root 1.8
2648 root 1.116 return ev_default_loop_ptr;
2649 root 1.1 }
2650    
2651 root 1.24 void
2652 root 1.359 ev_loop_fork (EV_P)
2653 root 1.1 {
2654 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2655 root 1.1 }
2656    
2657 root 1.8 /*****************************************************************************/
2658    
2659 root 1.168 void
2660     ev_invoke (EV_P_ void *w, int revents)
2661     {
2662     EV_CB_INVOKE ((W)w, revents);
2663     }
2664    
2665 root 1.300 unsigned int
2666     ev_pending_count (EV_P)
2667     {
2668     int pri;
2669     unsigned int count = 0;
2670    
2671     for (pri = NUMPRI; pri--; )
2672     count += pendingcnt [pri];
2673    
2674     return count;
2675     }
2676    
2677 root 1.297 void noinline
2678 root 1.296 ev_invoke_pending (EV_P)
2679 root 1.1 {
2680 root 1.42 int pri;
2681    
2682     for (pri = NUMPRI; pri--; )
2683     while (pendingcnt [pri])
2684     {
2685     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2686 root 1.1
2687 root 1.288 p->w->pending = 0;
2688     EV_CB_INVOKE (p->w, p->events);
2689     EV_FREQUENT_CHECK;
2690 root 1.42 }
2691 root 1.1 }
2692    
2693 root 1.234 #if EV_IDLE_ENABLE
2694 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2695     /* only when higher priorities are idle" logic */
2696 root 1.284 inline_size void
2697 root 1.234 idle_reify (EV_P)
2698     {
2699     if (expect_false (idleall))
2700     {
2701     int pri;
2702    
2703     for (pri = NUMPRI; pri--; )
2704     {
2705     if (pendingcnt [pri])
2706     break;
2707    
2708     if (idlecnt [pri])
2709     {
2710     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2711     break;
2712     }
2713     }
2714     }
2715     }
2716     #endif
2717    
2718 root 1.288 /* make timers pending */
2719 root 1.284 inline_size void
2720 root 1.51 timers_reify (EV_P)
2721 root 1.1 {
2722 root 1.248 EV_FREQUENT_CHECK;
2723    
2724 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2725 root 1.1 {
2726 root 1.284 do
2727     {
2728     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2729 root 1.1
2730 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2731    
2732     /* first reschedule or stop timer */
2733     if (w->repeat)
2734     {
2735     ev_at (w) += w->repeat;
2736     if (ev_at (w) < mn_now)
2737     ev_at (w) = mn_now;
2738 root 1.61
2739 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2740 root 1.90
2741 root 1.284 ANHE_at_cache (timers [HEAP0]);
2742     downheap (timers, timercnt, HEAP0);
2743     }
2744     else
2745     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2746 root 1.243
2747 root 1.284 EV_FREQUENT_CHECK;
2748     feed_reverse (EV_A_ (W)w);
2749 root 1.12 }
2750 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2751 root 1.30
2752 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2753 root 1.12 }
2754     }
2755 root 1.4
2756 root 1.140 #if EV_PERIODIC_ENABLE
2757 root 1.370
2758 root 1.373 static void noinline
2759 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2760     {
2761 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2762     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2763    
2764     /* the above almost always errs on the low side */
2765     while (at <= ev_rt_now)
2766     {
2767     ev_tstamp nat = at + w->interval;
2768    
2769     /* when resolution fails us, we use ev_rt_now */
2770     if (expect_false (nat == at))
2771     {
2772     at = ev_rt_now;
2773     break;
2774     }
2775    
2776     at = nat;
2777     }
2778    
2779     ev_at (w) = at;
2780 root 1.370 }
2781    
2782 root 1.288 /* make periodics pending */
2783 root 1.284 inline_size void
2784 root 1.51 periodics_reify (EV_P)
2785 root 1.12 {
2786 root 1.248 EV_FREQUENT_CHECK;
2787 root 1.250
2788 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2789 root 1.12 {
2790 root 1.284 int feed_count = 0;
2791    
2792     do
2793     {
2794     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2795 root 1.1
2796 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2797 root 1.61
2798 root 1.284 /* first reschedule or stop timer */
2799     if (w->reschedule_cb)
2800     {
2801     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2802 root 1.243
2803 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2804 root 1.243
2805 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2806     downheap (periodics, periodiccnt, HEAP0);
2807     }
2808     else if (w->interval)
2809 root 1.246 {
2810 root 1.370 periodic_recalc (EV_A_ w);
2811 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2812     downheap (periodics, periodiccnt, HEAP0);
2813 root 1.246 }
2814 root 1.284 else
2815     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2816 root 1.243
2817 root 1.284 EV_FREQUENT_CHECK;
2818     feed_reverse (EV_A_ (W)w);
2819 root 1.1 }
2820 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2821 root 1.12
2822 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2823 root 1.12 }
2824     }
2825    
2826 root 1.288 /* simply recalculate all periodics */
2827 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2828 root 1.379 static void noinline ecb_cold
2829 root 1.54 periodics_reschedule (EV_P)
2830 root 1.12 {
2831     int i;
2832    
2833 root 1.13 /* adjust periodics after time jump */
2834 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2835 root 1.12 {
2836 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2837 root 1.12
2838 root 1.77 if (w->reschedule_cb)
2839 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2840 root 1.77 else if (w->interval)
2841 root 1.370 periodic_recalc (EV_A_ w);
2842 root 1.242
2843 root 1.248 ANHE_at_cache (periodics [i]);
2844 root 1.77 }
2845 root 1.12
2846 root 1.248 reheap (periodics, periodiccnt);
2847 root 1.1 }
2848 root 1.93 #endif
2849 root 1.1
2850 root 1.288 /* adjust all timers by a given offset */
2851 root 1.379 static void noinline ecb_cold
2852 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
2853     {
2854     int i;
2855    
2856     for (i = 0; i < timercnt; ++i)
2857     {
2858     ANHE *he = timers + i + HEAP0;
2859     ANHE_w (*he)->at += adjust;
2860     ANHE_at_cache (*he);
2861     }
2862     }
2863    
2864 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2865 root 1.324 /* also detect if there was a timejump, and act accordingly */
2866 root 1.284 inline_speed void
2867 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2868 root 1.4 {
2869 root 1.40 #if EV_USE_MONOTONIC
2870     if (expect_true (have_monotonic))
2871     {
2872 root 1.289 int i;
2873 root 1.178 ev_tstamp odiff = rtmn_diff;
2874    
2875     mn_now = get_clock ();
2876    
2877     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2878     /* interpolate in the meantime */
2879     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2880 root 1.40 {
2881 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2882     return;
2883     }
2884    
2885     now_floor = mn_now;
2886     ev_rt_now = ev_time ();
2887 root 1.4
2888 root 1.178 /* loop a few times, before making important decisions.
2889     * on the choice of "4": one iteration isn't enough,
2890     * in case we get preempted during the calls to
2891     * ev_time and get_clock. a second call is almost guaranteed
2892     * to succeed in that case, though. and looping a few more times
2893     * doesn't hurt either as we only do this on time-jumps or
2894     * in the unlikely event of having been preempted here.
2895     */
2896     for (i = 4; --i; )
2897     {
2898 root 1.373 ev_tstamp diff;
2899 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2900 root 1.4
2901 root 1.373 diff = odiff - rtmn_diff;
2902    
2903     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2904 root 1.178 return; /* all is well */
2905 root 1.4
2906 root 1.178 ev_rt_now = ev_time ();
2907     mn_now = get_clock ();
2908     now_floor = mn_now;
2909     }
2910 root 1.4
2911 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2912     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2913 root 1.140 # if EV_PERIODIC_ENABLE
2914 root 1.178 periodics_reschedule (EV_A);
2915 root 1.93 # endif
2916 root 1.4 }
2917     else
2918 root 1.40 #endif
2919 root 1.4 {
2920 root 1.85 ev_rt_now = ev_time ();
2921 root 1.40
2922 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2923 root 1.13 {
2924 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2925     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2926 root 1.140 #if EV_PERIODIC_ENABLE
2927 root 1.54 periodics_reschedule (EV_A);
2928 root 1.93 #endif
2929 root 1.13 }
2930 root 1.4
2931 root 1.85 mn_now = ev_rt_now;
2932 root 1.4 }
2933     }
2934    
2935 root 1.51 void
2936 root 1.353 ev_run (EV_P_ int flags)
2937 root 1.1 {
2938 root 1.338 #if EV_FEATURE_API
2939 root 1.294 ++loop_depth;
2940 root 1.297 #endif
2941 root 1.294
2942 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2943 root 1.298
2944 root 1.353 loop_done = EVBREAK_CANCEL;
2945 root 1.1
2946 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2947 root 1.158
2948 root 1.161 do
2949 root 1.9 {
2950 root 1.250 #if EV_VERIFY >= 2
2951 root 1.340 ev_verify (EV_A);
2952 root 1.250 #endif
2953    
2954 root 1.158 #ifndef _WIN32
2955     if (expect_false (curpid)) /* penalise the forking check even more */
2956     if (expect_false (getpid () != curpid))
2957     {
2958     curpid = getpid ();
2959     postfork = 1;
2960     }
2961     #endif
2962    
2963 root 1.157 #if EV_FORK_ENABLE
2964     /* we might have forked, so queue fork handlers */
2965     if (expect_false (postfork))
2966     if (forkcnt)
2967     {
2968     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2969 root 1.297 EV_INVOKE_PENDING;
2970 root 1.157 }
2971     #endif
2972 root 1.147
2973 root 1.337 #if EV_PREPARE_ENABLE
2974 root 1.170 /* queue prepare watchers (and execute them) */
2975 root 1.40 if (expect_false (preparecnt))
2976 root 1.20 {
2977 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2978 root 1.297 EV_INVOKE_PENDING;
2979 root 1.20 }
2980 root 1.337 #endif
2981 root 1.9
2982 root 1.298 if (expect_false (loop_done))
2983     break;
2984    
2985 root 1.70 /* we might have forked, so reify kernel state if necessary */
2986     if (expect_false (postfork))
2987     loop_fork (EV_A);
2988    
2989 root 1.1 /* update fd-related kernel structures */
2990 root 1.51 fd_reify (EV_A);
2991 root 1.1
2992     /* calculate blocking time */
2993 root 1.135 {
2994 root 1.193 ev_tstamp waittime = 0.;
2995     ev_tstamp sleeptime = 0.;
2996 root 1.12
2997 root 1.353 /* remember old timestamp for io_blocktime calculation */
2998     ev_tstamp prev_mn_now = mn_now;
2999 root 1.293
3000 root 1.353 /* update time to cancel out callback processing overhead */
3001     time_update (EV_A_ 1e100);
3002 root 1.135
3003 root 1.378 /* from now on, we want a pipe-wake-up */
3004     pipe_write_wanted = 1;
3005    
3006 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3007 root 1.383
3008 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3009 root 1.353 {
3010 root 1.287 waittime = MAX_BLOCKTIME;
3011    
3012 root 1.135 if (timercnt)
3013     {
3014 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3015 root 1.193 if (waittime > to) waittime = to;
3016 root 1.135 }
3017 root 1.4
3018 root 1.140 #if EV_PERIODIC_ENABLE
3019 root 1.135 if (periodiccnt)
3020     {
3021 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3022 root 1.193 if (waittime > to) waittime = to;
3023 root 1.135 }
3024 root 1.93 #endif
3025 root 1.4
3026 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3027 root 1.193 if (expect_false (waittime < timeout_blocktime))
3028     waittime = timeout_blocktime;
3029    
3030 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3031     /* to pass a minimum nonzero value to the backend */
3032     if (expect_false (waittime < backend_mintime))
3033     waittime = backend_mintime;
3034    
3035 root 1.293 /* extra check because io_blocktime is commonly 0 */
3036     if (expect_false (io_blocktime))
3037     {
3038     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3039 root 1.193
3040 root 1.376 if (sleeptime > waittime - backend_mintime)
3041     sleeptime = waittime - backend_mintime;
3042 root 1.193
3043 root 1.293 if (expect_true (sleeptime > 0.))
3044     {
3045     ev_sleep (sleeptime);
3046     waittime -= sleeptime;
3047     }
3048 root 1.193 }
3049 root 1.135 }
3050 root 1.1
3051 root 1.338 #if EV_FEATURE_API
3052 root 1.162 ++loop_count;
3053 root 1.297 #endif
3054 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3055 root 1.193 backend_poll (EV_A_ waittime);
3056 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3057 root 1.178
3058 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3059 root 1.378
3060     if (pipe_write_skipped)
3061     {
3062     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3063     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3064     }
3065    
3066    
3067 root 1.178 /* update ev_rt_now, do magic */
3068 root 1.193 time_update (EV_A_ waittime + sleeptime);
3069 root 1.135 }
3070 root 1.1
3071 root 1.9 /* queue pending timers and reschedule them */
3072 root 1.51 timers_reify (EV_A); /* relative timers called last */
3073 root 1.140 #if EV_PERIODIC_ENABLE
3074 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3075 root 1.93 #endif
3076 root 1.1
3077 root 1.164 #if EV_IDLE_ENABLE
3078 root 1.137 /* queue idle watchers unless other events are pending */
3079 root 1.164 idle_reify (EV_A);
3080     #endif
3081 root 1.9
3082 root 1.337 #if EV_CHECK_ENABLE
3083 root 1.20 /* queue check watchers, to be executed first */
3084 root 1.123 if (expect_false (checkcnt))
3085 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3086 root 1.337 #endif
3087 root 1.9
3088 root 1.297 EV_INVOKE_PENDING;
3089 root 1.1 }
3090 root 1.219 while (expect_true (
3091     activecnt
3092     && !loop_done
3093 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3094 root 1.219 ));
3095 root 1.13
3096 root 1.353 if (loop_done == EVBREAK_ONE)
3097     loop_done = EVBREAK_CANCEL;
3098 root 1.294
3099 root 1.338 #if EV_FEATURE_API
3100 root 1.294 --loop_depth;
3101 root 1.297 #endif
3102 root 1.51 }
3103    
3104     void
3105 root 1.353 ev_break (EV_P_ int how)
3106 root 1.51 {
3107     loop_done = how;
3108 root 1.1 }
3109    
3110 root 1.285 void
3111     ev_ref (EV_P)
3112     {
3113     ++activecnt;
3114     }
3115    
3116     void
3117     ev_unref (EV_P)
3118     {
3119     --activecnt;
3120     }
3121    
3122     void
3123     ev_now_update (EV_P)
3124     {
3125     time_update (EV_A_ 1e100);
3126     }
3127    
3128     void
3129     ev_suspend (EV_P)
3130     {
3131     ev_now_update (EV_A);
3132     }
3133    
3134     void
3135     ev_resume (EV_P)
3136     {
3137     ev_tstamp mn_prev = mn_now;
3138    
3139     ev_now_update (EV_A);
3140     timers_reschedule (EV_A_ mn_now - mn_prev);
3141 root 1.286 #if EV_PERIODIC_ENABLE
3142 root 1.288 /* TODO: really do this? */
3143 root 1.285 periodics_reschedule (EV_A);
3144 root 1.286 #endif
3145 root 1.285 }
3146    
3147 root 1.8 /*****************************************************************************/
3148 root 1.288 /* singly-linked list management, used when the expected list length is short */
3149 root 1.8
3150 root 1.284 inline_size void
3151 root 1.10 wlist_add (WL *head, WL elem)
3152 root 1.1 {
3153     elem->next = *head;
3154     *head = elem;
3155     }
3156    
3157 root 1.284 inline_size void
3158 root 1.10 wlist_del (WL *head, WL elem)
3159 root 1.1 {
3160     while (*head)
3161     {
3162 root 1.307 if (expect_true (*head == elem))
3163 root 1.1 {
3164     *head = elem->next;
3165 root 1.307 break;
3166 root 1.1 }
3167    
3168     head = &(*head)->next;
3169     }
3170     }
3171    
3172 root 1.288 /* internal, faster, version of ev_clear_pending */
3173 root 1.284 inline_speed void
3174 root 1.166 clear_pending (EV_P_ W w)
3175 root 1.16 {
3176     if (w->pending)
3177     {
3178 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3179 root 1.16 w->pending = 0;
3180     }
3181     }
3182    
3183 root 1.167 int
3184     ev_clear_pending (EV_P_ void *w)
3185 root 1.166 {
3186     W w_ = (W)w;
3187     int pending = w_->pending;
3188    
3189 root 1.172 if (expect_true (pending))
3190     {
3191     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3192 root 1.288 p->w = (W)&pending_w;
3193 root 1.172 w_->pending = 0;
3194     return p->events;
3195     }
3196     else
3197 root 1.167 return 0;
3198 root 1.166 }
3199    
3200 root 1.284 inline_size void
3201 root 1.164 pri_adjust (EV_P_ W w)
3202     {
3203 root 1.295 int pri = ev_priority (w);
3204 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3205     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3206 root 1.295 ev_set_priority (w, pri);
3207 root 1.164 }
3208    
3209 root 1.284 inline_speed void
3210 root 1.51 ev_start (EV_P_ W w, int active)
3211 root 1.1 {
3212 root 1.164 pri_adjust (EV_A_ w);
3213 root 1.1 w->active = active;
3214 root 1.51 ev_ref (EV_A);
3215 root 1.1 }
3216    
3217 root 1.284 inline_size void
3218 root 1.51 ev_stop (EV_P_ W w)
3219 root 1.1 {
3220 root 1.51 ev_unref (EV_A);
3221 root 1.1 w->active = 0;
3222     }
3223    
3224 root 1.8 /*****************************************************************************/
3225    
3226 root 1.171 void noinline
3227 root 1.136 ev_io_start (EV_P_ ev_io *w)
3228 root 1.1 {
3229 root 1.37 int fd = w->fd;
3230    
3231 root 1.123 if (expect_false (ev_is_active (w)))
3232 root 1.1 return;
3233    
3234 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3235 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3236 root 1.33
3237 root 1.248 EV_FREQUENT_CHECK;
3238    
3239 root 1.51 ev_start (EV_A_ (W)w, 1);
3240 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3241 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3242 root 1.1
3243 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3244 root 1.281 w->events &= ~EV__IOFDSET;
3245 root 1.248
3246     EV_FREQUENT_CHECK;
3247 root 1.1 }
3248    
3249 root 1.171 void noinline
3250 root 1.136 ev_io_stop (EV_P_ ev_io *w)
3251 root 1.1 {
3252 root 1.166 clear_pending (EV_A_ (W)w);
3253 root 1.123 if (expect_false (!ev_is_active (w)))
3254 root 1.1 return;
3255    
3256 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3257 root 1.89
3258 root 1.248 EV_FREQUENT_CHECK;
3259    
3260 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3261 root 1.51 ev_stop (EV_A_ (W)w);
3262 root 1.1
3263 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3264 root 1.248
3265     EV_FREQUENT_CHECK;
3266 root 1.1 }
3267    
3268 root 1.171 void noinline
3269 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
3270 root 1.1 {
3271 root 1.123 if (expect_false (ev_is_active (w)))
3272 root 1.1 return;
3273    
3274 root 1.228 ev_at (w) += mn_now;
3275 root 1.12
3276 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3277 root 1.13
3278 root 1.248 EV_FREQUENT_CHECK;
3279    
3280     ++timercnt;
3281     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3282 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3283     ANHE_w (timers [ev_active (w)]) = (WT)w;
3284 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3285 root 1.235 upheap (timers, ev_active (w));
3286 root 1.62
3287 root 1.248 EV_FREQUENT_CHECK;
3288    
3289 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3290 root 1.12 }
3291    
3292 root 1.171 void noinline
3293 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
3294 root 1.12 {
3295 root 1.166 clear_pending (EV_A_ (W)w);
3296 root 1.123 if (expect_false (!ev_is_active (w)))
3297 root 1.12 return;
3298    
3299 root 1.248 EV_FREQUENT_CHECK;
3300    
3301 root 1.230 {
3302     int active = ev_active (w);
3303 root 1.62
3304 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3305 root 1.151
3306 root 1.248 --timercnt;
3307    
3308     if (expect_true (active < timercnt + HEAP0))
3309 root 1.151 {
3310 root 1.248 timers [active] = timers [timercnt + HEAP0];
3311 root 1.181 adjustheap (timers, timercnt, active);
3312 root 1.151 }
3313 root 1.248 }
3314 root 1.228
3315     ev_at (w) -= mn_now;
3316 root 1.14
3317 root 1.51 ev_stop (EV_A_ (W)w);
3318 root 1.328
3319     EV_FREQUENT_CHECK;
3320 root 1.12 }
3321 root 1.4
3322 root 1.171 void noinline
3323 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
3324 root 1.14 {
3325 root 1.248 EV_FREQUENT_CHECK;
3326    
3327 root 1.407 clear_pending (EV_A_ (W)w);
3328 root 1.406
3329 root 1.14 if (ev_is_active (w))
3330     {
3331     if (w->repeat)
3332 root 1.99 {
3333 root 1.228 ev_at (w) = mn_now + w->repeat;
3334 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3335 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3336 root 1.99 }
3337 root 1.14 else
3338 root 1.51 ev_timer_stop (EV_A_ w);
3339 root 1.14 }
3340     else if (w->repeat)
3341 root 1.112 {
3342 root 1.229 ev_at (w) = w->repeat;
3343 root 1.112 ev_timer_start (EV_A_ w);
3344     }
3345 root 1.248
3346     EV_FREQUENT_CHECK;
3347 root 1.14 }
3348    
3349 root 1.301 ev_tstamp
3350     ev_timer_remaining (EV_P_ ev_timer *w)
3351     {
3352     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3353     }
3354    
3355 root 1.140 #if EV_PERIODIC_ENABLE
3356 root 1.171 void noinline
3357 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
3358 root 1.12 {
3359 root 1.123 if (expect_false (ev_is_active (w)))
3360 root 1.12 return;
3361 root 1.1
3362 root 1.77 if (w->reschedule_cb)
3363 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3364 root 1.77 else if (w->interval)
3365     {
3366 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3367 root 1.370 periodic_recalc (EV_A_ w);
3368 root 1.77 }
3369 root 1.173 else
3370 root 1.228 ev_at (w) = w->offset;
3371 root 1.12
3372 root 1.248 EV_FREQUENT_CHECK;
3373    
3374     ++periodiccnt;
3375     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3376 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3377     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3378 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3379 root 1.235 upheap (periodics, ev_active (w));
3380 root 1.62
3381 root 1.248 EV_FREQUENT_CHECK;
3382    
3383 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3384 root 1.1 }
3385    
3386 root 1.171 void noinline
3387 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
3388 root 1.1 {
3389 root 1.166 clear_pending (EV_A_ (W)w);
3390 root 1.123 if (expect_false (!ev_is_active (w)))
3391 root 1.1 return;
3392    
3393 root 1.248 EV_FREQUENT_CHECK;
3394    
3395 root 1.230 {
3396     int active = ev_active (w);
3397 root 1.62
3398 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3399 root 1.151
3400 root 1.248 --periodiccnt;
3401    
3402     if (expect_true (active < periodiccnt + HEAP0))
3403 root 1.151 {
3404 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3405 root 1.181 adjustheap (periodics, periodiccnt, active);
3406 root 1.151 }
3407 root 1.248 }
3408 root 1.228
3409 root 1.328 ev_stop (EV_A_ (W)w);
3410    
3411 root 1.248 EV_FREQUENT_CHECK;
3412 root 1.1 }
3413    
3414 root 1.171 void noinline
3415 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
3416 root 1.77 {
3417 root 1.84 /* TODO: use adjustheap and recalculation */
3418 root 1.77 ev_periodic_stop (EV_A_ w);
3419     ev_periodic_start (EV_A_ w);
3420     }
3421 root 1.93 #endif
3422 root 1.77
3423 root 1.56 #ifndef SA_RESTART
3424     # define SA_RESTART 0
3425     #endif
3426    
3427 root 1.336 #if EV_SIGNAL_ENABLE
3428    
3429 root 1.171 void noinline
3430 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
3431 root 1.56 {
3432 root 1.123 if (expect_false (ev_is_active (w)))
3433 root 1.56 return;
3434    
3435 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3436    
3437     #if EV_MULTIPLICITY
3438 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3439 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3440    
3441     signals [w->signum - 1].loop = EV_A;
3442     #endif
3443 root 1.56
3444 root 1.303 EV_FREQUENT_CHECK;
3445    
3446     #if EV_USE_SIGNALFD
3447     if (sigfd == -2)
3448     {
3449     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3450     if (sigfd < 0 && errno == EINVAL)
3451     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3452    
3453     if (sigfd >= 0)
3454     {
3455     fd_intern (sigfd); /* doing it twice will not hurt */
3456    
3457     sigemptyset (&sigfd_set);
3458    
3459     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3460     ev_set_priority (&sigfd_w, EV_MAXPRI);
3461     ev_io_start (EV_A_ &sigfd_w);
3462     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3463     }
3464     }
3465    
3466     if (sigfd >= 0)
3467     {
3468     /* TODO: check .head */
3469     sigaddset (&sigfd_set, w->signum);
3470     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3471 root 1.207
3472 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3473     }
3474 root 1.180 #endif
3475    
3476 root 1.56 ev_start (EV_A_ (W)w, 1);
3477 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3478 root 1.56
3479 root 1.63 if (!((WL)w)->next)
3480 root 1.304 # if EV_USE_SIGNALFD
3481 root 1.306 if (sigfd < 0) /*TODO*/
3482 root 1.304 # endif
3483 root 1.306 {
3484 root 1.322 # ifdef _WIN32
3485 root 1.317 evpipe_init (EV_A);
3486    
3487 root 1.306 signal (w->signum, ev_sighandler);
3488     # else
3489     struct sigaction sa;
3490    
3491     evpipe_init (EV_A);
3492    
3493     sa.sa_handler = ev_sighandler;
3494     sigfillset (&sa.sa_mask);
3495     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3496     sigaction (w->signum, &sa, 0);
3497    
3498 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3499     {
3500     sigemptyset (&sa.sa_mask);
3501     sigaddset (&sa.sa_mask, w->signum);
3502     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3503     }
3504 root 1.67 #endif
3505 root 1.306 }
3506 root 1.248
3507     EV_FREQUENT_CHECK;
3508 root 1.56 }
3509    
3510 root 1.171 void noinline
3511 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
3512 root 1.56 {
3513 root 1.166 clear_pending (EV_A_ (W)w);
3514 root 1.123 if (expect_false (!ev_is_active (w)))
3515 root 1.56 return;
3516    
3517 root 1.248 EV_FREQUENT_CHECK;
3518    
3519 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3520 root 1.56 ev_stop (EV_A_ (W)w);
3521    
3522     if (!signals [w->signum - 1].head)
3523 root 1.306 {
3524 root 1.307 #if EV_MULTIPLICITY
3525 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3526 root 1.307 #endif
3527     #if EV_USE_SIGNALFD
3528 root 1.306 if (sigfd >= 0)
3529     {
3530 root 1.321 sigset_t ss;
3531    
3532     sigemptyset (&ss);
3533     sigaddset (&ss, w->signum);
3534 root 1.306 sigdelset (&sigfd_set, w->signum);
3535 root 1.321
3536 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3537 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3538 root 1.306 }
3539     else
3540 root 1.307 #endif
3541 root 1.306 signal (w->signum, SIG_DFL);
3542     }
3543 root 1.248
3544     EV_FREQUENT_CHECK;
3545 root 1.56 }
3546    
3547 root 1.336 #endif
3548    
3549     #if EV_CHILD_ENABLE
3550    
3551 root 1.28 void
3552 root 1.136 ev_child_start (EV_P_ ev_child *w)
3553 root 1.22 {
3554 root 1.56 #if EV_MULTIPLICITY
3555 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3556 root 1.56 #endif
3557 root 1.123 if (expect_false (ev_is_active (w)))
3558 root 1.22 return;
3559    
3560 root 1.248 EV_FREQUENT_CHECK;
3561    
3562 root 1.51 ev_start (EV_A_ (W)w, 1);
3563 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3564 root 1.248
3565     EV_FREQUENT_CHECK;
3566 root 1.22 }
3567    
3568 root 1.28 void
3569 root 1.136 ev_child_stop (EV_P_ ev_child *w)
3570 root 1.22 {
3571 root 1.166 clear_pending (EV_A_ (W)w);
3572 root 1.123 if (expect_false (!ev_is_active (w)))
3573 root 1.22 return;
3574    
3575 root 1.248 EV_FREQUENT_CHECK;
3576    
3577 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3578 root 1.51 ev_stop (EV_A_ (W)w);
3579 root 1.248
3580     EV_FREQUENT_CHECK;
3581 root 1.22 }
3582    
3583 root 1.336 #endif
3584    
3585 root 1.140 #if EV_STAT_ENABLE
3586    
3587     # ifdef _WIN32
3588 root 1.146 # undef lstat
3589     # define lstat(a,b) _stati64 (a,b)
3590 root 1.140 # endif
3591    
3592 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3593     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3594     #define MIN_STAT_INTERVAL 0.1074891
3595 root 1.143
3596 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3597 root 1.152
3598     #if EV_USE_INOTIFY
3599 root 1.326
3600     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3601     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3602 root 1.152
3603     static void noinline
3604     infy_add (EV_P_ ev_stat *w)
3605     {
3606     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3607    
3608 root 1.318 if (w->wd >= 0)
3609 root 1.152 {
3610 root 1.318 struct statfs sfs;
3611    
3612     /* now local changes will be tracked by inotify, but remote changes won't */
3613     /* unless the filesystem is known to be local, we therefore still poll */
3614     /* also do poll on <2.6.25, but with normal frequency */
3615    
3616     if (!fs_2625)
3617     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3618     else if (!statfs (w->path, &sfs)
3619     && (sfs.f_type == 0x1373 /* devfs */
3620     || sfs.f_type == 0xEF53 /* ext2/3 */
3621     || sfs.f_type == 0x3153464a /* jfs */
3622     || sfs.f_type == 0x52654973 /* reiser3 */
3623     || sfs.f_type == 0x01021994 /* tempfs */
3624     || sfs.f_type == 0x58465342 /* xfs */))
3625     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3626     else
3627     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3628     }
3629     else
3630     {
3631     /* can't use inotify, continue to stat */
3632 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3633 root 1.152
3634 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3635 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3636 root 1.233 /* but an efficiency issue only */
3637 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3638 root 1.152 {
3639 root 1.153 char path [4096];
3640 root 1.152 strcpy (path, w->path);
3641    
3642     do
3643     {
3644     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3645     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3646    
3647     char *pend = strrchr (path, '/');
3648    
3649 root 1.275 if (!pend || pend == path)
3650     break;
3651 root 1.152
3652     *pend = 0;
3653 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3654 root 1.372 }
3655 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3656     }
3657     }
3658 root 1.275
3659     if (w->wd >= 0)
3660 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3661 root 1.152
3662 root 1.318 /* now re-arm timer, if required */
3663     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3664     ev_timer_again (EV_A_ &w->timer);
3665     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3666 root 1.152 }
3667    
3668     static void noinline
3669     infy_del (EV_P_ ev_stat *w)
3670     {
3671     int slot;
3672     int wd = w->wd;
3673    
3674     if (wd < 0)
3675     return;
3676    
3677     w->wd = -2;
3678 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3679 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3680    
3681     /* remove this watcher, if others are watching it, they will rearm */
3682     inotify_rm_watch (fs_fd, wd);
3683     }
3684    
3685     static void noinline
3686     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3687     {
3688     if (slot < 0)
3689 root 1.264 /* overflow, need to check for all hash slots */
3690 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3691 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3692     else
3693     {
3694     WL w_;
3695    
3696 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3697 root 1.152 {
3698     ev_stat *w = (ev_stat *)w_;
3699     w_ = w_->next; /* lets us remove this watcher and all before it */
3700    
3701     if (w->wd == wd || wd == -1)
3702     {
3703     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3704     {
3705 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3706 root 1.152 w->wd = -1;
3707     infy_add (EV_A_ w); /* re-add, no matter what */
3708     }
3709    
3710 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3711 root 1.152 }
3712     }
3713     }
3714     }
3715    
3716     static void
3717     infy_cb (EV_P_ ev_io *w, int revents)
3718     {
3719     char buf [EV_INOTIFY_BUFSIZE];
3720     int ofs;
3721     int len = read (fs_fd, buf, sizeof (buf));
3722    
3723 root 1.326 for (ofs = 0; ofs < len; )
3724     {
3725     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3726     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3727     ofs += sizeof (struct inotify_event) + ev->len;
3728     }
3729 root 1.152 }
3730    
3731 root 1.379 inline_size void ecb_cold
3732 root 1.330 ev_check_2625 (EV_P)
3733     {
3734     /* kernels < 2.6.25 are borked
3735     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3736     */
3737     if (ev_linux_version () < 0x020619)
3738 root 1.273 return;
3739 root 1.264
3740 root 1.273 fs_2625 = 1;
3741     }
3742 root 1.264
3743 root 1.315 inline_size int
3744     infy_newfd (void)
3745     {
3746 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
3747 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3748     if (fd >= 0)
3749     return fd;
3750     #endif
3751     return inotify_init ();
3752     }
3753    
3754 root 1.284 inline_size void
3755 root 1.273 infy_init (EV_P)
3756     {
3757     if (fs_fd != -2)
3758     return;
3759 root 1.264
3760 root 1.273 fs_fd = -1;
3761 root 1.264
3762 root 1.330 ev_check_2625 (EV_A);
3763 root 1.264
3764 root 1.315 fs_fd = infy_newfd ();
3765 root 1.152
3766     if (fs_fd >= 0)
3767     {
3768 root 1.315 fd_intern (fs_fd);
3769 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3770     ev_set_priority (&fs_w, EV_MAXPRI);
3771     ev_io_start (EV_A_ &fs_w);
3772 root 1.317 ev_unref (EV_A);
3773 root 1.152 }
3774     }
3775    
3776 root 1.284 inline_size void
3777 root 1.154 infy_fork (EV_P)
3778     {
3779     int slot;
3780    
3781     if (fs_fd < 0)
3782     return;
3783    
3784 root 1.317 ev_ref (EV_A);
3785 root 1.315 ev_io_stop (EV_A_ &fs_w);
3786 root 1.154 close (fs_fd);
3787 root 1.315 fs_fd = infy_newfd ();
3788    
3789     if (fs_fd >= 0)
3790     {
3791     fd_intern (fs_fd);
3792     ev_io_set (&fs_w, fs_fd, EV_READ);
3793     ev_io_start (EV_A_ &fs_w);
3794 root 1.317 ev_unref (EV_A);
3795 root 1.315 }
3796 root 1.154
3797 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3798 root 1.154 {
3799     WL w_ = fs_hash [slot].head;
3800     fs_hash [slot].head = 0;
3801    
3802     while (w_)
3803     {
3804     ev_stat *w = (ev_stat *)w_;
3805     w_ = w_->next; /* lets us add this watcher */
3806    
3807     w->wd = -1;
3808    
3809     if (fs_fd >= 0)
3810     infy_add (EV_A_ w); /* re-add, no matter what */
3811     else
3812 root 1.318 {
3813     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3814     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3815     ev_timer_again (EV_A_ &w->timer);
3816     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3817     }
3818 root 1.154 }
3819     }
3820     }
3821    
3822 root 1.152 #endif
3823    
3824 root 1.255 #ifdef _WIN32
3825     # define EV_LSTAT(p,b) _stati64 (p, b)
3826     #else
3827     # define EV_LSTAT(p,b) lstat (p, b)
3828     #endif
3829    
3830 root 1.140 void
3831     ev_stat_stat (EV_P_ ev_stat *w)
3832     {
3833     if (lstat (w->path, &w->attr) < 0)
3834     w->attr.st_nlink = 0;
3835     else if (!w->attr.st_nlink)
3836     w->attr.st_nlink = 1;
3837     }
3838    
3839 root 1.157 static void noinline
3840 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3841     {
3842     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3843    
3844 root 1.320 ev_statdata prev = w->attr;
3845 root 1.140 ev_stat_stat (EV_A_ w);
3846    
3847 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3848     if (
3849 root 1.320 prev.st_dev != w->attr.st_dev
3850     || prev.st_ino != w->attr.st_ino
3851     || prev.st_mode != w->attr.st_mode
3852     || prev.st_nlink != w->attr.st_nlink
3853     || prev.st_uid != w->attr.st_uid
3854     || prev.st_gid != w->attr.st_gid
3855     || prev.st_rdev != w->attr.st_rdev
3856     || prev.st_size != w->attr.st_size
3857     || prev.st_atime != w->attr.st_atime
3858     || prev.st_mtime != w->attr.st_mtime
3859     || prev.st_ctime != w->attr.st_ctime
3860 root 1.156 ) {
3861 root 1.320 /* we only update w->prev on actual differences */
3862     /* in case we test more often than invoke the callback, */
3863     /* to ensure that prev is always different to attr */
3864     w->prev = prev;
3865    
3866 root 1.152 #if EV_USE_INOTIFY
3867 root 1.264 if (fs_fd >= 0)
3868     {
3869     infy_del (EV_A_ w);
3870     infy_add (EV_A_ w);
3871     ev_stat_stat (EV_A_ w); /* avoid race... */
3872     }
3873 root 1.152 #endif
3874    
3875     ev_feed_event (EV_A_ w, EV_STAT);
3876     }
3877 root 1.140 }
3878    
3879     void
3880     ev_stat_start (EV_P_ ev_stat *w)
3881     {
3882     if (expect_false (ev_is_active (w)))
3883     return;
3884    
3885     ev_stat_stat (EV_A_ w);
3886    
3887 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3888     w->interval = MIN_STAT_INTERVAL;
3889 root 1.143
3890 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3891 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3892 root 1.152
3893     #if EV_USE_INOTIFY
3894     infy_init (EV_A);
3895    
3896     if (fs_fd >= 0)
3897     infy_add (EV_A_ w);
3898     else
3899     #endif
3900 root 1.318 {
3901     ev_timer_again (EV_A_ &w->timer);
3902     ev_unref (EV_A);
3903     }
3904 root 1.140
3905     ev_start (EV_A_ (W)w, 1);
3906 root 1.248
3907     EV_FREQUENT_CHECK;
3908 root 1.140 }
3909    
3910     void
3911     ev_stat_stop (EV_P_ ev_stat *w)
3912     {
3913 root 1.166 clear_pending (EV_A_ (W)w);
3914 root 1.140 if (expect_false (!ev_is_active (w)))
3915     return;
3916    
3917 root 1.248 EV_FREQUENT_CHECK;
3918    
3919 root 1.152 #if EV_USE_INOTIFY
3920     infy_del (EV_A_ w);
3921     #endif
3922 root 1.318
3923     if (ev_is_active (&w->timer))
3924     {
3925     ev_ref (EV_A);
3926     ev_timer_stop (EV_A_ &w->timer);
3927     }
3928 root 1.140
3929 root 1.134 ev_stop (EV_A_ (W)w);
3930 root 1.248
3931     EV_FREQUENT_CHECK;
3932 root 1.134 }
3933     #endif
3934    
3935 root 1.164 #if EV_IDLE_ENABLE
3936 root 1.144 void
3937     ev_idle_start (EV_P_ ev_idle *w)
3938     {
3939     if (expect_false (ev_is_active (w)))
3940     return;
3941    
3942 root 1.164 pri_adjust (EV_A_ (W)w);
3943    
3944 root 1.248 EV_FREQUENT_CHECK;
3945    
3946 root 1.164 {
3947     int active = ++idlecnt [ABSPRI (w)];
3948    
3949     ++idleall;
3950     ev_start (EV_A_ (W)w, active);
3951    
3952     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3953     idles [ABSPRI (w)][active - 1] = w;
3954     }
3955 root 1.248
3956     EV_FREQUENT_CHECK;
3957 root 1.144 }
3958    
3959     void
3960     ev_idle_stop (EV_P_ ev_idle *w)
3961     {
3962 root 1.166 clear_pending (EV_A_ (W)w);
3963 root 1.144 if (expect_false (!ev_is_active (w)))
3964     return;
3965    
3966 root 1.248 EV_FREQUENT_CHECK;
3967    
3968 root 1.144 {
3969 root 1.230 int active = ev_active (w);
3970 root 1.164
3971     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3972 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3973 root 1.164
3974     ev_stop (EV_A_ (W)w);
3975     --idleall;
3976 root 1.144 }
3977 root 1.248
3978     EV_FREQUENT_CHECK;
3979 root 1.144 }
3980 root 1.164 #endif
3981 root 1.144
3982 root 1.337 #if EV_PREPARE_ENABLE
3983 root 1.144 void
3984     ev_prepare_start (EV_P_ ev_prepare *w)
3985     {
3986     if (expect_false (ev_is_active (w)))
3987     return;
3988    
3989 root 1.248 EV_FREQUENT_CHECK;
3990    
3991 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3992     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3993     prepares [preparecnt - 1] = w;
3994 root 1.248
3995     EV_FREQUENT_CHECK;
3996 root 1.144 }
3997    
3998     void
3999     ev_prepare_stop (EV_P_ ev_prepare *w)
4000     {
4001 root 1.166 clear_pending (EV_A_ (W)w);
4002 root 1.144 if (expect_false (!ev_is_active (w)))
4003     return;
4004    
4005 root 1.248 EV_FREQUENT_CHECK;
4006    
4007 root 1.144 {
4008 root 1.230 int active = ev_active (w);
4009    
4010 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4011 root 1.230 ev_active (prepares [active - 1]) = active;
4012 root 1.144 }
4013    
4014     ev_stop (EV_A_ (W)w);
4015 root 1.248
4016     EV_FREQUENT_CHECK;
4017 root 1.144 }
4018 root 1.337 #endif
4019 root 1.144
4020 root 1.337 #if EV_CHECK_ENABLE
4021 root 1.144 void
4022     ev_check_start (EV_P_ ev_check *w)
4023     {
4024     if (expect_false (ev_is_active (w)))
4025     return;
4026    
4027 root 1.248 EV_FREQUENT_CHECK;
4028    
4029 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4030     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4031     checks [checkcnt - 1] = w;
4032 root 1.248
4033     EV_FREQUENT_CHECK;
4034 root 1.144 }
4035    
4036     void
4037     ev_check_stop (EV_P_ ev_check *w)
4038     {
4039 root 1.166 clear_pending (EV_A_ (W)w);
4040 root 1.144 if (expect_false (!ev_is_active (w)))
4041     return;
4042    
4043 root 1.248 EV_FREQUENT_CHECK;
4044    
4045 root 1.144 {
4046 root 1.230 int active = ev_active (w);
4047    
4048 root 1.144 checks [active - 1] = checks [--checkcnt];
4049 root 1.230 ev_active (checks [active - 1]) = active;
4050 root 1.144 }
4051    
4052     ev_stop (EV_A_ (W)w);
4053 root 1.248
4054     EV_FREQUENT_CHECK;
4055 root 1.144 }
4056 root 1.337 #endif
4057 root 1.144
4058     #if EV_EMBED_ENABLE
4059     void noinline
4060     ev_embed_sweep (EV_P_ ev_embed *w)
4061     {
4062 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4063 root 1.144 }
4064    
4065     static void
4066 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4067 root 1.144 {
4068     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4069    
4070     if (ev_cb (w))
4071     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4072     else
4073 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4074 root 1.144 }
4075    
4076 root 1.189 static void
4077     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4078     {
4079     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4080    
4081 root 1.195 {
4082 root 1.306 EV_P = w->other;
4083 root 1.195
4084     while (fdchangecnt)
4085     {
4086     fd_reify (EV_A);
4087 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4088 root 1.195 }
4089     }
4090     }
4091    
4092 root 1.261 static void
4093     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4094     {
4095     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4096    
4097 root 1.277 ev_embed_stop (EV_A_ w);
4098    
4099 root 1.261 {
4100 root 1.306 EV_P = w->other;
4101 root 1.261
4102     ev_loop_fork (EV_A);
4103 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4104 root 1.261 }
4105 root 1.277
4106     ev_embed_start (EV_A_ w);
4107 root 1.261 }
4108    
4109 root 1.195 #if 0
4110     static void
4111     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4112     {
4113     ev_idle_stop (EV_A_ idle);
4114 root 1.189 }
4115 root 1.195 #endif
4116 root 1.189
4117 root 1.144 void
4118     ev_embed_start (EV_P_ ev_embed *w)
4119     {
4120     if (expect_false (ev_is_active (w)))
4121     return;
4122    
4123     {
4124 root 1.306 EV_P = w->other;
4125 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4126 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4127 root 1.144 }
4128    
4129 root 1.248 EV_FREQUENT_CHECK;
4130    
4131 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4132     ev_io_start (EV_A_ &w->io);
4133    
4134 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4135     ev_set_priority (&w->prepare, EV_MINPRI);
4136     ev_prepare_start (EV_A_ &w->prepare);
4137    
4138 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4139     ev_fork_start (EV_A_ &w->fork);
4140    
4141 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4142    
4143 root 1.144 ev_start (EV_A_ (W)w, 1);
4144 root 1.248
4145     EV_FREQUENT_CHECK;
4146 root 1.144 }
4147    
4148     void
4149     ev_embed_stop (EV_P_ ev_embed *w)
4150     {
4151 root 1.166 clear_pending (EV_A_ (W)w);
4152 root 1.144 if (expect_false (!ev_is_active (w)))
4153     return;
4154    
4155 root 1.248 EV_FREQUENT_CHECK;
4156    
4157 root 1.261 ev_io_stop (EV_A_ &w->io);
4158 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4159 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4160 root 1.248
4161 root 1.328 ev_stop (EV_A_ (W)w);
4162    
4163 root 1.248 EV_FREQUENT_CHECK;
4164 root 1.144 }
4165     #endif
4166    
4167 root 1.147 #if EV_FORK_ENABLE
4168     void
4169     ev_fork_start (EV_P_ ev_fork *w)
4170     {
4171     if (expect_false (ev_is_active (w)))
4172     return;
4173    
4174 root 1.248 EV_FREQUENT_CHECK;
4175    
4176 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4177     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4178     forks [forkcnt - 1] = w;
4179 root 1.248
4180     EV_FREQUENT_CHECK;
4181 root 1.147 }
4182    
4183     void
4184     ev_fork_stop (EV_P_ ev_fork *w)
4185     {
4186 root 1.166 clear_pending (EV_A_ (W)w);
4187 root 1.147 if (expect_false (!ev_is_active (w)))
4188     return;
4189    
4190 root 1.248 EV_FREQUENT_CHECK;
4191    
4192 root 1.147 {
4193 root 1.230 int active = ev_active (w);
4194    
4195 root 1.147 forks [active - 1] = forks [--forkcnt];
4196 root 1.230 ev_active (forks [active - 1]) = active;
4197 root 1.147 }
4198    
4199     ev_stop (EV_A_ (W)w);
4200 root 1.248
4201     EV_FREQUENT_CHECK;
4202 root 1.147 }
4203     #endif
4204    
4205 root 1.360 #if EV_CLEANUP_ENABLE
4206     void
4207     ev_cleanup_start (EV_P_ ev_cleanup *w)
4208     {
4209     if (expect_false (ev_is_active (w)))
4210     return;
4211    
4212     EV_FREQUENT_CHECK;
4213    
4214     ev_start (EV_A_ (W)w, ++cleanupcnt);
4215     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4216     cleanups [cleanupcnt - 1] = w;
4217    
4218 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4219     ev_unref (EV_A);
4220 root 1.360 EV_FREQUENT_CHECK;
4221     }
4222    
4223     void
4224     ev_cleanup_stop (EV_P_ ev_cleanup *w)
4225     {
4226     clear_pending (EV_A_ (W)w);
4227     if (expect_false (!ev_is_active (w)))
4228     return;
4229    
4230     EV_FREQUENT_CHECK;
4231 root 1.362 ev_ref (EV_A);
4232 root 1.360
4233     {
4234     int active = ev_active (w);
4235    
4236     cleanups [active - 1] = cleanups [--cleanupcnt];
4237     ev_active (cleanups [active - 1]) = active;
4238     }
4239    
4240     ev_stop (EV_A_ (W)w);
4241    
4242     EV_FREQUENT_CHECK;
4243     }
4244     #endif
4245    
4246 root 1.207 #if EV_ASYNC_ENABLE
4247     void
4248     ev_async_start (EV_P_ ev_async *w)
4249     {
4250     if (expect_false (ev_is_active (w)))
4251     return;
4252    
4253 root 1.352 w->sent = 0;
4254    
4255 root 1.207 evpipe_init (EV_A);
4256    
4257 root 1.248 EV_FREQUENT_CHECK;
4258    
4259 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4260     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4261     asyncs [asynccnt - 1] = w;
4262 root 1.248
4263     EV_FREQUENT_CHECK;
4264 root 1.207 }
4265    
4266     void
4267     ev_async_stop (EV_P_ ev_async *w)
4268     {
4269     clear_pending (EV_A_ (W)w);
4270     if (expect_false (!ev_is_active (w)))
4271     return;
4272    
4273 root 1.248 EV_FREQUENT_CHECK;
4274    
4275 root 1.207 {
4276 root 1.230 int active = ev_active (w);
4277    
4278 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4279 root 1.230 ev_active (asyncs [active - 1]) = active;
4280 root 1.207 }
4281    
4282     ev_stop (EV_A_ (W)w);
4283 root 1.248
4284     EV_FREQUENT_CHECK;
4285 root 1.207 }
4286    
4287     void
4288     ev_async_send (EV_P_ ev_async *w)
4289     {
4290     w->sent = 1;
4291 root 1.307 evpipe_write (EV_A_ &async_pending);
4292 root 1.207 }
4293     #endif
4294    
4295 root 1.1 /*****************************************************************************/
4296 root 1.10
4297 root 1.16 struct ev_once
4298     {
4299 root 1.136 ev_io io;
4300     ev_timer to;
4301 root 1.16 void (*cb)(int revents, void *arg);
4302     void *arg;
4303     };
4304    
4305     static void
4306 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4307 root 1.16 {
4308     void (*cb)(int revents, void *arg) = once->cb;
4309     void *arg = once->arg;
4310    
4311 root 1.259 ev_io_stop (EV_A_ &once->io);
4312 root 1.51 ev_timer_stop (EV_A_ &once->to);
4313 root 1.69 ev_free (once);
4314 root 1.16
4315     cb (revents, arg);
4316     }
4317    
4318     static void
4319 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4320 root 1.16 {
4321 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4322    
4323     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4324 root 1.16 }
4325    
4326     static void
4327 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4328 root 1.16 {
4329 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4330    
4331     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4332 root 1.16 }
4333    
4334     void
4335 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4336 root 1.16 {
4337 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4338 root 1.16
4339 root 1.123 if (expect_false (!once))
4340 root 1.16 {
4341 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4342 root 1.123 return;
4343     }
4344    
4345     once->cb = cb;
4346     once->arg = arg;
4347 root 1.16
4348 root 1.123 ev_init (&once->io, once_cb_io);
4349     if (fd >= 0)
4350     {
4351     ev_io_set (&once->io, fd, events);
4352     ev_io_start (EV_A_ &once->io);
4353     }
4354 root 1.16
4355 root 1.123 ev_init (&once->to, once_cb_to);
4356     if (timeout >= 0.)
4357     {
4358     ev_timer_set (&once->to, timeout, 0.);
4359     ev_timer_start (EV_A_ &once->to);
4360 root 1.16 }
4361     }
4362    
4363 root 1.282 /*****************************************************************************/
4364    
4365 root 1.288 #if EV_WALK_ENABLE
4366 root 1.379 void ecb_cold
4367 root 1.282 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4368     {
4369     int i, j;
4370     ev_watcher_list *wl, *wn;
4371    
4372     if (types & (EV_IO | EV_EMBED))
4373     for (i = 0; i < anfdmax; ++i)
4374     for (wl = anfds [i].head; wl; )
4375     {
4376     wn = wl->next;
4377    
4378     #if EV_EMBED_ENABLE
4379     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4380     {
4381     if (types & EV_EMBED)
4382     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4383     }
4384     else
4385     #endif
4386     #if EV_USE_INOTIFY
4387     if (ev_cb ((ev_io *)wl) == infy_cb)
4388     ;
4389     else
4390     #endif
4391 root 1.288 if ((ev_io *)wl != &pipe_w)
4392 root 1.282 if (types & EV_IO)
4393     cb (EV_A_ EV_IO, wl);
4394    
4395     wl = wn;
4396     }
4397    
4398     if (types & (EV_TIMER | EV_STAT))
4399     for (i = timercnt + HEAP0; i-- > HEAP0; )
4400     #if EV_STAT_ENABLE
4401     /*TODO: timer is not always active*/
4402     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4403     {
4404     if (types & EV_STAT)
4405     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4406     }
4407     else
4408     #endif
4409     if (types & EV_TIMER)
4410     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4411    
4412     #if EV_PERIODIC_ENABLE
4413     if (types & EV_PERIODIC)
4414     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4415     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4416     #endif
4417    
4418     #if EV_IDLE_ENABLE
4419     if (types & EV_IDLE)
4420 root 1.390 for (j = NUMPRI; j--; )
4421 root 1.282 for (i = idlecnt [j]; i--; )
4422     cb (EV_A_ EV_IDLE, idles [j][i]);
4423     #endif
4424    
4425     #if EV_FORK_ENABLE
4426     if (types & EV_FORK)
4427     for (i = forkcnt; i--; )
4428     if (ev_cb (forks [i]) != embed_fork_cb)
4429     cb (EV_A_ EV_FORK, forks [i]);
4430     #endif
4431    
4432     #if EV_ASYNC_ENABLE
4433     if (types & EV_ASYNC)
4434     for (i = asynccnt; i--; )
4435     cb (EV_A_ EV_ASYNC, asyncs [i]);
4436     #endif
4437    
4438 root 1.337 #if EV_PREPARE_ENABLE
4439 root 1.282 if (types & EV_PREPARE)
4440     for (i = preparecnt; i--; )
4441 root 1.337 # if EV_EMBED_ENABLE
4442 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4443 root 1.337 # endif
4444     cb (EV_A_ EV_PREPARE, prepares [i]);
4445 root 1.282 #endif
4446    
4447 root 1.337 #if EV_CHECK_ENABLE
4448 root 1.282 if (types & EV_CHECK)
4449     for (i = checkcnt; i--; )
4450     cb (EV_A_ EV_CHECK, checks [i]);
4451 root 1.337 #endif
4452 root 1.282
4453 root 1.337 #if EV_SIGNAL_ENABLE
4454 root 1.282 if (types & EV_SIGNAL)
4455 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4456 root 1.282 for (wl = signals [i].head; wl; )
4457     {
4458     wn = wl->next;
4459     cb (EV_A_ EV_SIGNAL, wl);
4460     wl = wn;
4461     }
4462 root 1.337 #endif
4463 root 1.282
4464 root 1.337 #if EV_CHILD_ENABLE
4465 root 1.282 if (types & EV_CHILD)
4466 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4467 root 1.282 for (wl = childs [i]; wl; )
4468     {
4469     wn = wl->next;
4470     cb (EV_A_ EV_CHILD, wl);
4471     wl = wn;
4472     }
4473 root 1.337 #endif
4474 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4475     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4476     }
4477     #endif
4478    
4479 root 1.188 #if EV_MULTIPLICITY
4480     #include "ev_wrap.h"
4481     #endif
4482