ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.420
Committed: Wed Apr 18 05:44:42 2012 UTC (12 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.419: +73 -73 lines
Log Message:
preliminary throw() support

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.418 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206     # include <windows.h>
207     # ifndef EV_SELECT_IS_WINSOCKET
208     # define EV_SELECT_IS_WINSOCKET 1
209     # endif
210 root 1.331 # undef EV_AVOID_STDIO
211 root 1.45 #endif
212 root 1.103
213 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
214     * a limit of 1024 into their select. Where people have brains,
215     * OS X engineers apparently have a vacuum. Or maybe they were
216     * ordered to have a vacuum, or they do anything for money.
217     * This might help. Or not.
218     */
219     #define _DARWIN_UNLIMITED_SELECT 1
220    
221 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
222 root 1.40
223 root 1.305 /* try to deduce the maximum number of signals on this platform */
224 root 1.416 #if defined EV_NSIG
225 root 1.305 /* use what's provided */
226 root 1.416 #elif defined NSIG
227 root 1.305 # define EV_NSIG (NSIG)
228 root 1.416 #elif defined _NSIG
229 root 1.305 # define EV_NSIG (_NSIG)
230 root 1.416 #elif defined SIGMAX
231 root 1.305 # define EV_NSIG (SIGMAX+1)
232 root 1.416 #elif defined SIG_MAX
233 root 1.305 # define EV_NSIG (SIG_MAX+1)
234 root 1.416 #elif defined _SIG_MAX
235 root 1.305 # define EV_NSIG (_SIG_MAX+1)
236 root 1.416 #elif defined MAXSIG
237 root 1.305 # define EV_NSIG (MAXSIG+1)
238 root 1.416 #elif defined MAX_SIG
239 root 1.305 # define EV_NSIG (MAX_SIG+1)
240 root 1.416 #elif defined SIGARRAYSIZE
241 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242 root 1.416 #elif defined _sys_nsig
243 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244     #else
245     # error "unable to find value for NSIG, please report"
246 root 1.336 /* to make it compile regardless, just remove the above line, */
247     /* but consider reporting it, too! :) */
248 root 1.306 # define EV_NSIG 65
249 root 1.305 #endif
250    
251 root 1.373 #ifndef EV_USE_FLOOR
252     # define EV_USE_FLOOR 0
253     #endif
254    
255 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
256     # if __linux && __GLIBC__ >= 2
257 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258 root 1.274 # else
259     # define EV_USE_CLOCK_SYSCALL 0
260     # endif
261     #endif
262    
263 root 1.29 #ifndef EV_USE_MONOTONIC
264 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
266 root 1.253 # else
267     # define EV_USE_MONOTONIC 0
268     # endif
269 root 1.37 #endif
270    
271 root 1.118 #ifndef EV_USE_REALTIME
272 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273 root 1.118 #endif
274    
275 root 1.193 #ifndef EV_USE_NANOSLEEP
276 root 1.253 # if _POSIX_C_SOURCE >= 199309L
277 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
278 root 1.253 # else
279     # define EV_USE_NANOSLEEP 0
280     # endif
281 root 1.193 #endif
282    
283 root 1.29 #ifndef EV_USE_SELECT
284 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
285 root 1.10 #endif
286    
287 root 1.59 #ifndef EV_USE_POLL
288 root 1.104 # ifdef _WIN32
289     # define EV_USE_POLL 0
290     # else
291 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
292 root 1.104 # endif
293 root 1.41 #endif
294    
295 root 1.29 #ifndef EV_USE_EPOLL
296 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
298 root 1.220 # else
299     # define EV_USE_EPOLL 0
300     # endif
301 root 1.10 #endif
302    
303 root 1.44 #ifndef EV_USE_KQUEUE
304     # define EV_USE_KQUEUE 0
305     #endif
306    
307 root 1.118 #ifndef EV_USE_PORT
308     # define EV_USE_PORT 0
309 root 1.40 #endif
310    
311 root 1.152 #ifndef EV_USE_INOTIFY
312 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
314 root 1.220 # else
315     # define EV_USE_INOTIFY 0
316     # endif
317 root 1.152 #endif
318    
319 root 1.149 #ifndef EV_PID_HASHSIZE
320 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321 root 1.149 #endif
322    
323 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
324 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325 root 1.152 #endif
326    
327 root 1.220 #ifndef EV_USE_EVENTFD
328     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
330 root 1.220 # else
331     # define EV_USE_EVENTFD 0
332     # endif
333     #endif
334    
335 root 1.303 #ifndef EV_USE_SIGNALFD
336 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
338 root 1.303 # else
339     # define EV_USE_SIGNALFD 0
340     # endif
341     #endif
342    
343 root 1.249 #if 0 /* debugging */
344 root 1.250 # define EV_VERIFY 3
345 root 1.249 # define EV_USE_4HEAP 1
346     # define EV_HEAP_CACHE_AT 1
347     #endif
348    
349 root 1.250 #ifndef EV_VERIFY
350 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351 root 1.250 #endif
352    
353 root 1.243 #ifndef EV_USE_4HEAP
354 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
355 root 1.243 #endif
356    
357     #ifndef EV_HEAP_CACHE_AT
358 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359 root 1.243 #endif
360    
361 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362     /* which makes programs even slower. might work on other unices, too. */
363     #if EV_USE_CLOCK_SYSCALL
364     # include <syscall.h>
365     # ifdef SYS_clock_gettime
366     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367     # undef EV_USE_MONOTONIC
368     # define EV_USE_MONOTONIC 1
369     # else
370     # undef EV_USE_CLOCK_SYSCALL
371     # define EV_USE_CLOCK_SYSCALL 0
372     # endif
373     #endif
374    
375 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
376 root 1.40
377 root 1.325 #ifdef _AIX
378     /* AIX has a completely broken poll.h header */
379     # undef EV_USE_POLL
380     # define EV_USE_POLL 0
381     #endif
382    
383 root 1.40 #ifndef CLOCK_MONOTONIC
384     # undef EV_USE_MONOTONIC
385     # define EV_USE_MONOTONIC 0
386     #endif
387    
388 root 1.31 #ifndef CLOCK_REALTIME
389 root 1.40 # undef EV_USE_REALTIME
390 root 1.31 # define EV_USE_REALTIME 0
391     #endif
392 root 1.40
393 root 1.152 #if !EV_STAT_ENABLE
394 root 1.185 # undef EV_USE_INOTIFY
395 root 1.152 # define EV_USE_INOTIFY 0
396     #endif
397    
398 root 1.193 #if !EV_USE_NANOSLEEP
399 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
400 root 1.416 # if !defined _WIN32 && !defined __hpux
401 root 1.193 # include <sys/select.h>
402     # endif
403     #endif
404    
405 root 1.152 #if EV_USE_INOTIFY
406 root 1.273 # include <sys/statfs.h>
407 root 1.152 # include <sys/inotify.h>
408 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409     # ifndef IN_DONT_FOLLOW
410     # undef EV_USE_INOTIFY
411     # define EV_USE_INOTIFY 0
412     # endif
413 root 1.152 #endif
414    
415 root 1.185 #if EV_SELECT_IS_WINSOCKET
416     # include <winsock.h>
417     #endif
418    
419 root 1.220 #if EV_USE_EVENTFD
420     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421 root 1.221 # include <stdint.h>
422 root 1.303 # ifndef EFD_NONBLOCK
423     # define EFD_NONBLOCK O_NONBLOCK
424     # endif
425     # ifndef EFD_CLOEXEC
426 root 1.311 # ifdef O_CLOEXEC
427     # define EFD_CLOEXEC O_CLOEXEC
428     # else
429     # define EFD_CLOEXEC 02000000
430     # endif
431 root 1.303 # endif
432 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433 root 1.220 #endif
434    
435 root 1.303 #if EV_USE_SIGNALFD
436 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437     # include <stdint.h>
438     # ifndef SFD_NONBLOCK
439     # define SFD_NONBLOCK O_NONBLOCK
440     # endif
441     # ifndef SFD_CLOEXEC
442     # ifdef O_CLOEXEC
443     # define SFD_CLOEXEC O_CLOEXEC
444     # else
445     # define SFD_CLOEXEC 02000000
446     # endif
447     # endif
448 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449 root 1.314
450     struct signalfd_siginfo
451     {
452     uint32_t ssi_signo;
453     char pad[128 - sizeof (uint32_t)];
454     };
455 root 1.303 #endif
456    
457 root 1.40 /**/
458 root 1.1
459 root 1.250 #if EV_VERIFY >= 3
460 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
461 root 1.248 #else
462     # define EV_FREQUENT_CHECK do { } while (0)
463     #endif
464    
465 root 1.176 /*
466 root 1.373 * This is used to work around floating point rounding problems.
467 root 1.177 * This value is good at least till the year 4000.
468 root 1.176 */
469 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
471 root 1.176
472 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
473 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
474 root 1.1
475 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477 root 1.347
478 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479     /* ECB.H BEGIN */
480     /*
481     * libecb - http://software.schmorp.de/pkg/libecb
482     *
483 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
485     * All rights reserved.
486     *
487     * Redistribution and use in source and binary forms, with or without modifica-
488     * tion, are permitted provided that the following conditions are met:
489     *
490     * 1. Redistributions of source code must retain the above copyright notice,
491     * this list of conditions and the following disclaimer.
492     *
493     * 2. Redistributions in binary form must reproduce the above copyright
494     * notice, this list of conditions and the following disclaimer in the
495     * documentation and/or other materials provided with the distribution.
496     *
497     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506     * OF THE POSSIBILITY OF SUCH DAMAGE.
507     */
508    
509     #ifndef ECB_H
510     #define ECB_H
511    
512     #ifdef _WIN32
513     typedef signed char int8_t;
514     typedef unsigned char uint8_t;
515     typedef signed short int16_t;
516     typedef unsigned short uint16_t;
517     typedef signed int int32_t;
518     typedef unsigned int uint32_t;
519     #if __GNUC__
520     typedef signed long long int64_t;
521     typedef unsigned long long uint64_t;
522     #else /* _MSC_VER || __BORLANDC__ */
523     typedef signed __int64 int64_t;
524     typedef unsigned __int64 uint64_t;
525     #endif
526     #else
527     #include <inttypes.h>
528     #endif
529 root 1.379
530     /* many compilers define _GNUC_ to some versions but then only implement
531     * what their idiot authors think are the "more important" extensions,
532 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
533 root 1.379 * or so.
534     * we try to detect these and simply assume they are not gcc - if they have
535     * an issue with that they should have done it right in the first place.
536     */
537     #ifndef ECB_GCC_VERSION
538 root 1.417 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 root 1.379 #define ECB_GCC_VERSION(major,minor) 0
540     #else
541     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
542     #endif
543     #endif
544    
545 root 1.391 /*****************************************************************************/
546    
547     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549    
550 root 1.410 #if ECB_NO_THREADS
551     # define ECB_NO_SMP 1
552     #endif
553    
554 root 1.391 #if ECB_NO_THREADS || ECB_NO_SMP
555 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
556 root 1.40 #endif
557    
558 root 1.383 #ifndef ECB_MEMORY_FENCE
559 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 root 1.404 #if __i386 || __i386__
561 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 root 1.391 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563     #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 root 1.391 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574     || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 root 1.404 #elif __sparc || __sparc__
577 root 1.405 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 root 1.408 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 root 1.405 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 root 1.417 #elif defined __s390__ || defined __s390x__
581 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 root 1.417 #elif defined __mips__
583 root 1.412 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 root 1.419 #elif defined __alpha__
585     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 root 1.383 #endif
587     #endif
588     #endif
589    
590     #ifndef ECB_MEMORY_FENCE
591 root 1.417 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 root 1.392 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594     /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 root 1.417 #elif defined _WIN32
601 root 1.388 #include <WinNT.h>
602 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604     #include <mbarrier.h>
605     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 root 1.413 #elif __xlC__
609 root 1.414 #define ECB_MEMORY_FENCE __sync ()
610 root 1.383 #endif
611     #endif
612    
613     #ifndef ECB_MEMORY_FENCE
614 root 1.392 #if !ECB_AVOID_PTHREADS
615     /*
616     * if you get undefined symbol references to pthread_mutex_lock,
617     * or failure to find pthread.h, then you should implement
618     * the ECB_MEMORY_FENCE operations for your cpu/compiler
619     * OR provide pthread.h and link against the posix thread library
620     * of your system.
621     */
622     #include <pthread.h>
623     #define ECB_NEEDS_PTHREADS 1
624     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625    
626     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628     #endif
629     #endif
630 root 1.383
631 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633 root 1.392 #endif
634    
635 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637     #endif
638    
639 root 1.391 /*****************************************************************************/
640    
641     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
642    
643     #if __cplusplus
644     #define ecb_inline static inline
645     #elif ECB_GCC_VERSION(2,5)
646     #define ecb_inline static __inline__
647     #elif ECB_C99
648     #define ecb_inline static inline
649     #else
650     #define ecb_inline static
651     #endif
652    
653     #if ECB_GCC_VERSION(3,3)
654     #define ecb_restrict __restrict__
655     #elif ECB_C99
656     #define ecb_restrict restrict
657     #else
658     #define ecb_restrict
659     #endif
660    
661     typedef int ecb_bool;
662    
663     #define ECB_CONCAT_(a, b) a ## b
664     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665     #define ECB_STRINGIFY_(a) # a
666     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667    
668     #define ecb_function_ ecb_inline
669    
670 root 1.379 #if ECB_GCC_VERSION(3,1)
671     #define ecb_attribute(attrlist) __attribute__(attrlist)
672     #define ecb_is_constant(expr) __builtin_constant_p (expr)
673     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675     #else
676     #define ecb_attribute(attrlist)
677     #define ecb_is_constant(expr) 0
678     #define ecb_expect(expr,value) (expr)
679     #define ecb_prefetch(addr,rw,locality)
680     #endif
681    
682 root 1.391 /* no emulation for ecb_decltype */
683     #if ECB_GCC_VERSION(4,5)
684     #define ecb_decltype(x) __decltype(x)
685     #elif ECB_GCC_VERSION(3,0)
686     #define ecb_decltype(x) __typeof(x)
687     #endif
688    
689 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
690     #define ecb_noreturn ecb_attribute ((__noreturn__))
691     #define ecb_unused ecb_attribute ((__unused__))
692     #define ecb_const ecb_attribute ((__const__))
693     #define ecb_pure ecb_attribute ((__pure__))
694    
695     #if ECB_GCC_VERSION(4,3)
696     #define ecb_artificial ecb_attribute ((__artificial__))
697     #define ecb_hot ecb_attribute ((__hot__))
698     #define ecb_cold ecb_attribute ((__cold__))
699     #else
700     #define ecb_artificial
701     #define ecb_hot
702     #define ecb_cold
703     #endif
704    
705     /* put around conditional expressions if you are very sure that the */
706     /* expression is mostly true or mostly false. note that these return */
707     /* booleans, not the expression. */
708     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
709     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710 root 1.391 /* for compatibility to the rest of the world */
711     #define ecb_likely(expr) ecb_expect_true (expr)
712     #define ecb_unlikely(expr) ecb_expect_false (expr)
713    
714     /* count trailing zero bits and count # of one bits */
715     #if ECB_GCC_VERSION(3,4)
716     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719     #define ecb_ctz32(x) __builtin_ctz (x)
720     #define ecb_ctz64(x) __builtin_ctzll (x)
721     #define ecb_popcount32(x) __builtin_popcount (x)
722     /* no popcountll */
723     #else
724     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725     ecb_function_ int
726     ecb_ctz32 (uint32_t x)
727     {
728     int r = 0;
729    
730     x &= ~x + 1; /* this isolates the lowest bit */
731    
732     #if ECB_branchless_on_i386
733     r += !!(x & 0xaaaaaaaa) << 0;
734     r += !!(x & 0xcccccccc) << 1;
735     r += !!(x & 0xf0f0f0f0) << 2;
736     r += !!(x & 0xff00ff00) << 3;
737     r += !!(x & 0xffff0000) << 4;
738     #else
739     if (x & 0xaaaaaaaa) r += 1;
740     if (x & 0xcccccccc) r += 2;
741     if (x & 0xf0f0f0f0) r += 4;
742     if (x & 0xff00ff00) r += 8;
743     if (x & 0xffff0000) r += 16;
744     #endif
745    
746     return r;
747     }
748    
749     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750     ecb_function_ int
751     ecb_ctz64 (uint64_t x)
752     {
753     int shift = x & 0xffffffffU ? 0 : 32;
754     return ecb_ctz32 (x >> shift) + shift;
755     }
756    
757     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758     ecb_function_ int
759     ecb_popcount32 (uint32_t x)
760     {
761     x -= (x >> 1) & 0x55555555;
762     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763     x = ((x >> 4) + x) & 0x0f0f0f0f;
764     x *= 0x01010101;
765    
766     return x >> 24;
767     }
768    
769     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770     ecb_function_ int ecb_ld32 (uint32_t x)
771     {
772     int r = 0;
773    
774     if (x >> 16) { x >>= 16; r += 16; }
775     if (x >> 8) { x >>= 8; r += 8; }
776     if (x >> 4) { x >>= 4; r += 4; }
777     if (x >> 2) { x >>= 2; r += 2; }
778     if (x >> 1) { r += 1; }
779    
780     return r;
781     }
782    
783     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784     ecb_function_ int ecb_ld64 (uint64_t x)
785     {
786     int r = 0;
787    
788     if (x >> 32) { x >>= 32; r += 32; }
789    
790     return r + ecb_ld32 (x);
791     }
792     #endif
793    
794 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796     {
797     return ( (x * 0x0802U & 0x22110U)
798     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799     }
800    
801     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803     {
804     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807     x = ( x >> 8 ) | ( x << 8);
808    
809     return x;
810     }
811    
812     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814     {
815     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819     x = ( x >> 16 ) | ( x << 16);
820    
821     return x;
822     }
823    
824 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
825     /* so for this version we are lazy */
826     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827     ecb_function_ int
828     ecb_popcount64 (uint64_t x)
829     {
830     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831     }
832    
833     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841    
842     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850    
851     #if ECB_GCC_VERSION(4,3)
852     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853     #define ecb_bswap32(x) __builtin_bswap32 (x)
854     #define ecb_bswap64(x) __builtin_bswap64 (x)
855     #else
856     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857     ecb_function_ uint16_t
858     ecb_bswap16 (uint16_t x)
859     {
860     return ecb_rotl16 (x, 8);
861     }
862    
863     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864     ecb_function_ uint32_t
865     ecb_bswap32 (uint32_t x)
866     {
867     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868     }
869    
870     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871     ecb_function_ uint64_t
872     ecb_bswap64 (uint64_t x)
873     {
874     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875     }
876     #endif
877    
878     #if ECB_GCC_VERSION(4,5)
879     #define ecb_unreachable() __builtin_unreachable ()
880     #else
881     /* this seems to work fine, but gcc always emits a warning for it :/ */
882 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883     ecb_inline void ecb_unreachable (void) { }
884 root 1.391 #endif
885    
886     /* try to tell the compiler that some condition is definitely true */
887     #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888    
889 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890     ecb_inline unsigned char
891 root 1.391 ecb_byteorder_helper (void)
892     {
893     const uint32_t u = 0x11223344;
894     return *(unsigned char *)&u;
895     }
896    
897 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901 root 1.391
902     #if ECB_GCC_VERSION(3,0) || ECB_C99
903     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904     #else
905     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906     #endif
907    
908 root 1.398 #if __cplusplus
909     template<typename T>
910     static inline T ecb_div_rd (T val, T div)
911     {
912     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913     }
914     template<typename T>
915     static inline T ecb_div_ru (T val, T div)
916     {
917     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918     }
919     #else
920     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922     #endif
923    
924 root 1.391 #if ecb_cplusplus_does_not_suck
925     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926     template<typename T, int N>
927     static inline int ecb_array_length (const T (&arr)[N])
928     {
929     return N;
930     }
931     #else
932     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933     #endif
934    
935     #endif
936    
937     /* ECB.H END */
938 root 1.379
939 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
941 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
942     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 sf-exg 1.402 * libev, in which cases the memory fences become nops.
944 root 1.396 * alternatively, you can remove this #error and link against libpthread,
945     * which will then provide the memory fences.
946     */
947     # error "memory fences not defined for your architecture, please report"
948     #endif
949    
950     #ifndef ECB_MEMORY_FENCE
951     # define ECB_MEMORY_FENCE do { } while (0)
952     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954 root 1.392 #endif
955    
956 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
957     #define expect_true(cond) ecb_expect_true (cond)
958     #define noinline ecb_noinline
959    
960     #define inline_size ecb_inline
961 root 1.169
962 root 1.338 #if EV_FEATURE_CODE
963 root 1.379 # define inline_speed ecb_inline
964 root 1.338 #else
965 root 1.169 # define inline_speed static noinline
966     #endif
967 root 1.40
968 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969    
970     #if EV_MINPRI == EV_MAXPRI
971     # define ABSPRI(w) (((W)w), 0)
972     #else
973     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974     #endif
975 root 1.42
976 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
977 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
978 root 1.103
979 root 1.136 typedef ev_watcher *W;
980     typedef ev_watcher_list *WL;
981     typedef ev_watcher_time *WT;
982 root 1.10
983 root 1.229 #define ev_active(w) ((W)(w))->active
984 root 1.228 #define ev_at(w) ((WT)(w))->at
985    
986 root 1.279 #if EV_USE_REALTIME
987 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
988 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
989 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990     #endif
991    
992     #if EV_USE_MONOTONIC
993 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994 root 1.198 #endif
995 root 1.54
996 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
997     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998     #endif
999     #ifndef EV_WIN32_HANDLE_TO_FD
1000 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001 root 1.313 #endif
1002     #ifndef EV_WIN32_CLOSE_FD
1003     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1004     #endif
1005    
1006 root 1.103 #ifdef _WIN32
1007 root 1.98 # include "ev_win32.c"
1008     #endif
1009 root 1.67
1010 root 1.53 /*****************************************************************************/
1011 root 1.1
1012 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1013    
1014     #if EV_USE_FLOOR
1015     # include <math.h>
1016     # define ev_floor(v) floor (v)
1017     #else
1018    
1019     #include <float.h>
1020    
1021     /* a floor() replacement function, should be independent of ev_tstamp type */
1022     static ev_tstamp noinline
1023     ev_floor (ev_tstamp v)
1024     {
1025     /* the choice of shift factor is not terribly important */
1026     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028     #else
1029     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030     #endif
1031    
1032     /* argument too large for an unsigned long? */
1033     if (expect_false (v >= shift))
1034     {
1035     ev_tstamp f;
1036    
1037     if (v == v - 1.)
1038     return v; /* very large number */
1039    
1040     f = shift * ev_floor (v * (1. / shift));
1041     return f + ev_floor (v - f);
1042     }
1043    
1044     /* special treatment for negative args? */
1045     if (expect_false (v < 0.))
1046     {
1047     ev_tstamp f = -ev_floor (-v);
1048    
1049     return f - (f == v ? 0 : 1);
1050     }
1051    
1052     /* fits into an unsigned long */
1053     return (unsigned long)v;
1054     }
1055    
1056     #endif
1057    
1058     /*****************************************************************************/
1059    
1060 root 1.356 #ifdef __linux
1061     # include <sys/utsname.h>
1062     #endif
1063    
1064 root 1.379 static unsigned int noinline ecb_cold
1065 root 1.355 ev_linux_version (void)
1066     {
1067     #ifdef __linux
1068 root 1.359 unsigned int v = 0;
1069 root 1.355 struct utsname buf;
1070     int i;
1071     char *p = buf.release;
1072    
1073     if (uname (&buf))
1074     return 0;
1075    
1076     for (i = 3+1; --i; )
1077     {
1078     unsigned int c = 0;
1079    
1080     for (;;)
1081     {
1082     if (*p >= '0' && *p <= '9')
1083     c = c * 10 + *p++ - '0';
1084     else
1085     {
1086     p += *p == '.';
1087     break;
1088     }
1089     }
1090    
1091     v = (v << 8) | c;
1092     }
1093    
1094     return v;
1095     #else
1096     return 0;
1097     #endif
1098     }
1099    
1100     /*****************************************************************************/
1101    
1102 root 1.331 #if EV_AVOID_STDIO
1103 root 1.379 static void noinline ecb_cold
1104 root 1.331 ev_printerr (const char *msg)
1105     {
1106     write (STDERR_FILENO, msg, strlen (msg));
1107     }
1108     #endif
1109    
1110 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1111 root 1.69
1112 root 1.379 void ecb_cold
1113 root 1.420 ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
1114 root 1.69 {
1115     syserr_cb = cb;
1116     }
1117    
1118 root 1.379 static void noinline ecb_cold
1119 root 1.269 ev_syserr (const char *msg)
1120 root 1.69 {
1121 root 1.70 if (!msg)
1122     msg = "(libev) system error";
1123    
1124 root 1.69 if (syserr_cb)
1125 root 1.70 syserr_cb (msg);
1126 root 1.69 else
1127     {
1128 root 1.330 #if EV_AVOID_STDIO
1129 root 1.331 ev_printerr (msg);
1130     ev_printerr (": ");
1131 root 1.365 ev_printerr (strerror (errno));
1132 root 1.331 ev_printerr ("\n");
1133 root 1.330 #else
1134 root 1.70 perror (msg);
1135 root 1.330 #endif
1136 root 1.69 abort ();
1137     }
1138     }
1139    
1140 root 1.224 static void *
1141     ev_realloc_emul (void *ptr, long size)
1142     {
1143 root 1.334 #if __GLIBC__
1144     return realloc (ptr, size);
1145     #else
1146 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
1147 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1148 root 1.224 * the single unix specification, so work around them here.
1149     */
1150 root 1.333
1151 root 1.224 if (size)
1152     return realloc (ptr, size);
1153    
1154     free (ptr);
1155     return 0;
1156 root 1.334 #endif
1157 root 1.224 }
1158    
1159 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1160 root 1.69
1161 root 1.379 void ecb_cold
1162 root 1.420 ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
1163 root 1.69 {
1164     alloc = cb;
1165     }
1166    
1167 root 1.150 inline_speed void *
1168 root 1.155 ev_realloc (void *ptr, long size)
1169 root 1.69 {
1170 root 1.224 ptr = alloc (ptr, size);
1171 root 1.69
1172     if (!ptr && size)
1173     {
1174 root 1.330 #if EV_AVOID_STDIO
1175 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176 root 1.330 #else
1177 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178 root 1.330 #endif
1179 root 1.69 abort ();
1180     }
1181    
1182     return ptr;
1183     }
1184    
1185     #define ev_malloc(size) ev_realloc (0, (size))
1186     #define ev_free(ptr) ev_realloc ((ptr), 0)
1187    
1188     /*****************************************************************************/
1189    
1190 root 1.298 /* set in reify when reification needed */
1191     #define EV_ANFD_REIFY 1
1192    
1193 root 1.288 /* file descriptor info structure */
1194 root 1.53 typedef struct
1195     {
1196 root 1.68 WL head;
1197 root 1.288 unsigned char events; /* the events watched for */
1198 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1199 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1200 root 1.269 unsigned char unused;
1201     #if EV_USE_EPOLL
1202 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1203 root 1.269 #endif
1204 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1205 root 1.103 SOCKET handle;
1206     #endif
1207 root 1.357 #if EV_USE_IOCP
1208     OVERLAPPED or, ow;
1209     #endif
1210 root 1.53 } ANFD;
1211 root 1.1
1212 root 1.288 /* stores the pending event set for a given watcher */
1213 root 1.53 typedef struct
1214     {
1215     W w;
1216 root 1.288 int events; /* the pending event set for the given watcher */
1217 root 1.53 } ANPENDING;
1218 root 1.51
1219 root 1.155 #if EV_USE_INOTIFY
1220 root 1.241 /* hash table entry per inotify-id */
1221 root 1.152 typedef struct
1222     {
1223     WL head;
1224 root 1.155 } ANFS;
1225 root 1.152 #endif
1226    
1227 root 1.241 /* Heap Entry */
1228     #if EV_HEAP_CACHE_AT
1229 root 1.288 /* a heap element */
1230 root 1.241 typedef struct {
1231 root 1.243 ev_tstamp at;
1232 root 1.241 WT w;
1233     } ANHE;
1234    
1235 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1236     #define ANHE_at(he) (he).at /* access cached at, read-only */
1237     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1238 root 1.241 #else
1239 root 1.288 /* a heap element */
1240 root 1.241 typedef WT ANHE;
1241    
1242 root 1.248 #define ANHE_w(he) (he)
1243     #define ANHE_at(he) (he)->at
1244     #define ANHE_at_cache(he)
1245 root 1.241 #endif
1246    
1247 root 1.55 #if EV_MULTIPLICITY
1248 root 1.54
1249 root 1.80 struct ev_loop
1250     {
1251 root 1.86 ev_tstamp ev_rt_now;
1252 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1253 root 1.80 #define VAR(name,decl) decl;
1254     #include "ev_vars.h"
1255     #undef VAR
1256     };
1257     #include "ev_wrap.h"
1258    
1259 root 1.116 static struct ev_loop default_loop_struct;
1260 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1261 root 1.54
1262 root 1.53 #else
1263 root 1.54
1264 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1265 root 1.80 #define VAR(name,decl) static decl;
1266     #include "ev_vars.h"
1267     #undef VAR
1268    
1269 root 1.116 static int ev_default_loop_ptr;
1270 root 1.54
1271 root 1.51 #endif
1272 root 1.1
1273 root 1.338 #if EV_FEATURE_API
1274 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1277     #else
1278 root 1.298 # define EV_RELEASE_CB (void)0
1279     # define EV_ACQUIRE_CB (void)0
1280 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281     #endif
1282    
1283 root 1.353 #define EVBREAK_RECURSE 0x80
1284 root 1.298
1285 root 1.8 /*****************************************************************************/
1286    
1287 root 1.292 #ifndef EV_HAVE_EV_TIME
1288 root 1.141 ev_tstamp
1289 root 1.420 ev_time (void) EV_THROW
1290 root 1.1 {
1291 root 1.29 #if EV_USE_REALTIME
1292 root 1.279 if (expect_true (have_realtime))
1293     {
1294     struct timespec ts;
1295     clock_gettime (CLOCK_REALTIME, &ts);
1296     return ts.tv_sec + ts.tv_nsec * 1e-9;
1297     }
1298     #endif
1299    
1300 root 1.1 struct timeval tv;
1301     gettimeofday (&tv, 0);
1302     return tv.tv_sec + tv.tv_usec * 1e-6;
1303     }
1304 root 1.292 #endif
1305 root 1.1
1306 root 1.284 inline_size ev_tstamp
1307 root 1.1 get_clock (void)
1308     {
1309 root 1.29 #if EV_USE_MONOTONIC
1310 root 1.40 if (expect_true (have_monotonic))
1311 root 1.1 {
1312     struct timespec ts;
1313     clock_gettime (CLOCK_MONOTONIC, &ts);
1314     return ts.tv_sec + ts.tv_nsec * 1e-9;
1315     }
1316     #endif
1317    
1318     return ev_time ();
1319     }
1320    
1321 root 1.85 #if EV_MULTIPLICITY
1322 root 1.51 ev_tstamp
1323 root 1.420 ev_now (EV_P) EV_THROW
1324 root 1.51 {
1325 root 1.85 return ev_rt_now;
1326 root 1.51 }
1327 root 1.85 #endif
1328 root 1.51
1329 root 1.193 void
1330 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1331 root 1.193 {
1332     if (delay > 0.)
1333     {
1334     #if EV_USE_NANOSLEEP
1335     struct timespec ts;
1336    
1337 root 1.348 EV_TS_SET (ts, delay);
1338 root 1.193 nanosleep (&ts, 0);
1339 root 1.416 #elif defined _WIN32
1340 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1341 root 1.193 #else
1342     struct timeval tv;
1343    
1344 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1345 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1346 root 1.257 /* by older ones */
1347 sf-exg 1.349 EV_TV_SET (tv, delay);
1348 root 1.193 select (0, 0, 0, 0, &tv);
1349     #endif
1350     }
1351     }
1352    
1353     /*****************************************************************************/
1354    
1355 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1356 root 1.232
1357 root 1.288 /* find a suitable new size for the given array, */
1358 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1359 root 1.284 inline_size int
1360 root 1.163 array_nextsize (int elem, int cur, int cnt)
1361     {
1362     int ncur = cur + 1;
1363    
1364     do
1365     ncur <<= 1;
1366     while (cnt > ncur);
1367    
1368 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1369 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1370 root 1.163 {
1371     ncur *= elem;
1372 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1373 root 1.163 ncur = ncur - sizeof (void *) * 4;
1374     ncur /= elem;
1375     }
1376    
1377     return ncur;
1378     }
1379    
1380 root 1.379 static void * noinline ecb_cold
1381 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1382     {
1383     *cur = array_nextsize (elem, *cur, cnt);
1384     return ev_realloc (base, elem * *cur);
1385     }
1386 root 1.29
1387 root 1.265 #define array_init_zero(base,count) \
1388     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1389    
1390 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1391 root 1.163 if (expect_false ((cnt) > (cur))) \
1392 root 1.69 { \
1393 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1394 root 1.163 (base) = (type *)array_realloc \
1395     (sizeof (type), (base), &(cur), (cnt)); \
1396     init ((base) + (ocur_), (cur) - ocur_); \
1397 root 1.1 }
1398    
1399 root 1.163 #if 0
1400 root 1.74 #define array_slim(type,stem) \
1401 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1402     { \
1403     stem ## max = array_roundsize (stem ## cnt >> 1); \
1404 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1405 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1406     }
1407 root 1.163 #endif
1408 root 1.67
1409 root 1.65 #define array_free(stem, idx) \
1410 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1411 root 1.65
1412 root 1.8 /*****************************************************************************/
1413    
1414 root 1.288 /* dummy callback for pending events */
1415     static void noinline
1416     pendingcb (EV_P_ ev_prepare *w, int revents)
1417     {
1418     }
1419    
1420 root 1.140 void noinline
1421 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1422 root 1.1 {
1423 root 1.78 W w_ = (W)w;
1424 root 1.171 int pri = ABSPRI (w_);
1425 root 1.78
1426 root 1.123 if (expect_false (w_->pending))
1427 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1428     else
1429 root 1.32 {
1430 root 1.171 w_->pending = ++pendingcnt [pri];
1431     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1432     pendings [pri][w_->pending - 1].w = w_;
1433     pendings [pri][w_->pending - 1].events = revents;
1434 root 1.32 }
1435 root 1.1 }
1436    
1437 root 1.284 inline_speed void
1438     feed_reverse (EV_P_ W w)
1439     {
1440     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1441     rfeeds [rfeedcnt++] = w;
1442     }
1443    
1444     inline_size void
1445     feed_reverse_done (EV_P_ int revents)
1446     {
1447     do
1448     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1449     while (rfeedcnt);
1450     }
1451    
1452     inline_speed void
1453 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1454 root 1.27 {
1455     int i;
1456    
1457     for (i = 0; i < eventcnt; ++i)
1458 root 1.78 ev_feed_event (EV_A_ events [i], type);
1459 root 1.27 }
1460    
1461 root 1.141 /*****************************************************************************/
1462    
1463 root 1.284 inline_speed void
1464 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1465 root 1.1 {
1466     ANFD *anfd = anfds + fd;
1467 root 1.136 ev_io *w;
1468 root 1.1
1469 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1470 root 1.1 {
1471 root 1.79 int ev = w->events & revents;
1472 root 1.1
1473     if (ev)
1474 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1475 root 1.1 }
1476     }
1477    
1478 root 1.298 /* do not submit kernel events for fds that have reify set */
1479     /* because that means they changed while we were polling for new events */
1480     inline_speed void
1481     fd_event (EV_P_ int fd, int revents)
1482     {
1483     ANFD *anfd = anfds + fd;
1484    
1485     if (expect_true (!anfd->reify))
1486 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1487 root 1.298 }
1488    
1489 root 1.79 void
1490 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1491 root 1.79 {
1492 root 1.168 if (fd >= 0 && fd < anfdmax)
1493 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1494 root 1.79 }
1495    
1496 root 1.288 /* make sure the external fd watch events are in-sync */
1497     /* with the kernel/libev internal state */
1498 root 1.284 inline_size void
1499 root 1.51 fd_reify (EV_P)
1500 root 1.9 {
1501     int i;
1502    
1503 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1504     for (i = 0; i < fdchangecnt; ++i)
1505     {
1506     int fd = fdchanges [i];
1507     ANFD *anfd = anfds + fd;
1508    
1509 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1510 root 1.371 {
1511     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1512    
1513     if (handle != anfd->handle)
1514     {
1515     unsigned long arg;
1516    
1517     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1518    
1519     /* handle changed, but fd didn't - we need to do it in two steps */
1520     backend_modify (EV_A_ fd, anfd->events, 0);
1521     anfd->events = 0;
1522     anfd->handle = handle;
1523     }
1524     }
1525     }
1526     #endif
1527    
1528 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1529     {
1530     int fd = fdchanges [i];
1531     ANFD *anfd = anfds + fd;
1532 root 1.136 ev_io *w;
1533 root 1.27
1534 root 1.350 unsigned char o_events = anfd->events;
1535     unsigned char o_reify = anfd->reify;
1536 root 1.27
1537 root 1.350 anfd->reify = 0;
1538 root 1.27
1539 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1540     {
1541     anfd->events = 0;
1542 root 1.184
1543 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1544     anfd->events |= (unsigned char)w->events;
1545 root 1.27
1546 root 1.351 if (o_events != anfd->events)
1547 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1548     }
1549    
1550     if (o_reify & EV__IOFDSET)
1551     backend_modify (EV_A_ fd, o_events, anfd->events);
1552 root 1.27 }
1553    
1554     fdchangecnt = 0;
1555     }
1556    
1557 root 1.288 /* something about the given fd changed */
1558 root 1.284 inline_size void
1559 root 1.183 fd_change (EV_P_ int fd, int flags)
1560 root 1.27 {
1561 root 1.183 unsigned char reify = anfds [fd].reify;
1562 root 1.184 anfds [fd].reify |= flags;
1563 root 1.27
1564 root 1.183 if (expect_true (!reify))
1565     {
1566     ++fdchangecnt;
1567     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1568     fdchanges [fdchangecnt - 1] = fd;
1569     }
1570 root 1.9 }
1571    
1572 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1573 root 1.379 inline_speed void ecb_cold
1574 root 1.51 fd_kill (EV_P_ int fd)
1575 root 1.41 {
1576 root 1.136 ev_io *w;
1577 root 1.41
1578 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1579 root 1.41 {
1580 root 1.51 ev_io_stop (EV_A_ w);
1581 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1582 root 1.41 }
1583     }
1584    
1585 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1586 root 1.379 inline_size int ecb_cold
1587 root 1.71 fd_valid (int fd)
1588     {
1589 root 1.103 #ifdef _WIN32
1590 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1591 root 1.71 #else
1592     return fcntl (fd, F_GETFD) != -1;
1593     #endif
1594     }
1595    
1596 root 1.19 /* called on EBADF to verify fds */
1597 root 1.379 static void noinline ecb_cold
1598 root 1.51 fd_ebadf (EV_P)
1599 root 1.19 {
1600     int fd;
1601    
1602     for (fd = 0; fd < anfdmax; ++fd)
1603 root 1.27 if (anfds [fd].events)
1604 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1605 root 1.51 fd_kill (EV_A_ fd);
1606 root 1.41 }
1607    
1608     /* called on ENOMEM in select/poll to kill some fds and retry */
1609 root 1.379 static void noinline ecb_cold
1610 root 1.51 fd_enomem (EV_P)
1611 root 1.41 {
1612 root 1.62 int fd;
1613 root 1.41
1614 root 1.62 for (fd = anfdmax; fd--; )
1615 root 1.41 if (anfds [fd].events)
1616     {
1617 root 1.51 fd_kill (EV_A_ fd);
1618 root 1.307 break;
1619 root 1.41 }
1620 root 1.19 }
1621    
1622 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1623 root 1.140 static void noinline
1624 root 1.56 fd_rearm_all (EV_P)
1625     {
1626     int fd;
1627    
1628     for (fd = 0; fd < anfdmax; ++fd)
1629     if (anfds [fd].events)
1630     {
1631     anfds [fd].events = 0;
1632 root 1.268 anfds [fd].emask = 0;
1633 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1634 root 1.56 }
1635     }
1636    
1637 root 1.336 /* used to prepare libev internal fd's */
1638     /* this is not fork-safe */
1639     inline_speed void
1640     fd_intern (int fd)
1641     {
1642     #ifdef _WIN32
1643     unsigned long arg = 1;
1644     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1645     #else
1646     fcntl (fd, F_SETFD, FD_CLOEXEC);
1647     fcntl (fd, F_SETFL, O_NONBLOCK);
1648     #endif
1649     }
1650    
1651 root 1.8 /*****************************************************************************/
1652    
1653 root 1.235 /*
1654 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1655 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1656     * the branching factor of the d-tree.
1657     */
1658    
1659     /*
1660 root 1.235 * at the moment we allow libev the luxury of two heaps,
1661     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1662     * which is more cache-efficient.
1663     * the difference is about 5% with 50000+ watchers.
1664     */
1665 root 1.241 #if EV_USE_4HEAP
1666 root 1.235
1667 root 1.237 #define DHEAP 4
1668     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1669 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1670 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1671 root 1.235
1672     /* away from the root */
1673 root 1.284 inline_speed void
1674 root 1.241 downheap (ANHE *heap, int N, int k)
1675 root 1.235 {
1676 root 1.241 ANHE he = heap [k];
1677     ANHE *E = heap + N + HEAP0;
1678 root 1.235
1679     for (;;)
1680     {
1681     ev_tstamp minat;
1682 root 1.241 ANHE *minpos;
1683 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1684 root 1.235
1685 root 1.248 /* find minimum child */
1686 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1687 root 1.235 {
1688 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1689     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1690     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1691     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1692 root 1.235 }
1693 root 1.240 else if (pos < E)
1694 root 1.235 {
1695 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1696     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1697     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1698     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1699 root 1.235 }
1700 root 1.240 else
1701     break;
1702 root 1.235
1703 root 1.241 if (ANHE_at (he) <= minat)
1704 root 1.235 break;
1705    
1706 root 1.247 heap [k] = *minpos;
1707 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1708 root 1.235
1709     k = minpos - heap;
1710     }
1711    
1712 root 1.247 heap [k] = he;
1713 root 1.241 ev_active (ANHE_w (he)) = k;
1714 root 1.235 }
1715    
1716 root 1.248 #else /* 4HEAP */
1717 root 1.235
1718     #define HEAP0 1
1719 root 1.247 #define HPARENT(k) ((k) >> 1)
1720 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1721 root 1.235
1722 root 1.248 /* away from the root */
1723 root 1.284 inline_speed void
1724 root 1.248 downheap (ANHE *heap, int N, int k)
1725 root 1.1 {
1726 root 1.241 ANHE he = heap [k];
1727 root 1.1
1728 root 1.228 for (;;)
1729 root 1.1 {
1730 root 1.248 int c = k << 1;
1731 root 1.179
1732 root 1.309 if (c >= N + HEAP0)
1733 root 1.179 break;
1734    
1735 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1736     ? 1 : 0;
1737    
1738     if (ANHE_at (he) <= ANHE_at (heap [c]))
1739     break;
1740    
1741     heap [k] = heap [c];
1742 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1743 root 1.248
1744     k = c;
1745 root 1.1 }
1746    
1747 root 1.243 heap [k] = he;
1748 root 1.248 ev_active (ANHE_w (he)) = k;
1749 root 1.1 }
1750 root 1.248 #endif
1751 root 1.1
1752 root 1.248 /* towards the root */
1753 root 1.284 inline_speed void
1754 root 1.248 upheap (ANHE *heap, int k)
1755 root 1.1 {
1756 root 1.241 ANHE he = heap [k];
1757 root 1.1
1758 root 1.179 for (;;)
1759 root 1.1 {
1760 root 1.248 int p = HPARENT (k);
1761 root 1.179
1762 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1763 root 1.179 break;
1764 root 1.1
1765 root 1.248 heap [k] = heap [p];
1766 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1767 root 1.248 k = p;
1768 root 1.1 }
1769    
1770 root 1.241 heap [k] = he;
1771     ev_active (ANHE_w (he)) = k;
1772 root 1.1 }
1773    
1774 root 1.288 /* move an element suitably so it is in a correct place */
1775 root 1.284 inline_size void
1776 root 1.241 adjustheap (ANHE *heap, int N, int k)
1777 root 1.84 {
1778 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1779 root 1.247 upheap (heap, k);
1780     else
1781     downheap (heap, N, k);
1782 root 1.84 }
1783    
1784 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1785 root 1.284 inline_size void
1786 root 1.248 reheap (ANHE *heap, int N)
1787     {
1788     int i;
1789 root 1.251
1790 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1791     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1792     for (i = 0; i < N; ++i)
1793     upheap (heap, i + HEAP0);
1794     }
1795    
1796 root 1.8 /*****************************************************************************/
1797    
1798 root 1.288 /* associate signal watchers to a signal signal */
1799 root 1.7 typedef struct
1800     {
1801 root 1.307 EV_ATOMIC_T pending;
1802 root 1.306 #if EV_MULTIPLICITY
1803     EV_P;
1804     #endif
1805 root 1.68 WL head;
1806 root 1.7 } ANSIG;
1807    
1808 root 1.306 static ANSIG signals [EV_NSIG - 1];
1809 root 1.7
1810 root 1.207 /*****************************************************************************/
1811    
1812 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1813 root 1.207
1814 root 1.379 static void noinline ecb_cold
1815 root 1.207 evpipe_init (EV_P)
1816     {
1817 root 1.288 if (!ev_is_active (&pipe_w))
1818 root 1.207 {
1819 root 1.336 # if EV_USE_EVENTFD
1820 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1821     if (evfd < 0 && errno == EINVAL)
1822     evfd = eventfd (0, 0);
1823    
1824     if (evfd >= 0)
1825 root 1.220 {
1826     evpipe [0] = -1;
1827 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1828 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1829 root 1.220 }
1830     else
1831 root 1.336 # endif
1832 root 1.220 {
1833     while (pipe (evpipe))
1834 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1835 root 1.207
1836 root 1.220 fd_intern (evpipe [0]);
1837     fd_intern (evpipe [1]);
1838 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1839 root 1.220 }
1840 root 1.207
1841 root 1.288 ev_io_start (EV_A_ &pipe_w);
1842 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1843 root 1.207 }
1844     }
1845    
1846 root 1.380 inline_speed void
1847 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1848 root 1.207 {
1849 root 1.383 if (expect_true (*flag))
1850 root 1.387 return;
1851 root 1.383
1852     *flag = 1;
1853    
1854 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1855 root 1.383
1856     pipe_write_skipped = 1;
1857 root 1.378
1858 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1859 root 1.214
1860 root 1.383 if (pipe_write_wanted)
1861     {
1862     int old_errno;
1863 root 1.378
1864 root 1.392 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1865 root 1.220
1866 root 1.383 old_errno = errno; /* save errno because write will clobber it */
1867 root 1.380
1868 root 1.220 #if EV_USE_EVENTFD
1869 root 1.383 if (evfd >= 0)
1870     {
1871     uint64_t counter = 1;
1872     write (evfd, &counter, sizeof (uint64_t));
1873     }
1874     else
1875 root 1.220 #endif
1876 root 1.383 {
1877     /* win32 people keep sending patches that change this write() to send() */
1878     /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1879     /* so when you think this write should be a send instead, please find out */
1880     /* where your send() is from - it's definitely not the microsoft send, and */
1881     /* tell me. thank you. */
1882 root 1.411 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1883     /* check the ev documentation on how to use this flag */
1884 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
1885     }
1886 root 1.214
1887 root 1.383 errno = old_errno;
1888 root 1.207 }
1889     }
1890    
1891 root 1.288 /* called whenever the libev signal pipe */
1892     /* got some events (signal, async) */
1893 root 1.207 static void
1894     pipecb (EV_P_ ev_io *iow, int revents)
1895     {
1896 root 1.307 int i;
1897    
1898 root 1.378 if (revents & EV_READ)
1899     {
1900 root 1.220 #if EV_USE_EVENTFD
1901 root 1.378 if (evfd >= 0)
1902     {
1903     uint64_t counter;
1904     read (evfd, &counter, sizeof (uint64_t));
1905     }
1906     else
1907 root 1.220 #endif
1908 root 1.378 {
1909     char dummy;
1910     /* see discussion in evpipe_write when you think this read should be recv in win32 */
1911     read (evpipe [0], &dummy, 1);
1912     }
1913 root 1.220 }
1914 root 1.207
1915 root 1.378 pipe_write_skipped = 0;
1916    
1917 root 1.369 #if EV_SIGNAL_ENABLE
1918 root 1.307 if (sig_pending)
1919 root 1.372 {
1920 root 1.307 sig_pending = 0;
1921 root 1.207
1922 root 1.307 for (i = EV_NSIG - 1; i--; )
1923     if (expect_false (signals [i].pending))
1924     ev_feed_signal_event (EV_A_ i + 1);
1925 root 1.207 }
1926 root 1.369 #endif
1927 root 1.207
1928 root 1.209 #if EV_ASYNC_ENABLE
1929 root 1.307 if (async_pending)
1930 root 1.207 {
1931 root 1.307 async_pending = 0;
1932 root 1.207
1933     for (i = asynccnt; i--; )
1934     if (asyncs [i]->sent)
1935     {
1936     asyncs [i]->sent = 0;
1937     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1938     }
1939     }
1940 root 1.209 #endif
1941 root 1.207 }
1942    
1943     /*****************************************************************************/
1944    
1945 root 1.366 void
1946 root 1.420 ev_feed_signal (int signum) EV_THROW
1947 root 1.7 {
1948 root 1.207 #if EV_MULTIPLICITY
1949 root 1.306 EV_P = signals [signum - 1].loop;
1950 root 1.366
1951     if (!EV_A)
1952     return;
1953 root 1.207 #endif
1954    
1955 root 1.381 if (!ev_active (&pipe_w))
1956     return;
1957 root 1.378
1958 root 1.366 signals [signum - 1].pending = 1;
1959     evpipe_write (EV_A_ &sig_pending);
1960     }
1961    
1962     static void
1963     ev_sighandler (int signum)
1964     {
1965 root 1.322 #ifdef _WIN32
1966 root 1.218 signal (signum, ev_sighandler);
1967 root 1.67 #endif
1968    
1969 root 1.366 ev_feed_signal (signum);
1970 root 1.7 }
1971    
1972 root 1.140 void noinline
1973 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
1974 root 1.79 {
1975 root 1.80 WL w;
1976    
1977 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1978     return;
1979    
1980     --signum;
1981    
1982 root 1.79 #if EV_MULTIPLICITY
1983 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
1984     /* or, likely more useful, feeding a signal nobody is waiting for */
1985 root 1.79
1986 root 1.307 if (expect_false (signals [signum].loop != EV_A))
1987 root 1.306 return;
1988 root 1.307 #endif
1989 root 1.306
1990 root 1.307 signals [signum].pending = 0;
1991 root 1.79
1992     for (w = signals [signum].head; w; w = w->next)
1993     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1994     }
1995    
1996 root 1.303 #if EV_USE_SIGNALFD
1997     static void
1998     sigfdcb (EV_P_ ev_io *iow, int revents)
1999     {
2000 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2001 root 1.303
2002     for (;;)
2003     {
2004     ssize_t res = read (sigfd, si, sizeof (si));
2005    
2006     /* not ISO-C, as res might be -1, but works with SuS */
2007     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2008     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2009    
2010     if (res < (ssize_t)sizeof (si))
2011     break;
2012     }
2013     }
2014     #endif
2015    
2016 root 1.336 #endif
2017    
2018 root 1.8 /*****************************************************************************/
2019    
2020 root 1.336 #if EV_CHILD_ENABLE
2021 root 1.182 static WL childs [EV_PID_HASHSIZE];
2022 root 1.71
2023 root 1.136 static ev_signal childev;
2024 root 1.59
2025 root 1.206 #ifndef WIFCONTINUED
2026     # define WIFCONTINUED(status) 0
2027     #endif
2028    
2029 root 1.288 /* handle a single child status event */
2030 root 1.284 inline_speed void
2031 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2032 root 1.47 {
2033 root 1.136 ev_child *w;
2034 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2035 root 1.47
2036 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2037 root 1.206 {
2038     if ((w->pid == pid || !w->pid)
2039     && (!traced || (w->flags & 1)))
2040     {
2041 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2042 root 1.206 w->rpid = pid;
2043     w->rstatus = status;
2044     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2045     }
2046     }
2047 root 1.47 }
2048    
2049 root 1.142 #ifndef WCONTINUED
2050     # define WCONTINUED 0
2051     #endif
2052    
2053 root 1.288 /* called on sigchld etc., calls waitpid */
2054 root 1.47 static void
2055 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2056 root 1.22 {
2057     int pid, status;
2058    
2059 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2060     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2061     if (!WCONTINUED
2062     || errno != EINVAL
2063     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2064     return;
2065    
2066 root 1.216 /* make sure we are called again until all children have been reaped */
2067 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2068     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2069 root 1.47
2070 root 1.216 child_reap (EV_A_ pid, pid, status);
2071 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2072 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2073 root 1.22 }
2074    
2075 root 1.45 #endif
2076    
2077 root 1.22 /*****************************************************************************/
2078    
2079 root 1.357 #if EV_USE_IOCP
2080     # include "ev_iocp.c"
2081     #endif
2082 root 1.118 #if EV_USE_PORT
2083     # include "ev_port.c"
2084     #endif
2085 root 1.44 #if EV_USE_KQUEUE
2086     # include "ev_kqueue.c"
2087     #endif
2088 root 1.29 #if EV_USE_EPOLL
2089 root 1.1 # include "ev_epoll.c"
2090     #endif
2091 root 1.59 #if EV_USE_POLL
2092 root 1.41 # include "ev_poll.c"
2093     #endif
2094 root 1.29 #if EV_USE_SELECT
2095 root 1.1 # include "ev_select.c"
2096     #endif
2097    
2098 root 1.379 int ecb_cold
2099 root 1.420 ev_version_major (void) EV_THROW
2100 root 1.24 {
2101     return EV_VERSION_MAJOR;
2102     }
2103    
2104 root 1.379 int ecb_cold
2105 root 1.420 ev_version_minor (void) EV_THROW
2106 root 1.24 {
2107     return EV_VERSION_MINOR;
2108     }
2109    
2110 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2111 root 1.379 int inline_size ecb_cold
2112 root 1.51 enable_secure (void)
2113 root 1.41 {
2114 root 1.103 #ifdef _WIN32
2115 root 1.49 return 0;
2116     #else
2117 root 1.41 return getuid () != geteuid ()
2118     || getgid () != getegid ();
2119 root 1.49 #endif
2120 root 1.41 }
2121    
2122 root 1.379 unsigned int ecb_cold
2123 root 1.420 ev_supported_backends (void) EV_THROW
2124 root 1.129 {
2125 root 1.130 unsigned int flags = 0;
2126 root 1.129
2127     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2128     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2129     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2130     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2131     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2132    
2133     return flags;
2134     }
2135    
2136 root 1.379 unsigned int ecb_cold
2137 root 1.420 ev_recommended_backends (void) EV_THROW
2138 root 1.1 {
2139 root 1.131 unsigned int flags = ev_supported_backends ();
2140 root 1.129
2141     #ifndef __NetBSD__
2142     /* kqueue is borked on everything but netbsd apparently */
2143     /* it usually doesn't work correctly on anything but sockets and pipes */
2144     flags &= ~EVBACKEND_KQUEUE;
2145     #endif
2146     #ifdef __APPLE__
2147 root 1.278 /* only select works correctly on that "unix-certified" platform */
2148     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2149     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2150 root 1.129 #endif
2151 root 1.342 #ifdef __FreeBSD__
2152     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2153     #endif
2154 root 1.129
2155     return flags;
2156 root 1.51 }
2157    
2158 root 1.379 unsigned int ecb_cold
2159 root 1.420 ev_embeddable_backends (void) EV_THROW
2160 root 1.134 {
2161 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2162    
2163 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2164 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2165     flags &= ~EVBACKEND_EPOLL;
2166 root 1.196
2167     return flags;
2168 root 1.134 }
2169    
2170     unsigned int
2171 root 1.420 ev_backend (EV_P) EV_THROW
2172 root 1.130 {
2173     return backend;
2174     }
2175    
2176 root 1.338 #if EV_FEATURE_API
2177 root 1.162 unsigned int
2178 root 1.420 ev_iteration (EV_P) EV_THROW
2179 root 1.162 {
2180     return loop_count;
2181     }
2182    
2183 root 1.294 unsigned int
2184 root 1.420 ev_depth (EV_P) EV_THROW
2185 root 1.294 {
2186     return loop_depth;
2187     }
2188    
2189 root 1.193 void
2190 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2191 root 1.193 {
2192     io_blocktime = interval;
2193     }
2194    
2195     void
2196 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2197 root 1.193 {
2198     timeout_blocktime = interval;
2199     }
2200    
2201 root 1.297 void
2202 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2203 root 1.297 {
2204     userdata = data;
2205     }
2206    
2207     void *
2208 root 1.420 ev_userdata (EV_P) EV_THROW
2209 root 1.297 {
2210     return userdata;
2211     }
2212    
2213 root 1.379 void
2214 root 1.420 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2215 root 1.297 {
2216     invoke_cb = invoke_pending_cb;
2217     }
2218    
2219 root 1.379 void
2220 root 1.420 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P)) EV_THROW
2221 root 1.297 {
2222 root 1.298 release_cb = release;
2223     acquire_cb = acquire;
2224 root 1.297 }
2225     #endif
2226    
2227 root 1.288 /* initialise a loop structure, must be zero-initialised */
2228 root 1.379 static void noinline ecb_cold
2229 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2230 root 1.51 {
2231 root 1.130 if (!backend)
2232 root 1.23 {
2233 root 1.366 origflags = flags;
2234    
2235 root 1.279 #if EV_USE_REALTIME
2236     if (!have_realtime)
2237     {
2238     struct timespec ts;
2239    
2240     if (!clock_gettime (CLOCK_REALTIME, &ts))
2241     have_realtime = 1;
2242     }
2243     #endif
2244    
2245 root 1.29 #if EV_USE_MONOTONIC
2246 root 1.279 if (!have_monotonic)
2247     {
2248     struct timespec ts;
2249    
2250     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2251     have_monotonic = 1;
2252     }
2253 root 1.1 #endif
2254    
2255 root 1.306 /* pid check not overridable via env */
2256     #ifndef _WIN32
2257     if (flags & EVFLAG_FORKCHECK)
2258     curpid = getpid ();
2259     #endif
2260    
2261     if (!(flags & EVFLAG_NOENV)
2262     && !enable_secure ()
2263     && getenv ("LIBEV_FLAGS"))
2264     flags = atoi (getenv ("LIBEV_FLAGS"));
2265    
2266 root 1.378 ev_rt_now = ev_time ();
2267     mn_now = get_clock ();
2268     now_floor = mn_now;
2269     rtmn_diff = ev_rt_now - mn_now;
2270 root 1.338 #if EV_FEATURE_API
2271 root 1.378 invoke_cb = ev_invoke_pending;
2272 root 1.297 #endif
2273 root 1.1
2274 root 1.378 io_blocktime = 0.;
2275     timeout_blocktime = 0.;
2276     backend = 0;
2277     backend_fd = -1;
2278     sig_pending = 0;
2279 root 1.307 #if EV_ASYNC_ENABLE
2280 root 1.378 async_pending = 0;
2281 root 1.307 #endif
2282 root 1.378 pipe_write_skipped = 0;
2283     pipe_write_wanted = 0;
2284 root 1.209 #if EV_USE_INOTIFY
2285 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2286 root 1.209 #endif
2287 root 1.303 #if EV_USE_SIGNALFD
2288 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2289 root 1.303 #endif
2290 root 1.193
2291 root 1.366 if (!(flags & EVBACKEND_MASK))
2292 root 1.129 flags |= ev_recommended_backends ();
2293 root 1.41
2294 root 1.357 #if EV_USE_IOCP
2295     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2296     #endif
2297 root 1.118 #if EV_USE_PORT
2298 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2299 root 1.118 #endif
2300 root 1.44 #if EV_USE_KQUEUE
2301 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2302 root 1.44 #endif
2303 root 1.29 #if EV_USE_EPOLL
2304 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2305 root 1.41 #endif
2306 root 1.59 #if EV_USE_POLL
2307 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2308 root 1.1 #endif
2309 root 1.29 #if EV_USE_SELECT
2310 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2311 root 1.1 #endif
2312 root 1.70
2313 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2314    
2315 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2316 root 1.288 ev_init (&pipe_w, pipecb);
2317     ev_set_priority (&pipe_w, EV_MAXPRI);
2318 root 1.336 #endif
2319 root 1.56 }
2320     }
2321    
2322 root 1.288 /* free up a loop structure */
2323 root 1.379 void ecb_cold
2324 root 1.420 ev_loop_destroy (EV_P) EV_THROW
2325 root 1.56 {
2326 root 1.65 int i;
2327    
2328 root 1.364 #if EV_MULTIPLICITY
2329 root 1.363 /* mimic free (0) */
2330     if (!EV_A)
2331     return;
2332 root 1.364 #endif
2333 root 1.363
2334 root 1.361 #if EV_CLEANUP_ENABLE
2335     /* queue cleanup watchers (and execute them) */
2336     if (expect_false (cleanupcnt))
2337     {
2338     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2339     EV_INVOKE_PENDING;
2340     }
2341     #endif
2342    
2343 root 1.359 #if EV_CHILD_ENABLE
2344     if (ev_is_active (&childev))
2345     {
2346     ev_ref (EV_A); /* child watcher */
2347     ev_signal_stop (EV_A_ &childev);
2348     }
2349     #endif
2350    
2351 root 1.288 if (ev_is_active (&pipe_w))
2352 root 1.207 {
2353 root 1.303 /*ev_ref (EV_A);*/
2354     /*ev_io_stop (EV_A_ &pipe_w);*/
2355 root 1.207
2356 root 1.220 #if EV_USE_EVENTFD
2357     if (evfd >= 0)
2358     close (evfd);
2359     #endif
2360    
2361     if (evpipe [0] >= 0)
2362     {
2363 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2364     EV_WIN32_CLOSE_FD (evpipe [1]);
2365 root 1.220 }
2366 root 1.207 }
2367    
2368 root 1.303 #if EV_USE_SIGNALFD
2369     if (ev_is_active (&sigfd_w))
2370 root 1.317 close (sigfd);
2371 root 1.303 #endif
2372    
2373 root 1.152 #if EV_USE_INOTIFY
2374     if (fs_fd >= 0)
2375     close (fs_fd);
2376     #endif
2377    
2378     if (backend_fd >= 0)
2379     close (backend_fd);
2380    
2381 root 1.357 #if EV_USE_IOCP
2382     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2383     #endif
2384 root 1.118 #if EV_USE_PORT
2385 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2386 root 1.118 #endif
2387 root 1.56 #if EV_USE_KQUEUE
2388 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2389 root 1.56 #endif
2390     #if EV_USE_EPOLL
2391 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2392 root 1.56 #endif
2393 root 1.59 #if EV_USE_POLL
2394 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2395 root 1.56 #endif
2396     #if EV_USE_SELECT
2397 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2398 root 1.56 #endif
2399 root 1.1
2400 root 1.65 for (i = NUMPRI; i--; )
2401 root 1.164 {
2402     array_free (pending, [i]);
2403     #if EV_IDLE_ENABLE
2404     array_free (idle, [i]);
2405     #endif
2406     }
2407 root 1.65
2408 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2409 root 1.186
2410 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2411 root 1.284 array_free (rfeed, EMPTY);
2412 root 1.164 array_free (fdchange, EMPTY);
2413     array_free (timer, EMPTY);
2414 root 1.140 #if EV_PERIODIC_ENABLE
2415 root 1.164 array_free (periodic, EMPTY);
2416 root 1.93 #endif
2417 root 1.187 #if EV_FORK_ENABLE
2418     array_free (fork, EMPTY);
2419     #endif
2420 root 1.360 #if EV_CLEANUP_ENABLE
2421     array_free (cleanup, EMPTY);
2422     #endif
2423 root 1.164 array_free (prepare, EMPTY);
2424     array_free (check, EMPTY);
2425 root 1.209 #if EV_ASYNC_ENABLE
2426     array_free (async, EMPTY);
2427     #endif
2428 root 1.65
2429 root 1.130 backend = 0;
2430 root 1.359
2431     #if EV_MULTIPLICITY
2432     if (ev_is_default_loop (EV_A))
2433     #endif
2434     ev_default_loop_ptr = 0;
2435     #if EV_MULTIPLICITY
2436     else
2437     ev_free (EV_A);
2438     #endif
2439 root 1.56 }
2440 root 1.22
2441 root 1.226 #if EV_USE_INOTIFY
2442 root 1.284 inline_size void infy_fork (EV_P);
2443 root 1.226 #endif
2444 root 1.154
2445 root 1.284 inline_size void
2446 root 1.56 loop_fork (EV_P)
2447     {
2448 root 1.118 #if EV_USE_PORT
2449 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2450 root 1.56 #endif
2451     #if EV_USE_KQUEUE
2452 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2453 root 1.45 #endif
2454 root 1.118 #if EV_USE_EPOLL
2455 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2456 root 1.118 #endif
2457 root 1.154 #if EV_USE_INOTIFY
2458     infy_fork (EV_A);
2459     #endif
2460 root 1.70
2461 root 1.288 if (ev_is_active (&pipe_w))
2462 root 1.70 {
2463 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2464 root 1.70
2465     ev_ref (EV_A);
2466 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2467 root 1.220
2468     #if EV_USE_EVENTFD
2469     if (evfd >= 0)
2470     close (evfd);
2471     #endif
2472    
2473     if (evpipe [0] >= 0)
2474     {
2475 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2476     EV_WIN32_CLOSE_FD (evpipe [1]);
2477 root 1.220 }
2478 root 1.207
2479 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2480 root 1.207 evpipe_init (EV_A);
2481 root 1.208 /* now iterate over everything, in case we missed something */
2482 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
2483 root 1.337 #endif
2484 root 1.70 }
2485    
2486     postfork = 0;
2487 root 1.1 }
2488    
2489 root 1.55 #if EV_MULTIPLICITY
2490 root 1.250
2491 root 1.379 struct ev_loop * ecb_cold
2492 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2493 root 1.54 {
2494 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2495 root 1.69
2496 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2497 root 1.108 loop_init (EV_A_ flags);
2498 root 1.56
2499 root 1.130 if (ev_backend (EV_A))
2500 root 1.306 return EV_A;
2501 root 1.54
2502 root 1.359 ev_free (EV_A);
2503 root 1.55 return 0;
2504 root 1.54 }
2505    
2506 root 1.297 #endif /* multiplicity */
2507 root 1.248
2508     #if EV_VERIFY
2509 root 1.379 static void noinline ecb_cold
2510 root 1.251 verify_watcher (EV_P_ W w)
2511     {
2512 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2513 root 1.251
2514     if (w->pending)
2515 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2516 root 1.251 }
2517    
2518 root 1.379 static void noinline ecb_cold
2519 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2520     {
2521     int i;
2522    
2523     for (i = HEAP0; i < N + HEAP0; ++i)
2524     {
2525 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2526     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2527     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2528 root 1.251
2529     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2530     }
2531     }
2532    
2533 root 1.379 static void noinline ecb_cold
2534 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2535 root 1.248 {
2536     while (cnt--)
2537 root 1.251 {
2538 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2539 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2540     }
2541 root 1.248 }
2542 root 1.250 #endif
2543 root 1.248
2544 root 1.338 #if EV_FEATURE_API
2545 root 1.379 void ecb_cold
2546 root 1.420 ev_verify (EV_P) EV_THROW
2547 root 1.248 {
2548 root 1.250 #if EV_VERIFY
2549 root 1.248 int i;
2550 root 1.251 WL w;
2551    
2552     assert (activecnt >= -1);
2553    
2554     assert (fdchangemax >= fdchangecnt);
2555     for (i = 0; i < fdchangecnt; ++i)
2556 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2557 root 1.251
2558     assert (anfdmax >= 0);
2559     for (i = 0; i < anfdmax; ++i)
2560     for (w = anfds [i].head; w; w = w->next)
2561     {
2562     verify_watcher (EV_A_ (W)w);
2563 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2564     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2565 root 1.251 }
2566    
2567     assert (timermax >= timercnt);
2568     verify_heap (EV_A_ timers, timercnt);
2569 root 1.248
2570     #if EV_PERIODIC_ENABLE
2571 root 1.251 assert (periodicmax >= periodiccnt);
2572     verify_heap (EV_A_ periodics, periodiccnt);
2573 root 1.248 #endif
2574    
2575 root 1.251 for (i = NUMPRI; i--; )
2576     {
2577     assert (pendingmax [i] >= pendingcnt [i]);
2578 root 1.248 #if EV_IDLE_ENABLE
2579 root 1.252 assert (idleall >= 0);
2580 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2581     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2582 root 1.248 #endif
2583 root 1.251 }
2584    
2585 root 1.248 #if EV_FORK_ENABLE
2586 root 1.251 assert (forkmax >= forkcnt);
2587     array_verify (EV_A_ (W *)forks, forkcnt);
2588 root 1.248 #endif
2589 root 1.251
2590 root 1.360 #if EV_CLEANUP_ENABLE
2591     assert (cleanupmax >= cleanupcnt);
2592     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2593     #endif
2594    
2595 root 1.250 #if EV_ASYNC_ENABLE
2596 root 1.251 assert (asyncmax >= asynccnt);
2597     array_verify (EV_A_ (W *)asyncs, asynccnt);
2598 root 1.250 #endif
2599 root 1.251
2600 root 1.337 #if EV_PREPARE_ENABLE
2601 root 1.251 assert (preparemax >= preparecnt);
2602     array_verify (EV_A_ (W *)prepares, preparecnt);
2603 root 1.337 #endif
2604 root 1.251
2605 root 1.337 #if EV_CHECK_ENABLE
2606 root 1.251 assert (checkmax >= checkcnt);
2607     array_verify (EV_A_ (W *)checks, checkcnt);
2608 root 1.337 #endif
2609 root 1.251
2610     # if 0
2611 root 1.336 #if EV_CHILD_ENABLE
2612 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2613 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2614 root 1.336 #endif
2615 root 1.251 # endif
2616 root 1.248 #endif
2617     }
2618 root 1.297 #endif
2619 root 1.56
2620     #if EV_MULTIPLICITY
2621 root 1.379 struct ev_loop * ecb_cold
2622 root 1.54 #else
2623     int
2624 root 1.358 #endif
2625 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
2626 root 1.54 {
2627 root 1.116 if (!ev_default_loop_ptr)
2628 root 1.56 {
2629     #if EV_MULTIPLICITY
2630 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2631 root 1.56 #else
2632 ayin 1.117 ev_default_loop_ptr = 1;
2633 root 1.54 #endif
2634    
2635 root 1.110 loop_init (EV_A_ flags);
2636 root 1.56
2637 root 1.130 if (ev_backend (EV_A))
2638 root 1.56 {
2639 root 1.336 #if EV_CHILD_ENABLE
2640 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2641     ev_set_priority (&childev, EV_MAXPRI);
2642     ev_signal_start (EV_A_ &childev);
2643     ev_unref (EV_A); /* child watcher should not keep loop alive */
2644     #endif
2645     }
2646     else
2647 root 1.116 ev_default_loop_ptr = 0;
2648 root 1.56 }
2649 root 1.8
2650 root 1.116 return ev_default_loop_ptr;
2651 root 1.1 }
2652    
2653 root 1.24 void
2654 root 1.420 ev_loop_fork (EV_P) EV_THROW
2655 root 1.1 {
2656 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2657 root 1.1 }
2658    
2659 root 1.8 /*****************************************************************************/
2660    
2661 root 1.168 void
2662     ev_invoke (EV_P_ void *w, int revents)
2663     {
2664     EV_CB_INVOKE ((W)w, revents);
2665     }
2666    
2667 root 1.300 unsigned int
2668 root 1.420 ev_pending_count (EV_P) EV_THROW
2669 root 1.300 {
2670     int pri;
2671     unsigned int count = 0;
2672    
2673     for (pri = NUMPRI; pri--; )
2674     count += pendingcnt [pri];
2675    
2676     return count;
2677     }
2678    
2679 root 1.297 void noinline
2680 root 1.296 ev_invoke_pending (EV_P)
2681 root 1.1 {
2682 root 1.42 int pri;
2683    
2684     for (pri = NUMPRI; pri--; )
2685     while (pendingcnt [pri])
2686     {
2687     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2688 root 1.1
2689 root 1.288 p->w->pending = 0;
2690     EV_CB_INVOKE (p->w, p->events);
2691     EV_FREQUENT_CHECK;
2692 root 1.42 }
2693 root 1.1 }
2694    
2695 root 1.234 #if EV_IDLE_ENABLE
2696 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2697     /* only when higher priorities are idle" logic */
2698 root 1.284 inline_size void
2699 root 1.234 idle_reify (EV_P)
2700     {
2701     if (expect_false (idleall))
2702     {
2703     int pri;
2704    
2705     for (pri = NUMPRI; pri--; )
2706     {
2707     if (pendingcnt [pri])
2708     break;
2709    
2710     if (idlecnt [pri])
2711     {
2712     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2713     break;
2714     }
2715     }
2716     }
2717     }
2718     #endif
2719    
2720 root 1.288 /* make timers pending */
2721 root 1.284 inline_size void
2722 root 1.51 timers_reify (EV_P)
2723 root 1.1 {
2724 root 1.248 EV_FREQUENT_CHECK;
2725    
2726 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2727 root 1.1 {
2728 root 1.284 do
2729     {
2730     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2731 root 1.1
2732 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2733    
2734     /* first reschedule or stop timer */
2735     if (w->repeat)
2736     {
2737     ev_at (w) += w->repeat;
2738     if (ev_at (w) < mn_now)
2739     ev_at (w) = mn_now;
2740 root 1.61
2741 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2742 root 1.90
2743 root 1.284 ANHE_at_cache (timers [HEAP0]);
2744     downheap (timers, timercnt, HEAP0);
2745     }
2746     else
2747     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2748 root 1.243
2749 root 1.284 EV_FREQUENT_CHECK;
2750     feed_reverse (EV_A_ (W)w);
2751 root 1.12 }
2752 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2753 root 1.30
2754 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2755 root 1.12 }
2756     }
2757 root 1.4
2758 root 1.140 #if EV_PERIODIC_ENABLE
2759 root 1.370
2760 root 1.373 static void noinline
2761 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2762     {
2763 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2764     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2765    
2766     /* the above almost always errs on the low side */
2767     while (at <= ev_rt_now)
2768     {
2769     ev_tstamp nat = at + w->interval;
2770    
2771     /* when resolution fails us, we use ev_rt_now */
2772     if (expect_false (nat == at))
2773     {
2774     at = ev_rt_now;
2775     break;
2776     }
2777    
2778     at = nat;
2779     }
2780    
2781     ev_at (w) = at;
2782 root 1.370 }
2783    
2784 root 1.288 /* make periodics pending */
2785 root 1.284 inline_size void
2786 root 1.51 periodics_reify (EV_P)
2787 root 1.12 {
2788 root 1.248 EV_FREQUENT_CHECK;
2789 root 1.250
2790 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2791 root 1.12 {
2792 root 1.284 int feed_count = 0;
2793    
2794     do
2795     {
2796     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2797 root 1.1
2798 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2799 root 1.61
2800 root 1.284 /* first reschedule or stop timer */
2801     if (w->reschedule_cb)
2802     {
2803     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2804 root 1.243
2805 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2806 root 1.243
2807 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2808     downheap (periodics, periodiccnt, HEAP0);
2809     }
2810     else if (w->interval)
2811 root 1.246 {
2812 root 1.370 periodic_recalc (EV_A_ w);
2813 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2814     downheap (periodics, periodiccnt, HEAP0);
2815 root 1.246 }
2816 root 1.284 else
2817     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2818 root 1.243
2819 root 1.284 EV_FREQUENT_CHECK;
2820     feed_reverse (EV_A_ (W)w);
2821 root 1.1 }
2822 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2823 root 1.12
2824 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2825 root 1.12 }
2826     }
2827    
2828 root 1.288 /* simply recalculate all periodics */
2829 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2830 root 1.379 static void noinline ecb_cold
2831 root 1.54 periodics_reschedule (EV_P)
2832 root 1.12 {
2833     int i;
2834    
2835 root 1.13 /* adjust periodics after time jump */
2836 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2837 root 1.12 {
2838 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2839 root 1.12
2840 root 1.77 if (w->reschedule_cb)
2841 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2842 root 1.77 else if (w->interval)
2843 root 1.370 periodic_recalc (EV_A_ w);
2844 root 1.242
2845 root 1.248 ANHE_at_cache (periodics [i]);
2846 root 1.77 }
2847 root 1.12
2848 root 1.248 reheap (periodics, periodiccnt);
2849 root 1.1 }
2850 root 1.93 #endif
2851 root 1.1
2852 root 1.288 /* adjust all timers by a given offset */
2853 root 1.379 static void noinline ecb_cold
2854 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
2855     {
2856     int i;
2857    
2858     for (i = 0; i < timercnt; ++i)
2859     {
2860     ANHE *he = timers + i + HEAP0;
2861     ANHE_w (*he)->at += adjust;
2862     ANHE_at_cache (*he);
2863     }
2864     }
2865    
2866 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2867 root 1.324 /* also detect if there was a timejump, and act accordingly */
2868 root 1.284 inline_speed void
2869 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2870 root 1.4 {
2871 root 1.40 #if EV_USE_MONOTONIC
2872     if (expect_true (have_monotonic))
2873     {
2874 root 1.289 int i;
2875 root 1.178 ev_tstamp odiff = rtmn_diff;
2876    
2877     mn_now = get_clock ();
2878    
2879     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2880     /* interpolate in the meantime */
2881     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2882 root 1.40 {
2883 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2884     return;
2885     }
2886    
2887     now_floor = mn_now;
2888     ev_rt_now = ev_time ();
2889 root 1.4
2890 root 1.178 /* loop a few times, before making important decisions.
2891     * on the choice of "4": one iteration isn't enough,
2892     * in case we get preempted during the calls to
2893     * ev_time and get_clock. a second call is almost guaranteed
2894     * to succeed in that case, though. and looping a few more times
2895     * doesn't hurt either as we only do this on time-jumps or
2896     * in the unlikely event of having been preempted here.
2897     */
2898     for (i = 4; --i; )
2899     {
2900 root 1.373 ev_tstamp diff;
2901 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2902 root 1.4
2903 root 1.373 diff = odiff - rtmn_diff;
2904    
2905     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2906 root 1.178 return; /* all is well */
2907 root 1.4
2908 root 1.178 ev_rt_now = ev_time ();
2909     mn_now = get_clock ();
2910     now_floor = mn_now;
2911     }
2912 root 1.4
2913 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2914     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2915 root 1.140 # if EV_PERIODIC_ENABLE
2916 root 1.178 periodics_reschedule (EV_A);
2917 root 1.93 # endif
2918 root 1.4 }
2919     else
2920 root 1.40 #endif
2921 root 1.4 {
2922 root 1.85 ev_rt_now = ev_time ();
2923 root 1.40
2924 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2925 root 1.13 {
2926 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2927     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2928 root 1.140 #if EV_PERIODIC_ENABLE
2929 root 1.54 periodics_reschedule (EV_A);
2930 root 1.93 #endif
2931 root 1.13 }
2932 root 1.4
2933 root 1.85 mn_now = ev_rt_now;
2934 root 1.4 }
2935     }
2936    
2937 root 1.418 int
2938 root 1.353 ev_run (EV_P_ int flags)
2939 root 1.1 {
2940 root 1.338 #if EV_FEATURE_API
2941 root 1.294 ++loop_depth;
2942 root 1.297 #endif
2943 root 1.294
2944 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2945 root 1.298
2946 root 1.353 loop_done = EVBREAK_CANCEL;
2947 root 1.1
2948 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2949 root 1.158
2950 root 1.161 do
2951 root 1.9 {
2952 root 1.250 #if EV_VERIFY >= 2
2953 root 1.340 ev_verify (EV_A);
2954 root 1.250 #endif
2955    
2956 root 1.158 #ifndef _WIN32
2957     if (expect_false (curpid)) /* penalise the forking check even more */
2958     if (expect_false (getpid () != curpid))
2959     {
2960     curpid = getpid ();
2961     postfork = 1;
2962     }
2963     #endif
2964    
2965 root 1.157 #if EV_FORK_ENABLE
2966     /* we might have forked, so queue fork handlers */
2967     if (expect_false (postfork))
2968     if (forkcnt)
2969     {
2970     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2971 root 1.297 EV_INVOKE_PENDING;
2972 root 1.157 }
2973     #endif
2974 root 1.147
2975 root 1.337 #if EV_PREPARE_ENABLE
2976 root 1.170 /* queue prepare watchers (and execute them) */
2977 root 1.40 if (expect_false (preparecnt))
2978 root 1.20 {
2979 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2980 root 1.297 EV_INVOKE_PENDING;
2981 root 1.20 }
2982 root 1.337 #endif
2983 root 1.9
2984 root 1.298 if (expect_false (loop_done))
2985     break;
2986    
2987 root 1.70 /* we might have forked, so reify kernel state if necessary */
2988     if (expect_false (postfork))
2989     loop_fork (EV_A);
2990    
2991 root 1.1 /* update fd-related kernel structures */
2992 root 1.51 fd_reify (EV_A);
2993 root 1.1
2994     /* calculate blocking time */
2995 root 1.135 {
2996 root 1.193 ev_tstamp waittime = 0.;
2997     ev_tstamp sleeptime = 0.;
2998 root 1.12
2999 root 1.353 /* remember old timestamp for io_blocktime calculation */
3000     ev_tstamp prev_mn_now = mn_now;
3001 root 1.293
3002 root 1.353 /* update time to cancel out callback processing overhead */
3003     time_update (EV_A_ 1e100);
3004 root 1.135
3005 root 1.378 /* from now on, we want a pipe-wake-up */
3006     pipe_write_wanted = 1;
3007    
3008 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3009 root 1.383
3010 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3011 root 1.353 {
3012 root 1.287 waittime = MAX_BLOCKTIME;
3013    
3014 root 1.135 if (timercnt)
3015     {
3016 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3017 root 1.193 if (waittime > to) waittime = to;
3018 root 1.135 }
3019 root 1.4
3020 root 1.140 #if EV_PERIODIC_ENABLE
3021 root 1.135 if (periodiccnt)
3022     {
3023 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3024 root 1.193 if (waittime > to) waittime = to;
3025 root 1.135 }
3026 root 1.93 #endif
3027 root 1.4
3028 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3029 root 1.193 if (expect_false (waittime < timeout_blocktime))
3030     waittime = timeout_blocktime;
3031    
3032 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3033     /* to pass a minimum nonzero value to the backend */
3034     if (expect_false (waittime < backend_mintime))
3035     waittime = backend_mintime;
3036    
3037 root 1.293 /* extra check because io_blocktime is commonly 0 */
3038     if (expect_false (io_blocktime))
3039     {
3040     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3041 root 1.193
3042 root 1.376 if (sleeptime > waittime - backend_mintime)
3043     sleeptime = waittime - backend_mintime;
3044 root 1.193
3045 root 1.293 if (expect_true (sleeptime > 0.))
3046     {
3047     ev_sleep (sleeptime);
3048     waittime -= sleeptime;
3049     }
3050 root 1.193 }
3051 root 1.135 }
3052 root 1.1
3053 root 1.338 #if EV_FEATURE_API
3054 root 1.162 ++loop_count;
3055 root 1.297 #endif
3056 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3057 root 1.193 backend_poll (EV_A_ waittime);
3058 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3059 root 1.178
3060 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3061 root 1.378
3062     if (pipe_write_skipped)
3063     {
3064     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3065     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3066     }
3067    
3068    
3069 root 1.178 /* update ev_rt_now, do magic */
3070 root 1.193 time_update (EV_A_ waittime + sleeptime);
3071 root 1.135 }
3072 root 1.1
3073 root 1.9 /* queue pending timers and reschedule them */
3074 root 1.51 timers_reify (EV_A); /* relative timers called last */
3075 root 1.140 #if EV_PERIODIC_ENABLE
3076 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3077 root 1.93 #endif
3078 root 1.1
3079 root 1.164 #if EV_IDLE_ENABLE
3080 root 1.137 /* queue idle watchers unless other events are pending */
3081 root 1.164 idle_reify (EV_A);
3082     #endif
3083 root 1.9
3084 root 1.337 #if EV_CHECK_ENABLE
3085 root 1.20 /* queue check watchers, to be executed first */
3086 root 1.123 if (expect_false (checkcnt))
3087 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3088 root 1.337 #endif
3089 root 1.9
3090 root 1.297 EV_INVOKE_PENDING;
3091 root 1.1 }
3092 root 1.219 while (expect_true (
3093     activecnt
3094     && !loop_done
3095 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3096 root 1.219 ));
3097 root 1.13
3098 root 1.353 if (loop_done == EVBREAK_ONE)
3099     loop_done = EVBREAK_CANCEL;
3100 root 1.294
3101 root 1.338 #if EV_FEATURE_API
3102 root 1.294 --loop_depth;
3103 root 1.297 #endif
3104 root 1.418
3105     return activecnt;
3106 root 1.51 }
3107    
3108     void
3109 root 1.420 ev_break (EV_P_ int how) EV_THROW
3110 root 1.51 {
3111     loop_done = how;
3112 root 1.1 }
3113    
3114 root 1.285 void
3115 root 1.420 ev_ref (EV_P) EV_THROW
3116 root 1.285 {
3117     ++activecnt;
3118     }
3119    
3120     void
3121 root 1.420 ev_unref (EV_P) EV_THROW
3122 root 1.285 {
3123     --activecnt;
3124     }
3125    
3126     void
3127 root 1.420 ev_now_update (EV_P) EV_THROW
3128 root 1.285 {
3129     time_update (EV_A_ 1e100);
3130     }
3131    
3132     void
3133 root 1.420 ev_suspend (EV_P) EV_THROW
3134 root 1.285 {
3135     ev_now_update (EV_A);
3136     }
3137    
3138     void
3139 root 1.420 ev_resume (EV_P) EV_THROW
3140 root 1.285 {
3141     ev_tstamp mn_prev = mn_now;
3142    
3143     ev_now_update (EV_A);
3144     timers_reschedule (EV_A_ mn_now - mn_prev);
3145 root 1.286 #if EV_PERIODIC_ENABLE
3146 root 1.288 /* TODO: really do this? */
3147 root 1.285 periodics_reschedule (EV_A);
3148 root 1.286 #endif
3149 root 1.285 }
3150    
3151 root 1.8 /*****************************************************************************/
3152 root 1.288 /* singly-linked list management, used when the expected list length is short */
3153 root 1.8
3154 root 1.284 inline_size void
3155 root 1.10 wlist_add (WL *head, WL elem)
3156 root 1.1 {
3157     elem->next = *head;
3158     *head = elem;
3159     }
3160    
3161 root 1.284 inline_size void
3162 root 1.10 wlist_del (WL *head, WL elem)
3163 root 1.1 {
3164     while (*head)
3165     {
3166 root 1.307 if (expect_true (*head == elem))
3167 root 1.1 {
3168     *head = elem->next;
3169 root 1.307 break;
3170 root 1.1 }
3171    
3172     head = &(*head)->next;
3173     }
3174     }
3175    
3176 root 1.288 /* internal, faster, version of ev_clear_pending */
3177 root 1.284 inline_speed void
3178 root 1.166 clear_pending (EV_P_ W w)
3179 root 1.16 {
3180     if (w->pending)
3181     {
3182 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3183 root 1.16 w->pending = 0;
3184     }
3185     }
3186    
3187 root 1.167 int
3188 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3189 root 1.166 {
3190     W w_ = (W)w;
3191     int pending = w_->pending;
3192    
3193 root 1.172 if (expect_true (pending))
3194     {
3195     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3196 root 1.288 p->w = (W)&pending_w;
3197 root 1.172 w_->pending = 0;
3198     return p->events;
3199     }
3200     else
3201 root 1.167 return 0;
3202 root 1.166 }
3203    
3204 root 1.284 inline_size void
3205 root 1.164 pri_adjust (EV_P_ W w)
3206     {
3207 root 1.295 int pri = ev_priority (w);
3208 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3209     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3210 root 1.295 ev_set_priority (w, pri);
3211 root 1.164 }
3212    
3213 root 1.284 inline_speed void
3214 root 1.51 ev_start (EV_P_ W w, int active)
3215 root 1.1 {
3216 root 1.164 pri_adjust (EV_A_ w);
3217 root 1.1 w->active = active;
3218 root 1.51 ev_ref (EV_A);
3219 root 1.1 }
3220    
3221 root 1.284 inline_size void
3222 root 1.51 ev_stop (EV_P_ W w)
3223 root 1.1 {
3224 root 1.51 ev_unref (EV_A);
3225 root 1.1 w->active = 0;
3226     }
3227    
3228 root 1.8 /*****************************************************************************/
3229    
3230 root 1.171 void noinline
3231 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3232 root 1.1 {
3233 root 1.37 int fd = w->fd;
3234    
3235 root 1.123 if (expect_false (ev_is_active (w)))
3236 root 1.1 return;
3237    
3238 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3239 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3240 root 1.33
3241 root 1.248 EV_FREQUENT_CHECK;
3242    
3243 root 1.51 ev_start (EV_A_ (W)w, 1);
3244 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3245 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3246 root 1.1
3247 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3248 root 1.281 w->events &= ~EV__IOFDSET;
3249 root 1.248
3250     EV_FREQUENT_CHECK;
3251 root 1.1 }
3252    
3253 root 1.171 void noinline
3254 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3255 root 1.1 {
3256 root 1.166 clear_pending (EV_A_ (W)w);
3257 root 1.123 if (expect_false (!ev_is_active (w)))
3258 root 1.1 return;
3259    
3260 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3261 root 1.89
3262 root 1.248 EV_FREQUENT_CHECK;
3263    
3264 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3265 root 1.51 ev_stop (EV_A_ (W)w);
3266 root 1.1
3267 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3268 root 1.248
3269     EV_FREQUENT_CHECK;
3270 root 1.1 }
3271    
3272 root 1.171 void noinline
3273 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3274 root 1.1 {
3275 root 1.123 if (expect_false (ev_is_active (w)))
3276 root 1.1 return;
3277    
3278 root 1.228 ev_at (w) += mn_now;
3279 root 1.12
3280 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3281 root 1.13
3282 root 1.248 EV_FREQUENT_CHECK;
3283    
3284     ++timercnt;
3285     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3286 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3287     ANHE_w (timers [ev_active (w)]) = (WT)w;
3288 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3289 root 1.235 upheap (timers, ev_active (w));
3290 root 1.62
3291 root 1.248 EV_FREQUENT_CHECK;
3292    
3293 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3294 root 1.12 }
3295    
3296 root 1.171 void noinline
3297 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3298 root 1.12 {
3299 root 1.166 clear_pending (EV_A_ (W)w);
3300 root 1.123 if (expect_false (!ev_is_active (w)))
3301 root 1.12 return;
3302    
3303 root 1.248 EV_FREQUENT_CHECK;
3304    
3305 root 1.230 {
3306     int active = ev_active (w);
3307 root 1.62
3308 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3309 root 1.151
3310 root 1.248 --timercnt;
3311    
3312     if (expect_true (active < timercnt + HEAP0))
3313 root 1.151 {
3314 root 1.248 timers [active] = timers [timercnt + HEAP0];
3315 root 1.181 adjustheap (timers, timercnt, active);
3316 root 1.151 }
3317 root 1.248 }
3318 root 1.228
3319     ev_at (w) -= mn_now;
3320 root 1.14
3321 root 1.51 ev_stop (EV_A_ (W)w);
3322 root 1.328
3323     EV_FREQUENT_CHECK;
3324 root 1.12 }
3325 root 1.4
3326 root 1.171 void noinline
3327 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3328 root 1.14 {
3329 root 1.248 EV_FREQUENT_CHECK;
3330    
3331 root 1.407 clear_pending (EV_A_ (W)w);
3332 root 1.406
3333 root 1.14 if (ev_is_active (w))
3334     {
3335     if (w->repeat)
3336 root 1.99 {
3337 root 1.228 ev_at (w) = mn_now + w->repeat;
3338 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3339 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3340 root 1.99 }
3341 root 1.14 else
3342 root 1.51 ev_timer_stop (EV_A_ w);
3343 root 1.14 }
3344     else if (w->repeat)
3345 root 1.112 {
3346 root 1.229 ev_at (w) = w->repeat;
3347 root 1.112 ev_timer_start (EV_A_ w);
3348     }
3349 root 1.248
3350     EV_FREQUENT_CHECK;
3351 root 1.14 }
3352    
3353 root 1.301 ev_tstamp
3354 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3355 root 1.301 {
3356     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3357     }
3358    
3359 root 1.140 #if EV_PERIODIC_ENABLE
3360 root 1.171 void noinline
3361 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3362 root 1.12 {
3363 root 1.123 if (expect_false (ev_is_active (w)))
3364 root 1.12 return;
3365 root 1.1
3366 root 1.77 if (w->reschedule_cb)
3367 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3368 root 1.77 else if (w->interval)
3369     {
3370 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3371 root 1.370 periodic_recalc (EV_A_ w);
3372 root 1.77 }
3373 root 1.173 else
3374 root 1.228 ev_at (w) = w->offset;
3375 root 1.12
3376 root 1.248 EV_FREQUENT_CHECK;
3377    
3378     ++periodiccnt;
3379     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3380 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3381     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3382 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3383 root 1.235 upheap (periodics, ev_active (w));
3384 root 1.62
3385 root 1.248 EV_FREQUENT_CHECK;
3386    
3387 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3388 root 1.1 }
3389    
3390 root 1.171 void noinline
3391 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3392 root 1.1 {
3393 root 1.166 clear_pending (EV_A_ (W)w);
3394 root 1.123 if (expect_false (!ev_is_active (w)))
3395 root 1.1 return;
3396    
3397 root 1.248 EV_FREQUENT_CHECK;
3398    
3399 root 1.230 {
3400     int active = ev_active (w);
3401 root 1.62
3402 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3403 root 1.151
3404 root 1.248 --periodiccnt;
3405    
3406     if (expect_true (active < periodiccnt + HEAP0))
3407 root 1.151 {
3408 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3409 root 1.181 adjustheap (periodics, periodiccnt, active);
3410 root 1.151 }
3411 root 1.248 }
3412 root 1.228
3413 root 1.328 ev_stop (EV_A_ (W)w);
3414    
3415 root 1.248 EV_FREQUENT_CHECK;
3416 root 1.1 }
3417    
3418 root 1.171 void noinline
3419 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3420 root 1.77 {
3421 root 1.84 /* TODO: use adjustheap and recalculation */
3422 root 1.77 ev_periodic_stop (EV_A_ w);
3423     ev_periodic_start (EV_A_ w);
3424     }
3425 root 1.93 #endif
3426 root 1.77
3427 root 1.56 #ifndef SA_RESTART
3428     # define SA_RESTART 0
3429     #endif
3430    
3431 root 1.336 #if EV_SIGNAL_ENABLE
3432    
3433 root 1.171 void noinline
3434 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3435 root 1.56 {
3436 root 1.123 if (expect_false (ev_is_active (w)))
3437 root 1.56 return;
3438    
3439 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3440    
3441     #if EV_MULTIPLICITY
3442 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3443 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3444    
3445     signals [w->signum - 1].loop = EV_A;
3446     #endif
3447 root 1.56
3448 root 1.303 EV_FREQUENT_CHECK;
3449    
3450     #if EV_USE_SIGNALFD
3451     if (sigfd == -2)
3452     {
3453     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3454     if (sigfd < 0 && errno == EINVAL)
3455     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3456    
3457     if (sigfd >= 0)
3458     {
3459     fd_intern (sigfd); /* doing it twice will not hurt */
3460    
3461     sigemptyset (&sigfd_set);
3462    
3463     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3464     ev_set_priority (&sigfd_w, EV_MAXPRI);
3465     ev_io_start (EV_A_ &sigfd_w);
3466     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3467     }
3468     }
3469    
3470     if (sigfd >= 0)
3471     {
3472     /* TODO: check .head */
3473     sigaddset (&sigfd_set, w->signum);
3474     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3475 root 1.207
3476 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3477     }
3478 root 1.180 #endif
3479    
3480 root 1.56 ev_start (EV_A_ (W)w, 1);
3481 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3482 root 1.56
3483 root 1.63 if (!((WL)w)->next)
3484 root 1.304 # if EV_USE_SIGNALFD
3485 root 1.306 if (sigfd < 0) /*TODO*/
3486 root 1.304 # endif
3487 root 1.306 {
3488 root 1.322 # ifdef _WIN32
3489 root 1.317 evpipe_init (EV_A);
3490    
3491 root 1.306 signal (w->signum, ev_sighandler);
3492     # else
3493     struct sigaction sa;
3494    
3495     evpipe_init (EV_A);
3496    
3497     sa.sa_handler = ev_sighandler;
3498     sigfillset (&sa.sa_mask);
3499     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3500     sigaction (w->signum, &sa, 0);
3501    
3502 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3503     {
3504     sigemptyset (&sa.sa_mask);
3505     sigaddset (&sa.sa_mask, w->signum);
3506     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3507     }
3508 root 1.67 #endif
3509 root 1.306 }
3510 root 1.248
3511     EV_FREQUENT_CHECK;
3512 root 1.56 }
3513    
3514 root 1.171 void noinline
3515 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3516 root 1.56 {
3517 root 1.166 clear_pending (EV_A_ (W)w);
3518 root 1.123 if (expect_false (!ev_is_active (w)))
3519 root 1.56 return;
3520    
3521 root 1.248 EV_FREQUENT_CHECK;
3522    
3523 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3524 root 1.56 ev_stop (EV_A_ (W)w);
3525    
3526     if (!signals [w->signum - 1].head)
3527 root 1.306 {
3528 root 1.307 #if EV_MULTIPLICITY
3529 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3530 root 1.307 #endif
3531     #if EV_USE_SIGNALFD
3532 root 1.306 if (sigfd >= 0)
3533     {
3534 root 1.321 sigset_t ss;
3535    
3536     sigemptyset (&ss);
3537     sigaddset (&ss, w->signum);
3538 root 1.306 sigdelset (&sigfd_set, w->signum);
3539 root 1.321
3540 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3541 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3542 root 1.306 }
3543     else
3544 root 1.307 #endif
3545 root 1.306 signal (w->signum, SIG_DFL);
3546     }
3547 root 1.248
3548     EV_FREQUENT_CHECK;
3549 root 1.56 }
3550    
3551 root 1.336 #endif
3552    
3553     #if EV_CHILD_ENABLE
3554    
3555 root 1.28 void
3556 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3557 root 1.22 {
3558 root 1.56 #if EV_MULTIPLICITY
3559 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3560 root 1.56 #endif
3561 root 1.123 if (expect_false (ev_is_active (w)))
3562 root 1.22 return;
3563    
3564 root 1.248 EV_FREQUENT_CHECK;
3565    
3566 root 1.51 ev_start (EV_A_ (W)w, 1);
3567 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3568 root 1.248
3569     EV_FREQUENT_CHECK;
3570 root 1.22 }
3571    
3572 root 1.28 void
3573 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3574 root 1.22 {
3575 root 1.166 clear_pending (EV_A_ (W)w);
3576 root 1.123 if (expect_false (!ev_is_active (w)))
3577 root 1.22 return;
3578    
3579 root 1.248 EV_FREQUENT_CHECK;
3580    
3581 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3582 root 1.51 ev_stop (EV_A_ (W)w);
3583 root 1.248
3584     EV_FREQUENT_CHECK;
3585 root 1.22 }
3586    
3587 root 1.336 #endif
3588    
3589 root 1.140 #if EV_STAT_ENABLE
3590    
3591     # ifdef _WIN32
3592 root 1.146 # undef lstat
3593     # define lstat(a,b) _stati64 (a,b)
3594 root 1.140 # endif
3595    
3596 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3597     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3598     #define MIN_STAT_INTERVAL 0.1074891
3599 root 1.143
3600 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3601 root 1.152
3602     #if EV_USE_INOTIFY
3603 root 1.326
3604     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3605     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3606 root 1.152
3607     static void noinline
3608     infy_add (EV_P_ ev_stat *w)
3609     {
3610     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3611    
3612 root 1.318 if (w->wd >= 0)
3613 root 1.152 {
3614 root 1.318 struct statfs sfs;
3615    
3616     /* now local changes will be tracked by inotify, but remote changes won't */
3617     /* unless the filesystem is known to be local, we therefore still poll */
3618     /* also do poll on <2.6.25, but with normal frequency */
3619    
3620     if (!fs_2625)
3621     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3622     else if (!statfs (w->path, &sfs)
3623     && (sfs.f_type == 0x1373 /* devfs */
3624     || sfs.f_type == 0xEF53 /* ext2/3 */
3625     || sfs.f_type == 0x3153464a /* jfs */
3626     || sfs.f_type == 0x52654973 /* reiser3 */
3627     || sfs.f_type == 0x01021994 /* tempfs */
3628     || sfs.f_type == 0x58465342 /* xfs */))
3629     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3630     else
3631     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3632     }
3633     else
3634     {
3635     /* can't use inotify, continue to stat */
3636 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3637 root 1.152
3638 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3639 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3640 root 1.233 /* but an efficiency issue only */
3641 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3642 root 1.152 {
3643 root 1.153 char path [4096];
3644 root 1.152 strcpy (path, w->path);
3645    
3646     do
3647     {
3648     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3649     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3650    
3651     char *pend = strrchr (path, '/');
3652    
3653 root 1.275 if (!pend || pend == path)
3654     break;
3655 root 1.152
3656     *pend = 0;
3657 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3658 root 1.372 }
3659 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3660     }
3661     }
3662 root 1.275
3663     if (w->wd >= 0)
3664 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3665 root 1.152
3666 root 1.318 /* now re-arm timer, if required */
3667     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3668     ev_timer_again (EV_A_ &w->timer);
3669     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3670 root 1.152 }
3671    
3672     static void noinline
3673     infy_del (EV_P_ ev_stat *w)
3674     {
3675     int slot;
3676     int wd = w->wd;
3677    
3678     if (wd < 0)
3679     return;
3680    
3681     w->wd = -2;
3682 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3683 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3684    
3685     /* remove this watcher, if others are watching it, they will rearm */
3686     inotify_rm_watch (fs_fd, wd);
3687     }
3688    
3689     static void noinline
3690     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3691     {
3692     if (slot < 0)
3693 root 1.264 /* overflow, need to check for all hash slots */
3694 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3695 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3696     else
3697     {
3698     WL w_;
3699    
3700 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3701 root 1.152 {
3702     ev_stat *w = (ev_stat *)w_;
3703     w_ = w_->next; /* lets us remove this watcher and all before it */
3704    
3705     if (w->wd == wd || wd == -1)
3706     {
3707     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3708     {
3709 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3710 root 1.152 w->wd = -1;
3711     infy_add (EV_A_ w); /* re-add, no matter what */
3712     }
3713    
3714 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3715 root 1.152 }
3716     }
3717     }
3718     }
3719    
3720     static void
3721     infy_cb (EV_P_ ev_io *w, int revents)
3722     {
3723     char buf [EV_INOTIFY_BUFSIZE];
3724     int ofs;
3725     int len = read (fs_fd, buf, sizeof (buf));
3726    
3727 root 1.326 for (ofs = 0; ofs < len; )
3728     {
3729     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3730     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3731     ofs += sizeof (struct inotify_event) + ev->len;
3732     }
3733 root 1.152 }
3734    
3735 root 1.379 inline_size void ecb_cold
3736 root 1.330 ev_check_2625 (EV_P)
3737     {
3738     /* kernels < 2.6.25 are borked
3739     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3740     */
3741     if (ev_linux_version () < 0x020619)
3742 root 1.273 return;
3743 root 1.264
3744 root 1.273 fs_2625 = 1;
3745     }
3746 root 1.264
3747 root 1.315 inline_size int
3748     infy_newfd (void)
3749     {
3750 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
3751 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3752     if (fd >= 0)
3753     return fd;
3754     #endif
3755     return inotify_init ();
3756     }
3757    
3758 root 1.284 inline_size void
3759 root 1.273 infy_init (EV_P)
3760     {
3761     if (fs_fd != -2)
3762     return;
3763 root 1.264
3764 root 1.273 fs_fd = -1;
3765 root 1.264
3766 root 1.330 ev_check_2625 (EV_A);
3767 root 1.264
3768 root 1.315 fs_fd = infy_newfd ();
3769 root 1.152
3770     if (fs_fd >= 0)
3771     {
3772 root 1.315 fd_intern (fs_fd);
3773 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3774     ev_set_priority (&fs_w, EV_MAXPRI);
3775     ev_io_start (EV_A_ &fs_w);
3776 root 1.317 ev_unref (EV_A);
3777 root 1.152 }
3778     }
3779    
3780 root 1.284 inline_size void
3781 root 1.154 infy_fork (EV_P)
3782     {
3783     int slot;
3784    
3785     if (fs_fd < 0)
3786     return;
3787    
3788 root 1.317 ev_ref (EV_A);
3789 root 1.315 ev_io_stop (EV_A_ &fs_w);
3790 root 1.154 close (fs_fd);
3791 root 1.315 fs_fd = infy_newfd ();
3792    
3793     if (fs_fd >= 0)
3794     {
3795     fd_intern (fs_fd);
3796     ev_io_set (&fs_w, fs_fd, EV_READ);
3797     ev_io_start (EV_A_ &fs_w);
3798 root 1.317 ev_unref (EV_A);
3799 root 1.315 }
3800 root 1.154
3801 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3802 root 1.154 {
3803     WL w_ = fs_hash [slot].head;
3804     fs_hash [slot].head = 0;
3805    
3806     while (w_)
3807     {
3808     ev_stat *w = (ev_stat *)w_;
3809     w_ = w_->next; /* lets us add this watcher */
3810    
3811     w->wd = -1;
3812    
3813     if (fs_fd >= 0)
3814     infy_add (EV_A_ w); /* re-add, no matter what */
3815     else
3816 root 1.318 {
3817     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3818     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3819     ev_timer_again (EV_A_ &w->timer);
3820     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3821     }
3822 root 1.154 }
3823     }
3824     }
3825    
3826 root 1.152 #endif
3827    
3828 root 1.255 #ifdef _WIN32
3829     # define EV_LSTAT(p,b) _stati64 (p, b)
3830     #else
3831     # define EV_LSTAT(p,b) lstat (p, b)
3832     #endif
3833    
3834 root 1.140 void
3835 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3836 root 1.140 {
3837     if (lstat (w->path, &w->attr) < 0)
3838     w->attr.st_nlink = 0;
3839     else if (!w->attr.st_nlink)
3840     w->attr.st_nlink = 1;
3841     }
3842    
3843 root 1.157 static void noinline
3844 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3845     {
3846     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3847    
3848 root 1.320 ev_statdata prev = w->attr;
3849 root 1.140 ev_stat_stat (EV_A_ w);
3850    
3851 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3852     if (
3853 root 1.320 prev.st_dev != w->attr.st_dev
3854     || prev.st_ino != w->attr.st_ino
3855     || prev.st_mode != w->attr.st_mode
3856     || prev.st_nlink != w->attr.st_nlink
3857     || prev.st_uid != w->attr.st_uid
3858     || prev.st_gid != w->attr.st_gid
3859     || prev.st_rdev != w->attr.st_rdev
3860     || prev.st_size != w->attr.st_size
3861     || prev.st_atime != w->attr.st_atime
3862     || prev.st_mtime != w->attr.st_mtime
3863     || prev.st_ctime != w->attr.st_ctime
3864 root 1.156 ) {
3865 root 1.320 /* we only update w->prev on actual differences */
3866     /* in case we test more often than invoke the callback, */
3867     /* to ensure that prev is always different to attr */
3868     w->prev = prev;
3869    
3870 root 1.152 #if EV_USE_INOTIFY
3871 root 1.264 if (fs_fd >= 0)
3872     {
3873     infy_del (EV_A_ w);
3874     infy_add (EV_A_ w);
3875     ev_stat_stat (EV_A_ w); /* avoid race... */
3876     }
3877 root 1.152 #endif
3878    
3879     ev_feed_event (EV_A_ w, EV_STAT);
3880     }
3881 root 1.140 }
3882    
3883     void
3884 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3885 root 1.140 {
3886     if (expect_false (ev_is_active (w)))
3887     return;
3888    
3889     ev_stat_stat (EV_A_ w);
3890    
3891 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3892     w->interval = MIN_STAT_INTERVAL;
3893 root 1.143
3894 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3895 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3896 root 1.152
3897     #if EV_USE_INOTIFY
3898     infy_init (EV_A);
3899    
3900     if (fs_fd >= 0)
3901     infy_add (EV_A_ w);
3902     else
3903     #endif
3904 root 1.318 {
3905     ev_timer_again (EV_A_ &w->timer);
3906     ev_unref (EV_A);
3907     }
3908 root 1.140
3909     ev_start (EV_A_ (W)w, 1);
3910 root 1.248
3911     EV_FREQUENT_CHECK;
3912 root 1.140 }
3913    
3914     void
3915 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3916 root 1.140 {
3917 root 1.166 clear_pending (EV_A_ (W)w);
3918 root 1.140 if (expect_false (!ev_is_active (w)))
3919     return;
3920    
3921 root 1.248 EV_FREQUENT_CHECK;
3922    
3923 root 1.152 #if EV_USE_INOTIFY
3924     infy_del (EV_A_ w);
3925     #endif
3926 root 1.318
3927     if (ev_is_active (&w->timer))
3928     {
3929     ev_ref (EV_A);
3930     ev_timer_stop (EV_A_ &w->timer);
3931     }
3932 root 1.140
3933 root 1.134 ev_stop (EV_A_ (W)w);
3934 root 1.248
3935     EV_FREQUENT_CHECK;
3936 root 1.134 }
3937     #endif
3938    
3939 root 1.164 #if EV_IDLE_ENABLE
3940 root 1.144 void
3941 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
3942 root 1.144 {
3943     if (expect_false (ev_is_active (w)))
3944     return;
3945    
3946 root 1.164 pri_adjust (EV_A_ (W)w);
3947    
3948 root 1.248 EV_FREQUENT_CHECK;
3949    
3950 root 1.164 {
3951     int active = ++idlecnt [ABSPRI (w)];
3952    
3953     ++idleall;
3954     ev_start (EV_A_ (W)w, active);
3955    
3956     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3957     idles [ABSPRI (w)][active - 1] = w;
3958     }
3959 root 1.248
3960     EV_FREQUENT_CHECK;
3961 root 1.144 }
3962    
3963     void
3964 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3965 root 1.144 {
3966 root 1.166 clear_pending (EV_A_ (W)w);
3967 root 1.144 if (expect_false (!ev_is_active (w)))
3968     return;
3969    
3970 root 1.248 EV_FREQUENT_CHECK;
3971    
3972 root 1.144 {
3973 root 1.230 int active = ev_active (w);
3974 root 1.164
3975     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3976 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3977 root 1.164
3978     ev_stop (EV_A_ (W)w);
3979     --idleall;
3980 root 1.144 }
3981 root 1.248
3982     EV_FREQUENT_CHECK;
3983 root 1.144 }
3984 root 1.164 #endif
3985 root 1.144
3986 root 1.337 #if EV_PREPARE_ENABLE
3987 root 1.144 void
3988 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
3989 root 1.144 {
3990     if (expect_false (ev_is_active (w)))
3991     return;
3992    
3993 root 1.248 EV_FREQUENT_CHECK;
3994    
3995 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
3996     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3997     prepares [preparecnt - 1] = w;
3998 root 1.248
3999     EV_FREQUENT_CHECK;
4000 root 1.144 }
4001    
4002     void
4003 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4004 root 1.144 {
4005 root 1.166 clear_pending (EV_A_ (W)w);
4006 root 1.144 if (expect_false (!ev_is_active (w)))
4007     return;
4008    
4009 root 1.248 EV_FREQUENT_CHECK;
4010    
4011 root 1.144 {
4012 root 1.230 int active = ev_active (w);
4013    
4014 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4015 root 1.230 ev_active (prepares [active - 1]) = active;
4016 root 1.144 }
4017    
4018     ev_stop (EV_A_ (W)w);
4019 root 1.248
4020     EV_FREQUENT_CHECK;
4021 root 1.144 }
4022 root 1.337 #endif
4023 root 1.144
4024 root 1.337 #if EV_CHECK_ENABLE
4025 root 1.144 void
4026 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4027 root 1.144 {
4028     if (expect_false (ev_is_active (w)))
4029     return;
4030    
4031 root 1.248 EV_FREQUENT_CHECK;
4032    
4033 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4034     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4035     checks [checkcnt - 1] = w;
4036 root 1.248
4037     EV_FREQUENT_CHECK;
4038 root 1.144 }
4039    
4040     void
4041 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4042 root 1.144 {
4043 root 1.166 clear_pending (EV_A_ (W)w);
4044 root 1.144 if (expect_false (!ev_is_active (w)))
4045     return;
4046    
4047 root 1.248 EV_FREQUENT_CHECK;
4048    
4049 root 1.144 {
4050 root 1.230 int active = ev_active (w);
4051    
4052 root 1.144 checks [active - 1] = checks [--checkcnt];
4053 root 1.230 ev_active (checks [active - 1]) = active;
4054 root 1.144 }
4055    
4056     ev_stop (EV_A_ (W)w);
4057 root 1.248
4058     EV_FREQUENT_CHECK;
4059 root 1.144 }
4060 root 1.337 #endif
4061 root 1.144
4062     #if EV_EMBED_ENABLE
4063     void noinline
4064 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4065 root 1.144 {
4066 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4067 root 1.144 }
4068    
4069     static void
4070 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4071 root 1.144 {
4072     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4073    
4074     if (ev_cb (w))
4075     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4076     else
4077 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4078 root 1.144 }
4079    
4080 root 1.189 static void
4081     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4082     {
4083     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4084    
4085 root 1.195 {
4086 root 1.306 EV_P = w->other;
4087 root 1.195
4088     while (fdchangecnt)
4089     {
4090     fd_reify (EV_A);
4091 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4092 root 1.195 }
4093     }
4094     }
4095    
4096 root 1.261 static void
4097     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4098     {
4099     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4100    
4101 root 1.277 ev_embed_stop (EV_A_ w);
4102    
4103 root 1.261 {
4104 root 1.306 EV_P = w->other;
4105 root 1.261
4106     ev_loop_fork (EV_A);
4107 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4108 root 1.261 }
4109 root 1.277
4110     ev_embed_start (EV_A_ w);
4111 root 1.261 }
4112    
4113 root 1.195 #if 0
4114     static void
4115     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4116     {
4117     ev_idle_stop (EV_A_ idle);
4118 root 1.189 }
4119 root 1.195 #endif
4120 root 1.189
4121 root 1.144 void
4122 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4123 root 1.144 {
4124     if (expect_false (ev_is_active (w)))
4125     return;
4126    
4127     {
4128 root 1.306 EV_P = w->other;
4129 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4130 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4131 root 1.144 }
4132    
4133 root 1.248 EV_FREQUENT_CHECK;
4134    
4135 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4136     ev_io_start (EV_A_ &w->io);
4137    
4138 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4139     ev_set_priority (&w->prepare, EV_MINPRI);
4140     ev_prepare_start (EV_A_ &w->prepare);
4141    
4142 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4143     ev_fork_start (EV_A_ &w->fork);
4144    
4145 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4146    
4147 root 1.144 ev_start (EV_A_ (W)w, 1);
4148 root 1.248
4149     EV_FREQUENT_CHECK;
4150 root 1.144 }
4151    
4152     void
4153 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4154 root 1.144 {
4155 root 1.166 clear_pending (EV_A_ (W)w);
4156 root 1.144 if (expect_false (!ev_is_active (w)))
4157     return;
4158    
4159 root 1.248 EV_FREQUENT_CHECK;
4160    
4161 root 1.261 ev_io_stop (EV_A_ &w->io);
4162 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4163 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4164 root 1.248
4165 root 1.328 ev_stop (EV_A_ (W)w);
4166    
4167 root 1.248 EV_FREQUENT_CHECK;
4168 root 1.144 }
4169     #endif
4170    
4171 root 1.147 #if EV_FORK_ENABLE
4172     void
4173 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4174 root 1.147 {
4175     if (expect_false (ev_is_active (w)))
4176     return;
4177    
4178 root 1.248 EV_FREQUENT_CHECK;
4179    
4180 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4181     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4182     forks [forkcnt - 1] = w;
4183 root 1.248
4184     EV_FREQUENT_CHECK;
4185 root 1.147 }
4186    
4187     void
4188 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4189 root 1.147 {
4190 root 1.166 clear_pending (EV_A_ (W)w);
4191 root 1.147 if (expect_false (!ev_is_active (w)))
4192     return;
4193    
4194 root 1.248 EV_FREQUENT_CHECK;
4195    
4196 root 1.147 {
4197 root 1.230 int active = ev_active (w);
4198    
4199 root 1.147 forks [active - 1] = forks [--forkcnt];
4200 root 1.230 ev_active (forks [active - 1]) = active;
4201 root 1.147 }
4202    
4203     ev_stop (EV_A_ (W)w);
4204 root 1.248
4205     EV_FREQUENT_CHECK;
4206 root 1.147 }
4207     #endif
4208    
4209 root 1.360 #if EV_CLEANUP_ENABLE
4210     void
4211 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4212 root 1.360 {
4213     if (expect_false (ev_is_active (w)))
4214     return;
4215    
4216     EV_FREQUENT_CHECK;
4217    
4218     ev_start (EV_A_ (W)w, ++cleanupcnt);
4219     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4220     cleanups [cleanupcnt - 1] = w;
4221    
4222 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4223     ev_unref (EV_A);
4224 root 1.360 EV_FREQUENT_CHECK;
4225     }
4226    
4227     void
4228 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4229 root 1.360 {
4230     clear_pending (EV_A_ (W)w);
4231     if (expect_false (!ev_is_active (w)))
4232     return;
4233    
4234     EV_FREQUENT_CHECK;
4235 root 1.362 ev_ref (EV_A);
4236 root 1.360
4237     {
4238     int active = ev_active (w);
4239    
4240     cleanups [active - 1] = cleanups [--cleanupcnt];
4241     ev_active (cleanups [active - 1]) = active;
4242     }
4243    
4244     ev_stop (EV_A_ (W)w);
4245    
4246     EV_FREQUENT_CHECK;
4247     }
4248     #endif
4249    
4250 root 1.207 #if EV_ASYNC_ENABLE
4251     void
4252 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4253 root 1.207 {
4254     if (expect_false (ev_is_active (w)))
4255     return;
4256    
4257 root 1.352 w->sent = 0;
4258    
4259 root 1.207 evpipe_init (EV_A);
4260    
4261 root 1.248 EV_FREQUENT_CHECK;
4262    
4263 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4264     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4265     asyncs [asynccnt - 1] = w;
4266 root 1.248
4267     EV_FREQUENT_CHECK;
4268 root 1.207 }
4269    
4270     void
4271 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4272 root 1.207 {
4273     clear_pending (EV_A_ (W)w);
4274     if (expect_false (!ev_is_active (w)))
4275     return;
4276    
4277 root 1.248 EV_FREQUENT_CHECK;
4278    
4279 root 1.207 {
4280 root 1.230 int active = ev_active (w);
4281    
4282 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4283 root 1.230 ev_active (asyncs [active - 1]) = active;
4284 root 1.207 }
4285    
4286     ev_stop (EV_A_ (W)w);
4287 root 1.248
4288     EV_FREQUENT_CHECK;
4289 root 1.207 }
4290    
4291     void
4292 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4293 root 1.207 {
4294     w->sent = 1;
4295 root 1.307 evpipe_write (EV_A_ &async_pending);
4296 root 1.207 }
4297     #endif
4298    
4299 root 1.1 /*****************************************************************************/
4300 root 1.10
4301 root 1.16 struct ev_once
4302     {
4303 root 1.136 ev_io io;
4304     ev_timer to;
4305 root 1.16 void (*cb)(int revents, void *arg);
4306     void *arg;
4307     };
4308    
4309     static void
4310 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4311 root 1.16 {
4312     void (*cb)(int revents, void *arg) = once->cb;
4313     void *arg = once->arg;
4314    
4315 root 1.259 ev_io_stop (EV_A_ &once->io);
4316 root 1.51 ev_timer_stop (EV_A_ &once->to);
4317 root 1.69 ev_free (once);
4318 root 1.16
4319     cb (revents, arg);
4320     }
4321    
4322     static void
4323 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4324 root 1.16 {
4325 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4326    
4327     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4328 root 1.16 }
4329    
4330     static void
4331 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4332 root 1.16 {
4333 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4334    
4335     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4336 root 1.16 }
4337    
4338     void
4339 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4340 root 1.16 {
4341 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4342 root 1.16
4343 root 1.123 if (expect_false (!once))
4344 root 1.16 {
4345 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4346 root 1.123 return;
4347     }
4348    
4349     once->cb = cb;
4350     once->arg = arg;
4351 root 1.16
4352 root 1.123 ev_init (&once->io, once_cb_io);
4353     if (fd >= 0)
4354     {
4355     ev_io_set (&once->io, fd, events);
4356     ev_io_start (EV_A_ &once->io);
4357     }
4358 root 1.16
4359 root 1.123 ev_init (&once->to, once_cb_to);
4360     if (timeout >= 0.)
4361     {
4362     ev_timer_set (&once->to, timeout, 0.);
4363     ev_timer_start (EV_A_ &once->to);
4364 root 1.16 }
4365     }
4366    
4367 root 1.282 /*****************************************************************************/
4368    
4369 root 1.288 #if EV_WALK_ENABLE
4370 root 1.379 void ecb_cold
4371 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4372 root 1.282 {
4373     int i, j;
4374     ev_watcher_list *wl, *wn;
4375    
4376     if (types & (EV_IO | EV_EMBED))
4377     for (i = 0; i < anfdmax; ++i)
4378     for (wl = anfds [i].head; wl; )
4379     {
4380     wn = wl->next;
4381    
4382     #if EV_EMBED_ENABLE
4383     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4384     {
4385     if (types & EV_EMBED)
4386     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4387     }
4388     else
4389     #endif
4390     #if EV_USE_INOTIFY
4391     if (ev_cb ((ev_io *)wl) == infy_cb)
4392     ;
4393     else
4394     #endif
4395 root 1.288 if ((ev_io *)wl != &pipe_w)
4396 root 1.282 if (types & EV_IO)
4397     cb (EV_A_ EV_IO, wl);
4398    
4399     wl = wn;
4400     }
4401    
4402     if (types & (EV_TIMER | EV_STAT))
4403     for (i = timercnt + HEAP0; i-- > HEAP0; )
4404     #if EV_STAT_ENABLE
4405     /*TODO: timer is not always active*/
4406     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4407     {
4408     if (types & EV_STAT)
4409     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4410     }
4411     else
4412     #endif
4413     if (types & EV_TIMER)
4414     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4415    
4416     #if EV_PERIODIC_ENABLE
4417     if (types & EV_PERIODIC)
4418     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4419     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4420     #endif
4421    
4422     #if EV_IDLE_ENABLE
4423     if (types & EV_IDLE)
4424 root 1.390 for (j = NUMPRI; j--; )
4425 root 1.282 for (i = idlecnt [j]; i--; )
4426     cb (EV_A_ EV_IDLE, idles [j][i]);
4427     #endif
4428    
4429     #if EV_FORK_ENABLE
4430     if (types & EV_FORK)
4431     for (i = forkcnt; i--; )
4432     if (ev_cb (forks [i]) != embed_fork_cb)
4433     cb (EV_A_ EV_FORK, forks [i]);
4434     #endif
4435    
4436     #if EV_ASYNC_ENABLE
4437     if (types & EV_ASYNC)
4438     for (i = asynccnt; i--; )
4439     cb (EV_A_ EV_ASYNC, asyncs [i]);
4440     #endif
4441    
4442 root 1.337 #if EV_PREPARE_ENABLE
4443 root 1.282 if (types & EV_PREPARE)
4444     for (i = preparecnt; i--; )
4445 root 1.337 # if EV_EMBED_ENABLE
4446 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4447 root 1.337 # endif
4448     cb (EV_A_ EV_PREPARE, prepares [i]);
4449 root 1.282 #endif
4450    
4451 root 1.337 #if EV_CHECK_ENABLE
4452 root 1.282 if (types & EV_CHECK)
4453     for (i = checkcnt; i--; )
4454     cb (EV_A_ EV_CHECK, checks [i]);
4455 root 1.337 #endif
4456 root 1.282
4457 root 1.337 #if EV_SIGNAL_ENABLE
4458 root 1.282 if (types & EV_SIGNAL)
4459 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4460 root 1.282 for (wl = signals [i].head; wl; )
4461     {
4462     wn = wl->next;
4463     cb (EV_A_ EV_SIGNAL, wl);
4464     wl = wn;
4465     }
4466 root 1.337 #endif
4467 root 1.282
4468 root 1.337 #if EV_CHILD_ENABLE
4469 root 1.282 if (types & EV_CHILD)
4470 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4471 root 1.282 for (wl = childs [i]; wl; )
4472     {
4473     wn = wl->next;
4474     cb (EV_A_ EV_CHILD, wl);
4475     wl = wn;
4476     }
4477 root 1.337 #endif
4478 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4479     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4480     }
4481     #endif
4482    
4483 root 1.188 #if EV_MULTIPLICITY
4484     #include "ev_wrap.h"
4485     #endif
4486