ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.428
Committed: Tue May 8 15:44:09 2012 UTC (12 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.427: +6 -3 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.418 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206     # include <windows.h>
207 root 1.428 # include <winsock2.h>
208 root 1.103 # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246     # error "unable to find value for NSIG, please report"
247 root 1.336 /* to make it compile regardless, just remove the above line, */
248     /* but consider reporting it, too! :) */
249 root 1.306 # define EV_NSIG 65
250 root 1.305 #endif
251    
252 root 1.373 #ifndef EV_USE_FLOOR
253     # define EV_USE_FLOOR 0
254     #endif
255    
256 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
257     # if __linux && __GLIBC__ >= 2
258 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 root 1.274 # else
260     # define EV_USE_CLOCK_SYSCALL 0
261     # endif
262     #endif
263    
264 root 1.29 #ifndef EV_USE_MONOTONIC
265 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 root 1.253 # else
268     # define EV_USE_MONOTONIC 0
269     # endif
270 root 1.37 #endif
271    
272 root 1.118 #ifndef EV_USE_REALTIME
273 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 root 1.118 #endif
275    
276 root 1.193 #ifndef EV_USE_NANOSLEEP
277 root 1.253 # if _POSIX_C_SOURCE >= 199309L
278 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 root 1.253 # else
280     # define EV_USE_NANOSLEEP 0
281     # endif
282 root 1.193 #endif
283    
284 root 1.29 #ifndef EV_USE_SELECT
285 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 root 1.10 #endif
287    
288 root 1.59 #ifndef EV_USE_POLL
289 root 1.104 # ifdef _WIN32
290     # define EV_USE_POLL 0
291     # else
292 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 root 1.104 # endif
294 root 1.41 #endif
295    
296 root 1.29 #ifndef EV_USE_EPOLL
297 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 root 1.220 # else
300     # define EV_USE_EPOLL 0
301     # endif
302 root 1.10 #endif
303    
304 root 1.44 #ifndef EV_USE_KQUEUE
305     # define EV_USE_KQUEUE 0
306     #endif
307    
308 root 1.118 #ifndef EV_USE_PORT
309     # define EV_USE_PORT 0
310 root 1.40 #endif
311    
312 root 1.152 #ifndef EV_USE_INOTIFY
313 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
315 root 1.220 # else
316     # define EV_USE_INOTIFY 0
317     # endif
318 root 1.152 #endif
319    
320 root 1.149 #ifndef EV_PID_HASHSIZE
321 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 root 1.149 #endif
323    
324 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
325 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 root 1.152 #endif
327    
328 root 1.220 #ifndef EV_USE_EVENTFD
329     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
331 root 1.220 # else
332     # define EV_USE_EVENTFD 0
333     # endif
334     #endif
335    
336 root 1.303 #ifndef EV_USE_SIGNALFD
337 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 root 1.303 # else
340     # define EV_USE_SIGNALFD 0
341     # endif
342     #endif
343    
344 root 1.249 #if 0 /* debugging */
345 root 1.250 # define EV_VERIFY 3
346 root 1.249 # define EV_USE_4HEAP 1
347     # define EV_HEAP_CACHE_AT 1
348     #endif
349    
350 root 1.250 #ifndef EV_VERIFY
351 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 root 1.250 #endif
353    
354 root 1.243 #ifndef EV_USE_4HEAP
355 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
356 root 1.243 #endif
357    
358     #ifndef EV_HEAP_CACHE_AT
359 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 root 1.243 #endif
361    
362 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363     /* which makes programs even slower. might work on other unices, too. */
364     #if EV_USE_CLOCK_SYSCALL
365 root 1.423 # include <sys/syscall.h>
366 root 1.291 # ifdef SYS_clock_gettime
367     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368     # undef EV_USE_MONOTONIC
369     # define EV_USE_MONOTONIC 1
370     # else
371     # undef EV_USE_CLOCK_SYSCALL
372     # define EV_USE_CLOCK_SYSCALL 0
373     # endif
374     #endif
375    
376 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
377 root 1.40
378 root 1.325 #ifdef _AIX
379     /* AIX has a completely broken poll.h header */
380     # undef EV_USE_POLL
381     # define EV_USE_POLL 0
382     #endif
383    
384 root 1.40 #ifndef CLOCK_MONOTONIC
385     # undef EV_USE_MONOTONIC
386     # define EV_USE_MONOTONIC 0
387     #endif
388    
389 root 1.31 #ifndef CLOCK_REALTIME
390 root 1.40 # undef EV_USE_REALTIME
391 root 1.31 # define EV_USE_REALTIME 0
392     #endif
393 root 1.40
394 root 1.152 #if !EV_STAT_ENABLE
395 root 1.185 # undef EV_USE_INOTIFY
396 root 1.152 # define EV_USE_INOTIFY 0
397     #endif
398    
399 root 1.193 #if !EV_USE_NANOSLEEP
400 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
401 root 1.416 # if !defined _WIN32 && !defined __hpux
402 root 1.193 # include <sys/select.h>
403     # endif
404     #endif
405    
406 root 1.152 #if EV_USE_INOTIFY
407 root 1.273 # include <sys/statfs.h>
408 root 1.152 # include <sys/inotify.h>
409 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410     # ifndef IN_DONT_FOLLOW
411     # undef EV_USE_INOTIFY
412     # define EV_USE_INOTIFY 0
413     # endif
414 root 1.152 #endif
415    
416 root 1.185 #if EV_SELECT_IS_WINSOCKET
417     # include <winsock.h>
418     #endif
419    
420 root 1.220 #if EV_USE_EVENTFD
421     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
422 root 1.221 # include <stdint.h>
423 root 1.303 # ifndef EFD_NONBLOCK
424     # define EFD_NONBLOCK O_NONBLOCK
425     # endif
426     # ifndef EFD_CLOEXEC
427 root 1.311 # ifdef O_CLOEXEC
428     # define EFD_CLOEXEC O_CLOEXEC
429     # else
430     # define EFD_CLOEXEC 02000000
431     # endif
432 root 1.303 # endif
433 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
434 root 1.220 #endif
435    
436 root 1.303 #if EV_USE_SIGNALFD
437 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
438     # include <stdint.h>
439     # ifndef SFD_NONBLOCK
440     # define SFD_NONBLOCK O_NONBLOCK
441     # endif
442     # ifndef SFD_CLOEXEC
443     # ifdef O_CLOEXEC
444     # define SFD_CLOEXEC O_CLOEXEC
445     # else
446     # define SFD_CLOEXEC 02000000
447     # endif
448     # endif
449 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
450 root 1.314
451     struct signalfd_siginfo
452     {
453     uint32_t ssi_signo;
454     char pad[128 - sizeof (uint32_t)];
455     };
456 root 1.303 #endif
457    
458 root 1.40 /**/
459 root 1.1
460 root 1.250 #if EV_VERIFY >= 3
461 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
462 root 1.248 #else
463     # define EV_FREQUENT_CHECK do { } while (0)
464     #endif
465    
466 root 1.176 /*
467 root 1.373 * This is used to work around floating point rounding problems.
468 root 1.177 * This value is good at least till the year 4000.
469 root 1.176 */
470 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
471     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
472 root 1.176
473 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
474 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
475 root 1.1
476 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
477 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
478 root 1.347
479 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
480     /* ECB.H BEGIN */
481     /*
482     * libecb - http://software.schmorp.de/pkg/libecb
483     *
484 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
485 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
486     * All rights reserved.
487     *
488     * Redistribution and use in source and binary forms, with or without modifica-
489     * tion, are permitted provided that the following conditions are met:
490     *
491     * 1. Redistributions of source code must retain the above copyright notice,
492     * this list of conditions and the following disclaimer.
493     *
494     * 2. Redistributions in binary form must reproduce the above copyright
495     * notice, this list of conditions and the following disclaimer in the
496     * documentation and/or other materials provided with the distribution.
497     *
498     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
499     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
500     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
501     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
502     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
503     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
504     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
505     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
506     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
507     * OF THE POSSIBILITY OF SUCH DAMAGE.
508     */
509    
510     #ifndef ECB_H
511     #define ECB_H
512    
513     #ifdef _WIN32
514     typedef signed char int8_t;
515     typedef unsigned char uint8_t;
516     typedef signed short int16_t;
517     typedef unsigned short uint16_t;
518     typedef signed int int32_t;
519     typedef unsigned int uint32_t;
520     #if __GNUC__
521     typedef signed long long int64_t;
522     typedef unsigned long long uint64_t;
523     #else /* _MSC_VER || __BORLANDC__ */
524     typedef signed __int64 int64_t;
525     typedef unsigned __int64 uint64_t;
526     #endif
527     #else
528     #include <inttypes.h>
529     #endif
530 root 1.379
531     /* many compilers define _GNUC_ to some versions but then only implement
532     * what their idiot authors think are the "more important" extensions,
533 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
534 root 1.379 * or so.
535     * we try to detect these and simply assume they are not gcc - if they have
536     * an issue with that they should have done it right in the first place.
537     */
538     #ifndef ECB_GCC_VERSION
539 root 1.417 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
540 root 1.379 #define ECB_GCC_VERSION(major,minor) 0
541     #else
542     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
543     #endif
544     #endif
545    
546 root 1.391 /*****************************************************************************/
547    
548     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
549     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
550    
551 root 1.410 #if ECB_NO_THREADS
552     # define ECB_NO_SMP 1
553     #endif
554    
555 root 1.391 #if ECB_NO_THREADS || ECB_NO_SMP
556 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
557 root 1.40 #endif
558    
559 root 1.383 #ifndef ECB_MEMORY_FENCE
560 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
561 root 1.404 #if __i386 || __i386__
562 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
563 root 1.391 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
564     #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
565 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
566 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
567     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
568 root 1.391 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
569 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
570     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
571 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
572     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
573 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
574 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
575     || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
576 root 1.394 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
577 root 1.404 #elif __sparc || __sparc__
578 root 1.405 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
579 root 1.408 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
580 root 1.405 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
581 root 1.417 #elif defined __s390__ || defined __s390x__
582 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
583 root 1.417 #elif defined __mips__
584 root 1.412 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
585 root 1.419 #elif defined __alpha__
586     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
587 root 1.383 #endif
588     #endif
589     #endif
590    
591     #ifndef ECB_MEMORY_FENCE
592 root 1.417 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
593 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
594 root 1.392 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
595     /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
596 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
597     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
598     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
599     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
600     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
601 root 1.417 #elif defined _WIN32
602 root 1.388 #include <WinNT.h>
603 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
604 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
605     #include <mbarrier.h>
606     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
607     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
608     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
609 root 1.413 #elif __xlC__
610 root 1.414 #define ECB_MEMORY_FENCE __sync ()
611 root 1.383 #endif
612     #endif
613    
614     #ifndef ECB_MEMORY_FENCE
615 root 1.392 #if !ECB_AVOID_PTHREADS
616     /*
617     * if you get undefined symbol references to pthread_mutex_lock,
618     * or failure to find pthread.h, then you should implement
619     * the ECB_MEMORY_FENCE operations for your cpu/compiler
620     * OR provide pthread.h and link against the posix thread library
621     * of your system.
622     */
623     #include <pthread.h>
624     #define ECB_NEEDS_PTHREADS 1
625     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
626    
627     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
628     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
629     #endif
630     #endif
631 root 1.383
632 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
633 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
634 root 1.392 #endif
635    
636 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
637 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
638     #endif
639    
640 root 1.391 /*****************************************************************************/
641    
642     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
643    
644     #if __cplusplus
645     #define ecb_inline static inline
646     #elif ECB_GCC_VERSION(2,5)
647     #define ecb_inline static __inline__
648     #elif ECB_C99
649     #define ecb_inline static inline
650     #else
651     #define ecb_inline static
652     #endif
653    
654     #if ECB_GCC_VERSION(3,3)
655     #define ecb_restrict __restrict__
656     #elif ECB_C99
657     #define ecb_restrict restrict
658     #else
659     #define ecb_restrict
660     #endif
661    
662     typedef int ecb_bool;
663    
664     #define ECB_CONCAT_(a, b) a ## b
665     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
666     #define ECB_STRINGIFY_(a) # a
667     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
668    
669     #define ecb_function_ ecb_inline
670    
671 root 1.379 #if ECB_GCC_VERSION(3,1)
672     #define ecb_attribute(attrlist) __attribute__(attrlist)
673     #define ecb_is_constant(expr) __builtin_constant_p (expr)
674     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
675     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
676     #else
677     #define ecb_attribute(attrlist)
678     #define ecb_is_constant(expr) 0
679     #define ecb_expect(expr,value) (expr)
680     #define ecb_prefetch(addr,rw,locality)
681     #endif
682    
683 root 1.391 /* no emulation for ecb_decltype */
684     #if ECB_GCC_VERSION(4,5)
685     #define ecb_decltype(x) __decltype(x)
686     #elif ECB_GCC_VERSION(3,0)
687     #define ecb_decltype(x) __typeof(x)
688     #endif
689    
690 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
691     #define ecb_noreturn ecb_attribute ((__noreturn__))
692     #define ecb_unused ecb_attribute ((__unused__))
693     #define ecb_const ecb_attribute ((__const__))
694     #define ecb_pure ecb_attribute ((__pure__))
695    
696     #if ECB_GCC_VERSION(4,3)
697     #define ecb_artificial ecb_attribute ((__artificial__))
698     #define ecb_hot ecb_attribute ((__hot__))
699     #define ecb_cold ecb_attribute ((__cold__))
700     #else
701     #define ecb_artificial
702     #define ecb_hot
703     #define ecb_cold
704     #endif
705    
706     /* put around conditional expressions if you are very sure that the */
707     /* expression is mostly true or mostly false. note that these return */
708     /* booleans, not the expression. */
709     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
710     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
711 root 1.391 /* for compatibility to the rest of the world */
712     #define ecb_likely(expr) ecb_expect_true (expr)
713     #define ecb_unlikely(expr) ecb_expect_false (expr)
714    
715     /* count trailing zero bits and count # of one bits */
716     #if ECB_GCC_VERSION(3,4)
717     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
718     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
719     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
720     #define ecb_ctz32(x) __builtin_ctz (x)
721     #define ecb_ctz64(x) __builtin_ctzll (x)
722     #define ecb_popcount32(x) __builtin_popcount (x)
723     /* no popcountll */
724     #else
725     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
726     ecb_function_ int
727     ecb_ctz32 (uint32_t x)
728     {
729     int r = 0;
730    
731     x &= ~x + 1; /* this isolates the lowest bit */
732    
733     #if ECB_branchless_on_i386
734     r += !!(x & 0xaaaaaaaa) << 0;
735     r += !!(x & 0xcccccccc) << 1;
736     r += !!(x & 0xf0f0f0f0) << 2;
737     r += !!(x & 0xff00ff00) << 3;
738     r += !!(x & 0xffff0000) << 4;
739     #else
740     if (x & 0xaaaaaaaa) r += 1;
741     if (x & 0xcccccccc) r += 2;
742     if (x & 0xf0f0f0f0) r += 4;
743     if (x & 0xff00ff00) r += 8;
744     if (x & 0xffff0000) r += 16;
745     #endif
746    
747     return r;
748     }
749    
750     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
751     ecb_function_ int
752     ecb_ctz64 (uint64_t x)
753     {
754     int shift = x & 0xffffffffU ? 0 : 32;
755     return ecb_ctz32 (x >> shift) + shift;
756     }
757    
758     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
759     ecb_function_ int
760     ecb_popcount32 (uint32_t x)
761     {
762     x -= (x >> 1) & 0x55555555;
763     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
764     x = ((x >> 4) + x) & 0x0f0f0f0f;
765     x *= 0x01010101;
766    
767     return x >> 24;
768     }
769    
770     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
771     ecb_function_ int ecb_ld32 (uint32_t x)
772     {
773     int r = 0;
774    
775     if (x >> 16) { x >>= 16; r += 16; }
776     if (x >> 8) { x >>= 8; r += 8; }
777     if (x >> 4) { x >>= 4; r += 4; }
778     if (x >> 2) { x >>= 2; r += 2; }
779     if (x >> 1) { r += 1; }
780    
781     return r;
782     }
783    
784     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
785     ecb_function_ int ecb_ld64 (uint64_t x)
786     {
787     int r = 0;
788    
789     if (x >> 32) { x >>= 32; r += 32; }
790    
791     return r + ecb_ld32 (x);
792     }
793     #endif
794    
795 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
796     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
797     {
798     return ( (x * 0x0802U & 0x22110U)
799     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
800     }
801    
802     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
803     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
804     {
805     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
806     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
807     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
808     x = ( x >> 8 ) | ( x << 8);
809    
810     return x;
811     }
812    
813     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
814     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
815     {
816     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
817     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
818     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
819     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
820     x = ( x >> 16 ) | ( x << 16);
821    
822     return x;
823     }
824    
825 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
826     /* so for this version we are lazy */
827     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
828     ecb_function_ int
829     ecb_popcount64 (uint64_t x)
830     {
831     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
832     }
833    
834     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
835     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
836     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
837     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
838     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
839     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
840     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
841     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
842    
843     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
844     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
845     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
846     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
847     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
848     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
849     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
850     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
851    
852     #if ECB_GCC_VERSION(4,3)
853     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
854     #define ecb_bswap32(x) __builtin_bswap32 (x)
855     #define ecb_bswap64(x) __builtin_bswap64 (x)
856     #else
857     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
858     ecb_function_ uint16_t
859     ecb_bswap16 (uint16_t x)
860     {
861     return ecb_rotl16 (x, 8);
862     }
863    
864     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
865     ecb_function_ uint32_t
866     ecb_bswap32 (uint32_t x)
867     {
868     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
869     }
870    
871     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
872     ecb_function_ uint64_t
873     ecb_bswap64 (uint64_t x)
874     {
875     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
876     }
877     #endif
878    
879     #if ECB_GCC_VERSION(4,5)
880     #define ecb_unreachable() __builtin_unreachable ()
881     #else
882     /* this seems to work fine, but gcc always emits a warning for it :/ */
883 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
884     ecb_inline void ecb_unreachable (void) { }
885 root 1.391 #endif
886    
887     /* try to tell the compiler that some condition is definitely true */
888     #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
889    
890 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
891     ecb_inline unsigned char
892 root 1.391 ecb_byteorder_helper (void)
893     {
894     const uint32_t u = 0x11223344;
895     return *(unsigned char *)&u;
896     }
897    
898 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
899     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
900     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
901     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
902 root 1.391
903     #if ECB_GCC_VERSION(3,0) || ECB_C99
904     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
905     #else
906     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
907     #endif
908    
909 root 1.398 #if __cplusplus
910     template<typename T>
911     static inline T ecb_div_rd (T val, T div)
912     {
913     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
914     }
915     template<typename T>
916     static inline T ecb_div_ru (T val, T div)
917     {
918     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
919     }
920     #else
921     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
922     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
923     #endif
924    
925 root 1.391 #if ecb_cplusplus_does_not_suck
926     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
927     template<typename T, int N>
928     static inline int ecb_array_length (const T (&arr)[N])
929     {
930     return N;
931     }
932     #else
933     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
934     #endif
935    
936     #endif
937    
938     /* ECB.H END */
939 root 1.379
940 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
941 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
942 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
943     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
944 sf-exg 1.402 * libev, in which cases the memory fences become nops.
945 root 1.396 * alternatively, you can remove this #error and link against libpthread,
946     * which will then provide the memory fences.
947     */
948     # error "memory fences not defined for your architecture, please report"
949     #endif
950    
951     #ifndef ECB_MEMORY_FENCE
952     # define ECB_MEMORY_FENCE do { } while (0)
953     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
954     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
955 root 1.392 #endif
956    
957 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
958     #define expect_true(cond) ecb_expect_true (cond)
959     #define noinline ecb_noinline
960    
961     #define inline_size ecb_inline
962 root 1.169
963 root 1.338 #if EV_FEATURE_CODE
964 root 1.379 # define inline_speed ecb_inline
965 root 1.338 #else
966 root 1.169 # define inline_speed static noinline
967     #endif
968 root 1.40
969 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
970    
971     #if EV_MINPRI == EV_MAXPRI
972     # define ABSPRI(w) (((W)w), 0)
973     #else
974     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
975     #endif
976 root 1.42
977 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
978 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
979 root 1.103
980 root 1.136 typedef ev_watcher *W;
981     typedef ev_watcher_list *WL;
982     typedef ev_watcher_time *WT;
983 root 1.10
984 root 1.229 #define ev_active(w) ((W)(w))->active
985 root 1.228 #define ev_at(w) ((WT)(w))->at
986    
987 root 1.279 #if EV_USE_REALTIME
988 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
989 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
990 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
991     #endif
992    
993     #if EV_USE_MONOTONIC
994 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
995 root 1.198 #endif
996 root 1.54
997 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
998     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
999     #endif
1000     #ifndef EV_WIN32_HANDLE_TO_FD
1001 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1002 root 1.313 #endif
1003     #ifndef EV_WIN32_CLOSE_FD
1004     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1005     #endif
1006    
1007 root 1.103 #ifdef _WIN32
1008 root 1.98 # include "ev_win32.c"
1009     #endif
1010 root 1.67
1011 root 1.53 /*****************************************************************************/
1012 root 1.1
1013 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1014    
1015     #if EV_USE_FLOOR
1016     # include <math.h>
1017     # define ev_floor(v) floor (v)
1018     #else
1019    
1020     #include <float.h>
1021    
1022     /* a floor() replacement function, should be independent of ev_tstamp type */
1023     static ev_tstamp noinline
1024     ev_floor (ev_tstamp v)
1025     {
1026     /* the choice of shift factor is not terribly important */
1027     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1028     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1029     #else
1030     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1031     #endif
1032    
1033     /* argument too large for an unsigned long? */
1034     if (expect_false (v >= shift))
1035     {
1036     ev_tstamp f;
1037    
1038     if (v == v - 1.)
1039     return v; /* very large number */
1040    
1041     f = shift * ev_floor (v * (1. / shift));
1042     return f + ev_floor (v - f);
1043     }
1044    
1045     /* special treatment for negative args? */
1046     if (expect_false (v < 0.))
1047     {
1048     ev_tstamp f = -ev_floor (-v);
1049    
1050     return f - (f == v ? 0 : 1);
1051     }
1052    
1053     /* fits into an unsigned long */
1054     return (unsigned long)v;
1055     }
1056    
1057     #endif
1058    
1059     /*****************************************************************************/
1060    
1061 root 1.356 #ifdef __linux
1062     # include <sys/utsname.h>
1063     #endif
1064    
1065 root 1.379 static unsigned int noinline ecb_cold
1066 root 1.355 ev_linux_version (void)
1067     {
1068     #ifdef __linux
1069 root 1.359 unsigned int v = 0;
1070 root 1.355 struct utsname buf;
1071     int i;
1072     char *p = buf.release;
1073    
1074     if (uname (&buf))
1075     return 0;
1076    
1077     for (i = 3+1; --i; )
1078     {
1079     unsigned int c = 0;
1080    
1081     for (;;)
1082     {
1083     if (*p >= '0' && *p <= '9')
1084     c = c * 10 + *p++ - '0';
1085     else
1086     {
1087     p += *p == '.';
1088     break;
1089     }
1090     }
1091    
1092     v = (v << 8) | c;
1093     }
1094    
1095     return v;
1096     #else
1097     return 0;
1098     #endif
1099     }
1100    
1101     /*****************************************************************************/
1102    
1103 root 1.331 #if EV_AVOID_STDIO
1104 root 1.379 static void noinline ecb_cold
1105 root 1.331 ev_printerr (const char *msg)
1106     {
1107     write (STDERR_FILENO, msg, strlen (msg));
1108     }
1109     #endif
1110    
1111 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1112 root 1.69
1113 root 1.379 void ecb_cold
1114 root 1.420 ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
1115 root 1.69 {
1116     syserr_cb = cb;
1117     }
1118    
1119 root 1.379 static void noinline ecb_cold
1120 root 1.269 ev_syserr (const char *msg)
1121 root 1.69 {
1122 root 1.70 if (!msg)
1123     msg = "(libev) system error";
1124    
1125 root 1.69 if (syserr_cb)
1126 root 1.70 syserr_cb (msg);
1127 root 1.69 else
1128     {
1129 root 1.330 #if EV_AVOID_STDIO
1130 root 1.331 ev_printerr (msg);
1131     ev_printerr (": ");
1132 root 1.365 ev_printerr (strerror (errno));
1133 root 1.331 ev_printerr ("\n");
1134 root 1.330 #else
1135 root 1.70 perror (msg);
1136 root 1.330 #endif
1137 root 1.69 abort ();
1138     }
1139     }
1140    
1141 root 1.224 static void *
1142     ev_realloc_emul (void *ptr, long size)
1143     {
1144 root 1.334 #if __GLIBC__
1145     return realloc (ptr, size);
1146     #else
1147 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
1148 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1149 root 1.224 * the single unix specification, so work around them here.
1150     */
1151 root 1.333
1152 root 1.224 if (size)
1153     return realloc (ptr, size);
1154    
1155     free (ptr);
1156     return 0;
1157 root 1.334 #endif
1158 root 1.224 }
1159    
1160 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1161 root 1.69
1162 root 1.379 void ecb_cold
1163 root 1.420 ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
1164 root 1.69 {
1165     alloc = cb;
1166     }
1167    
1168 root 1.150 inline_speed void *
1169 root 1.155 ev_realloc (void *ptr, long size)
1170 root 1.69 {
1171 root 1.224 ptr = alloc (ptr, size);
1172 root 1.69
1173     if (!ptr && size)
1174     {
1175 root 1.330 #if EV_AVOID_STDIO
1176 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1177 root 1.330 #else
1178 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1179 root 1.330 #endif
1180 root 1.69 abort ();
1181     }
1182    
1183     return ptr;
1184     }
1185    
1186     #define ev_malloc(size) ev_realloc (0, (size))
1187     #define ev_free(ptr) ev_realloc ((ptr), 0)
1188    
1189     /*****************************************************************************/
1190    
1191 root 1.298 /* set in reify when reification needed */
1192     #define EV_ANFD_REIFY 1
1193    
1194 root 1.288 /* file descriptor info structure */
1195 root 1.53 typedef struct
1196     {
1197 root 1.68 WL head;
1198 root 1.288 unsigned char events; /* the events watched for */
1199 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1200 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1201 root 1.269 unsigned char unused;
1202     #if EV_USE_EPOLL
1203 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1204 root 1.269 #endif
1205 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1206 root 1.103 SOCKET handle;
1207     #endif
1208 root 1.357 #if EV_USE_IOCP
1209     OVERLAPPED or, ow;
1210     #endif
1211 root 1.53 } ANFD;
1212 root 1.1
1213 root 1.288 /* stores the pending event set for a given watcher */
1214 root 1.53 typedef struct
1215     {
1216     W w;
1217 root 1.288 int events; /* the pending event set for the given watcher */
1218 root 1.53 } ANPENDING;
1219 root 1.51
1220 root 1.155 #if EV_USE_INOTIFY
1221 root 1.241 /* hash table entry per inotify-id */
1222 root 1.152 typedef struct
1223     {
1224     WL head;
1225 root 1.155 } ANFS;
1226 root 1.152 #endif
1227    
1228 root 1.241 /* Heap Entry */
1229     #if EV_HEAP_CACHE_AT
1230 root 1.288 /* a heap element */
1231 root 1.241 typedef struct {
1232 root 1.243 ev_tstamp at;
1233 root 1.241 WT w;
1234     } ANHE;
1235    
1236 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1237     #define ANHE_at(he) (he).at /* access cached at, read-only */
1238     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1239 root 1.241 #else
1240 root 1.288 /* a heap element */
1241 root 1.241 typedef WT ANHE;
1242    
1243 root 1.248 #define ANHE_w(he) (he)
1244     #define ANHE_at(he) (he)->at
1245     #define ANHE_at_cache(he)
1246 root 1.241 #endif
1247    
1248 root 1.55 #if EV_MULTIPLICITY
1249 root 1.54
1250 root 1.80 struct ev_loop
1251     {
1252 root 1.86 ev_tstamp ev_rt_now;
1253 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1254 root 1.80 #define VAR(name,decl) decl;
1255     #include "ev_vars.h"
1256     #undef VAR
1257     };
1258     #include "ev_wrap.h"
1259    
1260 root 1.116 static struct ev_loop default_loop_struct;
1261 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1262 root 1.54
1263 root 1.53 #else
1264 root 1.54
1265 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1266 root 1.80 #define VAR(name,decl) static decl;
1267     #include "ev_vars.h"
1268     #undef VAR
1269    
1270 root 1.116 static int ev_default_loop_ptr;
1271 root 1.54
1272 root 1.51 #endif
1273 root 1.1
1274 root 1.338 #if EV_FEATURE_API
1275 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1276     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1277 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1278     #else
1279 root 1.298 # define EV_RELEASE_CB (void)0
1280     # define EV_ACQUIRE_CB (void)0
1281 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1282     #endif
1283    
1284 root 1.353 #define EVBREAK_RECURSE 0x80
1285 root 1.298
1286 root 1.8 /*****************************************************************************/
1287    
1288 root 1.292 #ifndef EV_HAVE_EV_TIME
1289 root 1.141 ev_tstamp
1290 root 1.420 ev_time (void) EV_THROW
1291 root 1.1 {
1292 root 1.29 #if EV_USE_REALTIME
1293 root 1.279 if (expect_true (have_realtime))
1294     {
1295     struct timespec ts;
1296     clock_gettime (CLOCK_REALTIME, &ts);
1297     return ts.tv_sec + ts.tv_nsec * 1e-9;
1298     }
1299     #endif
1300    
1301 root 1.1 struct timeval tv;
1302     gettimeofday (&tv, 0);
1303     return tv.tv_sec + tv.tv_usec * 1e-6;
1304     }
1305 root 1.292 #endif
1306 root 1.1
1307 root 1.284 inline_size ev_tstamp
1308 root 1.1 get_clock (void)
1309     {
1310 root 1.29 #if EV_USE_MONOTONIC
1311 root 1.40 if (expect_true (have_monotonic))
1312 root 1.1 {
1313     struct timespec ts;
1314     clock_gettime (CLOCK_MONOTONIC, &ts);
1315     return ts.tv_sec + ts.tv_nsec * 1e-9;
1316     }
1317     #endif
1318    
1319     return ev_time ();
1320     }
1321    
1322 root 1.85 #if EV_MULTIPLICITY
1323 root 1.51 ev_tstamp
1324 root 1.420 ev_now (EV_P) EV_THROW
1325 root 1.51 {
1326 root 1.85 return ev_rt_now;
1327 root 1.51 }
1328 root 1.85 #endif
1329 root 1.51
1330 root 1.193 void
1331 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1332 root 1.193 {
1333     if (delay > 0.)
1334     {
1335     #if EV_USE_NANOSLEEP
1336     struct timespec ts;
1337    
1338 root 1.348 EV_TS_SET (ts, delay);
1339 root 1.193 nanosleep (&ts, 0);
1340 root 1.416 #elif defined _WIN32
1341 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1342 root 1.193 #else
1343     struct timeval tv;
1344    
1345 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1346 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1347 root 1.257 /* by older ones */
1348 sf-exg 1.349 EV_TV_SET (tv, delay);
1349 root 1.193 select (0, 0, 0, 0, &tv);
1350     #endif
1351     }
1352     }
1353    
1354     /*****************************************************************************/
1355    
1356 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1357 root 1.232
1358 root 1.288 /* find a suitable new size for the given array, */
1359 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1360 root 1.284 inline_size int
1361 root 1.163 array_nextsize (int elem, int cur, int cnt)
1362     {
1363     int ncur = cur + 1;
1364    
1365     do
1366     ncur <<= 1;
1367     while (cnt > ncur);
1368    
1369 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1370 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1371 root 1.163 {
1372     ncur *= elem;
1373 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1374 root 1.163 ncur = ncur - sizeof (void *) * 4;
1375     ncur /= elem;
1376     }
1377    
1378     return ncur;
1379     }
1380    
1381 root 1.379 static void * noinline ecb_cold
1382 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1383     {
1384     *cur = array_nextsize (elem, *cur, cnt);
1385     return ev_realloc (base, elem * *cur);
1386     }
1387 root 1.29
1388 root 1.265 #define array_init_zero(base,count) \
1389     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1390    
1391 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1392 root 1.163 if (expect_false ((cnt) > (cur))) \
1393 root 1.69 { \
1394 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1395 root 1.163 (base) = (type *)array_realloc \
1396     (sizeof (type), (base), &(cur), (cnt)); \
1397     init ((base) + (ocur_), (cur) - ocur_); \
1398 root 1.1 }
1399    
1400 root 1.163 #if 0
1401 root 1.74 #define array_slim(type,stem) \
1402 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1403     { \
1404     stem ## max = array_roundsize (stem ## cnt >> 1); \
1405 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1406 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1407     }
1408 root 1.163 #endif
1409 root 1.67
1410 root 1.65 #define array_free(stem, idx) \
1411 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1412 root 1.65
1413 root 1.8 /*****************************************************************************/
1414    
1415 root 1.288 /* dummy callback for pending events */
1416     static void noinline
1417     pendingcb (EV_P_ ev_prepare *w, int revents)
1418     {
1419     }
1420    
1421 root 1.140 void noinline
1422 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1423 root 1.1 {
1424 root 1.78 W w_ = (W)w;
1425 root 1.171 int pri = ABSPRI (w_);
1426 root 1.78
1427 root 1.123 if (expect_false (w_->pending))
1428 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1429     else
1430 root 1.32 {
1431 root 1.171 w_->pending = ++pendingcnt [pri];
1432     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1433     pendings [pri][w_->pending - 1].w = w_;
1434     pendings [pri][w_->pending - 1].events = revents;
1435 root 1.32 }
1436 root 1.425
1437     pendingpri = NUMPRI - 1;
1438 root 1.1 }
1439    
1440 root 1.284 inline_speed void
1441     feed_reverse (EV_P_ W w)
1442     {
1443     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1444     rfeeds [rfeedcnt++] = w;
1445     }
1446    
1447     inline_size void
1448     feed_reverse_done (EV_P_ int revents)
1449     {
1450     do
1451     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1452     while (rfeedcnt);
1453     }
1454    
1455     inline_speed void
1456 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1457 root 1.27 {
1458     int i;
1459    
1460     for (i = 0; i < eventcnt; ++i)
1461 root 1.78 ev_feed_event (EV_A_ events [i], type);
1462 root 1.27 }
1463    
1464 root 1.141 /*****************************************************************************/
1465    
1466 root 1.284 inline_speed void
1467 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1468 root 1.1 {
1469     ANFD *anfd = anfds + fd;
1470 root 1.136 ev_io *w;
1471 root 1.1
1472 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1473 root 1.1 {
1474 root 1.79 int ev = w->events & revents;
1475 root 1.1
1476     if (ev)
1477 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1478 root 1.1 }
1479     }
1480    
1481 root 1.298 /* do not submit kernel events for fds that have reify set */
1482     /* because that means they changed while we were polling for new events */
1483     inline_speed void
1484     fd_event (EV_P_ int fd, int revents)
1485     {
1486     ANFD *anfd = anfds + fd;
1487    
1488     if (expect_true (!anfd->reify))
1489 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1490 root 1.298 }
1491    
1492 root 1.79 void
1493 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1494 root 1.79 {
1495 root 1.168 if (fd >= 0 && fd < anfdmax)
1496 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1497 root 1.79 }
1498    
1499 root 1.288 /* make sure the external fd watch events are in-sync */
1500     /* with the kernel/libev internal state */
1501 root 1.284 inline_size void
1502 root 1.51 fd_reify (EV_P)
1503 root 1.9 {
1504     int i;
1505    
1506 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1507     for (i = 0; i < fdchangecnt; ++i)
1508     {
1509     int fd = fdchanges [i];
1510     ANFD *anfd = anfds + fd;
1511    
1512 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1513 root 1.371 {
1514     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1515    
1516     if (handle != anfd->handle)
1517     {
1518     unsigned long arg;
1519    
1520     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1521    
1522     /* handle changed, but fd didn't - we need to do it in two steps */
1523     backend_modify (EV_A_ fd, anfd->events, 0);
1524     anfd->events = 0;
1525     anfd->handle = handle;
1526     }
1527     }
1528     }
1529     #endif
1530    
1531 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1532     {
1533     int fd = fdchanges [i];
1534     ANFD *anfd = anfds + fd;
1535 root 1.136 ev_io *w;
1536 root 1.27
1537 root 1.350 unsigned char o_events = anfd->events;
1538     unsigned char o_reify = anfd->reify;
1539 root 1.27
1540 root 1.350 anfd->reify = 0;
1541 root 1.27
1542 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1543     {
1544     anfd->events = 0;
1545 root 1.184
1546 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1547     anfd->events |= (unsigned char)w->events;
1548 root 1.27
1549 root 1.351 if (o_events != anfd->events)
1550 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1551     }
1552    
1553     if (o_reify & EV__IOFDSET)
1554     backend_modify (EV_A_ fd, o_events, anfd->events);
1555 root 1.27 }
1556    
1557     fdchangecnt = 0;
1558     }
1559    
1560 root 1.288 /* something about the given fd changed */
1561 root 1.284 inline_size void
1562 root 1.183 fd_change (EV_P_ int fd, int flags)
1563 root 1.27 {
1564 root 1.183 unsigned char reify = anfds [fd].reify;
1565 root 1.184 anfds [fd].reify |= flags;
1566 root 1.27
1567 root 1.183 if (expect_true (!reify))
1568     {
1569     ++fdchangecnt;
1570     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1571     fdchanges [fdchangecnt - 1] = fd;
1572     }
1573 root 1.9 }
1574    
1575 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1576 root 1.379 inline_speed void ecb_cold
1577 root 1.51 fd_kill (EV_P_ int fd)
1578 root 1.41 {
1579 root 1.136 ev_io *w;
1580 root 1.41
1581 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1582 root 1.41 {
1583 root 1.51 ev_io_stop (EV_A_ w);
1584 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1585 root 1.41 }
1586     }
1587    
1588 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1589 root 1.379 inline_size int ecb_cold
1590 root 1.71 fd_valid (int fd)
1591     {
1592 root 1.103 #ifdef _WIN32
1593 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1594 root 1.71 #else
1595     return fcntl (fd, F_GETFD) != -1;
1596     #endif
1597     }
1598    
1599 root 1.19 /* called on EBADF to verify fds */
1600 root 1.379 static void noinline ecb_cold
1601 root 1.51 fd_ebadf (EV_P)
1602 root 1.19 {
1603     int fd;
1604    
1605     for (fd = 0; fd < anfdmax; ++fd)
1606 root 1.27 if (anfds [fd].events)
1607 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1608 root 1.51 fd_kill (EV_A_ fd);
1609 root 1.41 }
1610    
1611     /* called on ENOMEM in select/poll to kill some fds and retry */
1612 root 1.379 static void noinline ecb_cold
1613 root 1.51 fd_enomem (EV_P)
1614 root 1.41 {
1615 root 1.62 int fd;
1616 root 1.41
1617 root 1.62 for (fd = anfdmax; fd--; )
1618 root 1.41 if (anfds [fd].events)
1619     {
1620 root 1.51 fd_kill (EV_A_ fd);
1621 root 1.307 break;
1622 root 1.41 }
1623 root 1.19 }
1624    
1625 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1626 root 1.140 static void noinline
1627 root 1.56 fd_rearm_all (EV_P)
1628     {
1629     int fd;
1630    
1631     for (fd = 0; fd < anfdmax; ++fd)
1632     if (anfds [fd].events)
1633     {
1634     anfds [fd].events = 0;
1635 root 1.268 anfds [fd].emask = 0;
1636 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1637 root 1.56 }
1638     }
1639    
1640 root 1.336 /* used to prepare libev internal fd's */
1641     /* this is not fork-safe */
1642     inline_speed void
1643     fd_intern (int fd)
1644     {
1645     #ifdef _WIN32
1646     unsigned long arg = 1;
1647     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1648     #else
1649     fcntl (fd, F_SETFD, FD_CLOEXEC);
1650     fcntl (fd, F_SETFL, O_NONBLOCK);
1651     #endif
1652     }
1653    
1654 root 1.8 /*****************************************************************************/
1655    
1656 root 1.235 /*
1657 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1658 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1659     * the branching factor of the d-tree.
1660     */
1661    
1662     /*
1663 root 1.235 * at the moment we allow libev the luxury of two heaps,
1664     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1665     * which is more cache-efficient.
1666     * the difference is about 5% with 50000+ watchers.
1667     */
1668 root 1.241 #if EV_USE_4HEAP
1669 root 1.235
1670 root 1.237 #define DHEAP 4
1671     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1672 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1673 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1674 root 1.235
1675     /* away from the root */
1676 root 1.284 inline_speed void
1677 root 1.241 downheap (ANHE *heap, int N, int k)
1678 root 1.235 {
1679 root 1.241 ANHE he = heap [k];
1680     ANHE *E = heap + N + HEAP0;
1681 root 1.235
1682     for (;;)
1683     {
1684     ev_tstamp minat;
1685 root 1.241 ANHE *minpos;
1686 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1687 root 1.235
1688 root 1.248 /* find minimum child */
1689 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1690 root 1.235 {
1691 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1692     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1693     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1694     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1695 root 1.235 }
1696 root 1.240 else if (pos < E)
1697 root 1.235 {
1698 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1699     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1700     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1701     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1702 root 1.235 }
1703 root 1.240 else
1704     break;
1705 root 1.235
1706 root 1.241 if (ANHE_at (he) <= minat)
1707 root 1.235 break;
1708    
1709 root 1.247 heap [k] = *minpos;
1710 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1711 root 1.235
1712     k = minpos - heap;
1713     }
1714    
1715 root 1.247 heap [k] = he;
1716 root 1.241 ev_active (ANHE_w (he)) = k;
1717 root 1.235 }
1718    
1719 root 1.248 #else /* 4HEAP */
1720 root 1.235
1721     #define HEAP0 1
1722 root 1.247 #define HPARENT(k) ((k) >> 1)
1723 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1724 root 1.235
1725 root 1.248 /* away from the root */
1726 root 1.284 inline_speed void
1727 root 1.248 downheap (ANHE *heap, int N, int k)
1728 root 1.1 {
1729 root 1.241 ANHE he = heap [k];
1730 root 1.1
1731 root 1.228 for (;;)
1732 root 1.1 {
1733 root 1.248 int c = k << 1;
1734 root 1.179
1735 root 1.309 if (c >= N + HEAP0)
1736 root 1.179 break;
1737    
1738 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1739     ? 1 : 0;
1740    
1741     if (ANHE_at (he) <= ANHE_at (heap [c]))
1742     break;
1743    
1744     heap [k] = heap [c];
1745 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1746 root 1.248
1747     k = c;
1748 root 1.1 }
1749    
1750 root 1.243 heap [k] = he;
1751 root 1.248 ev_active (ANHE_w (he)) = k;
1752 root 1.1 }
1753 root 1.248 #endif
1754 root 1.1
1755 root 1.248 /* towards the root */
1756 root 1.284 inline_speed void
1757 root 1.248 upheap (ANHE *heap, int k)
1758 root 1.1 {
1759 root 1.241 ANHE he = heap [k];
1760 root 1.1
1761 root 1.179 for (;;)
1762 root 1.1 {
1763 root 1.248 int p = HPARENT (k);
1764 root 1.179
1765 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1766 root 1.179 break;
1767 root 1.1
1768 root 1.248 heap [k] = heap [p];
1769 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1770 root 1.248 k = p;
1771 root 1.1 }
1772    
1773 root 1.241 heap [k] = he;
1774     ev_active (ANHE_w (he)) = k;
1775 root 1.1 }
1776    
1777 root 1.288 /* move an element suitably so it is in a correct place */
1778 root 1.284 inline_size void
1779 root 1.241 adjustheap (ANHE *heap, int N, int k)
1780 root 1.84 {
1781 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1782 root 1.247 upheap (heap, k);
1783     else
1784     downheap (heap, N, k);
1785 root 1.84 }
1786    
1787 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1788 root 1.284 inline_size void
1789 root 1.248 reheap (ANHE *heap, int N)
1790     {
1791     int i;
1792 root 1.251
1793 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1794     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1795     for (i = 0; i < N; ++i)
1796     upheap (heap, i + HEAP0);
1797     }
1798    
1799 root 1.8 /*****************************************************************************/
1800    
1801 root 1.288 /* associate signal watchers to a signal signal */
1802 root 1.7 typedef struct
1803     {
1804 root 1.307 EV_ATOMIC_T pending;
1805 root 1.306 #if EV_MULTIPLICITY
1806     EV_P;
1807     #endif
1808 root 1.68 WL head;
1809 root 1.7 } ANSIG;
1810    
1811 root 1.306 static ANSIG signals [EV_NSIG - 1];
1812 root 1.7
1813 root 1.207 /*****************************************************************************/
1814    
1815 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1816 root 1.207
1817 root 1.379 static void noinline ecb_cold
1818 root 1.207 evpipe_init (EV_P)
1819     {
1820 root 1.288 if (!ev_is_active (&pipe_w))
1821 root 1.207 {
1822 root 1.336 # if EV_USE_EVENTFD
1823 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1824     if (evfd < 0 && errno == EINVAL)
1825     evfd = eventfd (0, 0);
1826    
1827     if (evfd >= 0)
1828 root 1.220 {
1829     evpipe [0] = -1;
1830 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1831 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1832 root 1.220 }
1833     else
1834 root 1.336 # endif
1835 root 1.220 {
1836     while (pipe (evpipe))
1837 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1838 root 1.207
1839 root 1.220 fd_intern (evpipe [0]);
1840     fd_intern (evpipe [1]);
1841 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1842 root 1.220 }
1843 root 1.207
1844 root 1.288 ev_io_start (EV_A_ &pipe_w);
1845 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1846 root 1.207 }
1847     }
1848    
1849 root 1.380 inline_speed void
1850 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1851 root 1.207 {
1852 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1853    
1854 root 1.383 if (expect_true (*flag))
1855 root 1.387 return;
1856 root 1.383
1857     *flag = 1;
1858    
1859 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1860 root 1.383
1861     pipe_write_skipped = 1;
1862 root 1.378
1863 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1864 root 1.214
1865 root 1.383 if (pipe_write_wanted)
1866     {
1867     int old_errno;
1868 root 1.378
1869 root 1.392 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1870 root 1.220
1871 root 1.383 old_errno = errno; /* save errno because write will clobber it */
1872 root 1.380
1873 root 1.220 #if EV_USE_EVENTFD
1874 root 1.383 if (evfd >= 0)
1875     {
1876     uint64_t counter = 1;
1877     write (evfd, &counter, sizeof (uint64_t));
1878     }
1879     else
1880 root 1.220 #endif
1881 root 1.383 {
1882 root 1.427 #ifdef _WIN32
1883     WSABUF buf;
1884     DWORD sent;
1885     buf.buf = &buf;
1886     buf.len = 1;
1887     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1888     #else
1889 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
1890 root 1.427 #endif
1891 root 1.383 }
1892 root 1.214
1893 root 1.383 errno = old_errno;
1894 root 1.207 }
1895     }
1896    
1897 root 1.288 /* called whenever the libev signal pipe */
1898     /* got some events (signal, async) */
1899 root 1.207 static void
1900     pipecb (EV_P_ ev_io *iow, int revents)
1901     {
1902 root 1.307 int i;
1903    
1904 root 1.378 if (revents & EV_READ)
1905     {
1906 root 1.220 #if EV_USE_EVENTFD
1907 root 1.378 if (evfd >= 0)
1908     {
1909     uint64_t counter;
1910     read (evfd, &counter, sizeof (uint64_t));
1911     }
1912     else
1913 root 1.220 #endif
1914 root 1.378 {
1915 root 1.427 char dummy[4];
1916     #ifdef _WIN32
1917     WSABUF buf;
1918     DWORD recvd;
1919     buf.buf = dummy;
1920     buf.len = sizeof (dummy);
1921     WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1922     #else
1923     read (evpipe [0], &dummy, sizeof (dummy));
1924     #endif
1925 root 1.378 }
1926 root 1.220 }
1927 root 1.207
1928 root 1.378 pipe_write_skipped = 0;
1929    
1930 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1931    
1932 root 1.369 #if EV_SIGNAL_ENABLE
1933 root 1.307 if (sig_pending)
1934 root 1.372 {
1935 root 1.307 sig_pending = 0;
1936 root 1.207
1937 root 1.424 ECB_MEMORY_FENCE_RELEASE;
1938    
1939 root 1.307 for (i = EV_NSIG - 1; i--; )
1940     if (expect_false (signals [i].pending))
1941     ev_feed_signal_event (EV_A_ i + 1);
1942 root 1.207 }
1943 root 1.369 #endif
1944 root 1.207
1945 root 1.209 #if EV_ASYNC_ENABLE
1946 root 1.307 if (async_pending)
1947 root 1.207 {
1948 root 1.307 async_pending = 0;
1949 root 1.207
1950 root 1.424 ECB_MEMORY_FENCE_RELEASE;
1951    
1952 root 1.207 for (i = asynccnt; i--; )
1953     if (asyncs [i]->sent)
1954     {
1955     asyncs [i]->sent = 0;
1956     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1957     }
1958     }
1959 root 1.209 #endif
1960 root 1.207 }
1961    
1962     /*****************************************************************************/
1963    
1964 root 1.366 void
1965 root 1.420 ev_feed_signal (int signum) EV_THROW
1966 root 1.7 {
1967 root 1.207 #if EV_MULTIPLICITY
1968 root 1.306 EV_P = signals [signum - 1].loop;
1969 root 1.366
1970     if (!EV_A)
1971     return;
1972 root 1.207 #endif
1973    
1974 root 1.381 if (!ev_active (&pipe_w))
1975     return;
1976 root 1.378
1977 root 1.366 signals [signum - 1].pending = 1;
1978     evpipe_write (EV_A_ &sig_pending);
1979     }
1980    
1981     static void
1982     ev_sighandler (int signum)
1983     {
1984 root 1.322 #ifdef _WIN32
1985 root 1.218 signal (signum, ev_sighandler);
1986 root 1.67 #endif
1987    
1988 root 1.366 ev_feed_signal (signum);
1989 root 1.7 }
1990    
1991 root 1.140 void noinline
1992 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
1993 root 1.79 {
1994 root 1.80 WL w;
1995    
1996 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
1997     return;
1998    
1999     --signum;
2000    
2001 root 1.79 #if EV_MULTIPLICITY
2002 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2003     /* or, likely more useful, feeding a signal nobody is waiting for */
2004 root 1.79
2005 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2006 root 1.306 return;
2007 root 1.307 #endif
2008 root 1.306
2009 root 1.307 signals [signum].pending = 0;
2010 root 1.79
2011     for (w = signals [signum].head; w; w = w->next)
2012     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2013     }
2014    
2015 root 1.303 #if EV_USE_SIGNALFD
2016     static void
2017     sigfdcb (EV_P_ ev_io *iow, int revents)
2018     {
2019 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2020 root 1.303
2021     for (;;)
2022     {
2023     ssize_t res = read (sigfd, si, sizeof (si));
2024    
2025     /* not ISO-C, as res might be -1, but works with SuS */
2026     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2027     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2028    
2029     if (res < (ssize_t)sizeof (si))
2030     break;
2031     }
2032     }
2033     #endif
2034    
2035 root 1.336 #endif
2036    
2037 root 1.8 /*****************************************************************************/
2038    
2039 root 1.336 #if EV_CHILD_ENABLE
2040 root 1.182 static WL childs [EV_PID_HASHSIZE];
2041 root 1.71
2042 root 1.136 static ev_signal childev;
2043 root 1.59
2044 root 1.206 #ifndef WIFCONTINUED
2045     # define WIFCONTINUED(status) 0
2046     #endif
2047    
2048 root 1.288 /* handle a single child status event */
2049 root 1.284 inline_speed void
2050 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2051 root 1.47 {
2052 root 1.136 ev_child *w;
2053 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2054 root 1.47
2055 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2056 root 1.206 {
2057     if ((w->pid == pid || !w->pid)
2058     && (!traced || (w->flags & 1)))
2059     {
2060 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2061 root 1.206 w->rpid = pid;
2062     w->rstatus = status;
2063     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2064     }
2065     }
2066 root 1.47 }
2067    
2068 root 1.142 #ifndef WCONTINUED
2069     # define WCONTINUED 0
2070     #endif
2071    
2072 root 1.288 /* called on sigchld etc., calls waitpid */
2073 root 1.47 static void
2074 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2075 root 1.22 {
2076     int pid, status;
2077    
2078 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2079     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2080     if (!WCONTINUED
2081     || errno != EINVAL
2082     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2083     return;
2084    
2085 root 1.216 /* make sure we are called again until all children have been reaped */
2086 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2087     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2088 root 1.47
2089 root 1.216 child_reap (EV_A_ pid, pid, status);
2090 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2091 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2092 root 1.22 }
2093    
2094 root 1.45 #endif
2095    
2096 root 1.22 /*****************************************************************************/
2097    
2098 root 1.357 #if EV_USE_IOCP
2099     # include "ev_iocp.c"
2100     #endif
2101 root 1.118 #if EV_USE_PORT
2102     # include "ev_port.c"
2103     #endif
2104 root 1.44 #if EV_USE_KQUEUE
2105     # include "ev_kqueue.c"
2106     #endif
2107 root 1.29 #if EV_USE_EPOLL
2108 root 1.1 # include "ev_epoll.c"
2109     #endif
2110 root 1.59 #if EV_USE_POLL
2111 root 1.41 # include "ev_poll.c"
2112     #endif
2113 root 1.29 #if EV_USE_SELECT
2114 root 1.1 # include "ev_select.c"
2115     #endif
2116    
2117 root 1.379 int ecb_cold
2118 root 1.420 ev_version_major (void) EV_THROW
2119 root 1.24 {
2120     return EV_VERSION_MAJOR;
2121     }
2122    
2123 root 1.379 int ecb_cold
2124 root 1.420 ev_version_minor (void) EV_THROW
2125 root 1.24 {
2126     return EV_VERSION_MINOR;
2127     }
2128    
2129 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2130 root 1.379 int inline_size ecb_cold
2131 root 1.51 enable_secure (void)
2132 root 1.41 {
2133 root 1.103 #ifdef _WIN32
2134 root 1.49 return 0;
2135     #else
2136 root 1.41 return getuid () != geteuid ()
2137     || getgid () != getegid ();
2138 root 1.49 #endif
2139 root 1.41 }
2140    
2141 root 1.379 unsigned int ecb_cold
2142 root 1.420 ev_supported_backends (void) EV_THROW
2143 root 1.129 {
2144 root 1.130 unsigned int flags = 0;
2145 root 1.129
2146     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2147     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2148     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2149     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2150     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2151    
2152     return flags;
2153     }
2154    
2155 root 1.379 unsigned int ecb_cold
2156 root 1.420 ev_recommended_backends (void) EV_THROW
2157 root 1.1 {
2158 root 1.131 unsigned int flags = ev_supported_backends ();
2159 root 1.129
2160     #ifndef __NetBSD__
2161     /* kqueue is borked on everything but netbsd apparently */
2162     /* it usually doesn't work correctly on anything but sockets and pipes */
2163     flags &= ~EVBACKEND_KQUEUE;
2164     #endif
2165     #ifdef __APPLE__
2166 root 1.278 /* only select works correctly on that "unix-certified" platform */
2167     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2168     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2169 root 1.129 #endif
2170 root 1.342 #ifdef __FreeBSD__
2171     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2172     #endif
2173 root 1.129
2174     return flags;
2175 root 1.51 }
2176    
2177 root 1.379 unsigned int ecb_cold
2178 root 1.420 ev_embeddable_backends (void) EV_THROW
2179 root 1.134 {
2180 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2181    
2182 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2183 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2184     flags &= ~EVBACKEND_EPOLL;
2185 root 1.196
2186     return flags;
2187 root 1.134 }
2188    
2189     unsigned int
2190 root 1.420 ev_backend (EV_P) EV_THROW
2191 root 1.130 {
2192     return backend;
2193     }
2194    
2195 root 1.338 #if EV_FEATURE_API
2196 root 1.162 unsigned int
2197 root 1.420 ev_iteration (EV_P) EV_THROW
2198 root 1.162 {
2199     return loop_count;
2200     }
2201    
2202 root 1.294 unsigned int
2203 root 1.420 ev_depth (EV_P) EV_THROW
2204 root 1.294 {
2205     return loop_depth;
2206     }
2207    
2208 root 1.193 void
2209 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2210 root 1.193 {
2211     io_blocktime = interval;
2212     }
2213    
2214     void
2215 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2216 root 1.193 {
2217     timeout_blocktime = interval;
2218     }
2219    
2220 root 1.297 void
2221 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2222 root 1.297 {
2223     userdata = data;
2224     }
2225    
2226     void *
2227 root 1.420 ev_userdata (EV_P) EV_THROW
2228 root 1.297 {
2229     return userdata;
2230     }
2231    
2232 root 1.379 void
2233 root 1.420 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2234 root 1.297 {
2235     invoke_cb = invoke_pending_cb;
2236     }
2237    
2238 root 1.379 void
2239 root 1.421 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2240 root 1.297 {
2241 root 1.298 release_cb = release;
2242     acquire_cb = acquire;
2243 root 1.297 }
2244     #endif
2245    
2246 root 1.288 /* initialise a loop structure, must be zero-initialised */
2247 root 1.379 static void noinline ecb_cold
2248 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2249 root 1.51 {
2250 root 1.130 if (!backend)
2251 root 1.23 {
2252 root 1.366 origflags = flags;
2253    
2254 root 1.279 #if EV_USE_REALTIME
2255     if (!have_realtime)
2256     {
2257     struct timespec ts;
2258    
2259     if (!clock_gettime (CLOCK_REALTIME, &ts))
2260     have_realtime = 1;
2261     }
2262     #endif
2263    
2264 root 1.29 #if EV_USE_MONOTONIC
2265 root 1.279 if (!have_monotonic)
2266     {
2267     struct timespec ts;
2268    
2269     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2270     have_monotonic = 1;
2271     }
2272 root 1.1 #endif
2273    
2274 root 1.306 /* pid check not overridable via env */
2275     #ifndef _WIN32
2276     if (flags & EVFLAG_FORKCHECK)
2277     curpid = getpid ();
2278     #endif
2279    
2280     if (!(flags & EVFLAG_NOENV)
2281     && !enable_secure ()
2282     && getenv ("LIBEV_FLAGS"))
2283     flags = atoi (getenv ("LIBEV_FLAGS"));
2284    
2285 root 1.378 ev_rt_now = ev_time ();
2286     mn_now = get_clock ();
2287     now_floor = mn_now;
2288     rtmn_diff = ev_rt_now - mn_now;
2289 root 1.338 #if EV_FEATURE_API
2290 root 1.378 invoke_cb = ev_invoke_pending;
2291 root 1.297 #endif
2292 root 1.1
2293 root 1.378 io_blocktime = 0.;
2294     timeout_blocktime = 0.;
2295     backend = 0;
2296     backend_fd = -1;
2297     sig_pending = 0;
2298 root 1.307 #if EV_ASYNC_ENABLE
2299 root 1.378 async_pending = 0;
2300 root 1.307 #endif
2301 root 1.378 pipe_write_skipped = 0;
2302     pipe_write_wanted = 0;
2303 root 1.209 #if EV_USE_INOTIFY
2304 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2305 root 1.209 #endif
2306 root 1.303 #if EV_USE_SIGNALFD
2307 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2308 root 1.303 #endif
2309 root 1.193
2310 root 1.366 if (!(flags & EVBACKEND_MASK))
2311 root 1.129 flags |= ev_recommended_backends ();
2312 root 1.41
2313 root 1.357 #if EV_USE_IOCP
2314     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2315     #endif
2316 root 1.118 #if EV_USE_PORT
2317 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2318 root 1.118 #endif
2319 root 1.44 #if EV_USE_KQUEUE
2320 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2321 root 1.44 #endif
2322 root 1.29 #if EV_USE_EPOLL
2323 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2324 root 1.41 #endif
2325 root 1.59 #if EV_USE_POLL
2326 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2327 root 1.1 #endif
2328 root 1.29 #if EV_USE_SELECT
2329 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2330 root 1.1 #endif
2331 root 1.70
2332 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2333    
2334 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2335 root 1.288 ev_init (&pipe_w, pipecb);
2336     ev_set_priority (&pipe_w, EV_MAXPRI);
2337 root 1.336 #endif
2338 root 1.56 }
2339     }
2340    
2341 root 1.288 /* free up a loop structure */
2342 root 1.379 void ecb_cold
2343 root 1.422 ev_loop_destroy (EV_P)
2344 root 1.56 {
2345 root 1.65 int i;
2346    
2347 root 1.364 #if EV_MULTIPLICITY
2348 root 1.363 /* mimic free (0) */
2349     if (!EV_A)
2350     return;
2351 root 1.364 #endif
2352 root 1.363
2353 root 1.361 #if EV_CLEANUP_ENABLE
2354     /* queue cleanup watchers (and execute them) */
2355     if (expect_false (cleanupcnt))
2356     {
2357     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2358     EV_INVOKE_PENDING;
2359     }
2360     #endif
2361    
2362 root 1.359 #if EV_CHILD_ENABLE
2363     if (ev_is_active (&childev))
2364     {
2365     ev_ref (EV_A); /* child watcher */
2366     ev_signal_stop (EV_A_ &childev);
2367     }
2368     #endif
2369    
2370 root 1.288 if (ev_is_active (&pipe_w))
2371 root 1.207 {
2372 root 1.303 /*ev_ref (EV_A);*/
2373     /*ev_io_stop (EV_A_ &pipe_w);*/
2374 root 1.207
2375 root 1.220 #if EV_USE_EVENTFD
2376     if (evfd >= 0)
2377     close (evfd);
2378     #endif
2379    
2380     if (evpipe [0] >= 0)
2381     {
2382 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2383     EV_WIN32_CLOSE_FD (evpipe [1]);
2384 root 1.220 }
2385 root 1.207 }
2386    
2387 root 1.303 #if EV_USE_SIGNALFD
2388     if (ev_is_active (&sigfd_w))
2389 root 1.317 close (sigfd);
2390 root 1.303 #endif
2391    
2392 root 1.152 #if EV_USE_INOTIFY
2393     if (fs_fd >= 0)
2394     close (fs_fd);
2395     #endif
2396    
2397     if (backend_fd >= 0)
2398     close (backend_fd);
2399    
2400 root 1.357 #if EV_USE_IOCP
2401     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2402     #endif
2403 root 1.118 #if EV_USE_PORT
2404 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2405 root 1.118 #endif
2406 root 1.56 #if EV_USE_KQUEUE
2407 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2408 root 1.56 #endif
2409     #if EV_USE_EPOLL
2410 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2411 root 1.56 #endif
2412 root 1.59 #if EV_USE_POLL
2413 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2414 root 1.56 #endif
2415     #if EV_USE_SELECT
2416 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2417 root 1.56 #endif
2418 root 1.1
2419 root 1.65 for (i = NUMPRI; i--; )
2420 root 1.164 {
2421     array_free (pending, [i]);
2422     #if EV_IDLE_ENABLE
2423     array_free (idle, [i]);
2424     #endif
2425     }
2426 root 1.65
2427 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2428 root 1.186
2429 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2430 root 1.284 array_free (rfeed, EMPTY);
2431 root 1.164 array_free (fdchange, EMPTY);
2432     array_free (timer, EMPTY);
2433 root 1.140 #if EV_PERIODIC_ENABLE
2434 root 1.164 array_free (periodic, EMPTY);
2435 root 1.93 #endif
2436 root 1.187 #if EV_FORK_ENABLE
2437     array_free (fork, EMPTY);
2438     #endif
2439 root 1.360 #if EV_CLEANUP_ENABLE
2440     array_free (cleanup, EMPTY);
2441     #endif
2442 root 1.164 array_free (prepare, EMPTY);
2443     array_free (check, EMPTY);
2444 root 1.209 #if EV_ASYNC_ENABLE
2445     array_free (async, EMPTY);
2446     #endif
2447 root 1.65
2448 root 1.130 backend = 0;
2449 root 1.359
2450     #if EV_MULTIPLICITY
2451     if (ev_is_default_loop (EV_A))
2452     #endif
2453     ev_default_loop_ptr = 0;
2454     #if EV_MULTIPLICITY
2455     else
2456     ev_free (EV_A);
2457     #endif
2458 root 1.56 }
2459 root 1.22
2460 root 1.226 #if EV_USE_INOTIFY
2461 root 1.284 inline_size void infy_fork (EV_P);
2462 root 1.226 #endif
2463 root 1.154
2464 root 1.284 inline_size void
2465 root 1.56 loop_fork (EV_P)
2466     {
2467 root 1.118 #if EV_USE_PORT
2468 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2469 root 1.56 #endif
2470     #if EV_USE_KQUEUE
2471 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2472 root 1.45 #endif
2473 root 1.118 #if EV_USE_EPOLL
2474 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2475 root 1.118 #endif
2476 root 1.154 #if EV_USE_INOTIFY
2477     infy_fork (EV_A);
2478     #endif
2479 root 1.70
2480 root 1.288 if (ev_is_active (&pipe_w))
2481 root 1.70 {
2482 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2483 root 1.70
2484     ev_ref (EV_A);
2485 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2486 root 1.220
2487     #if EV_USE_EVENTFD
2488     if (evfd >= 0)
2489     close (evfd);
2490     #endif
2491    
2492     if (evpipe [0] >= 0)
2493     {
2494 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2495     EV_WIN32_CLOSE_FD (evpipe [1]);
2496 root 1.220 }
2497 root 1.207
2498 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2499 root 1.207 evpipe_init (EV_A);
2500 root 1.208 /* now iterate over everything, in case we missed something */
2501 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
2502 root 1.337 #endif
2503 root 1.70 }
2504    
2505     postfork = 0;
2506 root 1.1 }
2507    
2508 root 1.55 #if EV_MULTIPLICITY
2509 root 1.250
2510 root 1.379 struct ev_loop * ecb_cold
2511 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2512 root 1.54 {
2513 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2514 root 1.69
2515 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2516 root 1.108 loop_init (EV_A_ flags);
2517 root 1.56
2518 root 1.130 if (ev_backend (EV_A))
2519 root 1.306 return EV_A;
2520 root 1.54
2521 root 1.359 ev_free (EV_A);
2522 root 1.55 return 0;
2523 root 1.54 }
2524    
2525 root 1.297 #endif /* multiplicity */
2526 root 1.248
2527     #if EV_VERIFY
2528 root 1.379 static void noinline ecb_cold
2529 root 1.251 verify_watcher (EV_P_ W w)
2530     {
2531 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2532 root 1.251
2533     if (w->pending)
2534 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2535 root 1.251 }
2536    
2537 root 1.379 static void noinline ecb_cold
2538 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2539     {
2540     int i;
2541    
2542     for (i = HEAP0; i < N + HEAP0; ++i)
2543     {
2544 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2545     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2546     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2547 root 1.251
2548     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2549     }
2550     }
2551    
2552 root 1.379 static void noinline ecb_cold
2553 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2554 root 1.248 {
2555     while (cnt--)
2556 root 1.251 {
2557 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2558 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2559     }
2560 root 1.248 }
2561 root 1.250 #endif
2562 root 1.248
2563 root 1.338 #if EV_FEATURE_API
2564 root 1.379 void ecb_cold
2565 root 1.420 ev_verify (EV_P) EV_THROW
2566 root 1.248 {
2567 root 1.250 #if EV_VERIFY
2568 root 1.426 int i, j;
2569     WL w, w2;
2570 root 1.251
2571     assert (activecnt >= -1);
2572    
2573     assert (fdchangemax >= fdchangecnt);
2574     for (i = 0; i < fdchangecnt; ++i)
2575 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2576 root 1.251
2577     assert (anfdmax >= 0);
2578 root 1.426 for (i = j = 0; i < anfdmax; ++i)
2579     for (w = w2 = anfds [i].head; w; w = w->next)
2580 root 1.251 {
2581     verify_watcher (EV_A_ (W)w);
2582 root 1.426
2583 root 1.428 if (j++ & 1)
2584     {
2585     assert (("libev: io watcher list contains a loop", w != w2));
2586     w2 = w2->next;
2587     }
2588 root 1.426
2589 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2590     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2591 root 1.251 }
2592    
2593     assert (timermax >= timercnt);
2594     verify_heap (EV_A_ timers, timercnt);
2595 root 1.248
2596     #if EV_PERIODIC_ENABLE
2597 root 1.251 assert (periodicmax >= periodiccnt);
2598     verify_heap (EV_A_ periodics, periodiccnt);
2599 root 1.248 #endif
2600    
2601 root 1.251 for (i = NUMPRI; i--; )
2602     {
2603     assert (pendingmax [i] >= pendingcnt [i]);
2604 root 1.248 #if EV_IDLE_ENABLE
2605 root 1.252 assert (idleall >= 0);
2606 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2607     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2608 root 1.248 #endif
2609 root 1.251 }
2610    
2611 root 1.248 #if EV_FORK_ENABLE
2612 root 1.251 assert (forkmax >= forkcnt);
2613     array_verify (EV_A_ (W *)forks, forkcnt);
2614 root 1.248 #endif
2615 root 1.251
2616 root 1.360 #if EV_CLEANUP_ENABLE
2617     assert (cleanupmax >= cleanupcnt);
2618     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2619     #endif
2620    
2621 root 1.250 #if EV_ASYNC_ENABLE
2622 root 1.251 assert (asyncmax >= asynccnt);
2623     array_verify (EV_A_ (W *)asyncs, asynccnt);
2624 root 1.250 #endif
2625 root 1.251
2626 root 1.337 #if EV_PREPARE_ENABLE
2627 root 1.251 assert (preparemax >= preparecnt);
2628     array_verify (EV_A_ (W *)prepares, preparecnt);
2629 root 1.337 #endif
2630 root 1.251
2631 root 1.337 #if EV_CHECK_ENABLE
2632 root 1.251 assert (checkmax >= checkcnt);
2633     array_verify (EV_A_ (W *)checks, checkcnt);
2634 root 1.337 #endif
2635 root 1.251
2636     # if 0
2637 root 1.336 #if EV_CHILD_ENABLE
2638 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2639 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2640 root 1.336 #endif
2641 root 1.251 # endif
2642 root 1.248 #endif
2643     }
2644 root 1.297 #endif
2645 root 1.56
2646     #if EV_MULTIPLICITY
2647 root 1.379 struct ev_loop * ecb_cold
2648 root 1.54 #else
2649     int
2650 root 1.358 #endif
2651 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
2652 root 1.54 {
2653 root 1.116 if (!ev_default_loop_ptr)
2654 root 1.56 {
2655     #if EV_MULTIPLICITY
2656 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2657 root 1.56 #else
2658 ayin 1.117 ev_default_loop_ptr = 1;
2659 root 1.54 #endif
2660    
2661 root 1.110 loop_init (EV_A_ flags);
2662 root 1.56
2663 root 1.130 if (ev_backend (EV_A))
2664 root 1.56 {
2665 root 1.336 #if EV_CHILD_ENABLE
2666 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2667     ev_set_priority (&childev, EV_MAXPRI);
2668     ev_signal_start (EV_A_ &childev);
2669     ev_unref (EV_A); /* child watcher should not keep loop alive */
2670     #endif
2671     }
2672     else
2673 root 1.116 ev_default_loop_ptr = 0;
2674 root 1.56 }
2675 root 1.8
2676 root 1.116 return ev_default_loop_ptr;
2677 root 1.1 }
2678    
2679 root 1.24 void
2680 root 1.420 ev_loop_fork (EV_P) EV_THROW
2681 root 1.1 {
2682 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2683 root 1.1 }
2684    
2685 root 1.8 /*****************************************************************************/
2686    
2687 root 1.168 void
2688     ev_invoke (EV_P_ void *w, int revents)
2689     {
2690     EV_CB_INVOKE ((W)w, revents);
2691     }
2692    
2693 root 1.300 unsigned int
2694 root 1.420 ev_pending_count (EV_P) EV_THROW
2695 root 1.300 {
2696     int pri;
2697     unsigned int count = 0;
2698    
2699     for (pri = NUMPRI; pri--; )
2700     count += pendingcnt [pri];
2701    
2702     return count;
2703     }
2704    
2705 root 1.297 void noinline
2706 root 1.296 ev_invoke_pending (EV_P)
2707 root 1.1 {
2708 root 1.425 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
2709     while (pendingcnt [pendingpri])
2710 root 1.42 {
2711 root 1.425 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2712 root 1.1
2713 root 1.288 p->w->pending = 0;
2714     EV_CB_INVOKE (p->w, p->events);
2715     EV_FREQUENT_CHECK;
2716 root 1.42 }
2717 root 1.1 }
2718    
2719 root 1.234 #if EV_IDLE_ENABLE
2720 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2721     /* only when higher priorities are idle" logic */
2722 root 1.284 inline_size void
2723 root 1.234 idle_reify (EV_P)
2724     {
2725     if (expect_false (idleall))
2726     {
2727     int pri;
2728    
2729     for (pri = NUMPRI; pri--; )
2730     {
2731     if (pendingcnt [pri])
2732     break;
2733    
2734     if (idlecnt [pri])
2735     {
2736     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2737     break;
2738     }
2739     }
2740     }
2741     }
2742     #endif
2743    
2744 root 1.288 /* make timers pending */
2745 root 1.284 inline_size void
2746 root 1.51 timers_reify (EV_P)
2747 root 1.1 {
2748 root 1.248 EV_FREQUENT_CHECK;
2749    
2750 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2751 root 1.1 {
2752 root 1.284 do
2753     {
2754     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2755 root 1.1
2756 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2757    
2758     /* first reschedule or stop timer */
2759     if (w->repeat)
2760     {
2761     ev_at (w) += w->repeat;
2762     if (ev_at (w) < mn_now)
2763     ev_at (w) = mn_now;
2764 root 1.61
2765 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2766 root 1.90
2767 root 1.284 ANHE_at_cache (timers [HEAP0]);
2768     downheap (timers, timercnt, HEAP0);
2769     }
2770     else
2771     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2772 root 1.243
2773 root 1.284 EV_FREQUENT_CHECK;
2774     feed_reverse (EV_A_ (W)w);
2775 root 1.12 }
2776 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2777 root 1.30
2778 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2779 root 1.12 }
2780     }
2781 root 1.4
2782 root 1.140 #if EV_PERIODIC_ENABLE
2783 root 1.370
2784 root 1.373 static void noinline
2785 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2786     {
2787 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2788     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2789    
2790     /* the above almost always errs on the low side */
2791     while (at <= ev_rt_now)
2792     {
2793     ev_tstamp nat = at + w->interval;
2794    
2795     /* when resolution fails us, we use ev_rt_now */
2796     if (expect_false (nat == at))
2797     {
2798     at = ev_rt_now;
2799     break;
2800     }
2801    
2802     at = nat;
2803     }
2804    
2805     ev_at (w) = at;
2806 root 1.370 }
2807    
2808 root 1.288 /* make periodics pending */
2809 root 1.284 inline_size void
2810 root 1.51 periodics_reify (EV_P)
2811 root 1.12 {
2812 root 1.248 EV_FREQUENT_CHECK;
2813 root 1.250
2814 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2815 root 1.12 {
2816 root 1.284 int feed_count = 0;
2817    
2818     do
2819     {
2820     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2821 root 1.1
2822 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2823 root 1.61
2824 root 1.284 /* first reschedule or stop timer */
2825     if (w->reschedule_cb)
2826     {
2827     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2828 root 1.243
2829 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2830 root 1.243
2831 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2832     downheap (periodics, periodiccnt, HEAP0);
2833     }
2834     else if (w->interval)
2835 root 1.246 {
2836 root 1.370 periodic_recalc (EV_A_ w);
2837 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2838     downheap (periodics, periodiccnt, HEAP0);
2839 root 1.246 }
2840 root 1.284 else
2841     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2842 root 1.243
2843 root 1.284 EV_FREQUENT_CHECK;
2844     feed_reverse (EV_A_ (W)w);
2845 root 1.1 }
2846 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2847 root 1.12
2848 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2849 root 1.12 }
2850     }
2851    
2852 root 1.288 /* simply recalculate all periodics */
2853 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2854 root 1.379 static void noinline ecb_cold
2855 root 1.54 periodics_reschedule (EV_P)
2856 root 1.12 {
2857     int i;
2858    
2859 root 1.13 /* adjust periodics after time jump */
2860 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2861 root 1.12 {
2862 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2863 root 1.12
2864 root 1.77 if (w->reschedule_cb)
2865 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2866 root 1.77 else if (w->interval)
2867 root 1.370 periodic_recalc (EV_A_ w);
2868 root 1.242
2869 root 1.248 ANHE_at_cache (periodics [i]);
2870 root 1.77 }
2871 root 1.12
2872 root 1.248 reheap (periodics, periodiccnt);
2873 root 1.1 }
2874 root 1.93 #endif
2875 root 1.1
2876 root 1.288 /* adjust all timers by a given offset */
2877 root 1.379 static void noinline ecb_cold
2878 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
2879     {
2880     int i;
2881    
2882     for (i = 0; i < timercnt; ++i)
2883     {
2884     ANHE *he = timers + i + HEAP0;
2885     ANHE_w (*he)->at += adjust;
2886     ANHE_at_cache (*he);
2887     }
2888     }
2889    
2890 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2891 root 1.324 /* also detect if there was a timejump, and act accordingly */
2892 root 1.284 inline_speed void
2893 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2894 root 1.4 {
2895 root 1.40 #if EV_USE_MONOTONIC
2896     if (expect_true (have_monotonic))
2897     {
2898 root 1.289 int i;
2899 root 1.178 ev_tstamp odiff = rtmn_diff;
2900    
2901     mn_now = get_clock ();
2902    
2903     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2904     /* interpolate in the meantime */
2905     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2906 root 1.40 {
2907 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2908     return;
2909     }
2910    
2911     now_floor = mn_now;
2912     ev_rt_now = ev_time ();
2913 root 1.4
2914 root 1.178 /* loop a few times, before making important decisions.
2915     * on the choice of "4": one iteration isn't enough,
2916     * in case we get preempted during the calls to
2917     * ev_time and get_clock. a second call is almost guaranteed
2918     * to succeed in that case, though. and looping a few more times
2919     * doesn't hurt either as we only do this on time-jumps or
2920     * in the unlikely event of having been preempted here.
2921     */
2922     for (i = 4; --i; )
2923     {
2924 root 1.373 ev_tstamp diff;
2925 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2926 root 1.4
2927 root 1.373 diff = odiff - rtmn_diff;
2928    
2929     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2930 root 1.178 return; /* all is well */
2931 root 1.4
2932 root 1.178 ev_rt_now = ev_time ();
2933     mn_now = get_clock ();
2934     now_floor = mn_now;
2935     }
2936 root 1.4
2937 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2938     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2939 root 1.140 # if EV_PERIODIC_ENABLE
2940 root 1.178 periodics_reschedule (EV_A);
2941 root 1.93 # endif
2942 root 1.4 }
2943     else
2944 root 1.40 #endif
2945 root 1.4 {
2946 root 1.85 ev_rt_now = ev_time ();
2947 root 1.40
2948 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2949 root 1.13 {
2950 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2951     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2952 root 1.140 #if EV_PERIODIC_ENABLE
2953 root 1.54 periodics_reschedule (EV_A);
2954 root 1.93 #endif
2955 root 1.13 }
2956 root 1.4
2957 root 1.85 mn_now = ev_rt_now;
2958 root 1.4 }
2959     }
2960    
2961 root 1.418 int
2962 root 1.353 ev_run (EV_P_ int flags)
2963 root 1.1 {
2964 root 1.338 #if EV_FEATURE_API
2965 root 1.294 ++loop_depth;
2966 root 1.297 #endif
2967 root 1.294
2968 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2969 root 1.298
2970 root 1.353 loop_done = EVBREAK_CANCEL;
2971 root 1.1
2972 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2973 root 1.158
2974 root 1.161 do
2975 root 1.9 {
2976 root 1.250 #if EV_VERIFY >= 2
2977 root 1.340 ev_verify (EV_A);
2978 root 1.250 #endif
2979    
2980 root 1.158 #ifndef _WIN32
2981     if (expect_false (curpid)) /* penalise the forking check even more */
2982     if (expect_false (getpid () != curpid))
2983     {
2984     curpid = getpid ();
2985     postfork = 1;
2986     }
2987     #endif
2988    
2989 root 1.157 #if EV_FORK_ENABLE
2990     /* we might have forked, so queue fork handlers */
2991     if (expect_false (postfork))
2992     if (forkcnt)
2993     {
2994     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2995 root 1.297 EV_INVOKE_PENDING;
2996 root 1.157 }
2997     #endif
2998 root 1.147
2999 root 1.337 #if EV_PREPARE_ENABLE
3000 root 1.170 /* queue prepare watchers (and execute them) */
3001 root 1.40 if (expect_false (preparecnt))
3002 root 1.20 {
3003 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3004 root 1.297 EV_INVOKE_PENDING;
3005 root 1.20 }
3006 root 1.337 #endif
3007 root 1.9
3008 root 1.298 if (expect_false (loop_done))
3009     break;
3010    
3011 root 1.70 /* we might have forked, so reify kernel state if necessary */
3012     if (expect_false (postfork))
3013     loop_fork (EV_A);
3014    
3015 root 1.1 /* update fd-related kernel structures */
3016 root 1.51 fd_reify (EV_A);
3017 root 1.1
3018     /* calculate blocking time */
3019 root 1.135 {
3020 root 1.193 ev_tstamp waittime = 0.;
3021     ev_tstamp sleeptime = 0.;
3022 root 1.12
3023 root 1.353 /* remember old timestamp for io_blocktime calculation */
3024     ev_tstamp prev_mn_now = mn_now;
3025 root 1.293
3026 root 1.353 /* update time to cancel out callback processing overhead */
3027     time_update (EV_A_ 1e100);
3028 root 1.135
3029 root 1.378 /* from now on, we want a pipe-wake-up */
3030     pipe_write_wanted = 1;
3031    
3032 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3033 root 1.383
3034 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3035 root 1.353 {
3036 root 1.287 waittime = MAX_BLOCKTIME;
3037    
3038 root 1.135 if (timercnt)
3039     {
3040 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3041 root 1.193 if (waittime > to) waittime = to;
3042 root 1.135 }
3043 root 1.4
3044 root 1.140 #if EV_PERIODIC_ENABLE
3045 root 1.135 if (periodiccnt)
3046     {
3047 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3048 root 1.193 if (waittime > to) waittime = to;
3049 root 1.135 }
3050 root 1.93 #endif
3051 root 1.4
3052 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3053 root 1.193 if (expect_false (waittime < timeout_blocktime))
3054     waittime = timeout_blocktime;
3055    
3056 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3057     /* to pass a minimum nonzero value to the backend */
3058     if (expect_false (waittime < backend_mintime))
3059     waittime = backend_mintime;
3060    
3061 root 1.293 /* extra check because io_blocktime is commonly 0 */
3062     if (expect_false (io_blocktime))
3063     {
3064     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3065 root 1.193
3066 root 1.376 if (sleeptime > waittime - backend_mintime)
3067     sleeptime = waittime - backend_mintime;
3068 root 1.193
3069 root 1.293 if (expect_true (sleeptime > 0.))
3070     {
3071     ev_sleep (sleeptime);
3072     waittime -= sleeptime;
3073     }
3074 root 1.193 }
3075 root 1.135 }
3076 root 1.1
3077 root 1.338 #if EV_FEATURE_API
3078 root 1.162 ++loop_count;
3079 root 1.297 #endif
3080 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3081 root 1.193 backend_poll (EV_A_ waittime);
3082 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3083 root 1.178
3084 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3085 root 1.378
3086     if (pipe_write_skipped)
3087     {
3088     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3089     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3090     }
3091    
3092    
3093 root 1.178 /* update ev_rt_now, do magic */
3094 root 1.193 time_update (EV_A_ waittime + sleeptime);
3095 root 1.135 }
3096 root 1.1
3097 root 1.9 /* queue pending timers and reschedule them */
3098 root 1.51 timers_reify (EV_A); /* relative timers called last */
3099 root 1.140 #if EV_PERIODIC_ENABLE
3100 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3101 root 1.93 #endif
3102 root 1.1
3103 root 1.164 #if EV_IDLE_ENABLE
3104 root 1.137 /* queue idle watchers unless other events are pending */
3105 root 1.164 idle_reify (EV_A);
3106     #endif
3107 root 1.9
3108 root 1.337 #if EV_CHECK_ENABLE
3109 root 1.20 /* queue check watchers, to be executed first */
3110 root 1.123 if (expect_false (checkcnt))
3111 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3112 root 1.337 #endif
3113 root 1.9
3114 root 1.297 EV_INVOKE_PENDING;
3115 root 1.1 }
3116 root 1.219 while (expect_true (
3117     activecnt
3118     && !loop_done
3119 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3120 root 1.219 ));
3121 root 1.13
3122 root 1.353 if (loop_done == EVBREAK_ONE)
3123     loop_done = EVBREAK_CANCEL;
3124 root 1.294
3125 root 1.338 #if EV_FEATURE_API
3126 root 1.294 --loop_depth;
3127 root 1.297 #endif
3128 root 1.418
3129     return activecnt;
3130 root 1.51 }
3131    
3132     void
3133 root 1.420 ev_break (EV_P_ int how) EV_THROW
3134 root 1.51 {
3135     loop_done = how;
3136 root 1.1 }
3137    
3138 root 1.285 void
3139 root 1.420 ev_ref (EV_P) EV_THROW
3140 root 1.285 {
3141     ++activecnt;
3142     }
3143    
3144     void
3145 root 1.420 ev_unref (EV_P) EV_THROW
3146 root 1.285 {
3147     --activecnt;
3148     }
3149    
3150     void
3151 root 1.420 ev_now_update (EV_P) EV_THROW
3152 root 1.285 {
3153     time_update (EV_A_ 1e100);
3154     }
3155    
3156     void
3157 root 1.420 ev_suspend (EV_P) EV_THROW
3158 root 1.285 {
3159     ev_now_update (EV_A);
3160     }
3161    
3162     void
3163 root 1.420 ev_resume (EV_P) EV_THROW
3164 root 1.285 {
3165     ev_tstamp mn_prev = mn_now;
3166    
3167     ev_now_update (EV_A);
3168     timers_reschedule (EV_A_ mn_now - mn_prev);
3169 root 1.286 #if EV_PERIODIC_ENABLE
3170 root 1.288 /* TODO: really do this? */
3171 root 1.285 periodics_reschedule (EV_A);
3172 root 1.286 #endif
3173 root 1.285 }
3174    
3175 root 1.8 /*****************************************************************************/
3176 root 1.288 /* singly-linked list management, used when the expected list length is short */
3177 root 1.8
3178 root 1.284 inline_size void
3179 root 1.10 wlist_add (WL *head, WL elem)
3180 root 1.1 {
3181     elem->next = *head;
3182     *head = elem;
3183     }
3184    
3185 root 1.284 inline_size void
3186 root 1.10 wlist_del (WL *head, WL elem)
3187 root 1.1 {
3188     while (*head)
3189     {
3190 root 1.307 if (expect_true (*head == elem))
3191 root 1.1 {
3192     *head = elem->next;
3193 root 1.307 break;
3194 root 1.1 }
3195    
3196     head = &(*head)->next;
3197     }
3198     }
3199    
3200 root 1.288 /* internal, faster, version of ev_clear_pending */
3201 root 1.284 inline_speed void
3202 root 1.166 clear_pending (EV_P_ W w)
3203 root 1.16 {
3204     if (w->pending)
3205     {
3206 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3207 root 1.16 w->pending = 0;
3208     }
3209     }
3210    
3211 root 1.167 int
3212 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3213 root 1.166 {
3214     W w_ = (W)w;
3215     int pending = w_->pending;
3216    
3217 root 1.172 if (expect_true (pending))
3218     {
3219     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3220 root 1.288 p->w = (W)&pending_w;
3221 root 1.172 w_->pending = 0;
3222     return p->events;
3223     }
3224     else
3225 root 1.167 return 0;
3226 root 1.166 }
3227    
3228 root 1.284 inline_size void
3229 root 1.164 pri_adjust (EV_P_ W w)
3230     {
3231 root 1.295 int pri = ev_priority (w);
3232 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3233     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3234 root 1.295 ev_set_priority (w, pri);
3235 root 1.164 }
3236    
3237 root 1.284 inline_speed void
3238 root 1.51 ev_start (EV_P_ W w, int active)
3239 root 1.1 {
3240 root 1.164 pri_adjust (EV_A_ w);
3241 root 1.1 w->active = active;
3242 root 1.51 ev_ref (EV_A);
3243 root 1.1 }
3244    
3245 root 1.284 inline_size void
3246 root 1.51 ev_stop (EV_P_ W w)
3247 root 1.1 {
3248 root 1.51 ev_unref (EV_A);
3249 root 1.1 w->active = 0;
3250     }
3251    
3252 root 1.8 /*****************************************************************************/
3253    
3254 root 1.171 void noinline
3255 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3256 root 1.1 {
3257 root 1.37 int fd = w->fd;
3258    
3259 root 1.123 if (expect_false (ev_is_active (w)))
3260 root 1.1 return;
3261    
3262 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3263 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3264 root 1.33
3265 root 1.248 EV_FREQUENT_CHECK;
3266    
3267 root 1.51 ev_start (EV_A_ (W)w, 1);
3268 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3269 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3270 root 1.1
3271 root 1.426 /* common bug, apparently */
3272     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3273    
3274 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3275 root 1.281 w->events &= ~EV__IOFDSET;
3276 root 1.248
3277     EV_FREQUENT_CHECK;
3278 root 1.1 }
3279    
3280 root 1.171 void noinline
3281 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3282 root 1.1 {
3283 root 1.166 clear_pending (EV_A_ (W)w);
3284 root 1.123 if (expect_false (!ev_is_active (w)))
3285 root 1.1 return;
3286    
3287 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3288 root 1.89
3289 root 1.248 EV_FREQUENT_CHECK;
3290    
3291 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3292 root 1.51 ev_stop (EV_A_ (W)w);
3293 root 1.1
3294 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3295 root 1.248
3296     EV_FREQUENT_CHECK;
3297 root 1.1 }
3298    
3299 root 1.171 void noinline
3300 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3301 root 1.1 {
3302 root 1.123 if (expect_false (ev_is_active (w)))
3303 root 1.1 return;
3304    
3305 root 1.228 ev_at (w) += mn_now;
3306 root 1.12
3307 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3308 root 1.13
3309 root 1.248 EV_FREQUENT_CHECK;
3310    
3311     ++timercnt;
3312     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3313 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3314     ANHE_w (timers [ev_active (w)]) = (WT)w;
3315 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3316 root 1.235 upheap (timers, ev_active (w));
3317 root 1.62
3318 root 1.248 EV_FREQUENT_CHECK;
3319    
3320 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3321 root 1.12 }
3322    
3323 root 1.171 void noinline
3324 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3325 root 1.12 {
3326 root 1.166 clear_pending (EV_A_ (W)w);
3327 root 1.123 if (expect_false (!ev_is_active (w)))
3328 root 1.12 return;
3329    
3330 root 1.248 EV_FREQUENT_CHECK;
3331    
3332 root 1.230 {
3333     int active = ev_active (w);
3334 root 1.62
3335 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3336 root 1.151
3337 root 1.248 --timercnt;
3338    
3339     if (expect_true (active < timercnt + HEAP0))
3340 root 1.151 {
3341 root 1.248 timers [active] = timers [timercnt + HEAP0];
3342 root 1.181 adjustheap (timers, timercnt, active);
3343 root 1.151 }
3344 root 1.248 }
3345 root 1.228
3346     ev_at (w) -= mn_now;
3347 root 1.14
3348 root 1.51 ev_stop (EV_A_ (W)w);
3349 root 1.328
3350     EV_FREQUENT_CHECK;
3351 root 1.12 }
3352 root 1.4
3353 root 1.171 void noinline
3354 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3355 root 1.14 {
3356 root 1.248 EV_FREQUENT_CHECK;
3357    
3358 root 1.407 clear_pending (EV_A_ (W)w);
3359 root 1.406
3360 root 1.14 if (ev_is_active (w))
3361     {
3362     if (w->repeat)
3363 root 1.99 {
3364 root 1.228 ev_at (w) = mn_now + w->repeat;
3365 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3366 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3367 root 1.99 }
3368 root 1.14 else
3369 root 1.51 ev_timer_stop (EV_A_ w);
3370 root 1.14 }
3371     else if (w->repeat)
3372 root 1.112 {
3373 root 1.229 ev_at (w) = w->repeat;
3374 root 1.112 ev_timer_start (EV_A_ w);
3375     }
3376 root 1.248
3377     EV_FREQUENT_CHECK;
3378 root 1.14 }
3379    
3380 root 1.301 ev_tstamp
3381 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3382 root 1.301 {
3383     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3384     }
3385    
3386 root 1.140 #if EV_PERIODIC_ENABLE
3387 root 1.171 void noinline
3388 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3389 root 1.12 {
3390 root 1.123 if (expect_false (ev_is_active (w)))
3391 root 1.12 return;
3392 root 1.1
3393 root 1.77 if (w->reschedule_cb)
3394 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3395 root 1.77 else if (w->interval)
3396     {
3397 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3398 root 1.370 periodic_recalc (EV_A_ w);
3399 root 1.77 }
3400 root 1.173 else
3401 root 1.228 ev_at (w) = w->offset;
3402 root 1.12
3403 root 1.248 EV_FREQUENT_CHECK;
3404    
3405     ++periodiccnt;
3406     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3407 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3408     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3409 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3410 root 1.235 upheap (periodics, ev_active (w));
3411 root 1.62
3412 root 1.248 EV_FREQUENT_CHECK;
3413    
3414 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3415 root 1.1 }
3416    
3417 root 1.171 void noinline
3418 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3419 root 1.1 {
3420 root 1.166 clear_pending (EV_A_ (W)w);
3421 root 1.123 if (expect_false (!ev_is_active (w)))
3422 root 1.1 return;
3423    
3424 root 1.248 EV_FREQUENT_CHECK;
3425    
3426 root 1.230 {
3427     int active = ev_active (w);
3428 root 1.62
3429 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3430 root 1.151
3431 root 1.248 --periodiccnt;
3432    
3433     if (expect_true (active < periodiccnt + HEAP0))
3434 root 1.151 {
3435 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3436 root 1.181 adjustheap (periodics, periodiccnt, active);
3437 root 1.151 }
3438 root 1.248 }
3439 root 1.228
3440 root 1.328 ev_stop (EV_A_ (W)w);
3441    
3442 root 1.248 EV_FREQUENT_CHECK;
3443 root 1.1 }
3444    
3445 root 1.171 void noinline
3446 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3447 root 1.77 {
3448 root 1.84 /* TODO: use adjustheap and recalculation */
3449 root 1.77 ev_periodic_stop (EV_A_ w);
3450     ev_periodic_start (EV_A_ w);
3451     }
3452 root 1.93 #endif
3453 root 1.77
3454 root 1.56 #ifndef SA_RESTART
3455     # define SA_RESTART 0
3456     #endif
3457    
3458 root 1.336 #if EV_SIGNAL_ENABLE
3459    
3460 root 1.171 void noinline
3461 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3462 root 1.56 {
3463 root 1.123 if (expect_false (ev_is_active (w)))
3464 root 1.56 return;
3465    
3466 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3467    
3468     #if EV_MULTIPLICITY
3469 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3470 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3471    
3472     signals [w->signum - 1].loop = EV_A;
3473     #endif
3474 root 1.56
3475 root 1.303 EV_FREQUENT_CHECK;
3476    
3477     #if EV_USE_SIGNALFD
3478     if (sigfd == -2)
3479     {
3480     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3481     if (sigfd < 0 && errno == EINVAL)
3482     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3483    
3484     if (sigfd >= 0)
3485     {
3486     fd_intern (sigfd); /* doing it twice will not hurt */
3487    
3488     sigemptyset (&sigfd_set);
3489    
3490     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3491     ev_set_priority (&sigfd_w, EV_MAXPRI);
3492     ev_io_start (EV_A_ &sigfd_w);
3493     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3494     }
3495     }
3496    
3497     if (sigfd >= 0)
3498     {
3499     /* TODO: check .head */
3500     sigaddset (&sigfd_set, w->signum);
3501     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3502 root 1.207
3503 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3504     }
3505 root 1.180 #endif
3506    
3507 root 1.56 ev_start (EV_A_ (W)w, 1);
3508 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3509 root 1.56
3510 root 1.63 if (!((WL)w)->next)
3511 root 1.304 # if EV_USE_SIGNALFD
3512 root 1.306 if (sigfd < 0) /*TODO*/
3513 root 1.304 # endif
3514 root 1.306 {
3515 root 1.322 # ifdef _WIN32
3516 root 1.317 evpipe_init (EV_A);
3517    
3518 root 1.306 signal (w->signum, ev_sighandler);
3519     # else
3520     struct sigaction sa;
3521    
3522     evpipe_init (EV_A);
3523    
3524     sa.sa_handler = ev_sighandler;
3525     sigfillset (&sa.sa_mask);
3526     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3527     sigaction (w->signum, &sa, 0);
3528    
3529 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3530     {
3531     sigemptyset (&sa.sa_mask);
3532     sigaddset (&sa.sa_mask, w->signum);
3533     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3534     }
3535 root 1.67 #endif
3536 root 1.306 }
3537 root 1.248
3538     EV_FREQUENT_CHECK;
3539 root 1.56 }
3540    
3541 root 1.171 void noinline
3542 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3543 root 1.56 {
3544 root 1.166 clear_pending (EV_A_ (W)w);
3545 root 1.123 if (expect_false (!ev_is_active (w)))
3546 root 1.56 return;
3547    
3548 root 1.248 EV_FREQUENT_CHECK;
3549    
3550 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3551 root 1.56 ev_stop (EV_A_ (W)w);
3552    
3553     if (!signals [w->signum - 1].head)
3554 root 1.306 {
3555 root 1.307 #if EV_MULTIPLICITY
3556 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3557 root 1.307 #endif
3558     #if EV_USE_SIGNALFD
3559 root 1.306 if (sigfd >= 0)
3560     {
3561 root 1.321 sigset_t ss;
3562    
3563     sigemptyset (&ss);
3564     sigaddset (&ss, w->signum);
3565 root 1.306 sigdelset (&sigfd_set, w->signum);
3566 root 1.321
3567 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3568 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3569 root 1.306 }
3570     else
3571 root 1.307 #endif
3572 root 1.306 signal (w->signum, SIG_DFL);
3573     }
3574 root 1.248
3575     EV_FREQUENT_CHECK;
3576 root 1.56 }
3577    
3578 root 1.336 #endif
3579    
3580     #if EV_CHILD_ENABLE
3581    
3582 root 1.28 void
3583 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3584 root 1.22 {
3585 root 1.56 #if EV_MULTIPLICITY
3586 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3587 root 1.56 #endif
3588 root 1.123 if (expect_false (ev_is_active (w)))
3589 root 1.22 return;
3590    
3591 root 1.248 EV_FREQUENT_CHECK;
3592    
3593 root 1.51 ev_start (EV_A_ (W)w, 1);
3594 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3595 root 1.248
3596     EV_FREQUENT_CHECK;
3597 root 1.22 }
3598    
3599 root 1.28 void
3600 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3601 root 1.22 {
3602 root 1.166 clear_pending (EV_A_ (W)w);
3603 root 1.123 if (expect_false (!ev_is_active (w)))
3604 root 1.22 return;
3605    
3606 root 1.248 EV_FREQUENT_CHECK;
3607    
3608 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3609 root 1.51 ev_stop (EV_A_ (W)w);
3610 root 1.248
3611     EV_FREQUENT_CHECK;
3612 root 1.22 }
3613    
3614 root 1.336 #endif
3615    
3616 root 1.140 #if EV_STAT_ENABLE
3617    
3618     # ifdef _WIN32
3619 root 1.146 # undef lstat
3620     # define lstat(a,b) _stati64 (a,b)
3621 root 1.140 # endif
3622    
3623 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3624     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3625     #define MIN_STAT_INTERVAL 0.1074891
3626 root 1.143
3627 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3628 root 1.152
3629     #if EV_USE_INOTIFY
3630 root 1.326
3631     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3632     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3633 root 1.152
3634     static void noinline
3635     infy_add (EV_P_ ev_stat *w)
3636     {
3637     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3638    
3639 root 1.318 if (w->wd >= 0)
3640 root 1.152 {
3641 root 1.318 struct statfs sfs;
3642    
3643     /* now local changes will be tracked by inotify, but remote changes won't */
3644     /* unless the filesystem is known to be local, we therefore still poll */
3645     /* also do poll on <2.6.25, but with normal frequency */
3646    
3647     if (!fs_2625)
3648     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3649     else if (!statfs (w->path, &sfs)
3650     && (sfs.f_type == 0x1373 /* devfs */
3651     || sfs.f_type == 0xEF53 /* ext2/3 */
3652     || sfs.f_type == 0x3153464a /* jfs */
3653     || sfs.f_type == 0x52654973 /* reiser3 */
3654     || sfs.f_type == 0x01021994 /* tempfs */
3655     || sfs.f_type == 0x58465342 /* xfs */))
3656     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3657     else
3658     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3659     }
3660     else
3661     {
3662     /* can't use inotify, continue to stat */
3663 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3664 root 1.152
3665 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3666 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3667 root 1.233 /* but an efficiency issue only */
3668 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3669 root 1.152 {
3670 root 1.153 char path [4096];
3671 root 1.152 strcpy (path, w->path);
3672    
3673     do
3674     {
3675     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3676     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3677    
3678     char *pend = strrchr (path, '/');
3679    
3680 root 1.275 if (!pend || pend == path)
3681     break;
3682 root 1.152
3683     *pend = 0;
3684 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3685 root 1.372 }
3686 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3687     }
3688     }
3689 root 1.275
3690     if (w->wd >= 0)
3691 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3692 root 1.152
3693 root 1.318 /* now re-arm timer, if required */
3694     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3695     ev_timer_again (EV_A_ &w->timer);
3696     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3697 root 1.152 }
3698    
3699     static void noinline
3700     infy_del (EV_P_ ev_stat *w)
3701     {
3702     int slot;
3703     int wd = w->wd;
3704    
3705     if (wd < 0)
3706     return;
3707    
3708     w->wd = -2;
3709 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3710 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3711    
3712     /* remove this watcher, if others are watching it, they will rearm */
3713     inotify_rm_watch (fs_fd, wd);
3714     }
3715    
3716     static void noinline
3717     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3718     {
3719     if (slot < 0)
3720 root 1.264 /* overflow, need to check for all hash slots */
3721 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3722 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3723     else
3724     {
3725     WL w_;
3726    
3727 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3728 root 1.152 {
3729     ev_stat *w = (ev_stat *)w_;
3730     w_ = w_->next; /* lets us remove this watcher and all before it */
3731    
3732     if (w->wd == wd || wd == -1)
3733     {
3734     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3735     {
3736 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3737 root 1.152 w->wd = -1;
3738     infy_add (EV_A_ w); /* re-add, no matter what */
3739     }
3740    
3741 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3742 root 1.152 }
3743     }
3744     }
3745     }
3746    
3747     static void
3748     infy_cb (EV_P_ ev_io *w, int revents)
3749     {
3750     char buf [EV_INOTIFY_BUFSIZE];
3751     int ofs;
3752     int len = read (fs_fd, buf, sizeof (buf));
3753    
3754 root 1.326 for (ofs = 0; ofs < len; )
3755     {
3756     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3757     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3758     ofs += sizeof (struct inotify_event) + ev->len;
3759     }
3760 root 1.152 }
3761    
3762 root 1.379 inline_size void ecb_cold
3763 root 1.330 ev_check_2625 (EV_P)
3764     {
3765     /* kernels < 2.6.25 are borked
3766     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3767     */
3768     if (ev_linux_version () < 0x020619)
3769 root 1.273 return;
3770 root 1.264
3771 root 1.273 fs_2625 = 1;
3772     }
3773 root 1.264
3774 root 1.315 inline_size int
3775     infy_newfd (void)
3776     {
3777 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
3778 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3779     if (fd >= 0)
3780     return fd;
3781     #endif
3782     return inotify_init ();
3783     }
3784    
3785 root 1.284 inline_size void
3786 root 1.273 infy_init (EV_P)
3787     {
3788     if (fs_fd != -2)
3789     return;
3790 root 1.264
3791 root 1.273 fs_fd = -1;
3792 root 1.264
3793 root 1.330 ev_check_2625 (EV_A);
3794 root 1.264
3795 root 1.315 fs_fd = infy_newfd ();
3796 root 1.152
3797     if (fs_fd >= 0)
3798     {
3799 root 1.315 fd_intern (fs_fd);
3800 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3801     ev_set_priority (&fs_w, EV_MAXPRI);
3802     ev_io_start (EV_A_ &fs_w);
3803 root 1.317 ev_unref (EV_A);
3804 root 1.152 }
3805     }
3806    
3807 root 1.284 inline_size void
3808 root 1.154 infy_fork (EV_P)
3809     {
3810     int slot;
3811    
3812     if (fs_fd < 0)
3813     return;
3814    
3815 root 1.317 ev_ref (EV_A);
3816 root 1.315 ev_io_stop (EV_A_ &fs_w);
3817 root 1.154 close (fs_fd);
3818 root 1.315 fs_fd = infy_newfd ();
3819    
3820     if (fs_fd >= 0)
3821     {
3822     fd_intern (fs_fd);
3823     ev_io_set (&fs_w, fs_fd, EV_READ);
3824     ev_io_start (EV_A_ &fs_w);
3825 root 1.317 ev_unref (EV_A);
3826 root 1.315 }
3827 root 1.154
3828 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3829 root 1.154 {
3830     WL w_ = fs_hash [slot].head;
3831     fs_hash [slot].head = 0;
3832    
3833     while (w_)
3834     {
3835     ev_stat *w = (ev_stat *)w_;
3836     w_ = w_->next; /* lets us add this watcher */
3837    
3838     w->wd = -1;
3839    
3840     if (fs_fd >= 0)
3841     infy_add (EV_A_ w); /* re-add, no matter what */
3842     else
3843 root 1.318 {
3844     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3845     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3846     ev_timer_again (EV_A_ &w->timer);
3847     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3848     }
3849 root 1.154 }
3850     }
3851     }
3852    
3853 root 1.152 #endif
3854    
3855 root 1.255 #ifdef _WIN32
3856     # define EV_LSTAT(p,b) _stati64 (p, b)
3857     #else
3858     # define EV_LSTAT(p,b) lstat (p, b)
3859     #endif
3860    
3861 root 1.140 void
3862 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3863 root 1.140 {
3864     if (lstat (w->path, &w->attr) < 0)
3865     w->attr.st_nlink = 0;
3866     else if (!w->attr.st_nlink)
3867     w->attr.st_nlink = 1;
3868     }
3869    
3870 root 1.157 static void noinline
3871 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3872     {
3873     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3874    
3875 root 1.320 ev_statdata prev = w->attr;
3876 root 1.140 ev_stat_stat (EV_A_ w);
3877    
3878 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3879     if (
3880 root 1.320 prev.st_dev != w->attr.st_dev
3881     || prev.st_ino != w->attr.st_ino
3882     || prev.st_mode != w->attr.st_mode
3883     || prev.st_nlink != w->attr.st_nlink
3884     || prev.st_uid != w->attr.st_uid
3885     || prev.st_gid != w->attr.st_gid
3886     || prev.st_rdev != w->attr.st_rdev
3887     || prev.st_size != w->attr.st_size
3888     || prev.st_atime != w->attr.st_atime
3889     || prev.st_mtime != w->attr.st_mtime
3890     || prev.st_ctime != w->attr.st_ctime
3891 root 1.156 ) {
3892 root 1.320 /* we only update w->prev on actual differences */
3893     /* in case we test more often than invoke the callback, */
3894     /* to ensure that prev is always different to attr */
3895     w->prev = prev;
3896    
3897 root 1.152 #if EV_USE_INOTIFY
3898 root 1.264 if (fs_fd >= 0)
3899     {
3900     infy_del (EV_A_ w);
3901     infy_add (EV_A_ w);
3902     ev_stat_stat (EV_A_ w); /* avoid race... */
3903     }
3904 root 1.152 #endif
3905    
3906     ev_feed_event (EV_A_ w, EV_STAT);
3907     }
3908 root 1.140 }
3909    
3910     void
3911 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3912 root 1.140 {
3913     if (expect_false (ev_is_active (w)))
3914     return;
3915    
3916     ev_stat_stat (EV_A_ w);
3917    
3918 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3919     w->interval = MIN_STAT_INTERVAL;
3920 root 1.143
3921 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3922 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3923 root 1.152
3924     #if EV_USE_INOTIFY
3925     infy_init (EV_A);
3926    
3927     if (fs_fd >= 0)
3928     infy_add (EV_A_ w);
3929     else
3930     #endif
3931 root 1.318 {
3932     ev_timer_again (EV_A_ &w->timer);
3933     ev_unref (EV_A);
3934     }
3935 root 1.140
3936     ev_start (EV_A_ (W)w, 1);
3937 root 1.248
3938     EV_FREQUENT_CHECK;
3939 root 1.140 }
3940    
3941     void
3942 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3943 root 1.140 {
3944 root 1.166 clear_pending (EV_A_ (W)w);
3945 root 1.140 if (expect_false (!ev_is_active (w)))
3946     return;
3947    
3948 root 1.248 EV_FREQUENT_CHECK;
3949    
3950 root 1.152 #if EV_USE_INOTIFY
3951     infy_del (EV_A_ w);
3952     #endif
3953 root 1.318
3954     if (ev_is_active (&w->timer))
3955     {
3956     ev_ref (EV_A);
3957     ev_timer_stop (EV_A_ &w->timer);
3958     }
3959 root 1.140
3960 root 1.134 ev_stop (EV_A_ (W)w);
3961 root 1.248
3962     EV_FREQUENT_CHECK;
3963 root 1.134 }
3964     #endif
3965    
3966 root 1.164 #if EV_IDLE_ENABLE
3967 root 1.144 void
3968 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
3969 root 1.144 {
3970     if (expect_false (ev_is_active (w)))
3971     return;
3972    
3973 root 1.164 pri_adjust (EV_A_ (W)w);
3974    
3975 root 1.248 EV_FREQUENT_CHECK;
3976    
3977 root 1.164 {
3978     int active = ++idlecnt [ABSPRI (w)];
3979    
3980     ++idleall;
3981     ev_start (EV_A_ (W)w, active);
3982    
3983     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3984     idles [ABSPRI (w)][active - 1] = w;
3985     }
3986 root 1.248
3987     EV_FREQUENT_CHECK;
3988 root 1.144 }
3989    
3990     void
3991 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3992 root 1.144 {
3993 root 1.166 clear_pending (EV_A_ (W)w);
3994 root 1.144 if (expect_false (!ev_is_active (w)))
3995     return;
3996    
3997 root 1.248 EV_FREQUENT_CHECK;
3998    
3999 root 1.144 {
4000 root 1.230 int active = ev_active (w);
4001 root 1.164
4002     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4003 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4004 root 1.164
4005     ev_stop (EV_A_ (W)w);
4006     --idleall;
4007 root 1.144 }
4008 root 1.248
4009     EV_FREQUENT_CHECK;
4010 root 1.144 }
4011 root 1.164 #endif
4012 root 1.144
4013 root 1.337 #if EV_PREPARE_ENABLE
4014 root 1.144 void
4015 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4016 root 1.144 {
4017     if (expect_false (ev_is_active (w)))
4018     return;
4019    
4020 root 1.248 EV_FREQUENT_CHECK;
4021    
4022 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4023     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4024     prepares [preparecnt - 1] = w;
4025 root 1.248
4026     EV_FREQUENT_CHECK;
4027 root 1.144 }
4028    
4029     void
4030 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4031 root 1.144 {
4032 root 1.166 clear_pending (EV_A_ (W)w);
4033 root 1.144 if (expect_false (!ev_is_active (w)))
4034     return;
4035    
4036 root 1.248 EV_FREQUENT_CHECK;
4037    
4038 root 1.144 {
4039 root 1.230 int active = ev_active (w);
4040    
4041 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4042 root 1.230 ev_active (prepares [active - 1]) = active;
4043 root 1.144 }
4044    
4045     ev_stop (EV_A_ (W)w);
4046 root 1.248
4047     EV_FREQUENT_CHECK;
4048 root 1.144 }
4049 root 1.337 #endif
4050 root 1.144
4051 root 1.337 #if EV_CHECK_ENABLE
4052 root 1.144 void
4053 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4054 root 1.144 {
4055     if (expect_false (ev_is_active (w)))
4056     return;
4057    
4058 root 1.248 EV_FREQUENT_CHECK;
4059    
4060 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4061     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4062     checks [checkcnt - 1] = w;
4063 root 1.248
4064     EV_FREQUENT_CHECK;
4065 root 1.144 }
4066    
4067     void
4068 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4069 root 1.144 {
4070 root 1.166 clear_pending (EV_A_ (W)w);
4071 root 1.144 if (expect_false (!ev_is_active (w)))
4072     return;
4073    
4074 root 1.248 EV_FREQUENT_CHECK;
4075    
4076 root 1.144 {
4077 root 1.230 int active = ev_active (w);
4078    
4079 root 1.144 checks [active - 1] = checks [--checkcnt];
4080 root 1.230 ev_active (checks [active - 1]) = active;
4081 root 1.144 }
4082    
4083     ev_stop (EV_A_ (W)w);
4084 root 1.248
4085     EV_FREQUENT_CHECK;
4086 root 1.144 }
4087 root 1.337 #endif
4088 root 1.144
4089     #if EV_EMBED_ENABLE
4090     void noinline
4091 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4092 root 1.144 {
4093 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4094 root 1.144 }
4095    
4096     static void
4097 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4098 root 1.144 {
4099     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4100    
4101     if (ev_cb (w))
4102     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4103     else
4104 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4105 root 1.144 }
4106    
4107 root 1.189 static void
4108     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4109     {
4110     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4111    
4112 root 1.195 {
4113 root 1.306 EV_P = w->other;
4114 root 1.195
4115     while (fdchangecnt)
4116     {
4117     fd_reify (EV_A);
4118 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4119 root 1.195 }
4120     }
4121     }
4122    
4123 root 1.261 static void
4124     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4125     {
4126     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4127    
4128 root 1.277 ev_embed_stop (EV_A_ w);
4129    
4130 root 1.261 {
4131 root 1.306 EV_P = w->other;
4132 root 1.261
4133     ev_loop_fork (EV_A);
4134 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4135 root 1.261 }
4136 root 1.277
4137     ev_embed_start (EV_A_ w);
4138 root 1.261 }
4139    
4140 root 1.195 #if 0
4141     static void
4142     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4143     {
4144     ev_idle_stop (EV_A_ idle);
4145 root 1.189 }
4146 root 1.195 #endif
4147 root 1.189
4148 root 1.144 void
4149 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4150 root 1.144 {
4151     if (expect_false (ev_is_active (w)))
4152     return;
4153    
4154     {
4155 root 1.306 EV_P = w->other;
4156 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4157 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4158 root 1.144 }
4159    
4160 root 1.248 EV_FREQUENT_CHECK;
4161    
4162 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4163     ev_io_start (EV_A_ &w->io);
4164    
4165 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4166     ev_set_priority (&w->prepare, EV_MINPRI);
4167     ev_prepare_start (EV_A_ &w->prepare);
4168    
4169 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4170     ev_fork_start (EV_A_ &w->fork);
4171    
4172 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4173    
4174 root 1.144 ev_start (EV_A_ (W)w, 1);
4175 root 1.248
4176     EV_FREQUENT_CHECK;
4177 root 1.144 }
4178    
4179     void
4180 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4181 root 1.144 {
4182 root 1.166 clear_pending (EV_A_ (W)w);
4183 root 1.144 if (expect_false (!ev_is_active (w)))
4184     return;
4185    
4186 root 1.248 EV_FREQUENT_CHECK;
4187    
4188 root 1.261 ev_io_stop (EV_A_ &w->io);
4189 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4190 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4191 root 1.248
4192 root 1.328 ev_stop (EV_A_ (W)w);
4193    
4194 root 1.248 EV_FREQUENT_CHECK;
4195 root 1.144 }
4196     #endif
4197    
4198 root 1.147 #if EV_FORK_ENABLE
4199     void
4200 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4201 root 1.147 {
4202     if (expect_false (ev_is_active (w)))
4203     return;
4204    
4205 root 1.248 EV_FREQUENT_CHECK;
4206    
4207 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4208     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4209     forks [forkcnt - 1] = w;
4210 root 1.248
4211     EV_FREQUENT_CHECK;
4212 root 1.147 }
4213    
4214     void
4215 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4216 root 1.147 {
4217 root 1.166 clear_pending (EV_A_ (W)w);
4218 root 1.147 if (expect_false (!ev_is_active (w)))
4219     return;
4220    
4221 root 1.248 EV_FREQUENT_CHECK;
4222    
4223 root 1.147 {
4224 root 1.230 int active = ev_active (w);
4225    
4226 root 1.147 forks [active - 1] = forks [--forkcnt];
4227 root 1.230 ev_active (forks [active - 1]) = active;
4228 root 1.147 }
4229    
4230     ev_stop (EV_A_ (W)w);
4231 root 1.248
4232     EV_FREQUENT_CHECK;
4233 root 1.147 }
4234     #endif
4235    
4236 root 1.360 #if EV_CLEANUP_ENABLE
4237     void
4238 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4239 root 1.360 {
4240     if (expect_false (ev_is_active (w)))
4241     return;
4242    
4243     EV_FREQUENT_CHECK;
4244    
4245     ev_start (EV_A_ (W)w, ++cleanupcnt);
4246     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4247     cleanups [cleanupcnt - 1] = w;
4248    
4249 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4250     ev_unref (EV_A);
4251 root 1.360 EV_FREQUENT_CHECK;
4252     }
4253    
4254     void
4255 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4256 root 1.360 {
4257     clear_pending (EV_A_ (W)w);
4258     if (expect_false (!ev_is_active (w)))
4259     return;
4260    
4261     EV_FREQUENT_CHECK;
4262 root 1.362 ev_ref (EV_A);
4263 root 1.360
4264     {
4265     int active = ev_active (w);
4266    
4267     cleanups [active - 1] = cleanups [--cleanupcnt];
4268     ev_active (cleanups [active - 1]) = active;
4269     }
4270    
4271     ev_stop (EV_A_ (W)w);
4272    
4273     EV_FREQUENT_CHECK;
4274     }
4275     #endif
4276    
4277 root 1.207 #if EV_ASYNC_ENABLE
4278     void
4279 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4280 root 1.207 {
4281     if (expect_false (ev_is_active (w)))
4282     return;
4283    
4284 root 1.352 w->sent = 0;
4285    
4286 root 1.207 evpipe_init (EV_A);
4287    
4288 root 1.248 EV_FREQUENT_CHECK;
4289    
4290 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4291     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4292     asyncs [asynccnt - 1] = w;
4293 root 1.248
4294     EV_FREQUENT_CHECK;
4295 root 1.207 }
4296    
4297     void
4298 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4299 root 1.207 {
4300     clear_pending (EV_A_ (W)w);
4301     if (expect_false (!ev_is_active (w)))
4302     return;
4303    
4304 root 1.248 EV_FREQUENT_CHECK;
4305    
4306 root 1.207 {
4307 root 1.230 int active = ev_active (w);
4308    
4309 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4310 root 1.230 ev_active (asyncs [active - 1]) = active;
4311 root 1.207 }
4312    
4313     ev_stop (EV_A_ (W)w);
4314 root 1.248
4315     EV_FREQUENT_CHECK;
4316 root 1.207 }
4317    
4318     void
4319 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4320 root 1.207 {
4321     w->sent = 1;
4322 root 1.307 evpipe_write (EV_A_ &async_pending);
4323 root 1.207 }
4324     #endif
4325    
4326 root 1.1 /*****************************************************************************/
4327 root 1.10
4328 root 1.16 struct ev_once
4329     {
4330 root 1.136 ev_io io;
4331     ev_timer to;
4332 root 1.16 void (*cb)(int revents, void *arg);
4333     void *arg;
4334     };
4335    
4336     static void
4337 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4338 root 1.16 {
4339     void (*cb)(int revents, void *arg) = once->cb;
4340     void *arg = once->arg;
4341    
4342 root 1.259 ev_io_stop (EV_A_ &once->io);
4343 root 1.51 ev_timer_stop (EV_A_ &once->to);
4344 root 1.69 ev_free (once);
4345 root 1.16
4346     cb (revents, arg);
4347     }
4348    
4349     static void
4350 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4351 root 1.16 {
4352 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4353    
4354     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4355 root 1.16 }
4356    
4357     static void
4358 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4359 root 1.16 {
4360 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4361    
4362     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4363 root 1.16 }
4364    
4365     void
4366 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4367 root 1.16 {
4368 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4369 root 1.16
4370 root 1.123 if (expect_false (!once))
4371 root 1.16 {
4372 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4373 root 1.123 return;
4374     }
4375    
4376     once->cb = cb;
4377     once->arg = arg;
4378 root 1.16
4379 root 1.123 ev_init (&once->io, once_cb_io);
4380     if (fd >= 0)
4381     {
4382     ev_io_set (&once->io, fd, events);
4383     ev_io_start (EV_A_ &once->io);
4384     }
4385 root 1.16
4386 root 1.123 ev_init (&once->to, once_cb_to);
4387     if (timeout >= 0.)
4388     {
4389     ev_timer_set (&once->to, timeout, 0.);
4390     ev_timer_start (EV_A_ &once->to);
4391 root 1.16 }
4392     }
4393    
4394 root 1.282 /*****************************************************************************/
4395    
4396 root 1.288 #if EV_WALK_ENABLE
4397 root 1.379 void ecb_cold
4398 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4399 root 1.282 {
4400     int i, j;
4401     ev_watcher_list *wl, *wn;
4402    
4403     if (types & (EV_IO | EV_EMBED))
4404     for (i = 0; i < anfdmax; ++i)
4405     for (wl = anfds [i].head; wl; )
4406     {
4407     wn = wl->next;
4408    
4409     #if EV_EMBED_ENABLE
4410     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4411     {
4412     if (types & EV_EMBED)
4413     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4414     }
4415     else
4416     #endif
4417     #if EV_USE_INOTIFY
4418     if (ev_cb ((ev_io *)wl) == infy_cb)
4419     ;
4420     else
4421     #endif
4422 root 1.288 if ((ev_io *)wl != &pipe_w)
4423 root 1.282 if (types & EV_IO)
4424     cb (EV_A_ EV_IO, wl);
4425    
4426     wl = wn;
4427     }
4428    
4429     if (types & (EV_TIMER | EV_STAT))
4430     for (i = timercnt + HEAP0; i-- > HEAP0; )
4431     #if EV_STAT_ENABLE
4432     /*TODO: timer is not always active*/
4433     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4434     {
4435     if (types & EV_STAT)
4436     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4437     }
4438     else
4439     #endif
4440     if (types & EV_TIMER)
4441     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4442    
4443     #if EV_PERIODIC_ENABLE
4444     if (types & EV_PERIODIC)
4445     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4446     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4447     #endif
4448    
4449     #if EV_IDLE_ENABLE
4450     if (types & EV_IDLE)
4451 root 1.390 for (j = NUMPRI; j--; )
4452 root 1.282 for (i = idlecnt [j]; i--; )
4453     cb (EV_A_ EV_IDLE, idles [j][i]);
4454     #endif
4455    
4456     #if EV_FORK_ENABLE
4457     if (types & EV_FORK)
4458     for (i = forkcnt; i--; )
4459     if (ev_cb (forks [i]) != embed_fork_cb)
4460     cb (EV_A_ EV_FORK, forks [i]);
4461     #endif
4462    
4463     #if EV_ASYNC_ENABLE
4464     if (types & EV_ASYNC)
4465     for (i = asynccnt; i--; )
4466     cb (EV_A_ EV_ASYNC, asyncs [i]);
4467     #endif
4468    
4469 root 1.337 #if EV_PREPARE_ENABLE
4470 root 1.282 if (types & EV_PREPARE)
4471     for (i = preparecnt; i--; )
4472 root 1.337 # if EV_EMBED_ENABLE
4473 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4474 root 1.337 # endif
4475     cb (EV_A_ EV_PREPARE, prepares [i]);
4476 root 1.282 #endif
4477    
4478 root 1.337 #if EV_CHECK_ENABLE
4479 root 1.282 if (types & EV_CHECK)
4480     for (i = checkcnt; i--; )
4481     cb (EV_A_ EV_CHECK, checks [i]);
4482 root 1.337 #endif
4483 root 1.282
4484 root 1.337 #if EV_SIGNAL_ENABLE
4485 root 1.282 if (types & EV_SIGNAL)
4486 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4487 root 1.282 for (wl = signals [i].head; wl; )
4488     {
4489     wn = wl->next;
4490     cb (EV_A_ EV_SIGNAL, wl);
4491     wl = wn;
4492     }
4493 root 1.337 #endif
4494 root 1.282
4495 root 1.337 #if EV_CHILD_ENABLE
4496 root 1.282 if (types & EV_CHILD)
4497 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4498 root 1.282 for (wl = childs [i]; wl; )
4499     {
4500     wn = wl->next;
4501     cb (EV_A_ EV_CHILD, wl);
4502     wl = wn;
4503     }
4504 root 1.337 #endif
4505 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4506     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4507     }
4508     #endif
4509    
4510 root 1.188 #if EV_MULTIPLICITY
4511     #include "ev_wrap.h"
4512     #endif
4513