ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.438
Committed: Tue May 29 21:03:44 2012 UTC (11 years, 11 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.437: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.418 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246     # error "unable to find value for NSIG, please report"
247 root 1.336 /* to make it compile regardless, just remove the above line, */
248     /* but consider reporting it, too! :) */
249 root 1.306 # define EV_NSIG 65
250 root 1.305 #endif
251    
252 root 1.373 #ifndef EV_USE_FLOOR
253     # define EV_USE_FLOOR 0
254     #endif
255    
256 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
257     # if __linux && __GLIBC__ >= 2
258 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 root 1.274 # else
260     # define EV_USE_CLOCK_SYSCALL 0
261     # endif
262     #endif
263    
264 root 1.29 #ifndef EV_USE_MONOTONIC
265 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 root 1.253 # else
268     # define EV_USE_MONOTONIC 0
269     # endif
270 root 1.37 #endif
271    
272 root 1.118 #ifndef EV_USE_REALTIME
273 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 root 1.118 #endif
275    
276 root 1.193 #ifndef EV_USE_NANOSLEEP
277 root 1.253 # if _POSIX_C_SOURCE >= 199309L
278 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 root 1.253 # else
280     # define EV_USE_NANOSLEEP 0
281     # endif
282 root 1.193 #endif
283    
284 root 1.29 #ifndef EV_USE_SELECT
285 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 root 1.10 #endif
287    
288 root 1.59 #ifndef EV_USE_POLL
289 root 1.104 # ifdef _WIN32
290     # define EV_USE_POLL 0
291     # else
292 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 root 1.104 # endif
294 root 1.41 #endif
295    
296 root 1.29 #ifndef EV_USE_EPOLL
297 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 root 1.220 # else
300     # define EV_USE_EPOLL 0
301     # endif
302 root 1.10 #endif
303    
304 root 1.44 #ifndef EV_USE_KQUEUE
305     # define EV_USE_KQUEUE 0
306     #endif
307    
308 root 1.118 #ifndef EV_USE_PORT
309     # define EV_USE_PORT 0
310 root 1.40 #endif
311    
312 root 1.152 #ifndef EV_USE_INOTIFY
313 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
315 root 1.220 # else
316     # define EV_USE_INOTIFY 0
317     # endif
318 root 1.152 #endif
319    
320 root 1.149 #ifndef EV_PID_HASHSIZE
321 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 root 1.149 #endif
323    
324 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
325 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 root 1.152 #endif
327    
328 root 1.220 #ifndef EV_USE_EVENTFD
329     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
331 root 1.220 # else
332     # define EV_USE_EVENTFD 0
333     # endif
334     #endif
335    
336 root 1.303 #ifndef EV_USE_SIGNALFD
337 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 root 1.303 # else
340     # define EV_USE_SIGNALFD 0
341     # endif
342     #endif
343    
344 root 1.249 #if 0 /* debugging */
345 root 1.250 # define EV_VERIFY 3
346 root 1.249 # define EV_USE_4HEAP 1
347     # define EV_HEAP_CACHE_AT 1
348     #endif
349    
350 root 1.250 #ifndef EV_VERIFY
351 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 root 1.250 #endif
353    
354 root 1.243 #ifndef EV_USE_4HEAP
355 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
356 root 1.243 #endif
357    
358     #ifndef EV_HEAP_CACHE_AT
359 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 root 1.243 #endif
361    
362 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363     /* which makes programs even slower. might work on other unices, too. */
364     #if EV_USE_CLOCK_SYSCALL
365 root 1.423 # include <sys/syscall.h>
366 root 1.291 # ifdef SYS_clock_gettime
367     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368     # undef EV_USE_MONOTONIC
369     # define EV_USE_MONOTONIC 1
370     # else
371     # undef EV_USE_CLOCK_SYSCALL
372     # define EV_USE_CLOCK_SYSCALL 0
373     # endif
374     #endif
375    
376 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
377 root 1.40
378 root 1.325 #ifdef _AIX
379     /* AIX has a completely broken poll.h header */
380     # undef EV_USE_POLL
381     # define EV_USE_POLL 0
382     #endif
383    
384 root 1.40 #ifndef CLOCK_MONOTONIC
385     # undef EV_USE_MONOTONIC
386     # define EV_USE_MONOTONIC 0
387     #endif
388    
389 root 1.31 #ifndef CLOCK_REALTIME
390 root 1.40 # undef EV_USE_REALTIME
391 root 1.31 # define EV_USE_REALTIME 0
392     #endif
393 root 1.40
394 root 1.152 #if !EV_STAT_ENABLE
395 root 1.185 # undef EV_USE_INOTIFY
396 root 1.152 # define EV_USE_INOTIFY 0
397     #endif
398    
399 root 1.193 #if !EV_USE_NANOSLEEP
400 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
401 root 1.416 # if !defined _WIN32 && !defined __hpux
402 root 1.193 # include <sys/select.h>
403     # endif
404     #endif
405    
406 root 1.152 #if EV_USE_INOTIFY
407 root 1.273 # include <sys/statfs.h>
408 root 1.152 # include <sys/inotify.h>
409 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410     # ifndef IN_DONT_FOLLOW
411     # undef EV_USE_INOTIFY
412     # define EV_USE_INOTIFY 0
413     # endif
414 root 1.152 #endif
415    
416 root 1.220 #if EV_USE_EVENTFD
417     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418 root 1.221 # include <stdint.h>
419 root 1.303 # ifndef EFD_NONBLOCK
420     # define EFD_NONBLOCK O_NONBLOCK
421     # endif
422     # ifndef EFD_CLOEXEC
423 root 1.311 # ifdef O_CLOEXEC
424     # define EFD_CLOEXEC O_CLOEXEC
425     # else
426     # define EFD_CLOEXEC 02000000
427     # endif
428 root 1.303 # endif
429 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430 root 1.220 #endif
431    
432 root 1.303 #if EV_USE_SIGNALFD
433 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434     # include <stdint.h>
435     # ifndef SFD_NONBLOCK
436     # define SFD_NONBLOCK O_NONBLOCK
437     # endif
438     # ifndef SFD_CLOEXEC
439     # ifdef O_CLOEXEC
440     # define SFD_CLOEXEC O_CLOEXEC
441     # else
442     # define SFD_CLOEXEC 02000000
443     # endif
444     # endif
445 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446 root 1.314
447     struct signalfd_siginfo
448     {
449     uint32_t ssi_signo;
450     char pad[128 - sizeof (uint32_t)];
451     };
452 root 1.303 #endif
453    
454 root 1.40 /**/
455 root 1.1
456 root 1.250 #if EV_VERIFY >= 3
457 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
458 root 1.248 #else
459     # define EV_FREQUENT_CHECK do { } while (0)
460     #endif
461    
462 root 1.176 /*
463 root 1.373 * This is used to work around floating point rounding problems.
464 root 1.177 * This value is good at least till the year 4000.
465 root 1.176 */
466 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
468 root 1.176
469 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
470 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
471 root 1.1
472 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474 root 1.347
475 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476     /* ECB.H BEGIN */
477     /*
478     * libecb - http://software.schmorp.de/pkg/libecb
479     *
480 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
482     * All rights reserved.
483     *
484     * Redistribution and use in source and binary forms, with or without modifica-
485     * tion, are permitted provided that the following conditions are met:
486     *
487     * 1. Redistributions of source code must retain the above copyright notice,
488     * this list of conditions and the following disclaimer.
489     *
490     * 2. Redistributions in binary form must reproduce the above copyright
491     * notice, this list of conditions and the following disclaimer in the
492     * documentation and/or other materials provided with the distribution.
493     *
494     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503     * OF THE POSSIBILITY OF SUCH DAMAGE.
504     */
505    
506     #ifndef ECB_H
507     #define ECB_H
508    
509 root 1.437 /* 16 bits major, 16 bits minor */
510     #define ECB_VERSION 0x00010001
511    
512 root 1.391 #ifdef _WIN32
513     typedef signed char int8_t;
514     typedef unsigned char uint8_t;
515     typedef signed short int16_t;
516     typedef unsigned short uint16_t;
517     typedef signed int int32_t;
518     typedef unsigned int uint32_t;
519     #if __GNUC__
520     typedef signed long long int64_t;
521     typedef unsigned long long uint64_t;
522     #else /* _MSC_VER || __BORLANDC__ */
523     typedef signed __int64 int64_t;
524     typedef unsigned __int64 uint64_t;
525     #endif
526 root 1.437 #ifdef _WIN64
527     #define ECB_PTRSIZE 8
528     typedef uint64_t uintptr_t;
529     typedef int64_t intptr_t;
530     #else
531     #define ECB_PTRSIZE 4
532     typedef uint32_t uintptr_t;
533     typedef int32_t intptr_t;
534     #endif
535     typedef intptr_t ptrdiff_t;
536 root 1.391 #else
537     #include <inttypes.h>
538 root 1.437 #if UINTMAX_MAX > 0xffffffffU
539     #define ECB_PTRSIZE 8
540     #else
541     #define ECB_PTRSIZE 4
542     #endif
543 root 1.391 #endif
544 root 1.379
545     /* many compilers define _GNUC_ to some versions but then only implement
546     * what their idiot authors think are the "more important" extensions,
547 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
548 root 1.379 * or so.
549     * we try to detect these and simply assume they are not gcc - if they have
550     * an issue with that they should have done it right in the first place.
551     */
552     #ifndef ECB_GCC_VERSION
553 root 1.417 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 root 1.379 #define ECB_GCC_VERSION(major,minor) 0
555     #else
556     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
557     #endif
558     #endif
559    
560 root 1.437 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
562     #define ECB_C11 (__STDC_VERSION__ >= 201112L)
563     #define ECB_CPP (__cplusplus+0)
564     #define ECB_CPP98 (__cplusplus >= 199711L)
565     #define ECB_CPP11 (__cplusplus >= 201103L)
566    
567 root 1.391 /*****************************************************************************/
568    
569     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
570     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
571    
572 root 1.410 #if ECB_NO_THREADS
573     # define ECB_NO_SMP 1
574     #endif
575    
576 root 1.437 #if ECB_NO_SMP
577 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
578 root 1.40 #endif
579    
580 root 1.383 #ifndef ECB_MEMORY_FENCE
581 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
582 root 1.404 #if __i386 || __i386__
583 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
584 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
585     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
586 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
587 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
588     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
589     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
590 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
591 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
592 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
593     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
594 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
595 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
596 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
597     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
598 root 1.404 #elif __sparc || __sparc__
599 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
600     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
601     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
602 root 1.417 #elif defined __s390__ || defined __s390x__
603 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
604 root 1.417 #elif defined __mips__
605 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
606 root 1.419 #elif defined __alpha__
607 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
608     #elif defined __hppa__
609     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
610     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
611     #elif defined __ia64__
612     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
613 root 1.383 #endif
614     #endif
615     #endif
616    
617     #ifndef ECB_MEMORY_FENCE
618 root 1.437 #if ECB_GCC_VERSION(4,7)
619     /* see comment below about the C11 memory model. in short - avoid */
620     #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
621     #elif defined __clang && __has_feature (cxx_atomic)
622     /* see above */
623     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
624     #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
625 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
626 root 1.392 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
627     /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
628 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
629     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
630     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
631     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
632     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
633 root 1.417 #elif defined _WIN32
634 root 1.388 #include <WinNT.h>
635 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
636 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
637     #include <mbarrier.h>
638     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
639     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
640     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
641 root 1.413 #elif __xlC__
642 root 1.414 #define ECB_MEMORY_FENCE __sync ()
643 root 1.383 #endif
644     #endif
645    
646     #ifndef ECB_MEMORY_FENCE
647 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
648     /* we assume that these memory fences work on all variables/all memory accesses, */
649     /* not just C11 atomics and atomic accesses */
650     #include <stdatomic.h>
651     /* unfortunately, the C11 memory model seems to be very limited, and unable to express */
652     /* simple barrier semantics. That means we need to take out thor's hammer. */
653     #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
654     #endif
655     #endif
656     #endif
657    
658     #ifndef ECB_MEMORY_FENCE
659 root 1.392 #if !ECB_AVOID_PTHREADS
660     /*
661     * if you get undefined symbol references to pthread_mutex_lock,
662     * or failure to find pthread.h, then you should implement
663     * the ECB_MEMORY_FENCE operations for your cpu/compiler
664     * OR provide pthread.h and link against the posix thread library
665     * of your system.
666     */
667     #include <pthread.h>
668     #define ECB_NEEDS_PTHREADS 1
669     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670    
671     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673     #endif
674     #endif
675 root 1.383
676 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678 root 1.392 #endif
679    
680 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682     #endif
683    
684 root 1.391 /*****************************************************************************/
685    
686     #if __cplusplus
687     #define ecb_inline static inline
688     #elif ECB_GCC_VERSION(2,5)
689     #define ecb_inline static __inline__
690     #elif ECB_C99
691     #define ecb_inline static inline
692     #else
693     #define ecb_inline static
694     #endif
695    
696     #if ECB_GCC_VERSION(3,3)
697     #define ecb_restrict __restrict__
698     #elif ECB_C99
699     #define ecb_restrict restrict
700     #else
701     #define ecb_restrict
702     #endif
703    
704     typedef int ecb_bool;
705    
706     #define ECB_CONCAT_(a, b) a ## b
707     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708     #define ECB_STRINGIFY_(a) # a
709     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710    
711     #define ecb_function_ ecb_inline
712    
713 root 1.379 #if ECB_GCC_VERSION(3,1)
714     #define ecb_attribute(attrlist) __attribute__(attrlist)
715     #define ecb_is_constant(expr) __builtin_constant_p (expr)
716     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718     #else
719     #define ecb_attribute(attrlist)
720     #define ecb_is_constant(expr) 0
721     #define ecb_expect(expr,value) (expr)
722     #define ecb_prefetch(addr,rw,locality)
723     #endif
724    
725 root 1.391 /* no emulation for ecb_decltype */
726     #if ECB_GCC_VERSION(4,5)
727     #define ecb_decltype(x) __decltype(x)
728     #elif ECB_GCC_VERSION(3,0)
729     #define ecb_decltype(x) __typeof(x)
730     #endif
731    
732 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
733     #define ecb_unused ecb_attribute ((__unused__))
734     #define ecb_const ecb_attribute ((__const__))
735     #define ecb_pure ecb_attribute ((__pure__))
736    
737 root 1.437 #if ECB_C11
738     #define ecb_noreturn _Noreturn
739     #else
740     #define ecb_noreturn ecb_attribute ((__noreturn__))
741     #endif
742    
743 root 1.379 #if ECB_GCC_VERSION(4,3)
744     #define ecb_artificial ecb_attribute ((__artificial__))
745     #define ecb_hot ecb_attribute ((__hot__))
746     #define ecb_cold ecb_attribute ((__cold__))
747     #else
748     #define ecb_artificial
749     #define ecb_hot
750     #define ecb_cold
751     #endif
752    
753     /* put around conditional expressions if you are very sure that the */
754     /* expression is mostly true or mostly false. note that these return */
755     /* booleans, not the expression. */
756     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
757     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758 root 1.391 /* for compatibility to the rest of the world */
759     #define ecb_likely(expr) ecb_expect_true (expr)
760     #define ecb_unlikely(expr) ecb_expect_false (expr)
761    
762     /* count trailing zero bits and count # of one bits */
763     #if ECB_GCC_VERSION(3,4)
764     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767     #define ecb_ctz32(x) __builtin_ctz (x)
768     #define ecb_ctz64(x) __builtin_ctzll (x)
769     #define ecb_popcount32(x) __builtin_popcount (x)
770     /* no popcountll */
771     #else
772     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773     ecb_function_ int
774     ecb_ctz32 (uint32_t x)
775     {
776     int r = 0;
777    
778     x &= ~x + 1; /* this isolates the lowest bit */
779    
780     #if ECB_branchless_on_i386
781     r += !!(x & 0xaaaaaaaa) << 0;
782     r += !!(x & 0xcccccccc) << 1;
783     r += !!(x & 0xf0f0f0f0) << 2;
784     r += !!(x & 0xff00ff00) << 3;
785     r += !!(x & 0xffff0000) << 4;
786     #else
787     if (x & 0xaaaaaaaa) r += 1;
788     if (x & 0xcccccccc) r += 2;
789     if (x & 0xf0f0f0f0) r += 4;
790     if (x & 0xff00ff00) r += 8;
791     if (x & 0xffff0000) r += 16;
792     #endif
793    
794     return r;
795     }
796    
797     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798     ecb_function_ int
799     ecb_ctz64 (uint64_t x)
800     {
801     int shift = x & 0xffffffffU ? 0 : 32;
802     return ecb_ctz32 (x >> shift) + shift;
803     }
804    
805     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806     ecb_function_ int
807     ecb_popcount32 (uint32_t x)
808     {
809     x -= (x >> 1) & 0x55555555;
810     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811     x = ((x >> 4) + x) & 0x0f0f0f0f;
812     x *= 0x01010101;
813    
814     return x >> 24;
815     }
816    
817     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818     ecb_function_ int ecb_ld32 (uint32_t x)
819     {
820     int r = 0;
821    
822     if (x >> 16) { x >>= 16; r += 16; }
823     if (x >> 8) { x >>= 8; r += 8; }
824     if (x >> 4) { x >>= 4; r += 4; }
825     if (x >> 2) { x >>= 2; r += 2; }
826     if (x >> 1) { r += 1; }
827    
828     return r;
829     }
830    
831     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832     ecb_function_ int ecb_ld64 (uint64_t x)
833     {
834     int r = 0;
835    
836     if (x >> 32) { x >>= 32; r += 32; }
837    
838     return r + ecb_ld32 (x);
839     }
840     #endif
841    
842 root 1.437 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843     ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846    
847 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849     {
850     return ( (x * 0x0802U & 0x22110U)
851     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852     }
853    
854     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856     {
857     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860     x = ( x >> 8 ) | ( x << 8);
861    
862     return x;
863     }
864    
865     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867     {
868     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872     x = ( x >> 16 ) | ( x << 16);
873    
874     return x;
875     }
876    
877 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
878     /* so for this version we are lazy */
879     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880     ecb_function_ int
881     ecb_popcount64 (uint64_t x)
882     {
883     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884     }
885    
886     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894    
895     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903    
904     #if ECB_GCC_VERSION(4,3)
905     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906     #define ecb_bswap32(x) __builtin_bswap32 (x)
907     #define ecb_bswap64(x) __builtin_bswap64 (x)
908     #else
909     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910     ecb_function_ uint16_t
911     ecb_bswap16 (uint16_t x)
912     {
913     return ecb_rotl16 (x, 8);
914     }
915    
916     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917     ecb_function_ uint32_t
918     ecb_bswap32 (uint32_t x)
919     {
920     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921     }
922    
923     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924     ecb_function_ uint64_t
925     ecb_bswap64 (uint64_t x)
926     {
927     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928     }
929     #endif
930    
931     #if ECB_GCC_VERSION(4,5)
932     #define ecb_unreachable() __builtin_unreachable ()
933     #else
934     /* this seems to work fine, but gcc always emits a warning for it :/ */
935 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936     ecb_inline void ecb_unreachable (void) { }
937 root 1.391 #endif
938    
939     /* try to tell the compiler that some condition is definitely true */
940     #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941    
942 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943     ecb_inline unsigned char
944 root 1.391 ecb_byteorder_helper (void)
945     {
946     const uint32_t u = 0x11223344;
947     return *(unsigned char *)&u;
948     }
949    
950 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954 root 1.391
955     #if ECB_GCC_VERSION(3,0) || ECB_C99
956     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957     #else
958     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959     #endif
960    
961 root 1.398 #if __cplusplus
962     template<typename T>
963     static inline T ecb_div_rd (T val, T div)
964     {
965     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966     }
967     template<typename T>
968     static inline T ecb_div_ru (T val, T div)
969     {
970     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971     }
972     #else
973     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975     #endif
976    
977 root 1.391 #if ecb_cplusplus_does_not_suck
978     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979     template<typename T, int N>
980     static inline int ecb_array_length (const T (&arr)[N])
981     {
982     return N;
983     }
984     #else
985     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986     #endif
987    
988     #endif
989    
990     /* ECB.H END */
991 root 1.379
992 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
994 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
995     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 sf-exg 1.402 * libev, in which cases the memory fences become nops.
997 root 1.396 * alternatively, you can remove this #error and link against libpthread,
998     * which will then provide the memory fences.
999     */
1000     # error "memory fences not defined for your architecture, please report"
1001     #endif
1002    
1003     #ifndef ECB_MEMORY_FENCE
1004     # define ECB_MEMORY_FENCE do { } while (0)
1005     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007 root 1.392 #endif
1008    
1009 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1010     #define expect_true(cond) ecb_expect_true (cond)
1011     #define noinline ecb_noinline
1012    
1013     #define inline_size ecb_inline
1014 root 1.169
1015 root 1.338 #if EV_FEATURE_CODE
1016 root 1.379 # define inline_speed ecb_inline
1017 root 1.338 #else
1018 root 1.169 # define inline_speed static noinline
1019     #endif
1020 root 1.40
1021 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022    
1023     #if EV_MINPRI == EV_MAXPRI
1024     # define ABSPRI(w) (((W)w), 0)
1025     #else
1026     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027     #endif
1028 root 1.42
1029 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1030 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1031 root 1.103
1032 root 1.136 typedef ev_watcher *W;
1033     typedef ev_watcher_list *WL;
1034     typedef ev_watcher_time *WT;
1035 root 1.10
1036 root 1.229 #define ev_active(w) ((W)(w))->active
1037 root 1.228 #define ev_at(w) ((WT)(w))->at
1038    
1039 root 1.279 #if EV_USE_REALTIME
1040 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1041 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1042 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1043     #endif
1044    
1045     #if EV_USE_MONOTONIC
1046 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1047 root 1.198 #endif
1048 root 1.54
1049 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1050     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051     #endif
1052     #ifndef EV_WIN32_HANDLE_TO_FD
1053 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054 root 1.313 #endif
1055     #ifndef EV_WIN32_CLOSE_FD
1056     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1057     #endif
1058    
1059 root 1.103 #ifdef _WIN32
1060 root 1.98 # include "ev_win32.c"
1061     #endif
1062 root 1.67
1063 root 1.53 /*****************************************************************************/
1064 root 1.1
1065 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1066    
1067     #if EV_USE_FLOOR
1068     # include <math.h>
1069     # define ev_floor(v) floor (v)
1070     #else
1071    
1072     #include <float.h>
1073    
1074     /* a floor() replacement function, should be independent of ev_tstamp type */
1075     static ev_tstamp noinline
1076     ev_floor (ev_tstamp v)
1077     {
1078     /* the choice of shift factor is not terribly important */
1079     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081     #else
1082     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083     #endif
1084    
1085     /* argument too large for an unsigned long? */
1086     if (expect_false (v >= shift))
1087     {
1088     ev_tstamp f;
1089    
1090     if (v == v - 1.)
1091     return v; /* very large number */
1092    
1093     f = shift * ev_floor (v * (1. / shift));
1094     return f + ev_floor (v - f);
1095     }
1096    
1097     /* special treatment for negative args? */
1098     if (expect_false (v < 0.))
1099     {
1100     ev_tstamp f = -ev_floor (-v);
1101    
1102     return f - (f == v ? 0 : 1);
1103     }
1104    
1105     /* fits into an unsigned long */
1106     return (unsigned long)v;
1107     }
1108    
1109     #endif
1110    
1111     /*****************************************************************************/
1112    
1113 root 1.356 #ifdef __linux
1114     # include <sys/utsname.h>
1115     #endif
1116    
1117 root 1.379 static unsigned int noinline ecb_cold
1118 root 1.355 ev_linux_version (void)
1119     {
1120     #ifdef __linux
1121 root 1.359 unsigned int v = 0;
1122 root 1.355 struct utsname buf;
1123     int i;
1124     char *p = buf.release;
1125    
1126     if (uname (&buf))
1127     return 0;
1128    
1129     for (i = 3+1; --i; )
1130     {
1131     unsigned int c = 0;
1132    
1133     for (;;)
1134     {
1135     if (*p >= '0' && *p <= '9')
1136     c = c * 10 + *p++ - '0';
1137     else
1138     {
1139     p += *p == '.';
1140     break;
1141     }
1142     }
1143    
1144     v = (v << 8) | c;
1145     }
1146    
1147     return v;
1148     #else
1149     return 0;
1150     #endif
1151     }
1152    
1153     /*****************************************************************************/
1154    
1155 root 1.331 #if EV_AVOID_STDIO
1156 root 1.379 static void noinline ecb_cold
1157 root 1.331 ev_printerr (const char *msg)
1158     {
1159     write (STDERR_FILENO, msg, strlen (msg));
1160     }
1161     #endif
1162    
1163 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1164 root 1.69
1165 root 1.379 void ecb_cold
1166 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1167 root 1.69 {
1168     syserr_cb = cb;
1169     }
1170    
1171 root 1.379 static void noinline ecb_cold
1172 root 1.269 ev_syserr (const char *msg)
1173 root 1.69 {
1174 root 1.70 if (!msg)
1175     msg = "(libev) system error";
1176    
1177 root 1.69 if (syserr_cb)
1178 root 1.70 syserr_cb (msg);
1179 root 1.69 else
1180     {
1181 root 1.330 #if EV_AVOID_STDIO
1182 root 1.331 ev_printerr (msg);
1183     ev_printerr (": ");
1184 root 1.365 ev_printerr (strerror (errno));
1185 root 1.331 ev_printerr ("\n");
1186 root 1.330 #else
1187 root 1.70 perror (msg);
1188 root 1.330 #endif
1189 root 1.69 abort ();
1190     }
1191     }
1192    
1193 root 1.224 static void *
1194 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1195 root 1.224 {
1196 root 1.334 #if __GLIBC__
1197     return realloc (ptr, size);
1198     #else
1199 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
1200 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1201 root 1.224 * the single unix specification, so work around them here.
1202     */
1203 root 1.333
1204 root 1.224 if (size)
1205     return realloc (ptr, size);
1206    
1207     free (ptr);
1208     return 0;
1209 root 1.334 #endif
1210 root 1.224 }
1211    
1212 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1213 root 1.69
1214 root 1.379 void ecb_cold
1215 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1216 root 1.69 {
1217     alloc = cb;
1218     }
1219    
1220 root 1.150 inline_speed void *
1221 root 1.155 ev_realloc (void *ptr, long size)
1222 root 1.69 {
1223 root 1.224 ptr = alloc (ptr, size);
1224 root 1.69
1225     if (!ptr && size)
1226     {
1227 root 1.330 #if EV_AVOID_STDIO
1228 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1229 root 1.330 #else
1230 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1231 root 1.330 #endif
1232 root 1.69 abort ();
1233     }
1234    
1235     return ptr;
1236     }
1237    
1238     #define ev_malloc(size) ev_realloc (0, (size))
1239     #define ev_free(ptr) ev_realloc ((ptr), 0)
1240    
1241     /*****************************************************************************/
1242    
1243 root 1.298 /* set in reify when reification needed */
1244     #define EV_ANFD_REIFY 1
1245    
1246 root 1.288 /* file descriptor info structure */
1247 root 1.53 typedef struct
1248     {
1249 root 1.68 WL head;
1250 root 1.288 unsigned char events; /* the events watched for */
1251 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1252 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1253 root 1.269 unsigned char unused;
1254     #if EV_USE_EPOLL
1255 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1256 root 1.269 #endif
1257 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1258 root 1.103 SOCKET handle;
1259     #endif
1260 root 1.357 #if EV_USE_IOCP
1261     OVERLAPPED or, ow;
1262     #endif
1263 root 1.53 } ANFD;
1264 root 1.1
1265 root 1.288 /* stores the pending event set for a given watcher */
1266 root 1.53 typedef struct
1267     {
1268     W w;
1269 root 1.288 int events; /* the pending event set for the given watcher */
1270 root 1.53 } ANPENDING;
1271 root 1.51
1272 root 1.155 #if EV_USE_INOTIFY
1273 root 1.241 /* hash table entry per inotify-id */
1274 root 1.152 typedef struct
1275     {
1276     WL head;
1277 root 1.155 } ANFS;
1278 root 1.152 #endif
1279    
1280 root 1.241 /* Heap Entry */
1281     #if EV_HEAP_CACHE_AT
1282 root 1.288 /* a heap element */
1283 root 1.241 typedef struct {
1284 root 1.243 ev_tstamp at;
1285 root 1.241 WT w;
1286     } ANHE;
1287    
1288 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1289     #define ANHE_at(he) (he).at /* access cached at, read-only */
1290     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1291 root 1.241 #else
1292 root 1.288 /* a heap element */
1293 root 1.241 typedef WT ANHE;
1294    
1295 root 1.248 #define ANHE_w(he) (he)
1296     #define ANHE_at(he) (he)->at
1297     #define ANHE_at_cache(he)
1298 root 1.241 #endif
1299    
1300 root 1.55 #if EV_MULTIPLICITY
1301 root 1.54
1302 root 1.80 struct ev_loop
1303     {
1304 root 1.86 ev_tstamp ev_rt_now;
1305 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1306 root 1.80 #define VAR(name,decl) decl;
1307     #include "ev_vars.h"
1308     #undef VAR
1309     };
1310     #include "ev_wrap.h"
1311    
1312 root 1.116 static struct ev_loop default_loop_struct;
1313 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1314 root 1.54
1315 root 1.53 #else
1316 root 1.54
1317 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1318 root 1.80 #define VAR(name,decl) static decl;
1319     #include "ev_vars.h"
1320     #undef VAR
1321    
1322 root 1.116 static int ev_default_loop_ptr;
1323 root 1.54
1324 root 1.51 #endif
1325 root 1.1
1326 root 1.338 #if EV_FEATURE_API
1327 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1328     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1329 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1330     #else
1331 root 1.298 # define EV_RELEASE_CB (void)0
1332     # define EV_ACQUIRE_CB (void)0
1333 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1334     #endif
1335    
1336 root 1.353 #define EVBREAK_RECURSE 0x80
1337 root 1.298
1338 root 1.8 /*****************************************************************************/
1339    
1340 root 1.292 #ifndef EV_HAVE_EV_TIME
1341 root 1.141 ev_tstamp
1342 root 1.420 ev_time (void) EV_THROW
1343 root 1.1 {
1344 root 1.29 #if EV_USE_REALTIME
1345 root 1.279 if (expect_true (have_realtime))
1346     {
1347     struct timespec ts;
1348     clock_gettime (CLOCK_REALTIME, &ts);
1349     return ts.tv_sec + ts.tv_nsec * 1e-9;
1350     }
1351     #endif
1352    
1353 root 1.1 struct timeval tv;
1354     gettimeofday (&tv, 0);
1355     return tv.tv_sec + tv.tv_usec * 1e-6;
1356     }
1357 root 1.292 #endif
1358 root 1.1
1359 root 1.284 inline_size ev_tstamp
1360 root 1.1 get_clock (void)
1361     {
1362 root 1.29 #if EV_USE_MONOTONIC
1363 root 1.40 if (expect_true (have_monotonic))
1364 root 1.1 {
1365     struct timespec ts;
1366     clock_gettime (CLOCK_MONOTONIC, &ts);
1367     return ts.tv_sec + ts.tv_nsec * 1e-9;
1368     }
1369     #endif
1370    
1371     return ev_time ();
1372     }
1373    
1374 root 1.85 #if EV_MULTIPLICITY
1375 root 1.51 ev_tstamp
1376 root 1.420 ev_now (EV_P) EV_THROW
1377 root 1.51 {
1378 root 1.85 return ev_rt_now;
1379 root 1.51 }
1380 root 1.85 #endif
1381 root 1.51
1382 root 1.193 void
1383 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1384 root 1.193 {
1385     if (delay > 0.)
1386     {
1387     #if EV_USE_NANOSLEEP
1388     struct timespec ts;
1389    
1390 root 1.348 EV_TS_SET (ts, delay);
1391 root 1.193 nanosleep (&ts, 0);
1392 root 1.416 #elif defined _WIN32
1393 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1394 root 1.193 #else
1395     struct timeval tv;
1396    
1397 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1398 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1399 root 1.257 /* by older ones */
1400 sf-exg 1.349 EV_TV_SET (tv, delay);
1401 root 1.193 select (0, 0, 0, 0, &tv);
1402     #endif
1403     }
1404     }
1405    
1406     /*****************************************************************************/
1407    
1408 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1409 root 1.232
1410 root 1.288 /* find a suitable new size for the given array, */
1411 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1412 root 1.284 inline_size int
1413 root 1.163 array_nextsize (int elem, int cur, int cnt)
1414     {
1415     int ncur = cur + 1;
1416    
1417     do
1418     ncur <<= 1;
1419     while (cnt > ncur);
1420    
1421 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1422 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1423 root 1.163 {
1424     ncur *= elem;
1425 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1426 root 1.163 ncur = ncur - sizeof (void *) * 4;
1427     ncur /= elem;
1428     }
1429    
1430     return ncur;
1431     }
1432    
1433 root 1.379 static void * noinline ecb_cold
1434 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1435     {
1436     *cur = array_nextsize (elem, *cur, cnt);
1437     return ev_realloc (base, elem * *cur);
1438     }
1439 root 1.29
1440 root 1.265 #define array_init_zero(base,count) \
1441     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1442    
1443 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1444 root 1.163 if (expect_false ((cnt) > (cur))) \
1445 root 1.69 { \
1446 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1447 root 1.163 (base) = (type *)array_realloc \
1448     (sizeof (type), (base), &(cur), (cnt)); \
1449     init ((base) + (ocur_), (cur) - ocur_); \
1450 root 1.1 }
1451    
1452 root 1.163 #if 0
1453 root 1.74 #define array_slim(type,stem) \
1454 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1455     { \
1456     stem ## max = array_roundsize (stem ## cnt >> 1); \
1457 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1458 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1459     }
1460 root 1.163 #endif
1461 root 1.67
1462 root 1.65 #define array_free(stem, idx) \
1463 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1464 root 1.65
1465 root 1.8 /*****************************************************************************/
1466    
1467 root 1.288 /* dummy callback for pending events */
1468     static void noinline
1469     pendingcb (EV_P_ ev_prepare *w, int revents)
1470     {
1471     }
1472    
1473 root 1.140 void noinline
1474 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1475 root 1.1 {
1476 root 1.78 W w_ = (W)w;
1477 root 1.171 int pri = ABSPRI (w_);
1478 root 1.78
1479 root 1.123 if (expect_false (w_->pending))
1480 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1481     else
1482 root 1.32 {
1483 root 1.171 w_->pending = ++pendingcnt [pri];
1484     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1485     pendings [pri][w_->pending - 1].w = w_;
1486     pendings [pri][w_->pending - 1].events = revents;
1487 root 1.32 }
1488 root 1.425
1489     pendingpri = NUMPRI - 1;
1490 root 1.1 }
1491    
1492 root 1.284 inline_speed void
1493     feed_reverse (EV_P_ W w)
1494     {
1495     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1496     rfeeds [rfeedcnt++] = w;
1497     }
1498    
1499     inline_size void
1500     feed_reverse_done (EV_P_ int revents)
1501     {
1502     do
1503     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1504     while (rfeedcnt);
1505     }
1506    
1507     inline_speed void
1508 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1509 root 1.27 {
1510     int i;
1511    
1512     for (i = 0; i < eventcnt; ++i)
1513 root 1.78 ev_feed_event (EV_A_ events [i], type);
1514 root 1.27 }
1515    
1516 root 1.141 /*****************************************************************************/
1517    
1518 root 1.284 inline_speed void
1519 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1520 root 1.1 {
1521     ANFD *anfd = anfds + fd;
1522 root 1.136 ev_io *w;
1523 root 1.1
1524 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1525 root 1.1 {
1526 root 1.79 int ev = w->events & revents;
1527 root 1.1
1528     if (ev)
1529 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1530 root 1.1 }
1531     }
1532    
1533 root 1.298 /* do not submit kernel events for fds that have reify set */
1534     /* because that means they changed while we were polling for new events */
1535     inline_speed void
1536     fd_event (EV_P_ int fd, int revents)
1537     {
1538     ANFD *anfd = anfds + fd;
1539    
1540     if (expect_true (!anfd->reify))
1541 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1542 root 1.298 }
1543    
1544 root 1.79 void
1545 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1546 root 1.79 {
1547 root 1.168 if (fd >= 0 && fd < anfdmax)
1548 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1549 root 1.79 }
1550    
1551 root 1.288 /* make sure the external fd watch events are in-sync */
1552     /* with the kernel/libev internal state */
1553 root 1.284 inline_size void
1554 root 1.51 fd_reify (EV_P)
1555 root 1.9 {
1556     int i;
1557    
1558 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1559     for (i = 0; i < fdchangecnt; ++i)
1560     {
1561     int fd = fdchanges [i];
1562     ANFD *anfd = anfds + fd;
1563    
1564 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1565 root 1.371 {
1566     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1567    
1568     if (handle != anfd->handle)
1569     {
1570     unsigned long arg;
1571    
1572     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1573    
1574     /* handle changed, but fd didn't - we need to do it in two steps */
1575     backend_modify (EV_A_ fd, anfd->events, 0);
1576     anfd->events = 0;
1577     anfd->handle = handle;
1578     }
1579     }
1580     }
1581     #endif
1582    
1583 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1584     {
1585     int fd = fdchanges [i];
1586     ANFD *anfd = anfds + fd;
1587 root 1.136 ev_io *w;
1588 root 1.27
1589 root 1.350 unsigned char o_events = anfd->events;
1590     unsigned char o_reify = anfd->reify;
1591 root 1.27
1592 root 1.350 anfd->reify = 0;
1593 root 1.27
1594 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1595     {
1596     anfd->events = 0;
1597 root 1.184
1598 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1599     anfd->events |= (unsigned char)w->events;
1600 root 1.27
1601 root 1.351 if (o_events != anfd->events)
1602 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1603     }
1604    
1605     if (o_reify & EV__IOFDSET)
1606     backend_modify (EV_A_ fd, o_events, anfd->events);
1607 root 1.27 }
1608    
1609     fdchangecnt = 0;
1610     }
1611    
1612 root 1.288 /* something about the given fd changed */
1613 root 1.284 inline_size void
1614 root 1.183 fd_change (EV_P_ int fd, int flags)
1615 root 1.27 {
1616 root 1.183 unsigned char reify = anfds [fd].reify;
1617 root 1.184 anfds [fd].reify |= flags;
1618 root 1.27
1619 root 1.183 if (expect_true (!reify))
1620     {
1621     ++fdchangecnt;
1622     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1623     fdchanges [fdchangecnt - 1] = fd;
1624     }
1625 root 1.9 }
1626    
1627 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1628 root 1.379 inline_speed void ecb_cold
1629 root 1.51 fd_kill (EV_P_ int fd)
1630 root 1.41 {
1631 root 1.136 ev_io *w;
1632 root 1.41
1633 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1634 root 1.41 {
1635 root 1.51 ev_io_stop (EV_A_ w);
1636 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1637 root 1.41 }
1638     }
1639    
1640 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1641 root 1.379 inline_size int ecb_cold
1642 root 1.71 fd_valid (int fd)
1643     {
1644 root 1.103 #ifdef _WIN32
1645 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1646 root 1.71 #else
1647     return fcntl (fd, F_GETFD) != -1;
1648     #endif
1649     }
1650    
1651 root 1.19 /* called on EBADF to verify fds */
1652 root 1.379 static void noinline ecb_cold
1653 root 1.51 fd_ebadf (EV_P)
1654 root 1.19 {
1655     int fd;
1656    
1657     for (fd = 0; fd < anfdmax; ++fd)
1658 root 1.27 if (anfds [fd].events)
1659 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1660 root 1.51 fd_kill (EV_A_ fd);
1661 root 1.41 }
1662    
1663     /* called on ENOMEM in select/poll to kill some fds and retry */
1664 root 1.379 static void noinline ecb_cold
1665 root 1.51 fd_enomem (EV_P)
1666 root 1.41 {
1667 root 1.62 int fd;
1668 root 1.41
1669 root 1.62 for (fd = anfdmax; fd--; )
1670 root 1.41 if (anfds [fd].events)
1671     {
1672 root 1.51 fd_kill (EV_A_ fd);
1673 root 1.307 break;
1674 root 1.41 }
1675 root 1.19 }
1676    
1677 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1678 root 1.140 static void noinline
1679 root 1.56 fd_rearm_all (EV_P)
1680     {
1681     int fd;
1682    
1683     for (fd = 0; fd < anfdmax; ++fd)
1684     if (anfds [fd].events)
1685     {
1686     anfds [fd].events = 0;
1687 root 1.268 anfds [fd].emask = 0;
1688 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1689 root 1.56 }
1690     }
1691    
1692 root 1.336 /* used to prepare libev internal fd's */
1693     /* this is not fork-safe */
1694     inline_speed void
1695     fd_intern (int fd)
1696     {
1697     #ifdef _WIN32
1698     unsigned long arg = 1;
1699     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1700     #else
1701     fcntl (fd, F_SETFD, FD_CLOEXEC);
1702     fcntl (fd, F_SETFL, O_NONBLOCK);
1703     #endif
1704     }
1705    
1706 root 1.8 /*****************************************************************************/
1707    
1708 root 1.235 /*
1709 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1710 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1711     * the branching factor of the d-tree.
1712     */
1713    
1714     /*
1715 root 1.235 * at the moment we allow libev the luxury of two heaps,
1716     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1717     * which is more cache-efficient.
1718     * the difference is about 5% with 50000+ watchers.
1719     */
1720 root 1.241 #if EV_USE_4HEAP
1721 root 1.235
1722 root 1.237 #define DHEAP 4
1723     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1724 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1725 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1726 root 1.235
1727     /* away from the root */
1728 root 1.284 inline_speed void
1729 root 1.241 downheap (ANHE *heap, int N, int k)
1730 root 1.235 {
1731 root 1.241 ANHE he = heap [k];
1732     ANHE *E = heap + N + HEAP0;
1733 root 1.235
1734     for (;;)
1735     {
1736     ev_tstamp minat;
1737 root 1.241 ANHE *minpos;
1738 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1739 root 1.235
1740 root 1.248 /* find minimum child */
1741 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1742 root 1.235 {
1743 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1744     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1745     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1746     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1747 root 1.235 }
1748 root 1.240 else if (pos < E)
1749 root 1.235 {
1750 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1751     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1752     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1753     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1754 root 1.235 }
1755 root 1.240 else
1756     break;
1757 root 1.235
1758 root 1.241 if (ANHE_at (he) <= minat)
1759 root 1.235 break;
1760    
1761 root 1.247 heap [k] = *minpos;
1762 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1763 root 1.235
1764     k = minpos - heap;
1765     }
1766    
1767 root 1.247 heap [k] = he;
1768 root 1.241 ev_active (ANHE_w (he)) = k;
1769 root 1.235 }
1770    
1771 root 1.248 #else /* 4HEAP */
1772 root 1.235
1773     #define HEAP0 1
1774 root 1.247 #define HPARENT(k) ((k) >> 1)
1775 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1776 root 1.235
1777 root 1.248 /* away from the root */
1778 root 1.284 inline_speed void
1779 root 1.248 downheap (ANHE *heap, int N, int k)
1780 root 1.1 {
1781 root 1.241 ANHE he = heap [k];
1782 root 1.1
1783 root 1.228 for (;;)
1784 root 1.1 {
1785 root 1.248 int c = k << 1;
1786 root 1.179
1787 root 1.309 if (c >= N + HEAP0)
1788 root 1.179 break;
1789    
1790 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1791     ? 1 : 0;
1792    
1793     if (ANHE_at (he) <= ANHE_at (heap [c]))
1794     break;
1795    
1796     heap [k] = heap [c];
1797 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1798 root 1.248
1799     k = c;
1800 root 1.1 }
1801    
1802 root 1.243 heap [k] = he;
1803 root 1.248 ev_active (ANHE_w (he)) = k;
1804 root 1.1 }
1805 root 1.248 #endif
1806 root 1.1
1807 root 1.248 /* towards the root */
1808 root 1.284 inline_speed void
1809 root 1.248 upheap (ANHE *heap, int k)
1810 root 1.1 {
1811 root 1.241 ANHE he = heap [k];
1812 root 1.1
1813 root 1.179 for (;;)
1814 root 1.1 {
1815 root 1.248 int p = HPARENT (k);
1816 root 1.179
1817 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1818 root 1.179 break;
1819 root 1.1
1820 root 1.248 heap [k] = heap [p];
1821 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1822 root 1.248 k = p;
1823 root 1.1 }
1824    
1825 root 1.241 heap [k] = he;
1826     ev_active (ANHE_w (he)) = k;
1827 root 1.1 }
1828    
1829 root 1.288 /* move an element suitably so it is in a correct place */
1830 root 1.284 inline_size void
1831 root 1.241 adjustheap (ANHE *heap, int N, int k)
1832 root 1.84 {
1833 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1834 root 1.247 upheap (heap, k);
1835     else
1836     downheap (heap, N, k);
1837 root 1.84 }
1838    
1839 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1840 root 1.284 inline_size void
1841 root 1.248 reheap (ANHE *heap, int N)
1842     {
1843     int i;
1844 root 1.251
1845 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1846     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1847     for (i = 0; i < N; ++i)
1848     upheap (heap, i + HEAP0);
1849     }
1850    
1851 root 1.8 /*****************************************************************************/
1852    
1853 root 1.288 /* associate signal watchers to a signal signal */
1854 root 1.7 typedef struct
1855     {
1856 root 1.307 EV_ATOMIC_T pending;
1857 root 1.306 #if EV_MULTIPLICITY
1858     EV_P;
1859     #endif
1860 root 1.68 WL head;
1861 root 1.7 } ANSIG;
1862    
1863 root 1.306 static ANSIG signals [EV_NSIG - 1];
1864 root 1.7
1865 root 1.207 /*****************************************************************************/
1866    
1867 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1868 root 1.207
1869 root 1.379 static void noinline ecb_cold
1870 root 1.207 evpipe_init (EV_P)
1871     {
1872 root 1.288 if (!ev_is_active (&pipe_w))
1873 root 1.207 {
1874 root 1.336 # if EV_USE_EVENTFD
1875 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1876     if (evfd < 0 && errno == EINVAL)
1877     evfd = eventfd (0, 0);
1878    
1879     if (evfd >= 0)
1880 root 1.220 {
1881     evpipe [0] = -1;
1882 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1883 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1884 root 1.220 }
1885     else
1886 root 1.336 # endif
1887 root 1.220 {
1888     while (pipe (evpipe))
1889 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1890 root 1.207
1891 root 1.220 fd_intern (evpipe [0]);
1892     fd_intern (evpipe [1]);
1893 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1894 root 1.220 }
1895 root 1.207
1896 root 1.288 ev_io_start (EV_A_ &pipe_w);
1897 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1898 root 1.207 }
1899     }
1900    
1901 root 1.380 inline_speed void
1902 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1903 root 1.207 {
1904 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1905    
1906 root 1.383 if (expect_true (*flag))
1907 root 1.387 return;
1908 root 1.383
1909     *flag = 1;
1910 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1911 root 1.383
1912     pipe_write_skipped = 1;
1913 root 1.378
1914 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1915 root 1.214
1916 root 1.383 if (pipe_write_wanted)
1917     {
1918     int old_errno;
1919 root 1.378
1920 root 1.436 pipe_write_skipped = 0;
1921     ECB_MEMORY_FENCE_RELEASE;
1922 root 1.220
1923 root 1.383 old_errno = errno; /* save errno because write will clobber it */
1924 root 1.380
1925 root 1.220 #if EV_USE_EVENTFD
1926 root 1.383 if (evfd >= 0)
1927     {
1928     uint64_t counter = 1;
1929     write (evfd, &counter, sizeof (uint64_t));
1930     }
1931     else
1932 root 1.220 #endif
1933 root 1.383 {
1934 root 1.427 #ifdef _WIN32
1935     WSABUF buf;
1936     DWORD sent;
1937     buf.buf = &buf;
1938     buf.len = 1;
1939     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1940     #else
1941 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
1942 root 1.427 #endif
1943 root 1.383 }
1944 root 1.214
1945 root 1.383 errno = old_errno;
1946 root 1.207 }
1947     }
1948    
1949 root 1.288 /* called whenever the libev signal pipe */
1950     /* got some events (signal, async) */
1951 root 1.207 static void
1952     pipecb (EV_P_ ev_io *iow, int revents)
1953     {
1954 root 1.307 int i;
1955    
1956 root 1.378 if (revents & EV_READ)
1957     {
1958 root 1.220 #if EV_USE_EVENTFD
1959 root 1.378 if (evfd >= 0)
1960     {
1961     uint64_t counter;
1962     read (evfd, &counter, sizeof (uint64_t));
1963     }
1964     else
1965 root 1.220 #endif
1966 root 1.378 {
1967 root 1.427 char dummy[4];
1968     #ifdef _WIN32
1969     WSABUF buf;
1970     DWORD recvd;
1971 root 1.432 DWORD flags = 0;
1972 root 1.427 buf.buf = dummy;
1973     buf.len = sizeof (dummy);
1974 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1975 root 1.427 #else
1976     read (evpipe [0], &dummy, sizeof (dummy));
1977     #endif
1978 root 1.378 }
1979 root 1.220 }
1980 root 1.207
1981 root 1.378 pipe_write_skipped = 0;
1982    
1983 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1984    
1985 root 1.369 #if EV_SIGNAL_ENABLE
1986 root 1.307 if (sig_pending)
1987 root 1.372 {
1988 root 1.307 sig_pending = 0;
1989 root 1.207
1990 root 1.436 ECB_MEMORY_FENCE;
1991 root 1.424
1992 root 1.307 for (i = EV_NSIG - 1; i--; )
1993     if (expect_false (signals [i].pending))
1994     ev_feed_signal_event (EV_A_ i + 1);
1995 root 1.207 }
1996 root 1.369 #endif
1997 root 1.207
1998 root 1.209 #if EV_ASYNC_ENABLE
1999 root 1.307 if (async_pending)
2000 root 1.207 {
2001 root 1.307 async_pending = 0;
2002 root 1.207
2003 root 1.436 ECB_MEMORY_FENCE;
2004 root 1.424
2005 root 1.207 for (i = asynccnt; i--; )
2006     if (asyncs [i]->sent)
2007     {
2008     asyncs [i]->sent = 0;
2009 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2010 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2011     }
2012     }
2013 root 1.209 #endif
2014 root 1.207 }
2015    
2016     /*****************************************************************************/
2017    
2018 root 1.366 void
2019 root 1.420 ev_feed_signal (int signum) EV_THROW
2020 root 1.7 {
2021 root 1.207 #if EV_MULTIPLICITY
2022 root 1.306 EV_P = signals [signum - 1].loop;
2023 root 1.366
2024     if (!EV_A)
2025     return;
2026 root 1.207 #endif
2027    
2028 root 1.381 if (!ev_active (&pipe_w))
2029     return;
2030 root 1.378
2031 root 1.366 signals [signum - 1].pending = 1;
2032     evpipe_write (EV_A_ &sig_pending);
2033     }
2034    
2035     static void
2036     ev_sighandler (int signum)
2037     {
2038 root 1.322 #ifdef _WIN32
2039 root 1.218 signal (signum, ev_sighandler);
2040 root 1.67 #endif
2041    
2042 root 1.366 ev_feed_signal (signum);
2043 root 1.7 }
2044    
2045 root 1.140 void noinline
2046 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2047 root 1.79 {
2048 root 1.80 WL w;
2049    
2050 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
2051     return;
2052    
2053     --signum;
2054    
2055 root 1.79 #if EV_MULTIPLICITY
2056 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2057     /* or, likely more useful, feeding a signal nobody is waiting for */
2058 root 1.79
2059 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2060 root 1.306 return;
2061 root 1.307 #endif
2062 root 1.306
2063 root 1.307 signals [signum].pending = 0;
2064 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2065 root 1.79
2066     for (w = signals [signum].head; w; w = w->next)
2067     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2068     }
2069    
2070 root 1.303 #if EV_USE_SIGNALFD
2071     static void
2072     sigfdcb (EV_P_ ev_io *iow, int revents)
2073     {
2074 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2075 root 1.303
2076     for (;;)
2077     {
2078     ssize_t res = read (sigfd, si, sizeof (si));
2079    
2080     /* not ISO-C, as res might be -1, but works with SuS */
2081     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2082     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2083    
2084     if (res < (ssize_t)sizeof (si))
2085     break;
2086     }
2087     }
2088     #endif
2089    
2090 root 1.336 #endif
2091    
2092 root 1.8 /*****************************************************************************/
2093    
2094 root 1.336 #if EV_CHILD_ENABLE
2095 root 1.182 static WL childs [EV_PID_HASHSIZE];
2096 root 1.71
2097 root 1.136 static ev_signal childev;
2098 root 1.59
2099 root 1.206 #ifndef WIFCONTINUED
2100     # define WIFCONTINUED(status) 0
2101     #endif
2102    
2103 root 1.288 /* handle a single child status event */
2104 root 1.284 inline_speed void
2105 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2106 root 1.47 {
2107 root 1.136 ev_child *w;
2108 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2109 root 1.47
2110 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2111 root 1.206 {
2112     if ((w->pid == pid || !w->pid)
2113     && (!traced || (w->flags & 1)))
2114     {
2115 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2116 root 1.206 w->rpid = pid;
2117     w->rstatus = status;
2118     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2119     }
2120     }
2121 root 1.47 }
2122    
2123 root 1.142 #ifndef WCONTINUED
2124     # define WCONTINUED 0
2125     #endif
2126    
2127 root 1.288 /* called on sigchld etc., calls waitpid */
2128 root 1.47 static void
2129 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2130 root 1.22 {
2131     int pid, status;
2132    
2133 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2134     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2135     if (!WCONTINUED
2136     || errno != EINVAL
2137     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2138     return;
2139    
2140 root 1.216 /* make sure we are called again until all children have been reaped */
2141 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2142     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2143 root 1.47
2144 root 1.216 child_reap (EV_A_ pid, pid, status);
2145 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2146 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2147 root 1.22 }
2148    
2149 root 1.45 #endif
2150    
2151 root 1.22 /*****************************************************************************/
2152    
2153 root 1.357 #if EV_USE_IOCP
2154     # include "ev_iocp.c"
2155     #endif
2156 root 1.118 #if EV_USE_PORT
2157     # include "ev_port.c"
2158     #endif
2159 root 1.44 #if EV_USE_KQUEUE
2160     # include "ev_kqueue.c"
2161     #endif
2162 root 1.29 #if EV_USE_EPOLL
2163 root 1.1 # include "ev_epoll.c"
2164     #endif
2165 root 1.59 #if EV_USE_POLL
2166 root 1.41 # include "ev_poll.c"
2167     #endif
2168 root 1.29 #if EV_USE_SELECT
2169 root 1.1 # include "ev_select.c"
2170     #endif
2171    
2172 root 1.379 int ecb_cold
2173 root 1.420 ev_version_major (void) EV_THROW
2174 root 1.24 {
2175     return EV_VERSION_MAJOR;
2176     }
2177    
2178 root 1.379 int ecb_cold
2179 root 1.420 ev_version_minor (void) EV_THROW
2180 root 1.24 {
2181     return EV_VERSION_MINOR;
2182     }
2183    
2184 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2185 root 1.379 int inline_size ecb_cold
2186 root 1.51 enable_secure (void)
2187 root 1.41 {
2188 root 1.103 #ifdef _WIN32
2189 root 1.49 return 0;
2190     #else
2191 root 1.41 return getuid () != geteuid ()
2192     || getgid () != getegid ();
2193 root 1.49 #endif
2194 root 1.41 }
2195    
2196 root 1.379 unsigned int ecb_cold
2197 root 1.420 ev_supported_backends (void) EV_THROW
2198 root 1.129 {
2199 root 1.130 unsigned int flags = 0;
2200 root 1.129
2201     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2202     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2203     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2204     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2205     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2206    
2207     return flags;
2208     }
2209    
2210 root 1.379 unsigned int ecb_cold
2211 root 1.420 ev_recommended_backends (void) EV_THROW
2212 root 1.1 {
2213 root 1.131 unsigned int flags = ev_supported_backends ();
2214 root 1.129
2215     #ifndef __NetBSD__
2216     /* kqueue is borked on everything but netbsd apparently */
2217     /* it usually doesn't work correctly on anything but sockets and pipes */
2218     flags &= ~EVBACKEND_KQUEUE;
2219     #endif
2220     #ifdef __APPLE__
2221 root 1.278 /* only select works correctly on that "unix-certified" platform */
2222     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2223     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2224 root 1.129 #endif
2225 root 1.342 #ifdef __FreeBSD__
2226     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2227     #endif
2228 root 1.129
2229     return flags;
2230 root 1.51 }
2231    
2232 root 1.379 unsigned int ecb_cold
2233 root 1.420 ev_embeddable_backends (void) EV_THROW
2234 root 1.134 {
2235 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2236    
2237 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2238 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2239     flags &= ~EVBACKEND_EPOLL;
2240 root 1.196
2241     return flags;
2242 root 1.134 }
2243    
2244     unsigned int
2245 root 1.420 ev_backend (EV_P) EV_THROW
2246 root 1.130 {
2247     return backend;
2248     }
2249    
2250 root 1.338 #if EV_FEATURE_API
2251 root 1.162 unsigned int
2252 root 1.420 ev_iteration (EV_P) EV_THROW
2253 root 1.162 {
2254     return loop_count;
2255     }
2256    
2257 root 1.294 unsigned int
2258 root 1.420 ev_depth (EV_P) EV_THROW
2259 root 1.294 {
2260     return loop_depth;
2261     }
2262    
2263 root 1.193 void
2264 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2265 root 1.193 {
2266     io_blocktime = interval;
2267     }
2268    
2269     void
2270 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2271 root 1.193 {
2272     timeout_blocktime = interval;
2273     }
2274    
2275 root 1.297 void
2276 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2277 root 1.297 {
2278     userdata = data;
2279     }
2280    
2281     void *
2282 root 1.420 ev_userdata (EV_P) EV_THROW
2283 root 1.297 {
2284     return userdata;
2285     }
2286    
2287 root 1.379 void
2288 root 1.420 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2289 root 1.297 {
2290     invoke_cb = invoke_pending_cb;
2291     }
2292    
2293 root 1.379 void
2294 root 1.421 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2295 root 1.297 {
2296 root 1.298 release_cb = release;
2297     acquire_cb = acquire;
2298 root 1.297 }
2299     #endif
2300    
2301 root 1.288 /* initialise a loop structure, must be zero-initialised */
2302 root 1.379 static void noinline ecb_cold
2303 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2304 root 1.51 {
2305 root 1.130 if (!backend)
2306 root 1.23 {
2307 root 1.366 origflags = flags;
2308    
2309 root 1.279 #if EV_USE_REALTIME
2310     if (!have_realtime)
2311     {
2312     struct timespec ts;
2313    
2314     if (!clock_gettime (CLOCK_REALTIME, &ts))
2315     have_realtime = 1;
2316     }
2317     #endif
2318    
2319 root 1.29 #if EV_USE_MONOTONIC
2320 root 1.279 if (!have_monotonic)
2321     {
2322     struct timespec ts;
2323    
2324     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2325     have_monotonic = 1;
2326     }
2327 root 1.1 #endif
2328    
2329 root 1.306 /* pid check not overridable via env */
2330     #ifndef _WIN32
2331     if (flags & EVFLAG_FORKCHECK)
2332     curpid = getpid ();
2333     #endif
2334    
2335     if (!(flags & EVFLAG_NOENV)
2336     && !enable_secure ()
2337     && getenv ("LIBEV_FLAGS"))
2338     flags = atoi (getenv ("LIBEV_FLAGS"));
2339    
2340 root 1.378 ev_rt_now = ev_time ();
2341     mn_now = get_clock ();
2342     now_floor = mn_now;
2343     rtmn_diff = ev_rt_now - mn_now;
2344 root 1.338 #if EV_FEATURE_API
2345 root 1.378 invoke_cb = ev_invoke_pending;
2346 root 1.297 #endif
2347 root 1.1
2348 root 1.378 io_blocktime = 0.;
2349     timeout_blocktime = 0.;
2350     backend = 0;
2351     backend_fd = -1;
2352     sig_pending = 0;
2353 root 1.307 #if EV_ASYNC_ENABLE
2354 root 1.378 async_pending = 0;
2355 root 1.307 #endif
2356 root 1.378 pipe_write_skipped = 0;
2357     pipe_write_wanted = 0;
2358 root 1.209 #if EV_USE_INOTIFY
2359 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2360 root 1.209 #endif
2361 root 1.303 #if EV_USE_SIGNALFD
2362 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2363 root 1.303 #endif
2364 root 1.193
2365 root 1.366 if (!(flags & EVBACKEND_MASK))
2366 root 1.129 flags |= ev_recommended_backends ();
2367 root 1.41
2368 root 1.357 #if EV_USE_IOCP
2369     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2370     #endif
2371 root 1.118 #if EV_USE_PORT
2372 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2373 root 1.118 #endif
2374 root 1.44 #if EV_USE_KQUEUE
2375 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2376 root 1.44 #endif
2377 root 1.29 #if EV_USE_EPOLL
2378 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2379 root 1.41 #endif
2380 root 1.59 #if EV_USE_POLL
2381 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2382 root 1.1 #endif
2383 root 1.29 #if EV_USE_SELECT
2384 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2385 root 1.1 #endif
2386 root 1.70
2387 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2388    
2389 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2390 root 1.288 ev_init (&pipe_w, pipecb);
2391     ev_set_priority (&pipe_w, EV_MAXPRI);
2392 root 1.336 #endif
2393 root 1.56 }
2394     }
2395    
2396 root 1.288 /* free up a loop structure */
2397 root 1.379 void ecb_cold
2398 root 1.422 ev_loop_destroy (EV_P)
2399 root 1.56 {
2400 root 1.65 int i;
2401    
2402 root 1.364 #if EV_MULTIPLICITY
2403 root 1.363 /* mimic free (0) */
2404     if (!EV_A)
2405     return;
2406 root 1.364 #endif
2407 root 1.363
2408 root 1.361 #if EV_CLEANUP_ENABLE
2409     /* queue cleanup watchers (and execute them) */
2410     if (expect_false (cleanupcnt))
2411     {
2412     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2413     EV_INVOKE_PENDING;
2414     }
2415     #endif
2416    
2417 root 1.359 #if EV_CHILD_ENABLE
2418 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2419 root 1.359 {
2420     ev_ref (EV_A); /* child watcher */
2421     ev_signal_stop (EV_A_ &childev);
2422     }
2423     #endif
2424    
2425 root 1.288 if (ev_is_active (&pipe_w))
2426 root 1.207 {
2427 root 1.303 /*ev_ref (EV_A);*/
2428     /*ev_io_stop (EV_A_ &pipe_w);*/
2429 root 1.207
2430 root 1.220 #if EV_USE_EVENTFD
2431     if (evfd >= 0)
2432     close (evfd);
2433     #endif
2434    
2435     if (evpipe [0] >= 0)
2436     {
2437 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2438     EV_WIN32_CLOSE_FD (evpipe [1]);
2439 root 1.220 }
2440 root 1.207 }
2441    
2442 root 1.303 #if EV_USE_SIGNALFD
2443     if (ev_is_active (&sigfd_w))
2444 root 1.317 close (sigfd);
2445 root 1.303 #endif
2446    
2447 root 1.152 #if EV_USE_INOTIFY
2448     if (fs_fd >= 0)
2449     close (fs_fd);
2450     #endif
2451    
2452     if (backend_fd >= 0)
2453     close (backend_fd);
2454    
2455 root 1.357 #if EV_USE_IOCP
2456     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2457     #endif
2458 root 1.118 #if EV_USE_PORT
2459 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2460 root 1.118 #endif
2461 root 1.56 #if EV_USE_KQUEUE
2462 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2463 root 1.56 #endif
2464     #if EV_USE_EPOLL
2465 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2466 root 1.56 #endif
2467 root 1.59 #if EV_USE_POLL
2468 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2469 root 1.56 #endif
2470     #if EV_USE_SELECT
2471 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2472 root 1.56 #endif
2473 root 1.1
2474 root 1.65 for (i = NUMPRI; i--; )
2475 root 1.164 {
2476     array_free (pending, [i]);
2477     #if EV_IDLE_ENABLE
2478     array_free (idle, [i]);
2479     #endif
2480     }
2481 root 1.65
2482 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2483 root 1.186
2484 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2485 root 1.284 array_free (rfeed, EMPTY);
2486 root 1.164 array_free (fdchange, EMPTY);
2487     array_free (timer, EMPTY);
2488 root 1.140 #if EV_PERIODIC_ENABLE
2489 root 1.164 array_free (periodic, EMPTY);
2490 root 1.93 #endif
2491 root 1.187 #if EV_FORK_ENABLE
2492     array_free (fork, EMPTY);
2493     #endif
2494 root 1.360 #if EV_CLEANUP_ENABLE
2495     array_free (cleanup, EMPTY);
2496     #endif
2497 root 1.164 array_free (prepare, EMPTY);
2498     array_free (check, EMPTY);
2499 root 1.209 #if EV_ASYNC_ENABLE
2500     array_free (async, EMPTY);
2501     #endif
2502 root 1.65
2503 root 1.130 backend = 0;
2504 root 1.359
2505     #if EV_MULTIPLICITY
2506     if (ev_is_default_loop (EV_A))
2507     #endif
2508     ev_default_loop_ptr = 0;
2509     #if EV_MULTIPLICITY
2510     else
2511     ev_free (EV_A);
2512     #endif
2513 root 1.56 }
2514 root 1.22
2515 root 1.226 #if EV_USE_INOTIFY
2516 root 1.284 inline_size void infy_fork (EV_P);
2517 root 1.226 #endif
2518 root 1.154
2519 root 1.284 inline_size void
2520 root 1.56 loop_fork (EV_P)
2521     {
2522 root 1.118 #if EV_USE_PORT
2523 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2524 root 1.56 #endif
2525     #if EV_USE_KQUEUE
2526 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2527 root 1.45 #endif
2528 root 1.118 #if EV_USE_EPOLL
2529 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2530 root 1.118 #endif
2531 root 1.154 #if EV_USE_INOTIFY
2532     infy_fork (EV_A);
2533     #endif
2534 root 1.70
2535 root 1.288 if (ev_is_active (&pipe_w))
2536 root 1.70 {
2537 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2538 root 1.70
2539     ev_ref (EV_A);
2540 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2541 root 1.220
2542     #if EV_USE_EVENTFD
2543     if (evfd >= 0)
2544     close (evfd);
2545     #endif
2546    
2547     if (evpipe [0] >= 0)
2548     {
2549 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2550     EV_WIN32_CLOSE_FD (evpipe [1]);
2551 root 1.220 }
2552 root 1.207
2553 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2554 root 1.207 evpipe_init (EV_A);
2555 root 1.208 /* now iterate over everything, in case we missed something */
2556 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
2557 root 1.337 #endif
2558 root 1.70 }
2559    
2560     postfork = 0;
2561 root 1.1 }
2562    
2563 root 1.55 #if EV_MULTIPLICITY
2564 root 1.250
2565 root 1.379 struct ev_loop * ecb_cold
2566 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2567 root 1.54 {
2568 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2569 root 1.69
2570 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2571 root 1.108 loop_init (EV_A_ flags);
2572 root 1.56
2573 root 1.130 if (ev_backend (EV_A))
2574 root 1.306 return EV_A;
2575 root 1.54
2576 root 1.359 ev_free (EV_A);
2577 root 1.55 return 0;
2578 root 1.54 }
2579    
2580 root 1.297 #endif /* multiplicity */
2581 root 1.248
2582     #if EV_VERIFY
2583 root 1.379 static void noinline ecb_cold
2584 root 1.251 verify_watcher (EV_P_ W w)
2585     {
2586 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2587 root 1.251
2588     if (w->pending)
2589 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2590 root 1.251 }
2591    
2592 root 1.379 static void noinline ecb_cold
2593 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2594     {
2595     int i;
2596    
2597     for (i = HEAP0; i < N + HEAP0; ++i)
2598     {
2599 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2600     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2601     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2602 root 1.251
2603     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2604     }
2605     }
2606    
2607 root 1.379 static void noinline ecb_cold
2608 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2609 root 1.248 {
2610     while (cnt--)
2611 root 1.251 {
2612 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2613 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2614     }
2615 root 1.248 }
2616 root 1.250 #endif
2617 root 1.248
2618 root 1.338 #if EV_FEATURE_API
2619 root 1.379 void ecb_cold
2620 root 1.420 ev_verify (EV_P) EV_THROW
2621 root 1.248 {
2622 root 1.250 #if EV_VERIFY
2623 root 1.429 int i;
2624 root 1.426 WL w, w2;
2625 root 1.251
2626     assert (activecnt >= -1);
2627    
2628     assert (fdchangemax >= fdchangecnt);
2629     for (i = 0; i < fdchangecnt; ++i)
2630 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2631 root 1.251
2632     assert (anfdmax >= 0);
2633 root 1.429 for (i = 0; i < anfdmax; ++i)
2634     {
2635     int j = 0;
2636    
2637     for (w = w2 = anfds [i].head; w; w = w->next)
2638     {
2639     verify_watcher (EV_A_ (W)w);
2640 root 1.426
2641 root 1.429 if (j++ & 1)
2642     {
2643     assert (("libev: io watcher list contains a loop", w != w2));
2644     w2 = w2->next;
2645     }
2646 root 1.426
2647 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2648     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2649     }
2650     }
2651 root 1.251
2652     assert (timermax >= timercnt);
2653     verify_heap (EV_A_ timers, timercnt);
2654 root 1.248
2655     #if EV_PERIODIC_ENABLE
2656 root 1.251 assert (periodicmax >= periodiccnt);
2657     verify_heap (EV_A_ periodics, periodiccnt);
2658 root 1.248 #endif
2659    
2660 root 1.251 for (i = NUMPRI; i--; )
2661     {
2662     assert (pendingmax [i] >= pendingcnt [i]);
2663 root 1.248 #if EV_IDLE_ENABLE
2664 root 1.252 assert (idleall >= 0);
2665 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2666     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2667 root 1.248 #endif
2668 root 1.251 }
2669    
2670 root 1.248 #if EV_FORK_ENABLE
2671 root 1.251 assert (forkmax >= forkcnt);
2672     array_verify (EV_A_ (W *)forks, forkcnt);
2673 root 1.248 #endif
2674 root 1.251
2675 root 1.360 #if EV_CLEANUP_ENABLE
2676     assert (cleanupmax >= cleanupcnt);
2677     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2678     #endif
2679    
2680 root 1.250 #if EV_ASYNC_ENABLE
2681 root 1.251 assert (asyncmax >= asynccnt);
2682     array_verify (EV_A_ (W *)asyncs, asynccnt);
2683 root 1.250 #endif
2684 root 1.251
2685 root 1.337 #if EV_PREPARE_ENABLE
2686 root 1.251 assert (preparemax >= preparecnt);
2687     array_verify (EV_A_ (W *)prepares, preparecnt);
2688 root 1.337 #endif
2689 root 1.251
2690 root 1.337 #if EV_CHECK_ENABLE
2691 root 1.251 assert (checkmax >= checkcnt);
2692     array_verify (EV_A_ (W *)checks, checkcnt);
2693 root 1.337 #endif
2694 root 1.251
2695     # if 0
2696 root 1.336 #if EV_CHILD_ENABLE
2697 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2698 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2699 root 1.336 #endif
2700 root 1.251 # endif
2701 root 1.248 #endif
2702     }
2703 root 1.297 #endif
2704 root 1.56
2705     #if EV_MULTIPLICITY
2706 root 1.379 struct ev_loop * ecb_cold
2707 root 1.54 #else
2708     int
2709 root 1.358 #endif
2710 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
2711 root 1.54 {
2712 root 1.116 if (!ev_default_loop_ptr)
2713 root 1.56 {
2714     #if EV_MULTIPLICITY
2715 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2716 root 1.56 #else
2717 ayin 1.117 ev_default_loop_ptr = 1;
2718 root 1.54 #endif
2719    
2720 root 1.110 loop_init (EV_A_ flags);
2721 root 1.56
2722 root 1.130 if (ev_backend (EV_A))
2723 root 1.56 {
2724 root 1.336 #if EV_CHILD_ENABLE
2725 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2726     ev_set_priority (&childev, EV_MAXPRI);
2727     ev_signal_start (EV_A_ &childev);
2728     ev_unref (EV_A); /* child watcher should not keep loop alive */
2729     #endif
2730     }
2731     else
2732 root 1.116 ev_default_loop_ptr = 0;
2733 root 1.56 }
2734 root 1.8
2735 root 1.116 return ev_default_loop_ptr;
2736 root 1.1 }
2737    
2738 root 1.24 void
2739 root 1.420 ev_loop_fork (EV_P) EV_THROW
2740 root 1.1 {
2741 root 1.359 postfork = 1; /* must be in line with ev_default_fork */
2742 root 1.1 }
2743    
2744 root 1.8 /*****************************************************************************/
2745    
2746 root 1.168 void
2747     ev_invoke (EV_P_ void *w, int revents)
2748     {
2749     EV_CB_INVOKE ((W)w, revents);
2750     }
2751    
2752 root 1.300 unsigned int
2753 root 1.420 ev_pending_count (EV_P) EV_THROW
2754 root 1.300 {
2755     int pri;
2756     unsigned int count = 0;
2757    
2758     for (pri = NUMPRI; pri--; )
2759     count += pendingcnt [pri];
2760    
2761     return count;
2762     }
2763    
2764 root 1.297 void noinline
2765 root 1.296 ev_invoke_pending (EV_P)
2766 root 1.1 {
2767 root 1.425 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
2768     while (pendingcnt [pendingpri])
2769 root 1.42 {
2770 root 1.425 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2771 root 1.1
2772 root 1.288 p->w->pending = 0;
2773     EV_CB_INVOKE (p->w, p->events);
2774     EV_FREQUENT_CHECK;
2775 root 1.42 }
2776 root 1.1 }
2777    
2778 root 1.234 #if EV_IDLE_ENABLE
2779 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2780     /* only when higher priorities are idle" logic */
2781 root 1.284 inline_size void
2782 root 1.234 idle_reify (EV_P)
2783     {
2784     if (expect_false (idleall))
2785     {
2786     int pri;
2787    
2788     for (pri = NUMPRI; pri--; )
2789     {
2790     if (pendingcnt [pri])
2791     break;
2792    
2793     if (idlecnt [pri])
2794     {
2795     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2796     break;
2797     }
2798     }
2799     }
2800     }
2801     #endif
2802    
2803 root 1.288 /* make timers pending */
2804 root 1.284 inline_size void
2805 root 1.51 timers_reify (EV_P)
2806 root 1.1 {
2807 root 1.248 EV_FREQUENT_CHECK;
2808    
2809 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2810 root 1.1 {
2811 root 1.284 do
2812     {
2813     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2814 root 1.1
2815 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2816    
2817     /* first reschedule or stop timer */
2818     if (w->repeat)
2819     {
2820     ev_at (w) += w->repeat;
2821     if (ev_at (w) < mn_now)
2822     ev_at (w) = mn_now;
2823 root 1.61
2824 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2825 root 1.90
2826 root 1.284 ANHE_at_cache (timers [HEAP0]);
2827     downheap (timers, timercnt, HEAP0);
2828     }
2829     else
2830     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2831 root 1.243
2832 root 1.284 EV_FREQUENT_CHECK;
2833     feed_reverse (EV_A_ (W)w);
2834 root 1.12 }
2835 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2836 root 1.30
2837 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2838 root 1.12 }
2839     }
2840 root 1.4
2841 root 1.140 #if EV_PERIODIC_ENABLE
2842 root 1.370
2843 root 1.373 static void noinline
2844 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2845     {
2846 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2847     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2848    
2849     /* the above almost always errs on the low side */
2850     while (at <= ev_rt_now)
2851     {
2852     ev_tstamp nat = at + w->interval;
2853    
2854     /* when resolution fails us, we use ev_rt_now */
2855     if (expect_false (nat == at))
2856     {
2857     at = ev_rt_now;
2858     break;
2859     }
2860    
2861     at = nat;
2862     }
2863    
2864     ev_at (w) = at;
2865 root 1.370 }
2866    
2867 root 1.288 /* make periodics pending */
2868 root 1.284 inline_size void
2869 root 1.51 periodics_reify (EV_P)
2870 root 1.12 {
2871 root 1.248 EV_FREQUENT_CHECK;
2872 root 1.250
2873 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2874 root 1.12 {
2875 root 1.284 do
2876     {
2877     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2878 root 1.1
2879 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2880 root 1.61
2881 root 1.284 /* first reschedule or stop timer */
2882     if (w->reschedule_cb)
2883     {
2884     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2885 root 1.243
2886 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2887 root 1.243
2888 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2889     downheap (periodics, periodiccnt, HEAP0);
2890     }
2891     else if (w->interval)
2892 root 1.246 {
2893 root 1.370 periodic_recalc (EV_A_ w);
2894 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2895     downheap (periodics, periodiccnt, HEAP0);
2896 root 1.246 }
2897 root 1.284 else
2898     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2899 root 1.243
2900 root 1.284 EV_FREQUENT_CHECK;
2901     feed_reverse (EV_A_ (W)w);
2902 root 1.1 }
2903 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2904 root 1.12
2905 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2906 root 1.12 }
2907     }
2908    
2909 root 1.288 /* simply recalculate all periodics */
2910 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2911 root 1.379 static void noinline ecb_cold
2912 root 1.54 periodics_reschedule (EV_P)
2913 root 1.12 {
2914     int i;
2915    
2916 root 1.13 /* adjust periodics after time jump */
2917 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2918 root 1.12 {
2919 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2920 root 1.12
2921 root 1.77 if (w->reschedule_cb)
2922 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2923 root 1.77 else if (w->interval)
2924 root 1.370 periodic_recalc (EV_A_ w);
2925 root 1.242
2926 root 1.248 ANHE_at_cache (periodics [i]);
2927 root 1.77 }
2928 root 1.12
2929 root 1.248 reheap (periodics, periodiccnt);
2930 root 1.1 }
2931 root 1.93 #endif
2932 root 1.1
2933 root 1.288 /* adjust all timers by a given offset */
2934 root 1.379 static void noinline ecb_cold
2935 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
2936     {
2937     int i;
2938    
2939     for (i = 0; i < timercnt; ++i)
2940     {
2941     ANHE *he = timers + i + HEAP0;
2942     ANHE_w (*he)->at += adjust;
2943     ANHE_at_cache (*he);
2944     }
2945     }
2946    
2947 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2948 root 1.324 /* also detect if there was a timejump, and act accordingly */
2949 root 1.284 inline_speed void
2950 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2951 root 1.4 {
2952 root 1.40 #if EV_USE_MONOTONIC
2953     if (expect_true (have_monotonic))
2954     {
2955 root 1.289 int i;
2956 root 1.178 ev_tstamp odiff = rtmn_diff;
2957    
2958     mn_now = get_clock ();
2959    
2960     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2961     /* interpolate in the meantime */
2962     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2963 root 1.40 {
2964 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2965     return;
2966     }
2967    
2968     now_floor = mn_now;
2969     ev_rt_now = ev_time ();
2970 root 1.4
2971 root 1.178 /* loop a few times, before making important decisions.
2972     * on the choice of "4": one iteration isn't enough,
2973     * in case we get preempted during the calls to
2974     * ev_time and get_clock. a second call is almost guaranteed
2975     * to succeed in that case, though. and looping a few more times
2976     * doesn't hurt either as we only do this on time-jumps or
2977     * in the unlikely event of having been preempted here.
2978     */
2979     for (i = 4; --i; )
2980     {
2981 root 1.373 ev_tstamp diff;
2982 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2983 root 1.4
2984 root 1.373 diff = odiff - rtmn_diff;
2985    
2986     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2987 root 1.178 return; /* all is well */
2988 root 1.4
2989 root 1.178 ev_rt_now = ev_time ();
2990     mn_now = get_clock ();
2991     now_floor = mn_now;
2992     }
2993 root 1.4
2994 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2995     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2996 root 1.140 # if EV_PERIODIC_ENABLE
2997 root 1.178 periodics_reschedule (EV_A);
2998 root 1.93 # endif
2999 root 1.4 }
3000     else
3001 root 1.40 #endif
3002 root 1.4 {
3003 root 1.85 ev_rt_now = ev_time ();
3004 root 1.40
3005 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3006 root 1.13 {
3007 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3008     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3009 root 1.140 #if EV_PERIODIC_ENABLE
3010 root 1.54 periodics_reschedule (EV_A);
3011 root 1.93 #endif
3012 root 1.13 }
3013 root 1.4
3014 root 1.85 mn_now = ev_rt_now;
3015 root 1.4 }
3016     }
3017    
3018 root 1.418 int
3019 root 1.353 ev_run (EV_P_ int flags)
3020 root 1.1 {
3021 root 1.338 #if EV_FEATURE_API
3022 root 1.294 ++loop_depth;
3023 root 1.297 #endif
3024 root 1.294
3025 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3026 root 1.298
3027 root 1.353 loop_done = EVBREAK_CANCEL;
3028 root 1.1
3029 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3030 root 1.158
3031 root 1.161 do
3032 root 1.9 {
3033 root 1.250 #if EV_VERIFY >= 2
3034 root 1.340 ev_verify (EV_A);
3035 root 1.250 #endif
3036    
3037 root 1.158 #ifndef _WIN32
3038     if (expect_false (curpid)) /* penalise the forking check even more */
3039     if (expect_false (getpid () != curpid))
3040     {
3041     curpid = getpid ();
3042     postfork = 1;
3043     }
3044     #endif
3045    
3046 root 1.157 #if EV_FORK_ENABLE
3047     /* we might have forked, so queue fork handlers */
3048     if (expect_false (postfork))
3049     if (forkcnt)
3050     {
3051     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3052 root 1.297 EV_INVOKE_PENDING;
3053 root 1.157 }
3054     #endif
3055 root 1.147
3056 root 1.337 #if EV_PREPARE_ENABLE
3057 root 1.170 /* queue prepare watchers (and execute them) */
3058 root 1.40 if (expect_false (preparecnt))
3059 root 1.20 {
3060 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3061 root 1.297 EV_INVOKE_PENDING;
3062 root 1.20 }
3063 root 1.337 #endif
3064 root 1.9
3065 root 1.298 if (expect_false (loop_done))
3066     break;
3067    
3068 root 1.70 /* we might have forked, so reify kernel state if necessary */
3069     if (expect_false (postfork))
3070     loop_fork (EV_A);
3071    
3072 root 1.1 /* update fd-related kernel structures */
3073 root 1.51 fd_reify (EV_A);
3074 root 1.1
3075     /* calculate blocking time */
3076 root 1.135 {
3077 root 1.193 ev_tstamp waittime = 0.;
3078     ev_tstamp sleeptime = 0.;
3079 root 1.12
3080 root 1.353 /* remember old timestamp for io_blocktime calculation */
3081     ev_tstamp prev_mn_now = mn_now;
3082 root 1.293
3083 root 1.353 /* update time to cancel out callback processing overhead */
3084     time_update (EV_A_ 1e100);
3085 root 1.135
3086 root 1.378 /* from now on, we want a pipe-wake-up */
3087     pipe_write_wanted = 1;
3088    
3089 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3090 root 1.383
3091 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3092 root 1.353 {
3093 root 1.287 waittime = MAX_BLOCKTIME;
3094    
3095 root 1.135 if (timercnt)
3096     {
3097 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3098 root 1.193 if (waittime > to) waittime = to;
3099 root 1.135 }
3100 root 1.4
3101 root 1.140 #if EV_PERIODIC_ENABLE
3102 root 1.135 if (periodiccnt)
3103     {
3104 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3105 root 1.193 if (waittime > to) waittime = to;
3106 root 1.135 }
3107 root 1.93 #endif
3108 root 1.4
3109 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3110 root 1.193 if (expect_false (waittime < timeout_blocktime))
3111     waittime = timeout_blocktime;
3112    
3113 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3114     /* to pass a minimum nonzero value to the backend */
3115     if (expect_false (waittime < backend_mintime))
3116     waittime = backend_mintime;
3117    
3118 root 1.293 /* extra check because io_blocktime is commonly 0 */
3119     if (expect_false (io_blocktime))
3120     {
3121     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3122 root 1.193
3123 root 1.376 if (sleeptime > waittime - backend_mintime)
3124     sleeptime = waittime - backend_mintime;
3125 root 1.193
3126 root 1.293 if (expect_true (sleeptime > 0.))
3127     {
3128     ev_sleep (sleeptime);
3129     waittime -= sleeptime;
3130     }
3131 root 1.193 }
3132 root 1.135 }
3133 root 1.1
3134 root 1.338 #if EV_FEATURE_API
3135 root 1.162 ++loop_count;
3136 root 1.297 #endif
3137 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3138 root 1.193 backend_poll (EV_A_ waittime);
3139 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3140 root 1.178
3141 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3142 root 1.378
3143     if (pipe_write_skipped)
3144     {
3145     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3146     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3147     }
3148    
3149    
3150 root 1.178 /* update ev_rt_now, do magic */
3151 root 1.193 time_update (EV_A_ waittime + sleeptime);
3152 root 1.135 }
3153 root 1.1
3154 root 1.9 /* queue pending timers and reschedule them */
3155 root 1.51 timers_reify (EV_A); /* relative timers called last */
3156 root 1.140 #if EV_PERIODIC_ENABLE
3157 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3158 root 1.93 #endif
3159 root 1.1
3160 root 1.164 #if EV_IDLE_ENABLE
3161 root 1.137 /* queue idle watchers unless other events are pending */
3162 root 1.164 idle_reify (EV_A);
3163     #endif
3164 root 1.9
3165 root 1.337 #if EV_CHECK_ENABLE
3166 root 1.20 /* queue check watchers, to be executed first */
3167 root 1.123 if (expect_false (checkcnt))
3168 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3169 root 1.337 #endif
3170 root 1.9
3171 root 1.297 EV_INVOKE_PENDING;
3172 root 1.1 }
3173 root 1.219 while (expect_true (
3174     activecnt
3175     && !loop_done
3176 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3177 root 1.219 ));
3178 root 1.13
3179 root 1.353 if (loop_done == EVBREAK_ONE)
3180     loop_done = EVBREAK_CANCEL;
3181 root 1.294
3182 root 1.338 #if EV_FEATURE_API
3183 root 1.294 --loop_depth;
3184 root 1.297 #endif
3185 root 1.418
3186     return activecnt;
3187 root 1.51 }
3188    
3189     void
3190 root 1.420 ev_break (EV_P_ int how) EV_THROW
3191 root 1.51 {
3192     loop_done = how;
3193 root 1.1 }
3194    
3195 root 1.285 void
3196 root 1.420 ev_ref (EV_P) EV_THROW
3197 root 1.285 {
3198     ++activecnt;
3199     }
3200    
3201     void
3202 root 1.420 ev_unref (EV_P) EV_THROW
3203 root 1.285 {
3204     --activecnt;
3205     }
3206    
3207     void
3208 root 1.420 ev_now_update (EV_P) EV_THROW
3209 root 1.285 {
3210     time_update (EV_A_ 1e100);
3211     }
3212    
3213     void
3214 root 1.420 ev_suspend (EV_P) EV_THROW
3215 root 1.285 {
3216     ev_now_update (EV_A);
3217     }
3218    
3219     void
3220 root 1.420 ev_resume (EV_P) EV_THROW
3221 root 1.285 {
3222     ev_tstamp mn_prev = mn_now;
3223    
3224     ev_now_update (EV_A);
3225     timers_reschedule (EV_A_ mn_now - mn_prev);
3226 root 1.286 #if EV_PERIODIC_ENABLE
3227 root 1.288 /* TODO: really do this? */
3228 root 1.285 periodics_reschedule (EV_A);
3229 root 1.286 #endif
3230 root 1.285 }
3231    
3232 root 1.8 /*****************************************************************************/
3233 root 1.288 /* singly-linked list management, used when the expected list length is short */
3234 root 1.8
3235 root 1.284 inline_size void
3236 root 1.10 wlist_add (WL *head, WL elem)
3237 root 1.1 {
3238     elem->next = *head;
3239     *head = elem;
3240     }
3241    
3242 root 1.284 inline_size void
3243 root 1.10 wlist_del (WL *head, WL elem)
3244 root 1.1 {
3245     while (*head)
3246     {
3247 root 1.307 if (expect_true (*head == elem))
3248 root 1.1 {
3249     *head = elem->next;
3250 root 1.307 break;
3251 root 1.1 }
3252    
3253     head = &(*head)->next;
3254     }
3255     }
3256    
3257 root 1.288 /* internal, faster, version of ev_clear_pending */
3258 root 1.284 inline_speed void
3259 root 1.166 clear_pending (EV_P_ W w)
3260 root 1.16 {
3261     if (w->pending)
3262     {
3263 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3264 root 1.16 w->pending = 0;
3265     }
3266     }
3267    
3268 root 1.167 int
3269 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3270 root 1.166 {
3271     W w_ = (W)w;
3272     int pending = w_->pending;
3273    
3274 root 1.172 if (expect_true (pending))
3275     {
3276     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3277 root 1.288 p->w = (W)&pending_w;
3278 root 1.172 w_->pending = 0;
3279     return p->events;
3280     }
3281     else
3282 root 1.167 return 0;
3283 root 1.166 }
3284    
3285 root 1.284 inline_size void
3286 root 1.164 pri_adjust (EV_P_ W w)
3287     {
3288 root 1.295 int pri = ev_priority (w);
3289 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3290     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3291 root 1.295 ev_set_priority (w, pri);
3292 root 1.164 }
3293    
3294 root 1.284 inline_speed void
3295 root 1.51 ev_start (EV_P_ W w, int active)
3296 root 1.1 {
3297 root 1.164 pri_adjust (EV_A_ w);
3298 root 1.1 w->active = active;
3299 root 1.51 ev_ref (EV_A);
3300 root 1.1 }
3301    
3302 root 1.284 inline_size void
3303 root 1.51 ev_stop (EV_P_ W w)
3304 root 1.1 {
3305 root 1.51 ev_unref (EV_A);
3306 root 1.1 w->active = 0;
3307     }
3308    
3309 root 1.8 /*****************************************************************************/
3310    
3311 root 1.171 void noinline
3312 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3313 root 1.1 {
3314 root 1.37 int fd = w->fd;
3315    
3316 root 1.123 if (expect_false (ev_is_active (w)))
3317 root 1.1 return;
3318    
3319 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3320 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3321 root 1.33
3322 root 1.248 EV_FREQUENT_CHECK;
3323    
3324 root 1.51 ev_start (EV_A_ (W)w, 1);
3325 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3326 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3327 root 1.1
3328 root 1.426 /* common bug, apparently */
3329     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3330    
3331 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3332 root 1.281 w->events &= ~EV__IOFDSET;
3333 root 1.248
3334     EV_FREQUENT_CHECK;
3335 root 1.1 }
3336    
3337 root 1.171 void noinline
3338 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3339 root 1.1 {
3340 root 1.166 clear_pending (EV_A_ (W)w);
3341 root 1.123 if (expect_false (!ev_is_active (w)))
3342 root 1.1 return;
3343    
3344 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3345 root 1.89
3346 root 1.248 EV_FREQUENT_CHECK;
3347    
3348 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3349 root 1.51 ev_stop (EV_A_ (W)w);
3350 root 1.1
3351 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3352 root 1.248
3353     EV_FREQUENT_CHECK;
3354 root 1.1 }
3355    
3356 root 1.171 void noinline
3357 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3358 root 1.1 {
3359 root 1.123 if (expect_false (ev_is_active (w)))
3360 root 1.1 return;
3361    
3362 root 1.228 ev_at (w) += mn_now;
3363 root 1.12
3364 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3365 root 1.13
3366 root 1.248 EV_FREQUENT_CHECK;
3367    
3368     ++timercnt;
3369     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3370 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3371     ANHE_w (timers [ev_active (w)]) = (WT)w;
3372 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3373 root 1.235 upheap (timers, ev_active (w));
3374 root 1.62
3375 root 1.248 EV_FREQUENT_CHECK;
3376    
3377 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3378 root 1.12 }
3379    
3380 root 1.171 void noinline
3381 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3382 root 1.12 {
3383 root 1.166 clear_pending (EV_A_ (W)w);
3384 root 1.123 if (expect_false (!ev_is_active (w)))
3385 root 1.12 return;
3386    
3387 root 1.248 EV_FREQUENT_CHECK;
3388    
3389 root 1.230 {
3390     int active = ev_active (w);
3391 root 1.62
3392 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3393 root 1.151
3394 root 1.248 --timercnt;
3395    
3396     if (expect_true (active < timercnt + HEAP0))
3397 root 1.151 {
3398 root 1.248 timers [active] = timers [timercnt + HEAP0];
3399 root 1.181 adjustheap (timers, timercnt, active);
3400 root 1.151 }
3401 root 1.248 }
3402 root 1.228
3403     ev_at (w) -= mn_now;
3404 root 1.14
3405 root 1.51 ev_stop (EV_A_ (W)w);
3406 root 1.328
3407     EV_FREQUENT_CHECK;
3408 root 1.12 }
3409 root 1.4
3410 root 1.171 void noinline
3411 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3412 root 1.14 {
3413 root 1.248 EV_FREQUENT_CHECK;
3414    
3415 root 1.407 clear_pending (EV_A_ (W)w);
3416 root 1.406
3417 root 1.14 if (ev_is_active (w))
3418     {
3419     if (w->repeat)
3420 root 1.99 {
3421 root 1.228 ev_at (w) = mn_now + w->repeat;
3422 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3423 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3424 root 1.99 }
3425 root 1.14 else
3426 root 1.51 ev_timer_stop (EV_A_ w);
3427 root 1.14 }
3428     else if (w->repeat)
3429 root 1.112 {
3430 root 1.229 ev_at (w) = w->repeat;
3431 root 1.112 ev_timer_start (EV_A_ w);
3432     }
3433 root 1.248
3434     EV_FREQUENT_CHECK;
3435 root 1.14 }
3436    
3437 root 1.301 ev_tstamp
3438 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3439 root 1.301 {
3440     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3441     }
3442    
3443 root 1.140 #if EV_PERIODIC_ENABLE
3444 root 1.171 void noinline
3445 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3446 root 1.12 {
3447 root 1.123 if (expect_false (ev_is_active (w)))
3448 root 1.12 return;
3449 root 1.1
3450 root 1.77 if (w->reschedule_cb)
3451 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3452 root 1.77 else if (w->interval)
3453     {
3454 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3455 root 1.370 periodic_recalc (EV_A_ w);
3456 root 1.77 }
3457 root 1.173 else
3458 root 1.228 ev_at (w) = w->offset;
3459 root 1.12
3460 root 1.248 EV_FREQUENT_CHECK;
3461    
3462     ++periodiccnt;
3463     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3464 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3465     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3466 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3467 root 1.235 upheap (periodics, ev_active (w));
3468 root 1.62
3469 root 1.248 EV_FREQUENT_CHECK;
3470    
3471 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3472 root 1.1 }
3473    
3474 root 1.171 void noinline
3475 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3476 root 1.1 {
3477 root 1.166 clear_pending (EV_A_ (W)w);
3478 root 1.123 if (expect_false (!ev_is_active (w)))
3479 root 1.1 return;
3480    
3481 root 1.248 EV_FREQUENT_CHECK;
3482    
3483 root 1.230 {
3484     int active = ev_active (w);
3485 root 1.62
3486 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3487 root 1.151
3488 root 1.248 --periodiccnt;
3489    
3490     if (expect_true (active < periodiccnt + HEAP0))
3491 root 1.151 {
3492 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3493 root 1.181 adjustheap (periodics, periodiccnt, active);
3494 root 1.151 }
3495 root 1.248 }
3496 root 1.228
3497 root 1.328 ev_stop (EV_A_ (W)w);
3498    
3499 root 1.248 EV_FREQUENT_CHECK;
3500 root 1.1 }
3501    
3502 root 1.171 void noinline
3503 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3504 root 1.77 {
3505 root 1.84 /* TODO: use adjustheap and recalculation */
3506 root 1.77 ev_periodic_stop (EV_A_ w);
3507     ev_periodic_start (EV_A_ w);
3508     }
3509 root 1.93 #endif
3510 root 1.77
3511 root 1.56 #ifndef SA_RESTART
3512     # define SA_RESTART 0
3513     #endif
3514    
3515 root 1.336 #if EV_SIGNAL_ENABLE
3516    
3517 root 1.171 void noinline
3518 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3519 root 1.56 {
3520 root 1.123 if (expect_false (ev_is_active (w)))
3521 root 1.56 return;
3522    
3523 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3524    
3525     #if EV_MULTIPLICITY
3526 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3527 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3528    
3529     signals [w->signum - 1].loop = EV_A;
3530     #endif
3531 root 1.56
3532 root 1.303 EV_FREQUENT_CHECK;
3533    
3534     #if EV_USE_SIGNALFD
3535     if (sigfd == -2)
3536     {
3537     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3538     if (sigfd < 0 && errno == EINVAL)
3539     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3540    
3541     if (sigfd >= 0)
3542     {
3543     fd_intern (sigfd); /* doing it twice will not hurt */
3544    
3545     sigemptyset (&sigfd_set);
3546    
3547     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3548     ev_set_priority (&sigfd_w, EV_MAXPRI);
3549     ev_io_start (EV_A_ &sigfd_w);
3550     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3551     }
3552     }
3553    
3554     if (sigfd >= 0)
3555     {
3556     /* TODO: check .head */
3557     sigaddset (&sigfd_set, w->signum);
3558     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3559 root 1.207
3560 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3561     }
3562 root 1.180 #endif
3563    
3564 root 1.56 ev_start (EV_A_ (W)w, 1);
3565 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3566 root 1.56
3567 root 1.63 if (!((WL)w)->next)
3568 root 1.304 # if EV_USE_SIGNALFD
3569 root 1.306 if (sigfd < 0) /*TODO*/
3570 root 1.304 # endif
3571 root 1.306 {
3572 root 1.322 # ifdef _WIN32
3573 root 1.317 evpipe_init (EV_A);
3574    
3575 root 1.306 signal (w->signum, ev_sighandler);
3576     # else
3577     struct sigaction sa;
3578    
3579     evpipe_init (EV_A);
3580    
3581     sa.sa_handler = ev_sighandler;
3582     sigfillset (&sa.sa_mask);
3583     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3584     sigaction (w->signum, &sa, 0);
3585    
3586 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3587     {
3588     sigemptyset (&sa.sa_mask);
3589     sigaddset (&sa.sa_mask, w->signum);
3590     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3591     }
3592 root 1.67 #endif
3593 root 1.306 }
3594 root 1.248
3595     EV_FREQUENT_CHECK;
3596 root 1.56 }
3597    
3598 root 1.171 void noinline
3599 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3600 root 1.56 {
3601 root 1.166 clear_pending (EV_A_ (W)w);
3602 root 1.123 if (expect_false (!ev_is_active (w)))
3603 root 1.56 return;
3604    
3605 root 1.248 EV_FREQUENT_CHECK;
3606    
3607 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3608 root 1.56 ev_stop (EV_A_ (W)w);
3609    
3610     if (!signals [w->signum - 1].head)
3611 root 1.306 {
3612 root 1.307 #if EV_MULTIPLICITY
3613 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3614 root 1.307 #endif
3615     #if EV_USE_SIGNALFD
3616 root 1.306 if (sigfd >= 0)
3617     {
3618 root 1.321 sigset_t ss;
3619    
3620     sigemptyset (&ss);
3621     sigaddset (&ss, w->signum);
3622 root 1.306 sigdelset (&sigfd_set, w->signum);
3623 root 1.321
3624 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3625 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3626 root 1.306 }
3627     else
3628 root 1.307 #endif
3629 root 1.306 signal (w->signum, SIG_DFL);
3630     }
3631 root 1.248
3632     EV_FREQUENT_CHECK;
3633 root 1.56 }
3634    
3635 root 1.336 #endif
3636    
3637     #if EV_CHILD_ENABLE
3638    
3639 root 1.28 void
3640 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3641 root 1.22 {
3642 root 1.56 #if EV_MULTIPLICITY
3643 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3644 root 1.56 #endif
3645 root 1.123 if (expect_false (ev_is_active (w)))
3646 root 1.22 return;
3647    
3648 root 1.248 EV_FREQUENT_CHECK;
3649    
3650 root 1.51 ev_start (EV_A_ (W)w, 1);
3651 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3652 root 1.248
3653     EV_FREQUENT_CHECK;
3654 root 1.22 }
3655    
3656 root 1.28 void
3657 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3658 root 1.22 {
3659 root 1.166 clear_pending (EV_A_ (W)w);
3660 root 1.123 if (expect_false (!ev_is_active (w)))
3661 root 1.22 return;
3662    
3663 root 1.248 EV_FREQUENT_CHECK;
3664    
3665 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3666 root 1.51 ev_stop (EV_A_ (W)w);
3667 root 1.248
3668     EV_FREQUENT_CHECK;
3669 root 1.22 }
3670    
3671 root 1.336 #endif
3672    
3673 root 1.140 #if EV_STAT_ENABLE
3674    
3675     # ifdef _WIN32
3676 root 1.146 # undef lstat
3677     # define lstat(a,b) _stati64 (a,b)
3678 root 1.140 # endif
3679    
3680 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3681     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3682     #define MIN_STAT_INTERVAL 0.1074891
3683 root 1.143
3684 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3685 root 1.152
3686     #if EV_USE_INOTIFY
3687 root 1.326
3688     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3689     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3690 root 1.152
3691     static void noinline
3692     infy_add (EV_P_ ev_stat *w)
3693     {
3694     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3695    
3696 root 1.318 if (w->wd >= 0)
3697 root 1.152 {
3698 root 1.318 struct statfs sfs;
3699    
3700     /* now local changes will be tracked by inotify, but remote changes won't */
3701     /* unless the filesystem is known to be local, we therefore still poll */
3702     /* also do poll on <2.6.25, but with normal frequency */
3703    
3704     if (!fs_2625)
3705     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3706     else if (!statfs (w->path, &sfs)
3707     && (sfs.f_type == 0x1373 /* devfs */
3708     || sfs.f_type == 0xEF53 /* ext2/3 */
3709     || sfs.f_type == 0x3153464a /* jfs */
3710     || sfs.f_type == 0x52654973 /* reiser3 */
3711     || sfs.f_type == 0x01021994 /* tempfs */
3712     || sfs.f_type == 0x58465342 /* xfs */))
3713     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3714     else
3715     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3716     }
3717     else
3718     {
3719     /* can't use inotify, continue to stat */
3720 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3721 root 1.152
3722 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3723 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3724 root 1.233 /* but an efficiency issue only */
3725 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3726 root 1.152 {
3727 root 1.153 char path [4096];
3728 root 1.152 strcpy (path, w->path);
3729    
3730     do
3731     {
3732     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3733     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3734    
3735     char *pend = strrchr (path, '/');
3736    
3737 root 1.275 if (!pend || pend == path)
3738     break;
3739 root 1.152
3740     *pend = 0;
3741 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3742 root 1.372 }
3743 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3744     }
3745     }
3746 root 1.275
3747     if (w->wd >= 0)
3748 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3749 root 1.152
3750 root 1.318 /* now re-arm timer, if required */
3751     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3752     ev_timer_again (EV_A_ &w->timer);
3753     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3754 root 1.152 }
3755    
3756     static void noinline
3757     infy_del (EV_P_ ev_stat *w)
3758     {
3759     int slot;
3760     int wd = w->wd;
3761    
3762     if (wd < 0)
3763     return;
3764    
3765     w->wd = -2;
3766 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3767 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3768    
3769     /* remove this watcher, if others are watching it, they will rearm */
3770     inotify_rm_watch (fs_fd, wd);
3771     }
3772    
3773     static void noinline
3774     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3775     {
3776     if (slot < 0)
3777 root 1.264 /* overflow, need to check for all hash slots */
3778 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3779 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3780     else
3781     {
3782     WL w_;
3783    
3784 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3785 root 1.152 {
3786     ev_stat *w = (ev_stat *)w_;
3787     w_ = w_->next; /* lets us remove this watcher and all before it */
3788    
3789     if (w->wd == wd || wd == -1)
3790     {
3791     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3792     {
3793 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3794 root 1.152 w->wd = -1;
3795     infy_add (EV_A_ w); /* re-add, no matter what */
3796     }
3797    
3798 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3799 root 1.152 }
3800     }
3801     }
3802     }
3803    
3804     static void
3805     infy_cb (EV_P_ ev_io *w, int revents)
3806     {
3807     char buf [EV_INOTIFY_BUFSIZE];
3808     int ofs;
3809     int len = read (fs_fd, buf, sizeof (buf));
3810    
3811 root 1.326 for (ofs = 0; ofs < len; )
3812     {
3813     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3814     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3815     ofs += sizeof (struct inotify_event) + ev->len;
3816     }
3817 root 1.152 }
3818    
3819 root 1.379 inline_size void ecb_cold
3820 root 1.330 ev_check_2625 (EV_P)
3821     {
3822     /* kernels < 2.6.25 are borked
3823     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3824     */
3825     if (ev_linux_version () < 0x020619)
3826 root 1.273 return;
3827 root 1.264
3828 root 1.273 fs_2625 = 1;
3829     }
3830 root 1.264
3831 root 1.315 inline_size int
3832     infy_newfd (void)
3833     {
3834 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
3835 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3836     if (fd >= 0)
3837     return fd;
3838     #endif
3839     return inotify_init ();
3840     }
3841    
3842 root 1.284 inline_size void
3843 root 1.273 infy_init (EV_P)
3844     {
3845     if (fs_fd != -2)
3846     return;
3847 root 1.264
3848 root 1.273 fs_fd = -1;
3849 root 1.264
3850 root 1.330 ev_check_2625 (EV_A);
3851 root 1.264
3852 root 1.315 fs_fd = infy_newfd ();
3853 root 1.152
3854     if (fs_fd >= 0)
3855     {
3856 root 1.315 fd_intern (fs_fd);
3857 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3858     ev_set_priority (&fs_w, EV_MAXPRI);
3859     ev_io_start (EV_A_ &fs_w);
3860 root 1.317 ev_unref (EV_A);
3861 root 1.152 }
3862     }
3863    
3864 root 1.284 inline_size void
3865 root 1.154 infy_fork (EV_P)
3866     {
3867     int slot;
3868    
3869     if (fs_fd < 0)
3870     return;
3871    
3872 root 1.317 ev_ref (EV_A);
3873 root 1.315 ev_io_stop (EV_A_ &fs_w);
3874 root 1.154 close (fs_fd);
3875 root 1.315 fs_fd = infy_newfd ();
3876    
3877     if (fs_fd >= 0)
3878     {
3879     fd_intern (fs_fd);
3880     ev_io_set (&fs_w, fs_fd, EV_READ);
3881     ev_io_start (EV_A_ &fs_w);
3882 root 1.317 ev_unref (EV_A);
3883 root 1.315 }
3884 root 1.154
3885 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3886 root 1.154 {
3887     WL w_ = fs_hash [slot].head;
3888     fs_hash [slot].head = 0;
3889    
3890     while (w_)
3891     {
3892     ev_stat *w = (ev_stat *)w_;
3893     w_ = w_->next; /* lets us add this watcher */
3894    
3895     w->wd = -1;
3896    
3897     if (fs_fd >= 0)
3898     infy_add (EV_A_ w); /* re-add, no matter what */
3899     else
3900 root 1.318 {
3901     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3902     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3903     ev_timer_again (EV_A_ &w->timer);
3904     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3905     }
3906 root 1.154 }
3907     }
3908     }
3909    
3910 root 1.152 #endif
3911    
3912 root 1.255 #ifdef _WIN32
3913     # define EV_LSTAT(p,b) _stati64 (p, b)
3914     #else
3915     # define EV_LSTAT(p,b) lstat (p, b)
3916     #endif
3917    
3918 root 1.140 void
3919 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3920 root 1.140 {
3921     if (lstat (w->path, &w->attr) < 0)
3922     w->attr.st_nlink = 0;
3923     else if (!w->attr.st_nlink)
3924     w->attr.st_nlink = 1;
3925     }
3926    
3927 root 1.157 static void noinline
3928 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3929     {
3930     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3931    
3932 root 1.320 ev_statdata prev = w->attr;
3933 root 1.140 ev_stat_stat (EV_A_ w);
3934    
3935 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3936     if (
3937 root 1.320 prev.st_dev != w->attr.st_dev
3938     || prev.st_ino != w->attr.st_ino
3939     || prev.st_mode != w->attr.st_mode
3940     || prev.st_nlink != w->attr.st_nlink
3941     || prev.st_uid != w->attr.st_uid
3942     || prev.st_gid != w->attr.st_gid
3943     || prev.st_rdev != w->attr.st_rdev
3944     || prev.st_size != w->attr.st_size
3945     || prev.st_atime != w->attr.st_atime
3946     || prev.st_mtime != w->attr.st_mtime
3947     || prev.st_ctime != w->attr.st_ctime
3948 root 1.156 ) {
3949 root 1.320 /* we only update w->prev on actual differences */
3950     /* in case we test more often than invoke the callback, */
3951     /* to ensure that prev is always different to attr */
3952     w->prev = prev;
3953    
3954 root 1.152 #if EV_USE_INOTIFY
3955 root 1.264 if (fs_fd >= 0)
3956     {
3957     infy_del (EV_A_ w);
3958     infy_add (EV_A_ w);
3959     ev_stat_stat (EV_A_ w); /* avoid race... */
3960     }
3961 root 1.152 #endif
3962    
3963     ev_feed_event (EV_A_ w, EV_STAT);
3964     }
3965 root 1.140 }
3966    
3967     void
3968 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3969 root 1.140 {
3970     if (expect_false (ev_is_active (w)))
3971     return;
3972    
3973     ev_stat_stat (EV_A_ w);
3974    
3975 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3976     w->interval = MIN_STAT_INTERVAL;
3977 root 1.143
3978 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3979 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3980 root 1.152
3981     #if EV_USE_INOTIFY
3982     infy_init (EV_A);
3983    
3984     if (fs_fd >= 0)
3985     infy_add (EV_A_ w);
3986     else
3987     #endif
3988 root 1.318 {
3989     ev_timer_again (EV_A_ &w->timer);
3990     ev_unref (EV_A);
3991     }
3992 root 1.140
3993     ev_start (EV_A_ (W)w, 1);
3994 root 1.248
3995     EV_FREQUENT_CHECK;
3996 root 1.140 }
3997    
3998     void
3999 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4000 root 1.140 {
4001 root 1.166 clear_pending (EV_A_ (W)w);
4002 root 1.140 if (expect_false (!ev_is_active (w)))
4003     return;
4004    
4005 root 1.248 EV_FREQUENT_CHECK;
4006    
4007 root 1.152 #if EV_USE_INOTIFY
4008     infy_del (EV_A_ w);
4009     #endif
4010 root 1.318
4011     if (ev_is_active (&w->timer))
4012     {
4013     ev_ref (EV_A);
4014     ev_timer_stop (EV_A_ &w->timer);
4015     }
4016 root 1.140
4017 root 1.134 ev_stop (EV_A_ (W)w);
4018 root 1.248
4019     EV_FREQUENT_CHECK;
4020 root 1.134 }
4021     #endif
4022    
4023 root 1.164 #if EV_IDLE_ENABLE
4024 root 1.144 void
4025 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4026 root 1.144 {
4027     if (expect_false (ev_is_active (w)))
4028     return;
4029    
4030 root 1.164 pri_adjust (EV_A_ (W)w);
4031    
4032 root 1.248 EV_FREQUENT_CHECK;
4033    
4034 root 1.164 {
4035     int active = ++idlecnt [ABSPRI (w)];
4036    
4037     ++idleall;
4038     ev_start (EV_A_ (W)w, active);
4039    
4040     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4041     idles [ABSPRI (w)][active - 1] = w;
4042     }
4043 root 1.248
4044     EV_FREQUENT_CHECK;
4045 root 1.144 }
4046    
4047     void
4048 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4049 root 1.144 {
4050 root 1.166 clear_pending (EV_A_ (W)w);
4051 root 1.144 if (expect_false (!ev_is_active (w)))
4052     return;
4053    
4054 root 1.248 EV_FREQUENT_CHECK;
4055    
4056 root 1.144 {
4057 root 1.230 int active = ev_active (w);
4058 root 1.164
4059     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4060 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4061 root 1.164
4062     ev_stop (EV_A_ (W)w);
4063     --idleall;
4064 root 1.144 }
4065 root 1.248
4066     EV_FREQUENT_CHECK;
4067 root 1.144 }
4068 root 1.164 #endif
4069 root 1.144
4070 root 1.337 #if EV_PREPARE_ENABLE
4071 root 1.144 void
4072 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4073 root 1.144 {
4074     if (expect_false (ev_is_active (w)))
4075     return;
4076    
4077 root 1.248 EV_FREQUENT_CHECK;
4078    
4079 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4080     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4081     prepares [preparecnt - 1] = w;
4082 root 1.248
4083     EV_FREQUENT_CHECK;
4084 root 1.144 }
4085    
4086     void
4087 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4088 root 1.144 {
4089 root 1.166 clear_pending (EV_A_ (W)w);
4090 root 1.144 if (expect_false (!ev_is_active (w)))
4091     return;
4092    
4093 root 1.248 EV_FREQUENT_CHECK;
4094    
4095 root 1.144 {
4096 root 1.230 int active = ev_active (w);
4097    
4098 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4099 root 1.230 ev_active (prepares [active - 1]) = active;
4100 root 1.144 }
4101    
4102     ev_stop (EV_A_ (W)w);
4103 root 1.248
4104     EV_FREQUENT_CHECK;
4105 root 1.144 }
4106 root 1.337 #endif
4107 root 1.144
4108 root 1.337 #if EV_CHECK_ENABLE
4109 root 1.144 void
4110 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4111 root 1.144 {
4112     if (expect_false (ev_is_active (w)))
4113     return;
4114    
4115 root 1.248 EV_FREQUENT_CHECK;
4116    
4117 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4118     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4119     checks [checkcnt - 1] = w;
4120 root 1.248
4121     EV_FREQUENT_CHECK;
4122 root 1.144 }
4123    
4124     void
4125 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4126 root 1.144 {
4127 root 1.166 clear_pending (EV_A_ (W)w);
4128 root 1.144 if (expect_false (!ev_is_active (w)))
4129     return;
4130    
4131 root 1.248 EV_FREQUENT_CHECK;
4132    
4133 root 1.144 {
4134 root 1.230 int active = ev_active (w);
4135    
4136 root 1.144 checks [active - 1] = checks [--checkcnt];
4137 root 1.230 ev_active (checks [active - 1]) = active;
4138 root 1.144 }
4139    
4140     ev_stop (EV_A_ (W)w);
4141 root 1.248
4142     EV_FREQUENT_CHECK;
4143 root 1.144 }
4144 root 1.337 #endif
4145 root 1.144
4146     #if EV_EMBED_ENABLE
4147     void noinline
4148 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4149 root 1.144 {
4150 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4151 root 1.144 }
4152    
4153     static void
4154 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4155 root 1.144 {
4156     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4157    
4158     if (ev_cb (w))
4159     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4160     else
4161 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4162 root 1.144 }
4163    
4164 root 1.189 static void
4165     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4166     {
4167     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4168    
4169 root 1.195 {
4170 root 1.306 EV_P = w->other;
4171 root 1.195
4172     while (fdchangecnt)
4173     {
4174     fd_reify (EV_A);
4175 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4176 root 1.195 }
4177     }
4178     }
4179    
4180 root 1.261 static void
4181     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4182     {
4183     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4184    
4185 root 1.277 ev_embed_stop (EV_A_ w);
4186    
4187 root 1.261 {
4188 root 1.306 EV_P = w->other;
4189 root 1.261
4190     ev_loop_fork (EV_A);
4191 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4192 root 1.261 }
4193 root 1.277
4194     ev_embed_start (EV_A_ w);
4195 root 1.261 }
4196    
4197 root 1.195 #if 0
4198     static void
4199     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4200     {
4201     ev_idle_stop (EV_A_ idle);
4202 root 1.189 }
4203 root 1.195 #endif
4204 root 1.189
4205 root 1.144 void
4206 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4207 root 1.144 {
4208     if (expect_false (ev_is_active (w)))
4209     return;
4210    
4211     {
4212 root 1.306 EV_P = w->other;
4213 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4214 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4215 root 1.144 }
4216    
4217 root 1.248 EV_FREQUENT_CHECK;
4218    
4219 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4220     ev_io_start (EV_A_ &w->io);
4221    
4222 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4223     ev_set_priority (&w->prepare, EV_MINPRI);
4224     ev_prepare_start (EV_A_ &w->prepare);
4225    
4226 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4227     ev_fork_start (EV_A_ &w->fork);
4228    
4229 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4230    
4231 root 1.144 ev_start (EV_A_ (W)w, 1);
4232 root 1.248
4233     EV_FREQUENT_CHECK;
4234 root 1.144 }
4235    
4236     void
4237 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4238 root 1.144 {
4239 root 1.166 clear_pending (EV_A_ (W)w);
4240 root 1.144 if (expect_false (!ev_is_active (w)))
4241     return;
4242    
4243 root 1.248 EV_FREQUENT_CHECK;
4244    
4245 root 1.261 ev_io_stop (EV_A_ &w->io);
4246 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4247 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4248 root 1.248
4249 root 1.328 ev_stop (EV_A_ (W)w);
4250    
4251 root 1.248 EV_FREQUENT_CHECK;
4252 root 1.144 }
4253     #endif
4254    
4255 root 1.147 #if EV_FORK_ENABLE
4256     void
4257 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4258 root 1.147 {
4259     if (expect_false (ev_is_active (w)))
4260     return;
4261    
4262 root 1.248 EV_FREQUENT_CHECK;
4263    
4264 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4265     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4266     forks [forkcnt - 1] = w;
4267 root 1.248
4268     EV_FREQUENT_CHECK;
4269 root 1.147 }
4270    
4271     void
4272 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4273 root 1.147 {
4274 root 1.166 clear_pending (EV_A_ (W)w);
4275 root 1.147 if (expect_false (!ev_is_active (w)))
4276     return;
4277    
4278 root 1.248 EV_FREQUENT_CHECK;
4279    
4280 root 1.147 {
4281 root 1.230 int active = ev_active (w);
4282    
4283 root 1.147 forks [active - 1] = forks [--forkcnt];
4284 root 1.230 ev_active (forks [active - 1]) = active;
4285 root 1.147 }
4286    
4287     ev_stop (EV_A_ (W)w);
4288 root 1.248
4289     EV_FREQUENT_CHECK;
4290 root 1.147 }
4291     #endif
4292    
4293 root 1.360 #if EV_CLEANUP_ENABLE
4294     void
4295 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4296 root 1.360 {
4297     if (expect_false (ev_is_active (w)))
4298     return;
4299    
4300     EV_FREQUENT_CHECK;
4301    
4302     ev_start (EV_A_ (W)w, ++cleanupcnt);
4303     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4304     cleanups [cleanupcnt - 1] = w;
4305    
4306 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4307     ev_unref (EV_A);
4308 root 1.360 EV_FREQUENT_CHECK;
4309     }
4310    
4311     void
4312 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4313 root 1.360 {
4314     clear_pending (EV_A_ (W)w);
4315     if (expect_false (!ev_is_active (w)))
4316     return;
4317    
4318     EV_FREQUENT_CHECK;
4319 root 1.362 ev_ref (EV_A);
4320 root 1.360
4321     {
4322     int active = ev_active (w);
4323    
4324     cleanups [active - 1] = cleanups [--cleanupcnt];
4325     ev_active (cleanups [active - 1]) = active;
4326     }
4327    
4328     ev_stop (EV_A_ (W)w);
4329    
4330     EV_FREQUENT_CHECK;
4331     }
4332     #endif
4333    
4334 root 1.207 #if EV_ASYNC_ENABLE
4335     void
4336 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4337 root 1.207 {
4338     if (expect_false (ev_is_active (w)))
4339     return;
4340    
4341 root 1.352 w->sent = 0;
4342    
4343 root 1.207 evpipe_init (EV_A);
4344    
4345 root 1.248 EV_FREQUENT_CHECK;
4346    
4347 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4348     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4349     asyncs [asynccnt - 1] = w;
4350 root 1.248
4351     EV_FREQUENT_CHECK;
4352 root 1.207 }
4353    
4354     void
4355 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4356 root 1.207 {
4357     clear_pending (EV_A_ (W)w);
4358     if (expect_false (!ev_is_active (w)))
4359     return;
4360    
4361 root 1.248 EV_FREQUENT_CHECK;
4362    
4363 root 1.207 {
4364 root 1.230 int active = ev_active (w);
4365    
4366 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4367 root 1.230 ev_active (asyncs [active - 1]) = active;
4368 root 1.207 }
4369    
4370     ev_stop (EV_A_ (W)w);
4371 root 1.248
4372     EV_FREQUENT_CHECK;
4373 root 1.207 }
4374    
4375     void
4376 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4377 root 1.207 {
4378     w->sent = 1;
4379 root 1.307 evpipe_write (EV_A_ &async_pending);
4380 root 1.207 }
4381     #endif
4382    
4383 root 1.1 /*****************************************************************************/
4384 root 1.10
4385 root 1.16 struct ev_once
4386     {
4387 root 1.136 ev_io io;
4388     ev_timer to;
4389 root 1.16 void (*cb)(int revents, void *arg);
4390     void *arg;
4391     };
4392    
4393     static void
4394 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4395 root 1.16 {
4396     void (*cb)(int revents, void *arg) = once->cb;
4397     void *arg = once->arg;
4398    
4399 root 1.259 ev_io_stop (EV_A_ &once->io);
4400 root 1.51 ev_timer_stop (EV_A_ &once->to);
4401 root 1.69 ev_free (once);
4402 root 1.16
4403     cb (revents, arg);
4404     }
4405    
4406     static void
4407 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4408 root 1.16 {
4409 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4410    
4411     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4412 root 1.16 }
4413    
4414     static void
4415 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4416 root 1.16 {
4417 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4418    
4419     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4420 root 1.16 }
4421    
4422     void
4423 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4424 root 1.16 {
4425 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4426 root 1.16
4427 root 1.123 if (expect_false (!once))
4428 root 1.16 {
4429 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4430 root 1.123 return;
4431     }
4432    
4433     once->cb = cb;
4434     once->arg = arg;
4435 root 1.16
4436 root 1.123 ev_init (&once->io, once_cb_io);
4437     if (fd >= 0)
4438     {
4439     ev_io_set (&once->io, fd, events);
4440     ev_io_start (EV_A_ &once->io);
4441     }
4442 root 1.16
4443 root 1.123 ev_init (&once->to, once_cb_to);
4444     if (timeout >= 0.)
4445     {
4446     ev_timer_set (&once->to, timeout, 0.);
4447     ev_timer_start (EV_A_ &once->to);
4448 root 1.16 }
4449     }
4450    
4451 root 1.282 /*****************************************************************************/
4452    
4453 root 1.288 #if EV_WALK_ENABLE
4454 root 1.379 void ecb_cold
4455 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4456 root 1.282 {
4457     int i, j;
4458     ev_watcher_list *wl, *wn;
4459    
4460     if (types & (EV_IO | EV_EMBED))
4461     for (i = 0; i < anfdmax; ++i)
4462     for (wl = anfds [i].head; wl; )
4463     {
4464     wn = wl->next;
4465    
4466     #if EV_EMBED_ENABLE
4467     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4468     {
4469     if (types & EV_EMBED)
4470     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4471     }
4472     else
4473     #endif
4474     #if EV_USE_INOTIFY
4475     if (ev_cb ((ev_io *)wl) == infy_cb)
4476     ;
4477     else
4478     #endif
4479 root 1.288 if ((ev_io *)wl != &pipe_w)
4480 root 1.282 if (types & EV_IO)
4481     cb (EV_A_ EV_IO, wl);
4482    
4483     wl = wn;
4484     }
4485    
4486     if (types & (EV_TIMER | EV_STAT))
4487     for (i = timercnt + HEAP0; i-- > HEAP0; )
4488     #if EV_STAT_ENABLE
4489     /*TODO: timer is not always active*/
4490     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4491     {
4492     if (types & EV_STAT)
4493     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4494     }
4495     else
4496     #endif
4497     if (types & EV_TIMER)
4498     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4499    
4500     #if EV_PERIODIC_ENABLE
4501     if (types & EV_PERIODIC)
4502     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4503     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4504     #endif
4505    
4506     #if EV_IDLE_ENABLE
4507     if (types & EV_IDLE)
4508 root 1.390 for (j = NUMPRI; j--; )
4509 root 1.282 for (i = idlecnt [j]; i--; )
4510     cb (EV_A_ EV_IDLE, idles [j][i]);
4511     #endif
4512    
4513     #if EV_FORK_ENABLE
4514     if (types & EV_FORK)
4515     for (i = forkcnt; i--; )
4516     if (ev_cb (forks [i]) != embed_fork_cb)
4517     cb (EV_A_ EV_FORK, forks [i]);
4518     #endif
4519    
4520     #if EV_ASYNC_ENABLE
4521     if (types & EV_ASYNC)
4522     for (i = asynccnt; i--; )
4523     cb (EV_A_ EV_ASYNC, asyncs [i]);
4524     #endif
4525    
4526 root 1.337 #if EV_PREPARE_ENABLE
4527 root 1.282 if (types & EV_PREPARE)
4528     for (i = preparecnt; i--; )
4529 root 1.337 # if EV_EMBED_ENABLE
4530 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4531 root 1.337 # endif
4532     cb (EV_A_ EV_PREPARE, prepares [i]);
4533 root 1.282 #endif
4534    
4535 root 1.337 #if EV_CHECK_ENABLE
4536 root 1.282 if (types & EV_CHECK)
4537     for (i = checkcnt; i--; )
4538     cb (EV_A_ EV_CHECK, checks [i]);
4539 root 1.337 #endif
4540 root 1.282
4541 root 1.337 #if EV_SIGNAL_ENABLE
4542 root 1.282 if (types & EV_SIGNAL)
4543 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4544 root 1.282 for (wl = signals [i].head; wl; )
4545     {
4546     wn = wl->next;
4547     cb (EV_A_ EV_SIGNAL, wl);
4548     wl = wn;
4549     }
4550 root 1.337 #endif
4551 root 1.282
4552 root 1.337 #if EV_CHILD_ENABLE
4553 root 1.282 if (types & EV_CHILD)
4554 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4555 root 1.282 for (wl = childs [i]; wl; )
4556     {
4557     wn = wl->next;
4558     cb (EV_A_ EV_CHILD, wl);
4559     wl = wn;
4560     }
4561 root 1.337 #endif
4562 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4563     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4564     }
4565     #endif
4566    
4567 root 1.188 #if EV_MULTIPLICITY
4568     #include "ev_wrap.h"
4569     #endif
4570