ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.440
Committed: Tue May 29 21:37:14 2012 UTC (11 years, 11 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.439: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.418 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246     # error "unable to find value for NSIG, please report"
247 root 1.336 /* to make it compile regardless, just remove the above line, */
248     /* but consider reporting it, too! :) */
249 root 1.306 # define EV_NSIG 65
250 root 1.305 #endif
251    
252 root 1.373 #ifndef EV_USE_FLOOR
253     # define EV_USE_FLOOR 0
254     #endif
255    
256 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
257     # if __linux && __GLIBC__ >= 2
258 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 root 1.274 # else
260     # define EV_USE_CLOCK_SYSCALL 0
261     # endif
262     #endif
263    
264 root 1.29 #ifndef EV_USE_MONOTONIC
265 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 root 1.253 # else
268     # define EV_USE_MONOTONIC 0
269     # endif
270 root 1.37 #endif
271    
272 root 1.118 #ifndef EV_USE_REALTIME
273 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 root 1.118 #endif
275    
276 root 1.193 #ifndef EV_USE_NANOSLEEP
277 root 1.253 # if _POSIX_C_SOURCE >= 199309L
278 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 root 1.253 # else
280     # define EV_USE_NANOSLEEP 0
281     # endif
282 root 1.193 #endif
283    
284 root 1.29 #ifndef EV_USE_SELECT
285 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 root 1.10 #endif
287    
288 root 1.59 #ifndef EV_USE_POLL
289 root 1.104 # ifdef _WIN32
290     # define EV_USE_POLL 0
291     # else
292 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 root 1.104 # endif
294 root 1.41 #endif
295    
296 root 1.29 #ifndef EV_USE_EPOLL
297 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 root 1.220 # else
300     # define EV_USE_EPOLL 0
301     # endif
302 root 1.10 #endif
303    
304 root 1.44 #ifndef EV_USE_KQUEUE
305     # define EV_USE_KQUEUE 0
306     #endif
307    
308 root 1.118 #ifndef EV_USE_PORT
309     # define EV_USE_PORT 0
310 root 1.40 #endif
311    
312 root 1.152 #ifndef EV_USE_INOTIFY
313 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
315 root 1.220 # else
316     # define EV_USE_INOTIFY 0
317     # endif
318 root 1.152 #endif
319    
320 root 1.149 #ifndef EV_PID_HASHSIZE
321 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 root 1.149 #endif
323    
324 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
325 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 root 1.152 #endif
327    
328 root 1.220 #ifndef EV_USE_EVENTFD
329     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
331 root 1.220 # else
332     # define EV_USE_EVENTFD 0
333     # endif
334     #endif
335    
336 root 1.303 #ifndef EV_USE_SIGNALFD
337 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 root 1.303 # else
340     # define EV_USE_SIGNALFD 0
341     # endif
342     #endif
343    
344 root 1.249 #if 0 /* debugging */
345 root 1.250 # define EV_VERIFY 3
346 root 1.249 # define EV_USE_4HEAP 1
347     # define EV_HEAP_CACHE_AT 1
348     #endif
349    
350 root 1.250 #ifndef EV_VERIFY
351 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 root 1.250 #endif
353    
354 root 1.243 #ifndef EV_USE_4HEAP
355 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
356 root 1.243 #endif
357    
358     #ifndef EV_HEAP_CACHE_AT
359 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 root 1.243 #endif
361    
362 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363     /* which makes programs even slower. might work on other unices, too. */
364     #if EV_USE_CLOCK_SYSCALL
365 root 1.423 # include <sys/syscall.h>
366 root 1.291 # ifdef SYS_clock_gettime
367     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368     # undef EV_USE_MONOTONIC
369     # define EV_USE_MONOTONIC 1
370     # else
371     # undef EV_USE_CLOCK_SYSCALL
372     # define EV_USE_CLOCK_SYSCALL 0
373     # endif
374     #endif
375    
376 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
377 root 1.40
378 root 1.325 #ifdef _AIX
379     /* AIX has a completely broken poll.h header */
380     # undef EV_USE_POLL
381     # define EV_USE_POLL 0
382     #endif
383    
384 root 1.40 #ifndef CLOCK_MONOTONIC
385     # undef EV_USE_MONOTONIC
386     # define EV_USE_MONOTONIC 0
387     #endif
388    
389 root 1.31 #ifndef CLOCK_REALTIME
390 root 1.40 # undef EV_USE_REALTIME
391 root 1.31 # define EV_USE_REALTIME 0
392     #endif
393 root 1.40
394 root 1.152 #if !EV_STAT_ENABLE
395 root 1.185 # undef EV_USE_INOTIFY
396 root 1.152 # define EV_USE_INOTIFY 0
397     #endif
398    
399 root 1.193 #if !EV_USE_NANOSLEEP
400 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
401 root 1.416 # if !defined _WIN32 && !defined __hpux
402 root 1.193 # include <sys/select.h>
403     # endif
404     #endif
405    
406 root 1.152 #if EV_USE_INOTIFY
407 root 1.273 # include <sys/statfs.h>
408 root 1.152 # include <sys/inotify.h>
409 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410     # ifndef IN_DONT_FOLLOW
411     # undef EV_USE_INOTIFY
412     # define EV_USE_INOTIFY 0
413     # endif
414 root 1.152 #endif
415    
416 root 1.220 #if EV_USE_EVENTFD
417     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418 root 1.221 # include <stdint.h>
419 root 1.303 # ifndef EFD_NONBLOCK
420     # define EFD_NONBLOCK O_NONBLOCK
421     # endif
422     # ifndef EFD_CLOEXEC
423 root 1.311 # ifdef O_CLOEXEC
424     # define EFD_CLOEXEC O_CLOEXEC
425     # else
426     # define EFD_CLOEXEC 02000000
427     # endif
428 root 1.303 # endif
429 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430 root 1.220 #endif
431    
432 root 1.303 #if EV_USE_SIGNALFD
433 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434     # include <stdint.h>
435     # ifndef SFD_NONBLOCK
436     # define SFD_NONBLOCK O_NONBLOCK
437     # endif
438     # ifndef SFD_CLOEXEC
439     # ifdef O_CLOEXEC
440     # define SFD_CLOEXEC O_CLOEXEC
441     # else
442     # define SFD_CLOEXEC 02000000
443     # endif
444     # endif
445 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446 root 1.314
447     struct signalfd_siginfo
448     {
449     uint32_t ssi_signo;
450     char pad[128 - sizeof (uint32_t)];
451     };
452 root 1.303 #endif
453    
454 root 1.40 /**/
455 root 1.1
456 root 1.250 #if EV_VERIFY >= 3
457 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
458 root 1.248 #else
459     # define EV_FREQUENT_CHECK do { } while (0)
460     #endif
461    
462 root 1.176 /*
463 root 1.373 * This is used to work around floating point rounding problems.
464 root 1.177 * This value is good at least till the year 4000.
465 root 1.176 */
466 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
468 root 1.176
469 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
470 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
471 root 1.1
472 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474 root 1.347
475 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476     /* ECB.H BEGIN */
477     /*
478     * libecb - http://software.schmorp.de/pkg/libecb
479     *
480 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
482     * All rights reserved.
483     *
484     * Redistribution and use in source and binary forms, with or without modifica-
485     * tion, are permitted provided that the following conditions are met:
486     *
487     * 1. Redistributions of source code must retain the above copyright notice,
488     * this list of conditions and the following disclaimer.
489     *
490     * 2. Redistributions in binary form must reproduce the above copyright
491     * notice, this list of conditions and the following disclaimer in the
492     * documentation and/or other materials provided with the distribution.
493     *
494     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503     * OF THE POSSIBILITY OF SUCH DAMAGE.
504     */
505    
506     #ifndef ECB_H
507     #define ECB_H
508    
509 root 1.437 /* 16 bits major, 16 bits minor */
510     #define ECB_VERSION 0x00010001
511    
512 root 1.391 #ifdef _WIN32
513     typedef signed char int8_t;
514     typedef unsigned char uint8_t;
515     typedef signed short int16_t;
516     typedef unsigned short uint16_t;
517     typedef signed int int32_t;
518     typedef unsigned int uint32_t;
519     #if __GNUC__
520     typedef signed long long int64_t;
521     typedef unsigned long long uint64_t;
522     #else /* _MSC_VER || __BORLANDC__ */
523     typedef signed __int64 int64_t;
524     typedef unsigned __int64 uint64_t;
525     #endif
526 root 1.437 #ifdef _WIN64
527     #define ECB_PTRSIZE 8
528     typedef uint64_t uintptr_t;
529     typedef int64_t intptr_t;
530     #else
531     #define ECB_PTRSIZE 4
532     typedef uint32_t uintptr_t;
533     typedef int32_t intptr_t;
534     #endif
535     typedef intptr_t ptrdiff_t;
536 root 1.391 #else
537     #include <inttypes.h>
538 root 1.437 #if UINTMAX_MAX > 0xffffffffU
539     #define ECB_PTRSIZE 8
540     #else
541     #define ECB_PTRSIZE 4
542     #endif
543 root 1.391 #endif
544 root 1.379
545     /* many compilers define _GNUC_ to some versions but then only implement
546     * what their idiot authors think are the "more important" extensions,
547 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
548 root 1.379 * or so.
549     * we try to detect these and simply assume they are not gcc - if they have
550     * an issue with that they should have done it right in the first place.
551     */
552     #ifndef ECB_GCC_VERSION
553 root 1.417 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 root 1.379 #define ECB_GCC_VERSION(major,minor) 0
555     #else
556     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
557     #endif
558     #endif
559    
560 root 1.437 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
562     #define ECB_C11 (__STDC_VERSION__ >= 201112L)
563     #define ECB_CPP (__cplusplus+0)
564     #define ECB_CPP98 (__cplusplus >= 199711L)
565     #define ECB_CPP11 (__cplusplus >= 201103L)
566    
567 root 1.391 /*****************************************************************************/
568    
569     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
570     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
571    
572 root 1.410 #if ECB_NO_THREADS
573 root 1.439 #define ECB_NO_SMP 1
574 root 1.410 #endif
575    
576 root 1.437 #if ECB_NO_SMP
577 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
578 root 1.40 #endif
579    
580 root 1.383 #ifndef ECB_MEMORY_FENCE
581 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
582 root 1.404 #if __i386 || __i386__
583 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
584 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
585     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
586 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
587 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
588     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
589     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
590 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
591 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
592 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
593     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
594 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
595 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
596 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
597     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
598 root 1.404 #elif __sparc || __sparc__
599 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
600     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
601     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
602 root 1.417 #elif defined __s390__ || defined __s390x__
603 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
604 root 1.417 #elif defined __mips__
605 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
606 root 1.419 #elif defined __alpha__
607 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
608     #elif defined __hppa__
609     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
610     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
611     #elif defined __ia64__
612     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
613 root 1.383 #endif
614     #endif
615     #endif
616    
617     #ifndef ECB_MEMORY_FENCE
618 root 1.437 #if ECB_GCC_VERSION(4,7)
619     /* see comment below about the C11 memory model. in short - avoid */
620     #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
621     #elif defined __clang && __has_feature (cxx_atomic)
622     /* see above */
623     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
624     #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
625 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
626 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
627     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
628     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
629     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
630     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
631 root 1.417 #elif defined _WIN32
632 root 1.388 #include <WinNT.h>
633 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
634 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
635     #include <mbarrier.h>
636     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
637     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
638     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
639 root 1.413 #elif __xlC__
640 root 1.414 #define ECB_MEMORY_FENCE __sync ()
641 root 1.383 #endif
642     #endif
643    
644     #ifndef ECB_MEMORY_FENCE
645 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
646     /* we assume that these memory fences work on all variables/all memory accesses, */
647     /* not just C11 atomics and atomic accesses */
648     #include <stdatomic.h>
649     /* unfortunately, the C11 memory model seems to be very limited, and unable to express */
650     /* simple barrier semantics. That means we need to take out thor's hammer. */
651     #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
652     #endif
653     #endif
654    
655     #ifndef ECB_MEMORY_FENCE
656 root 1.392 #if !ECB_AVOID_PTHREADS
657     /*
658     * if you get undefined symbol references to pthread_mutex_lock,
659     * or failure to find pthread.h, then you should implement
660     * the ECB_MEMORY_FENCE operations for your cpu/compiler
661     * OR provide pthread.h and link against the posix thread library
662     * of your system.
663     */
664     #include <pthread.h>
665     #define ECB_NEEDS_PTHREADS 1
666     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
667    
668     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
669     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
670     #endif
671     #endif
672 root 1.383
673 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
674 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
675 root 1.392 #endif
676    
677 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
678 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
679     #endif
680    
681 root 1.391 /*****************************************************************************/
682    
683     #if __cplusplus
684     #define ecb_inline static inline
685     #elif ECB_GCC_VERSION(2,5)
686     #define ecb_inline static __inline__
687     #elif ECB_C99
688     #define ecb_inline static inline
689     #else
690     #define ecb_inline static
691     #endif
692    
693     #if ECB_GCC_VERSION(3,3)
694     #define ecb_restrict __restrict__
695     #elif ECB_C99
696     #define ecb_restrict restrict
697     #else
698     #define ecb_restrict
699     #endif
700    
701     typedef int ecb_bool;
702    
703     #define ECB_CONCAT_(a, b) a ## b
704     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
705     #define ECB_STRINGIFY_(a) # a
706     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
707    
708     #define ecb_function_ ecb_inline
709    
710 root 1.379 #if ECB_GCC_VERSION(3,1)
711     #define ecb_attribute(attrlist) __attribute__(attrlist)
712     #define ecb_is_constant(expr) __builtin_constant_p (expr)
713     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
714     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
715     #else
716     #define ecb_attribute(attrlist)
717     #define ecb_is_constant(expr) 0
718     #define ecb_expect(expr,value) (expr)
719     #define ecb_prefetch(addr,rw,locality)
720     #endif
721    
722 root 1.391 /* no emulation for ecb_decltype */
723     #if ECB_GCC_VERSION(4,5)
724     #define ecb_decltype(x) __decltype(x)
725     #elif ECB_GCC_VERSION(3,0)
726     #define ecb_decltype(x) __typeof(x)
727     #endif
728    
729 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
730     #define ecb_unused ecb_attribute ((__unused__))
731     #define ecb_const ecb_attribute ((__const__))
732     #define ecb_pure ecb_attribute ((__pure__))
733    
734 root 1.437 #if ECB_C11
735     #define ecb_noreturn _Noreturn
736     #else
737     #define ecb_noreturn ecb_attribute ((__noreturn__))
738     #endif
739    
740 root 1.379 #if ECB_GCC_VERSION(4,3)
741     #define ecb_artificial ecb_attribute ((__artificial__))
742     #define ecb_hot ecb_attribute ((__hot__))
743     #define ecb_cold ecb_attribute ((__cold__))
744     #else
745     #define ecb_artificial
746     #define ecb_hot
747     #define ecb_cold
748     #endif
749    
750     /* put around conditional expressions if you are very sure that the */
751     /* expression is mostly true or mostly false. note that these return */
752     /* booleans, not the expression. */
753     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
754     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
755 root 1.391 /* for compatibility to the rest of the world */
756     #define ecb_likely(expr) ecb_expect_true (expr)
757     #define ecb_unlikely(expr) ecb_expect_false (expr)
758    
759     /* count trailing zero bits and count # of one bits */
760     #if ECB_GCC_VERSION(3,4)
761     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
762     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
763     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
764     #define ecb_ctz32(x) __builtin_ctz (x)
765     #define ecb_ctz64(x) __builtin_ctzll (x)
766     #define ecb_popcount32(x) __builtin_popcount (x)
767     /* no popcountll */
768     #else
769     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
770     ecb_function_ int
771     ecb_ctz32 (uint32_t x)
772     {
773     int r = 0;
774    
775     x &= ~x + 1; /* this isolates the lowest bit */
776    
777     #if ECB_branchless_on_i386
778     r += !!(x & 0xaaaaaaaa) << 0;
779     r += !!(x & 0xcccccccc) << 1;
780     r += !!(x & 0xf0f0f0f0) << 2;
781     r += !!(x & 0xff00ff00) << 3;
782     r += !!(x & 0xffff0000) << 4;
783     #else
784     if (x & 0xaaaaaaaa) r += 1;
785     if (x & 0xcccccccc) r += 2;
786     if (x & 0xf0f0f0f0) r += 4;
787     if (x & 0xff00ff00) r += 8;
788     if (x & 0xffff0000) r += 16;
789     #endif
790    
791     return r;
792     }
793    
794     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
795     ecb_function_ int
796     ecb_ctz64 (uint64_t x)
797     {
798     int shift = x & 0xffffffffU ? 0 : 32;
799     return ecb_ctz32 (x >> shift) + shift;
800     }
801    
802     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
803     ecb_function_ int
804     ecb_popcount32 (uint32_t x)
805     {
806     x -= (x >> 1) & 0x55555555;
807     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
808     x = ((x >> 4) + x) & 0x0f0f0f0f;
809     x *= 0x01010101;
810    
811     return x >> 24;
812     }
813    
814     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
815     ecb_function_ int ecb_ld32 (uint32_t x)
816     {
817     int r = 0;
818    
819     if (x >> 16) { x >>= 16; r += 16; }
820     if (x >> 8) { x >>= 8; r += 8; }
821     if (x >> 4) { x >>= 4; r += 4; }
822     if (x >> 2) { x >>= 2; r += 2; }
823     if (x >> 1) { r += 1; }
824    
825     return r;
826     }
827    
828     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
829     ecb_function_ int ecb_ld64 (uint64_t x)
830     {
831     int r = 0;
832    
833     if (x >> 32) { x >>= 32; r += 32; }
834    
835     return r + ecb_ld32 (x);
836     }
837     #endif
838    
839 root 1.437 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
840     ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
841     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
842     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
843    
844 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
845     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
846     {
847     return ( (x * 0x0802U & 0x22110U)
848     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
849     }
850    
851     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
852     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
853     {
854     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
855     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
856     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
857     x = ( x >> 8 ) | ( x << 8);
858    
859     return x;
860     }
861    
862     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
863     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
864     {
865     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
866     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
867     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
868     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
869     x = ( x >> 16 ) | ( x << 16);
870    
871     return x;
872     }
873    
874 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
875     /* so for this version we are lazy */
876     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
877     ecb_function_ int
878     ecb_popcount64 (uint64_t x)
879     {
880     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
881     }
882    
883     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
884     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
885     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
886     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
887     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
888     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
889     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
890     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
891    
892     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
893     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
894     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
895     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
896     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
897     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
898     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
899     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
900    
901     #if ECB_GCC_VERSION(4,3)
902     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
903     #define ecb_bswap32(x) __builtin_bswap32 (x)
904     #define ecb_bswap64(x) __builtin_bswap64 (x)
905     #else
906     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
907     ecb_function_ uint16_t
908     ecb_bswap16 (uint16_t x)
909     {
910     return ecb_rotl16 (x, 8);
911     }
912    
913     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
914     ecb_function_ uint32_t
915     ecb_bswap32 (uint32_t x)
916     {
917     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
918     }
919    
920     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
921     ecb_function_ uint64_t
922     ecb_bswap64 (uint64_t x)
923     {
924     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
925     }
926     #endif
927    
928     #if ECB_GCC_VERSION(4,5)
929     #define ecb_unreachable() __builtin_unreachable ()
930     #else
931     /* this seems to work fine, but gcc always emits a warning for it :/ */
932 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
933     ecb_inline void ecb_unreachable (void) { }
934 root 1.391 #endif
935    
936     /* try to tell the compiler that some condition is definitely true */
937     #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
938    
939 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
940     ecb_inline unsigned char
941 root 1.391 ecb_byteorder_helper (void)
942     {
943     const uint32_t u = 0x11223344;
944     return *(unsigned char *)&u;
945     }
946    
947 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
948     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
949     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
950     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
951 root 1.391
952     #if ECB_GCC_VERSION(3,0) || ECB_C99
953     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
954     #else
955     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
956     #endif
957    
958 root 1.398 #if __cplusplus
959     template<typename T>
960     static inline T ecb_div_rd (T val, T div)
961     {
962     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
963     }
964     template<typename T>
965     static inline T ecb_div_ru (T val, T div)
966     {
967     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
968     }
969     #else
970     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
971     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
972     #endif
973    
974 root 1.391 #if ecb_cplusplus_does_not_suck
975     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
976     template<typename T, int N>
977     static inline int ecb_array_length (const T (&arr)[N])
978     {
979     return N;
980     }
981     #else
982     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
983     #endif
984    
985     #endif
986    
987     /* ECB.H END */
988 root 1.379
989 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
990 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
991 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
992     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
993 sf-exg 1.402 * libev, in which cases the memory fences become nops.
994 root 1.396 * alternatively, you can remove this #error and link against libpthread,
995     * which will then provide the memory fences.
996     */
997     # error "memory fences not defined for your architecture, please report"
998     #endif
999    
1000     #ifndef ECB_MEMORY_FENCE
1001     # define ECB_MEMORY_FENCE do { } while (0)
1002     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1003     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1004 root 1.392 #endif
1005    
1006 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1007     #define expect_true(cond) ecb_expect_true (cond)
1008     #define noinline ecb_noinline
1009    
1010     #define inline_size ecb_inline
1011 root 1.169
1012 root 1.338 #if EV_FEATURE_CODE
1013 root 1.379 # define inline_speed ecb_inline
1014 root 1.338 #else
1015 root 1.169 # define inline_speed static noinline
1016     #endif
1017 root 1.40
1018 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1019    
1020     #if EV_MINPRI == EV_MAXPRI
1021     # define ABSPRI(w) (((W)w), 0)
1022     #else
1023     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1024     #endif
1025 root 1.42
1026 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1027 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1028 root 1.103
1029 root 1.136 typedef ev_watcher *W;
1030     typedef ev_watcher_list *WL;
1031     typedef ev_watcher_time *WT;
1032 root 1.10
1033 root 1.229 #define ev_active(w) ((W)(w))->active
1034 root 1.228 #define ev_at(w) ((WT)(w))->at
1035    
1036 root 1.279 #if EV_USE_REALTIME
1037 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1038 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1039 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1040     #endif
1041    
1042     #if EV_USE_MONOTONIC
1043 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1044 root 1.198 #endif
1045 root 1.54
1046 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1047     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1048     #endif
1049     #ifndef EV_WIN32_HANDLE_TO_FD
1050 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1051 root 1.313 #endif
1052     #ifndef EV_WIN32_CLOSE_FD
1053     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1054     #endif
1055    
1056 root 1.103 #ifdef _WIN32
1057 root 1.98 # include "ev_win32.c"
1058     #endif
1059 root 1.67
1060 root 1.53 /*****************************************************************************/
1061 root 1.1
1062 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1063    
1064     #if EV_USE_FLOOR
1065     # include <math.h>
1066     # define ev_floor(v) floor (v)
1067     #else
1068    
1069     #include <float.h>
1070    
1071     /* a floor() replacement function, should be independent of ev_tstamp type */
1072     static ev_tstamp noinline
1073     ev_floor (ev_tstamp v)
1074     {
1075     /* the choice of shift factor is not terribly important */
1076     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1077     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1078     #else
1079     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1080     #endif
1081    
1082     /* argument too large for an unsigned long? */
1083     if (expect_false (v >= shift))
1084     {
1085     ev_tstamp f;
1086    
1087     if (v == v - 1.)
1088     return v; /* very large number */
1089    
1090     f = shift * ev_floor (v * (1. / shift));
1091     return f + ev_floor (v - f);
1092     }
1093    
1094     /* special treatment for negative args? */
1095     if (expect_false (v < 0.))
1096     {
1097     ev_tstamp f = -ev_floor (-v);
1098    
1099     return f - (f == v ? 0 : 1);
1100     }
1101    
1102     /* fits into an unsigned long */
1103     return (unsigned long)v;
1104     }
1105    
1106     #endif
1107    
1108     /*****************************************************************************/
1109    
1110 root 1.356 #ifdef __linux
1111     # include <sys/utsname.h>
1112     #endif
1113    
1114 root 1.379 static unsigned int noinline ecb_cold
1115 root 1.355 ev_linux_version (void)
1116     {
1117     #ifdef __linux
1118 root 1.359 unsigned int v = 0;
1119 root 1.355 struct utsname buf;
1120     int i;
1121     char *p = buf.release;
1122    
1123     if (uname (&buf))
1124     return 0;
1125    
1126     for (i = 3+1; --i; )
1127     {
1128     unsigned int c = 0;
1129    
1130     for (;;)
1131     {
1132     if (*p >= '0' && *p <= '9')
1133     c = c * 10 + *p++ - '0';
1134     else
1135     {
1136     p += *p == '.';
1137     break;
1138     }
1139     }
1140    
1141     v = (v << 8) | c;
1142     }
1143    
1144     return v;
1145     #else
1146     return 0;
1147     #endif
1148     }
1149    
1150     /*****************************************************************************/
1151    
1152 root 1.331 #if EV_AVOID_STDIO
1153 root 1.379 static void noinline ecb_cold
1154 root 1.331 ev_printerr (const char *msg)
1155     {
1156     write (STDERR_FILENO, msg, strlen (msg));
1157     }
1158     #endif
1159    
1160 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1161 root 1.69
1162 root 1.379 void ecb_cold
1163 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1164 root 1.69 {
1165     syserr_cb = cb;
1166     }
1167    
1168 root 1.379 static void noinline ecb_cold
1169 root 1.269 ev_syserr (const char *msg)
1170 root 1.69 {
1171 root 1.70 if (!msg)
1172     msg = "(libev) system error";
1173    
1174 root 1.69 if (syserr_cb)
1175 root 1.70 syserr_cb (msg);
1176 root 1.69 else
1177     {
1178 root 1.330 #if EV_AVOID_STDIO
1179 root 1.331 ev_printerr (msg);
1180     ev_printerr (": ");
1181 root 1.365 ev_printerr (strerror (errno));
1182 root 1.331 ev_printerr ("\n");
1183 root 1.330 #else
1184 root 1.70 perror (msg);
1185 root 1.330 #endif
1186 root 1.69 abort ();
1187     }
1188     }
1189    
1190 root 1.224 static void *
1191 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1192 root 1.224 {
1193 root 1.334 #if __GLIBC__
1194     return realloc (ptr, size);
1195     #else
1196 root 1.224 /* some systems, notably openbsd and darwin, fail to properly
1197 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1198 root 1.224 * the single unix specification, so work around them here.
1199     */
1200 root 1.333
1201 root 1.224 if (size)
1202     return realloc (ptr, size);
1203    
1204     free (ptr);
1205     return 0;
1206 root 1.334 #endif
1207 root 1.224 }
1208    
1209 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1210 root 1.69
1211 root 1.379 void ecb_cold
1212 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1213 root 1.69 {
1214     alloc = cb;
1215     }
1216    
1217 root 1.150 inline_speed void *
1218 root 1.155 ev_realloc (void *ptr, long size)
1219 root 1.69 {
1220 root 1.224 ptr = alloc (ptr, size);
1221 root 1.69
1222     if (!ptr && size)
1223     {
1224 root 1.330 #if EV_AVOID_STDIO
1225 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1226 root 1.330 #else
1227 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1228 root 1.330 #endif
1229 root 1.69 abort ();
1230     }
1231    
1232     return ptr;
1233     }
1234    
1235     #define ev_malloc(size) ev_realloc (0, (size))
1236     #define ev_free(ptr) ev_realloc ((ptr), 0)
1237    
1238     /*****************************************************************************/
1239    
1240 root 1.298 /* set in reify when reification needed */
1241     #define EV_ANFD_REIFY 1
1242    
1243 root 1.288 /* file descriptor info structure */
1244 root 1.53 typedef struct
1245     {
1246 root 1.68 WL head;
1247 root 1.288 unsigned char events; /* the events watched for */
1248 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1249 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1250 root 1.269 unsigned char unused;
1251     #if EV_USE_EPOLL
1252 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1253 root 1.269 #endif
1254 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1255 root 1.103 SOCKET handle;
1256     #endif
1257 root 1.357 #if EV_USE_IOCP
1258     OVERLAPPED or, ow;
1259     #endif
1260 root 1.53 } ANFD;
1261 root 1.1
1262 root 1.288 /* stores the pending event set for a given watcher */
1263 root 1.53 typedef struct
1264     {
1265     W w;
1266 root 1.288 int events; /* the pending event set for the given watcher */
1267 root 1.53 } ANPENDING;
1268 root 1.51
1269 root 1.155 #if EV_USE_INOTIFY
1270 root 1.241 /* hash table entry per inotify-id */
1271 root 1.152 typedef struct
1272     {
1273     WL head;
1274 root 1.155 } ANFS;
1275 root 1.152 #endif
1276    
1277 root 1.241 /* Heap Entry */
1278     #if EV_HEAP_CACHE_AT
1279 root 1.288 /* a heap element */
1280 root 1.241 typedef struct {
1281 root 1.243 ev_tstamp at;
1282 root 1.241 WT w;
1283     } ANHE;
1284    
1285 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1286     #define ANHE_at(he) (he).at /* access cached at, read-only */
1287     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1288 root 1.241 #else
1289 root 1.288 /* a heap element */
1290 root 1.241 typedef WT ANHE;
1291    
1292 root 1.248 #define ANHE_w(he) (he)
1293     #define ANHE_at(he) (he)->at
1294     #define ANHE_at_cache(he)
1295 root 1.241 #endif
1296    
1297 root 1.55 #if EV_MULTIPLICITY
1298 root 1.54
1299 root 1.80 struct ev_loop
1300     {
1301 root 1.86 ev_tstamp ev_rt_now;
1302 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1303 root 1.80 #define VAR(name,decl) decl;
1304     #include "ev_vars.h"
1305     #undef VAR
1306     };
1307     #include "ev_wrap.h"
1308    
1309 root 1.116 static struct ev_loop default_loop_struct;
1310 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1311 root 1.54
1312 root 1.53 #else
1313 root 1.54
1314 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1315 root 1.80 #define VAR(name,decl) static decl;
1316     #include "ev_vars.h"
1317     #undef VAR
1318    
1319 root 1.116 static int ev_default_loop_ptr;
1320 root 1.54
1321 root 1.51 #endif
1322 root 1.1
1323 root 1.338 #if EV_FEATURE_API
1324 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1325     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1326 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1327     #else
1328 root 1.298 # define EV_RELEASE_CB (void)0
1329     # define EV_ACQUIRE_CB (void)0
1330 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1331     #endif
1332    
1333 root 1.353 #define EVBREAK_RECURSE 0x80
1334 root 1.298
1335 root 1.8 /*****************************************************************************/
1336    
1337 root 1.292 #ifndef EV_HAVE_EV_TIME
1338 root 1.141 ev_tstamp
1339 root 1.420 ev_time (void) EV_THROW
1340 root 1.1 {
1341 root 1.29 #if EV_USE_REALTIME
1342 root 1.279 if (expect_true (have_realtime))
1343     {
1344     struct timespec ts;
1345     clock_gettime (CLOCK_REALTIME, &ts);
1346     return ts.tv_sec + ts.tv_nsec * 1e-9;
1347     }
1348     #endif
1349    
1350 root 1.1 struct timeval tv;
1351     gettimeofday (&tv, 0);
1352     return tv.tv_sec + tv.tv_usec * 1e-6;
1353     }
1354 root 1.292 #endif
1355 root 1.1
1356 root 1.284 inline_size ev_tstamp
1357 root 1.1 get_clock (void)
1358     {
1359 root 1.29 #if EV_USE_MONOTONIC
1360 root 1.40 if (expect_true (have_monotonic))
1361 root 1.1 {
1362     struct timespec ts;
1363     clock_gettime (CLOCK_MONOTONIC, &ts);
1364     return ts.tv_sec + ts.tv_nsec * 1e-9;
1365     }
1366     #endif
1367    
1368     return ev_time ();
1369     }
1370    
1371 root 1.85 #if EV_MULTIPLICITY
1372 root 1.51 ev_tstamp
1373 root 1.420 ev_now (EV_P) EV_THROW
1374 root 1.51 {
1375 root 1.85 return ev_rt_now;
1376 root 1.51 }
1377 root 1.85 #endif
1378 root 1.51
1379 root 1.193 void
1380 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1381 root 1.193 {
1382     if (delay > 0.)
1383     {
1384     #if EV_USE_NANOSLEEP
1385     struct timespec ts;
1386    
1387 root 1.348 EV_TS_SET (ts, delay);
1388 root 1.193 nanosleep (&ts, 0);
1389 root 1.416 #elif defined _WIN32
1390 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1391 root 1.193 #else
1392     struct timeval tv;
1393    
1394 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1395 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1396 root 1.257 /* by older ones */
1397 sf-exg 1.349 EV_TV_SET (tv, delay);
1398 root 1.193 select (0, 0, 0, 0, &tv);
1399     #endif
1400     }
1401     }
1402    
1403     /*****************************************************************************/
1404    
1405 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1406 root 1.232
1407 root 1.288 /* find a suitable new size for the given array, */
1408 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1409 root 1.284 inline_size int
1410 root 1.163 array_nextsize (int elem, int cur, int cnt)
1411     {
1412     int ncur = cur + 1;
1413    
1414     do
1415     ncur <<= 1;
1416     while (cnt > ncur);
1417    
1418 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1419 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1420 root 1.163 {
1421     ncur *= elem;
1422 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1423 root 1.163 ncur = ncur - sizeof (void *) * 4;
1424     ncur /= elem;
1425     }
1426    
1427     return ncur;
1428     }
1429    
1430 root 1.379 static void * noinline ecb_cold
1431 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1432     {
1433     *cur = array_nextsize (elem, *cur, cnt);
1434     return ev_realloc (base, elem * *cur);
1435     }
1436 root 1.29
1437 root 1.265 #define array_init_zero(base,count) \
1438     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1439    
1440 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1441 root 1.163 if (expect_false ((cnt) > (cur))) \
1442 root 1.69 { \
1443 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1444 root 1.163 (base) = (type *)array_realloc \
1445     (sizeof (type), (base), &(cur), (cnt)); \
1446     init ((base) + (ocur_), (cur) - ocur_); \
1447 root 1.1 }
1448    
1449 root 1.163 #if 0
1450 root 1.74 #define array_slim(type,stem) \
1451 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1452     { \
1453     stem ## max = array_roundsize (stem ## cnt >> 1); \
1454 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1455 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1456     }
1457 root 1.163 #endif
1458 root 1.67
1459 root 1.65 #define array_free(stem, idx) \
1460 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1461 root 1.65
1462 root 1.8 /*****************************************************************************/
1463    
1464 root 1.288 /* dummy callback for pending events */
1465     static void noinline
1466     pendingcb (EV_P_ ev_prepare *w, int revents)
1467     {
1468     }
1469    
1470 root 1.140 void noinline
1471 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1472 root 1.1 {
1473 root 1.78 W w_ = (W)w;
1474 root 1.171 int pri = ABSPRI (w_);
1475 root 1.78
1476 root 1.123 if (expect_false (w_->pending))
1477 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1478     else
1479 root 1.32 {
1480 root 1.171 w_->pending = ++pendingcnt [pri];
1481     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1482     pendings [pri][w_->pending - 1].w = w_;
1483     pendings [pri][w_->pending - 1].events = revents;
1484 root 1.32 }
1485 root 1.425
1486     pendingpri = NUMPRI - 1;
1487 root 1.1 }
1488    
1489 root 1.284 inline_speed void
1490     feed_reverse (EV_P_ W w)
1491     {
1492     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1493     rfeeds [rfeedcnt++] = w;
1494     }
1495    
1496     inline_size void
1497     feed_reverse_done (EV_P_ int revents)
1498     {
1499     do
1500     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1501     while (rfeedcnt);
1502     }
1503    
1504     inline_speed void
1505 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1506 root 1.27 {
1507     int i;
1508    
1509     for (i = 0; i < eventcnt; ++i)
1510 root 1.78 ev_feed_event (EV_A_ events [i], type);
1511 root 1.27 }
1512    
1513 root 1.141 /*****************************************************************************/
1514    
1515 root 1.284 inline_speed void
1516 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1517 root 1.1 {
1518     ANFD *anfd = anfds + fd;
1519 root 1.136 ev_io *w;
1520 root 1.1
1521 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1522 root 1.1 {
1523 root 1.79 int ev = w->events & revents;
1524 root 1.1
1525     if (ev)
1526 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1527 root 1.1 }
1528     }
1529    
1530 root 1.298 /* do not submit kernel events for fds that have reify set */
1531     /* because that means they changed while we were polling for new events */
1532     inline_speed void
1533     fd_event (EV_P_ int fd, int revents)
1534     {
1535     ANFD *anfd = anfds + fd;
1536    
1537     if (expect_true (!anfd->reify))
1538 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1539 root 1.298 }
1540    
1541 root 1.79 void
1542 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1543 root 1.79 {
1544 root 1.168 if (fd >= 0 && fd < anfdmax)
1545 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1546 root 1.79 }
1547    
1548 root 1.288 /* make sure the external fd watch events are in-sync */
1549     /* with the kernel/libev internal state */
1550 root 1.284 inline_size void
1551 root 1.51 fd_reify (EV_P)
1552 root 1.9 {
1553     int i;
1554    
1555 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1556     for (i = 0; i < fdchangecnt; ++i)
1557     {
1558     int fd = fdchanges [i];
1559     ANFD *anfd = anfds + fd;
1560    
1561 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1562 root 1.371 {
1563     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1564    
1565     if (handle != anfd->handle)
1566     {
1567     unsigned long arg;
1568    
1569     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1570    
1571     /* handle changed, but fd didn't - we need to do it in two steps */
1572     backend_modify (EV_A_ fd, anfd->events, 0);
1573     anfd->events = 0;
1574     anfd->handle = handle;
1575     }
1576     }
1577     }
1578     #endif
1579    
1580 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1581     {
1582     int fd = fdchanges [i];
1583     ANFD *anfd = anfds + fd;
1584 root 1.136 ev_io *w;
1585 root 1.27
1586 root 1.350 unsigned char o_events = anfd->events;
1587     unsigned char o_reify = anfd->reify;
1588 root 1.27
1589 root 1.350 anfd->reify = 0;
1590 root 1.27
1591 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1592     {
1593     anfd->events = 0;
1594 root 1.184
1595 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1596     anfd->events |= (unsigned char)w->events;
1597 root 1.27
1598 root 1.351 if (o_events != anfd->events)
1599 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1600     }
1601    
1602     if (o_reify & EV__IOFDSET)
1603     backend_modify (EV_A_ fd, o_events, anfd->events);
1604 root 1.27 }
1605    
1606     fdchangecnt = 0;
1607     }
1608    
1609 root 1.288 /* something about the given fd changed */
1610 root 1.284 inline_size void
1611 root 1.183 fd_change (EV_P_ int fd, int flags)
1612 root 1.27 {
1613 root 1.183 unsigned char reify = anfds [fd].reify;
1614 root 1.184 anfds [fd].reify |= flags;
1615 root 1.27
1616 root 1.183 if (expect_true (!reify))
1617     {
1618     ++fdchangecnt;
1619     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1620     fdchanges [fdchangecnt - 1] = fd;
1621     }
1622 root 1.9 }
1623    
1624 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1625 root 1.379 inline_speed void ecb_cold
1626 root 1.51 fd_kill (EV_P_ int fd)
1627 root 1.41 {
1628 root 1.136 ev_io *w;
1629 root 1.41
1630 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1631 root 1.41 {
1632 root 1.51 ev_io_stop (EV_A_ w);
1633 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1634 root 1.41 }
1635     }
1636    
1637 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1638 root 1.379 inline_size int ecb_cold
1639 root 1.71 fd_valid (int fd)
1640     {
1641 root 1.103 #ifdef _WIN32
1642 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1643 root 1.71 #else
1644     return fcntl (fd, F_GETFD) != -1;
1645     #endif
1646     }
1647    
1648 root 1.19 /* called on EBADF to verify fds */
1649 root 1.379 static void noinline ecb_cold
1650 root 1.51 fd_ebadf (EV_P)
1651 root 1.19 {
1652     int fd;
1653    
1654     for (fd = 0; fd < anfdmax; ++fd)
1655 root 1.27 if (anfds [fd].events)
1656 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1657 root 1.51 fd_kill (EV_A_ fd);
1658 root 1.41 }
1659    
1660     /* called on ENOMEM in select/poll to kill some fds and retry */
1661 root 1.379 static void noinline ecb_cold
1662 root 1.51 fd_enomem (EV_P)
1663 root 1.41 {
1664 root 1.62 int fd;
1665 root 1.41
1666 root 1.62 for (fd = anfdmax; fd--; )
1667 root 1.41 if (anfds [fd].events)
1668     {
1669 root 1.51 fd_kill (EV_A_ fd);
1670 root 1.307 break;
1671 root 1.41 }
1672 root 1.19 }
1673    
1674 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1675 root 1.140 static void noinline
1676 root 1.56 fd_rearm_all (EV_P)
1677     {
1678     int fd;
1679    
1680     for (fd = 0; fd < anfdmax; ++fd)
1681     if (anfds [fd].events)
1682     {
1683     anfds [fd].events = 0;
1684 root 1.268 anfds [fd].emask = 0;
1685 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1686 root 1.56 }
1687     }
1688    
1689 root 1.336 /* used to prepare libev internal fd's */
1690     /* this is not fork-safe */
1691     inline_speed void
1692     fd_intern (int fd)
1693     {
1694     #ifdef _WIN32
1695     unsigned long arg = 1;
1696     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1697     #else
1698     fcntl (fd, F_SETFD, FD_CLOEXEC);
1699     fcntl (fd, F_SETFL, O_NONBLOCK);
1700     #endif
1701     }
1702    
1703 root 1.8 /*****************************************************************************/
1704    
1705 root 1.235 /*
1706 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1707 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1708     * the branching factor of the d-tree.
1709     */
1710    
1711     /*
1712 root 1.235 * at the moment we allow libev the luxury of two heaps,
1713     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1714     * which is more cache-efficient.
1715     * the difference is about 5% with 50000+ watchers.
1716     */
1717 root 1.241 #if EV_USE_4HEAP
1718 root 1.235
1719 root 1.237 #define DHEAP 4
1720     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1721 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1722 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1723 root 1.235
1724     /* away from the root */
1725 root 1.284 inline_speed void
1726 root 1.241 downheap (ANHE *heap, int N, int k)
1727 root 1.235 {
1728 root 1.241 ANHE he = heap [k];
1729     ANHE *E = heap + N + HEAP0;
1730 root 1.235
1731     for (;;)
1732     {
1733     ev_tstamp minat;
1734 root 1.241 ANHE *minpos;
1735 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1736 root 1.235
1737 root 1.248 /* find minimum child */
1738 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1739 root 1.235 {
1740 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1741     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1742     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1743     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1744 root 1.235 }
1745 root 1.240 else if (pos < E)
1746 root 1.235 {
1747 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1748     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1749     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1750     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1751 root 1.235 }
1752 root 1.240 else
1753     break;
1754 root 1.235
1755 root 1.241 if (ANHE_at (he) <= minat)
1756 root 1.235 break;
1757    
1758 root 1.247 heap [k] = *minpos;
1759 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1760 root 1.235
1761     k = minpos - heap;
1762     }
1763    
1764 root 1.247 heap [k] = he;
1765 root 1.241 ev_active (ANHE_w (he)) = k;
1766 root 1.235 }
1767    
1768 root 1.248 #else /* 4HEAP */
1769 root 1.235
1770     #define HEAP0 1
1771 root 1.247 #define HPARENT(k) ((k) >> 1)
1772 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1773 root 1.235
1774 root 1.248 /* away from the root */
1775 root 1.284 inline_speed void
1776 root 1.248 downheap (ANHE *heap, int N, int k)
1777 root 1.1 {
1778 root 1.241 ANHE he = heap [k];
1779 root 1.1
1780 root 1.228 for (;;)
1781 root 1.1 {
1782 root 1.248 int c = k << 1;
1783 root 1.179
1784 root 1.309 if (c >= N + HEAP0)
1785 root 1.179 break;
1786    
1787 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1788     ? 1 : 0;
1789    
1790     if (ANHE_at (he) <= ANHE_at (heap [c]))
1791     break;
1792    
1793     heap [k] = heap [c];
1794 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1795 root 1.248
1796     k = c;
1797 root 1.1 }
1798    
1799 root 1.243 heap [k] = he;
1800 root 1.248 ev_active (ANHE_w (he)) = k;
1801 root 1.1 }
1802 root 1.248 #endif
1803 root 1.1
1804 root 1.248 /* towards the root */
1805 root 1.284 inline_speed void
1806 root 1.248 upheap (ANHE *heap, int k)
1807 root 1.1 {
1808 root 1.241 ANHE he = heap [k];
1809 root 1.1
1810 root 1.179 for (;;)
1811 root 1.1 {
1812 root 1.248 int p = HPARENT (k);
1813 root 1.179
1814 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1815 root 1.179 break;
1816 root 1.1
1817 root 1.248 heap [k] = heap [p];
1818 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1819 root 1.248 k = p;
1820 root 1.1 }
1821    
1822 root 1.241 heap [k] = he;
1823     ev_active (ANHE_w (he)) = k;
1824 root 1.1 }
1825    
1826 root 1.288 /* move an element suitably so it is in a correct place */
1827 root 1.284 inline_size void
1828 root 1.241 adjustheap (ANHE *heap, int N, int k)
1829 root 1.84 {
1830 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1831 root 1.247 upheap (heap, k);
1832     else
1833     downheap (heap, N, k);
1834 root 1.84 }
1835    
1836 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1837 root 1.284 inline_size void
1838 root 1.248 reheap (ANHE *heap, int N)
1839     {
1840     int i;
1841 root 1.251
1842 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1843     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1844     for (i = 0; i < N; ++i)
1845     upheap (heap, i + HEAP0);
1846     }
1847    
1848 root 1.8 /*****************************************************************************/
1849    
1850 root 1.288 /* associate signal watchers to a signal signal */
1851 root 1.7 typedef struct
1852     {
1853 root 1.307 EV_ATOMIC_T pending;
1854 root 1.306 #if EV_MULTIPLICITY
1855     EV_P;
1856     #endif
1857 root 1.68 WL head;
1858 root 1.7 } ANSIG;
1859    
1860 root 1.306 static ANSIG signals [EV_NSIG - 1];
1861 root 1.7
1862 root 1.207 /*****************************************************************************/
1863    
1864 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1865 root 1.207
1866 root 1.379 static void noinline ecb_cold
1867 root 1.207 evpipe_init (EV_P)
1868     {
1869 root 1.288 if (!ev_is_active (&pipe_w))
1870 root 1.207 {
1871 root 1.336 # if EV_USE_EVENTFD
1872 root 1.303 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1873     if (evfd < 0 && errno == EINVAL)
1874     evfd = eventfd (0, 0);
1875    
1876     if (evfd >= 0)
1877 root 1.220 {
1878     evpipe [0] = -1;
1879 root 1.303 fd_intern (evfd); /* doing it twice doesn't hurt */
1880 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1881 root 1.220 }
1882     else
1883 root 1.336 # endif
1884 root 1.220 {
1885     while (pipe (evpipe))
1886 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1887 root 1.207
1888 root 1.220 fd_intern (evpipe [0]);
1889     fd_intern (evpipe [1]);
1890 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1891 root 1.220 }
1892 root 1.207
1893 root 1.288 ev_io_start (EV_A_ &pipe_w);
1894 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1895 root 1.207 }
1896     }
1897    
1898 root 1.380 inline_speed void
1899 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1900 root 1.207 {
1901 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1902    
1903 root 1.383 if (expect_true (*flag))
1904 root 1.387 return;
1905 root 1.383
1906     *flag = 1;
1907 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1908 root 1.383
1909     pipe_write_skipped = 1;
1910 root 1.378
1911 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1912 root 1.214
1913 root 1.383 if (pipe_write_wanted)
1914     {
1915     int old_errno;
1916 root 1.378
1917 root 1.436 pipe_write_skipped = 0;
1918     ECB_MEMORY_FENCE_RELEASE;
1919 root 1.220
1920 root 1.383 old_errno = errno; /* save errno because write will clobber it */
1921 root 1.380
1922 root 1.220 #if EV_USE_EVENTFD
1923 root 1.383 if (evfd >= 0)
1924     {
1925     uint64_t counter = 1;
1926     write (evfd, &counter, sizeof (uint64_t));
1927     }
1928     else
1929 root 1.220 #endif
1930 root 1.383 {
1931 root 1.427 #ifdef _WIN32
1932     WSABUF buf;
1933     DWORD sent;
1934     buf.buf = &buf;
1935     buf.len = 1;
1936     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1937     #else
1938 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
1939 root 1.427 #endif
1940 root 1.383 }
1941 root 1.214
1942 root 1.383 errno = old_errno;
1943 root 1.207 }
1944     }
1945    
1946 root 1.288 /* called whenever the libev signal pipe */
1947     /* got some events (signal, async) */
1948 root 1.207 static void
1949     pipecb (EV_P_ ev_io *iow, int revents)
1950     {
1951 root 1.307 int i;
1952    
1953 root 1.378 if (revents & EV_READ)
1954     {
1955 root 1.220 #if EV_USE_EVENTFD
1956 root 1.378 if (evfd >= 0)
1957     {
1958     uint64_t counter;
1959     read (evfd, &counter, sizeof (uint64_t));
1960     }
1961     else
1962 root 1.220 #endif
1963 root 1.378 {
1964 root 1.427 char dummy[4];
1965     #ifdef _WIN32
1966     WSABUF buf;
1967     DWORD recvd;
1968 root 1.432 DWORD flags = 0;
1969 root 1.427 buf.buf = dummy;
1970     buf.len = sizeof (dummy);
1971 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1972 root 1.427 #else
1973     read (evpipe [0], &dummy, sizeof (dummy));
1974     #endif
1975 root 1.378 }
1976 root 1.220 }
1977 root 1.207
1978 root 1.378 pipe_write_skipped = 0;
1979    
1980 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1981    
1982 root 1.369 #if EV_SIGNAL_ENABLE
1983 root 1.307 if (sig_pending)
1984 root 1.372 {
1985 root 1.307 sig_pending = 0;
1986 root 1.207
1987 root 1.436 ECB_MEMORY_FENCE;
1988 root 1.424
1989 root 1.307 for (i = EV_NSIG - 1; i--; )
1990     if (expect_false (signals [i].pending))
1991     ev_feed_signal_event (EV_A_ i + 1);
1992 root 1.207 }
1993 root 1.369 #endif
1994 root 1.207
1995 root 1.209 #if EV_ASYNC_ENABLE
1996 root 1.307 if (async_pending)
1997 root 1.207 {
1998 root 1.307 async_pending = 0;
1999 root 1.207
2000 root 1.436 ECB_MEMORY_FENCE;
2001 root 1.424
2002 root 1.207 for (i = asynccnt; i--; )
2003     if (asyncs [i]->sent)
2004     {
2005     asyncs [i]->sent = 0;
2006 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2007 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2008     }
2009     }
2010 root 1.209 #endif
2011 root 1.207 }
2012    
2013     /*****************************************************************************/
2014    
2015 root 1.366 void
2016 root 1.420 ev_feed_signal (int signum) EV_THROW
2017 root 1.7 {
2018 root 1.207 #if EV_MULTIPLICITY
2019 root 1.306 EV_P = signals [signum - 1].loop;
2020 root 1.366
2021     if (!EV_A)
2022     return;
2023 root 1.207 #endif
2024    
2025 root 1.381 if (!ev_active (&pipe_w))
2026     return;
2027 root 1.378
2028 root 1.366 signals [signum - 1].pending = 1;
2029     evpipe_write (EV_A_ &sig_pending);
2030     }
2031    
2032     static void
2033     ev_sighandler (int signum)
2034     {
2035 root 1.322 #ifdef _WIN32
2036 root 1.218 signal (signum, ev_sighandler);
2037 root 1.67 #endif
2038    
2039 root 1.366 ev_feed_signal (signum);
2040 root 1.7 }
2041    
2042 root 1.140 void noinline
2043 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2044 root 1.79 {
2045 root 1.80 WL w;
2046    
2047 root 1.307 if (expect_false (signum <= 0 || signum > EV_NSIG))
2048     return;
2049    
2050     --signum;
2051    
2052 root 1.79 #if EV_MULTIPLICITY
2053 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2054     /* or, likely more useful, feeding a signal nobody is waiting for */
2055 root 1.79
2056 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2057 root 1.306 return;
2058 root 1.307 #endif
2059 root 1.306
2060 root 1.307 signals [signum].pending = 0;
2061 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2062 root 1.79
2063     for (w = signals [signum].head; w; w = w->next)
2064     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2065     }
2066    
2067 root 1.303 #if EV_USE_SIGNALFD
2068     static void
2069     sigfdcb (EV_P_ ev_io *iow, int revents)
2070     {
2071 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2072 root 1.303
2073     for (;;)
2074     {
2075     ssize_t res = read (sigfd, si, sizeof (si));
2076    
2077     /* not ISO-C, as res might be -1, but works with SuS */
2078     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2079     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2080    
2081     if (res < (ssize_t)sizeof (si))
2082     break;
2083     }
2084     }
2085     #endif
2086    
2087 root 1.336 #endif
2088    
2089 root 1.8 /*****************************************************************************/
2090    
2091 root 1.336 #if EV_CHILD_ENABLE
2092 root 1.182 static WL childs [EV_PID_HASHSIZE];
2093 root 1.71
2094 root 1.136 static ev_signal childev;
2095 root 1.59
2096 root 1.206 #ifndef WIFCONTINUED
2097     # define WIFCONTINUED(status) 0
2098     #endif
2099    
2100 root 1.288 /* handle a single child status event */
2101 root 1.284 inline_speed void
2102 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2103 root 1.47 {
2104 root 1.136 ev_child *w;
2105 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2106 root 1.47
2107 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2108 root 1.206 {
2109     if ((w->pid == pid || !w->pid)
2110     && (!traced || (w->flags & 1)))
2111     {
2112 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2113 root 1.206 w->rpid = pid;
2114     w->rstatus = status;
2115     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2116     }
2117     }
2118 root 1.47 }
2119    
2120 root 1.142 #ifndef WCONTINUED
2121     # define WCONTINUED 0
2122     #endif
2123    
2124 root 1.288 /* called on sigchld etc., calls waitpid */
2125 root 1.47 static void
2126 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2127 root 1.22 {
2128     int pid, status;
2129    
2130 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2131     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2132     if (!WCONTINUED
2133     || errno != EINVAL
2134     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2135     return;
2136    
2137 root 1.216 /* make sure we are called again until all children have been reaped */
2138 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2139     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2140 root 1.47
2141 root 1.216 child_reap (EV_A_ pid, pid, status);
2142 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2143 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2144 root 1.22 }
2145    
2146 root 1.45 #endif
2147    
2148 root 1.22 /*****************************************************************************/
2149    
2150 root 1.357 #if EV_USE_IOCP
2151     # include "ev_iocp.c"
2152     #endif
2153 root 1.118 #if EV_USE_PORT
2154     # include "ev_port.c"
2155     #endif
2156 root 1.44 #if EV_USE_KQUEUE
2157     # include "ev_kqueue.c"
2158     #endif
2159 root 1.29 #if EV_USE_EPOLL
2160 root 1.1 # include "ev_epoll.c"
2161     #endif
2162 root 1.59 #if EV_USE_POLL
2163 root 1.41 # include "ev_poll.c"
2164     #endif
2165 root 1.29 #if EV_USE_SELECT
2166 root 1.1 # include "ev_select.c"
2167     #endif
2168    
2169 root 1.379 int ecb_cold
2170 root 1.420 ev_version_major (void) EV_THROW
2171 root 1.24 {
2172     return EV_VERSION_MAJOR;
2173     }
2174    
2175 root 1.379 int ecb_cold
2176 root 1.420 ev_version_minor (void) EV_THROW
2177 root 1.24 {
2178     return EV_VERSION_MINOR;
2179     }
2180    
2181 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2182 root 1.379 int inline_size ecb_cold
2183 root 1.51 enable_secure (void)
2184 root 1.41 {
2185 root 1.103 #ifdef _WIN32
2186 root 1.49 return 0;
2187     #else
2188 root 1.41 return getuid () != geteuid ()
2189     || getgid () != getegid ();
2190 root 1.49 #endif
2191 root 1.41 }
2192    
2193 root 1.379 unsigned int ecb_cold
2194 root 1.420 ev_supported_backends (void) EV_THROW
2195 root 1.129 {
2196 root 1.130 unsigned int flags = 0;
2197 root 1.129
2198     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2199     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2200     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2201     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2202     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2203    
2204     return flags;
2205     }
2206    
2207 root 1.379 unsigned int ecb_cold
2208 root 1.420 ev_recommended_backends (void) EV_THROW
2209 root 1.1 {
2210 root 1.131 unsigned int flags = ev_supported_backends ();
2211 root 1.129
2212     #ifndef __NetBSD__
2213     /* kqueue is borked on everything but netbsd apparently */
2214     /* it usually doesn't work correctly on anything but sockets and pipes */
2215     flags &= ~EVBACKEND_KQUEUE;
2216     #endif
2217     #ifdef __APPLE__
2218 root 1.278 /* only select works correctly on that "unix-certified" platform */
2219     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2220     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2221 root 1.129 #endif
2222 root 1.342 #ifdef __FreeBSD__
2223     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2224     #endif
2225 root 1.129
2226     return flags;
2227 root 1.51 }
2228    
2229 root 1.379 unsigned int ecb_cold
2230 root 1.420 ev_embeddable_backends (void) EV_THROW
2231 root 1.134 {
2232 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2233    
2234 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2235 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2236     flags &= ~EVBACKEND_EPOLL;
2237 root 1.196
2238     return flags;
2239 root 1.134 }
2240    
2241     unsigned int
2242 root 1.420 ev_backend (EV_P) EV_THROW
2243 root 1.130 {
2244     return backend;
2245     }
2246    
2247 root 1.338 #if EV_FEATURE_API
2248 root 1.162 unsigned int
2249 root 1.420 ev_iteration (EV_P) EV_THROW
2250 root 1.162 {
2251     return loop_count;
2252     }
2253    
2254 root 1.294 unsigned int
2255 root 1.420 ev_depth (EV_P) EV_THROW
2256 root 1.294 {
2257     return loop_depth;
2258     }
2259    
2260 root 1.193 void
2261 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2262 root 1.193 {
2263     io_blocktime = interval;
2264     }
2265    
2266     void
2267 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2268 root 1.193 {
2269     timeout_blocktime = interval;
2270     }
2271    
2272 root 1.297 void
2273 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2274 root 1.297 {
2275     userdata = data;
2276     }
2277    
2278     void *
2279 root 1.420 ev_userdata (EV_P) EV_THROW
2280 root 1.297 {
2281     return userdata;
2282     }
2283    
2284 root 1.379 void
2285 root 1.420 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2286 root 1.297 {
2287     invoke_cb = invoke_pending_cb;
2288     }
2289    
2290 root 1.379 void
2291 root 1.421 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2292 root 1.297 {
2293 root 1.298 release_cb = release;
2294     acquire_cb = acquire;
2295 root 1.297 }
2296     #endif
2297    
2298 root 1.288 /* initialise a loop structure, must be zero-initialised */
2299 root 1.379 static void noinline ecb_cold
2300 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2301 root 1.51 {
2302 root 1.130 if (!backend)
2303 root 1.23 {
2304 root 1.366 origflags = flags;
2305    
2306 root 1.279 #if EV_USE_REALTIME
2307     if (!have_realtime)
2308     {
2309     struct timespec ts;
2310    
2311     if (!clock_gettime (CLOCK_REALTIME, &ts))
2312     have_realtime = 1;
2313     }
2314     #endif
2315    
2316 root 1.29 #if EV_USE_MONOTONIC
2317 root 1.279 if (!have_monotonic)
2318     {
2319     struct timespec ts;
2320    
2321     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2322     have_monotonic = 1;
2323     }
2324 root 1.1 #endif
2325    
2326 root 1.306 /* pid check not overridable via env */
2327     #ifndef _WIN32
2328     if (flags & EVFLAG_FORKCHECK)
2329     curpid = getpid ();
2330     #endif
2331    
2332     if (!(flags & EVFLAG_NOENV)
2333     && !enable_secure ()
2334     && getenv ("LIBEV_FLAGS"))
2335     flags = atoi (getenv ("LIBEV_FLAGS"));
2336    
2337 root 1.378 ev_rt_now = ev_time ();
2338     mn_now = get_clock ();
2339     now_floor = mn_now;
2340     rtmn_diff = ev_rt_now - mn_now;
2341 root 1.338 #if EV_FEATURE_API
2342 root 1.378 invoke_cb = ev_invoke_pending;
2343 root 1.297 #endif
2344 root 1.1
2345 root 1.378 io_blocktime = 0.;
2346     timeout_blocktime = 0.;
2347     backend = 0;
2348     backend_fd = -1;
2349     sig_pending = 0;
2350 root 1.307 #if EV_ASYNC_ENABLE
2351 root 1.378 async_pending = 0;
2352 root 1.307 #endif
2353 root 1.378 pipe_write_skipped = 0;
2354     pipe_write_wanted = 0;
2355 root 1.209 #if EV_USE_INOTIFY
2356 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2357 root 1.209 #endif
2358 root 1.303 #if EV_USE_SIGNALFD
2359 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2360 root 1.303 #endif
2361 root 1.193
2362 root 1.366 if (!(flags & EVBACKEND_MASK))
2363 root 1.129 flags |= ev_recommended_backends ();
2364 root 1.41
2365 root 1.357 #if EV_USE_IOCP
2366     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2367     #endif
2368 root 1.118 #if EV_USE_PORT
2369 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2370 root 1.118 #endif
2371 root 1.44 #if EV_USE_KQUEUE
2372 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2373 root 1.44 #endif
2374 root 1.29 #if EV_USE_EPOLL
2375 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2376 root 1.41 #endif
2377 root 1.59 #if EV_USE_POLL
2378 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2379 root 1.1 #endif
2380 root 1.29 #if EV_USE_SELECT
2381 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2382 root 1.1 #endif
2383 root 1.70
2384 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2385    
2386 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2387 root 1.288 ev_init (&pipe_w, pipecb);
2388     ev_set_priority (&pipe_w, EV_MAXPRI);
2389 root 1.336 #endif
2390 root 1.56 }
2391     }
2392    
2393 root 1.288 /* free up a loop structure */
2394 root 1.379 void ecb_cold
2395 root 1.422 ev_loop_destroy (EV_P)
2396 root 1.56 {
2397 root 1.65 int i;
2398    
2399 root 1.364 #if EV_MULTIPLICITY
2400 root 1.363 /* mimic free (0) */
2401     if (!EV_A)
2402     return;
2403 root 1.364 #endif
2404 root 1.363
2405 root 1.361 #if EV_CLEANUP_ENABLE
2406     /* queue cleanup watchers (and execute them) */
2407     if (expect_false (cleanupcnt))
2408     {
2409     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2410     EV_INVOKE_PENDING;
2411     }
2412     #endif
2413    
2414 root 1.359 #if EV_CHILD_ENABLE
2415 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2416 root 1.359 {
2417     ev_ref (EV_A); /* child watcher */
2418     ev_signal_stop (EV_A_ &childev);
2419     }
2420     #endif
2421    
2422 root 1.288 if (ev_is_active (&pipe_w))
2423 root 1.207 {
2424 root 1.303 /*ev_ref (EV_A);*/
2425     /*ev_io_stop (EV_A_ &pipe_w);*/
2426 root 1.207
2427 root 1.220 #if EV_USE_EVENTFD
2428     if (evfd >= 0)
2429     close (evfd);
2430     #endif
2431    
2432     if (evpipe [0] >= 0)
2433     {
2434 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2435     EV_WIN32_CLOSE_FD (evpipe [1]);
2436 root 1.220 }
2437 root 1.207 }
2438    
2439 root 1.303 #if EV_USE_SIGNALFD
2440     if (ev_is_active (&sigfd_w))
2441 root 1.317 close (sigfd);
2442 root 1.303 #endif
2443    
2444 root 1.152 #if EV_USE_INOTIFY
2445     if (fs_fd >= 0)
2446     close (fs_fd);
2447     #endif
2448    
2449     if (backend_fd >= 0)
2450     close (backend_fd);
2451    
2452 root 1.357 #if EV_USE_IOCP
2453     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2454     #endif
2455 root 1.118 #if EV_USE_PORT
2456 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2457 root 1.118 #endif
2458 root 1.56 #if EV_USE_KQUEUE
2459 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2460 root 1.56 #endif
2461     #if EV_USE_EPOLL
2462 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2463 root 1.56 #endif
2464 root 1.59 #if EV_USE_POLL
2465 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2466 root 1.56 #endif
2467     #if EV_USE_SELECT
2468 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2469 root 1.56 #endif
2470 root 1.1
2471 root 1.65 for (i = NUMPRI; i--; )
2472 root 1.164 {
2473     array_free (pending, [i]);
2474     #if EV_IDLE_ENABLE
2475     array_free (idle, [i]);
2476     #endif
2477     }
2478 root 1.65
2479 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2480 root 1.186
2481 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2482 root 1.284 array_free (rfeed, EMPTY);
2483 root 1.164 array_free (fdchange, EMPTY);
2484     array_free (timer, EMPTY);
2485 root 1.140 #if EV_PERIODIC_ENABLE
2486 root 1.164 array_free (periodic, EMPTY);
2487 root 1.93 #endif
2488 root 1.187 #if EV_FORK_ENABLE
2489     array_free (fork, EMPTY);
2490     #endif
2491 root 1.360 #if EV_CLEANUP_ENABLE
2492     array_free (cleanup, EMPTY);
2493     #endif
2494 root 1.164 array_free (prepare, EMPTY);
2495     array_free (check, EMPTY);
2496 root 1.209 #if EV_ASYNC_ENABLE
2497     array_free (async, EMPTY);
2498     #endif
2499 root 1.65
2500 root 1.130 backend = 0;
2501 root 1.359
2502     #if EV_MULTIPLICITY
2503     if (ev_is_default_loop (EV_A))
2504     #endif
2505     ev_default_loop_ptr = 0;
2506     #if EV_MULTIPLICITY
2507     else
2508     ev_free (EV_A);
2509     #endif
2510 root 1.56 }
2511 root 1.22
2512 root 1.226 #if EV_USE_INOTIFY
2513 root 1.284 inline_size void infy_fork (EV_P);
2514 root 1.226 #endif
2515 root 1.154
2516 root 1.284 inline_size void
2517 root 1.56 loop_fork (EV_P)
2518     {
2519 root 1.118 #if EV_USE_PORT
2520 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2521 root 1.56 #endif
2522     #if EV_USE_KQUEUE
2523 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2524 root 1.45 #endif
2525 root 1.118 #if EV_USE_EPOLL
2526 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2527 root 1.118 #endif
2528 root 1.154 #if EV_USE_INOTIFY
2529     infy_fork (EV_A);
2530     #endif
2531 root 1.70
2532 root 1.288 if (ev_is_active (&pipe_w))
2533 root 1.70 {
2534 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2535 root 1.70
2536     ev_ref (EV_A);
2537 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2538 root 1.220
2539     #if EV_USE_EVENTFD
2540     if (evfd >= 0)
2541     close (evfd);
2542     #endif
2543    
2544     if (evpipe [0] >= 0)
2545     {
2546 root 1.313 EV_WIN32_CLOSE_FD (evpipe [0]);
2547     EV_WIN32_CLOSE_FD (evpipe [1]);
2548 root 1.220 }
2549 root 1.207
2550 root 1.337 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2551 root 1.207 evpipe_init (EV_A);
2552 root 1.208 /* now iterate over everything, in case we missed something */
2553 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
2554 root 1.337 #endif
2555 root 1.70 }
2556    
2557     postfork = 0;
2558 root 1.1 }
2559    
2560 root 1.55 #if EV_MULTIPLICITY
2561 root 1.250
2562 root 1.379 struct ev_loop * ecb_cold
2563 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2564 root 1.54 {
2565 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2566 root 1.69
2567 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2568 root 1.108 loop_init (EV_A_ flags);
2569 root 1.56
2570 root 1.130 if (ev_backend (EV_A))
2571 root 1.306 return EV_A;
2572 root 1.54
2573 root 1.359 ev_free (EV_A);
2574 root 1.55 return 0;
2575 root 1.54 }
2576    
2577 root 1.297 #endif /* multiplicity */
2578 root 1.248
2579     #if EV_VERIFY
2580 root 1.379 static void noinline ecb_cold
2581 root 1.251 verify_watcher (EV_P_ W w)
2582     {
2583 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2584 root 1.251
2585     if (w->pending)
2586 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2587 root 1.251 }
2588    
2589 root 1.379 static void noinline ecb_cold
2590 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2591     {
2592     int i;
2593    
2594     for (i = HEAP0; i < N + HEAP0; ++i)
2595     {
2596 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2597     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2598     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2599 root 1.251
2600     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2601     }
2602     }
2603    
2604 root 1.379 static void noinline ecb_cold
2605 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2606 root 1.248 {
2607     while (cnt--)
2608 root 1.251 {
2609 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2610 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2611     }
2612 root 1.248 }
2613 root 1.250 #endif
2614 root 1.248
2615 root 1.338 #if EV_FEATURE_API
2616 root 1.379 void ecb_cold
2617 root 1.420 ev_verify (EV_P) EV_THROW
2618 root 1.248 {
2619 root 1.250 #if EV_VERIFY
2620 root 1.429 int i;
2621 root 1.426 WL w, w2;
2622 root 1.251
2623     assert (activecnt >= -1);
2624    
2625     assert (fdchangemax >= fdchangecnt);
2626     for (i = 0; i < fdchangecnt; ++i)
2627 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2628 root 1.251
2629     assert (anfdmax >= 0);
2630 root 1.429 for (i = 0; i < anfdmax; ++i)
2631     {
2632     int j = 0;
2633    
2634     for (w = w2 = anfds [i].head; w; w = w->next)
2635     {
2636     verify_watcher (EV_A_ (W)w);
2637 root 1.426
2638 root 1.429 if (j++ & 1)
2639     {
2640     assert (("libev: io watcher list contains a loop", w != w2));
2641     w2 = w2->next;
2642     }
2643 root 1.426
2644 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2645     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2646     }
2647     }
2648 root 1.251
2649     assert (timermax >= timercnt);
2650     verify_heap (EV_A_ timers, timercnt);
2651 root 1.248
2652     #if EV_PERIODIC_ENABLE
2653 root 1.251 assert (periodicmax >= periodiccnt);
2654     verify_heap (EV_A_ periodics, periodiccnt);
2655 root 1.248 #endif
2656    
2657 root 1.251 for (i = NUMPRI; i--; )
2658     {
2659     assert (pendingmax [i] >= pendingcnt [i]);
2660 root 1.248 #if EV_IDLE_ENABLE
2661 root 1.252 assert (idleall >= 0);
2662 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2663     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2664 root 1.248 #endif
2665 root 1.251 }
2666    
2667 root 1.248 #if EV_FORK_ENABLE
2668 root 1.251 assert (forkmax >= forkcnt);
2669     array_verify (EV_A_ (W *)forks, forkcnt);
2670 root 1.248 #endif
2671 root 1.251
2672 root 1.360 #if EV_CLEANUP_ENABLE
2673     assert (cleanupmax >= cleanupcnt);
2674     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2675     #endif
2676    
2677 root 1.250 #if EV_ASYNC_ENABLE
2678 root 1.251 assert (asyncmax >= asynccnt);
2679     array_verify (EV_A_ (W *)asyncs, asynccnt);
2680 root 1.250 #endif
2681 root 1.251
2682 root 1.337 #if EV_PREPARE_ENABLE
2683 root 1.251 assert (preparemax >= preparecnt);
2684     array_verify (EV_A_ (W *)prepares, preparecnt);
2685 root 1.337 #endif
2686 root 1.251
2687 root 1.337 #if EV_CHECK_ENABLE
2688 root 1.251 assert (checkmax >= checkcnt);
2689     array_verify (EV_A_ (W *)checks, checkcnt);
2690 root 1.337 #endif
2691 root 1.251
2692     # if 0
2693 root 1.336 #if EV_CHILD_ENABLE
2694 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2695 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2696 root 1.336 #endif
2697 root 1.251 # endif
2698 root 1.248 #endif
2699     }
2700 root 1.297 #endif
2701 root 1.56
2702     #if EV_MULTIPLICITY
2703 root 1.379 struct ev_loop * ecb_cold
2704 root 1.54 #else
2705     int
2706 root 1.358 #endif
2707 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
2708 root 1.54 {
2709 root 1.116 if (!ev_default_loop_ptr)
2710 root 1.56 {
2711     #if EV_MULTIPLICITY
2712 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2713 root 1.56 #else
2714 ayin 1.117 ev_default_loop_ptr = 1;
2715 root 1.54 #endif
2716    
2717 root 1.110 loop_init (EV_A_ flags);
2718 root 1.56
2719 root 1.130 if (ev_backend (EV_A))
2720 root 1.56 {
2721 root 1.336 #if EV_CHILD_ENABLE
2722 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2723     ev_set_priority (&childev, EV_MAXPRI);
2724     ev_signal_start (EV_A_ &childev);
2725     ev_unref (EV_A); /* child watcher should not keep loop alive */
2726     #endif
2727     }
2728     else
2729 root 1.116 ev_default_loop_ptr = 0;
2730 root 1.56 }
2731 root 1.8
2732 root 1.116 return ev_default_loop_ptr;
2733 root 1.1 }
2734    
2735 root 1.24 void
2736 root 1.420 ev_loop_fork (EV_P) EV_THROW
2737 root 1.1 {
2738 root 1.440 postfork = 1;
2739 root 1.1 }
2740    
2741 root 1.8 /*****************************************************************************/
2742    
2743 root 1.168 void
2744     ev_invoke (EV_P_ void *w, int revents)
2745     {
2746     EV_CB_INVOKE ((W)w, revents);
2747     }
2748    
2749 root 1.300 unsigned int
2750 root 1.420 ev_pending_count (EV_P) EV_THROW
2751 root 1.300 {
2752     int pri;
2753     unsigned int count = 0;
2754    
2755     for (pri = NUMPRI; pri--; )
2756     count += pendingcnt [pri];
2757    
2758     return count;
2759     }
2760    
2761 root 1.297 void noinline
2762 root 1.296 ev_invoke_pending (EV_P)
2763 root 1.1 {
2764 root 1.425 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
2765     while (pendingcnt [pendingpri])
2766 root 1.42 {
2767 root 1.425 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2768 root 1.1
2769 root 1.288 p->w->pending = 0;
2770     EV_CB_INVOKE (p->w, p->events);
2771     EV_FREQUENT_CHECK;
2772 root 1.42 }
2773 root 1.1 }
2774    
2775 root 1.234 #if EV_IDLE_ENABLE
2776 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2777     /* only when higher priorities are idle" logic */
2778 root 1.284 inline_size void
2779 root 1.234 idle_reify (EV_P)
2780     {
2781     if (expect_false (idleall))
2782     {
2783     int pri;
2784    
2785     for (pri = NUMPRI; pri--; )
2786     {
2787     if (pendingcnt [pri])
2788     break;
2789    
2790     if (idlecnt [pri])
2791     {
2792     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2793     break;
2794     }
2795     }
2796     }
2797     }
2798     #endif
2799    
2800 root 1.288 /* make timers pending */
2801 root 1.284 inline_size void
2802 root 1.51 timers_reify (EV_P)
2803 root 1.1 {
2804 root 1.248 EV_FREQUENT_CHECK;
2805    
2806 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2807 root 1.1 {
2808 root 1.284 do
2809     {
2810     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2811 root 1.1
2812 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2813    
2814     /* first reschedule or stop timer */
2815     if (w->repeat)
2816     {
2817     ev_at (w) += w->repeat;
2818     if (ev_at (w) < mn_now)
2819     ev_at (w) = mn_now;
2820 root 1.61
2821 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2822 root 1.90
2823 root 1.284 ANHE_at_cache (timers [HEAP0]);
2824     downheap (timers, timercnt, HEAP0);
2825     }
2826     else
2827     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2828 root 1.243
2829 root 1.284 EV_FREQUENT_CHECK;
2830     feed_reverse (EV_A_ (W)w);
2831 root 1.12 }
2832 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2833 root 1.30
2834 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
2835 root 1.12 }
2836     }
2837 root 1.4
2838 root 1.140 #if EV_PERIODIC_ENABLE
2839 root 1.370
2840 root 1.373 static void noinline
2841 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
2842     {
2843 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2844     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2845    
2846     /* the above almost always errs on the low side */
2847     while (at <= ev_rt_now)
2848     {
2849     ev_tstamp nat = at + w->interval;
2850    
2851     /* when resolution fails us, we use ev_rt_now */
2852     if (expect_false (nat == at))
2853     {
2854     at = ev_rt_now;
2855     break;
2856     }
2857    
2858     at = nat;
2859     }
2860    
2861     ev_at (w) = at;
2862 root 1.370 }
2863    
2864 root 1.288 /* make periodics pending */
2865 root 1.284 inline_size void
2866 root 1.51 periodics_reify (EV_P)
2867 root 1.12 {
2868 root 1.248 EV_FREQUENT_CHECK;
2869 root 1.250
2870 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2871 root 1.12 {
2872 root 1.284 do
2873     {
2874     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2875 root 1.1
2876 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2877 root 1.61
2878 root 1.284 /* first reschedule or stop timer */
2879     if (w->reschedule_cb)
2880     {
2881     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2882 root 1.243
2883 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2884 root 1.243
2885 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2886     downheap (periodics, periodiccnt, HEAP0);
2887     }
2888     else if (w->interval)
2889 root 1.246 {
2890 root 1.370 periodic_recalc (EV_A_ w);
2891 root 1.284 ANHE_at_cache (periodics [HEAP0]);
2892     downheap (periodics, periodiccnt, HEAP0);
2893 root 1.246 }
2894 root 1.284 else
2895     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2896 root 1.243
2897 root 1.284 EV_FREQUENT_CHECK;
2898     feed_reverse (EV_A_ (W)w);
2899 root 1.1 }
2900 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2901 root 1.12
2902 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
2903 root 1.12 }
2904     }
2905    
2906 root 1.288 /* simply recalculate all periodics */
2907 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2908 root 1.379 static void noinline ecb_cold
2909 root 1.54 periodics_reschedule (EV_P)
2910 root 1.12 {
2911     int i;
2912    
2913 root 1.13 /* adjust periodics after time jump */
2914 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2915 root 1.12 {
2916 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2917 root 1.12
2918 root 1.77 if (w->reschedule_cb)
2919 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2920 root 1.77 else if (w->interval)
2921 root 1.370 periodic_recalc (EV_A_ w);
2922 root 1.242
2923 root 1.248 ANHE_at_cache (periodics [i]);
2924 root 1.77 }
2925 root 1.12
2926 root 1.248 reheap (periodics, periodiccnt);
2927 root 1.1 }
2928 root 1.93 #endif
2929 root 1.1
2930 root 1.288 /* adjust all timers by a given offset */
2931 root 1.379 static void noinline ecb_cold
2932 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
2933     {
2934     int i;
2935    
2936     for (i = 0; i < timercnt; ++i)
2937     {
2938     ANHE *he = timers + i + HEAP0;
2939     ANHE_w (*he)->at += adjust;
2940     ANHE_at_cache (*he);
2941     }
2942     }
2943    
2944 root 1.288 /* fetch new monotonic and realtime times from the kernel */
2945 root 1.324 /* also detect if there was a timejump, and act accordingly */
2946 root 1.284 inline_speed void
2947 root 1.178 time_update (EV_P_ ev_tstamp max_block)
2948 root 1.4 {
2949 root 1.40 #if EV_USE_MONOTONIC
2950     if (expect_true (have_monotonic))
2951     {
2952 root 1.289 int i;
2953 root 1.178 ev_tstamp odiff = rtmn_diff;
2954    
2955     mn_now = get_clock ();
2956    
2957     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2958     /* interpolate in the meantime */
2959     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2960 root 1.40 {
2961 root 1.178 ev_rt_now = rtmn_diff + mn_now;
2962     return;
2963     }
2964    
2965     now_floor = mn_now;
2966     ev_rt_now = ev_time ();
2967 root 1.4
2968 root 1.178 /* loop a few times, before making important decisions.
2969     * on the choice of "4": one iteration isn't enough,
2970     * in case we get preempted during the calls to
2971     * ev_time and get_clock. a second call is almost guaranteed
2972     * to succeed in that case, though. and looping a few more times
2973     * doesn't hurt either as we only do this on time-jumps or
2974     * in the unlikely event of having been preempted here.
2975     */
2976     for (i = 4; --i; )
2977     {
2978 root 1.373 ev_tstamp diff;
2979 root 1.178 rtmn_diff = ev_rt_now - mn_now;
2980 root 1.4
2981 root 1.373 diff = odiff - rtmn_diff;
2982    
2983     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2984 root 1.178 return; /* all is well */
2985 root 1.4
2986 root 1.178 ev_rt_now = ev_time ();
2987     mn_now = get_clock ();
2988     now_floor = mn_now;
2989     }
2990 root 1.4
2991 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
2992     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2993 root 1.140 # if EV_PERIODIC_ENABLE
2994 root 1.178 periodics_reschedule (EV_A);
2995 root 1.93 # endif
2996 root 1.4 }
2997     else
2998 root 1.40 #endif
2999 root 1.4 {
3000 root 1.85 ev_rt_now = ev_time ();
3001 root 1.40
3002 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3003 root 1.13 {
3004 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3005     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3006 root 1.140 #if EV_PERIODIC_ENABLE
3007 root 1.54 periodics_reschedule (EV_A);
3008 root 1.93 #endif
3009 root 1.13 }
3010 root 1.4
3011 root 1.85 mn_now = ev_rt_now;
3012 root 1.4 }
3013     }
3014    
3015 root 1.418 int
3016 root 1.353 ev_run (EV_P_ int flags)
3017 root 1.1 {
3018 root 1.338 #if EV_FEATURE_API
3019 root 1.294 ++loop_depth;
3020 root 1.297 #endif
3021 root 1.294
3022 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3023 root 1.298
3024 root 1.353 loop_done = EVBREAK_CANCEL;
3025 root 1.1
3026 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3027 root 1.158
3028 root 1.161 do
3029 root 1.9 {
3030 root 1.250 #if EV_VERIFY >= 2
3031 root 1.340 ev_verify (EV_A);
3032 root 1.250 #endif
3033    
3034 root 1.158 #ifndef _WIN32
3035     if (expect_false (curpid)) /* penalise the forking check even more */
3036     if (expect_false (getpid () != curpid))
3037     {
3038     curpid = getpid ();
3039     postfork = 1;
3040     }
3041     #endif
3042    
3043 root 1.157 #if EV_FORK_ENABLE
3044     /* we might have forked, so queue fork handlers */
3045     if (expect_false (postfork))
3046     if (forkcnt)
3047     {
3048     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3049 root 1.297 EV_INVOKE_PENDING;
3050 root 1.157 }
3051     #endif
3052 root 1.147
3053 root 1.337 #if EV_PREPARE_ENABLE
3054 root 1.170 /* queue prepare watchers (and execute them) */
3055 root 1.40 if (expect_false (preparecnt))
3056 root 1.20 {
3057 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3058 root 1.297 EV_INVOKE_PENDING;
3059 root 1.20 }
3060 root 1.337 #endif
3061 root 1.9
3062 root 1.298 if (expect_false (loop_done))
3063     break;
3064    
3065 root 1.70 /* we might have forked, so reify kernel state if necessary */
3066     if (expect_false (postfork))
3067     loop_fork (EV_A);
3068    
3069 root 1.1 /* update fd-related kernel structures */
3070 root 1.51 fd_reify (EV_A);
3071 root 1.1
3072     /* calculate blocking time */
3073 root 1.135 {
3074 root 1.193 ev_tstamp waittime = 0.;
3075     ev_tstamp sleeptime = 0.;
3076 root 1.12
3077 root 1.353 /* remember old timestamp for io_blocktime calculation */
3078     ev_tstamp prev_mn_now = mn_now;
3079 root 1.293
3080 root 1.353 /* update time to cancel out callback processing overhead */
3081     time_update (EV_A_ 1e100);
3082 root 1.135
3083 root 1.378 /* from now on, we want a pipe-wake-up */
3084     pipe_write_wanted = 1;
3085    
3086 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3087 root 1.383
3088 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3089 root 1.353 {
3090 root 1.287 waittime = MAX_BLOCKTIME;
3091    
3092 root 1.135 if (timercnt)
3093     {
3094 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3095 root 1.193 if (waittime > to) waittime = to;
3096 root 1.135 }
3097 root 1.4
3098 root 1.140 #if EV_PERIODIC_ENABLE
3099 root 1.135 if (periodiccnt)
3100     {
3101 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3102 root 1.193 if (waittime > to) waittime = to;
3103 root 1.135 }
3104 root 1.93 #endif
3105 root 1.4
3106 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3107 root 1.193 if (expect_false (waittime < timeout_blocktime))
3108     waittime = timeout_blocktime;
3109    
3110 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3111     /* to pass a minimum nonzero value to the backend */
3112     if (expect_false (waittime < backend_mintime))
3113     waittime = backend_mintime;
3114    
3115 root 1.293 /* extra check because io_blocktime is commonly 0 */
3116     if (expect_false (io_blocktime))
3117     {
3118     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3119 root 1.193
3120 root 1.376 if (sleeptime > waittime - backend_mintime)
3121     sleeptime = waittime - backend_mintime;
3122 root 1.193
3123 root 1.293 if (expect_true (sleeptime > 0.))
3124     {
3125     ev_sleep (sleeptime);
3126     waittime -= sleeptime;
3127     }
3128 root 1.193 }
3129 root 1.135 }
3130 root 1.1
3131 root 1.338 #if EV_FEATURE_API
3132 root 1.162 ++loop_count;
3133 root 1.297 #endif
3134 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3135 root 1.193 backend_poll (EV_A_ waittime);
3136 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3137 root 1.178
3138 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3139 root 1.378
3140     if (pipe_write_skipped)
3141     {
3142     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3143     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3144     }
3145    
3146    
3147 root 1.178 /* update ev_rt_now, do magic */
3148 root 1.193 time_update (EV_A_ waittime + sleeptime);
3149 root 1.135 }
3150 root 1.1
3151 root 1.9 /* queue pending timers and reschedule them */
3152 root 1.51 timers_reify (EV_A); /* relative timers called last */
3153 root 1.140 #if EV_PERIODIC_ENABLE
3154 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3155 root 1.93 #endif
3156 root 1.1
3157 root 1.164 #if EV_IDLE_ENABLE
3158 root 1.137 /* queue idle watchers unless other events are pending */
3159 root 1.164 idle_reify (EV_A);
3160     #endif
3161 root 1.9
3162 root 1.337 #if EV_CHECK_ENABLE
3163 root 1.20 /* queue check watchers, to be executed first */
3164 root 1.123 if (expect_false (checkcnt))
3165 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3166 root 1.337 #endif
3167 root 1.9
3168 root 1.297 EV_INVOKE_PENDING;
3169 root 1.1 }
3170 root 1.219 while (expect_true (
3171     activecnt
3172     && !loop_done
3173 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3174 root 1.219 ));
3175 root 1.13
3176 root 1.353 if (loop_done == EVBREAK_ONE)
3177     loop_done = EVBREAK_CANCEL;
3178 root 1.294
3179 root 1.338 #if EV_FEATURE_API
3180 root 1.294 --loop_depth;
3181 root 1.297 #endif
3182 root 1.418
3183     return activecnt;
3184 root 1.51 }
3185    
3186     void
3187 root 1.420 ev_break (EV_P_ int how) EV_THROW
3188 root 1.51 {
3189     loop_done = how;
3190 root 1.1 }
3191    
3192 root 1.285 void
3193 root 1.420 ev_ref (EV_P) EV_THROW
3194 root 1.285 {
3195     ++activecnt;
3196     }
3197    
3198     void
3199 root 1.420 ev_unref (EV_P) EV_THROW
3200 root 1.285 {
3201     --activecnt;
3202     }
3203    
3204     void
3205 root 1.420 ev_now_update (EV_P) EV_THROW
3206 root 1.285 {
3207     time_update (EV_A_ 1e100);
3208     }
3209    
3210     void
3211 root 1.420 ev_suspend (EV_P) EV_THROW
3212 root 1.285 {
3213     ev_now_update (EV_A);
3214     }
3215    
3216     void
3217 root 1.420 ev_resume (EV_P) EV_THROW
3218 root 1.285 {
3219     ev_tstamp mn_prev = mn_now;
3220    
3221     ev_now_update (EV_A);
3222     timers_reschedule (EV_A_ mn_now - mn_prev);
3223 root 1.286 #if EV_PERIODIC_ENABLE
3224 root 1.288 /* TODO: really do this? */
3225 root 1.285 periodics_reschedule (EV_A);
3226 root 1.286 #endif
3227 root 1.285 }
3228    
3229 root 1.8 /*****************************************************************************/
3230 root 1.288 /* singly-linked list management, used when the expected list length is short */
3231 root 1.8
3232 root 1.284 inline_size void
3233 root 1.10 wlist_add (WL *head, WL elem)
3234 root 1.1 {
3235     elem->next = *head;
3236     *head = elem;
3237     }
3238    
3239 root 1.284 inline_size void
3240 root 1.10 wlist_del (WL *head, WL elem)
3241 root 1.1 {
3242     while (*head)
3243     {
3244 root 1.307 if (expect_true (*head == elem))
3245 root 1.1 {
3246     *head = elem->next;
3247 root 1.307 break;
3248 root 1.1 }
3249    
3250     head = &(*head)->next;
3251     }
3252     }
3253    
3254 root 1.288 /* internal, faster, version of ev_clear_pending */
3255 root 1.284 inline_speed void
3256 root 1.166 clear_pending (EV_P_ W w)
3257 root 1.16 {
3258     if (w->pending)
3259     {
3260 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3261 root 1.16 w->pending = 0;
3262     }
3263     }
3264    
3265 root 1.167 int
3266 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3267 root 1.166 {
3268     W w_ = (W)w;
3269     int pending = w_->pending;
3270    
3271 root 1.172 if (expect_true (pending))
3272     {
3273     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3274 root 1.288 p->w = (W)&pending_w;
3275 root 1.172 w_->pending = 0;
3276     return p->events;
3277     }
3278     else
3279 root 1.167 return 0;
3280 root 1.166 }
3281    
3282 root 1.284 inline_size void
3283 root 1.164 pri_adjust (EV_P_ W w)
3284     {
3285 root 1.295 int pri = ev_priority (w);
3286 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3287     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3288 root 1.295 ev_set_priority (w, pri);
3289 root 1.164 }
3290    
3291 root 1.284 inline_speed void
3292 root 1.51 ev_start (EV_P_ W w, int active)
3293 root 1.1 {
3294 root 1.164 pri_adjust (EV_A_ w);
3295 root 1.1 w->active = active;
3296 root 1.51 ev_ref (EV_A);
3297 root 1.1 }
3298    
3299 root 1.284 inline_size void
3300 root 1.51 ev_stop (EV_P_ W w)
3301 root 1.1 {
3302 root 1.51 ev_unref (EV_A);
3303 root 1.1 w->active = 0;
3304     }
3305    
3306 root 1.8 /*****************************************************************************/
3307    
3308 root 1.171 void noinline
3309 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3310 root 1.1 {
3311 root 1.37 int fd = w->fd;
3312    
3313 root 1.123 if (expect_false (ev_is_active (w)))
3314 root 1.1 return;
3315    
3316 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3317 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3318 root 1.33
3319 root 1.248 EV_FREQUENT_CHECK;
3320    
3321 root 1.51 ev_start (EV_A_ (W)w, 1);
3322 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3323 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3324 root 1.1
3325 root 1.426 /* common bug, apparently */
3326     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3327    
3328 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3329 root 1.281 w->events &= ~EV__IOFDSET;
3330 root 1.248
3331     EV_FREQUENT_CHECK;
3332 root 1.1 }
3333    
3334 root 1.171 void noinline
3335 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3336 root 1.1 {
3337 root 1.166 clear_pending (EV_A_ (W)w);
3338 root 1.123 if (expect_false (!ev_is_active (w)))
3339 root 1.1 return;
3340    
3341 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3342 root 1.89
3343 root 1.248 EV_FREQUENT_CHECK;
3344    
3345 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3346 root 1.51 ev_stop (EV_A_ (W)w);
3347 root 1.1
3348 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3349 root 1.248
3350     EV_FREQUENT_CHECK;
3351 root 1.1 }
3352    
3353 root 1.171 void noinline
3354 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3355 root 1.1 {
3356 root 1.123 if (expect_false (ev_is_active (w)))
3357 root 1.1 return;
3358    
3359 root 1.228 ev_at (w) += mn_now;
3360 root 1.12
3361 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3362 root 1.13
3363 root 1.248 EV_FREQUENT_CHECK;
3364    
3365     ++timercnt;
3366     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3367 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3368     ANHE_w (timers [ev_active (w)]) = (WT)w;
3369 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3370 root 1.235 upheap (timers, ev_active (w));
3371 root 1.62
3372 root 1.248 EV_FREQUENT_CHECK;
3373    
3374 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3375 root 1.12 }
3376    
3377 root 1.171 void noinline
3378 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3379 root 1.12 {
3380 root 1.166 clear_pending (EV_A_ (W)w);
3381 root 1.123 if (expect_false (!ev_is_active (w)))
3382 root 1.12 return;
3383    
3384 root 1.248 EV_FREQUENT_CHECK;
3385    
3386 root 1.230 {
3387     int active = ev_active (w);
3388 root 1.62
3389 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3390 root 1.151
3391 root 1.248 --timercnt;
3392    
3393     if (expect_true (active < timercnt + HEAP0))
3394 root 1.151 {
3395 root 1.248 timers [active] = timers [timercnt + HEAP0];
3396 root 1.181 adjustheap (timers, timercnt, active);
3397 root 1.151 }
3398 root 1.248 }
3399 root 1.228
3400     ev_at (w) -= mn_now;
3401 root 1.14
3402 root 1.51 ev_stop (EV_A_ (W)w);
3403 root 1.328
3404     EV_FREQUENT_CHECK;
3405 root 1.12 }
3406 root 1.4
3407 root 1.171 void noinline
3408 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3409 root 1.14 {
3410 root 1.248 EV_FREQUENT_CHECK;
3411    
3412 root 1.407 clear_pending (EV_A_ (W)w);
3413 root 1.406
3414 root 1.14 if (ev_is_active (w))
3415     {
3416     if (w->repeat)
3417 root 1.99 {
3418 root 1.228 ev_at (w) = mn_now + w->repeat;
3419 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3420 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3421 root 1.99 }
3422 root 1.14 else
3423 root 1.51 ev_timer_stop (EV_A_ w);
3424 root 1.14 }
3425     else if (w->repeat)
3426 root 1.112 {
3427 root 1.229 ev_at (w) = w->repeat;
3428 root 1.112 ev_timer_start (EV_A_ w);
3429     }
3430 root 1.248
3431     EV_FREQUENT_CHECK;
3432 root 1.14 }
3433    
3434 root 1.301 ev_tstamp
3435 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3436 root 1.301 {
3437     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3438     }
3439    
3440 root 1.140 #if EV_PERIODIC_ENABLE
3441 root 1.171 void noinline
3442 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3443 root 1.12 {
3444 root 1.123 if (expect_false (ev_is_active (w)))
3445 root 1.12 return;
3446 root 1.1
3447 root 1.77 if (w->reschedule_cb)
3448 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3449 root 1.77 else if (w->interval)
3450     {
3451 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3452 root 1.370 periodic_recalc (EV_A_ w);
3453 root 1.77 }
3454 root 1.173 else
3455 root 1.228 ev_at (w) = w->offset;
3456 root 1.12
3457 root 1.248 EV_FREQUENT_CHECK;
3458    
3459     ++periodiccnt;
3460     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3461 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3462     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3463 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3464 root 1.235 upheap (periodics, ev_active (w));
3465 root 1.62
3466 root 1.248 EV_FREQUENT_CHECK;
3467    
3468 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3469 root 1.1 }
3470    
3471 root 1.171 void noinline
3472 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3473 root 1.1 {
3474 root 1.166 clear_pending (EV_A_ (W)w);
3475 root 1.123 if (expect_false (!ev_is_active (w)))
3476 root 1.1 return;
3477    
3478 root 1.248 EV_FREQUENT_CHECK;
3479    
3480 root 1.230 {
3481     int active = ev_active (w);
3482 root 1.62
3483 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3484 root 1.151
3485 root 1.248 --periodiccnt;
3486    
3487     if (expect_true (active < periodiccnt + HEAP0))
3488 root 1.151 {
3489 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3490 root 1.181 adjustheap (periodics, periodiccnt, active);
3491 root 1.151 }
3492 root 1.248 }
3493 root 1.228
3494 root 1.328 ev_stop (EV_A_ (W)w);
3495    
3496 root 1.248 EV_FREQUENT_CHECK;
3497 root 1.1 }
3498    
3499 root 1.171 void noinline
3500 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3501 root 1.77 {
3502 root 1.84 /* TODO: use adjustheap and recalculation */
3503 root 1.77 ev_periodic_stop (EV_A_ w);
3504     ev_periodic_start (EV_A_ w);
3505     }
3506 root 1.93 #endif
3507 root 1.77
3508 root 1.56 #ifndef SA_RESTART
3509     # define SA_RESTART 0
3510     #endif
3511    
3512 root 1.336 #if EV_SIGNAL_ENABLE
3513    
3514 root 1.171 void noinline
3515 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3516 root 1.56 {
3517 root 1.123 if (expect_false (ev_is_active (w)))
3518 root 1.56 return;
3519    
3520 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3521    
3522     #if EV_MULTIPLICITY
3523 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3524 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3525    
3526     signals [w->signum - 1].loop = EV_A;
3527     #endif
3528 root 1.56
3529 root 1.303 EV_FREQUENT_CHECK;
3530    
3531     #if EV_USE_SIGNALFD
3532     if (sigfd == -2)
3533     {
3534     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3535     if (sigfd < 0 && errno == EINVAL)
3536     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3537    
3538     if (sigfd >= 0)
3539     {
3540     fd_intern (sigfd); /* doing it twice will not hurt */
3541    
3542     sigemptyset (&sigfd_set);
3543    
3544     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3545     ev_set_priority (&sigfd_w, EV_MAXPRI);
3546     ev_io_start (EV_A_ &sigfd_w);
3547     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3548     }
3549     }
3550    
3551     if (sigfd >= 0)
3552     {
3553     /* TODO: check .head */
3554     sigaddset (&sigfd_set, w->signum);
3555     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3556 root 1.207
3557 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3558     }
3559 root 1.180 #endif
3560    
3561 root 1.56 ev_start (EV_A_ (W)w, 1);
3562 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3563 root 1.56
3564 root 1.63 if (!((WL)w)->next)
3565 root 1.304 # if EV_USE_SIGNALFD
3566 root 1.306 if (sigfd < 0) /*TODO*/
3567 root 1.304 # endif
3568 root 1.306 {
3569 root 1.322 # ifdef _WIN32
3570 root 1.317 evpipe_init (EV_A);
3571    
3572 root 1.306 signal (w->signum, ev_sighandler);
3573     # else
3574     struct sigaction sa;
3575    
3576     evpipe_init (EV_A);
3577    
3578     sa.sa_handler = ev_sighandler;
3579     sigfillset (&sa.sa_mask);
3580     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3581     sigaction (w->signum, &sa, 0);
3582    
3583 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3584     {
3585     sigemptyset (&sa.sa_mask);
3586     sigaddset (&sa.sa_mask, w->signum);
3587     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3588     }
3589 root 1.67 #endif
3590 root 1.306 }
3591 root 1.248
3592     EV_FREQUENT_CHECK;
3593 root 1.56 }
3594    
3595 root 1.171 void noinline
3596 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3597 root 1.56 {
3598 root 1.166 clear_pending (EV_A_ (W)w);
3599 root 1.123 if (expect_false (!ev_is_active (w)))
3600 root 1.56 return;
3601    
3602 root 1.248 EV_FREQUENT_CHECK;
3603    
3604 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3605 root 1.56 ev_stop (EV_A_ (W)w);
3606    
3607     if (!signals [w->signum - 1].head)
3608 root 1.306 {
3609 root 1.307 #if EV_MULTIPLICITY
3610 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3611 root 1.307 #endif
3612     #if EV_USE_SIGNALFD
3613 root 1.306 if (sigfd >= 0)
3614     {
3615 root 1.321 sigset_t ss;
3616    
3617     sigemptyset (&ss);
3618     sigaddset (&ss, w->signum);
3619 root 1.306 sigdelset (&sigfd_set, w->signum);
3620 root 1.321
3621 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3622 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3623 root 1.306 }
3624     else
3625 root 1.307 #endif
3626 root 1.306 signal (w->signum, SIG_DFL);
3627     }
3628 root 1.248
3629     EV_FREQUENT_CHECK;
3630 root 1.56 }
3631    
3632 root 1.336 #endif
3633    
3634     #if EV_CHILD_ENABLE
3635    
3636 root 1.28 void
3637 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3638 root 1.22 {
3639 root 1.56 #if EV_MULTIPLICITY
3640 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3641 root 1.56 #endif
3642 root 1.123 if (expect_false (ev_is_active (w)))
3643 root 1.22 return;
3644    
3645 root 1.248 EV_FREQUENT_CHECK;
3646    
3647 root 1.51 ev_start (EV_A_ (W)w, 1);
3648 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3649 root 1.248
3650     EV_FREQUENT_CHECK;
3651 root 1.22 }
3652    
3653 root 1.28 void
3654 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3655 root 1.22 {
3656 root 1.166 clear_pending (EV_A_ (W)w);
3657 root 1.123 if (expect_false (!ev_is_active (w)))
3658 root 1.22 return;
3659    
3660 root 1.248 EV_FREQUENT_CHECK;
3661    
3662 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3663 root 1.51 ev_stop (EV_A_ (W)w);
3664 root 1.248
3665     EV_FREQUENT_CHECK;
3666 root 1.22 }
3667    
3668 root 1.336 #endif
3669    
3670 root 1.140 #if EV_STAT_ENABLE
3671    
3672     # ifdef _WIN32
3673 root 1.146 # undef lstat
3674     # define lstat(a,b) _stati64 (a,b)
3675 root 1.140 # endif
3676    
3677 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3678     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3679     #define MIN_STAT_INTERVAL 0.1074891
3680 root 1.143
3681 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3682 root 1.152
3683     #if EV_USE_INOTIFY
3684 root 1.326
3685     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3686     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3687 root 1.152
3688     static void noinline
3689     infy_add (EV_P_ ev_stat *w)
3690     {
3691     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3692    
3693 root 1.318 if (w->wd >= 0)
3694 root 1.152 {
3695 root 1.318 struct statfs sfs;
3696    
3697     /* now local changes will be tracked by inotify, but remote changes won't */
3698     /* unless the filesystem is known to be local, we therefore still poll */
3699     /* also do poll on <2.6.25, but with normal frequency */
3700    
3701     if (!fs_2625)
3702     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3703     else if (!statfs (w->path, &sfs)
3704     && (sfs.f_type == 0x1373 /* devfs */
3705     || sfs.f_type == 0xEF53 /* ext2/3 */
3706     || sfs.f_type == 0x3153464a /* jfs */
3707     || sfs.f_type == 0x52654973 /* reiser3 */
3708     || sfs.f_type == 0x01021994 /* tempfs */
3709     || sfs.f_type == 0x58465342 /* xfs */))
3710     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3711     else
3712     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3713     }
3714     else
3715     {
3716     /* can't use inotify, continue to stat */
3717 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3718 root 1.152
3719 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3720 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3721 root 1.233 /* but an efficiency issue only */
3722 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3723 root 1.152 {
3724 root 1.153 char path [4096];
3725 root 1.152 strcpy (path, w->path);
3726    
3727     do
3728     {
3729     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3730     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3731    
3732     char *pend = strrchr (path, '/');
3733    
3734 root 1.275 if (!pend || pend == path)
3735     break;
3736 root 1.152
3737     *pend = 0;
3738 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3739 root 1.372 }
3740 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3741     }
3742     }
3743 root 1.275
3744     if (w->wd >= 0)
3745 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3746 root 1.152
3747 root 1.318 /* now re-arm timer, if required */
3748     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3749     ev_timer_again (EV_A_ &w->timer);
3750     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3751 root 1.152 }
3752    
3753     static void noinline
3754     infy_del (EV_P_ ev_stat *w)
3755     {
3756     int slot;
3757     int wd = w->wd;
3758    
3759     if (wd < 0)
3760     return;
3761    
3762     w->wd = -2;
3763 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3764 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3765    
3766     /* remove this watcher, if others are watching it, they will rearm */
3767     inotify_rm_watch (fs_fd, wd);
3768     }
3769    
3770     static void noinline
3771     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3772     {
3773     if (slot < 0)
3774 root 1.264 /* overflow, need to check for all hash slots */
3775 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3776 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3777     else
3778     {
3779     WL w_;
3780    
3781 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3782 root 1.152 {
3783     ev_stat *w = (ev_stat *)w_;
3784     w_ = w_->next; /* lets us remove this watcher and all before it */
3785    
3786     if (w->wd == wd || wd == -1)
3787     {
3788     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3789     {
3790 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3791 root 1.152 w->wd = -1;
3792     infy_add (EV_A_ w); /* re-add, no matter what */
3793     }
3794    
3795 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
3796 root 1.152 }
3797     }
3798     }
3799     }
3800    
3801     static void
3802     infy_cb (EV_P_ ev_io *w, int revents)
3803     {
3804     char buf [EV_INOTIFY_BUFSIZE];
3805     int ofs;
3806     int len = read (fs_fd, buf, sizeof (buf));
3807    
3808 root 1.326 for (ofs = 0; ofs < len; )
3809     {
3810     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3811     infy_wd (EV_A_ ev->wd, ev->wd, ev);
3812     ofs += sizeof (struct inotify_event) + ev->len;
3813     }
3814 root 1.152 }
3815    
3816 root 1.379 inline_size void ecb_cold
3817 root 1.330 ev_check_2625 (EV_P)
3818     {
3819     /* kernels < 2.6.25 are borked
3820     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3821     */
3822     if (ev_linux_version () < 0x020619)
3823 root 1.273 return;
3824 root 1.264
3825 root 1.273 fs_2625 = 1;
3826     }
3827 root 1.264
3828 root 1.315 inline_size int
3829     infy_newfd (void)
3830     {
3831 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
3832 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3833     if (fd >= 0)
3834     return fd;
3835     #endif
3836     return inotify_init ();
3837     }
3838    
3839 root 1.284 inline_size void
3840 root 1.273 infy_init (EV_P)
3841     {
3842     if (fs_fd != -2)
3843     return;
3844 root 1.264
3845 root 1.273 fs_fd = -1;
3846 root 1.264
3847 root 1.330 ev_check_2625 (EV_A);
3848 root 1.264
3849 root 1.315 fs_fd = infy_newfd ();
3850 root 1.152
3851     if (fs_fd >= 0)
3852     {
3853 root 1.315 fd_intern (fs_fd);
3854 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3855     ev_set_priority (&fs_w, EV_MAXPRI);
3856     ev_io_start (EV_A_ &fs_w);
3857 root 1.317 ev_unref (EV_A);
3858 root 1.152 }
3859     }
3860    
3861 root 1.284 inline_size void
3862 root 1.154 infy_fork (EV_P)
3863     {
3864     int slot;
3865    
3866     if (fs_fd < 0)
3867     return;
3868    
3869 root 1.317 ev_ref (EV_A);
3870 root 1.315 ev_io_stop (EV_A_ &fs_w);
3871 root 1.154 close (fs_fd);
3872 root 1.315 fs_fd = infy_newfd ();
3873    
3874     if (fs_fd >= 0)
3875     {
3876     fd_intern (fs_fd);
3877     ev_io_set (&fs_w, fs_fd, EV_READ);
3878     ev_io_start (EV_A_ &fs_w);
3879 root 1.317 ev_unref (EV_A);
3880 root 1.315 }
3881 root 1.154
3882 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3883 root 1.154 {
3884     WL w_ = fs_hash [slot].head;
3885     fs_hash [slot].head = 0;
3886    
3887     while (w_)
3888     {
3889     ev_stat *w = (ev_stat *)w_;
3890     w_ = w_->next; /* lets us add this watcher */
3891    
3892     w->wd = -1;
3893    
3894     if (fs_fd >= 0)
3895     infy_add (EV_A_ w); /* re-add, no matter what */
3896     else
3897 root 1.318 {
3898     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3899     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3900     ev_timer_again (EV_A_ &w->timer);
3901     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3902     }
3903 root 1.154 }
3904     }
3905     }
3906    
3907 root 1.152 #endif
3908    
3909 root 1.255 #ifdef _WIN32
3910     # define EV_LSTAT(p,b) _stati64 (p, b)
3911     #else
3912     # define EV_LSTAT(p,b) lstat (p, b)
3913     #endif
3914    
3915 root 1.140 void
3916 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3917 root 1.140 {
3918     if (lstat (w->path, &w->attr) < 0)
3919     w->attr.st_nlink = 0;
3920     else if (!w->attr.st_nlink)
3921     w->attr.st_nlink = 1;
3922     }
3923    
3924 root 1.157 static void noinline
3925 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3926     {
3927     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3928    
3929 root 1.320 ev_statdata prev = w->attr;
3930 root 1.140 ev_stat_stat (EV_A_ w);
3931    
3932 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3933     if (
3934 root 1.320 prev.st_dev != w->attr.st_dev
3935     || prev.st_ino != w->attr.st_ino
3936     || prev.st_mode != w->attr.st_mode
3937     || prev.st_nlink != w->attr.st_nlink
3938     || prev.st_uid != w->attr.st_uid
3939     || prev.st_gid != w->attr.st_gid
3940     || prev.st_rdev != w->attr.st_rdev
3941     || prev.st_size != w->attr.st_size
3942     || prev.st_atime != w->attr.st_atime
3943     || prev.st_mtime != w->attr.st_mtime
3944     || prev.st_ctime != w->attr.st_ctime
3945 root 1.156 ) {
3946 root 1.320 /* we only update w->prev on actual differences */
3947     /* in case we test more often than invoke the callback, */
3948     /* to ensure that prev is always different to attr */
3949     w->prev = prev;
3950    
3951 root 1.152 #if EV_USE_INOTIFY
3952 root 1.264 if (fs_fd >= 0)
3953     {
3954     infy_del (EV_A_ w);
3955     infy_add (EV_A_ w);
3956     ev_stat_stat (EV_A_ w); /* avoid race... */
3957     }
3958 root 1.152 #endif
3959    
3960     ev_feed_event (EV_A_ w, EV_STAT);
3961     }
3962 root 1.140 }
3963    
3964     void
3965 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3966 root 1.140 {
3967     if (expect_false (ev_is_active (w)))
3968     return;
3969    
3970     ev_stat_stat (EV_A_ w);
3971    
3972 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3973     w->interval = MIN_STAT_INTERVAL;
3974 root 1.143
3975 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3976 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
3977 root 1.152
3978     #if EV_USE_INOTIFY
3979     infy_init (EV_A);
3980    
3981     if (fs_fd >= 0)
3982     infy_add (EV_A_ w);
3983     else
3984     #endif
3985 root 1.318 {
3986     ev_timer_again (EV_A_ &w->timer);
3987     ev_unref (EV_A);
3988     }
3989 root 1.140
3990     ev_start (EV_A_ (W)w, 1);
3991 root 1.248
3992     EV_FREQUENT_CHECK;
3993 root 1.140 }
3994    
3995     void
3996 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3997 root 1.140 {
3998 root 1.166 clear_pending (EV_A_ (W)w);
3999 root 1.140 if (expect_false (!ev_is_active (w)))
4000     return;
4001    
4002 root 1.248 EV_FREQUENT_CHECK;
4003    
4004 root 1.152 #if EV_USE_INOTIFY
4005     infy_del (EV_A_ w);
4006     #endif
4007 root 1.318
4008     if (ev_is_active (&w->timer))
4009     {
4010     ev_ref (EV_A);
4011     ev_timer_stop (EV_A_ &w->timer);
4012     }
4013 root 1.140
4014 root 1.134 ev_stop (EV_A_ (W)w);
4015 root 1.248
4016     EV_FREQUENT_CHECK;
4017 root 1.134 }
4018     #endif
4019    
4020 root 1.164 #if EV_IDLE_ENABLE
4021 root 1.144 void
4022 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4023 root 1.144 {
4024     if (expect_false (ev_is_active (w)))
4025     return;
4026    
4027 root 1.164 pri_adjust (EV_A_ (W)w);
4028    
4029 root 1.248 EV_FREQUENT_CHECK;
4030    
4031 root 1.164 {
4032     int active = ++idlecnt [ABSPRI (w)];
4033    
4034     ++idleall;
4035     ev_start (EV_A_ (W)w, active);
4036    
4037     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4038     idles [ABSPRI (w)][active - 1] = w;
4039     }
4040 root 1.248
4041     EV_FREQUENT_CHECK;
4042 root 1.144 }
4043    
4044     void
4045 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4046 root 1.144 {
4047 root 1.166 clear_pending (EV_A_ (W)w);
4048 root 1.144 if (expect_false (!ev_is_active (w)))
4049     return;
4050    
4051 root 1.248 EV_FREQUENT_CHECK;
4052    
4053 root 1.144 {
4054 root 1.230 int active = ev_active (w);
4055 root 1.164
4056     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4057 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4058 root 1.164
4059     ev_stop (EV_A_ (W)w);
4060     --idleall;
4061 root 1.144 }
4062 root 1.248
4063     EV_FREQUENT_CHECK;
4064 root 1.144 }
4065 root 1.164 #endif
4066 root 1.144
4067 root 1.337 #if EV_PREPARE_ENABLE
4068 root 1.144 void
4069 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4070 root 1.144 {
4071     if (expect_false (ev_is_active (w)))
4072     return;
4073    
4074 root 1.248 EV_FREQUENT_CHECK;
4075    
4076 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4077     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4078     prepares [preparecnt - 1] = w;
4079 root 1.248
4080     EV_FREQUENT_CHECK;
4081 root 1.144 }
4082    
4083     void
4084 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4085 root 1.144 {
4086 root 1.166 clear_pending (EV_A_ (W)w);
4087 root 1.144 if (expect_false (!ev_is_active (w)))
4088     return;
4089    
4090 root 1.248 EV_FREQUENT_CHECK;
4091    
4092 root 1.144 {
4093 root 1.230 int active = ev_active (w);
4094    
4095 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4096 root 1.230 ev_active (prepares [active - 1]) = active;
4097 root 1.144 }
4098    
4099     ev_stop (EV_A_ (W)w);
4100 root 1.248
4101     EV_FREQUENT_CHECK;
4102 root 1.144 }
4103 root 1.337 #endif
4104 root 1.144
4105 root 1.337 #if EV_CHECK_ENABLE
4106 root 1.144 void
4107 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4108 root 1.144 {
4109     if (expect_false (ev_is_active (w)))
4110     return;
4111    
4112 root 1.248 EV_FREQUENT_CHECK;
4113    
4114 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4115     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4116     checks [checkcnt - 1] = w;
4117 root 1.248
4118     EV_FREQUENT_CHECK;
4119 root 1.144 }
4120    
4121     void
4122 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4123 root 1.144 {
4124 root 1.166 clear_pending (EV_A_ (W)w);
4125 root 1.144 if (expect_false (!ev_is_active (w)))
4126     return;
4127    
4128 root 1.248 EV_FREQUENT_CHECK;
4129    
4130 root 1.144 {
4131 root 1.230 int active = ev_active (w);
4132    
4133 root 1.144 checks [active - 1] = checks [--checkcnt];
4134 root 1.230 ev_active (checks [active - 1]) = active;
4135 root 1.144 }
4136    
4137     ev_stop (EV_A_ (W)w);
4138 root 1.248
4139     EV_FREQUENT_CHECK;
4140 root 1.144 }
4141 root 1.337 #endif
4142 root 1.144
4143     #if EV_EMBED_ENABLE
4144     void noinline
4145 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4146 root 1.144 {
4147 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4148 root 1.144 }
4149    
4150     static void
4151 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4152 root 1.144 {
4153     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4154    
4155     if (ev_cb (w))
4156     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4157     else
4158 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4159 root 1.144 }
4160    
4161 root 1.189 static void
4162     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4163     {
4164     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4165    
4166 root 1.195 {
4167 root 1.306 EV_P = w->other;
4168 root 1.195
4169     while (fdchangecnt)
4170     {
4171     fd_reify (EV_A);
4172 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4173 root 1.195 }
4174     }
4175     }
4176    
4177 root 1.261 static void
4178     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4179     {
4180     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4181    
4182 root 1.277 ev_embed_stop (EV_A_ w);
4183    
4184 root 1.261 {
4185 root 1.306 EV_P = w->other;
4186 root 1.261
4187     ev_loop_fork (EV_A);
4188 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4189 root 1.261 }
4190 root 1.277
4191     ev_embed_start (EV_A_ w);
4192 root 1.261 }
4193    
4194 root 1.195 #if 0
4195     static void
4196     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4197     {
4198     ev_idle_stop (EV_A_ idle);
4199 root 1.189 }
4200 root 1.195 #endif
4201 root 1.189
4202 root 1.144 void
4203 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4204 root 1.144 {
4205     if (expect_false (ev_is_active (w)))
4206     return;
4207    
4208     {
4209 root 1.306 EV_P = w->other;
4210 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4211 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4212 root 1.144 }
4213    
4214 root 1.248 EV_FREQUENT_CHECK;
4215    
4216 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4217     ev_io_start (EV_A_ &w->io);
4218    
4219 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4220     ev_set_priority (&w->prepare, EV_MINPRI);
4221     ev_prepare_start (EV_A_ &w->prepare);
4222    
4223 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4224     ev_fork_start (EV_A_ &w->fork);
4225    
4226 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4227    
4228 root 1.144 ev_start (EV_A_ (W)w, 1);
4229 root 1.248
4230     EV_FREQUENT_CHECK;
4231 root 1.144 }
4232    
4233     void
4234 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4235 root 1.144 {
4236 root 1.166 clear_pending (EV_A_ (W)w);
4237 root 1.144 if (expect_false (!ev_is_active (w)))
4238     return;
4239    
4240 root 1.248 EV_FREQUENT_CHECK;
4241    
4242 root 1.261 ev_io_stop (EV_A_ &w->io);
4243 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4244 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4245 root 1.248
4246 root 1.328 ev_stop (EV_A_ (W)w);
4247    
4248 root 1.248 EV_FREQUENT_CHECK;
4249 root 1.144 }
4250     #endif
4251    
4252 root 1.147 #if EV_FORK_ENABLE
4253     void
4254 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4255 root 1.147 {
4256     if (expect_false (ev_is_active (w)))
4257     return;
4258    
4259 root 1.248 EV_FREQUENT_CHECK;
4260    
4261 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4262     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4263     forks [forkcnt - 1] = w;
4264 root 1.248
4265     EV_FREQUENT_CHECK;
4266 root 1.147 }
4267    
4268     void
4269 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4270 root 1.147 {
4271 root 1.166 clear_pending (EV_A_ (W)w);
4272 root 1.147 if (expect_false (!ev_is_active (w)))
4273     return;
4274    
4275 root 1.248 EV_FREQUENT_CHECK;
4276    
4277 root 1.147 {
4278 root 1.230 int active = ev_active (w);
4279    
4280 root 1.147 forks [active - 1] = forks [--forkcnt];
4281 root 1.230 ev_active (forks [active - 1]) = active;
4282 root 1.147 }
4283    
4284     ev_stop (EV_A_ (W)w);
4285 root 1.248
4286     EV_FREQUENT_CHECK;
4287 root 1.147 }
4288     #endif
4289    
4290 root 1.360 #if EV_CLEANUP_ENABLE
4291     void
4292 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4293 root 1.360 {
4294     if (expect_false (ev_is_active (w)))
4295     return;
4296    
4297     EV_FREQUENT_CHECK;
4298    
4299     ev_start (EV_A_ (W)w, ++cleanupcnt);
4300     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4301     cleanups [cleanupcnt - 1] = w;
4302    
4303 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4304     ev_unref (EV_A);
4305 root 1.360 EV_FREQUENT_CHECK;
4306     }
4307    
4308     void
4309 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4310 root 1.360 {
4311     clear_pending (EV_A_ (W)w);
4312     if (expect_false (!ev_is_active (w)))
4313     return;
4314    
4315     EV_FREQUENT_CHECK;
4316 root 1.362 ev_ref (EV_A);
4317 root 1.360
4318     {
4319     int active = ev_active (w);
4320    
4321     cleanups [active - 1] = cleanups [--cleanupcnt];
4322     ev_active (cleanups [active - 1]) = active;
4323     }
4324    
4325     ev_stop (EV_A_ (W)w);
4326    
4327     EV_FREQUENT_CHECK;
4328     }
4329     #endif
4330    
4331 root 1.207 #if EV_ASYNC_ENABLE
4332     void
4333 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4334 root 1.207 {
4335     if (expect_false (ev_is_active (w)))
4336     return;
4337    
4338 root 1.352 w->sent = 0;
4339    
4340 root 1.207 evpipe_init (EV_A);
4341    
4342 root 1.248 EV_FREQUENT_CHECK;
4343    
4344 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4345     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4346     asyncs [asynccnt - 1] = w;
4347 root 1.248
4348     EV_FREQUENT_CHECK;
4349 root 1.207 }
4350    
4351     void
4352 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4353 root 1.207 {
4354     clear_pending (EV_A_ (W)w);
4355     if (expect_false (!ev_is_active (w)))
4356     return;
4357    
4358 root 1.248 EV_FREQUENT_CHECK;
4359    
4360 root 1.207 {
4361 root 1.230 int active = ev_active (w);
4362    
4363 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4364 root 1.230 ev_active (asyncs [active - 1]) = active;
4365 root 1.207 }
4366    
4367     ev_stop (EV_A_ (W)w);
4368 root 1.248
4369     EV_FREQUENT_CHECK;
4370 root 1.207 }
4371    
4372     void
4373 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4374 root 1.207 {
4375     w->sent = 1;
4376 root 1.307 evpipe_write (EV_A_ &async_pending);
4377 root 1.207 }
4378     #endif
4379    
4380 root 1.1 /*****************************************************************************/
4381 root 1.10
4382 root 1.16 struct ev_once
4383     {
4384 root 1.136 ev_io io;
4385     ev_timer to;
4386 root 1.16 void (*cb)(int revents, void *arg);
4387     void *arg;
4388     };
4389    
4390     static void
4391 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4392 root 1.16 {
4393     void (*cb)(int revents, void *arg) = once->cb;
4394     void *arg = once->arg;
4395    
4396 root 1.259 ev_io_stop (EV_A_ &once->io);
4397 root 1.51 ev_timer_stop (EV_A_ &once->to);
4398 root 1.69 ev_free (once);
4399 root 1.16
4400     cb (revents, arg);
4401     }
4402    
4403     static void
4404 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4405 root 1.16 {
4406 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4407    
4408     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4409 root 1.16 }
4410    
4411     static void
4412 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4413 root 1.16 {
4414 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4415    
4416     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4417 root 1.16 }
4418    
4419     void
4420 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4421 root 1.16 {
4422 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4423 root 1.16
4424 root 1.123 if (expect_false (!once))
4425 root 1.16 {
4426 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4427 root 1.123 return;
4428     }
4429    
4430     once->cb = cb;
4431     once->arg = arg;
4432 root 1.16
4433 root 1.123 ev_init (&once->io, once_cb_io);
4434     if (fd >= 0)
4435     {
4436     ev_io_set (&once->io, fd, events);
4437     ev_io_start (EV_A_ &once->io);
4438     }
4439 root 1.16
4440 root 1.123 ev_init (&once->to, once_cb_to);
4441     if (timeout >= 0.)
4442     {
4443     ev_timer_set (&once->to, timeout, 0.);
4444     ev_timer_start (EV_A_ &once->to);
4445 root 1.16 }
4446     }
4447    
4448 root 1.282 /*****************************************************************************/
4449    
4450 root 1.288 #if EV_WALK_ENABLE
4451 root 1.379 void ecb_cold
4452 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4453 root 1.282 {
4454     int i, j;
4455     ev_watcher_list *wl, *wn;
4456    
4457     if (types & (EV_IO | EV_EMBED))
4458     for (i = 0; i < anfdmax; ++i)
4459     for (wl = anfds [i].head; wl; )
4460     {
4461     wn = wl->next;
4462    
4463     #if EV_EMBED_ENABLE
4464     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4465     {
4466     if (types & EV_EMBED)
4467     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4468     }
4469     else
4470     #endif
4471     #if EV_USE_INOTIFY
4472     if (ev_cb ((ev_io *)wl) == infy_cb)
4473     ;
4474     else
4475     #endif
4476 root 1.288 if ((ev_io *)wl != &pipe_w)
4477 root 1.282 if (types & EV_IO)
4478     cb (EV_A_ EV_IO, wl);
4479    
4480     wl = wn;
4481     }
4482    
4483     if (types & (EV_TIMER | EV_STAT))
4484     for (i = timercnt + HEAP0; i-- > HEAP0; )
4485     #if EV_STAT_ENABLE
4486     /*TODO: timer is not always active*/
4487     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4488     {
4489     if (types & EV_STAT)
4490     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4491     }
4492     else
4493     #endif
4494     if (types & EV_TIMER)
4495     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4496    
4497     #if EV_PERIODIC_ENABLE
4498     if (types & EV_PERIODIC)
4499     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4500     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4501     #endif
4502    
4503     #if EV_IDLE_ENABLE
4504     if (types & EV_IDLE)
4505 root 1.390 for (j = NUMPRI; j--; )
4506 root 1.282 for (i = idlecnt [j]; i--; )
4507     cb (EV_A_ EV_IDLE, idles [j][i]);
4508     #endif
4509    
4510     #if EV_FORK_ENABLE
4511     if (types & EV_FORK)
4512     for (i = forkcnt; i--; )
4513     if (ev_cb (forks [i]) != embed_fork_cb)
4514     cb (EV_A_ EV_FORK, forks [i]);
4515     #endif
4516    
4517     #if EV_ASYNC_ENABLE
4518     if (types & EV_ASYNC)
4519     for (i = asynccnt; i--; )
4520     cb (EV_A_ EV_ASYNC, asyncs [i]);
4521     #endif
4522    
4523 root 1.337 #if EV_PREPARE_ENABLE
4524 root 1.282 if (types & EV_PREPARE)
4525     for (i = preparecnt; i--; )
4526 root 1.337 # if EV_EMBED_ENABLE
4527 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4528 root 1.337 # endif
4529     cb (EV_A_ EV_PREPARE, prepares [i]);
4530 root 1.282 #endif
4531    
4532 root 1.337 #if EV_CHECK_ENABLE
4533 root 1.282 if (types & EV_CHECK)
4534     for (i = checkcnt; i--; )
4535     cb (EV_A_ EV_CHECK, checks [i]);
4536 root 1.337 #endif
4537 root 1.282
4538 root 1.337 #if EV_SIGNAL_ENABLE
4539 root 1.282 if (types & EV_SIGNAL)
4540 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4541 root 1.282 for (wl = signals [i].head; wl; )
4542     {
4543     wn = wl->next;
4544     cb (EV_A_ EV_SIGNAL, wl);
4545     wl = wn;
4546     }
4547 root 1.337 #endif
4548 root 1.282
4549 root 1.337 #if EV_CHILD_ENABLE
4550 root 1.282 if (types & EV_CHILD)
4551 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4552 root 1.282 for (wl = childs [i]; wl; )
4553     {
4554     wn = wl->next;
4555     cb (EV_A_ EV_CHILD, wl);
4556     wl = wn;
4557     }
4558 root 1.337 #endif
4559 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4560     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4561     }
4562     #endif
4563    
4564 root 1.188 #if EV_MULTIPLICITY
4565     #include "ev_wrap.h"
4566     #endif
4567