ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.451
Committed: Tue Jan 22 05:18:28 2013 UTC (11 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.450: +11 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.418 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246     # error "unable to find value for NSIG, please report"
247 root 1.336 /* to make it compile regardless, just remove the above line, */
248     /* but consider reporting it, too! :) */
249 root 1.306 # define EV_NSIG 65
250 root 1.305 #endif
251    
252 root 1.373 #ifndef EV_USE_FLOOR
253     # define EV_USE_FLOOR 0
254     #endif
255    
256 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
257     # if __linux && __GLIBC__ >= 2
258 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 root 1.274 # else
260     # define EV_USE_CLOCK_SYSCALL 0
261     # endif
262     #endif
263    
264 root 1.29 #ifndef EV_USE_MONOTONIC
265 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 root 1.253 # else
268     # define EV_USE_MONOTONIC 0
269     # endif
270 root 1.37 #endif
271    
272 root 1.118 #ifndef EV_USE_REALTIME
273 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 root 1.118 #endif
275    
276 root 1.193 #ifndef EV_USE_NANOSLEEP
277 root 1.253 # if _POSIX_C_SOURCE >= 199309L
278 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 root 1.253 # else
280     # define EV_USE_NANOSLEEP 0
281     # endif
282 root 1.193 #endif
283    
284 root 1.29 #ifndef EV_USE_SELECT
285 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 root 1.10 #endif
287    
288 root 1.59 #ifndef EV_USE_POLL
289 root 1.104 # ifdef _WIN32
290     # define EV_USE_POLL 0
291     # else
292 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 root 1.104 # endif
294 root 1.41 #endif
295    
296 root 1.29 #ifndef EV_USE_EPOLL
297 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 root 1.220 # else
300     # define EV_USE_EPOLL 0
301     # endif
302 root 1.10 #endif
303    
304 root 1.44 #ifndef EV_USE_KQUEUE
305     # define EV_USE_KQUEUE 0
306     #endif
307    
308 root 1.118 #ifndef EV_USE_PORT
309     # define EV_USE_PORT 0
310 root 1.40 #endif
311    
312 root 1.152 #ifndef EV_USE_INOTIFY
313 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
315 root 1.220 # else
316     # define EV_USE_INOTIFY 0
317     # endif
318 root 1.152 #endif
319    
320 root 1.149 #ifndef EV_PID_HASHSIZE
321 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 root 1.149 #endif
323    
324 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
325 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 root 1.152 #endif
327    
328 root 1.220 #ifndef EV_USE_EVENTFD
329     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
331 root 1.220 # else
332     # define EV_USE_EVENTFD 0
333     # endif
334     #endif
335    
336 root 1.303 #ifndef EV_USE_SIGNALFD
337 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 root 1.303 # else
340     # define EV_USE_SIGNALFD 0
341     # endif
342     #endif
343    
344 root 1.249 #if 0 /* debugging */
345 root 1.250 # define EV_VERIFY 3
346 root 1.249 # define EV_USE_4HEAP 1
347     # define EV_HEAP_CACHE_AT 1
348     #endif
349    
350 root 1.250 #ifndef EV_VERIFY
351 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 root 1.250 #endif
353    
354 root 1.243 #ifndef EV_USE_4HEAP
355 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
356 root 1.243 #endif
357    
358     #ifndef EV_HEAP_CACHE_AT
359 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 root 1.243 #endif
361    
362 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363     /* which makes programs even slower. might work on other unices, too. */
364     #if EV_USE_CLOCK_SYSCALL
365 root 1.423 # include <sys/syscall.h>
366 root 1.291 # ifdef SYS_clock_gettime
367     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368     # undef EV_USE_MONOTONIC
369     # define EV_USE_MONOTONIC 1
370     # else
371     # undef EV_USE_CLOCK_SYSCALL
372     # define EV_USE_CLOCK_SYSCALL 0
373     # endif
374     #endif
375    
376 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
377 root 1.40
378 root 1.325 #ifdef _AIX
379     /* AIX has a completely broken poll.h header */
380     # undef EV_USE_POLL
381     # define EV_USE_POLL 0
382     #endif
383    
384 root 1.40 #ifndef CLOCK_MONOTONIC
385     # undef EV_USE_MONOTONIC
386     # define EV_USE_MONOTONIC 0
387     #endif
388    
389 root 1.31 #ifndef CLOCK_REALTIME
390 root 1.40 # undef EV_USE_REALTIME
391 root 1.31 # define EV_USE_REALTIME 0
392     #endif
393 root 1.40
394 root 1.152 #if !EV_STAT_ENABLE
395 root 1.185 # undef EV_USE_INOTIFY
396 root 1.152 # define EV_USE_INOTIFY 0
397     #endif
398    
399 root 1.193 #if !EV_USE_NANOSLEEP
400 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
401 root 1.416 # if !defined _WIN32 && !defined __hpux
402 root 1.193 # include <sys/select.h>
403     # endif
404     #endif
405    
406 root 1.152 #if EV_USE_INOTIFY
407 root 1.273 # include <sys/statfs.h>
408 root 1.152 # include <sys/inotify.h>
409 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410     # ifndef IN_DONT_FOLLOW
411     # undef EV_USE_INOTIFY
412     # define EV_USE_INOTIFY 0
413     # endif
414 root 1.152 #endif
415    
416 root 1.220 #if EV_USE_EVENTFD
417     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418 root 1.221 # include <stdint.h>
419 root 1.303 # ifndef EFD_NONBLOCK
420     # define EFD_NONBLOCK O_NONBLOCK
421     # endif
422     # ifndef EFD_CLOEXEC
423 root 1.311 # ifdef O_CLOEXEC
424     # define EFD_CLOEXEC O_CLOEXEC
425     # else
426     # define EFD_CLOEXEC 02000000
427     # endif
428 root 1.303 # endif
429 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430 root 1.220 #endif
431    
432 root 1.303 #if EV_USE_SIGNALFD
433 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434     # include <stdint.h>
435     # ifndef SFD_NONBLOCK
436     # define SFD_NONBLOCK O_NONBLOCK
437     # endif
438     # ifndef SFD_CLOEXEC
439     # ifdef O_CLOEXEC
440     # define SFD_CLOEXEC O_CLOEXEC
441     # else
442     # define SFD_CLOEXEC 02000000
443     # endif
444     # endif
445 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446 root 1.314
447     struct signalfd_siginfo
448     {
449     uint32_t ssi_signo;
450     char pad[128 - sizeof (uint32_t)];
451     };
452 root 1.303 #endif
453    
454 root 1.40 /**/
455 root 1.1
456 root 1.250 #if EV_VERIFY >= 3
457 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
458 root 1.248 #else
459     # define EV_FREQUENT_CHECK do { } while (0)
460     #endif
461    
462 root 1.176 /*
463 root 1.373 * This is used to work around floating point rounding problems.
464 root 1.177 * This value is good at least till the year 4000.
465 root 1.176 */
466 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
468 root 1.176
469 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
470 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
471 root 1.1
472 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474 root 1.347
475 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476     /* ECB.H BEGIN */
477     /*
478     * libecb - http://software.schmorp.de/pkg/libecb
479     *
480 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
482     * All rights reserved.
483     *
484     * Redistribution and use in source and binary forms, with or without modifica-
485     * tion, are permitted provided that the following conditions are met:
486     *
487     * 1. Redistributions of source code must retain the above copyright notice,
488     * this list of conditions and the following disclaimer.
489     *
490     * 2. Redistributions in binary form must reproduce the above copyright
491     * notice, this list of conditions and the following disclaimer in the
492     * documentation and/or other materials provided with the distribution.
493     *
494     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503     * OF THE POSSIBILITY OF SUCH DAMAGE.
504     */
505    
506     #ifndef ECB_H
507     #define ECB_H
508    
509 root 1.437 /* 16 bits major, 16 bits minor */
510 root 1.450 #define ECB_VERSION 0x00010002
511 root 1.437
512 root 1.391 #ifdef _WIN32
513     typedef signed char int8_t;
514     typedef unsigned char uint8_t;
515     typedef signed short int16_t;
516     typedef unsigned short uint16_t;
517     typedef signed int int32_t;
518     typedef unsigned int uint32_t;
519     #if __GNUC__
520     typedef signed long long int64_t;
521     typedef unsigned long long uint64_t;
522     #else /* _MSC_VER || __BORLANDC__ */
523     typedef signed __int64 int64_t;
524     typedef unsigned __int64 uint64_t;
525     #endif
526 root 1.437 #ifdef _WIN64
527     #define ECB_PTRSIZE 8
528     typedef uint64_t uintptr_t;
529     typedef int64_t intptr_t;
530     #else
531     #define ECB_PTRSIZE 4
532     typedef uint32_t uintptr_t;
533     typedef int32_t intptr_t;
534     #endif
535 root 1.391 #else
536     #include <inttypes.h>
537 root 1.437 #if UINTMAX_MAX > 0xffffffffU
538     #define ECB_PTRSIZE 8
539     #else
540     #define ECB_PTRSIZE 4
541     #endif
542 root 1.391 #endif
543 root 1.379
544     /* many compilers define _GNUC_ to some versions but then only implement
545     * what their idiot authors think are the "more important" extensions,
546 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
547 root 1.379 * or so.
548     * we try to detect these and simply assume they are not gcc - if they have
549     * an issue with that they should have done it right in the first place.
550     */
551     #ifndef ECB_GCC_VERSION
552 root 1.417 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
553 root 1.379 #define ECB_GCC_VERSION(major,minor) 0
554     #else
555     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
556     #endif
557     #endif
558    
559 root 1.437 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
560     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
561     #define ECB_C11 (__STDC_VERSION__ >= 201112L)
562     #define ECB_CPP (__cplusplus+0)
563     #define ECB_CPP11 (__cplusplus >= 201103L)
564    
565 root 1.450 #if ECB_CPP
566     #define ECB_EXTERN_C extern "C"
567     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
568     #define ECB_EXTERN_C_END }
569     #else
570     #define ECB_EXTERN_C extern
571     #define ECB_EXTERN_C_BEG
572     #define ECB_EXTERN_C_END
573     #endif
574    
575 root 1.391 /*****************************************************************************/
576    
577     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
578     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
579    
580 root 1.410 #if ECB_NO_THREADS
581 root 1.439 #define ECB_NO_SMP 1
582 root 1.410 #endif
583    
584 root 1.437 #if ECB_NO_SMP
585 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
586 root 1.40 #endif
587    
588 root 1.383 #ifndef ECB_MEMORY_FENCE
589 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
590 root 1.404 #if __i386 || __i386__
591 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
592 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
593     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
594 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
595 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
596     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
597     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
598 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
599 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
600 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
601     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
602 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
603 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
604 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
605     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
606 root 1.404 #elif __sparc || __sparc__
607 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
608     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
609     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
610 root 1.417 #elif defined __s390__ || defined __s390x__
611 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
612 root 1.417 #elif defined __mips__
613 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
614 root 1.419 #elif defined __alpha__
615 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
616     #elif defined __hppa__
617     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
618     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
619     #elif defined __ia64__
620     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
621 root 1.383 #endif
622     #endif
623     #endif
624    
625     #ifndef ECB_MEMORY_FENCE
626 root 1.437 #if ECB_GCC_VERSION(4,7)
627 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
628 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
629 root 1.450
630     /* The __has_feature syntax from clang is so misdesigned that we cannot use it
631     * without risking compile time errors with other compilers. We *could*
632     * define our own ecb_clang_has_feature, but I just can't be bothered to work
633     * around this shit time and again.
634     * #elif defined __clang && __has_feature (cxx_atomic)
635     * // see comment below (stdatomic.h) about the C11 memory model.
636     * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
637     */
638    
639 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
640 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
641 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
642     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
643     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
644     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
645     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
646 root 1.417 #elif defined _WIN32
647 root 1.388 #include <WinNT.h>
648 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
649 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
650     #include <mbarrier.h>
651     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
652     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
653     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
654 root 1.413 #elif __xlC__
655 root 1.414 #define ECB_MEMORY_FENCE __sync ()
656 root 1.383 #endif
657     #endif
658    
659     #ifndef ECB_MEMORY_FENCE
660 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
661     /* we assume that these memory fences work on all variables/all memory accesses, */
662     /* not just C11 atomics and atomic accesses */
663     #include <stdatomic.h>
664 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
665     /* any fence other than seq_cst, which isn't very efficient for us. */
666     /* Why that is, we don't know - either the C11 memory model is quite useless */
667     /* for most usages, or gcc and clang have a bug */
668     /* I *currently* lean towards the latter, and inefficiently implement */
669     /* all three of ecb's fences as a seq_cst fence */
670 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
671     #endif
672     #endif
673    
674     #ifndef ECB_MEMORY_FENCE
675 root 1.392 #if !ECB_AVOID_PTHREADS
676     /*
677     * if you get undefined symbol references to pthread_mutex_lock,
678     * or failure to find pthread.h, then you should implement
679     * the ECB_MEMORY_FENCE operations for your cpu/compiler
680     * OR provide pthread.h and link against the posix thread library
681     * of your system.
682     */
683     #include <pthread.h>
684     #define ECB_NEEDS_PTHREADS 1
685     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
686    
687     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
688     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
689     #endif
690     #endif
691 root 1.383
692 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
693 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
694 root 1.392 #endif
695    
696 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
697 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
698     #endif
699    
700 root 1.391 /*****************************************************************************/
701    
702     #if __cplusplus
703     #define ecb_inline static inline
704     #elif ECB_GCC_VERSION(2,5)
705     #define ecb_inline static __inline__
706     #elif ECB_C99
707     #define ecb_inline static inline
708     #else
709     #define ecb_inline static
710     #endif
711    
712     #if ECB_GCC_VERSION(3,3)
713     #define ecb_restrict __restrict__
714     #elif ECB_C99
715     #define ecb_restrict restrict
716     #else
717     #define ecb_restrict
718     #endif
719    
720     typedef int ecb_bool;
721    
722     #define ECB_CONCAT_(a, b) a ## b
723     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
724     #define ECB_STRINGIFY_(a) # a
725     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
726    
727     #define ecb_function_ ecb_inline
728    
729 root 1.379 #if ECB_GCC_VERSION(3,1)
730     #define ecb_attribute(attrlist) __attribute__(attrlist)
731     #define ecb_is_constant(expr) __builtin_constant_p (expr)
732     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
733     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
734     #else
735     #define ecb_attribute(attrlist)
736     #define ecb_is_constant(expr) 0
737     #define ecb_expect(expr,value) (expr)
738     #define ecb_prefetch(addr,rw,locality)
739     #endif
740    
741 root 1.391 /* no emulation for ecb_decltype */
742     #if ECB_GCC_VERSION(4,5)
743     #define ecb_decltype(x) __decltype(x)
744     #elif ECB_GCC_VERSION(3,0)
745     #define ecb_decltype(x) __typeof(x)
746     #endif
747    
748 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
749     #define ecb_unused ecb_attribute ((__unused__))
750     #define ecb_const ecb_attribute ((__const__))
751     #define ecb_pure ecb_attribute ((__pure__))
752    
753 root 1.437 #if ECB_C11
754     #define ecb_noreturn _Noreturn
755     #else
756     #define ecb_noreturn ecb_attribute ((__noreturn__))
757     #endif
758    
759 root 1.379 #if ECB_GCC_VERSION(4,3)
760     #define ecb_artificial ecb_attribute ((__artificial__))
761     #define ecb_hot ecb_attribute ((__hot__))
762     #define ecb_cold ecb_attribute ((__cold__))
763     #else
764     #define ecb_artificial
765     #define ecb_hot
766     #define ecb_cold
767     #endif
768    
769     /* put around conditional expressions if you are very sure that the */
770     /* expression is mostly true or mostly false. note that these return */
771     /* booleans, not the expression. */
772     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
773     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
774 root 1.391 /* for compatibility to the rest of the world */
775     #define ecb_likely(expr) ecb_expect_true (expr)
776     #define ecb_unlikely(expr) ecb_expect_false (expr)
777    
778     /* count trailing zero bits and count # of one bits */
779     #if ECB_GCC_VERSION(3,4)
780     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
781     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
782     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
783     #define ecb_ctz32(x) __builtin_ctz (x)
784     #define ecb_ctz64(x) __builtin_ctzll (x)
785     #define ecb_popcount32(x) __builtin_popcount (x)
786     /* no popcountll */
787     #else
788     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
789     ecb_function_ int
790     ecb_ctz32 (uint32_t x)
791     {
792     int r = 0;
793    
794     x &= ~x + 1; /* this isolates the lowest bit */
795    
796     #if ECB_branchless_on_i386
797     r += !!(x & 0xaaaaaaaa) << 0;
798     r += !!(x & 0xcccccccc) << 1;
799     r += !!(x & 0xf0f0f0f0) << 2;
800     r += !!(x & 0xff00ff00) << 3;
801     r += !!(x & 0xffff0000) << 4;
802     #else
803     if (x & 0xaaaaaaaa) r += 1;
804     if (x & 0xcccccccc) r += 2;
805     if (x & 0xf0f0f0f0) r += 4;
806     if (x & 0xff00ff00) r += 8;
807     if (x & 0xffff0000) r += 16;
808     #endif
809    
810     return r;
811     }
812    
813     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
814     ecb_function_ int
815     ecb_ctz64 (uint64_t x)
816     {
817     int shift = x & 0xffffffffU ? 0 : 32;
818     return ecb_ctz32 (x >> shift) + shift;
819     }
820    
821     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
822     ecb_function_ int
823     ecb_popcount32 (uint32_t x)
824     {
825     x -= (x >> 1) & 0x55555555;
826     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
827     x = ((x >> 4) + x) & 0x0f0f0f0f;
828     x *= 0x01010101;
829    
830     return x >> 24;
831     }
832    
833     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
834     ecb_function_ int ecb_ld32 (uint32_t x)
835     {
836     int r = 0;
837    
838     if (x >> 16) { x >>= 16; r += 16; }
839     if (x >> 8) { x >>= 8; r += 8; }
840     if (x >> 4) { x >>= 4; r += 4; }
841     if (x >> 2) { x >>= 2; r += 2; }
842     if (x >> 1) { r += 1; }
843    
844     return r;
845     }
846    
847     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
848     ecb_function_ int ecb_ld64 (uint64_t x)
849     {
850     int r = 0;
851    
852     if (x >> 32) { x >>= 32; r += 32; }
853    
854     return r + ecb_ld32 (x);
855     }
856     #endif
857    
858 root 1.437 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
859     ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
860     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
861     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
862    
863 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
864     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
865     {
866     return ( (x * 0x0802U & 0x22110U)
867     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
868     }
869    
870     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
871     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
872     {
873     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
874     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
875     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
876     x = ( x >> 8 ) | ( x << 8);
877    
878     return x;
879     }
880    
881     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
882     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
883     {
884     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
885     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
886     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
887     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
888     x = ( x >> 16 ) | ( x << 16);
889    
890     return x;
891     }
892    
893 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
894     /* so for this version we are lazy */
895     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
896     ecb_function_ int
897     ecb_popcount64 (uint64_t x)
898     {
899     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
900     }
901    
902     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
903     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
904     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
905     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
906     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
907     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
908     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
909     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
910    
911     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
912     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
913     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
914     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
915     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
916     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
917     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
918     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
919    
920     #if ECB_GCC_VERSION(4,3)
921     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
922     #define ecb_bswap32(x) __builtin_bswap32 (x)
923     #define ecb_bswap64(x) __builtin_bswap64 (x)
924     #else
925     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
926     ecb_function_ uint16_t
927     ecb_bswap16 (uint16_t x)
928     {
929     return ecb_rotl16 (x, 8);
930     }
931    
932     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
933     ecb_function_ uint32_t
934     ecb_bswap32 (uint32_t x)
935     {
936     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
937     }
938    
939     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
940     ecb_function_ uint64_t
941     ecb_bswap64 (uint64_t x)
942     {
943     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
944     }
945     #endif
946    
947     #if ECB_GCC_VERSION(4,5)
948     #define ecb_unreachable() __builtin_unreachable ()
949     #else
950     /* this seems to work fine, but gcc always emits a warning for it :/ */
951 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
952     ecb_inline void ecb_unreachable (void) { }
953 root 1.391 #endif
954    
955     /* try to tell the compiler that some condition is definitely true */
956 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
957 root 1.391
958 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
959     ecb_inline unsigned char
960 root 1.391 ecb_byteorder_helper (void)
961     {
962 root 1.450 /* the union code still generates code under pressure in gcc, */
963     /* but less than using pointers, and always seems to */
964     /* successfully return a constant. */
965     /* the reason why we have this horrible preprocessor mess */
966     /* is to avoid it in all cases, at least on common architectures */
967     /* or when using a recent enough gcc version (>= 4.6) */
968     #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
969     return 0x44;
970     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
971     return 0x44;
972     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
973     return 0x11;
974     #else
975     union
976     {
977     uint32_t i;
978     uint8_t c;
979     } u = { 0x11223344 };
980     return u.c;
981     #endif
982 root 1.391 }
983    
984 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
985     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
986     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
987     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
988 root 1.391
989     #if ECB_GCC_VERSION(3,0) || ECB_C99
990     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
991     #else
992     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
993     #endif
994    
995 root 1.398 #if __cplusplus
996     template<typename T>
997     static inline T ecb_div_rd (T val, T div)
998     {
999     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1000     }
1001     template<typename T>
1002     static inline T ecb_div_ru (T val, T div)
1003     {
1004     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1005     }
1006     #else
1007     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1008     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1009     #endif
1010    
1011 root 1.391 #if ecb_cplusplus_does_not_suck
1012     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1013     template<typename T, int N>
1014     static inline int ecb_array_length (const T (&arr)[N])
1015     {
1016     return N;
1017     }
1018     #else
1019     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1020     #endif
1021    
1022 root 1.450 /*******************************************************************************/
1023     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1024    
1025     /* basically, everything uses "ieee pure-endian" floating point numbers */
1026     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1027     #if 0 \
1028     || __i386 || __i386__ \
1029     || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1030     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1031     || defined __arm__ && defined __ARM_EABI__ \
1032     || defined __s390__ || defined __s390x__ \
1033     || defined __mips__ \
1034     || defined __alpha__ \
1035     || defined __hppa__ \
1036     || defined __ia64__ \
1037     || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1038     #define ECB_STDFP 1
1039     #include <string.h> /* for memcpy */
1040     #else
1041     #define ECB_STDFP 0
1042     #include <math.h> /* for frexp*, ldexp* */
1043     #endif
1044    
1045     #ifndef ECB_NO_LIBM
1046    
1047     /* convert a float to ieee single/binary32 */
1048     ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1049     ecb_function_ uint32_t
1050     ecb_float_to_binary32 (float x)
1051     {
1052     uint32_t r;
1053    
1054     #if ECB_STDFP
1055     memcpy (&r, &x, 4);
1056     #else
1057     /* slow emulation, works for anything but -0 */
1058     uint32_t m;
1059     int e;
1060    
1061     if (x == 0e0f ) return 0x00000000U;
1062     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1063     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1064     if (x != x ) return 0x7fbfffffU;
1065    
1066     m = frexpf (x, &e) * 0x1000000U;
1067    
1068     r = m & 0x80000000U;
1069    
1070     if (r)
1071     m = -m;
1072    
1073     if (e <= -126)
1074     {
1075     m &= 0xffffffU;
1076     m >>= (-125 - e);
1077     e = -126;
1078     }
1079    
1080     r |= (e + 126) << 23;
1081     r |= m & 0x7fffffU;
1082     #endif
1083    
1084     return r;
1085     }
1086    
1087     /* converts an ieee single/binary32 to a float */
1088     ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1089     ecb_function_ float
1090     ecb_binary32_to_float (uint32_t x)
1091     {
1092     float r;
1093    
1094     #if ECB_STDFP
1095     memcpy (&r, &x, 4);
1096     #else
1097     /* emulation, only works for normals and subnormals and +0 */
1098     int neg = x >> 31;
1099     int e = (x >> 23) & 0xffU;
1100    
1101     x &= 0x7fffffU;
1102    
1103     if (e)
1104     x |= 0x800000U;
1105     else
1106     e = 1;
1107    
1108     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1109     r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1110    
1111     r = neg ? -r : r;
1112     #endif
1113    
1114     return r;
1115     }
1116    
1117     /* convert a double to ieee double/binary64 */
1118     ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1119     ecb_function_ uint64_t
1120     ecb_double_to_binary64 (double x)
1121     {
1122     uint64_t r;
1123    
1124     #if ECB_STDFP
1125     memcpy (&r, &x, 8);
1126     #else
1127     /* slow emulation, works for anything but -0 */
1128     uint64_t m;
1129     int e;
1130    
1131     if (x == 0e0 ) return 0x0000000000000000U;
1132     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1133     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1134     if (x != x ) return 0X7ff7ffffffffffffU;
1135    
1136     m = frexp (x, &e) * 0x20000000000000U;
1137    
1138     r = m & 0x8000000000000000;;
1139    
1140     if (r)
1141     m = -m;
1142    
1143     if (e <= -1022)
1144     {
1145     m &= 0x1fffffffffffffU;
1146     m >>= (-1021 - e);
1147     e = -1022;
1148     }
1149    
1150     r |= ((uint64_t)(e + 1022)) << 52;
1151     r |= m & 0xfffffffffffffU;
1152     #endif
1153    
1154     return r;
1155     }
1156    
1157     /* converts an ieee double/binary64 to a double */
1158     ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1159     ecb_function_ double
1160     ecb_binary64_to_double (uint64_t x)
1161     {
1162     double r;
1163    
1164     #if ECB_STDFP
1165     memcpy (&r, &x, 8);
1166     #else
1167     /* emulation, only works for normals and subnormals and +0 */
1168     int neg = x >> 63;
1169     int e = (x >> 52) & 0x7ffU;
1170    
1171     x &= 0xfffffffffffffU;
1172    
1173     if (e)
1174     x |= 0x10000000000000U;
1175     else
1176     e = 1;
1177    
1178     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1179     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1180    
1181     r = neg ? -r : r;
1182     #endif
1183    
1184     return r;
1185     }
1186    
1187     #endif
1188    
1189 root 1.391 #endif
1190    
1191     /* ECB.H END */
1192 root 1.379
1193 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1194 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1195 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1196     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1197 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1198 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1199     * which will then provide the memory fences.
1200     */
1201     # error "memory fences not defined for your architecture, please report"
1202     #endif
1203    
1204     #ifndef ECB_MEMORY_FENCE
1205     # define ECB_MEMORY_FENCE do { } while (0)
1206     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1207     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1208 root 1.392 #endif
1209    
1210 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1211     #define expect_true(cond) ecb_expect_true (cond)
1212     #define noinline ecb_noinline
1213    
1214     #define inline_size ecb_inline
1215 root 1.169
1216 root 1.338 #if EV_FEATURE_CODE
1217 root 1.379 # define inline_speed ecb_inline
1218 root 1.338 #else
1219 root 1.169 # define inline_speed static noinline
1220     #endif
1221 root 1.40
1222 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1223    
1224     #if EV_MINPRI == EV_MAXPRI
1225     # define ABSPRI(w) (((W)w), 0)
1226     #else
1227     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1228     #endif
1229 root 1.42
1230 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1231 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1232 root 1.103
1233 root 1.136 typedef ev_watcher *W;
1234     typedef ev_watcher_list *WL;
1235     typedef ev_watcher_time *WT;
1236 root 1.10
1237 root 1.229 #define ev_active(w) ((W)(w))->active
1238 root 1.228 #define ev_at(w) ((WT)(w))->at
1239    
1240 root 1.279 #if EV_USE_REALTIME
1241 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1242 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1243 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1244     #endif
1245    
1246     #if EV_USE_MONOTONIC
1247 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1248 root 1.198 #endif
1249 root 1.54
1250 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1251     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1252     #endif
1253     #ifndef EV_WIN32_HANDLE_TO_FD
1254 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1255 root 1.313 #endif
1256     #ifndef EV_WIN32_CLOSE_FD
1257     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1258     #endif
1259    
1260 root 1.103 #ifdef _WIN32
1261 root 1.98 # include "ev_win32.c"
1262     #endif
1263 root 1.67
1264 root 1.53 /*****************************************************************************/
1265 root 1.1
1266 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1267    
1268     #if EV_USE_FLOOR
1269     # include <math.h>
1270     # define ev_floor(v) floor (v)
1271     #else
1272    
1273     #include <float.h>
1274    
1275     /* a floor() replacement function, should be independent of ev_tstamp type */
1276     static ev_tstamp noinline
1277     ev_floor (ev_tstamp v)
1278     {
1279     /* the choice of shift factor is not terribly important */
1280     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1281     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1282     #else
1283     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1284     #endif
1285    
1286     /* argument too large for an unsigned long? */
1287     if (expect_false (v >= shift))
1288     {
1289     ev_tstamp f;
1290    
1291     if (v == v - 1.)
1292     return v; /* very large number */
1293    
1294     f = shift * ev_floor (v * (1. / shift));
1295     return f + ev_floor (v - f);
1296     }
1297    
1298     /* special treatment for negative args? */
1299     if (expect_false (v < 0.))
1300     {
1301     ev_tstamp f = -ev_floor (-v);
1302    
1303     return f - (f == v ? 0 : 1);
1304     }
1305    
1306     /* fits into an unsigned long */
1307     return (unsigned long)v;
1308     }
1309    
1310     #endif
1311    
1312     /*****************************************************************************/
1313    
1314 root 1.356 #ifdef __linux
1315     # include <sys/utsname.h>
1316     #endif
1317    
1318 root 1.379 static unsigned int noinline ecb_cold
1319 root 1.355 ev_linux_version (void)
1320     {
1321     #ifdef __linux
1322 root 1.359 unsigned int v = 0;
1323 root 1.355 struct utsname buf;
1324     int i;
1325     char *p = buf.release;
1326    
1327     if (uname (&buf))
1328     return 0;
1329    
1330     for (i = 3+1; --i; )
1331     {
1332     unsigned int c = 0;
1333    
1334     for (;;)
1335     {
1336     if (*p >= '0' && *p <= '9')
1337     c = c * 10 + *p++ - '0';
1338     else
1339     {
1340     p += *p == '.';
1341     break;
1342     }
1343     }
1344    
1345     v = (v << 8) | c;
1346     }
1347    
1348     return v;
1349     #else
1350     return 0;
1351     #endif
1352     }
1353    
1354     /*****************************************************************************/
1355    
1356 root 1.331 #if EV_AVOID_STDIO
1357 root 1.379 static void noinline ecb_cold
1358 root 1.331 ev_printerr (const char *msg)
1359     {
1360     write (STDERR_FILENO, msg, strlen (msg));
1361     }
1362     #endif
1363    
1364 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1365 root 1.69
1366 root 1.379 void ecb_cold
1367 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1368 root 1.69 {
1369     syserr_cb = cb;
1370     }
1371    
1372 root 1.379 static void noinline ecb_cold
1373 root 1.269 ev_syserr (const char *msg)
1374 root 1.69 {
1375 root 1.70 if (!msg)
1376     msg = "(libev) system error";
1377    
1378 root 1.69 if (syserr_cb)
1379 root 1.70 syserr_cb (msg);
1380 root 1.69 else
1381     {
1382 root 1.330 #if EV_AVOID_STDIO
1383 root 1.331 ev_printerr (msg);
1384     ev_printerr (": ");
1385 root 1.365 ev_printerr (strerror (errno));
1386 root 1.331 ev_printerr ("\n");
1387 root 1.330 #else
1388 root 1.70 perror (msg);
1389 root 1.330 #endif
1390 root 1.69 abort ();
1391     }
1392     }
1393    
1394 root 1.224 static void *
1395 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1396 root 1.224 {
1397     /* some systems, notably openbsd and darwin, fail to properly
1398 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1399 root 1.224 * the single unix specification, so work around them here.
1400 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1401     * despite documenting it otherwise.
1402 root 1.224 */
1403 root 1.333
1404 root 1.224 if (size)
1405     return realloc (ptr, size);
1406    
1407     free (ptr);
1408     return 0;
1409     }
1410    
1411 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1412 root 1.69
1413 root 1.379 void ecb_cold
1414 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1415 root 1.69 {
1416     alloc = cb;
1417     }
1418    
1419 root 1.150 inline_speed void *
1420 root 1.155 ev_realloc (void *ptr, long size)
1421 root 1.69 {
1422 root 1.224 ptr = alloc (ptr, size);
1423 root 1.69
1424     if (!ptr && size)
1425     {
1426 root 1.330 #if EV_AVOID_STDIO
1427 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1428 root 1.330 #else
1429 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1430 root 1.330 #endif
1431 root 1.69 abort ();
1432     }
1433    
1434     return ptr;
1435     }
1436    
1437     #define ev_malloc(size) ev_realloc (0, (size))
1438     #define ev_free(ptr) ev_realloc ((ptr), 0)
1439    
1440     /*****************************************************************************/
1441    
1442 root 1.298 /* set in reify when reification needed */
1443     #define EV_ANFD_REIFY 1
1444    
1445 root 1.288 /* file descriptor info structure */
1446 root 1.53 typedef struct
1447     {
1448 root 1.68 WL head;
1449 root 1.288 unsigned char events; /* the events watched for */
1450 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1451 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1452 root 1.269 unsigned char unused;
1453     #if EV_USE_EPOLL
1454 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1455 root 1.269 #endif
1456 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1457 root 1.103 SOCKET handle;
1458     #endif
1459 root 1.357 #if EV_USE_IOCP
1460     OVERLAPPED or, ow;
1461     #endif
1462 root 1.53 } ANFD;
1463 root 1.1
1464 root 1.288 /* stores the pending event set for a given watcher */
1465 root 1.53 typedef struct
1466     {
1467     W w;
1468 root 1.288 int events; /* the pending event set for the given watcher */
1469 root 1.53 } ANPENDING;
1470 root 1.51
1471 root 1.155 #if EV_USE_INOTIFY
1472 root 1.241 /* hash table entry per inotify-id */
1473 root 1.152 typedef struct
1474     {
1475     WL head;
1476 root 1.155 } ANFS;
1477 root 1.152 #endif
1478    
1479 root 1.241 /* Heap Entry */
1480     #if EV_HEAP_CACHE_AT
1481 root 1.288 /* a heap element */
1482 root 1.241 typedef struct {
1483 root 1.243 ev_tstamp at;
1484 root 1.241 WT w;
1485     } ANHE;
1486    
1487 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1488     #define ANHE_at(he) (he).at /* access cached at, read-only */
1489     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1490 root 1.241 #else
1491 root 1.288 /* a heap element */
1492 root 1.241 typedef WT ANHE;
1493    
1494 root 1.248 #define ANHE_w(he) (he)
1495     #define ANHE_at(he) (he)->at
1496     #define ANHE_at_cache(he)
1497 root 1.241 #endif
1498    
1499 root 1.55 #if EV_MULTIPLICITY
1500 root 1.54
1501 root 1.80 struct ev_loop
1502     {
1503 root 1.86 ev_tstamp ev_rt_now;
1504 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1505 root 1.80 #define VAR(name,decl) decl;
1506     #include "ev_vars.h"
1507     #undef VAR
1508     };
1509     #include "ev_wrap.h"
1510    
1511 root 1.116 static struct ev_loop default_loop_struct;
1512 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1513 root 1.54
1514 root 1.53 #else
1515 root 1.54
1516 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1517 root 1.80 #define VAR(name,decl) static decl;
1518     #include "ev_vars.h"
1519     #undef VAR
1520    
1521 root 1.116 static int ev_default_loop_ptr;
1522 root 1.54
1523 root 1.51 #endif
1524 root 1.1
1525 root 1.338 #if EV_FEATURE_API
1526 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1527     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1528 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1529     #else
1530 root 1.298 # define EV_RELEASE_CB (void)0
1531     # define EV_ACQUIRE_CB (void)0
1532 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1533     #endif
1534    
1535 root 1.353 #define EVBREAK_RECURSE 0x80
1536 root 1.298
1537 root 1.8 /*****************************************************************************/
1538    
1539 root 1.292 #ifndef EV_HAVE_EV_TIME
1540 root 1.141 ev_tstamp
1541 root 1.420 ev_time (void) EV_THROW
1542 root 1.1 {
1543 root 1.29 #if EV_USE_REALTIME
1544 root 1.279 if (expect_true (have_realtime))
1545     {
1546     struct timespec ts;
1547     clock_gettime (CLOCK_REALTIME, &ts);
1548     return ts.tv_sec + ts.tv_nsec * 1e-9;
1549     }
1550     #endif
1551    
1552 root 1.1 struct timeval tv;
1553     gettimeofday (&tv, 0);
1554     return tv.tv_sec + tv.tv_usec * 1e-6;
1555     }
1556 root 1.292 #endif
1557 root 1.1
1558 root 1.284 inline_size ev_tstamp
1559 root 1.1 get_clock (void)
1560     {
1561 root 1.29 #if EV_USE_MONOTONIC
1562 root 1.40 if (expect_true (have_monotonic))
1563 root 1.1 {
1564     struct timespec ts;
1565     clock_gettime (CLOCK_MONOTONIC, &ts);
1566     return ts.tv_sec + ts.tv_nsec * 1e-9;
1567     }
1568     #endif
1569    
1570     return ev_time ();
1571     }
1572    
1573 root 1.85 #if EV_MULTIPLICITY
1574 root 1.51 ev_tstamp
1575 root 1.420 ev_now (EV_P) EV_THROW
1576 root 1.51 {
1577 root 1.85 return ev_rt_now;
1578 root 1.51 }
1579 root 1.85 #endif
1580 root 1.51
1581 root 1.193 void
1582 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1583 root 1.193 {
1584     if (delay > 0.)
1585     {
1586     #if EV_USE_NANOSLEEP
1587     struct timespec ts;
1588    
1589 root 1.348 EV_TS_SET (ts, delay);
1590 root 1.193 nanosleep (&ts, 0);
1591 root 1.416 #elif defined _WIN32
1592 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1593 root 1.193 #else
1594     struct timeval tv;
1595    
1596 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1597 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1598 root 1.257 /* by older ones */
1599 sf-exg 1.349 EV_TV_SET (tv, delay);
1600 root 1.193 select (0, 0, 0, 0, &tv);
1601     #endif
1602     }
1603     }
1604    
1605     /*****************************************************************************/
1606    
1607 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1608 root 1.232
1609 root 1.288 /* find a suitable new size for the given array, */
1610 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1611 root 1.284 inline_size int
1612 root 1.163 array_nextsize (int elem, int cur, int cnt)
1613     {
1614     int ncur = cur + 1;
1615    
1616     do
1617     ncur <<= 1;
1618     while (cnt > ncur);
1619    
1620 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1621 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1622 root 1.163 {
1623     ncur *= elem;
1624 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1625 root 1.163 ncur = ncur - sizeof (void *) * 4;
1626     ncur /= elem;
1627     }
1628    
1629     return ncur;
1630     }
1631    
1632 root 1.379 static void * noinline ecb_cold
1633 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1634     {
1635     *cur = array_nextsize (elem, *cur, cnt);
1636     return ev_realloc (base, elem * *cur);
1637     }
1638 root 1.29
1639 root 1.265 #define array_init_zero(base,count) \
1640     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1641    
1642 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1643 root 1.163 if (expect_false ((cnt) > (cur))) \
1644 root 1.69 { \
1645 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1646 root 1.163 (base) = (type *)array_realloc \
1647     (sizeof (type), (base), &(cur), (cnt)); \
1648     init ((base) + (ocur_), (cur) - ocur_); \
1649 root 1.1 }
1650    
1651 root 1.163 #if 0
1652 root 1.74 #define array_slim(type,stem) \
1653 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1654     { \
1655     stem ## max = array_roundsize (stem ## cnt >> 1); \
1656 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1657 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1658     }
1659 root 1.163 #endif
1660 root 1.67
1661 root 1.65 #define array_free(stem, idx) \
1662 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1663 root 1.65
1664 root 1.8 /*****************************************************************************/
1665    
1666 root 1.288 /* dummy callback for pending events */
1667     static void noinline
1668     pendingcb (EV_P_ ev_prepare *w, int revents)
1669     {
1670     }
1671    
1672 root 1.140 void noinline
1673 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1674 root 1.1 {
1675 root 1.78 W w_ = (W)w;
1676 root 1.171 int pri = ABSPRI (w_);
1677 root 1.78
1678 root 1.123 if (expect_false (w_->pending))
1679 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1680     else
1681 root 1.32 {
1682 root 1.171 w_->pending = ++pendingcnt [pri];
1683     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1684     pendings [pri][w_->pending - 1].w = w_;
1685     pendings [pri][w_->pending - 1].events = revents;
1686 root 1.32 }
1687 root 1.425
1688     pendingpri = NUMPRI - 1;
1689 root 1.1 }
1690    
1691 root 1.284 inline_speed void
1692     feed_reverse (EV_P_ W w)
1693     {
1694     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1695     rfeeds [rfeedcnt++] = w;
1696     }
1697    
1698     inline_size void
1699     feed_reverse_done (EV_P_ int revents)
1700     {
1701     do
1702     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1703     while (rfeedcnt);
1704     }
1705    
1706     inline_speed void
1707 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1708 root 1.27 {
1709     int i;
1710    
1711     for (i = 0; i < eventcnt; ++i)
1712 root 1.78 ev_feed_event (EV_A_ events [i], type);
1713 root 1.27 }
1714    
1715 root 1.141 /*****************************************************************************/
1716    
1717 root 1.284 inline_speed void
1718 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1719 root 1.1 {
1720     ANFD *anfd = anfds + fd;
1721 root 1.136 ev_io *w;
1722 root 1.1
1723 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1724 root 1.1 {
1725 root 1.79 int ev = w->events & revents;
1726 root 1.1
1727     if (ev)
1728 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1729 root 1.1 }
1730     }
1731    
1732 root 1.298 /* do not submit kernel events for fds that have reify set */
1733     /* because that means they changed while we were polling for new events */
1734     inline_speed void
1735     fd_event (EV_P_ int fd, int revents)
1736     {
1737     ANFD *anfd = anfds + fd;
1738    
1739     if (expect_true (!anfd->reify))
1740 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1741 root 1.298 }
1742    
1743 root 1.79 void
1744 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1745 root 1.79 {
1746 root 1.168 if (fd >= 0 && fd < anfdmax)
1747 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1748 root 1.79 }
1749    
1750 root 1.288 /* make sure the external fd watch events are in-sync */
1751     /* with the kernel/libev internal state */
1752 root 1.284 inline_size void
1753 root 1.51 fd_reify (EV_P)
1754 root 1.9 {
1755     int i;
1756    
1757 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1758     for (i = 0; i < fdchangecnt; ++i)
1759     {
1760     int fd = fdchanges [i];
1761     ANFD *anfd = anfds + fd;
1762    
1763 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1764 root 1.371 {
1765     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1766    
1767     if (handle != anfd->handle)
1768     {
1769     unsigned long arg;
1770    
1771     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1772    
1773     /* handle changed, but fd didn't - we need to do it in two steps */
1774     backend_modify (EV_A_ fd, anfd->events, 0);
1775     anfd->events = 0;
1776     anfd->handle = handle;
1777     }
1778     }
1779     }
1780     #endif
1781    
1782 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1783     {
1784     int fd = fdchanges [i];
1785     ANFD *anfd = anfds + fd;
1786 root 1.136 ev_io *w;
1787 root 1.27
1788 root 1.350 unsigned char o_events = anfd->events;
1789     unsigned char o_reify = anfd->reify;
1790 root 1.27
1791 root 1.350 anfd->reify = 0;
1792 root 1.27
1793 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1794     {
1795     anfd->events = 0;
1796 root 1.184
1797 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1798     anfd->events |= (unsigned char)w->events;
1799 root 1.27
1800 root 1.351 if (o_events != anfd->events)
1801 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1802     }
1803    
1804     if (o_reify & EV__IOFDSET)
1805     backend_modify (EV_A_ fd, o_events, anfd->events);
1806 root 1.27 }
1807    
1808     fdchangecnt = 0;
1809     }
1810    
1811 root 1.288 /* something about the given fd changed */
1812 root 1.284 inline_size void
1813 root 1.183 fd_change (EV_P_ int fd, int flags)
1814 root 1.27 {
1815 root 1.183 unsigned char reify = anfds [fd].reify;
1816 root 1.184 anfds [fd].reify |= flags;
1817 root 1.27
1818 root 1.183 if (expect_true (!reify))
1819     {
1820     ++fdchangecnt;
1821     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1822     fdchanges [fdchangecnt - 1] = fd;
1823     }
1824 root 1.9 }
1825    
1826 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1827 root 1.379 inline_speed void ecb_cold
1828 root 1.51 fd_kill (EV_P_ int fd)
1829 root 1.41 {
1830 root 1.136 ev_io *w;
1831 root 1.41
1832 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1833 root 1.41 {
1834 root 1.51 ev_io_stop (EV_A_ w);
1835 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1836 root 1.41 }
1837     }
1838    
1839 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1840 root 1.379 inline_size int ecb_cold
1841 root 1.71 fd_valid (int fd)
1842     {
1843 root 1.103 #ifdef _WIN32
1844 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1845 root 1.71 #else
1846     return fcntl (fd, F_GETFD) != -1;
1847     #endif
1848     }
1849    
1850 root 1.19 /* called on EBADF to verify fds */
1851 root 1.379 static void noinline ecb_cold
1852 root 1.51 fd_ebadf (EV_P)
1853 root 1.19 {
1854     int fd;
1855    
1856     for (fd = 0; fd < anfdmax; ++fd)
1857 root 1.27 if (anfds [fd].events)
1858 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1859 root 1.51 fd_kill (EV_A_ fd);
1860 root 1.41 }
1861    
1862     /* called on ENOMEM in select/poll to kill some fds and retry */
1863 root 1.379 static void noinline ecb_cold
1864 root 1.51 fd_enomem (EV_P)
1865 root 1.41 {
1866 root 1.62 int fd;
1867 root 1.41
1868 root 1.62 for (fd = anfdmax; fd--; )
1869 root 1.41 if (anfds [fd].events)
1870     {
1871 root 1.51 fd_kill (EV_A_ fd);
1872 root 1.307 break;
1873 root 1.41 }
1874 root 1.19 }
1875    
1876 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1877 root 1.140 static void noinline
1878 root 1.56 fd_rearm_all (EV_P)
1879     {
1880     int fd;
1881    
1882     for (fd = 0; fd < anfdmax; ++fd)
1883     if (anfds [fd].events)
1884     {
1885     anfds [fd].events = 0;
1886 root 1.268 anfds [fd].emask = 0;
1887 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1888 root 1.56 }
1889     }
1890    
1891 root 1.336 /* used to prepare libev internal fd's */
1892     /* this is not fork-safe */
1893     inline_speed void
1894     fd_intern (int fd)
1895     {
1896     #ifdef _WIN32
1897     unsigned long arg = 1;
1898     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1899     #else
1900     fcntl (fd, F_SETFD, FD_CLOEXEC);
1901     fcntl (fd, F_SETFL, O_NONBLOCK);
1902     #endif
1903     }
1904    
1905 root 1.8 /*****************************************************************************/
1906    
1907 root 1.235 /*
1908 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1909 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1910     * the branching factor of the d-tree.
1911     */
1912    
1913     /*
1914 root 1.235 * at the moment we allow libev the luxury of two heaps,
1915     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1916     * which is more cache-efficient.
1917     * the difference is about 5% with 50000+ watchers.
1918     */
1919 root 1.241 #if EV_USE_4HEAP
1920 root 1.235
1921 root 1.237 #define DHEAP 4
1922     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1923 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1924 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1925 root 1.235
1926     /* away from the root */
1927 root 1.284 inline_speed void
1928 root 1.241 downheap (ANHE *heap, int N, int k)
1929 root 1.235 {
1930 root 1.241 ANHE he = heap [k];
1931     ANHE *E = heap + N + HEAP0;
1932 root 1.235
1933     for (;;)
1934     {
1935     ev_tstamp minat;
1936 root 1.241 ANHE *minpos;
1937 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1938 root 1.235
1939 root 1.248 /* find minimum child */
1940 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1941 root 1.235 {
1942 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1943     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1944     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1945     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1946 root 1.235 }
1947 root 1.240 else if (pos < E)
1948 root 1.235 {
1949 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1950     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1951     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1952     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1953 root 1.235 }
1954 root 1.240 else
1955     break;
1956 root 1.235
1957 root 1.241 if (ANHE_at (he) <= minat)
1958 root 1.235 break;
1959    
1960 root 1.247 heap [k] = *minpos;
1961 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1962 root 1.235
1963     k = minpos - heap;
1964     }
1965    
1966 root 1.247 heap [k] = he;
1967 root 1.241 ev_active (ANHE_w (he)) = k;
1968 root 1.235 }
1969    
1970 root 1.248 #else /* 4HEAP */
1971 root 1.235
1972     #define HEAP0 1
1973 root 1.247 #define HPARENT(k) ((k) >> 1)
1974 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1975 root 1.235
1976 root 1.248 /* away from the root */
1977 root 1.284 inline_speed void
1978 root 1.248 downheap (ANHE *heap, int N, int k)
1979 root 1.1 {
1980 root 1.241 ANHE he = heap [k];
1981 root 1.1
1982 root 1.228 for (;;)
1983 root 1.1 {
1984 root 1.248 int c = k << 1;
1985 root 1.179
1986 root 1.309 if (c >= N + HEAP0)
1987 root 1.179 break;
1988    
1989 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1990     ? 1 : 0;
1991    
1992     if (ANHE_at (he) <= ANHE_at (heap [c]))
1993     break;
1994    
1995     heap [k] = heap [c];
1996 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1997 root 1.248
1998     k = c;
1999 root 1.1 }
2000    
2001 root 1.243 heap [k] = he;
2002 root 1.248 ev_active (ANHE_w (he)) = k;
2003 root 1.1 }
2004 root 1.248 #endif
2005 root 1.1
2006 root 1.248 /* towards the root */
2007 root 1.284 inline_speed void
2008 root 1.248 upheap (ANHE *heap, int k)
2009 root 1.1 {
2010 root 1.241 ANHE he = heap [k];
2011 root 1.1
2012 root 1.179 for (;;)
2013 root 1.1 {
2014 root 1.248 int p = HPARENT (k);
2015 root 1.179
2016 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2017 root 1.179 break;
2018 root 1.1
2019 root 1.248 heap [k] = heap [p];
2020 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2021 root 1.248 k = p;
2022 root 1.1 }
2023    
2024 root 1.241 heap [k] = he;
2025     ev_active (ANHE_w (he)) = k;
2026 root 1.1 }
2027    
2028 root 1.288 /* move an element suitably so it is in a correct place */
2029 root 1.284 inline_size void
2030 root 1.241 adjustheap (ANHE *heap, int N, int k)
2031 root 1.84 {
2032 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2033 root 1.247 upheap (heap, k);
2034     else
2035     downheap (heap, N, k);
2036 root 1.84 }
2037    
2038 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2039 root 1.284 inline_size void
2040 root 1.248 reheap (ANHE *heap, int N)
2041     {
2042     int i;
2043 root 1.251
2044 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2045     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2046     for (i = 0; i < N; ++i)
2047     upheap (heap, i + HEAP0);
2048     }
2049    
2050 root 1.8 /*****************************************************************************/
2051    
2052 root 1.288 /* associate signal watchers to a signal signal */
2053 root 1.7 typedef struct
2054     {
2055 root 1.307 EV_ATOMIC_T pending;
2056 root 1.306 #if EV_MULTIPLICITY
2057     EV_P;
2058     #endif
2059 root 1.68 WL head;
2060 root 1.7 } ANSIG;
2061    
2062 root 1.306 static ANSIG signals [EV_NSIG - 1];
2063 root 1.7
2064 root 1.207 /*****************************************************************************/
2065    
2066 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2067 root 1.207
2068 root 1.379 static void noinline ecb_cold
2069 root 1.207 evpipe_init (EV_P)
2070     {
2071 root 1.288 if (!ev_is_active (&pipe_w))
2072 root 1.207 {
2073 root 1.448 int fds [2];
2074    
2075 root 1.336 # if EV_USE_EVENTFD
2076 root 1.448 fds [0] = -1;
2077     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2078     if (fds [1] < 0 && errno == EINVAL)
2079     fds [1] = eventfd (0, 0);
2080    
2081     if (fds [1] < 0)
2082     # endif
2083     {
2084     while (pipe (fds))
2085     ev_syserr ("(libev) error creating signal/async pipe");
2086    
2087     fd_intern (fds [0]);
2088 root 1.220 }
2089 root 1.448
2090     fd_intern (fds [1]);
2091    
2092     evpipe [0] = fds [0];
2093    
2094     if (evpipe [1] < 0)
2095     evpipe [1] = fds [1]; /* first call, set write fd */
2096 root 1.220 else
2097     {
2098 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2099     /* so that evpipe_write can always rely on its value. */
2100     /* this branch does not do anything sensible on windows, */
2101     /* so must not be executed on windows */
2102 root 1.207
2103 root 1.448 dup2 (fds [1], evpipe [1]);
2104     close (fds [1]);
2105 root 1.220 }
2106 root 1.207
2107 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2108 root 1.288 ev_io_start (EV_A_ &pipe_w);
2109 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2110 root 1.207 }
2111     }
2112    
2113 root 1.380 inline_speed void
2114 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2115 root 1.207 {
2116 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2117    
2118 root 1.383 if (expect_true (*flag))
2119 root 1.387 return;
2120 root 1.383
2121     *flag = 1;
2122 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2123 root 1.383
2124     pipe_write_skipped = 1;
2125 root 1.378
2126 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2127 root 1.214
2128 root 1.383 if (pipe_write_wanted)
2129     {
2130     int old_errno;
2131 root 1.378
2132 root 1.436 pipe_write_skipped = 0;
2133     ECB_MEMORY_FENCE_RELEASE;
2134 root 1.220
2135 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2136 root 1.380
2137 root 1.220 #if EV_USE_EVENTFD
2138 root 1.448 if (evpipe [0] < 0)
2139 root 1.383 {
2140     uint64_t counter = 1;
2141 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2142 root 1.383 }
2143     else
2144 root 1.220 #endif
2145 root 1.383 {
2146 root 1.427 #ifdef _WIN32
2147     WSABUF buf;
2148     DWORD sent;
2149     buf.buf = &buf;
2150     buf.len = 1;
2151     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2152     #else
2153 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2154 root 1.427 #endif
2155 root 1.383 }
2156 root 1.214
2157 root 1.383 errno = old_errno;
2158 root 1.207 }
2159     }
2160    
2161 root 1.288 /* called whenever the libev signal pipe */
2162     /* got some events (signal, async) */
2163 root 1.207 static void
2164     pipecb (EV_P_ ev_io *iow, int revents)
2165     {
2166 root 1.307 int i;
2167    
2168 root 1.378 if (revents & EV_READ)
2169     {
2170 root 1.220 #if EV_USE_EVENTFD
2171 root 1.448 if (evpipe [0] < 0)
2172 root 1.378 {
2173     uint64_t counter;
2174 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2175 root 1.378 }
2176     else
2177 root 1.220 #endif
2178 root 1.378 {
2179 root 1.427 char dummy[4];
2180     #ifdef _WIN32
2181     WSABUF buf;
2182     DWORD recvd;
2183 root 1.432 DWORD flags = 0;
2184 root 1.427 buf.buf = dummy;
2185     buf.len = sizeof (dummy);
2186 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2187 root 1.427 #else
2188     read (evpipe [0], &dummy, sizeof (dummy));
2189     #endif
2190 root 1.378 }
2191 root 1.220 }
2192 root 1.207
2193 root 1.378 pipe_write_skipped = 0;
2194    
2195 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2196    
2197 root 1.369 #if EV_SIGNAL_ENABLE
2198 root 1.307 if (sig_pending)
2199 root 1.372 {
2200 root 1.307 sig_pending = 0;
2201 root 1.207
2202 root 1.436 ECB_MEMORY_FENCE;
2203 root 1.424
2204 root 1.307 for (i = EV_NSIG - 1; i--; )
2205     if (expect_false (signals [i].pending))
2206     ev_feed_signal_event (EV_A_ i + 1);
2207 root 1.207 }
2208 root 1.369 #endif
2209 root 1.207
2210 root 1.209 #if EV_ASYNC_ENABLE
2211 root 1.307 if (async_pending)
2212 root 1.207 {
2213 root 1.307 async_pending = 0;
2214 root 1.207
2215 root 1.436 ECB_MEMORY_FENCE;
2216 root 1.424
2217 root 1.207 for (i = asynccnt; i--; )
2218     if (asyncs [i]->sent)
2219     {
2220     asyncs [i]->sent = 0;
2221 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2222 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2223     }
2224     }
2225 root 1.209 #endif
2226 root 1.207 }
2227    
2228     /*****************************************************************************/
2229    
2230 root 1.366 void
2231 root 1.420 ev_feed_signal (int signum) EV_THROW
2232 root 1.7 {
2233 root 1.207 #if EV_MULTIPLICITY
2234 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2235 root 1.306 EV_P = signals [signum - 1].loop;
2236 root 1.366
2237     if (!EV_A)
2238     return;
2239 root 1.207 #endif
2240    
2241 root 1.366 signals [signum - 1].pending = 1;
2242     evpipe_write (EV_A_ &sig_pending);
2243     }
2244    
2245     static void
2246     ev_sighandler (int signum)
2247     {
2248 root 1.322 #ifdef _WIN32
2249 root 1.218 signal (signum, ev_sighandler);
2250 root 1.67 #endif
2251    
2252 root 1.366 ev_feed_signal (signum);
2253 root 1.7 }
2254    
2255 root 1.140 void noinline
2256 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2257 root 1.79 {
2258 root 1.80 WL w;
2259    
2260 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2261 root 1.307 return;
2262    
2263     --signum;
2264    
2265 root 1.79 #if EV_MULTIPLICITY
2266 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2267     /* or, likely more useful, feeding a signal nobody is waiting for */
2268 root 1.79
2269 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2270 root 1.306 return;
2271 root 1.307 #endif
2272 root 1.306
2273 root 1.307 signals [signum].pending = 0;
2274 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2275 root 1.79
2276     for (w = signals [signum].head; w; w = w->next)
2277     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2278     }
2279    
2280 root 1.303 #if EV_USE_SIGNALFD
2281     static void
2282     sigfdcb (EV_P_ ev_io *iow, int revents)
2283     {
2284 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2285 root 1.303
2286     for (;;)
2287     {
2288     ssize_t res = read (sigfd, si, sizeof (si));
2289    
2290     /* not ISO-C, as res might be -1, but works with SuS */
2291     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2292     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2293    
2294     if (res < (ssize_t)sizeof (si))
2295     break;
2296     }
2297     }
2298     #endif
2299    
2300 root 1.336 #endif
2301    
2302 root 1.8 /*****************************************************************************/
2303    
2304 root 1.336 #if EV_CHILD_ENABLE
2305 root 1.182 static WL childs [EV_PID_HASHSIZE];
2306 root 1.71
2307 root 1.136 static ev_signal childev;
2308 root 1.59
2309 root 1.206 #ifndef WIFCONTINUED
2310     # define WIFCONTINUED(status) 0
2311     #endif
2312    
2313 root 1.288 /* handle a single child status event */
2314 root 1.284 inline_speed void
2315 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2316 root 1.47 {
2317 root 1.136 ev_child *w;
2318 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2319 root 1.47
2320 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2321 root 1.206 {
2322     if ((w->pid == pid || !w->pid)
2323     && (!traced || (w->flags & 1)))
2324     {
2325 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2326 root 1.206 w->rpid = pid;
2327     w->rstatus = status;
2328     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2329     }
2330     }
2331 root 1.47 }
2332    
2333 root 1.142 #ifndef WCONTINUED
2334     # define WCONTINUED 0
2335     #endif
2336    
2337 root 1.288 /* called on sigchld etc., calls waitpid */
2338 root 1.47 static void
2339 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2340 root 1.22 {
2341     int pid, status;
2342    
2343 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2344     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2345     if (!WCONTINUED
2346     || errno != EINVAL
2347     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2348     return;
2349    
2350 root 1.216 /* make sure we are called again until all children have been reaped */
2351 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2352     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2353 root 1.47
2354 root 1.216 child_reap (EV_A_ pid, pid, status);
2355 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2356 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2357 root 1.22 }
2358    
2359 root 1.45 #endif
2360    
2361 root 1.22 /*****************************************************************************/
2362    
2363 root 1.357 #if EV_USE_IOCP
2364     # include "ev_iocp.c"
2365     #endif
2366 root 1.118 #if EV_USE_PORT
2367     # include "ev_port.c"
2368     #endif
2369 root 1.44 #if EV_USE_KQUEUE
2370     # include "ev_kqueue.c"
2371     #endif
2372 root 1.29 #if EV_USE_EPOLL
2373 root 1.1 # include "ev_epoll.c"
2374     #endif
2375 root 1.59 #if EV_USE_POLL
2376 root 1.41 # include "ev_poll.c"
2377     #endif
2378 root 1.29 #if EV_USE_SELECT
2379 root 1.1 # include "ev_select.c"
2380     #endif
2381    
2382 root 1.379 int ecb_cold
2383 root 1.420 ev_version_major (void) EV_THROW
2384 root 1.24 {
2385     return EV_VERSION_MAJOR;
2386     }
2387    
2388 root 1.379 int ecb_cold
2389 root 1.420 ev_version_minor (void) EV_THROW
2390 root 1.24 {
2391     return EV_VERSION_MINOR;
2392     }
2393    
2394 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2395 root 1.379 int inline_size ecb_cold
2396 root 1.51 enable_secure (void)
2397 root 1.41 {
2398 root 1.103 #ifdef _WIN32
2399 root 1.49 return 0;
2400     #else
2401 root 1.41 return getuid () != geteuid ()
2402     || getgid () != getegid ();
2403 root 1.49 #endif
2404 root 1.41 }
2405    
2406 root 1.379 unsigned int ecb_cold
2407 root 1.420 ev_supported_backends (void) EV_THROW
2408 root 1.129 {
2409 root 1.130 unsigned int flags = 0;
2410 root 1.129
2411     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2412     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2413     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2414     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2415     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2416    
2417     return flags;
2418     }
2419    
2420 root 1.379 unsigned int ecb_cold
2421 root 1.420 ev_recommended_backends (void) EV_THROW
2422 root 1.1 {
2423 root 1.131 unsigned int flags = ev_supported_backends ();
2424 root 1.129
2425     #ifndef __NetBSD__
2426     /* kqueue is borked on everything but netbsd apparently */
2427     /* it usually doesn't work correctly on anything but sockets and pipes */
2428     flags &= ~EVBACKEND_KQUEUE;
2429     #endif
2430     #ifdef __APPLE__
2431 root 1.278 /* only select works correctly on that "unix-certified" platform */
2432     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2433     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2434 root 1.129 #endif
2435 root 1.342 #ifdef __FreeBSD__
2436     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2437     #endif
2438 root 1.129
2439     return flags;
2440 root 1.51 }
2441    
2442 root 1.379 unsigned int ecb_cold
2443 root 1.420 ev_embeddable_backends (void) EV_THROW
2444 root 1.134 {
2445 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2446    
2447 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2448 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2449     flags &= ~EVBACKEND_EPOLL;
2450 root 1.196
2451     return flags;
2452 root 1.134 }
2453    
2454     unsigned int
2455 root 1.420 ev_backend (EV_P) EV_THROW
2456 root 1.130 {
2457     return backend;
2458     }
2459    
2460 root 1.338 #if EV_FEATURE_API
2461 root 1.162 unsigned int
2462 root 1.420 ev_iteration (EV_P) EV_THROW
2463 root 1.162 {
2464     return loop_count;
2465     }
2466    
2467 root 1.294 unsigned int
2468 root 1.420 ev_depth (EV_P) EV_THROW
2469 root 1.294 {
2470     return loop_depth;
2471     }
2472    
2473 root 1.193 void
2474 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2475 root 1.193 {
2476     io_blocktime = interval;
2477     }
2478    
2479     void
2480 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2481 root 1.193 {
2482     timeout_blocktime = interval;
2483     }
2484    
2485 root 1.297 void
2486 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2487 root 1.297 {
2488     userdata = data;
2489     }
2490    
2491     void *
2492 root 1.420 ev_userdata (EV_P) EV_THROW
2493 root 1.297 {
2494     return userdata;
2495     }
2496    
2497 root 1.379 void
2498 root 1.420 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2499 root 1.297 {
2500     invoke_cb = invoke_pending_cb;
2501     }
2502    
2503 root 1.379 void
2504 root 1.421 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2505 root 1.297 {
2506 root 1.298 release_cb = release;
2507     acquire_cb = acquire;
2508 root 1.297 }
2509     #endif
2510    
2511 root 1.288 /* initialise a loop structure, must be zero-initialised */
2512 root 1.379 static void noinline ecb_cold
2513 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2514 root 1.51 {
2515 root 1.130 if (!backend)
2516 root 1.23 {
2517 root 1.366 origflags = flags;
2518    
2519 root 1.279 #if EV_USE_REALTIME
2520     if (!have_realtime)
2521     {
2522     struct timespec ts;
2523    
2524     if (!clock_gettime (CLOCK_REALTIME, &ts))
2525     have_realtime = 1;
2526     }
2527     #endif
2528    
2529 root 1.29 #if EV_USE_MONOTONIC
2530 root 1.279 if (!have_monotonic)
2531     {
2532     struct timespec ts;
2533    
2534     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2535     have_monotonic = 1;
2536     }
2537 root 1.1 #endif
2538    
2539 root 1.306 /* pid check not overridable via env */
2540     #ifndef _WIN32
2541     if (flags & EVFLAG_FORKCHECK)
2542     curpid = getpid ();
2543     #endif
2544    
2545     if (!(flags & EVFLAG_NOENV)
2546     && !enable_secure ()
2547     && getenv ("LIBEV_FLAGS"))
2548     flags = atoi (getenv ("LIBEV_FLAGS"));
2549    
2550 root 1.378 ev_rt_now = ev_time ();
2551     mn_now = get_clock ();
2552     now_floor = mn_now;
2553     rtmn_diff = ev_rt_now - mn_now;
2554 root 1.338 #if EV_FEATURE_API
2555 root 1.378 invoke_cb = ev_invoke_pending;
2556 root 1.297 #endif
2557 root 1.1
2558 root 1.378 io_blocktime = 0.;
2559     timeout_blocktime = 0.;
2560     backend = 0;
2561     backend_fd = -1;
2562     sig_pending = 0;
2563 root 1.307 #if EV_ASYNC_ENABLE
2564 root 1.378 async_pending = 0;
2565 root 1.307 #endif
2566 root 1.378 pipe_write_skipped = 0;
2567     pipe_write_wanted = 0;
2568 root 1.448 evpipe [0] = -1;
2569     evpipe [1] = -1;
2570 root 1.209 #if EV_USE_INOTIFY
2571 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2572 root 1.209 #endif
2573 root 1.303 #if EV_USE_SIGNALFD
2574 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2575 root 1.303 #endif
2576 root 1.193
2577 root 1.366 if (!(flags & EVBACKEND_MASK))
2578 root 1.129 flags |= ev_recommended_backends ();
2579 root 1.41
2580 root 1.357 #if EV_USE_IOCP
2581     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2582     #endif
2583 root 1.118 #if EV_USE_PORT
2584 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2585 root 1.118 #endif
2586 root 1.44 #if EV_USE_KQUEUE
2587 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2588 root 1.44 #endif
2589 root 1.29 #if EV_USE_EPOLL
2590 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2591 root 1.41 #endif
2592 root 1.59 #if EV_USE_POLL
2593 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2594 root 1.1 #endif
2595 root 1.29 #if EV_USE_SELECT
2596 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2597 root 1.1 #endif
2598 root 1.70
2599 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2600    
2601 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2602 root 1.288 ev_init (&pipe_w, pipecb);
2603     ev_set_priority (&pipe_w, EV_MAXPRI);
2604 root 1.336 #endif
2605 root 1.56 }
2606     }
2607    
2608 root 1.288 /* free up a loop structure */
2609 root 1.379 void ecb_cold
2610 root 1.422 ev_loop_destroy (EV_P)
2611 root 1.56 {
2612 root 1.65 int i;
2613    
2614 root 1.364 #if EV_MULTIPLICITY
2615 root 1.363 /* mimic free (0) */
2616     if (!EV_A)
2617     return;
2618 root 1.364 #endif
2619 root 1.363
2620 root 1.361 #if EV_CLEANUP_ENABLE
2621     /* queue cleanup watchers (and execute them) */
2622     if (expect_false (cleanupcnt))
2623     {
2624     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2625     EV_INVOKE_PENDING;
2626     }
2627     #endif
2628    
2629 root 1.359 #if EV_CHILD_ENABLE
2630 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2631 root 1.359 {
2632     ev_ref (EV_A); /* child watcher */
2633     ev_signal_stop (EV_A_ &childev);
2634     }
2635     #endif
2636    
2637 root 1.288 if (ev_is_active (&pipe_w))
2638 root 1.207 {
2639 root 1.303 /*ev_ref (EV_A);*/
2640     /*ev_io_stop (EV_A_ &pipe_w);*/
2641 root 1.207
2642 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2643     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2644 root 1.207 }
2645    
2646 root 1.303 #if EV_USE_SIGNALFD
2647     if (ev_is_active (&sigfd_w))
2648 root 1.317 close (sigfd);
2649 root 1.303 #endif
2650    
2651 root 1.152 #if EV_USE_INOTIFY
2652     if (fs_fd >= 0)
2653     close (fs_fd);
2654     #endif
2655    
2656     if (backend_fd >= 0)
2657     close (backend_fd);
2658    
2659 root 1.357 #if EV_USE_IOCP
2660     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2661     #endif
2662 root 1.118 #if EV_USE_PORT
2663 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2664 root 1.118 #endif
2665 root 1.56 #if EV_USE_KQUEUE
2666 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2667 root 1.56 #endif
2668     #if EV_USE_EPOLL
2669 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2670 root 1.56 #endif
2671 root 1.59 #if EV_USE_POLL
2672 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2673 root 1.56 #endif
2674     #if EV_USE_SELECT
2675 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2676 root 1.56 #endif
2677 root 1.1
2678 root 1.65 for (i = NUMPRI; i--; )
2679 root 1.164 {
2680     array_free (pending, [i]);
2681     #if EV_IDLE_ENABLE
2682     array_free (idle, [i]);
2683     #endif
2684     }
2685 root 1.65
2686 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2687 root 1.186
2688 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2689 root 1.284 array_free (rfeed, EMPTY);
2690 root 1.164 array_free (fdchange, EMPTY);
2691     array_free (timer, EMPTY);
2692 root 1.140 #if EV_PERIODIC_ENABLE
2693 root 1.164 array_free (periodic, EMPTY);
2694 root 1.93 #endif
2695 root 1.187 #if EV_FORK_ENABLE
2696     array_free (fork, EMPTY);
2697     #endif
2698 root 1.360 #if EV_CLEANUP_ENABLE
2699     array_free (cleanup, EMPTY);
2700     #endif
2701 root 1.164 array_free (prepare, EMPTY);
2702     array_free (check, EMPTY);
2703 root 1.209 #if EV_ASYNC_ENABLE
2704     array_free (async, EMPTY);
2705     #endif
2706 root 1.65
2707 root 1.130 backend = 0;
2708 root 1.359
2709     #if EV_MULTIPLICITY
2710     if (ev_is_default_loop (EV_A))
2711     #endif
2712     ev_default_loop_ptr = 0;
2713     #if EV_MULTIPLICITY
2714     else
2715     ev_free (EV_A);
2716     #endif
2717 root 1.56 }
2718 root 1.22
2719 root 1.226 #if EV_USE_INOTIFY
2720 root 1.284 inline_size void infy_fork (EV_P);
2721 root 1.226 #endif
2722 root 1.154
2723 root 1.284 inline_size void
2724 root 1.56 loop_fork (EV_P)
2725     {
2726 root 1.118 #if EV_USE_PORT
2727 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2728 root 1.56 #endif
2729     #if EV_USE_KQUEUE
2730 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2731 root 1.45 #endif
2732 root 1.118 #if EV_USE_EPOLL
2733 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2734 root 1.118 #endif
2735 root 1.154 #if EV_USE_INOTIFY
2736     infy_fork (EV_A);
2737     #endif
2738 root 1.70
2739 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2740 root 1.288 if (ev_is_active (&pipe_w))
2741 root 1.70 {
2742 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2743 root 1.70
2744     ev_ref (EV_A);
2745 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2746 root 1.220
2747     if (evpipe [0] >= 0)
2748 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
2749 root 1.207
2750     evpipe_init (EV_A);
2751 root 1.443 /* iterate over everything, in case we missed something before */
2752     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2753 root 1.448 }
2754 root 1.337 #endif
2755 root 1.70
2756     postfork = 0;
2757 root 1.1 }
2758    
2759 root 1.55 #if EV_MULTIPLICITY
2760 root 1.250
2761 root 1.379 struct ev_loop * ecb_cold
2762 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2763 root 1.54 {
2764 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2765 root 1.69
2766 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2767 root 1.108 loop_init (EV_A_ flags);
2768 root 1.56
2769 root 1.130 if (ev_backend (EV_A))
2770 root 1.306 return EV_A;
2771 root 1.54
2772 root 1.359 ev_free (EV_A);
2773 root 1.55 return 0;
2774 root 1.54 }
2775    
2776 root 1.297 #endif /* multiplicity */
2777 root 1.248
2778     #if EV_VERIFY
2779 root 1.379 static void noinline ecb_cold
2780 root 1.251 verify_watcher (EV_P_ W w)
2781     {
2782 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2783 root 1.251
2784     if (w->pending)
2785 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2786 root 1.251 }
2787    
2788 root 1.379 static void noinline ecb_cold
2789 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2790     {
2791     int i;
2792    
2793     for (i = HEAP0; i < N + HEAP0; ++i)
2794     {
2795 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2796     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2797     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2798 root 1.251
2799     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2800     }
2801     }
2802    
2803 root 1.379 static void noinline ecb_cold
2804 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2805 root 1.248 {
2806     while (cnt--)
2807 root 1.251 {
2808 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2809 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2810     }
2811 root 1.248 }
2812 root 1.250 #endif
2813 root 1.248
2814 root 1.338 #if EV_FEATURE_API
2815 root 1.379 void ecb_cold
2816 root 1.420 ev_verify (EV_P) EV_THROW
2817 root 1.248 {
2818 root 1.250 #if EV_VERIFY
2819 root 1.429 int i;
2820 root 1.426 WL w, w2;
2821 root 1.251
2822     assert (activecnt >= -1);
2823    
2824     assert (fdchangemax >= fdchangecnt);
2825     for (i = 0; i < fdchangecnt; ++i)
2826 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2827 root 1.251
2828     assert (anfdmax >= 0);
2829 root 1.429 for (i = 0; i < anfdmax; ++i)
2830     {
2831     int j = 0;
2832    
2833     for (w = w2 = anfds [i].head; w; w = w->next)
2834     {
2835     verify_watcher (EV_A_ (W)w);
2836 root 1.426
2837 root 1.429 if (j++ & 1)
2838     {
2839     assert (("libev: io watcher list contains a loop", w != w2));
2840     w2 = w2->next;
2841     }
2842 root 1.426
2843 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2844     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2845     }
2846     }
2847 root 1.251
2848     assert (timermax >= timercnt);
2849     verify_heap (EV_A_ timers, timercnt);
2850 root 1.248
2851     #if EV_PERIODIC_ENABLE
2852 root 1.251 assert (periodicmax >= periodiccnt);
2853     verify_heap (EV_A_ periodics, periodiccnt);
2854 root 1.248 #endif
2855    
2856 root 1.251 for (i = NUMPRI; i--; )
2857     {
2858     assert (pendingmax [i] >= pendingcnt [i]);
2859 root 1.248 #if EV_IDLE_ENABLE
2860 root 1.252 assert (idleall >= 0);
2861 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2862     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2863 root 1.248 #endif
2864 root 1.251 }
2865    
2866 root 1.248 #if EV_FORK_ENABLE
2867 root 1.251 assert (forkmax >= forkcnt);
2868     array_verify (EV_A_ (W *)forks, forkcnt);
2869 root 1.248 #endif
2870 root 1.251
2871 root 1.360 #if EV_CLEANUP_ENABLE
2872     assert (cleanupmax >= cleanupcnt);
2873     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2874     #endif
2875    
2876 root 1.250 #if EV_ASYNC_ENABLE
2877 root 1.251 assert (asyncmax >= asynccnt);
2878     array_verify (EV_A_ (W *)asyncs, asynccnt);
2879 root 1.250 #endif
2880 root 1.251
2881 root 1.337 #if EV_PREPARE_ENABLE
2882 root 1.251 assert (preparemax >= preparecnt);
2883     array_verify (EV_A_ (W *)prepares, preparecnt);
2884 root 1.337 #endif
2885 root 1.251
2886 root 1.337 #if EV_CHECK_ENABLE
2887 root 1.251 assert (checkmax >= checkcnt);
2888     array_verify (EV_A_ (W *)checks, checkcnt);
2889 root 1.337 #endif
2890 root 1.251
2891     # if 0
2892 root 1.336 #if EV_CHILD_ENABLE
2893 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2894 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2895 root 1.336 #endif
2896 root 1.251 # endif
2897 root 1.248 #endif
2898     }
2899 root 1.297 #endif
2900 root 1.56
2901     #if EV_MULTIPLICITY
2902 root 1.379 struct ev_loop * ecb_cold
2903 root 1.54 #else
2904     int
2905 root 1.358 #endif
2906 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
2907 root 1.54 {
2908 root 1.116 if (!ev_default_loop_ptr)
2909 root 1.56 {
2910     #if EV_MULTIPLICITY
2911 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2912 root 1.56 #else
2913 ayin 1.117 ev_default_loop_ptr = 1;
2914 root 1.54 #endif
2915    
2916 root 1.110 loop_init (EV_A_ flags);
2917 root 1.56
2918 root 1.130 if (ev_backend (EV_A))
2919 root 1.56 {
2920 root 1.336 #if EV_CHILD_ENABLE
2921 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2922     ev_set_priority (&childev, EV_MAXPRI);
2923     ev_signal_start (EV_A_ &childev);
2924     ev_unref (EV_A); /* child watcher should not keep loop alive */
2925     #endif
2926     }
2927     else
2928 root 1.116 ev_default_loop_ptr = 0;
2929 root 1.56 }
2930 root 1.8
2931 root 1.116 return ev_default_loop_ptr;
2932 root 1.1 }
2933    
2934 root 1.24 void
2935 root 1.420 ev_loop_fork (EV_P) EV_THROW
2936 root 1.1 {
2937 root 1.440 postfork = 1;
2938 root 1.1 }
2939    
2940 root 1.8 /*****************************************************************************/
2941    
2942 root 1.168 void
2943     ev_invoke (EV_P_ void *w, int revents)
2944     {
2945     EV_CB_INVOKE ((W)w, revents);
2946     }
2947    
2948 root 1.300 unsigned int
2949 root 1.420 ev_pending_count (EV_P) EV_THROW
2950 root 1.300 {
2951     int pri;
2952     unsigned int count = 0;
2953    
2954     for (pri = NUMPRI; pri--; )
2955     count += pendingcnt [pri];
2956    
2957     return count;
2958     }
2959    
2960 root 1.297 void noinline
2961 root 1.296 ev_invoke_pending (EV_P)
2962 root 1.1 {
2963 root 1.445 pendingpri = NUMPRI;
2964    
2965     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2966     {
2967     --pendingpri;
2968    
2969     while (pendingcnt [pendingpri])
2970     {
2971     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2972 root 1.1
2973 root 1.445 p->w->pending = 0;
2974     EV_CB_INVOKE (p->w, p->events);
2975     EV_FREQUENT_CHECK;
2976     }
2977     }
2978 root 1.1 }
2979    
2980 root 1.234 #if EV_IDLE_ENABLE
2981 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2982     /* only when higher priorities are idle" logic */
2983 root 1.284 inline_size void
2984 root 1.234 idle_reify (EV_P)
2985     {
2986     if (expect_false (idleall))
2987     {
2988     int pri;
2989    
2990     for (pri = NUMPRI; pri--; )
2991     {
2992     if (pendingcnt [pri])
2993     break;
2994    
2995     if (idlecnt [pri])
2996     {
2997     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2998     break;
2999     }
3000     }
3001     }
3002     }
3003     #endif
3004    
3005 root 1.288 /* make timers pending */
3006 root 1.284 inline_size void
3007 root 1.51 timers_reify (EV_P)
3008 root 1.1 {
3009 root 1.248 EV_FREQUENT_CHECK;
3010    
3011 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3012 root 1.1 {
3013 root 1.284 do
3014     {
3015     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3016 root 1.1
3017 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3018    
3019     /* first reschedule or stop timer */
3020     if (w->repeat)
3021     {
3022     ev_at (w) += w->repeat;
3023     if (ev_at (w) < mn_now)
3024     ev_at (w) = mn_now;
3025 root 1.61
3026 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3027 root 1.90
3028 root 1.284 ANHE_at_cache (timers [HEAP0]);
3029     downheap (timers, timercnt, HEAP0);
3030     }
3031     else
3032     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3033 root 1.243
3034 root 1.284 EV_FREQUENT_CHECK;
3035     feed_reverse (EV_A_ (W)w);
3036 root 1.12 }
3037 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3038 root 1.30
3039 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3040 root 1.12 }
3041     }
3042 root 1.4
3043 root 1.140 #if EV_PERIODIC_ENABLE
3044 root 1.370
3045 root 1.373 static void noinline
3046 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3047     {
3048 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3049     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3050    
3051     /* the above almost always errs on the low side */
3052     while (at <= ev_rt_now)
3053     {
3054     ev_tstamp nat = at + w->interval;
3055    
3056     /* when resolution fails us, we use ev_rt_now */
3057     if (expect_false (nat == at))
3058     {
3059     at = ev_rt_now;
3060     break;
3061     }
3062    
3063     at = nat;
3064     }
3065    
3066     ev_at (w) = at;
3067 root 1.370 }
3068    
3069 root 1.288 /* make periodics pending */
3070 root 1.284 inline_size void
3071 root 1.51 periodics_reify (EV_P)
3072 root 1.12 {
3073 root 1.248 EV_FREQUENT_CHECK;
3074 root 1.250
3075 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3076 root 1.12 {
3077 root 1.284 do
3078     {
3079     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3080 root 1.1
3081 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3082 root 1.61
3083 root 1.284 /* first reschedule or stop timer */
3084     if (w->reschedule_cb)
3085     {
3086     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3087 root 1.243
3088 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3089 root 1.243
3090 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3091     downheap (periodics, periodiccnt, HEAP0);
3092     }
3093     else if (w->interval)
3094 root 1.246 {
3095 root 1.370 periodic_recalc (EV_A_ w);
3096 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3097     downheap (periodics, periodiccnt, HEAP0);
3098 root 1.246 }
3099 root 1.284 else
3100     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3101 root 1.243
3102 root 1.284 EV_FREQUENT_CHECK;
3103     feed_reverse (EV_A_ (W)w);
3104 root 1.1 }
3105 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3106 root 1.12
3107 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3108 root 1.12 }
3109     }
3110    
3111 root 1.288 /* simply recalculate all periodics */
3112 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3113 root 1.379 static void noinline ecb_cold
3114 root 1.54 periodics_reschedule (EV_P)
3115 root 1.12 {
3116     int i;
3117    
3118 root 1.13 /* adjust periodics after time jump */
3119 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3120 root 1.12 {
3121 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3122 root 1.12
3123 root 1.77 if (w->reschedule_cb)
3124 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3125 root 1.77 else if (w->interval)
3126 root 1.370 periodic_recalc (EV_A_ w);
3127 root 1.242
3128 root 1.248 ANHE_at_cache (periodics [i]);
3129 root 1.77 }
3130 root 1.12
3131 root 1.248 reheap (periodics, periodiccnt);
3132 root 1.1 }
3133 root 1.93 #endif
3134 root 1.1
3135 root 1.288 /* adjust all timers by a given offset */
3136 root 1.379 static void noinline ecb_cold
3137 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3138     {
3139     int i;
3140    
3141     for (i = 0; i < timercnt; ++i)
3142     {
3143     ANHE *he = timers + i + HEAP0;
3144     ANHE_w (*he)->at += adjust;
3145     ANHE_at_cache (*he);
3146     }
3147     }
3148    
3149 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3150 root 1.324 /* also detect if there was a timejump, and act accordingly */
3151 root 1.284 inline_speed void
3152 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3153 root 1.4 {
3154 root 1.40 #if EV_USE_MONOTONIC
3155     if (expect_true (have_monotonic))
3156     {
3157 root 1.289 int i;
3158 root 1.178 ev_tstamp odiff = rtmn_diff;
3159    
3160     mn_now = get_clock ();
3161    
3162     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3163     /* interpolate in the meantime */
3164     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3165 root 1.40 {
3166 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3167     return;
3168     }
3169    
3170     now_floor = mn_now;
3171     ev_rt_now = ev_time ();
3172 root 1.4
3173 root 1.178 /* loop a few times, before making important decisions.
3174     * on the choice of "4": one iteration isn't enough,
3175     * in case we get preempted during the calls to
3176     * ev_time and get_clock. a second call is almost guaranteed
3177     * to succeed in that case, though. and looping a few more times
3178     * doesn't hurt either as we only do this on time-jumps or
3179     * in the unlikely event of having been preempted here.
3180     */
3181     for (i = 4; --i; )
3182     {
3183 root 1.373 ev_tstamp diff;
3184 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3185 root 1.4
3186 root 1.373 diff = odiff - rtmn_diff;
3187    
3188     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3189 root 1.178 return; /* all is well */
3190 root 1.4
3191 root 1.178 ev_rt_now = ev_time ();
3192     mn_now = get_clock ();
3193     now_floor = mn_now;
3194     }
3195 root 1.4
3196 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3197     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3198 root 1.140 # if EV_PERIODIC_ENABLE
3199 root 1.178 periodics_reschedule (EV_A);
3200 root 1.93 # endif
3201 root 1.4 }
3202     else
3203 root 1.40 #endif
3204 root 1.4 {
3205 root 1.85 ev_rt_now = ev_time ();
3206 root 1.40
3207 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3208 root 1.13 {
3209 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3210     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3211 root 1.140 #if EV_PERIODIC_ENABLE
3212 root 1.54 periodics_reschedule (EV_A);
3213 root 1.93 #endif
3214 root 1.13 }
3215 root 1.4
3216 root 1.85 mn_now = ev_rt_now;
3217 root 1.4 }
3218     }
3219    
3220 root 1.418 int
3221 root 1.353 ev_run (EV_P_ int flags)
3222 root 1.1 {
3223 root 1.338 #if EV_FEATURE_API
3224 root 1.294 ++loop_depth;
3225 root 1.297 #endif
3226 root 1.294
3227 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3228 root 1.298
3229 root 1.353 loop_done = EVBREAK_CANCEL;
3230 root 1.1
3231 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3232 root 1.158
3233 root 1.161 do
3234 root 1.9 {
3235 root 1.250 #if EV_VERIFY >= 2
3236 root 1.340 ev_verify (EV_A);
3237 root 1.250 #endif
3238    
3239 root 1.158 #ifndef _WIN32
3240     if (expect_false (curpid)) /* penalise the forking check even more */
3241     if (expect_false (getpid () != curpid))
3242     {
3243     curpid = getpid ();
3244     postfork = 1;
3245     }
3246     #endif
3247    
3248 root 1.157 #if EV_FORK_ENABLE
3249     /* we might have forked, so queue fork handlers */
3250     if (expect_false (postfork))
3251     if (forkcnt)
3252     {
3253     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3254 root 1.297 EV_INVOKE_PENDING;
3255 root 1.157 }
3256     #endif
3257 root 1.147
3258 root 1.337 #if EV_PREPARE_ENABLE
3259 root 1.170 /* queue prepare watchers (and execute them) */
3260 root 1.40 if (expect_false (preparecnt))
3261 root 1.20 {
3262 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3263 root 1.297 EV_INVOKE_PENDING;
3264 root 1.20 }
3265 root 1.337 #endif
3266 root 1.9
3267 root 1.298 if (expect_false (loop_done))
3268     break;
3269    
3270 root 1.70 /* we might have forked, so reify kernel state if necessary */
3271     if (expect_false (postfork))
3272     loop_fork (EV_A);
3273    
3274 root 1.1 /* update fd-related kernel structures */
3275 root 1.51 fd_reify (EV_A);
3276 root 1.1
3277     /* calculate blocking time */
3278 root 1.135 {
3279 root 1.193 ev_tstamp waittime = 0.;
3280     ev_tstamp sleeptime = 0.;
3281 root 1.12
3282 root 1.353 /* remember old timestamp for io_blocktime calculation */
3283     ev_tstamp prev_mn_now = mn_now;
3284 root 1.293
3285 root 1.353 /* update time to cancel out callback processing overhead */
3286     time_update (EV_A_ 1e100);
3287 root 1.135
3288 root 1.378 /* from now on, we want a pipe-wake-up */
3289     pipe_write_wanted = 1;
3290    
3291 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3292 root 1.383
3293 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3294 root 1.353 {
3295 root 1.287 waittime = MAX_BLOCKTIME;
3296    
3297 root 1.135 if (timercnt)
3298     {
3299 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3300 root 1.193 if (waittime > to) waittime = to;
3301 root 1.135 }
3302 root 1.4
3303 root 1.140 #if EV_PERIODIC_ENABLE
3304 root 1.135 if (periodiccnt)
3305     {
3306 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3307 root 1.193 if (waittime > to) waittime = to;
3308 root 1.135 }
3309 root 1.93 #endif
3310 root 1.4
3311 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3312 root 1.193 if (expect_false (waittime < timeout_blocktime))
3313     waittime = timeout_blocktime;
3314    
3315 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3316     /* to pass a minimum nonzero value to the backend */
3317     if (expect_false (waittime < backend_mintime))
3318     waittime = backend_mintime;
3319    
3320 root 1.293 /* extra check because io_blocktime is commonly 0 */
3321     if (expect_false (io_blocktime))
3322     {
3323     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3324 root 1.193
3325 root 1.376 if (sleeptime > waittime - backend_mintime)
3326     sleeptime = waittime - backend_mintime;
3327 root 1.193
3328 root 1.293 if (expect_true (sleeptime > 0.))
3329     {
3330     ev_sleep (sleeptime);
3331     waittime -= sleeptime;
3332     }
3333 root 1.193 }
3334 root 1.135 }
3335 root 1.1
3336 root 1.338 #if EV_FEATURE_API
3337 root 1.162 ++loop_count;
3338 root 1.297 #endif
3339 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3340 root 1.193 backend_poll (EV_A_ waittime);
3341 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3342 root 1.178
3343 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3344 root 1.378
3345 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3346 root 1.378 if (pipe_write_skipped)
3347     {
3348     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3349     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3350     }
3351    
3352    
3353 root 1.178 /* update ev_rt_now, do magic */
3354 root 1.193 time_update (EV_A_ waittime + sleeptime);
3355 root 1.135 }
3356 root 1.1
3357 root 1.9 /* queue pending timers and reschedule them */
3358 root 1.51 timers_reify (EV_A); /* relative timers called last */
3359 root 1.140 #if EV_PERIODIC_ENABLE
3360 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3361 root 1.93 #endif
3362 root 1.1
3363 root 1.164 #if EV_IDLE_ENABLE
3364 root 1.137 /* queue idle watchers unless other events are pending */
3365 root 1.164 idle_reify (EV_A);
3366     #endif
3367 root 1.9
3368 root 1.337 #if EV_CHECK_ENABLE
3369 root 1.20 /* queue check watchers, to be executed first */
3370 root 1.123 if (expect_false (checkcnt))
3371 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3372 root 1.337 #endif
3373 root 1.9
3374 root 1.297 EV_INVOKE_PENDING;
3375 root 1.1 }
3376 root 1.219 while (expect_true (
3377     activecnt
3378     && !loop_done
3379 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3380 root 1.219 ));
3381 root 1.13
3382 root 1.353 if (loop_done == EVBREAK_ONE)
3383     loop_done = EVBREAK_CANCEL;
3384 root 1.294
3385 root 1.338 #if EV_FEATURE_API
3386 root 1.294 --loop_depth;
3387 root 1.297 #endif
3388 root 1.418
3389     return activecnt;
3390 root 1.51 }
3391    
3392     void
3393 root 1.420 ev_break (EV_P_ int how) EV_THROW
3394 root 1.51 {
3395     loop_done = how;
3396 root 1.1 }
3397    
3398 root 1.285 void
3399 root 1.420 ev_ref (EV_P) EV_THROW
3400 root 1.285 {
3401     ++activecnt;
3402     }
3403    
3404     void
3405 root 1.420 ev_unref (EV_P) EV_THROW
3406 root 1.285 {
3407     --activecnt;
3408     }
3409    
3410     void
3411 root 1.420 ev_now_update (EV_P) EV_THROW
3412 root 1.285 {
3413     time_update (EV_A_ 1e100);
3414     }
3415    
3416     void
3417 root 1.420 ev_suspend (EV_P) EV_THROW
3418 root 1.285 {
3419     ev_now_update (EV_A);
3420     }
3421    
3422     void
3423 root 1.420 ev_resume (EV_P) EV_THROW
3424 root 1.285 {
3425     ev_tstamp mn_prev = mn_now;
3426    
3427     ev_now_update (EV_A);
3428     timers_reschedule (EV_A_ mn_now - mn_prev);
3429 root 1.286 #if EV_PERIODIC_ENABLE
3430 root 1.288 /* TODO: really do this? */
3431 root 1.285 periodics_reschedule (EV_A);
3432 root 1.286 #endif
3433 root 1.285 }
3434    
3435 root 1.8 /*****************************************************************************/
3436 root 1.288 /* singly-linked list management, used when the expected list length is short */
3437 root 1.8
3438 root 1.284 inline_size void
3439 root 1.10 wlist_add (WL *head, WL elem)
3440 root 1.1 {
3441     elem->next = *head;
3442     *head = elem;
3443     }
3444    
3445 root 1.284 inline_size void
3446 root 1.10 wlist_del (WL *head, WL elem)
3447 root 1.1 {
3448     while (*head)
3449     {
3450 root 1.307 if (expect_true (*head == elem))
3451 root 1.1 {
3452     *head = elem->next;
3453 root 1.307 break;
3454 root 1.1 }
3455    
3456     head = &(*head)->next;
3457     }
3458     }
3459    
3460 root 1.288 /* internal, faster, version of ev_clear_pending */
3461 root 1.284 inline_speed void
3462 root 1.166 clear_pending (EV_P_ W w)
3463 root 1.16 {
3464     if (w->pending)
3465     {
3466 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3467 root 1.16 w->pending = 0;
3468     }
3469     }
3470    
3471 root 1.167 int
3472 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3473 root 1.166 {
3474     W w_ = (W)w;
3475     int pending = w_->pending;
3476    
3477 root 1.172 if (expect_true (pending))
3478     {
3479     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3480 root 1.288 p->w = (W)&pending_w;
3481 root 1.172 w_->pending = 0;
3482     return p->events;
3483     }
3484     else
3485 root 1.167 return 0;
3486 root 1.166 }
3487    
3488 root 1.284 inline_size void
3489 root 1.164 pri_adjust (EV_P_ W w)
3490     {
3491 root 1.295 int pri = ev_priority (w);
3492 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3493     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3494 root 1.295 ev_set_priority (w, pri);
3495 root 1.164 }
3496    
3497 root 1.284 inline_speed void
3498 root 1.51 ev_start (EV_P_ W w, int active)
3499 root 1.1 {
3500 root 1.164 pri_adjust (EV_A_ w);
3501 root 1.1 w->active = active;
3502 root 1.51 ev_ref (EV_A);
3503 root 1.1 }
3504    
3505 root 1.284 inline_size void
3506 root 1.51 ev_stop (EV_P_ W w)
3507 root 1.1 {
3508 root 1.51 ev_unref (EV_A);
3509 root 1.1 w->active = 0;
3510     }
3511    
3512 root 1.8 /*****************************************************************************/
3513    
3514 root 1.171 void noinline
3515 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3516 root 1.1 {
3517 root 1.37 int fd = w->fd;
3518    
3519 root 1.123 if (expect_false (ev_is_active (w)))
3520 root 1.1 return;
3521    
3522 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3523 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3524 root 1.33
3525 root 1.248 EV_FREQUENT_CHECK;
3526    
3527 root 1.51 ev_start (EV_A_ (W)w, 1);
3528 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3529 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3530 root 1.1
3531 root 1.426 /* common bug, apparently */
3532     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3533    
3534 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3535 root 1.281 w->events &= ~EV__IOFDSET;
3536 root 1.248
3537     EV_FREQUENT_CHECK;
3538 root 1.1 }
3539    
3540 root 1.171 void noinline
3541 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3542 root 1.1 {
3543 root 1.166 clear_pending (EV_A_ (W)w);
3544 root 1.123 if (expect_false (!ev_is_active (w)))
3545 root 1.1 return;
3546    
3547 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3548 root 1.89
3549 root 1.248 EV_FREQUENT_CHECK;
3550    
3551 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3552 root 1.51 ev_stop (EV_A_ (W)w);
3553 root 1.1
3554 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3555 root 1.248
3556     EV_FREQUENT_CHECK;
3557 root 1.1 }
3558    
3559 root 1.171 void noinline
3560 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3561 root 1.1 {
3562 root 1.123 if (expect_false (ev_is_active (w)))
3563 root 1.1 return;
3564    
3565 root 1.228 ev_at (w) += mn_now;
3566 root 1.12
3567 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3568 root 1.13
3569 root 1.248 EV_FREQUENT_CHECK;
3570    
3571     ++timercnt;
3572     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3573 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3574     ANHE_w (timers [ev_active (w)]) = (WT)w;
3575 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3576 root 1.235 upheap (timers, ev_active (w));
3577 root 1.62
3578 root 1.248 EV_FREQUENT_CHECK;
3579    
3580 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3581 root 1.12 }
3582    
3583 root 1.171 void noinline
3584 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3585 root 1.12 {
3586 root 1.166 clear_pending (EV_A_ (W)w);
3587 root 1.123 if (expect_false (!ev_is_active (w)))
3588 root 1.12 return;
3589    
3590 root 1.248 EV_FREQUENT_CHECK;
3591    
3592 root 1.230 {
3593     int active = ev_active (w);
3594 root 1.62
3595 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3596 root 1.151
3597 root 1.248 --timercnt;
3598    
3599     if (expect_true (active < timercnt + HEAP0))
3600 root 1.151 {
3601 root 1.248 timers [active] = timers [timercnt + HEAP0];
3602 root 1.181 adjustheap (timers, timercnt, active);
3603 root 1.151 }
3604 root 1.248 }
3605 root 1.228
3606     ev_at (w) -= mn_now;
3607 root 1.14
3608 root 1.51 ev_stop (EV_A_ (W)w);
3609 root 1.328
3610     EV_FREQUENT_CHECK;
3611 root 1.12 }
3612 root 1.4
3613 root 1.171 void noinline
3614 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3615 root 1.14 {
3616 root 1.248 EV_FREQUENT_CHECK;
3617    
3618 root 1.407 clear_pending (EV_A_ (W)w);
3619 root 1.406
3620 root 1.14 if (ev_is_active (w))
3621     {
3622     if (w->repeat)
3623 root 1.99 {
3624 root 1.228 ev_at (w) = mn_now + w->repeat;
3625 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3626 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3627 root 1.99 }
3628 root 1.14 else
3629 root 1.51 ev_timer_stop (EV_A_ w);
3630 root 1.14 }
3631     else if (w->repeat)
3632 root 1.112 {
3633 root 1.229 ev_at (w) = w->repeat;
3634 root 1.112 ev_timer_start (EV_A_ w);
3635     }
3636 root 1.248
3637     EV_FREQUENT_CHECK;
3638 root 1.14 }
3639    
3640 root 1.301 ev_tstamp
3641 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3642 root 1.301 {
3643     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3644     }
3645    
3646 root 1.140 #if EV_PERIODIC_ENABLE
3647 root 1.171 void noinline
3648 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3649 root 1.12 {
3650 root 1.123 if (expect_false (ev_is_active (w)))
3651 root 1.12 return;
3652 root 1.1
3653 root 1.77 if (w->reschedule_cb)
3654 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3655 root 1.77 else if (w->interval)
3656     {
3657 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3658 root 1.370 periodic_recalc (EV_A_ w);
3659 root 1.77 }
3660 root 1.173 else
3661 root 1.228 ev_at (w) = w->offset;
3662 root 1.12
3663 root 1.248 EV_FREQUENT_CHECK;
3664    
3665     ++periodiccnt;
3666     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3667 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3668     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3669 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3670 root 1.235 upheap (periodics, ev_active (w));
3671 root 1.62
3672 root 1.248 EV_FREQUENT_CHECK;
3673    
3674 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3675 root 1.1 }
3676    
3677 root 1.171 void noinline
3678 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3679 root 1.1 {
3680 root 1.166 clear_pending (EV_A_ (W)w);
3681 root 1.123 if (expect_false (!ev_is_active (w)))
3682 root 1.1 return;
3683    
3684 root 1.248 EV_FREQUENT_CHECK;
3685    
3686 root 1.230 {
3687     int active = ev_active (w);
3688 root 1.62
3689 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3690 root 1.151
3691 root 1.248 --periodiccnt;
3692    
3693     if (expect_true (active < periodiccnt + HEAP0))
3694 root 1.151 {
3695 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3696 root 1.181 adjustheap (periodics, periodiccnt, active);
3697 root 1.151 }
3698 root 1.248 }
3699 root 1.228
3700 root 1.328 ev_stop (EV_A_ (W)w);
3701    
3702 root 1.248 EV_FREQUENT_CHECK;
3703 root 1.1 }
3704    
3705 root 1.171 void noinline
3706 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3707 root 1.77 {
3708 root 1.84 /* TODO: use adjustheap and recalculation */
3709 root 1.77 ev_periodic_stop (EV_A_ w);
3710     ev_periodic_start (EV_A_ w);
3711     }
3712 root 1.93 #endif
3713 root 1.77
3714 root 1.56 #ifndef SA_RESTART
3715     # define SA_RESTART 0
3716     #endif
3717    
3718 root 1.336 #if EV_SIGNAL_ENABLE
3719    
3720 root 1.171 void noinline
3721 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3722 root 1.56 {
3723 root 1.123 if (expect_false (ev_is_active (w)))
3724 root 1.56 return;
3725    
3726 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3727    
3728     #if EV_MULTIPLICITY
3729 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3730 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3731    
3732     signals [w->signum - 1].loop = EV_A;
3733 root 1.449 ECB_MEMORY_FENCE_RELEASE;
3734 root 1.306 #endif
3735 root 1.56
3736 root 1.303 EV_FREQUENT_CHECK;
3737    
3738     #if EV_USE_SIGNALFD
3739     if (sigfd == -2)
3740     {
3741     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3742     if (sigfd < 0 && errno == EINVAL)
3743     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3744    
3745     if (sigfd >= 0)
3746     {
3747     fd_intern (sigfd); /* doing it twice will not hurt */
3748    
3749     sigemptyset (&sigfd_set);
3750    
3751     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3752     ev_set_priority (&sigfd_w, EV_MAXPRI);
3753     ev_io_start (EV_A_ &sigfd_w);
3754     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3755     }
3756     }
3757    
3758     if (sigfd >= 0)
3759     {
3760     /* TODO: check .head */
3761     sigaddset (&sigfd_set, w->signum);
3762     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3763 root 1.207
3764 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3765     }
3766 root 1.180 #endif
3767    
3768 root 1.56 ev_start (EV_A_ (W)w, 1);
3769 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3770 root 1.56
3771 root 1.63 if (!((WL)w)->next)
3772 root 1.304 # if EV_USE_SIGNALFD
3773 root 1.306 if (sigfd < 0) /*TODO*/
3774 root 1.304 # endif
3775 root 1.306 {
3776 root 1.322 # ifdef _WIN32
3777 root 1.317 evpipe_init (EV_A);
3778    
3779 root 1.306 signal (w->signum, ev_sighandler);
3780     # else
3781     struct sigaction sa;
3782    
3783     evpipe_init (EV_A);
3784    
3785     sa.sa_handler = ev_sighandler;
3786     sigfillset (&sa.sa_mask);
3787     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3788     sigaction (w->signum, &sa, 0);
3789    
3790 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3791     {
3792     sigemptyset (&sa.sa_mask);
3793     sigaddset (&sa.sa_mask, w->signum);
3794     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3795     }
3796 root 1.67 #endif
3797 root 1.306 }
3798 root 1.248
3799     EV_FREQUENT_CHECK;
3800 root 1.56 }
3801    
3802 root 1.171 void noinline
3803 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3804 root 1.56 {
3805 root 1.166 clear_pending (EV_A_ (W)w);
3806 root 1.123 if (expect_false (!ev_is_active (w)))
3807 root 1.56 return;
3808    
3809 root 1.248 EV_FREQUENT_CHECK;
3810    
3811 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3812 root 1.56 ev_stop (EV_A_ (W)w);
3813    
3814     if (!signals [w->signum - 1].head)
3815 root 1.306 {
3816 root 1.307 #if EV_MULTIPLICITY
3817 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3818 root 1.307 #endif
3819     #if EV_USE_SIGNALFD
3820 root 1.306 if (sigfd >= 0)
3821     {
3822 root 1.321 sigset_t ss;
3823    
3824     sigemptyset (&ss);
3825     sigaddset (&ss, w->signum);
3826 root 1.306 sigdelset (&sigfd_set, w->signum);
3827 root 1.321
3828 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3829 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3830 root 1.306 }
3831     else
3832 root 1.307 #endif
3833 root 1.306 signal (w->signum, SIG_DFL);
3834     }
3835 root 1.248
3836     EV_FREQUENT_CHECK;
3837 root 1.56 }
3838    
3839 root 1.336 #endif
3840    
3841     #if EV_CHILD_ENABLE
3842    
3843 root 1.28 void
3844 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3845 root 1.22 {
3846 root 1.56 #if EV_MULTIPLICITY
3847 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3848 root 1.56 #endif
3849 root 1.123 if (expect_false (ev_is_active (w)))
3850 root 1.22 return;
3851    
3852 root 1.248 EV_FREQUENT_CHECK;
3853    
3854 root 1.51 ev_start (EV_A_ (W)w, 1);
3855 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3856 root 1.248
3857     EV_FREQUENT_CHECK;
3858 root 1.22 }
3859    
3860 root 1.28 void
3861 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3862 root 1.22 {
3863 root 1.166 clear_pending (EV_A_ (W)w);
3864 root 1.123 if (expect_false (!ev_is_active (w)))
3865 root 1.22 return;
3866    
3867 root 1.248 EV_FREQUENT_CHECK;
3868    
3869 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3870 root 1.51 ev_stop (EV_A_ (W)w);
3871 root 1.248
3872     EV_FREQUENT_CHECK;
3873 root 1.22 }
3874    
3875 root 1.336 #endif
3876    
3877 root 1.140 #if EV_STAT_ENABLE
3878    
3879     # ifdef _WIN32
3880 root 1.146 # undef lstat
3881     # define lstat(a,b) _stati64 (a,b)
3882 root 1.140 # endif
3883    
3884 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3885     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3886     #define MIN_STAT_INTERVAL 0.1074891
3887 root 1.143
3888 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3889 root 1.152
3890     #if EV_USE_INOTIFY
3891 root 1.326
3892     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3893     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3894 root 1.152
3895     static void noinline
3896     infy_add (EV_P_ ev_stat *w)
3897     {
3898 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
3899     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3900     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3901     | IN_DONT_FOLLOW | IN_MASK_ADD);
3902 root 1.152
3903 root 1.318 if (w->wd >= 0)
3904 root 1.152 {
3905 root 1.318 struct statfs sfs;
3906    
3907     /* now local changes will be tracked by inotify, but remote changes won't */
3908     /* unless the filesystem is known to be local, we therefore still poll */
3909     /* also do poll on <2.6.25, but with normal frequency */
3910    
3911     if (!fs_2625)
3912     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3913     else if (!statfs (w->path, &sfs)
3914     && (sfs.f_type == 0x1373 /* devfs */
3915 root 1.451 || sfs.f_type == 0x4006 /* fat */
3916     || sfs.f_type == 0x4d44 /* msdos */
3917 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
3918 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
3919     || sfs.f_type == 0x858458f6 /* ramfs */
3920     || sfs.f_type == 0x5346544e /* ntfs */
3921 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
3922 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
3923 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
3924 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
3925 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
3926     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3927     else
3928     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3929     }
3930     else
3931     {
3932     /* can't use inotify, continue to stat */
3933 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3934 root 1.152
3935 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3936 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3937 root 1.233 /* but an efficiency issue only */
3938 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3939 root 1.152 {
3940 root 1.153 char path [4096];
3941 root 1.152 strcpy (path, w->path);
3942    
3943     do
3944     {
3945     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3946     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3947    
3948     char *pend = strrchr (path, '/');
3949    
3950 root 1.275 if (!pend || pend == path)
3951     break;
3952 root 1.152
3953     *pend = 0;
3954 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3955 root 1.372 }
3956 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3957     }
3958     }
3959 root 1.275
3960     if (w->wd >= 0)
3961 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3962 root 1.152
3963 root 1.318 /* now re-arm timer, if required */
3964     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3965     ev_timer_again (EV_A_ &w->timer);
3966     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3967 root 1.152 }
3968    
3969     static void noinline
3970     infy_del (EV_P_ ev_stat *w)
3971     {
3972     int slot;
3973     int wd = w->wd;
3974    
3975     if (wd < 0)
3976     return;
3977    
3978     w->wd = -2;
3979 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3980 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3981    
3982     /* remove this watcher, if others are watching it, they will rearm */
3983     inotify_rm_watch (fs_fd, wd);
3984     }
3985    
3986     static void noinline
3987     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3988     {
3989     if (slot < 0)
3990 root 1.264 /* overflow, need to check for all hash slots */
3991 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3992 root 1.152 infy_wd (EV_A_ slot, wd, ev);
3993     else
3994     {
3995     WL w_;
3996    
3997 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3998 root 1.152 {
3999     ev_stat *w = (ev_stat *)w_;
4000     w_ = w_->next; /* lets us remove this watcher and all before it */
4001    
4002     if (w->wd == wd || wd == -1)
4003     {
4004     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4005     {
4006 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4007 root 1.152 w->wd = -1;
4008     infy_add (EV_A_ w); /* re-add, no matter what */
4009     }
4010    
4011 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4012 root 1.152 }
4013     }
4014     }
4015     }
4016    
4017     static void
4018     infy_cb (EV_P_ ev_io *w, int revents)
4019     {
4020     char buf [EV_INOTIFY_BUFSIZE];
4021     int ofs;
4022     int len = read (fs_fd, buf, sizeof (buf));
4023    
4024 root 1.326 for (ofs = 0; ofs < len; )
4025     {
4026     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4027     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4028     ofs += sizeof (struct inotify_event) + ev->len;
4029     }
4030 root 1.152 }
4031    
4032 root 1.379 inline_size void ecb_cold
4033 root 1.330 ev_check_2625 (EV_P)
4034     {
4035     /* kernels < 2.6.25 are borked
4036     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4037     */
4038     if (ev_linux_version () < 0x020619)
4039 root 1.273 return;
4040 root 1.264
4041 root 1.273 fs_2625 = 1;
4042     }
4043 root 1.264
4044 root 1.315 inline_size int
4045     infy_newfd (void)
4046     {
4047 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4048 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4049     if (fd >= 0)
4050     return fd;
4051     #endif
4052     return inotify_init ();
4053     }
4054    
4055 root 1.284 inline_size void
4056 root 1.273 infy_init (EV_P)
4057     {
4058     if (fs_fd != -2)
4059     return;
4060 root 1.264
4061 root 1.273 fs_fd = -1;
4062 root 1.264
4063 root 1.330 ev_check_2625 (EV_A);
4064 root 1.264
4065 root 1.315 fs_fd = infy_newfd ();
4066 root 1.152
4067     if (fs_fd >= 0)
4068     {
4069 root 1.315 fd_intern (fs_fd);
4070 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4071     ev_set_priority (&fs_w, EV_MAXPRI);
4072     ev_io_start (EV_A_ &fs_w);
4073 root 1.317 ev_unref (EV_A);
4074 root 1.152 }
4075     }
4076    
4077 root 1.284 inline_size void
4078 root 1.154 infy_fork (EV_P)
4079     {
4080     int slot;
4081    
4082     if (fs_fd < 0)
4083     return;
4084    
4085 root 1.317 ev_ref (EV_A);
4086 root 1.315 ev_io_stop (EV_A_ &fs_w);
4087 root 1.154 close (fs_fd);
4088 root 1.315 fs_fd = infy_newfd ();
4089    
4090     if (fs_fd >= 0)
4091     {
4092     fd_intern (fs_fd);
4093     ev_io_set (&fs_w, fs_fd, EV_READ);
4094     ev_io_start (EV_A_ &fs_w);
4095 root 1.317 ev_unref (EV_A);
4096 root 1.315 }
4097 root 1.154
4098 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4099 root 1.154 {
4100     WL w_ = fs_hash [slot].head;
4101     fs_hash [slot].head = 0;
4102    
4103     while (w_)
4104     {
4105     ev_stat *w = (ev_stat *)w_;
4106     w_ = w_->next; /* lets us add this watcher */
4107    
4108     w->wd = -1;
4109    
4110     if (fs_fd >= 0)
4111     infy_add (EV_A_ w); /* re-add, no matter what */
4112     else
4113 root 1.318 {
4114     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4115     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4116     ev_timer_again (EV_A_ &w->timer);
4117     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4118     }
4119 root 1.154 }
4120     }
4121     }
4122    
4123 root 1.152 #endif
4124    
4125 root 1.255 #ifdef _WIN32
4126     # define EV_LSTAT(p,b) _stati64 (p, b)
4127     #else
4128     # define EV_LSTAT(p,b) lstat (p, b)
4129     #endif
4130    
4131 root 1.140 void
4132 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4133 root 1.140 {
4134     if (lstat (w->path, &w->attr) < 0)
4135     w->attr.st_nlink = 0;
4136     else if (!w->attr.st_nlink)
4137     w->attr.st_nlink = 1;
4138     }
4139    
4140 root 1.157 static void noinline
4141 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4142     {
4143     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4144    
4145 root 1.320 ev_statdata prev = w->attr;
4146 root 1.140 ev_stat_stat (EV_A_ w);
4147    
4148 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4149     if (
4150 root 1.320 prev.st_dev != w->attr.st_dev
4151     || prev.st_ino != w->attr.st_ino
4152     || prev.st_mode != w->attr.st_mode
4153     || prev.st_nlink != w->attr.st_nlink
4154     || prev.st_uid != w->attr.st_uid
4155     || prev.st_gid != w->attr.st_gid
4156     || prev.st_rdev != w->attr.st_rdev
4157     || prev.st_size != w->attr.st_size
4158     || prev.st_atime != w->attr.st_atime
4159     || prev.st_mtime != w->attr.st_mtime
4160     || prev.st_ctime != w->attr.st_ctime
4161 root 1.156 ) {
4162 root 1.320 /* we only update w->prev on actual differences */
4163     /* in case we test more often than invoke the callback, */
4164     /* to ensure that prev is always different to attr */
4165     w->prev = prev;
4166    
4167 root 1.152 #if EV_USE_INOTIFY
4168 root 1.264 if (fs_fd >= 0)
4169     {
4170     infy_del (EV_A_ w);
4171     infy_add (EV_A_ w);
4172     ev_stat_stat (EV_A_ w); /* avoid race... */
4173     }
4174 root 1.152 #endif
4175    
4176     ev_feed_event (EV_A_ w, EV_STAT);
4177     }
4178 root 1.140 }
4179    
4180     void
4181 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4182 root 1.140 {
4183     if (expect_false (ev_is_active (w)))
4184     return;
4185    
4186     ev_stat_stat (EV_A_ w);
4187    
4188 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4189     w->interval = MIN_STAT_INTERVAL;
4190 root 1.143
4191 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4192 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4193 root 1.152
4194     #if EV_USE_INOTIFY
4195     infy_init (EV_A);
4196    
4197     if (fs_fd >= 0)
4198     infy_add (EV_A_ w);
4199     else
4200     #endif
4201 root 1.318 {
4202     ev_timer_again (EV_A_ &w->timer);
4203     ev_unref (EV_A);
4204     }
4205 root 1.140
4206     ev_start (EV_A_ (W)w, 1);
4207 root 1.248
4208     EV_FREQUENT_CHECK;
4209 root 1.140 }
4210    
4211     void
4212 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4213 root 1.140 {
4214 root 1.166 clear_pending (EV_A_ (W)w);
4215 root 1.140 if (expect_false (!ev_is_active (w)))
4216     return;
4217    
4218 root 1.248 EV_FREQUENT_CHECK;
4219    
4220 root 1.152 #if EV_USE_INOTIFY
4221     infy_del (EV_A_ w);
4222     #endif
4223 root 1.318
4224     if (ev_is_active (&w->timer))
4225     {
4226     ev_ref (EV_A);
4227     ev_timer_stop (EV_A_ &w->timer);
4228     }
4229 root 1.140
4230 root 1.134 ev_stop (EV_A_ (W)w);
4231 root 1.248
4232     EV_FREQUENT_CHECK;
4233 root 1.134 }
4234     #endif
4235    
4236 root 1.164 #if EV_IDLE_ENABLE
4237 root 1.144 void
4238 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4239 root 1.144 {
4240     if (expect_false (ev_is_active (w)))
4241     return;
4242    
4243 root 1.164 pri_adjust (EV_A_ (W)w);
4244    
4245 root 1.248 EV_FREQUENT_CHECK;
4246    
4247 root 1.164 {
4248     int active = ++idlecnt [ABSPRI (w)];
4249    
4250     ++idleall;
4251     ev_start (EV_A_ (W)w, active);
4252    
4253     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4254     idles [ABSPRI (w)][active - 1] = w;
4255     }
4256 root 1.248
4257     EV_FREQUENT_CHECK;
4258 root 1.144 }
4259    
4260     void
4261 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4262 root 1.144 {
4263 root 1.166 clear_pending (EV_A_ (W)w);
4264 root 1.144 if (expect_false (!ev_is_active (w)))
4265     return;
4266    
4267 root 1.248 EV_FREQUENT_CHECK;
4268    
4269 root 1.144 {
4270 root 1.230 int active = ev_active (w);
4271 root 1.164
4272     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4273 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4274 root 1.164
4275     ev_stop (EV_A_ (W)w);
4276     --idleall;
4277 root 1.144 }
4278 root 1.248
4279     EV_FREQUENT_CHECK;
4280 root 1.144 }
4281 root 1.164 #endif
4282 root 1.144
4283 root 1.337 #if EV_PREPARE_ENABLE
4284 root 1.144 void
4285 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4286 root 1.144 {
4287     if (expect_false (ev_is_active (w)))
4288     return;
4289    
4290 root 1.248 EV_FREQUENT_CHECK;
4291    
4292 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4293     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4294     prepares [preparecnt - 1] = w;
4295 root 1.248
4296     EV_FREQUENT_CHECK;
4297 root 1.144 }
4298    
4299     void
4300 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4301 root 1.144 {
4302 root 1.166 clear_pending (EV_A_ (W)w);
4303 root 1.144 if (expect_false (!ev_is_active (w)))
4304     return;
4305    
4306 root 1.248 EV_FREQUENT_CHECK;
4307    
4308 root 1.144 {
4309 root 1.230 int active = ev_active (w);
4310    
4311 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4312 root 1.230 ev_active (prepares [active - 1]) = active;
4313 root 1.144 }
4314    
4315     ev_stop (EV_A_ (W)w);
4316 root 1.248
4317     EV_FREQUENT_CHECK;
4318 root 1.144 }
4319 root 1.337 #endif
4320 root 1.144
4321 root 1.337 #if EV_CHECK_ENABLE
4322 root 1.144 void
4323 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4324 root 1.144 {
4325     if (expect_false (ev_is_active (w)))
4326     return;
4327    
4328 root 1.248 EV_FREQUENT_CHECK;
4329    
4330 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4331     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4332     checks [checkcnt - 1] = w;
4333 root 1.248
4334     EV_FREQUENT_CHECK;
4335 root 1.144 }
4336    
4337     void
4338 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4339 root 1.144 {
4340 root 1.166 clear_pending (EV_A_ (W)w);
4341 root 1.144 if (expect_false (!ev_is_active (w)))
4342     return;
4343    
4344 root 1.248 EV_FREQUENT_CHECK;
4345    
4346 root 1.144 {
4347 root 1.230 int active = ev_active (w);
4348    
4349 root 1.144 checks [active - 1] = checks [--checkcnt];
4350 root 1.230 ev_active (checks [active - 1]) = active;
4351 root 1.144 }
4352    
4353     ev_stop (EV_A_ (W)w);
4354 root 1.248
4355     EV_FREQUENT_CHECK;
4356 root 1.144 }
4357 root 1.337 #endif
4358 root 1.144
4359     #if EV_EMBED_ENABLE
4360     void noinline
4361 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4362 root 1.144 {
4363 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4364 root 1.144 }
4365    
4366     static void
4367 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4368 root 1.144 {
4369     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4370    
4371     if (ev_cb (w))
4372     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4373     else
4374 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4375 root 1.144 }
4376    
4377 root 1.189 static void
4378     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4379     {
4380     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4381    
4382 root 1.195 {
4383 root 1.306 EV_P = w->other;
4384 root 1.195
4385     while (fdchangecnt)
4386     {
4387     fd_reify (EV_A);
4388 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4389 root 1.195 }
4390     }
4391     }
4392    
4393 root 1.261 static void
4394     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4395     {
4396     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4397    
4398 root 1.277 ev_embed_stop (EV_A_ w);
4399    
4400 root 1.261 {
4401 root 1.306 EV_P = w->other;
4402 root 1.261
4403     ev_loop_fork (EV_A);
4404 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4405 root 1.261 }
4406 root 1.277
4407     ev_embed_start (EV_A_ w);
4408 root 1.261 }
4409    
4410 root 1.195 #if 0
4411     static void
4412     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4413     {
4414     ev_idle_stop (EV_A_ idle);
4415 root 1.189 }
4416 root 1.195 #endif
4417 root 1.189
4418 root 1.144 void
4419 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4420 root 1.144 {
4421     if (expect_false (ev_is_active (w)))
4422     return;
4423    
4424     {
4425 root 1.306 EV_P = w->other;
4426 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4427 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4428 root 1.144 }
4429    
4430 root 1.248 EV_FREQUENT_CHECK;
4431    
4432 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4433     ev_io_start (EV_A_ &w->io);
4434    
4435 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4436     ev_set_priority (&w->prepare, EV_MINPRI);
4437     ev_prepare_start (EV_A_ &w->prepare);
4438    
4439 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4440     ev_fork_start (EV_A_ &w->fork);
4441    
4442 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4443    
4444 root 1.144 ev_start (EV_A_ (W)w, 1);
4445 root 1.248
4446     EV_FREQUENT_CHECK;
4447 root 1.144 }
4448    
4449     void
4450 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4451 root 1.144 {
4452 root 1.166 clear_pending (EV_A_ (W)w);
4453 root 1.144 if (expect_false (!ev_is_active (w)))
4454     return;
4455    
4456 root 1.248 EV_FREQUENT_CHECK;
4457    
4458 root 1.261 ev_io_stop (EV_A_ &w->io);
4459 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4460 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4461 root 1.248
4462 root 1.328 ev_stop (EV_A_ (W)w);
4463    
4464 root 1.248 EV_FREQUENT_CHECK;
4465 root 1.144 }
4466     #endif
4467    
4468 root 1.147 #if EV_FORK_ENABLE
4469     void
4470 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4471 root 1.147 {
4472     if (expect_false (ev_is_active (w)))
4473     return;
4474    
4475 root 1.248 EV_FREQUENT_CHECK;
4476    
4477 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4478     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4479     forks [forkcnt - 1] = w;
4480 root 1.248
4481     EV_FREQUENT_CHECK;
4482 root 1.147 }
4483    
4484     void
4485 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4486 root 1.147 {
4487 root 1.166 clear_pending (EV_A_ (W)w);
4488 root 1.147 if (expect_false (!ev_is_active (w)))
4489     return;
4490    
4491 root 1.248 EV_FREQUENT_CHECK;
4492    
4493 root 1.147 {
4494 root 1.230 int active = ev_active (w);
4495    
4496 root 1.147 forks [active - 1] = forks [--forkcnt];
4497 root 1.230 ev_active (forks [active - 1]) = active;
4498 root 1.147 }
4499    
4500     ev_stop (EV_A_ (W)w);
4501 root 1.248
4502     EV_FREQUENT_CHECK;
4503 root 1.147 }
4504     #endif
4505    
4506 root 1.360 #if EV_CLEANUP_ENABLE
4507     void
4508 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4509 root 1.360 {
4510     if (expect_false (ev_is_active (w)))
4511     return;
4512    
4513     EV_FREQUENT_CHECK;
4514    
4515     ev_start (EV_A_ (W)w, ++cleanupcnt);
4516     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4517     cleanups [cleanupcnt - 1] = w;
4518    
4519 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4520     ev_unref (EV_A);
4521 root 1.360 EV_FREQUENT_CHECK;
4522     }
4523    
4524     void
4525 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4526 root 1.360 {
4527     clear_pending (EV_A_ (W)w);
4528     if (expect_false (!ev_is_active (w)))
4529     return;
4530    
4531     EV_FREQUENT_CHECK;
4532 root 1.362 ev_ref (EV_A);
4533 root 1.360
4534     {
4535     int active = ev_active (w);
4536    
4537     cleanups [active - 1] = cleanups [--cleanupcnt];
4538     ev_active (cleanups [active - 1]) = active;
4539     }
4540    
4541     ev_stop (EV_A_ (W)w);
4542    
4543     EV_FREQUENT_CHECK;
4544     }
4545     #endif
4546    
4547 root 1.207 #if EV_ASYNC_ENABLE
4548     void
4549 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4550 root 1.207 {
4551     if (expect_false (ev_is_active (w)))
4552     return;
4553    
4554 root 1.352 w->sent = 0;
4555    
4556 root 1.207 evpipe_init (EV_A);
4557    
4558 root 1.248 EV_FREQUENT_CHECK;
4559    
4560 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4561     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4562     asyncs [asynccnt - 1] = w;
4563 root 1.248
4564     EV_FREQUENT_CHECK;
4565 root 1.207 }
4566    
4567     void
4568 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4569 root 1.207 {
4570     clear_pending (EV_A_ (W)w);
4571     if (expect_false (!ev_is_active (w)))
4572     return;
4573    
4574 root 1.248 EV_FREQUENT_CHECK;
4575    
4576 root 1.207 {
4577 root 1.230 int active = ev_active (w);
4578    
4579 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4580 root 1.230 ev_active (asyncs [active - 1]) = active;
4581 root 1.207 }
4582    
4583     ev_stop (EV_A_ (W)w);
4584 root 1.248
4585     EV_FREQUENT_CHECK;
4586 root 1.207 }
4587    
4588     void
4589 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4590 root 1.207 {
4591     w->sent = 1;
4592 root 1.307 evpipe_write (EV_A_ &async_pending);
4593 root 1.207 }
4594     #endif
4595    
4596 root 1.1 /*****************************************************************************/
4597 root 1.10
4598 root 1.16 struct ev_once
4599     {
4600 root 1.136 ev_io io;
4601     ev_timer to;
4602 root 1.16 void (*cb)(int revents, void *arg);
4603     void *arg;
4604     };
4605    
4606     static void
4607 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4608 root 1.16 {
4609     void (*cb)(int revents, void *arg) = once->cb;
4610     void *arg = once->arg;
4611    
4612 root 1.259 ev_io_stop (EV_A_ &once->io);
4613 root 1.51 ev_timer_stop (EV_A_ &once->to);
4614 root 1.69 ev_free (once);
4615 root 1.16
4616     cb (revents, arg);
4617     }
4618    
4619     static void
4620 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4621 root 1.16 {
4622 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4623    
4624     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4625 root 1.16 }
4626    
4627     static void
4628 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4629 root 1.16 {
4630 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4631    
4632     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4633 root 1.16 }
4634    
4635     void
4636 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4637 root 1.16 {
4638 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4639 root 1.16
4640 root 1.123 if (expect_false (!once))
4641 root 1.16 {
4642 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4643 root 1.123 return;
4644     }
4645    
4646     once->cb = cb;
4647     once->arg = arg;
4648 root 1.16
4649 root 1.123 ev_init (&once->io, once_cb_io);
4650     if (fd >= 0)
4651     {
4652     ev_io_set (&once->io, fd, events);
4653     ev_io_start (EV_A_ &once->io);
4654     }
4655 root 1.16
4656 root 1.123 ev_init (&once->to, once_cb_to);
4657     if (timeout >= 0.)
4658     {
4659     ev_timer_set (&once->to, timeout, 0.);
4660     ev_timer_start (EV_A_ &once->to);
4661 root 1.16 }
4662     }
4663    
4664 root 1.282 /*****************************************************************************/
4665    
4666 root 1.288 #if EV_WALK_ENABLE
4667 root 1.379 void ecb_cold
4668 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4669 root 1.282 {
4670     int i, j;
4671     ev_watcher_list *wl, *wn;
4672    
4673     if (types & (EV_IO | EV_EMBED))
4674     for (i = 0; i < anfdmax; ++i)
4675     for (wl = anfds [i].head; wl; )
4676     {
4677     wn = wl->next;
4678    
4679     #if EV_EMBED_ENABLE
4680     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4681     {
4682     if (types & EV_EMBED)
4683     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4684     }
4685     else
4686     #endif
4687     #if EV_USE_INOTIFY
4688     if (ev_cb ((ev_io *)wl) == infy_cb)
4689     ;
4690     else
4691     #endif
4692 root 1.288 if ((ev_io *)wl != &pipe_w)
4693 root 1.282 if (types & EV_IO)
4694     cb (EV_A_ EV_IO, wl);
4695    
4696     wl = wn;
4697     }
4698    
4699     if (types & (EV_TIMER | EV_STAT))
4700     for (i = timercnt + HEAP0; i-- > HEAP0; )
4701     #if EV_STAT_ENABLE
4702     /*TODO: timer is not always active*/
4703     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4704     {
4705     if (types & EV_STAT)
4706     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4707     }
4708     else
4709     #endif
4710     if (types & EV_TIMER)
4711     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4712    
4713     #if EV_PERIODIC_ENABLE
4714     if (types & EV_PERIODIC)
4715     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4716     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4717     #endif
4718    
4719     #if EV_IDLE_ENABLE
4720     if (types & EV_IDLE)
4721 root 1.390 for (j = NUMPRI; j--; )
4722 root 1.282 for (i = idlecnt [j]; i--; )
4723     cb (EV_A_ EV_IDLE, idles [j][i]);
4724     #endif
4725    
4726     #if EV_FORK_ENABLE
4727     if (types & EV_FORK)
4728     for (i = forkcnt; i--; )
4729     if (ev_cb (forks [i]) != embed_fork_cb)
4730     cb (EV_A_ EV_FORK, forks [i]);
4731     #endif
4732    
4733     #if EV_ASYNC_ENABLE
4734     if (types & EV_ASYNC)
4735     for (i = asynccnt; i--; )
4736     cb (EV_A_ EV_ASYNC, asyncs [i]);
4737     #endif
4738    
4739 root 1.337 #if EV_PREPARE_ENABLE
4740 root 1.282 if (types & EV_PREPARE)
4741     for (i = preparecnt; i--; )
4742 root 1.337 # if EV_EMBED_ENABLE
4743 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4744 root 1.337 # endif
4745     cb (EV_A_ EV_PREPARE, prepares [i]);
4746 root 1.282 #endif
4747    
4748 root 1.337 #if EV_CHECK_ENABLE
4749 root 1.282 if (types & EV_CHECK)
4750     for (i = checkcnt; i--; )
4751     cb (EV_A_ EV_CHECK, checks [i]);
4752 root 1.337 #endif
4753 root 1.282
4754 root 1.337 #if EV_SIGNAL_ENABLE
4755 root 1.282 if (types & EV_SIGNAL)
4756 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4757 root 1.282 for (wl = signals [i].head; wl; )
4758     {
4759     wn = wl->next;
4760     cb (EV_A_ EV_SIGNAL, wl);
4761     wl = wn;
4762     }
4763 root 1.337 #endif
4764 root 1.282
4765 root 1.337 #if EV_CHILD_ENABLE
4766 root 1.282 if (types & EV_CHILD)
4767 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4768 root 1.282 for (wl = childs [i]; wl; )
4769     {
4770     wn = wl->next;
4771     cb (EV_A_ EV_CHILD, wl);
4772     wl = wn;
4773     }
4774 root 1.337 #endif
4775 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4776     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4777     }
4778     #endif
4779    
4780 root 1.188 #if EV_MULTIPLICITY
4781     #include "ev_wrap.h"
4782     #endif
4783