ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.452
Committed: Mon Feb 18 03:20:29 2013 UTC (11 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.451: +16 -6 lines
Log Message:
http://laurentdesegur.wordpress.com/2011/10/07/building-libev-and-libeio-with-android-ndk/

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.418 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246     # error "unable to find value for NSIG, please report"
247 root 1.336 /* to make it compile regardless, just remove the above line, */
248     /* but consider reporting it, too! :) */
249 root 1.306 # define EV_NSIG 65
250 root 1.305 #endif
251    
252 root 1.373 #ifndef EV_USE_FLOOR
253     # define EV_USE_FLOOR 0
254     #endif
255    
256 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
257     # if __linux && __GLIBC__ >= 2
258 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 root 1.274 # else
260     # define EV_USE_CLOCK_SYSCALL 0
261     # endif
262     #endif
263    
264 root 1.29 #ifndef EV_USE_MONOTONIC
265 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 root 1.253 # else
268     # define EV_USE_MONOTONIC 0
269     # endif
270 root 1.37 #endif
271    
272 root 1.118 #ifndef EV_USE_REALTIME
273 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 root 1.118 #endif
275    
276 root 1.193 #ifndef EV_USE_NANOSLEEP
277 root 1.253 # if _POSIX_C_SOURCE >= 199309L
278 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 root 1.253 # else
280     # define EV_USE_NANOSLEEP 0
281     # endif
282 root 1.193 #endif
283    
284 root 1.29 #ifndef EV_USE_SELECT
285 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 root 1.10 #endif
287    
288 root 1.59 #ifndef EV_USE_POLL
289 root 1.104 # ifdef _WIN32
290     # define EV_USE_POLL 0
291     # else
292 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 root 1.104 # endif
294 root 1.41 #endif
295    
296 root 1.29 #ifndef EV_USE_EPOLL
297 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 root 1.220 # else
300     # define EV_USE_EPOLL 0
301     # endif
302 root 1.10 #endif
303    
304 root 1.44 #ifndef EV_USE_KQUEUE
305     # define EV_USE_KQUEUE 0
306     #endif
307    
308 root 1.118 #ifndef EV_USE_PORT
309     # define EV_USE_PORT 0
310 root 1.40 #endif
311    
312 root 1.152 #ifndef EV_USE_INOTIFY
313 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
315 root 1.220 # else
316     # define EV_USE_INOTIFY 0
317     # endif
318 root 1.152 #endif
319    
320 root 1.149 #ifndef EV_PID_HASHSIZE
321 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 root 1.149 #endif
323    
324 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
325 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 root 1.152 #endif
327    
328 root 1.220 #ifndef EV_USE_EVENTFD
329     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
331 root 1.220 # else
332     # define EV_USE_EVENTFD 0
333     # endif
334     #endif
335    
336 root 1.303 #ifndef EV_USE_SIGNALFD
337 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 root 1.303 # else
340     # define EV_USE_SIGNALFD 0
341     # endif
342     #endif
343    
344 root 1.249 #if 0 /* debugging */
345 root 1.250 # define EV_VERIFY 3
346 root 1.249 # define EV_USE_4HEAP 1
347     # define EV_HEAP_CACHE_AT 1
348     #endif
349    
350 root 1.250 #ifndef EV_VERIFY
351 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 root 1.250 #endif
353    
354 root 1.243 #ifndef EV_USE_4HEAP
355 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
356 root 1.243 #endif
357    
358     #ifndef EV_HEAP_CACHE_AT
359 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 root 1.243 #endif
361    
362 root 1.452 #ifdef ANDROID
363     /* supposedly, android doesn't typedef fd_mask */
364     # undef EV_USE_SELECT
365     # define EV_USE_SELECT 0
366     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367     # undef EV_USE_CLOCK_SYSCALL
368     # define EV_USE_CLOCK_SYSCALL 0
369     #endif
370    
371     /* aix's poll.h seems to cause lots of trouble */
372     #ifdef _AIX
373     /* AIX has a completely broken poll.h header */
374     # undef EV_USE_POLL
375     # define EV_USE_POLL 0
376     #endif
377    
378 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379     /* which makes programs even slower. might work on other unices, too. */
380     #if EV_USE_CLOCK_SYSCALL
381 root 1.423 # include <sys/syscall.h>
382 root 1.291 # ifdef SYS_clock_gettime
383     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384     # undef EV_USE_MONOTONIC
385     # define EV_USE_MONOTONIC 1
386     # else
387     # undef EV_USE_CLOCK_SYSCALL
388     # define EV_USE_CLOCK_SYSCALL 0
389     # endif
390     #endif
391    
392 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
393 root 1.40
394     #ifndef CLOCK_MONOTONIC
395     # undef EV_USE_MONOTONIC
396     # define EV_USE_MONOTONIC 0
397     #endif
398    
399 root 1.31 #ifndef CLOCK_REALTIME
400 root 1.40 # undef EV_USE_REALTIME
401 root 1.31 # define EV_USE_REALTIME 0
402     #endif
403 root 1.40
404 root 1.152 #if !EV_STAT_ENABLE
405 root 1.185 # undef EV_USE_INOTIFY
406 root 1.152 # define EV_USE_INOTIFY 0
407     #endif
408    
409 root 1.193 #if !EV_USE_NANOSLEEP
410 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
411 root 1.416 # if !defined _WIN32 && !defined __hpux
412 root 1.193 # include <sys/select.h>
413     # endif
414     #endif
415    
416 root 1.152 #if EV_USE_INOTIFY
417 root 1.273 # include <sys/statfs.h>
418 root 1.152 # include <sys/inotify.h>
419 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420     # ifndef IN_DONT_FOLLOW
421     # undef EV_USE_INOTIFY
422     # define EV_USE_INOTIFY 0
423     # endif
424 root 1.152 #endif
425    
426 root 1.220 #if EV_USE_EVENTFD
427     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428 root 1.221 # include <stdint.h>
429 root 1.303 # ifndef EFD_NONBLOCK
430     # define EFD_NONBLOCK O_NONBLOCK
431     # endif
432     # ifndef EFD_CLOEXEC
433 root 1.311 # ifdef O_CLOEXEC
434     # define EFD_CLOEXEC O_CLOEXEC
435     # else
436     # define EFD_CLOEXEC 02000000
437     # endif
438 root 1.303 # endif
439 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440 root 1.220 #endif
441    
442 root 1.303 #if EV_USE_SIGNALFD
443 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444     # include <stdint.h>
445     # ifndef SFD_NONBLOCK
446     # define SFD_NONBLOCK O_NONBLOCK
447     # endif
448     # ifndef SFD_CLOEXEC
449     # ifdef O_CLOEXEC
450     # define SFD_CLOEXEC O_CLOEXEC
451     # else
452     # define SFD_CLOEXEC 02000000
453     # endif
454     # endif
455 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456 root 1.314
457     struct signalfd_siginfo
458     {
459     uint32_t ssi_signo;
460     char pad[128 - sizeof (uint32_t)];
461     };
462 root 1.303 #endif
463    
464 root 1.40 /**/
465 root 1.1
466 root 1.250 #if EV_VERIFY >= 3
467 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
468 root 1.248 #else
469     # define EV_FREQUENT_CHECK do { } while (0)
470     #endif
471    
472 root 1.176 /*
473 root 1.373 * This is used to work around floating point rounding problems.
474 root 1.177 * This value is good at least till the year 4000.
475 root 1.176 */
476 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
478 root 1.176
479 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
480 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
481 root 1.1
482 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484 root 1.347
485 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486     /* ECB.H BEGIN */
487     /*
488     * libecb - http://software.schmorp.de/pkg/libecb
489     *
490 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
492     * All rights reserved.
493     *
494     * Redistribution and use in source and binary forms, with or without modifica-
495     * tion, are permitted provided that the following conditions are met:
496     *
497     * 1. Redistributions of source code must retain the above copyright notice,
498     * this list of conditions and the following disclaimer.
499     *
500     * 2. Redistributions in binary form must reproduce the above copyright
501     * notice, this list of conditions and the following disclaimer in the
502     * documentation and/or other materials provided with the distribution.
503     *
504     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513     * OF THE POSSIBILITY OF SUCH DAMAGE.
514     */
515    
516     #ifndef ECB_H
517     #define ECB_H
518    
519 root 1.437 /* 16 bits major, 16 bits minor */
520 root 1.450 #define ECB_VERSION 0x00010002
521 root 1.437
522 root 1.391 #ifdef _WIN32
523     typedef signed char int8_t;
524     typedef unsigned char uint8_t;
525     typedef signed short int16_t;
526     typedef unsigned short uint16_t;
527     typedef signed int int32_t;
528     typedef unsigned int uint32_t;
529     #if __GNUC__
530     typedef signed long long int64_t;
531     typedef unsigned long long uint64_t;
532     #else /* _MSC_VER || __BORLANDC__ */
533     typedef signed __int64 int64_t;
534     typedef unsigned __int64 uint64_t;
535     #endif
536 root 1.437 #ifdef _WIN64
537     #define ECB_PTRSIZE 8
538     typedef uint64_t uintptr_t;
539     typedef int64_t intptr_t;
540     #else
541     #define ECB_PTRSIZE 4
542     typedef uint32_t uintptr_t;
543     typedef int32_t intptr_t;
544     #endif
545 root 1.391 #else
546     #include <inttypes.h>
547 root 1.437 #if UINTMAX_MAX > 0xffffffffU
548     #define ECB_PTRSIZE 8
549     #else
550     #define ECB_PTRSIZE 4
551     #endif
552 root 1.391 #endif
553 root 1.379
554     /* many compilers define _GNUC_ to some versions but then only implement
555     * what their idiot authors think are the "more important" extensions,
556 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
557 root 1.379 * or so.
558     * we try to detect these and simply assume they are not gcc - if they have
559     * an issue with that they should have done it right in the first place.
560     */
561     #ifndef ECB_GCC_VERSION
562 root 1.417 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
563 root 1.379 #define ECB_GCC_VERSION(major,minor) 0
564     #else
565     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
566     #endif
567     #endif
568    
569 root 1.437 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
570     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
571     #define ECB_C11 (__STDC_VERSION__ >= 201112L)
572     #define ECB_CPP (__cplusplus+0)
573     #define ECB_CPP11 (__cplusplus >= 201103L)
574    
575 root 1.450 #if ECB_CPP
576     #define ECB_EXTERN_C extern "C"
577     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
578     #define ECB_EXTERN_C_END }
579     #else
580     #define ECB_EXTERN_C extern
581     #define ECB_EXTERN_C_BEG
582     #define ECB_EXTERN_C_END
583     #endif
584    
585 root 1.391 /*****************************************************************************/
586    
587     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
588     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
589    
590 root 1.410 #if ECB_NO_THREADS
591 root 1.439 #define ECB_NO_SMP 1
592 root 1.410 #endif
593    
594 root 1.437 #if ECB_NO_SMP
595 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
596 root 1.40 #endif
597    
598 root 1.383 #ifndef ECB_MEMORY_FENCE
599 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 root 1.404 #if __i386 || __i386__
601 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
602 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
603     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
604 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
605 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
606     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
607     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
608 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
609 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
610 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
611     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
612 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
613 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
614 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
615     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
616 root 1.404 #elif __sparc || __sparc__
617 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
618     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
619     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
620 root 1.417 #elif defined __s390__ || defined __s390x__
621 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
622 root 1.417 #elif defined __mips__
623 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
624 root 1.419 #elif defined __alpha__
625 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
626     #elif defined __hppa__
627     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
628     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629     #elif defined __ia64__
630     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
631 root 1.383 #endif
632     #endif
633     #endif
634    
635     #ifndef ECB_MEMORY_FENCE
636 root 1.437 #if ECB_GCC_VERSION(4,7)
637 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
638 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
639 root 1.450
640     /* The __has_feature syntax from clang is so misdesigned that we cannot use it
641     * without risking compile time errors with other compilers. We *could*
642     * define our own ecb_clang_has_feature, but I just can't be bothered to work
643     * around this shit time and again.
644     * #elif defined __clang && __has_feature (cxx_atomic)
645     * // see comment below (stdatomic.h) about the C11 memory model.
646     * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
647     */
648    
649 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
650 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
651 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
652     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
653     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
654     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
655     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
656 root 1.417 #elif defined _WIN32
657 root 1.388 #include <WinNT.h>
658 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
659 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660     #include <mbarrier.h>
661     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
662     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
663     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
664 root 1.413 #elif __xlC__
665 root 1.414 #define ECB_MEMORY_FENCE __sync ()
666 root 1.383 #endif
667     #endif
668    
669     #ifndef ECB_MEMORY_FENCE
670 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
671     /* we assume that these memory fences work on all variables/all memory accesses, */
672     /* not just C11 atomics and atomic accesses */
673     #include <stdatomic.h>
674 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
675     /* any fence other than seq_cst, which isn't very efficient for us. */
676     /* Why that is, we don't know - either the C11 memory model is quite useless */
677     /* for most usages, or gcc and clang have a bug */
678     /* I *currently* lean towards the latter, and inefficiently implement */
679     /* all three of ecb's fences as a seq_cst fence */
680 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
681     #endif
682     #endif
683    
684     #ifndef ECB_MEMORY_FENCE
685 root 1.392 #if !ECB_AVOID_PTHREADS
686     /*
687     * if you get undefined symbol references to pthread_mutex_lock,
688     * or failure to find pthread.h, then you should implement
689     * the ECB_MEMORY_FENCE operations for your cpu/compiler
690     * OR provide pthread.h and link against the posix thread library
691     * of your system.
692     */
693     #include <pthread.h>
694     #define ECB_NEEDS_PTHREADS 1
695     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
696    
697     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
698     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
699     #endif
700     #endif
701 root 1.383
702 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
703 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
704 root 1.392 #endif
705    
706 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
707 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
708     #endif
709    
710 root 1.391 /*****************************************************************************/
711    
712     #if __cplusplus
713     #define ecb_inline static inline
714     #elif ECB_GCC_VERSION(2,5)
715     #define ecb_inline static __inline__
716     #elif ECB_C99
717     #define ecb_inline static inline
718     #else
719     #define ecb_inline static
720     #endif
721    
722     #if ECB_GCC_VERSION(3,3)
723     #define ecb_restrict __restrict__
724     #elif ECB_C99
725     #define ecb_restrict restrict
726     #else
727     #define ecb_restrict
728     #endif
729    
730     typedef int ecb_bool;
731    
732     #define ECB_CONCAT_(a, b) a ## b
733     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
734     #define ECB_STRINGIFY_(a) # a
735     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
736    
737     #define ecb_function_ ecb_inline
738    
739 root 1.379 #if ECB_GCC_VERSION(3,1)
740     #define ecb_attribute(attrlist) __attribute__(attrlist)
741     #define ecb_is_constant(expr) __builtin_constant_p (expr)
742     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
743     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
744     #else
745     #define ecb_attribute(attrlist)
746     #define ecb_is_constant(expr) 0
747     #define ecb_expect(expr,value) (expr)
748     #define ecb_prefetch(addr,rw,locality)
749     #endif
750    
751 root 1.391 /* no emulation for ecb_decltype */
752     #if ECB_GCC_VERSION(4,5)
753     #define ecb_decltype(x) __decltype(x)
754     #elif ECB_GCC_VERSION(3,0)
755     #define ecb_decltype(x) __typeof(x)
756     #endif
757    
758 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
759     #define ecb_unused ecb_attribute ((__unused__))
760     #define ecb_const ecb_attribute ((__const__))
761     #define ecb_pure ecb_attribute ((__pure__))
762    
763 root 1.437 #if ECB_C11
764     #define ecb_noreturn _Noreturn
765     #else
766     #define ecb_noreturn ecb_attribute ((__noreturn__))
767     #endif
768    
769 root 1.379 #if ECB_GCC_VERSION(4,3)
770     #define ecb_artificial ecb_attribute ((__artificial__))
771     #define ecb_hot ecb_attribute ((__hot__))
772     #define ecb_cold ecb_attribute ((__cold__))
773     #else
774     #define ecb_artificial
775     #define ecb_hot
776     #define ecb_cold
777     #endif
778    
779     /* put around conditional expressions if you are very sure that the */
780     /* expression is mostly true or mostly false. note that these return */
781     /* booleans, not the expression. */
782     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
783     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
784 root 1.391 /* for compatibility to the rest of the world */
785     #define ecb_likely(expr) ecb_expect_true (expr)
786     #define ecb_unlikely(expr) ecb_expect_false (expr)
787    
788     /* count trailing zero bits and count # of one bits */
789     #if ECB_GCC_VERSION(3,4)
790     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
791     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
792     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
793     #define ecb_ctz32(x) __builtin_ctz (x)
794     #define ecb_ctz64(x) __builtin_ctzll (x)
795     #define ecb_popcount32(x) __builtin_popcount (x)
796     /* no popcountll */
797     #else
798     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
799     ecb_function_ int
800     ecb_ctz32 (uint32_t x)
801     {
802     int r = 0;
803    
804     x &= ~x + 1; /* this isolates the lowest bit */
805    
806     #if ECB_branchless_on_i386
807     r += !!(x & 0xaaaaaaaa) << 0;
808     r += !!(x & 0xcccccccc) << 1;
809     r += !!(x & 0xf0f0f0f0) << 2;
810     r += !!(x & 0xff00ff00) << 3;
811     r += !!(x & 0xffff0000) << 4;
812     #else
813     if (x & 0xaaaaaaaa) r += 1;
814     if (x & 0xcccccccc) r += 2;
815     if (x & 0xf0f0f0f0) r += 4;
816     if (x & 0xff00ff00) r += 8;
817     if (x & 0xffff0000) r += 16;
818     #endif
819    
820     return r;
821     }
822    
823     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
824     ecb_function_ int
825     ecb_ctz64 (uint64_t x)
826     {
827     int shift = x & 0xffffffffU ? 0 : 32;
828     return ecb_ctz32 (x >> shift) + shift;
829     }
830    
831     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
832     ecb_function_ int
833     ecb_popcount32 (uint32_t x)
834     {
835     x -= (x >> 1) & 0x55555555;
836     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
837     x = ((x >> 4) + x) & 0x0f0f0f0f;
838     x *= 0x01010101;
839    
840     return x >> 24;
841     }
842    
843     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
844     ecb_function_ int ecb_ld32 (uint32_t x)
845     {
846     int r = 0;
847    
848     if (x >> 16) { x >>= 16; r += 16; }
849     if (x >> 8) { x >>= 8; r += 8; }
850     if (x >> 4) { x >>= 4; r += 4; }
851     if (x >> 2) { x >>= 2; r += 2; }
852     if (x >> 1) { r += 1; }
853    
854     return r;
855     }
856    
857     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
858     ecb_function_ int ecb_ld64 (uint64_t x)
859     {
860     int r = 0;
861    
862     if (x >> 32) { x >>= 32; r += 32; }
863    
864     return r + ecb_ld32 (x);
865     }
866     #endif
867    
868 root 1.437 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
869     ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
870     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
871     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
872    
873 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
874     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
875     {
876     return ( (x * 0x0802U & 0x22110U)
877     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
878     }
879    
880     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
881     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
882     {
883     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
884     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
885     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
886     x = ( x >> 8 ) | ( x << 8);
887    
888     return x;
889     }
890    
891     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
892     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
893     {
894     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
895     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
896     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
897     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
898     x = ( x >> 16 ) | ( x << 16);
899    
900     return x;
901     }
902    
903 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
904     /* so for this version we are lazy */
905     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
906     ecb_function_ int
907     ecb_popcount64 (uint64_t x)
908     {
909     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
910     }
911    
912     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
913     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
914     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
915     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
916     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
917     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
918     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
919     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
920    
921     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
922     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
923     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
924     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
925     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
926     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
927     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
928     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
929    
930     #if ECB_GCC_VERSION(4,3)
931     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
932     #define ecb_bswap32(x) __builtin_bswap32 (x)
933     #define ecb_bswap64(x) __builtin_bswap64 (x)
934     #else
935     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
936     ecb_function_ uint16_t
937     ecb_bswap16 (uint16_t x)
938     {
939     return ecb_rotl16 (x, 8);
940     }
941    
942     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
943     ecb_function_ uint32_t
944     ecb_bswap32 (uint32_t x)
945     {
946     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
947     }
948    
949     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
950     ecb_function_ uint64_t
951     ecb_bswap64 (uint64_t x)
952     {
953     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
954     }
955     #endif
956    
957     #if ECB_GCC_VERSION(4,5)
958     #define ecb_unreachable() __builtin_unreachable ()
959     #else
960     /* this seems to work fine, but gcc always emits a warning for it :/ */
961 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
962     ecb_inline void ecb_unreachable (void) { }
963 root 1.391 #endif
964    
965     /* try to tell the compiler that some condition is definitely true */
966 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
967 root 1.391
968 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
969     ecb_inline unsigned char
970 root 1.391 ecb_byteorder_helper (void)
971     {
972 root 1.450 /* the union code still generates code under pressure in gcc, */
973     /* but less than using pointers, and always seems to */
974     /* successfully return a constant. */
975     /* the reason why we have this horrible preprocessor mess */
976     /* is to avoid it in all cases, at least on common architectures */
977     /* or when using a recent enough gcc version (>= 4.6) */
978     #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
979     return 0x44;
980     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
981     return 0x44;
982     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
983     return 0x11;
984     #else
985     union
986     {
987     uint32_t i;
988     uint8_t c;
989     } u = { 0x11223344 };
990     return u.c;
991     #endif
992 root 1.391 }
993    
994 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
995     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
996     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
997     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
998 root 1.391
999     #if ECB_GCC_VERSION(3,0) || ECB_C99
1000     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1001     #else
1002     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1003     #endif
1004    
1005 root 1.398 #if __cplusplus
1006     template<typename T>
1007     static inline T ecb_div_rd (T val, T div)
1008     {
1009     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1010     }
1011     template<typename T>
1012     static inline T ecb_div_ru (T val, T div)
1013     {
1014     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1015     }
1016     #else
1017     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1018     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1019     #endif
1020    
1021 root 1.391 #if ecb_cplusplus_does_not_suck
1022     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1023     template<typename T, int N>
1024     static inline int ecb_array_length (const T (&arr)[N])
1025     {
1026     return N;
1027     }
1028     #else
1029     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1030     #endif
1031    
1032 root 1.450 /*******************************************************************************/
1033     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1034    
1035     /* basically, everything uses "ieee pure-endian" floating point numbers */
1036     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1037     #if 0 \
1038     || __i386 || __i386__ \
1039     || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1040     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1041     || defined __arm__ && defined __ARM_EABI__ \
1042     || defined __s390__ || defined __s390x__ \
1043     || defined __mips__ \
1044     || defined __alpha__ \
1045     || defined __hppa__ \
1046     || defined __ia64__ \
1047     || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1048     #define ECB_STDFP 1
1049     #include <string.h> /* for memcpy */
1050     #else
1051     #define ECB_STDFP 0
1052     #include <math.h> /* for frexp*, ldexp* */
1053     #endif
1054    
1055     #ifndef ECB_NO_LIBM
1056    
1057     /* convert a float to ieee single/binary32 */
1058     ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1059     ecb_function_ uint32_t
1060     ecb_float_to_binary32 (float x)
1061     {
1062     uint32_t r;
1063    
1064     #if ECB_STDFP
1065     memcpy (&r, &x, 4);
1066     #else
1067     /* slow emulation, works for anything but -0 */
1068     uint32_t m;
1069     int e;
1070    
1071     if (x == 0e0f ) return 0x00000000U;
1072     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1073     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1074     if (x != x ) return 0x7fbfffffU;
1075    
1076     m = frexpf (x, &e) * 0x1000000U;
1077    
1078     r = m & 0x80000000U;
1079    
1080     if (r)
1081     m = -m;
1082    
1083     if (e <= -126)
1084     {
1085     m &= 0xffffffU;
1086     m >>= (-125 - e);
1087     e = -126;
1088     }
1089    
1090     r |= (e + 126) << 23;
1091     r |= m & 0x7fffffU;
1092     #endif
1093    
1094     return r;
1095     }
1096    
1097     /* converts an ieee single/binary32 to a float */
1098     ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1099     ecb_function_ float
1100     ecb_binary32_to_float (uint32_t x)
1101     {
1102     float r;
1103    
1104     #if ECB_STDFP
1105     memcpy (&r, &x, 4);
1106     #else
1107     /* emulation, only works for normals and subnormals and +0 */
1108     int neg = x >> 31;
1109     int e = (x >> 23) & 0xffU;
1110    
1111     x &= 0x7fffffU;
1112    
1113     if (e)
1114     x |= 0x800000U;
1115     else
1116     e = 1;
1117    
1118     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1119     r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1120    
1121     r = neg ? -r : r;
1122     #endif
1123    
1124     return r;
1125     }
1126    
1127     /* convert a double to ieee double/binary64 */
1128     ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1129     ecb_function_ uint64_t
1130     ecb_double_to_binary64 (double x)
1131     {
1132     uint64_t r;
1133    
1134     #if ECB_STDFP
1135     memcpy (&r, &x, 8);
1136     #else
1137     /* slow emulation, works for anything but -0 */
1138     uint64_t m;
1139     int e;
1140    
1141     if (x == 0e0 ) return 0x0000000000000000U;
1142     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1143     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1144     if (x != x ) return 0X7ff7ffffffffffffU;
1145    
1146     m = frexp (x, &e) * 0x20000000000000U;
1147    
1148     r = m & 0x8000000000000000;;
1149    
1150     if (r)
1151     m = -m;
1152    
1153     if (e <= -1022)
1154     {
1155     m &= 0x1fffffffffffffU;
1156     m >>= (-1021 - e);
1157     e = -1022;
1158     }
1159    
1160     r |= ((uint64_t)(e + 1022)) << 52;
1161     r |= m & 0xfffffffffffffU;
1162     #endif
1163    
1164     return r;
1165     }
1166    
1167     /* converts an ieee double/binary64 to a double */
1168     ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1169     ecb_function_ double
1170     ecb_binary64_to_double (uint64_t x)
1171     {
1172     double r;
1173    
1174     #if ECB_STDFP
1175     memcpy (&r, &x, 8);
1176     #else
1177     /* emulation, only works for normals and subnormals and +0 */
1178     int neg = x >> 63;
1179     int e = (x >> 52) & 0x7ffU;
1180    
1181     x &= 0xfffffffffffffU;
1182    
1183     if (e)
1184     x |= 0x10000000000000U;
1185     else
1186     e = 1;
1187    
1188     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1189     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1190    
1191     r = neg ? -r : r;
1192     #endif
1193    
1194     return r;
1195     }
1196    
1197     #endif
1198    
1199 root 1.391 #endif
1200    
1201     /* ECB.H END */
1202 root 1.379
1203 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1204 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1205 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1206     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1207 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1208 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1209     * which will then provide the memory fences.
1210     */
1211     # error "memory fences not defined for your architecture, please report"
1212     #endif
1213    
1214     #ifndef ECB_MEMORY_FENCE
1215     # define ECB_MEMORY_FENCE do { } while (0)
1216     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1217     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1218 root 1.392 #endif
1219    
1220 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1221     #define expect_true(cond) ecb_expect_true (cond)
1222     #define noinline ecb_noinline
1223    
1224     #define inline_size ecb_inline
1225 root 1.169
1226 root 1.338 #if EV_FEATURE_CODE
1227 root 1.379 # define inline_speed ecb_inline
1228 root 1.338 #else
1229 root 1.169 # define inline_speed static noinline
1230     #endif
1231 root 1.40
1232 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1233    
1234     #if EV_MINPRI == EV_MAXPRI
1235     # define ABSPRI(w) (((W)w), 0)
1236     #else
1237     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1238     #endif
1239 root 1.42
1240 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1241 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1242 root 1.103
1243 root 1.136 typedef ev_watcher *W;
1244     typedef ev_watcher_list *WL;
1245     typedef ev_watcher_time *WT;
1246 root 1.10
1247 root 1.229 #define ev_active(w) ((W)(w))->active
1248 root 1.228 #define ev_at(w) ((WT)(w))->at
1249    
1250 root 1.279 #if EV_USE_REALTIME
1251 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1252 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1253 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1254     #endif
1255    
1256     #if EV_USE_MONOTONIC
1257 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1258 root 1.198 #endif
1259 root 1.54
1260 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1261     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1262     #endif
1263     #ifndef EV_WIN32_HANDLE_TO_FD
1264 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1265 root 1.313 #endif
1266     #ifndef EV_WIN32_CLOSE_FD
1267     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1268     #endif
1269    
1270 root 1.103 #ifdef _WIN32
1271 root 1.98 # include "ev_win32.c"
1272     #endif
1273 root 1.67
1274 root 1.53 /*****************************************************************************/
1275 root 1.1
1276 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1277    
1278     #if EV_USE_FLOOR
1279     # include <math.h>
1280     # define ev_floor(v) floor (v)
1281     #else
1282    
1283     #include <float.h>
1284    
1285     /* a floor() replacement function, should be independent of ev_tstamp type */
1286     static ev_tstamp noinline
1287     ev_floor (ev_tstamp v)
1288     {
1289     /* the choice of shift factor is not terribly important */
1290     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1291     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1292     #else
1293     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1294     #endif
1295    
1296     /* argument too large for an unsigned long? */
1297     if (expect_false (v >= shift))
1298     {
1299     ev_tstamp f;
1300    
1301     if (v == v - 1.)
1302     return v; /* very large number */
1303    
1304     f = shift * ev_floor (v * (1. / shift));
1305     return f + ev_floor (v - f);
1306     }
1307    
1308     /* special treatment for negative args? */
1309     if (expect_false (v < 0.))
1310     {
1311     ev_tstamp f = -ev_floor (-v);
1312    
1313     return f - (f == v ? 0 : 1);
1314     }
1315    
1316     /* fits into an unsigned long */
1317     return (unsigned long)v;
1318     }
1319    
1320     #endif
1321    
1322     /*****************************************************************************/
1323    
1324 root 1.356 #ifdef __linux
1325     # include <sys/utsname.h>
1326     #endif
1327    
1328 root 1.379 static unsigned int noinline ecb_cold
1329 root 1.355 ev_linux_version (void)
1330     {
1331     #ifdef __linux
1332 root 1.359 unsigned int v = 0;
1333 root 1.355 struct utsname buf;
1334     int i;
1335     char *p = buf.release;
1336    
1337     if (uname (&buf))
1338     return 0;
1339    
1340     for (i = 3+1; --i; )
1341     {
1342     unsigned int c = 0;
1343    
1344     for (;;)
1345     {
1346     if (*p >= '0' && *p <= '9')
1347     c = c * 10 + *p++ - '0';
1348     else
1349     {
1350     p += *p == '.';
1351     break;
1352     }
1353     }
1354    
1355     v = (v << 8) | c;
1356     }
1357    
1358     return v;
1359     #else
1360     return 0;
1361     #endif
1362     }
1363    
1364     /*****************************************************************************/
1365    
1366 root 1.331 #if EV_AVOID_STDIO
1367 root 1.379 static void noinline ecb_cold
1368 root 1.331 ev_printerr (const char *msg)
1369     {
1370     write (STDERR_FILENO, msg, strlen (msg));
1371     }
1372     #endif
1373    
1374 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1375 root 1.69
1376 root 1.379 void ecb_cold
1377 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1378 root 1.69 {
1379     syserr_cb = cb;
1380     }
1381    
1382 root 1.379 static void noinline ecb_cold
1383 root 1.269 ev_syserr (const char *msg)
1384 root 1.69 {
1385 root 1.70 if (!msg)
1386     msg = "(libev) system error";
1387    
1388 root 1.69 if (syserr_cb)
1389 root 1.70 syserr_cb (msg);
1390 root 1.69 else
1391     {
1392 root 1.330 #if EV_AVOID_STDIO
1393 root 1.331 ev_printerr (msg);
1394     ev_printerr (": ");
1395 root 1.365 ev_printerr (strerror (errno));
1396 root 1.331 ev_printerr ("\n");
1397 root 1.330 #else
1398 root 1.70 perror (msg);
1399 root 1.330 #endif
1400 root 1.69 abort ();
1401     }
1402     }
1403    
1404 root 1.224 static void *
1405 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1406 root 1.224 {
1407     /* some systems, notably openbsd and darwin, fail to properly
1408 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1409 root 1.224 * the single unix specification, so work around them here.
1410 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1411     * despite documenting it otherwise.
1412 root 1.224 */
1413 root 1.333
1414 root 1.224 if (size)
1415     return realloc (ptr, size);
1416    
1417     free (ptr);
1418     return 0;
1419     }
1420    
1421 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1422 root 1.69
1423 root 1.379 void ecb_cold
1424 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1425 root 1.69 {
1426     alloc = cb;
1427     }
1428    
1429 root 1.150 inline_speed void *
1430 root 1.155 ev_realloc (void *ptr, long size)
1431 root 1.69 {
1432 root 1.224 ptr = alloc (ptr, size);
1433 root 1.69
1434     if (!ptr && size)
1435     {
1436 root 1.330 #if EV_AVOID_STDIO
1437 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1438 root 1.330 #else
1439 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1440 root 1.330 #endif
1441 root 1.69 abort ();
1442     }
1443    
1444     return ptr;
1445     }
1446    
1447     #define ev_malloc(size) ev_realloc (0, (size))
1448     #define ev_free(ptr) ev_realloc ((ptr), 0)
1449    
1450     /*****************************************************************************/
1451    
1452 root 1.298 /* set in reify when reification needed */
1453     #define EV_ANFD_REIFY 1
1454    
1455 root 1.288 /* file descriptor info structure */
1456 root 1.53 typedef struct
1457     {
1458 root 1.68 WL head;
1459 root 1.288 unsigned char events; /* the events watched for */
1460 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1461 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1462 root 1.269 unsigned char unused;
1463     #if EV_USE_EPOLL
1464 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1465 root 1.269 #endif
1466 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1467 root 1.103 SOCKET handle;
1468     #endif
1469 root 1.357 #if EV_USE_IOCP
1470     OVERLAPPED or, ow;
1471     #endif
1472 root 1.53 } ANFD;
1473 root 1.1
1474 root 1.288 /* stores the pending event set for a given watcher */
1475 root 1.53 typedef struct
1476     {
1477     W w;
1478 root 1.288 int events; /* the pending event set for the given watcher */
1479 root 1.53 } ANPENDING;
1480 root 1.51
1481 root 1.155 #if EV_USE_INOTIFY
1482 root 1.241 /* hash table entry per inotify-id */
1483 root 1.152 typedef struct
1484     {
1485     WL head;
1486 root 1.155 } ANFS;
1487 root 1.152 #endif
1488    
1489 root 1.241 /* Heap Entry */
1490     #if EV_HEAP_CACHE_AT
1491 root 1.288 /* a heap element */
1492 root 1.241 typedef struct {
1493 root 1.243 ev_tstamp at;
1494 root 1.241 WT w;
1495     } ANHE;
1496    
1497 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1498     #define ANHE_at(he) (he).at /* access cached at, read-only */
1499     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1500 root 1.241 #else
1501 root 1.288 /* a heap element */
1502 root 1.241 typedef WT ANHE;
1503    
1504 root 1.248 #define ANHE_w(he) (he)
1505     #define ANHE_at(he) (he)->at
1506     #define ANHE_at_cache(he)
1507 root 1.241 #endif
1508    
1509 root 1.55 #if EV_MULTIPLICITY
1510 root 1.54
1511 root 1.80 struct ev_loop
1512     {
1513 root 1.86 ev_tstamp ev_rt_now;
1514 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1515 root 1.80 #define VAR(name,decl) decl;
1516     #include "ev_vars.h"
1517     #undef VAR
1518     };
1519     #include "ev_wrap.h"
1520    
1521 root 1.116 static struct ev_loop default_loop_struct;
1522 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1523 root 1.54
1524 root 1.53 #else
1525 root 1.54
1526 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1527 root 1.80 #define VAR(name,decl) static decl;
1528     #include "ev_vars.h"
1529     #undef VAR
1530    
1531 root 1.116 static int ev_default_loop_ptr;
1532 root 1.54
1533 root 1.51 #endif
1534 root 1.1
1535 root 1.338 #if EV_FEATURE_API
1536 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1537     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1538 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1539     #else
1540 root 1.298 # define EV_RELEASE_CB (void)0
1541     # define EV_ACQUIRE_CB (void)0
1542 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1543     #endif
1544    
1545 root 1.353 #define EVBREAK_RECURSE 0x80
1546 root 1.298
1547 root 1.8 /*****************************************************************************/
1548    
1549 root 1.292 #ifndef EV_HAVE_EV_TIME
1550 root 1.141 ev_tstamp
1551 root 1.420 ev_time (void) EV_THROW
1552 root 1.1 {
1553 root 1.29 #if EV_USE_REALTIME
1554 root 1.279 if (expect_true (have_realtime))
1555     {
1556     struct timespec ts;
1557     clock_gettime (CLOCK_REALTIME, &ts);
1558     return ts.tv_sec + ts.tv_nsec * 1e-9;
1559     }
1560     #endif
1561    
1562 root 1.1 struct timeval tv;
1563     gettimeofday (&tv, 0);
1564     return tv.tv_sec + tv.tv_usec * 1e-6;
1565     }
1566 root 1.292 #endif
1567 root 1.1
1568 root 1.284 inline_size ev_tstamp
1569 root 1.1 get_clock (void)
1570     {
1571 root 1.29 #if EV_USE_MONOTONIC
1572 root 1.40 if (expect_true (have_monotonic))
1573 root 1.1 {
1574     struct timespec ts;
1575     clock_gettime (CLOCK_MONOTONIC, &ts);
1576     return ts.tv_sec + ts.tv_nsec * 1e-9;
1577     }
1578     #endif
1579    
1580     return ev_time ();
1581     }
1582    
1583 root 1.85 #if EV_MULTIPLICITY
1584 root 1.51 ev_tstamp
1585 root 1.420 ev_now (EV_P) EV_THROW
1586 root 1.51 {
1587 root 1.85 return ev_rt_now;
1588 root 1.51 }
1589 root 1.85 #endif
1590 root 1.51
1591 root 1.193 void
1592 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1593 root 1.193 {
1594     if (delay > 0.)
1595     {
1596     #if EV_USE_NANOSLEEP
1597     struct timespec ts;
1598    
1599 root 1.348 EV_TS_SET (ts, delay);
1600 root 1.193 nanosleep (&ts, 0);
1601 root 1.416 #elif defined _WIN32
1602 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1603 root 1.193 #else
1604     struct timeval tv;
1605    
1606 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1607 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1608 root 1.257 /* by older ones */
1609 sf-exg 1.349 EV_TV_SET (tv, delay);
1610 root 1.193 select (0, 0, 0, 0, &tv);
1611     #endif
1612     }
1613     }
1614    
1615     /*****************************************************************************/
1616    
1617 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1618 root 1.232
1619 root 1.288 /* find a suitable new size for the given array, */
1620 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1621 root 1.284 inline_size int
1622 root 1.163 array_nextsize (int elem, int cur, int cnt)
1623     {
1624     int ncur = cur + 1;
1625    
1626     do
1627     ncur <<= 1;
1628     while (cnt > ncur);
1629    
1630 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1631 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1632 root 1.163 {
1633     ncur *= elem;
1634 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1635 root 1.163 ncur = ncur - sizeof (void *) * 4;
1636     ncur /= elem;
1637     }
1638    
1639     return ncur;
1640     }
1641    
1642 root 1.379 static void * noinline ecb_cold
1643 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1644     {
1645     *cur = array_nextsize (elem, *cur, cnt);
1646     return ev_realloc (base, elem * *cur);
1647     }
1648 root 1.29
1649 root 1.265 #define array_init_zero(base,count) \
1650     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1651    
1652 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1653 root 1.163 if (expect_false ((cnt) > (cur))) \
1654 root 1.69 { \
1655 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1656 root 1.163 (base) = (type *)array_realloc \
1657     (sizeof (type), (base), &(cur), (cnt)); \
1658     init ((base) + (ocur_), (cur) - ocur_); \
1659 root 1.1 }
1660    
1661 root 1.163 #if 0
1662 root 1.74 #define array_slim(type,stem) \
1663 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1664     { \
1665     stem ## max = array_roundsize (stem ## cnt >> 1); \
1666 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1667 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1668     }
1669 root 1.163 #endif
1670 root 1.67
1671 root 1.65 #define array_free(stem, idx) \
1672 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1673 root 1.65
1674 root 1.8 /*****************************************************************************/
1675    
1676 root 1.288 /* dummy callback for pending events */
1677     static void noinline
1678     pendingcb (EV_P_ ev_prepare *w, int revents)
1679     {
1680     }
1681    
1682 root 1.140 void noinline
1683 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1684 root 1.1 {
1685 root 1.78 W w_ = (W)w;
1686 root 1.171 int pri = ABSPRI (w_);
1687 root 1.78
1688 root 1.123 if (expect_false (w_->pending))
1689 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1690     else
1691 root 1.32 {
1692 root 1.171 w_->pending = ++pendingcnt [pri];
1693     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1694     pendings [pri][w_->pending - 1].w = w_;
1695     pendings [pri][w_->pending - 1].events = revents;
1696 root 1.32 }
1697 root 1.425
1698     pendingpri = NUMPRI - 1;
1699 root 1.1 }
1700    
1701 root 1.284 inline_speed void
1702     feed_reverse (EV_P_ W w)
1703     {
1704     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1705     rfeeds [rfeedcnt++] = w;
1706     }
1707    
1708     inline_size void
1709     feed_reverse_done (EV_P_ int revents)
1710     {
1711     do
1712     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1713     while (rfeedcnt);
1714     }
1715    
1716     inline_speed void
1717 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1718 root 1.27 {
1719     int i;
1720    
1721     for (i = 0; i < eventcnt; ++i)
1722 root 1.78 ev_feed_event (EV_A_ events [i], type);
1723 root 1.27 }
1724    
1725 root 1.141 /*****************************************************************************/
1726    
1727 root 1.284 inline_speed void
1728 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1729 root 1.1 {
1730     ANFD *anfd = anfds + fd;
1731 root 1.136 ev_io *w;
1732 root 1.1
1733 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1734 root 1.1 {
1735 root 1.79 int ev = w->events & revents;
1736 root 1.1
1737     if (ev)
1738 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1739 root 1.1 }
1740     }
1741    
1742 root 1.298 /* do not submit kernel events for fds that have reify set */
1743     /* because that means they changed while we were polling for new events */
1744     inline_speed void
1745     fd_event (EV_P_ int fd, int revents)
1746     {
1747     ANFD *anfd = anfds + fd;
1748    
1749     if (expect_true (!anfd->reify))
1750 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1751 root 1.298 }
1752    
1753 root 1.79 void
1754 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1755 root 1.79 {
1756 root 1.168 if (fd >= 0 && fd < anfdmax)
1757 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1758 root 1.79 }
1759    
1760 root 1.288 /* make sure the external fd watch events are in-sync */
1761     /* with the kernel/libev internal state */
1762 root 1.284 inline_size void
1763 root 1.51 fd_reify (EV_P)
1764 root 1.9 {
1765     int i;
1766    
1767 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1768     for (i = 0; i < fdchangecnt; ++i)
1769     {
1770     int fd = fdchanges [i];
1771     ANFD *anfd = anfds + fd;
1772    
1773 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1774 root 1.371 {
1775     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1776    
1777     if (handle != anfd->handle)
1778     {
1779     unsigned long arg;
1780    
1781     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1782    
1783     /* handle changed, but fd didn't - we need to do it in two steps */
1784     backend_modify (EV_A_ fd, anfd->events, 0);
1785     anfd->events = 0;
1786     anfd->handle = handle;
1787     }
1788     }
1789     }
1790     #endif
1791    
1792 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1793     {
1794     int fd = fdchanges [i];
1795     ANFD *anfd = anfds + fd;
1796 root 1.136 ev_io *w;
1797 root 1.27
1798 root 1.350 unsigned char o_events = anfd->events;
1799     unsigned char o_reify = anfd->reify;
1800 root 1.27
1801 root 1.350 anfd->reify = 0;
1802 root 1.27
1803 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1804     {
1805     anfd->events = 0;
1806 root 1.184
1807 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1808     anfd->events |= (unsigned char)w->events;
1809 root 1.27
1810 root 1.351 if (o_events != anfd->events)
1811 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1812     }
1813    
1814     if (o_reify & EV__IOFDSET)
1815     backend_modify (EV_A_ fd, o_events, anfd->events);
1816 root 1.27 }
1817    
1818     fdchangecnt = 0;
1819     }
1820    
1821 root 1.288 /* something about the given fd changed */
1822 root 1.284 inline_size void
1823 root 1.183 fd_change (EV_P_ int fd, int flags)
1824 root 1.27 {
1825 root 1.183 unsigned char reify = anfds [fd].reify;
1826 root 1.184 anfds [fd].reify |= flags;
1827 root 1.27
1828 root 1.183 if (expect_true (!reify))
1829     {
1830     ++fdchangecnt;
1831     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1832     fdchanges [fdchangecnt - 1] = fd;
1833     }
1834 root 1.9 }
1835    
1836 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1837 root 1.379 inline_speed void ecb_cold
1838 root 1.51 fd_kill (EV_P_ int fd)
1839 root 1.41 {
1840 root 1.136 ev_io *w;
1841 root 1.41
1842 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1843 root 1.41 {
1844 root 1.51 ev_io_stop (EV_A_ w);
1845 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1846 root 1.41 }
1847     }
1848    
1849 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1850 root 1.379 inline_size int ecb_cold
1851 root 1.71 fd_valid (int fd)
1852     {
1853 root 1.103 #ifdef _WIN32
1854 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1855 root 1.71 #else
1856     return fcntl (fd, F_GETFD) != -1;
1857     #endif
1858     }
1859    
1860 root 1.19 /* called on EBADF to verify fds */
1861 root 1.379 static void noinline ecb_cold
1862 root 1.51 fd_ebadf (EV_P)
1863 root 1.19 {
1864     int fd;
1865    
1866     for (fd = 0; fd < anfdmax; ++fd)
1867 root 1.27 if (anfds [fd].events)
1868 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1869 root 1.51 fd_kill (EV_A_ fd);
1870 root 1.41 }
1871    
1872     /* called on ENOMEM in select/poll to kill some fds and retry */
1873 root 1.379 static void noinline ecb_cold
1874 root 1.51 fd_enomem (EV_P)
1875 root 1.41 {
1876 root 1.62 int fd;
1877 root 1.41
1878 root 1.62 for (fd = anfdmax; fd--; )
1879 root 1.41 if (anfds [fd].events)
1880     {
1881 root 1.51 fd_kill (EV_A_ fd);
1882 root 1.307 break;
1883 root 1.41 }
1884 root 1.19 }
1885    
1886 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1887 root 1.140 static void noinline
1888 root 1.56 fd_rearm_all (EV_P)
1889     {
1890     int fd;
1891    
1892     for (fd = 0; fd < anfdmax; ++fd)
1893     if (anfds [fd].events)
1894     {
1895     anfds [fd].events = 0;
1896 root 1.268 anfds [fd].emask = 0;
1897 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1898 root 1.56 }
1899     }
1900    
1901 root 1.336 /* used to prepare libev internal fd's */
1902     /* this is not fork-safe */
1903     inline_speed void
1904     fd_intern (int fd)
1905     {
1906     #ifdef _WIN32
1907     unsigned long arg = 1;
1908     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1909     #else
1910     fcntl (fd, F_SETFD, FD_CLOEXEC);
1911     fcntl (fd, F_SETFL, O_NONBLOCK);
1912     #endif
1913     }
1914    
1915 root 1.8 /*****************************************************************************/
1916    
1917 root 1.235 /*
1918 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1919 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1920     * the branching factor of the d-tree.
1921     */
1922    
1923     /*
1924 root 1.235 * at the moment we allow libev the luxury of two heaps,
1925     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1926     * which is more cache-efficient.
1927     * the difference is about 5% with 50000+ watchers.
1928     */
1929 root 1.241 #if EV_USE_4HEAP
1930 root 1.235
1931 root 1.237 #define DHEAP 4
1932     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1933 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1934 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1935 root 1.235
1936     /* away from the root */
1937 root 1.284 inline_speed void
1938 root 1.241 downheap (ANHE *heap, int N, int k)
1939 root 1.235 {
1940 root 1.241 ANHE he = heap [k];
1941     ANHE *E = heap + N + HEAP0;
1942 root 1.235
1943     for (;;)
1944     {
1945     ev_tstamp minat;
1946 root 1.241 ANHE *minpos;
1947 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1948 root 1.235
1949 root 1.248 /* find minimum child */
1950 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1951 root 1.235 {
1952 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1953     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1954     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1955     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1956 root 1.235 }
1957 root 1.240 else if (pos < E)
1958 root 1.235 {
1959 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1960     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1961     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1962     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1963 root 1.235 }
1964 root 1.240 else
1965     break;
1966 root 1.235
1967 root 1.241 if (ANHE_at (he) <= minat)
1968 root 1.235 break;
1969    
1970 root 1.247 heap [k] = *minpos;
1971 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1972 root 1.235
1973     k = minpos - heap;
1974     }
1975    
1976 root 1.247 heap [k] = he;
1977 root 1.241 ev_active (ANHE_w (he)) = k;
1978 root 1.235 }
1979    
1980 root 1.248 #else /* 4HEAP */
1981 root 1.235
1982     #define HEAP0 1
1983 root 1.247 #define HPARENT(k) ((k) >> 1)
1984 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1985 root 1.235
1986 root 1.248 /* away from the root */
1987 root 1.284 inline_speed void
1988 root 1.248 downheap (ANHE *heap, int N, int k)
1989 root 1.1 {
1990 root 1.241 ANHE he = heap [k];
1991 root 1.1
1992 root 1.228 for (;;)
1993 root 1.1 {
1994 root 1.248 int c = k << 1;
1995 root 1.179
1996 root 1.309 if (c >= N + HEAP0)
1997 root 1.179 break;
1998    
1999 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2000     ? 1 : 0;
2001    
2002     if (ANHE_at (he) <= ANHE_at (heap [c]))
2003     break;
2004    
2005     heap [k] = heap [c];
2006 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2007 root 1.248
2008     k = c;
2009 root 1.1 }
2010    
2011 root 1.243 heap [k] = he;
2012 root 1.248 ev_active (ANHE_w (he)) = k;
2013 root 1.1 }
2014 root 1.248 #endif
2015 root 1.1
2016 root 1.248 /* towards the root */
2017 root 1.284 inline_speed void
2018 root 1.248 upheap (ANHE *heap, int k)
2019 root 1.1 {
2020 root 1.241 ANHE he = heap [k];
2021 root 1.1
2022 root 1.179 for (;;)
2023 root 1.1 {
2024 root 1.248 int p = HPARENT (k);
2025 root 1.179
2026 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2027 root 1.179 break;
2028 root 1.1
2029 root 1.248 heap [k] = heap [p];
2030 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2031 root 1.248 k = p;
2032 root 1.1 }
2033    
2034 root 1.241 heap [k] = he;
2035     ev_active (ANHE_w (he)) = k;
2036 root 1.1 }
2037    
2038 root 1.288 /* move an element suitably so it is in a correct place */
2039 root 1.284 inline_size void
2040 root 1.241 adjustheap (ANHE *heap, int N, int k)
2041 root 1.84 {
2042 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2043 root 1.247 upheap (heap, k);
2044     else
2045     downheap (heap, N, k);
2046 root 1.84 }
2047    
2048 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2049 root 1.284 inline_size void
2050 root 1.248 reheap (ANHE *heap, int N)
2051     {
2052     int i;
2053 root 1.251
2054 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2055     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2056     for (i = 0; i < N; ++i)
2057     upheap (heap, i + HEAP0);
2058     }
2059    
2060 root 1.8 /*****************************************************************************/
2061    
2062 root 1.288 /* associate signal watchers to a signal signal */
2063 root 1.7 typedef struct
2064     {
2065 root 1.307 EV_ATOMIC_T pending;
2066 root 1.306 #if EV_MULTIPLICITY
2067     EV_P;
2068     #endif
2069 root 1.68 WL head;
2070 root 1.7 } ANSIG;
2071    
2072 root 1.306 static ANSIG signals [EV_NSIG - 1];
2073 root 1.7
2074 root 1.207 /*****************************************************************************/
2075    
2076 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2077 root 1.207
2078 root 1.379 static void noinline ecb_cold
2079 root 1.207 evpipe_init (EV_P)
2080     {
2081 root 1.288 if (!ev_is_active (&pipe_w))
2082 root 1.207 {
2083 root 1.448 int fds [2];
2084    
2085 root 1.336 # if EV_USE_EVENTFD
2086 root 1.448 fds [0] = -1;
2087     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2088     if (fds [1] < 0 && errno == EINVAL)
2089     fds [1] = eventfd (0, 0);
2090    
2091     if (fds [1] < 0)
2092     # endif
2093     {
2094     while (pipe (fds))
2095     ev_syserr ("(libev) error creating signal/async pipe");
2096    
2097     fd_intern (fds [0]);
2098 root 1.220 }
2099 root 1.448
2100     fd_intern (fds [1]);
2101    
2102     evpipe [0] = fds [0];
2103    
2104     if (evpipe [1] < 0)
2105     evpipe [1] = fds [1]; /* first call, set write fd */
2106 root 1.220 else
2107     {
2108 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2109     /* so that evpipe_write can always rely on its value. */
2110     /* this branch does not do anything sensible on windows, */
2111     /* so must not be executed on windows */
2112 root 1.207
2113 root 1.448 dup2 (fds [1], evpipe [1]);
2114     close (fds [1]);
2115 root 1.220 }
2116 root 1.207
2117 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2118 root 1.288 ev_io_start (EV_A_ &pipe_w);
2119 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2120 root 1.207 }
2121     }
2122    
2123 root 1.380 inline_speed void
2124 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2125 root 1.207 {
2126 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2127    
2128 root 1.383 if (expect_true (*flag))
2129 root 1.387 return;
2130 root 1.383
2131     *flag = 1;
2132 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2133 root 1.383
2134     pipe_write_skipped = 1;
2135 root 1.378
2136 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2137 root 1.214
2138 root 1.383 if (pipe_write_wanted)
2139     {
2140     int old_errno;
2141 root 1.378
2142 root 1.436 pipe_write_skipped = 0;
2143     ECB_MEMORY_FENCE_RELEASE;
2144 root 1.220
2145 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2146 root 1.380
2147 root 1.220 #if EV_USE_EVENTFD
2148 root 1.448 if (evpipe [0] < 0)
2149 root 1.383 {
2150     uint64_t counter = 1;
2151 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2152 root 1.383 }
2153     else
2154 root 1.220 #endif
2155 root 1.383 {
2156 root 1.427 #ifdef _WIN32
2157     WSABUF buf;
2158     DWORD sent;
2159     buf.buf = &buf;
2160     buf.len = 1;
2161     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2162     #else
2163 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2164 root 1.427 #endif
2165 root 1.383 }
2166 root 1.214
2167 root 1.383 errno = old_errno;
2168 root 1.207 }
2169     }
2170    
2171 root 1.288 /* called whenever the libev signal pipe */
2172     /* got some events (signal, async) */
2173 root 1.207 static void
2174     pipecb (EV_P_ ev_io *iow, int revents)
2175     {
2176 root 1.307 int i;
2177    
2178 root 1.378 if (revents & EV_READ)
2179     {
2180 root 1.220 #if EV_USE_EVENTFD
2181 root 1.448 if (evpipe [0] < 0)
2182 root 1.378 {
2183     uint64_t counter;
2184 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2185 root 1.378 }
2186     else
2187 root 1.220 #endif
2188 root 1.378 {
2189 root 1.427 char dummy[4];
2190     #ifdef _WIN32
2191     WSABUF buf;
2192     DWORD recvd;
2193 root 1.432 DWORD flags = 0;
2194 root 1.427 buf.buf = dummy;
2195     buf.len = sizeof (dummy);
2196 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2197 root 1.427 #else
2198     read (evpipe [0], &dummy, sizeof (dummy));
2199     #endif
2200 root 1.378 }
2201 root 1.220 }
2202 root 1.207
2203 root 1.378 pipe_write_skipped = 0;
2204    
2205 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2206    
2207 root 1.369 #if EV_SIGNAL_ENABLE
2208 root 1.307 if (sig_pending)
2209 root 1.372 {
2210 root 1.307 sig_pending = 0;
2211 root 1.207
2212 root 1.436 ECB_MEMORY_FENCE;
2213 root 1.424
2214 root 1.307 for (i = EV_NSIG - 1; i--; )
2215     if (expect_false (signals [i].pending))
2216     ev_feed_signal_event (EV_A_ i + 1);
2217 root 1.207 }
2218 root 1.369 #endif
2219 root 1.207
2220 root 1.209 #if EV_ASYNC_ENABLE
2221 root 1.307 if (async_pending)
2222 root 1.207 {
2223 root 1.307 async_pending = 0;
2224 root 1.207
2225 root 1.436 ECB_MEMORY_FENCE;
2226 root 1.424
2227 root 1.207 for (i = asynccnt; i--; )
2228     if (asyncs [i]->sent)
2229     {
2230     asyncs [i]->sent = 0;
2231 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2232 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2233     }
2234     }
2235 root 1.209 #endif
2236 root 1.207 }
2237    
2238     /*****************************************************************************/
2239    
2240 root 1.366 void
2241 root 1.420 ev_feed_signal (int signum) EV_THROW
2242 root 1.7 {
2243 root 1.207 #if EV_MULTIPLICITY
2244 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2245 root 1.306 EV_P = signals [signum - 1].loop;
2246 root 1.366
2247     if (!EV_A)
2248     return;
2249 root 1.207 #endif
2250    
2251 root 1.366 signals [signum - 1].pending = 1;
2252     evpipe_write (EV_A_ &sig_pending);
2253     }
2254    
2255     static void
2256     ev_sighandler (int signum)
2257     {
2258 root 1.322 #ifdef _WIN32
2259 root 1.218 signal (signum, ev_sighandler);
2260 root 1.67 #endif
2261    
2262 root 1.366 ev_feed_signal (signum);
2263 root 1.7 }
2264    
2265 root 1.140 void noinline
2266 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2267 root 1.79 {
2268 root 1.80 WL w;
2269    
2270 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2271 root 1.307 return;
2272    
2273     --signum;
2274    
2275 root 1.79 #if EV_MULTIPLICITY
2276 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2277     /* or, likely more useful, feeding a signal nobody is waiting for */
2278 root 1.79
2279 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2280 root 1.306 return;
2281 root 1.307 #endif
2282 root 1.306
2283 root 1.307 signals [signum].pending = 0;
2284 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2285 root 1.79
2286     for (w = signals [signum].head; w; w = w->next)
2287     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2288     }
2289    
2290 root 1.303 #if EV_USE_SIGNALFD
2291     static void
2292     sigfdcb (EV_P_ ev_io *iow, int revents)
2293     {
2294 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2295 root 1.303
2296     for (;;)
2297     {
2298     ssize_t res = read (sigfd, si, sizeof (si));
2299    
2300     /* not ISO-C, as res might be -1, but works with SuS */
2301     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2302     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2303    
2304     if (res < (ssize_t)sizeof (si))
2305     break;
2306     }
2307     }
2308     #endif
2309    
2310 root 1.336 #endif
2311    
2312 root 1.8 /*****************************************************************************/
2313    
2314 root 1.336 #if EV_CHILD_ENABLE
2315 root 1.182 static WL childs [EV_PID_HASHSIZE];
2316 root 1.71
2317 root 1.136 static ev_signal childev;
2318 root 1.59
2319 root 1.206 #ifndef WIFCONTINUED
2320     # define WIFCONTINUED(status) 0
2321     #endif
2322    
2323 root 1.288 /* handle a single child status event */
2324 root 1.284 inline_speed void
2325 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2326 root 1.47 {
2327 root 1.136 ev_child *w;
2328 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2329 root 1.47
2330 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2331 root 1.206 {
2332     if ((w->pid == pid || !w->pid)
2333     && (!traced || (w->flags & 1)))
2334     {
2335 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2336 root 1.206 w->rpid = pid;
2337     w->rstatus = status;
2338     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2339     }
2340     }
2341 root 1.47 }
2342    
2343 root 1.142 #ifndef WCONTINUED
2344     # define WCONTINUED 0
2345     #endif
2346    
2347 root 1.288 /* called on sigchld etc., calls waitpid */
2348 root 1.47 static void
2349 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2350 root 1.22 {
2351     int pid, status;
2352    
2353 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2354     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2355     if (!WCONTINUED
2356     || errno != EINVAL
2357     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2358     return;
2359    
2360 root 1.216 /* make sure we are called again until all children have been reaped */
2361 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2362     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2363 root 1.47
2364 root 1.216 child_reap (EV_A_ pid, pid, status);
2365 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2366 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2367 root 1.22 }
2368    
2369 root 1.45 #endif
2370    
2371 root 1.22 /*****************************************************************************/
2372    
2373 root 1.357 #if EV_USE_IOCP
2374     # include "ev_iocp.c"
2375     #endif
2376 root 1.118 #if EV_USE_PORT
2377     # include "ev_port.c"
2378     #endif
2379 root 1.44 #if EV_USE_KQUEUE
2380     # include "ev_kqueue.c"
2381     #endif
2382 root 1.29 #if EV_USE_EPOLL
2383 root 1.1 # include "ev_epoll.c"
2384     #endif
2385 root 1.59 #if EV_USE_POLL
2386 root 1.41 # include "ev_poll.c"
2387     #endif
2388 root 1.29 #if EV_USE_SELECT
2389 root 1.1 # include "ev_select.c"
2390     #endif
2391    
2392 root 1.379 int ecb_cold
2393 root 1.420 ev_version_major (void) EV_THROW
2394 root 1.24 {
2395     return EV_VERSION_MAJOR;
2396     }
2397    
2398 root 1.379 int ecb_cold
2399 root 1.420 ev_version_minor (void) EV_THROW
2400 root 1.24 {
2401     return EV_VERSION_MINOR;
2402     }
2403    
2404 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2405 root 1.379 int inline_size ecb_cold
2406 root 1.51 enable_secure (void)
2407 root 1.41 {
2408 root 1.103 #ifdef _WIN32
2409 root 1.49 return 0;
2410     #else
2411 root 1.41 return getuid () != geteuid ()
2412     || getgid () != getegid ();
2413 root 1.49 #endif
2414 root 1.41 }
2415    
2416 root 1.379 unsigned int ecb_cold
2417 root 1.420 ev_supported_backends (void) EV_THROW
2418 root 1.129 {
2419 root 1.130 unsigned int flags = 0;
2420 root 1.129
2421     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2422     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2423     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2424     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2425     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2426    
2427     return flags;
2428     }
2429    
2430 root 1.379 unsigned int ecb_cold
2431 root 1.420 ev_recommended_backends (void) EV_THROW
2432 root 1.1 {
2433 root 1.131 unsigned int flags = ev_supported_backends ();
2434 root 1.129
2435     #ifndef __NetBSD__
2436     /* kqueue is borked on everything but netbsd apparently */
2437     /* it usually doesn't work correctly on anything but sockets and pipes */
2438     flags &= ~EVBACKEND_KQUEUE;
2439     #endif
2440     #ifdef __APPLE__
2441 root 1.278 /* only select works correctly on that "unix-certified" platform */
2442     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2443     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2444 root 1.129 #endif
2445 root 1.342 #ifdef __FreeBSD__
2446     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2447     #endif
2448 root 1.129
2449     return flags;
2450 root 1.51 }
2451    
2452 root 1.379 unsigned int ecb_cold
2453 root 1.420 ev_embeddable_backends (void) EV_THROW
2454 root 1.134 {
2455 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2456    
2457 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2458 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2459     flags &= ~EVBACKEND_EPOLL;
2460 root 1.196
2461     return flags;
2462 root 1.134 }
2463    
2464     unsigned int
2465 root 1.420 ev_backend (EV_P) EV_THROW
2466 root 1.130 {
2467     return backend;
2468     }
2469    
2470 root 1.338 #if EV_FEATURE_API
2471 root 1.162 unsigned int
2472 root 1.420 ev_iteration (EV_P) EV_THROW
2473 root 1.162 {
2474     return loop_count;
2475     }
2476    
2477 root 1.294 unsigned int
2478 root 1.420 ev_depth (EV_P) EV_THROW
2479 root 1.294 {
2480     return loop_depth;
2481     }
2482    
2483 root 1.193 void
2484 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2485 root 1.193 {
2486     io_blocktime = interval;
2487     }
2488    
2489     void
2490 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2491 root 1.193 {
2492     timeout_blocktime = interval;
2493     }
2494    
2495 root 1.297 void
2496 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2497 root 1.297 {
2498     userdata = data;
2499     }
2500    
2501     void *
2502 root 1.420 ev_userdata (EV_P) EV_THROW
2503 root 1.297 {
2504     return userdata;
2505     }
2506    
2507 root 1.379 void
2508 root 1.420 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2509 root 1.297 {
2510     invoke_cb = invoke_pending_cb;
2511     }
2512    
2513 root 1.379 void
2514 root 1.421 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2515 root 1.297 {
2516 root 1.298 release_cb = release;
2517     acquire_cb = acquire;
2518 root 1.297 }
2519     #endif
2520    
2521 root 1.288 /* initialise a loop structure, must be zero-initialised */
2522 root 1.379 static void noinline ecb_cold
2523 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2524 root 1.51 {
2525 root 1.130 if (!backend)
2526 root 1.23 {
2527 root 1.366 origflags = flags;
2528    
2529 root 1.279 #if EV_USE_REALTIME
2530     if (!have_realtime)
2531     {
2532     struct timespec ts;
2533    
2534     if (!clock_gettime (CLOCK_REALTIME, &ts))
2535     have_realtime = 1;
2536     }
2537     #endif
2538    
2539 root 1.29 #if EV_USE_MONOTONIC
2540 root 1.279 if (!have_monotonic)
2541     {
2542     struct timespec ts;
2543    
2544     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2545     have_monotonic = 1;
2546     }
2547 root 1.1 #endif
2548    
2549 root 1.306 /* pid check not overridable via env */
2550     #ifndef _WIN32
2551     if (flags & EVFLAG_FORKCHECK)
2552     curpid = getpid ();
2553     #endif
2554    
2555     if (!(flags & EVFLAG_NOENV)
2556     && !enable_secure ()
2557     && getenv ("LIBEV_FLAGS"))
2558     flags = atoi (getenv ("LIBEV_FLAGS"));
2559    
2560 root 1.378 ev_rt_now = ev_time ();
2561     mn_now = get_clock ();
2562     now_floor = mn_now;
2563     rtmn_diff = ev_rt_now - mn_now;
2564 root 1.338 #if EV_FEATURE_API
2565 root 1.378 invoke_cb = ev_invoke_pending;
2566 root 1.297 #endif
2567 root 1.1
2568 root 1.378 io_blocktime = 0.;
2569     timeout_blocktime = 0.;
2570     backend = 0;
2571     backend_fd = -1;
2572     sig_pending = 0;
2573 root 1.307 #if EV_ASYNC_ENABLE
2574 root 1.378 async_pending = 0;
2575 root 1.307 #endif
2576 root 1.378 pipe_write_skipped = 0;
2577     pipe_write_wanted = 0;
2578 root 1.448 evpipe [0] = -1;
2579     evpipe [1] = -1;
2580 root 1.209 #if EV_USE_INOTIFY
2581 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2582 root 1.209 #endif
2583 root 1.303 #if EV_USE_SIGNALFD
2584 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2585 root 1.303 #endif
2586 root 1.193
2587 root 1.366 if (!(flags & EVBACKEND_MASK))
2588 root 1.129 flags |= ev_recommended_backends ();
2589 root 1.41
2590 root 1.357 #if EV_USE_IOCP
2591     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2592     #endif
2593 root 1.118 #if EV_USE_PORT
2594 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2595 root 1.118 #endif
2596 root 1.44 #if EV_USE_KQUEUE
2597 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2598 root 1.44 #endif
2599 root 1.29 #if EV_USE_EPOLL
2600 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2601 root 1.41 #endif
2602 root 1.59 #if EV_USE_POLL
2603 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2604 root 1.1 #endif
2605 root 1.29 #if EV_USE_SELECT
2606 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2607 root 1.1 #endif
2608 root 1.70
2609 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2610    
2611 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2612 root 1.288 ev_init (&pipe_w, pipecb);
2613     ev_set_priority (&pipe_w, EV_MAXPRI);
2614 root 1.336 #endif
2615 root 1.56 }
2616     }
2617    
2618 root 1.288 /* free up a loop structure */
2619 root 1.379 void ecb_cold
2620 root 1.422 ev_loop_destroy (EV_P)
2621 root 1.56 {
2622 root 1.65 int i;
2623    
2624 root 1.364 #if EV_MULTIPLICITY
2625 root 1.363 /* mimic free (0) */
2626     if (!EV_A)
2627     return;
2628 root 1.364 #endif
2629 root 1.363
2630 root 1.361 #if EV_CLEANUP_ENABLE
2631     /* queue cleanup watchers (and execute them) */
2632     if (expect_false (cleanupcnt))
2633     {
2634     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2635     EV_INVOKE_PENDING;
2636     }
2637     #endif
2638    
2639 root 1.359 #if EV_CHILD_ENABLE
2640 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2641 root 1.359 {
2642     ev_ref (EV_A); /* child watcher */
2643     ev_signal_stop (EV_A_ &childev);
2644     }
2645     #endif
2646    
2647 root 1.288 if (ev_is_active (&pipe_w))
2648 root 1.207 {
2649 root 1.303 /*ev_ref (EV_A);*/
2650     /*ev_io_stop (EV_A_ &pipe_w);*/
2651 root 1.207
2652 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2653     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2654 root 1.207 }
2655    
2656 root 1.303 #if EV_USE_SIGNALFD
2657     if (ev_is_active (&sigfd_w))
2658 root 1.317 close (sigfd);
2659 root 1.303 #endif
2660    
2661 root 1.152 #if EV_USE_INOTIFY
2662     if (fs_fd >= 0)
2663     close (fs_fd);
2664     #endif
2665    
2666     if (backend_fd >= 0)
2667     close (backend_fd);
2668    
2669 root 1.357 #if EV_USE_IOCP
2670     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2671     #endif
2672 root 1.118 #if EV_USE_PORT
2673 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2674 root 1.118 #endif
2675 root 1.56 #if EV_USE_KQUEUE
2676 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2677 root 1.56 #endif
2678     #if EV_USE_EPOLL
2679 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2680 root 1.56 #endif
2681 root 1.59 #if EV_USE_POLL
2682 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2683 root 1.56 #endif
2684     #if EV_USE_SELECT
2685 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2686 root 1.56 #endif
2687 root 1.1
2688 root 1.65 for (i = NUMPRI; i--; )
2689 root 1.164 {
2690     array_free (pending, [i]);
2691     #if EV_IDLE_ENABLE
2692     array_free (idle, [i]);
2693     #endif
2694     }
2695 root 1.65
2696 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2697 root 1.186
2698 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2699 root 1.284 array_free (rfeed, EMPTY);
2700 root 1.164 array_free (fdchange, EMPTY);
2701     array_free (timer, EMPTY);
2702 root 1.140 #if EV_PERIODIC_ENABLE
2703 root 1.164 array_free (periodic, EMPTY);
2704 root 1.93 #endif
2705 root 1.187 #if EV_FORK_ENABLE
2706     array_free (fork, EMPTY);
2707     #endif
2708 root 1.360 #if EV_CLEANUP_ENABLE
2709     array_free (cleanup, EMPTY);
2710     #endif
2711 root 1.164 array_free (prepare, EMPTY);
2712     array_free (check, EMPTY);
2713 root 1.209 #if EV_ASYNC_ENABLE
2714     array_free (async, EMPTY);
2715     #endif
2716 root 1.65
2717 root 1.130 backend = 0;
2718 root 1.359
2719     #if EV_MULTIPLICITY
2720     if (ev_is_default_loop (EV_A))
2721     #endif
2722     ev_default_loop_ptr = 0;
2723     #if EV_MULTIPLICITY
2724     else
2725     ev_free (EV_A);
2726     #endif
2727 root 1.56 }
2728 root 1.22
2729 root 1.226 #if EV_USE_INOTIFY
2730 root 1.284 inline_size void infy_fork (EV_P);
2731 root 1.226 #endif
2732 root 1.154
2733 root 1.284 inline_size void
2734 root 1.56 loop_fork (EV_P)
2735     {
2736 root 1.118 #if EV_USE_PORT
2737 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2738 root 1.56 #endif
2739     #if EV_USE_KQUEUE
2740 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2741 root 1.45 #endif
2742 root 1.118 #if EV_USE_EPOLL
2743 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2744 root 1.118 #endif
2745 root 1.154 #if EV_USE_INOTIFY
2746     infy_fork (EV_A);
2747     #endif
2748 root 1.70
2749 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2750 root 1.288 if (ev_is_active (&pipe_w))
2751 root 1.70 {
2752 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2753 root 1.70
2754     ev_ref (EV_A);
2755 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2756 root 1.220
2757     if (evpipe [0] >= 0)
2758 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
2759 root 1.207
2760     evpipe_init (EV_A);
2761 root 1.443 /* iterate over everything, in case we missed something before */
2762     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2763 root 1.448 }
2764 root 1.337 #endif
2765 root 1.70
2766     postfork = 0;
2767 root 1.1 }
2768    
2769 root 1.55 #if EV_MULTIPLICITY
2770 root 1.250
2771 root 1.379 struct ev_loop * ecb_cold
2772 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2773 root 1.54 {
2774 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2775 root 1.69
2776 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2777 root 1.108 loop_init (EV_A_ flags);
2778 root 1.56
2779 root 1.130 if (ev_backend (EV_A))
2780 root 1.306 return EV_A;
2781 root 1.54
2782 root 1.359 ev_free (EV_A);
2783 root 1.55 return 0;
2784 root 1.54 }
2785    
2786 root 1.297 #endif /* multiplicity */
2787 root 1.248
2788     #if EV_VERIFY
2789 root 1.379 static void noinline ecb_cold
2790 root 1.251 verify_watcher (EV_P_ W w)
2791     {
2792 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2793 root 1.251
2794     if (w->pending)
2795 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2796 root 1.251 }
2797    
2798 root 1.379 static void noinline ecb_cold
2799 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2800     {
2801     int i;
2802    
2803     for (i = HEAP0; i < N + HEAP0; ++i)
2804     {
2805 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2806     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2807     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2808 root 1.251
2809     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2810     }
2811     }
2812    
2813 root 1.379 static void noinline ecb_cold
2814 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2815 root 1.248 {
2816     while (cnt--)
2817 root 1.251 {
2818 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2819 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2820     }
2821 root 1.248 }
2822 root 1.250 #endif
2823 root 1.248
2824 root 1.338 #if EV_FEATURE_API
2825 root 1.379 void ecb_cold
2826 root 1.420 ev_verify (EV_P) EV_THROW
2827 root 1.248 {
2828 root 1.250 #if EV_VERIFY
2829 root 1.429 int i;
2830 root 1.426 WL w, w2;
2831 root 1.251
2832     assert (activecnt >= -1);
2833    
2834     assert (fdchangemax >= fdchangecnt);
2835     for (i = 0; i < fdchangecnt; ++i)
2836 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2837 root 1.251
2838     assert (anfdmax >= 0);
2839 root 1.429 for (i = 0; i < anfdmax; ++i)
2840     {
2841     int j = 0;
2842    
2843     for (w = w2 = anfds [i].head; w; w = w->next)
2844     {
2845     verify_watcher (EV_A_ (W)w);
2846 root 1.426
2847 root 1.429 if (j++ & 1)
2848     {
2849     assert (("libev: io watcher list contains a loop", w != w2));
2850     w2 = w2->next;
2851     }
2852 root 1.426
2853 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2854     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2855     }
2856     }
2857 root 1.251
2858     assert (timermax >= timercnt);
2859     verify_heap (EV_A_ timers, timercnt);
2860 root 1.248
2861     #if EV_PERIODIC_ENABLE
2862 root 1.251 assert (periodicmax >= periodiccnt);
2863     verify_heap (EV_A_ periodics, periodiccnt);
2864 root 1.248 #endif
2865    
2866 root 1.251 for (i = NUMPRI; i--; )
2867     {
2868     assert (pendingmax [i] >= pendingcnt [i]);
2869 root 1.248 #if EV_IDLE_ENABLE
2870 root 1.252 assert (idleall >= 0);
2871 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2872     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2873 root 1.248 #endif
2874 root 1.251 }
2875    
2876 root 1.248 #if EV_FORK_ENABLE
2877 root 1.251 assert (forkmax >= forkcnt);
2878     array_verify (EV_A_ (W *)forks, forkcnt);
2879 root 1.248 #endif
2880 root 1.251
2881 root 1.360 #if EV_CLEANUP_ENABLE
2882     assert (cleanupmax >= cleanupcnt);
2883     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2884     #endif
2885    
2886 root 1.250 #if EV_ASYNC_ENABLE
2887 root 1.251 assert (asyncmax >= asynccnt);
2888     array_verify (EV_A_ (W *)asyncs, asynccnt);
2889 root 1.250 #endif
2890 root 1.251
2891 root 1.337 #if EV_PREPARE_ENABLE
2892 root 1.251 assert (preparemax >= preparecnt);
2893     array_verify (EV_A_ (W *)prepares, preparecnt);
2894 root 1.337 #endif
2895 root 1.251
2896 root 1.337 #if EV_CHECK_ENABLE
2897 root 1.251 assert (checkmax >= checkcnt);
2898     array_verify (EV_A_ (W *)checks, checkcnt);
2899 root 1.337 #endif
2900 root 1.251
2901     # if 0
2902 root 1.336 #if EV_CHILD_ENABLE
2903 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2904 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2905 root 1.336 #endif
2906 root 1.251 # endif
2907 root 1.248 #endif
2908     }
2909 root 1.297 #endif
2910 root 1.56
2911     #if EV_MULTIPLICITY
2912 root 1.379 struct ev_loop * ecb_cold
2913 root 1.54 #else
2914     int
2915 root 1.358 #endif
2916 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
2917 root 1.54 {
2918 root 1.116 if (!ev_default_loop_ptr)
2919 root 1.56 {
2920     #if EV_MULTIPLICITY
2921 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2922 root 1.56 #else
2923 ayin 1.117 ev_default_loop_ptr = 1;
2924 root 1.54 #endif
2925    
2926 root 1.110 loop_init (EV_A_ flags);
2927 root 1.56
2928 root 1.130 if (ev_backend (EV_A))
2929 root 1.56 {
2930 root 1.336 #if EV_CHILD_ENABLE
2931 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2932     ev_set_priority (&childev, EV_MAXPRI);
2933     ev_signal_start (EV_A_ &childev);
2934     ev_unref (EV_A); /* child watcher should not keep loop alive */
2935     #endif
2936     }
2937     else
2938 root 1.116 ev_default_loop_ptr = 0;
2939 root 1.56 }
2940 root 1.8
2941 root 1.116 return ev_default_loop_ptr;
2942 root 1.1 }
2943    
2944 root 1.24 void
2945 root 1.420 ev_loop_fork (EV_P) EV_THROW
2946 root 1.1 {
2947 root 1.440 postfork = 1;
2948 root 1.1 }
2949    
2950 root 1.8 /*****************************************************************************/
2951    
2952 root 1.168 void
2953     ev_invoke (EV_P_ void *w, int revents)
2954     {
2955     EV_CB_INVOKE ((W)w, revents);
2956     }
2957    
2958 root 1.300 unsigned int
2959 root 1.420 ev_pending_count (EV_P) EV_THROW
2960 root 1.300 {
2961     int pri;
2962     unsigned int count = 0;
2963    
2964     for (pri = NUMPRI; pri--; )
2965     count += pendingcnt [pri];
2966    
2967     return count;
2968     }
2969    
2970 root 1.297 void noinline
2971 root 1.296 ev_invoke_pending (EV_P)
2972 root 1.1 {
2973 root 1.445 pendingpri = NUMPRI;
2974    
2975     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2976     {
2977     --pendingpri;
2978    
2979     while (pendingcnt [pendingpri])
2980     {
2981     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2982 root 1.1
2983 root 1.445 p->w->pending = 0;
2984     EV_CB_INVOKE (p->w, p->events);
2985     EV_FREQUENT_CHECK;
2986     }
2987     }
2988 root 1.1 }
2989    
2990 root 1.234 #if EV_IDLE_ENABLE
2991 root 1.288 /* make idle watchers pending. this handles the "call-idle */
2992     /* only when higher priorities are idle" logic */
2993 root 1.284 inline_size void
2994 root 1.234 idle_reify (EV_P)
2995     {
2996     if (expect_false (idleall))
2997     {
2998     int pri;
2999    
3000     for (pri = NUMPRI; pri--; )
3001     {
3002     if (pendingcnt [pri])
3003     break;
3004    
3005     if (idlecnt [pri])
3006     {
3007     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3008     break;
3009     }
3010     }
3011     }
3012     }
3013     #endif
3014    
3015 root 1.288 /* make timers pending */
3016 root 1.284 inline_size void
3017 root 1.51 timers_reify (EV_P)
3018 root 1.1 {
3019 root 1.248 EV_FREQUENT_CHECK;
3020    
3021 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3022 root 1.1 {
3023 root 1.284 do
3024     {
3025     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3026 root 1.1
3027 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3028    
3029     /* first reschedule or stop timer */
3030     if (w->repeat)
3031     {
3032     ev_at (w) += w->repeat;
3033     if (ev_at (w) < mn_now)
3034     ev_at (w) = mn_now;
3035 root 1.61
3036 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3037 root 1.90
3038 root 1.284 ANHE_at_cache (timers [HEAP0]);
3039     downheap (timers, timercnt, HEAP0);
3040     }
3041     else
3042     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3043 root 1.243
3044 root 1.284 EV_FREQUENT_CHECK;
3045     feed_reverse (EV_A_ (W)w);
3046 root 1.12 }
3047 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3048 root 1.30
3049 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3050 root 1.12 }
3051     }
3052 root 1.4
3053 root 1.140 #if EV_PERIODIC_ENABLE
3054 root 1.370
3055 root 1.373 static void noinline
3056 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3057     {
3058 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3059     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3060    
3061     /* the above almost always errs on the low side */
3062     while (at <= ev_rt_now)
3063     {
3064     ev_tstamp nat = at + w->interval;
3065    
3066     /* when resolution fails us, we use ev_rt_now */
3067     if (expect_false (nat == at))
3068     {
3069     at = ev_rt_now;
3070     break;
3071     }
3072    
3073     at = nat;
3074     }
3075    
3076     ev_at (w) = at;
3077 root 1.370 }
3078    
3079 root 1.288 /* make periodics pending */
3080 root 1.284 inline_size void
3081 root 1.51 periodics_reify (EV_P)
3082 root 1.12 {
3083 root 1.248 EV_FREQUENT_CHECK;
3084 root 1.250
3085 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3086 root 1.12 {
3087 root 1.284 do
3088     {
3089     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3090 root 1.1
3091 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3092 root 1.61
3093 root 1.284 /* first reschedule or stop timer */
3094     if (w->reschedule_cb)
3095     {
3096     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3097 root 1.243
3098 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3099 root 1.243
3100 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3101     downheap (periodics, periodiccnt, HEAP0);
3102     }
3103     else if (w->interval)
3104 root 1.246 {
3105 root 1.370 periodic_recalc (EV_A_ w);
3106 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3107     downheap (periodics, periodiccnt, HEAP0);
3108 root 1.246 }
3109 root 1.284 else
3110     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3111 root 1.243
3112 root 1.284 EV_FREQUENT_CHECK;
3113     feed_reverse (EV_A_ (W)w);
3114 root 1.1 }
3115 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3116 root 1.12
3117 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3118 root 1.12 }
3119     }
3120    
3121 root 1.288 /* simply recalculate all periodics */
3122 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3123 root 1.379 static void noinline ecb_cold
3124 root 1.54 periodics_reschedule (EV_P)
3125 root 1.12 {
3126     int i;
3127    
3128 root 1.13 /* adjust periodics after time jump */
3129 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3130 root 1.12 {
3131 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3132 root 1.12
3133 root 1.77 if (w->reschedule_cb)
3134 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3135 root 1.77 else if (w->interval)
3136 root 1.370 periodic_recalc (EV_A_ w);
3137 root 1.242
3138 root 1.248 ANHE_at_cache (periodics [i]);
3139 root 1.77 }
3140 root 1.12
3141 root 1.248 reheap (periodics, periodiccnt);
3142 root 1.1 }
3143 root 1.93 #endif
3144 root 1.1
3145 root 1.288 /* adjust all timers by a given offset */
3146 root 1.379 static void noinline ecb_cold
3147 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3148     {
3149     int i;
3150    
3151     for (i = 0; i < timercnt; ++i)
3152     {
3153     ANHE *he = timers + i + HEAP0;
3154     ANHE_w (*he)->at += adjust;
3155     ANHE_at_cache (*he);
3156     }
3157     }
3158    
3159 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3160 root 1.324 /* also detect if there was a timejump, and act accordingly */
3161 root 1.284 inline_speed void
3162 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3163 root 1.4 {
3164 root 1.40 #if EV_USE_MONOTONIC
3165     if (expect_true (have_monotonic))
3166     {
3167 root 1.289 int i;
3168 root 1.178 ev_tstamp odiff = rtmn_diff;
3169    
3170     mn_now = get_clock ();
3171    
3172     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3173     /* interpolate in the meantime */
3174     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3175 root 1.40 {
3176 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3177     return;
3178     }
3179    
3180     now_floor = mn_now;
3181     ev_rt_now = ev_time ();
3182 root 1.4
3183 root 1.178 /* loop a few times, before making important decisions.
3184     * on the choice of "4": one iteration isn't enough,
3185     * in case we get preempted during the calls to
3186     * ev_time and get_clock. a second call is almost guaranteed
3187     * to succeed in that case, though. and looping a few more times
3188     * doesn't hurt either as we only do this on time-jumps or
3189     * in the unlikely event of having been preempted here.
3190     */
3191     for (i = 4; --i; )
3192     {
3193 root 1.373 ev_tstamp diff;
3194 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3195 root 1.4
3196 root 1.373 diff = odiff - rtmn_diff;
3197    
3198     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3199 root 1.178 return; /* all is well */
3200 root 1.4
3201 root 1.178 ev_rt_now = ev_time ();
3202     mn_now = get_clock ();
3203     now_floor = mn_now;
3204     }
3205 root 1.4
3206 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3207     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3208 root 1.140 # if EV_PERIODIC_ENABLE
3209 root 1.178 periodics_reschedule (EV_A);
3210 root 1.93 # endif
3211 root 1.4 }
3212     else
3213 root 1.40 #endif
3214 root 1.4 {
3215 root 1.85 ev_rt_now = ev_time ();
3216 root 1.40
3217 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3218 root 1.13 {
3219 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3220     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3221 root 1.140 #if EV_PERIODIC_ENABLE
3222 root 1.54 periodics_reschedule (EV_A);
3223 root 1.93 #endif
3224 root 1.13 }
3225 root 1.4
3226 root 1.85 mn_now = ev_rt_now;
3227 root 1.4 }
3228     }
3229    
3230 root 1.418 int
3231 root 1.353 ev_run (EV_P_ int flags)
3232 root 1.1 {
3233 root 1.338 #if EV_FEATURE_API
3234 root 1.294 ++loop_depth;
3235 root 1.297 #endif
3236 root 1.294
3237 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3238 root 1.298
3239 root 1.353 loop_done = EVBREAK_CANCEL;
3240 root 1.1
3241 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3242 root 1.158
3243 root 1.161 do
3244 root 1.9 {
3245 root 1.250 #if EV_VERIFY >= 2
3246 root 1.340 ev_verify (EV_A);
3247 root 1.250 #endif
3248    
3249 root 1.158 #ifndef _WIN32
3250     if (expect_false (curpid)) /* penalise the forking check even more */
3251     if (expect_false (getpid () != curpid))
3252     {
3253     curpid = getpid ();
3254     postfork = 1;
3255     }
3256     #endif
3257    
3258 root 1.157 #if EV_FORK_ENABLE
3259     /* we might have forked, so queue fork handlers */
3260     if (expect_false (postfork))
3261     if (forkcnt)
3262     {
3263     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3264 root 1.297 EV_INVOKE_PENDING;
3265 root 1.157 }
3266     #endif
3267 root 1.147
3268 root 1.337 #if EV_PREPARE_ENABLE
3269 root 1.170 /* queue prepare watchers (and execute them) */
3270 root 1.40 if (expect_false (preparecnt))
3271 root 1.20 {
3272 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3273 root 1.297 EV_INVOKE_PENDING;
3274 root 1.20 }
3275 root 1.337 #endif
3276 root 1.9
3277 root 1.298 if (expect_false (loop_done))
3278     break;
3279    
3280 root 1.70 /* we might have forked, so reify kernel state if necessary */
3281     if (expect_false (postfork))
3282     loop_fork (EV_A);
3283    
3284 root 1.1 /* update fd-related kernel structures */
3285 root 1.51 fd_reify (EV_A);
3286 root 1.1
3287     /* calculate blocking time */
3288 root 1.135 {
3289 root 1.193 ev_tstamp waittime = 0.;
3290     ev_tstamp sleeptime = 0.;
3291 root 1.12
3292 root 1.353 /* remember old timestamp for io_blocktime calculation */
3293     ev_tstamp prev_mn_now = mn_now;
3294 root 1.293
3295 root 1.353 /* update time to cancel out callback processing overhead */
3296     time_update (EV_A_ 1e100);
3297 root 1.135
3298 root 1.378 /* from now on, we want a pipe-wake-up */
3299     pipe_write_wanted = 1;
3300    
3301 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3302 root 1.383
3303 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3304 root 1.353 {
3305 root 1.287 waittime = MAX_BLOCKTIME;
3306    
3307 root 1.135 if (timercnt)
3308     {
3309 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3310 root 1.193 if (waittime > to) waittime = to;
3311 root 1.135 }
3312 root 1.4
3313 root 1.140 #if EV_PERIODIC_ENABLE
3314 root 1.135 if (periodiccnt)
3315     {
3316 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3317 root 1.193 if (waittime > to) waittime = to;
3318 root 1.135 }
3319 root 1.93 #endif
3320 root 1.4
3321 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3322 root 1.193 if (expect_false (waittime < timeout_blocktime))
3323     waittime = timeout_blocktime;
3324    
3325 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3326     /* to pass a minimum nonzero value to the backend */
3327     if (expect_false (waittime < backend_mintime))
3328     waittime = backend_mintime;
3329    
3330 root 1.293 /* extra check because io_blocktime is commonly 0 */
3331     if (expect_false (io_blocktime))
3332     {
3333     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3334 root 1.193
3335 root 1.376 if (sleeptime > waittime - backend_mintime)
3336     sleeptime = waittime - backend_mintime;
3337 root 1.193
3338 root 1.293 if (expect_true (sleeptime > 0.))
3339     {
3340     ev_sleep (sleeptime);
3341     waittime -= sleeptime;
3342     }
3343 root 1.193 }
3344 root 1.135 }
3345 root 1.1
3346 root 1.338 #if EV_FEATURE_API
3347 root 1.162 ++loop_count;
3348 root 1.297 #endif
3349 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3350 root 1.193 backend_poll (EV_A_ waittime);
3351 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3352 root 1.178
3353 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3354 root 1.378
3355 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3356 root 1.378 if (pipe_write_skipped)
3357     {
3358     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3359     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3360     }
3361    
3362    
3363 root 1.178 /* update ev_rt_now, do magic */
3364 root 1.193 time_update (EV_A_ waittime + sleeptime);
3365 root 1.135 }
3366 root 1.1
3367 root 1.9 /* queue pending timers and reschedule them */
3368 root 1.51 timers_reify (EV_A); /* relative timers called last */
3369 root 1.140 #if EV_PERIODIC_ENABLE
3370 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3371 root 1.93 #endif
3372 root 1.1
3373 root 1.164 #if EV_IDLE_ENABLE
3374 root 1.137 /* queue idle watchers unless other events are pending */
3375 root 1.164 idle_reify (EV_A);
3376     #endif
3377 root 1.9
3378 root 1.337 #if EV_CHECK_ENABLE
3379 root 1.20 /* queue check watchers, to be executed first */
3380 root 1.123 if (expect_false (checkcnt))
3381 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3382 root 1.337 #endif
3383 root 1.9
3384 root 1.297 EV_INVOKE_PENDING;
3385 root 1.1 }
3386 root 1.219 while (expect_true (
3387     activecnt
3388     && !loop_done
3389 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3390 root 1.219 ));
3391 root 1.13
3392 root 1.353 if (loop_done == EVBREAK_ONE)
3393     loop_done = EVBREAK_CANCEL;
3394 root 1.294
3395 root 1.338 #if EV_FEATURE_API
3396 root 1.294 --loop_depth;
3397 root 1.297 #endif
3398 root 1.418
3399     return activecnt;
3400 root 1.51 }
3401    
3402     void
3403 root 1.420 ev_break (EV_P_ int how) EV_THROW
3404 root 1.51 {
3405     loop_done = how;
3406 root 1.1 }
3407    
3408 root 1.285 void
3409 root 1.420 ev_ref (EV_P) EV_THROW
3410 root 1.285 {
3411     ++activecnt;
3412     }
3413    
3414     void
3415 root 1.420 ev_unref (EV_P) EV_THROW
3416 root 1.285 {
3417     --activecnt;
3418     }
3419    
3420     void
3421 root 1.420 ev_now_update (EV_P) EV_THROW
3422 root 1.285 {
3423     time_update (EV_A_ 1e100);
3424     }
3425    
3426     void
3427 root 1.420 ev_suspend (EV_P) EV_THROW
3428 root 1.285 {
3429     ev_now_update (EV_A);
3430     }
3431    
3432     void
3433 root 1.420 ev_resume (EV_P) EV_THROW
3434 root 1.285 {
3435     ev_tstamp mn_prev = mn_now;
3436    
3437     ev_now_update (EV_A);
3438     timers_reschedule (EV_A_ mn_now - mn_prev);
3439 root 1.286 #if EV_PERIODIC_ENABLE
3440 root 1.288 /* TODO: really do this? */
3441 root 1.285 periodics_reschedule (EV_A);
3442 root 1.286 #endif
3443 root 1.285 }
3444    
3445 root 1.8 /*****************************************************************************/
3446 root 1.288 /* singly-linked list management, used when the expected list length is short */
3447 root 1.8
3448 root 1.284 inline_size void
3449 root 1.10 wlist_add (WL *head, WL elem)
3450 root 1.1 {
3451     elem->next = *head;
3452     *head = elem;
3453     }
3454    
3455 root 1.284 inline_size void
3456 root 1.10 wlist_del (WL *head, WL elem)
3457 root 1.1 {
3458     while (*head)
3459     {
3460 root 1.307 if (expect_true (*head == elem))
3461 root 1.1 {
3462     *head = elem->next;
3463 root 1.307 break;
3464 root 1.1 }
3465    
3466     head = &(*head)->next;
3467     }
3468     }
3469    
3470 root 1.288 /* internal, faster, version of ev_clear_pending */
3471 root 1.284 inline_speed void
3472 root 1.166 clear_pending (EV_P_ W w)
3473 root 1.16 {
3474     if (w->pending)
3475     {
3476 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3477 root 1.16 w->pending = 0;
3478     }
3479     }
3480    
3481 root 1.167 int
3482 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3483 root 1.166 {
3484     W w_ = (W)w;
3485     int pending = w_->pending;
3486    
3487 root 1.172 if (expect_true (pending))
3488     {
3489     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3490 root 1.288 p->w = (W)&pending_w;
3491 root 1.172 w_->pending = 0;
3492     return p->events;
3493     }
3494     else
3495 root 1.167 return 0;
3496 root 1.166 }
3497    
3498 root 1.284 inline_size void
3499 root 1.164 pri_adjust (EV_P_ W w)
3500     {
3501 root 1.295 int pri = ev_priority (w);
3502 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3503     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3504 root 1.295 ev_set_priority (w, pri);
3505 root 1.164 }
3506    
3507 root 1.284 inline_speed void
3508 root 1.51 ev_start (EV_P_ W w, int active)
3509 root 1.1 {
3510 root 1.164 pri_adjust (EV_A_ w);
3511 root 1.1 w->active = active;
3512 root 1.51 ev_ref (EV_A);
3513 root 1.1 }
3514    
3515 root 1.284 inline_size void
3516 root 1.51 ev_stop (EV_P_ W w)
3517 root 1.1 {
3518 root 1.51 ev_unref (EV_A);
3519 root 1.1 w->active = 0;
3520     }
3521    
3522 root 1.8 /*****************************************************************************/
3523    
3524 root 1.171 void noinline
3525 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3526 root 1.1 {
3527 root 1.37 int fd = w->fd;
3528    
3529 root 1.123 if (expect_false (ev_is_active (w)))
3530 root 1.1 return;
3531    
3532 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3533 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3534 root 1.33
3535 root 1.248 EV_FREQUENT_CHECK;
3536    
3537 root 1.51 ev_start (EV_A_ (W)w, 1);
3538 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3539 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3540 root 1.1
3541 root 1.426 /* common bug, apparently */
3542     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3543    
3544 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3545 root 1.281 w->events &= ~EV__IOFDSET;
3546 root 1.248
3547     EV_FREQUENT_CHECK;
3548 root 1.1 }
3549    
3550 root 1.171 void noinline
3551 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3552 root 1.1 {
3553 root 1.166 clear_pending (EV_A_ (W)w);
3554 root 1.123 if (expect_false (!ev_is_active (w)))
3555 root 1.1 return;
3556    
3557 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3558 root 1.89
3559 root 1.248 EV_FREQUENT_CHECK;
3560    
3561 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3562 root 1.51 ev_stop (EV_A_ (W)w);
3563 root 1.1
3564 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3565 root 1.248
3566     EV_FREQUENT_CHECK;
3567 root 1.1 }
3568    
3569 root 1.171 void noinline
3570 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3571 root 1.1 {
3572 root 1.123 if (expect_false (ev_is_active (w)))
3573 root 1.1 return;
3574    
3575 root 1.228 ev_at (w) += mn_now;
3576 root 1.12
3577 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3578 root 1.13
3579 root 1.248 EV_FREQUENT_CHECK;
3580    
3581     ++timercnt;
3582     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3583 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3584     ANHE_w (timers [ev_active (w)]) = (WT)w;
3585 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3586 root 1.235 upheap (timers, ev_active (w));
3587 root 1.62
3588 root 1.248 EV_FREQUENT_CHECK;
3589    
3590 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3591 root 1.12 }
3592    
3593 root 1.171 void noinline
3594 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3595 root 1.12 {
3596 root 1.166 clear_pending (EV_A_ (W)w);
3597 root 1.123 if (expect_false (!ev_is_active (w)))
3598 root 1.12 return;
3599    
3600 root 1.248 EV_FREQUENT_CHECK;
3601    
3602 root 1.230 {
3603     int active = ev_active (w);
3604 root 1.62
3605 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3606 root 1.151
3607 root 1.248 --timercnt;
3608    
3609     if (expect_true (active < timercnt + HEAP0))
3610 root 1.151 {
3611 root 1.248 timers [active] = timers [timercnt + HEAP0];
3612 root 1.181 adjustheap (timers, timercnt, active);
3613 root 1.151 }
3614 root 1.248 }
3615 root 1.228
3616     ev_at (w) -= mn_now;
3617 root 1.14
3618 root 1.51 ev_stop (EV_A_ (W)w);
3619 root 1.328
3620     EV_FREQUENT_CHECK;
3621 root 1.12 }
3622 root 1.4
3623 root 1.171 void noinline
3624 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3625 root 1.14 {
3626 root 1.248 EV_FREQUENT_CHECK;
3627    
3628 root 1.407 clear_pending (EV_A_ (W)w);
3629 root 1.406
3630 root 1.14 if (ev_is_active (w))
3631     {
3632     if (w->repeat)
3633 root 1.99 {
3634 root 1.228 ev_at (w) = mn_now + w->repeat;
3635 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3636 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3637 root 1.99 }
3638 root 1.14 else
3639 root 1.51 ev_timer_stop (EV_A_ w);
3640 root 1.14 }
3641     else if (w->repeat)
3642 root 1.112 {
3643 root 1.229 ev_at (w) = w->repeat;
3644 root 1.112 ev_timer_start (EV_A_ w);
3645     }
3646 root 1.248
3647     EV_FREQUENT_CHECK;
3648 root 1.14 }
3649    
3650 root 1.301 ev_tstamp
3651 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3652 root 1.301 {
3653     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3654     }
3655    
3656 root 1.140 #if EV_PERIODIC_ENABLE
3657 root 1.171 void noinline
3658 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3659 root 1.12 {
3660 root 1.123 if (expect_false (ev_is_active (w)))
3661 root 1.12 return;
3662 root 1.1
3663 root 1.77 if (w->reschedule_cb)
3664 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3665 root 1.77 else if (w->interval)
3666     {
3667 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3668 root 1.370 periodic_recalc (EV_A_ w);
3669 root 1.77 }
3670 root 1.173 else
3671 root 1.228 ev_at (w) = w->offset;
3672 root 1.12
3673 root 1.248 EV_FREQUENT_CHECK;
3674    
3675     ++periodiccnt;
3676     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3677 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3678     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3679 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3680 root 1.235 upheap (periodics, ev_active (w));
3681 root 1.62
3682 root 1.248 EV_FREQUENT_CHECK;
3683    
3684 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3685 root 1.1 }
3686    
3687 root 1.171 void noinline
3688 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3689 root 1.1 {
3690 root 1.166 clear_pending (EV_A_ (W)w);
3691 root 1.123 if (expect_false (!ev_is_active (w)))
3692 root 1.1 return;
3693    
3694 root 1.248 EV_FREQUENT_CHECK;
3695    
3696 root 1.230 {
3697     int active = ev_active (w);
3698 root 1.62
3699 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3700 root 1.151
3701 root 1.248 --periodiccnt;
3702    
3703     if (expect_true (active < periodiccnt + HEAP0))
3704 root 1.151 {
3705 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3706 root 1.181 adjustheap (periodics, periodiccnt, active);
3707 root 1.151 }
3708 root 1.248 }
3709 root 1.228
3710 root 1.328 ev_stop (EV_A_ (W)w);
3711    
3712 root 1.248 EV_FREQUENT_CHECK;
3713 root 1.1 }
3714    
3715 root 1.171 void noinline
3716 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3717 root 1.77 {
3718 root 1.84 /* TODO: use adjustheap and recalculation */
3719 root 1.77 ev_periodic_stop (EV_A_ w);
3720     ev_periodic_start (EV_A_ w);
3721     }
3722 root 1.93 #endif
3723 root 1.77
3724 root 1.56 #ifndef SA_RESTART
3725     # define SA_RESTART 0
3726     #endif
3727    
3728 root 1.336 #if EV_SIGNAL_ENABLE
3729    
3730 root 1.171 void noinline
3731 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3732 root 1.56 {
3733 root 1.123 if (expect_false (ev_is_active (w)))
3734 root 1.56 return;
3735    
3736 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3737    
3738     #if EV_MULTIPLICITY
3739 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3740 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3741    
3742     signals [w->signum - 1].loop = EV_A;
3743 root 1.449 ECB_MEMORY_FENCE_RELEASE;
3744 root 1.306 #endif
3745 root 1.56
3746 root 1.303 EV_FREQUENT_CHECK;
3747    
3748     #if EV_USE_SIGNALFD
3749     if (sigfd == -2)
3750     {
3751     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3752     if (sigfd < 0 && errno == EINVAL)
3753     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3754    
3755     if (sigfd >= 0)
3756     {
3757     fd_intern (sigfd); /* doing it twice will not hurt */
3758    
3759     sigemptyset (&sigfd_set);
3760    
3761     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3762     ev_set_priority (&sigfd_w, EV_MAXPRI);
3763     ev_io_start (EV_A_ &sigfd_w);
3764     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3765     }
3766     }
3767    
3768     if (sigfd >= 0)
3769     {
3770     /* TODO: check .head */
3771     sigaddset (&sigfd_set, w->signum);
3772     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3773 root 1.207
3774 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3775     }
3776 root 1.180 #endif
3777    
3778 root 1.56 ev_start (EV_A_ (W)w, 1);
3779 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3780 root 1.56
3781 root 1.63 if (!((WL)w)->next)
3782 root 1.304 # if EV_USE_SIGNALFD
3783 root 1.306 if (sigfd < 0) /*TODO*/
3784 root 1.304 # endif
3785 root 1.306 {
3786 root 1.322 # ifdef _WIN32
3787 root 1.317 evpipe_init (EV_A);
3788    
3789 root 1.306 signal (w->signum, ev_sighandler);
3790     # else
3791     struct sigaction sa;
3792    
3793     evpipe_init (EV_A);
3794    
3795     sa.sa_handler = ev_sighandler;
3796     sigfillset (&sa.sa_mask);
3797     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3798     sigaction (w->signum, &sa, 0);
3799    
3800 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3801     {
3802     sigemptyset (&sa.sa_mask);
3803     sigaddset (&sa.sa_mask, w->signum);
3804     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3805     }
3806 root 1.67 #endif
3807 root 1.306 }
3808 root 1.248
3809     EV_FREQUENT_CHECK;
3810 root 1.56 }
3811    
3812 root 1.171 void noinline
3813 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3814 root 1.56 {
3815 root 1.166 clear_pending (EV_A_ (W)w);
3816 root 1.123 if (expect_false (!ev_is_active (w)))
3817 root 1.56 return;
3818    
3819 root 1.248 EV_FREQUENT_CHECK;
3820    
3821 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3822 root 1.56 ev_stop (EV_A_ (W)w);
3823    
3824     if (!signals [w->signum - 1].head)
3825 root 1.306 {
3826 root 1.307 #if EV_MULTIPLICITY
3827 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3828 root 1.307 #endif
3829     #if EV_USE_SIGNALFD
3830 root 1.306 if (sigfd >= 0)
3831     {
3832 root 1.321 sigset_t ss;
3833    
3834     sigemptyset (&ss);
3835     sigaddset (&ss, w->signum);
3836 root 1.306 sigdelset (&sigfd_set, w->signum);
3837 root 1.321
3838 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3839 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3840 root 1.306 }
3841     else
3842 root 1.307 #endif
3843 root 1.306 signal (w->signum, SIG_DFL);
3844     }
3845 root 1.248
3846     EV_FREQUENT_CHECK;
3847 root 1.56 }
3848    
3849 root 1.336 #endif
3850    
3851     #if EV_CHILD_ENABLE
3852    
3853 root 1.28 void
3854 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3855 root 1.22 {
3856 root 1.56 #if EV_MULTIPLICITY
3857 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3858 root 1.56 #endif
3859 root 1.123 if (expect_false (ev_is_active (w)))
3860 root 1.22 return;
3861    
3862 root 1.248 EV_FREQUENT_CHECK;
3863    
3864 root 1.51 ev_start (EV_A_ (W)w, 1);
3865 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3866 root 1.248
3867     EV_FREQUENT_CHECK;
3868 root 1.22 }
3869    
3870 root 1.28 void
3871 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3872 root 1.22 {
3873 root 1.166 clear_pending (EV_A_ (W)w);
3874 root 1.123 if (expect_false (!ev_is_active (w)))
3875 root 1.22 return;
3876    
3877 root 1.248 EV_FREQUENT_CHECK;
3878    
3879 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3880 root 1.51 ev_stop (EV_A_ (W)w);
3881 root 1.248
3882     EV_FREQUENT_CHECK;
3883 root 1.22 }
3884    
3885 root 1.336 #endif
3886    
3887 root 1.140 #if EV_STAT_ENABLE
3888    
3889     # ifdef _WIN32
3890 root 1.146 # undef lstat
3891     # define lstat(a,b) _stati64 (a,b)
3892 root 1.140 # endif
3893    
3894 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3895     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3896     #define MIN_STAT_INTERVAL 0.1074891
3897 root 1.143
3898 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3899 root 1.152
3900     #if EV_USE_INOTIFY
3901 root 1.326
3902     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3903     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3904 root 1.152
3905     static void noinline
3906     infy_add (EV_P_ ev_stat *w)
3907     {
3908 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
3909     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3910     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3911     | IN_DONT_FOLLOW | IN_MASK_ADD);
3912 root 1.152
3913 root 1.318 if (w->wd >= 0)
3914 root 1.152 {
3915 root 1.318 struct statfs sfs;
3916    
3917     /* now local changes will be tracked by inotify, but remote changes won't */
3918     /* unless the filesystem is known to be local, we therefore still poll */
3919     /* also do poll on <2.6.25, but with normal frequency */
3920    
3921     if (!fs_2625)
3922     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3923     else if (!statfs (w->path, &sfs)
3924     && (sfs.f_type == 0x1373 /* devfs */
3925 root 1.451 || sfs.f_type == 0x4006 /* fat */
3926     || sfs.f_type == 0x4d44 /* msdos */
3927 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
3928 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
3929     || sfs.f_type == 0x858458f6 /* ramfs */
3930     || sfs.f_type == 0x5346544e /* ntfs */
3931 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
3932 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
3933 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
3934 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
3935 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
3936     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3937     else
3938     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3939     }
3940     else
3941     {
3942     /* can't use inotify, continue to stat */
3943 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3944 root 1.152
3945 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3946 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3947 root 1.233 /* but an efficiency issue only */
3948 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3949 root 1.152 {
3950 root 1.153 char path [4096];
3951 root 1.152 strcpy (path, w->path);
3952    
3953     do
3954     {
3955     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3956     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3957    
3958     char *pend = strrchr (path, '/');
3959    
3960 root 1.275 if (!pend || pend == path)
3961     break;
3962 root 1.152
3963     *pend = 0;
3964 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3965 root 1.372 }
3966 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3967     }
3968     }
3969 root 1.275
3970     if (w->wd >= 0)
3971 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3972 root 1.152
3973 root 1.318 /* now re-arm timer, if required */
3974     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3975     ev_timer_again (EV_A_ &w->timer);
3976     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3977 root 1.152 }
3978    
3979     static void noinline
3980     infy_del (EV_P_ ev_stat *w)
3981     {
3982     int slot;
3983     int wd = w->wd;
3984    
3985     if (wd < 0)
3986     return;
3987    
3988     w->wd = -2;
3989 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3990 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
3991    
3992     /* remove this watcher, if others are watching it, they will rearm */
3993     inotify_rm_watch (fs_fd, wd);
3994     }
3995    
3996     static void noinline
3997     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3998     {
3999     if (slot < 0)
4000 root 1.264 /* overflow, need to check for all hash slots */
4001 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4002 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4003     else
4004     {
4005     WL w_;
4006    
4007 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4008 root 1.152 {
4009     ev_stat *w = (ev_stat *)w_;
4010     w_ = w_->next; /* lets us remove this watcher and all before it */
4011    
4012     if (w->wd == wd || wd == -1)
4013     {
4014     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4015     {
4016 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4017 root 1.152 w->wd = -1;
4018     infy_add (EV_A_ w); /* re-add, no matter what */
4019     }
4020    
4021 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4022 root 1.152 }
4023     }
4024     }
4025     }
4026    
4027     static void
4028     infy_cb (EV_P_ ev_io *w, int revents)
4029     {
4030     char buf [EV_INOTIFY_BUFSIZE];
4031     int ofs;
4032     int len = read (fs_fd, buf, sizeof (buf));
4033    
4034 root 1.326 for (ofs = 0; ofs < len; )
4035     {
4036     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4037     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4038     ofs += sizeof (struct inotify_event) + ev->len;
4039     }
4040 root 1.152 }
4041    
4042 root 1.379 inline_size void ecb_cold
4043 root 1.330 ev_check_2625 (EV_P)
4044     {
4045     /* kernels < 2.6.25 are borked
4046     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4047     */
4048     if (ev_linux_version () < 0x020619)
4049 root 1.273 return;
4050 root 1.264
4051 root 1.273 fs_2625 = 1;
4052     }
4053 root 1.264
4054 root 1.315 inline_size int
4055     infy_newfd (void)
4056     {
4057 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4058 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4059     if (fd >= 0)
4060     return fd;
4061     #endif
4062     return inotify_init ();
4063     }
4064    
4065 root 1.284 inline_size void
4066 root 1.273 infy_init (EV_P)
4067     {
4068     if (fs_fd != -2)
4069     return;
4070 root 1.264
4071 root 1.273 fs_fd = -1;
4072 root 1.264
4073 root 1.330 ev_check_2625 (EV_A);
4074 root 1.264
4075 root 1.315 fs_fd = infy_newfd ();
4076 root 1.152
4077     if (fs_fd >= 0)
4078     {
4079 root 1.315 fd_intern (fs_fd);
4080 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4081     ev_set_priority (&fs_w, EV_MAXPRI);
4082     ev_io_start (EV_A_ &fs_w);
4083 root 1.317 ev_unref (EV_A);
4084 root 1.152 }
4085     }
4086    
4087 root 1.284 inline_size void
4088 root 1.154 infy_fork (EV_P)
4089     {
4090     int slot;
4091    
4092     if (fs_fd < 0)
4093     return;
4094    
4095 root 1.317 ev_ref (EV_A);
4096 root 1.315 ev_io_stop (EV_A_ &fs_w);
4097 root 1.154 close (fs_fd);
4098 root 1.315 fs_fd = infy_newfd ();
4099    
4100     if (fs_fd >= 0)
4101     {
4102     fd_intern (fs_fd);
4103     ev_io_set (&fs_w, fs_fd, EV_READ);
4104     ev_io_start (EV_A_ &fs_w);
4105 root 1.317 ev_unref (EV_A);
4106 root 1.315 }
4107 root 1.154
4108 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4109 root 1.154 {
4110     WL w_ = fs_hash [slot].head;
4111     fs_hash [slot].head = 0;
4112    
4113     while (w_)
4114     {
4115     ev_stat *w = (ev_stat *)w_;
4116     w_ = w_->next; /* lets us add this watcher */
4117    
4118     w->wd = -1;
4119    
4120     if (fs_fd >= 0)
4121     infy_add (EV_A_ w); /* re-add, no matter what */
4122     else
4123 root 1.318 {
4124     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4125     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4126     ev_timer_again (EV_A_ &w->timer);
4127     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4128     }
4129 root 1.154 }
4130     }
4131     }
4132    
4133 root 1.152 #endif
4134    
4135 root 1.255 #ifdef _WIN32
4136     # define EV_LSTAT(p,b) _stati64 (p, b)
4137     #else
4138     # define EV_LSTAT(p,b) lstat (p, b)
4139     #endif
4140    
4141 root 1.140 void
4142 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4143 root 1.140 {
4144     if (lstat (w->path, &w->attr) < 0)
4145     w->attr.st_nlink = 0;
4146     else if (!w->attr.st_nlink)
4147     w->attr.st_nlink = 1;
4148     }
4149    
4150 root 1.157 static void noinline
4151 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4152     {
4153     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4154    
4155 root 1.320 ev_statdata prev = w->attr;
4156 root 1.140 ev_stat_stat (EV_A_ w);
4157    
4158 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4159     if (
4160 root 1.320 prev.st_dev != w->attr.st_dev
4161     || prev.st_ino != w->attr.st_ino
4162     || prev.st_mode != w->attr.st_mode
4163     || prev.st_nlink != w->attr.st_nlink
4164     || prev.st_uid != w->attr.st_uid
4165     || prev.st_gid != w->attr.st_gid
4166     || prev.st_rdev != w->attr.st_rdev
4167     || prev.st_size != w->attr.st_size
4168     || prev.st_atime != w->attr.st_atime
4169     || prev.st_mtime != w->attr.st_mtime
4170     || prev.st_ctime != w->attr.st_ctime
4171 root 1.156 ) {
4172 root 1.320 /* we only update w->prev on actual differences */
4173     /* in case we test more often than invoke the callback, */
4174     /* to ensure that prev is always different to attr */
4175     w->prev = prev;
4176    
4177 root 1.152 #if EV_USE_INOTIFY
4178 root 1.264 if (fs_fd >= 0)
4179     {
4180     infy_del (EV_A_ w);
4181     infy_add (EV_A_ w);
4182     ev_stat_stat (EV_A_ w); /* avoid race... */
4183     }
4184 root 1.152 #endif
4185    
4186     ev_feed_event (EV_A_ w, EV_STAT);
4187     }
4188 root 1.140 }
4189    
4190     void
4191 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4192 root 1.140 {
4193     if (expect_false (ev_is_active (w)))
4194     return;
4195    
4196     ev_stat_stat (EV_A_ w);
4197    
4198 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4199     w->interval = MIN_STAT_INTERVAL;
4200 root 1.143
4201 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4202 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4203 root 1.152
4204     #if EV_USE_INOTIFY
4205     infy_init (EV_A);
4206    
4207     if (fs_fd >= 0)
4208     infy_add (EV_A_ w);
4209     else
4210     #endif
4211 root 1.318 {
4212     ev_timer_again (EV_A_ &w->timer);
4213     ev_unref (EV_A);
4214     }
4215 root 1.140
4216     ev_start (EV_A_ (W)w, 1);
4217 root 1.248
4218     EV_FREQUENT_CHECK;
4219 root 1.140 }
4220    
4221     void
4222 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4223 root 1.140 {
4224 root 1.166 clear_pending (EV_A_ (W)w);
4225 root 1.140 if (expect_false (!ev_is_active (w)))
4226     return;
4227    
4228 root 1.248 EV_FREQUENT_CHECK;
4229    
4230 root 1.152 #if EV_USE_INOTIFY
4231     infy_del (EV_A_ w);
4232     #endif
4233 root 1.318
4234     if (ev_is_active (&w->timer))
4235     {
4236     ev_ref (EV_A);
4237     ev_timer_stop (EV_A_ &w->timer);
4238     }
4239 root 1.140
4240 root 1.134 ev_stop (EV_A_ (W)w);
4241 root 1.248
4242     EV_FREQUENT_CHECK;
4243 root 1.134 }
4244     #endif
4245    
4246 root 1.164 #if EV_IDLE_ENABLE
4247 root 1.144 void
4248 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4249 root 1.144 {
4250     if (expect_false (ev_is_active (w)))
4251     return;
4252    
4253 root 1.164 pri_adjust (EV_A_ (W)w);
4254    
4255 root 1.248 EV_FREQUENT_CHECK;
4256    
4257 root 1.164 {
4258     int active = ++idlecnt [ABSPRI (w)];
4259    
4260     ++idleall;
4261     ev_start (EV_A_ (W)w, active);
4262    
4263     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4264     idles [ABSPRI (w)][active - 1] = w;
4265     }
4266 root 1.248
4267     EV_FREQUENT_CHECK;
4268 root 1.144 }
4269    
4270     void
4271 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4272 root 1.144 {
4273 root 1.166 clear_pending (EV_A_ (W)w);
4274 root 1.144 if (expect_false (!ev_is_active (w)))
4275     return;
4276    
4277 root 1.248 EV_FREQUENT_CHECK;
4278    
4279 root 1.144 {
4280 root 1.230 int active = ev_active (w);
4281 root 1.164
4282     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4283 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4284 root 1.164
4285     ev_stop (EV_A_ (W)w);
4286     --idleall;
4287 root 1.144 }
4288 root 1.248
4289     EV_FREQUENT_CHECK;
4290 root 1.144 }
4291 root 1.164 #endif
4292 root 1.144
4293 root 1.337 #if EV_PREPARE_ENABLE
4294 root 1.144 void
4295 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4296 root 1.144 {
4297     if (expect_false (ev_is_active (w)))
4298     return;
4299    
4300 root 1.248 EV_FREQUENT_CHECK;
4301    
4302 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4303     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4304     prepares [preparecnt - 1] = w;
4305 root 1.248
4306     EV_FREQUENT_CHECK;
4307 root 1.144 }
4308    
4309     void
4310 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4311 root 1.144 {
4312 root 1.166 clear_pending (EV_A_ (W)w);
4313 root 1.144 if (expect_false (!ev_is_active (w)))
4314     return;
4315    
4316 root 1.248 EV_FREQUENT_CHECK;
4317    
4318 root 1.144 {
4319 root 1.230 int active = ev_active (w);
4320    
4321 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4322 root 1.230 ev_active (prepares [active - 1]) = active;
4323 root 1.144 }
4324    
4325     ev_stop (EV_A_ (W)w);
4326 root 1.248
4327     EV_FREQUENT_CHECK;
4328 root 1.144 }
4329 root 1.337 #endif
4330 root 1.144
4331 root 1.337 #if EV_CHECK_ENABLE
4332 root 1.144 void
4333 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4334 root 1.144 {
4335     if (expect_false (ev_is_active (w)))
4336     return;
4337    
4338 root 1.248 EV_FREQUENT_CHECK;
4339    
4340 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4341     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4342     checks [checkcnt - 1] = w;
4343 root 1.248
4344     EV_FREQUENT_CHECK;
4345 root 1.144 }
4346    
4347     void
4348 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4349 root 1.144 {
4350 root 1.166 clear_pending (EV_A_ (W)w);
4351 root 1.144 if (expect_false (!ev_is_active (w)))
4352     return;
4353    
4354 root 1.248 EV_FREQUENT_CHECK;
4355    
4356 root 1.144 {
4357 root 1.230 int active = ev_active (w);
4358    
4359 root 1.144 checks [active - 1] = checks [--checkcnt];
4360 root 1.230 ev_active (checks [active - 1]) = active;
4361 root 1.144 }
4362    
4363     ev_stop (EV_A_ (W)w);
4364 root 1.248
4365     EV_FREQUENT_CHECK;
4366 root 1.144 }
4367 root 1.337 #endif
4368 root 1.144
4369     #if EV_EMBED_ENABLE
4370     void noinline
4371 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4372 root 1.144 {
4373 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4374 root 1.144 }
4375    
4376     static void
4377 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4378 root 1.144 {
4379     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4380    
4381     if (ev_cb (w))
4382     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4383     else
4384 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4385 root 1.144 }
4386    
4387 root 1.189 static void
4388     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4389     {
4390     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4391    
4392 root 1.195 {
4393 root 1.306 EV_P = w->other;
4394 root 1.195
4395     while (fdchangecnt)
4396     {
4397     fd_reify (EV_A);
4398 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4399 root 1.195 }
4400     }
4401     }
4402    
4403 root 1.261 static void
4404     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4405     {
4406     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4407    
4408 root 1.277 ev_embed_stop (EV_A_ w);
4409    
4410 root 1.261 {
4411 root 1.306 EV_P = w->other;
4412 root 1.261
4413     ev_loop_fork (EV_A);
4414 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4415 root 1.261 }
4416 root 1.277
4417     ev_embed_start (EV_A_ w);
4418 root 1.261 }
4419    
4420 root 1.195 #if 0
4421     static void
4422     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4423     {
4424     ev_idle_stop (EV_A_ idle);
4425 root 1.189 }
4426 root 1.195 #endif
4427 root 1.189
4428 root 1.144 void
4429 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4430 root 1.144 {
4431     if (expect_false (ev_is_active (w)))
4432     return;
4433    
4434     {
4435 root 1.306 EV_P = w->other;
4436 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4437 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4438 root 1.144 }
4439    
4440 root 1.248 EV_FREQUENT_CHECK;
4441    
4442 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4443     ev_io_start (EV_A_ &w->io);
4444    
4445 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4446     ev_set_priority (&w->prepare, EV_MINPRI);
4447     ev_prepare_start (EV_A_ &w->prepare);
4448    
4449 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4450     ev_fork_start (EV_A_ &w->fork);
4451    
4452 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4453    
4454 root 1.144 ev_start (EV_A_ (W)w, 1);
4455 root 1.248
4456     EV_FREQUENT_CHECK;
4457 root 1.144 }
4458    
4459     void
4460 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4461 root 1.144 {
4462 root 1.166 clear_pending (EV_A_ (W)w);
4463 root 1.144 if (expect_false (!ev_is_active (w)))
4464     return;
4465    
4466 root 1.248 EV_FREQUENT_CHECK;
4467    
4468 root 1.261 ev_io_stop (EV_A_ &w->io);
4469 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4470 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4471 root 1.248
4472 root 1.328 ev_stop (EV_A_ (W)w);
4473    
4474 root 1.248 EV_FREQUENT_CHECK;
4475 root 1.144 }
4476     #endif
4477    
4478 root 1.147 #if EV_FORK_ENABLE
4479     void
4480 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4481 root 1.147 {
4482     if (expect_false (ev_is_active (w)))
4483     return;
4484    
4485 root 1.248 EV_FREQUENT_CHECK;
4486    
4487 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4488     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4489     forks [forkcnt - 1] = w;
4490 root 1.248
4491     EV_FREQUENT_CHECK;
4492 root 1.147 }
4493    
4494     void
4495 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4496 root 1.147 {
4497 root 1.166 clear_pending (EV_A_ (W)w);
4498 root 1.147 if (expect_false (!ev_is_active (w)))
4499     return;
4500    
4501 root 1.248 EV_FREQUENT_CHECK;
4502    
4503 root 1.147 {
4504 root 1.230 int active = ev_active (w);
4505    
4506 root 1.147 forks [active - 1] = forks [--forkcnt];
4507 root 1.230 ev_active (forks [active - 1]) = active;
4508 root 1.147 }
4509    
4510     ev_stop (EV_A_ (W)w);
4511 root 1.248
4512     EV_FREQUENT_CHECK;
4513 root 1.147 }
4514     #endif
4515    
4516 root 1.360 #if EV_CLEANUP_ENABLE
4517     void
4518 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4519 root 1.360 {
4520     if (expect_false (ev_is_active (w)))
4521     return;
4522    
4523     EV_FREQUENT_CHECK;
4524    
4525     ev_start (EV_A_ (W)w, ++cleanupcnt);
4526     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4527     cleanups [cleanupcnt - 1] = w;
4528    
4529 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4530     ev_unref (EV_A);
4531 root 1.360 EV_FREQUENT_CHECK;
4532     }
4533    
4534     void
4535 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4536 root 1.360 {
4537     clear_pending (EV_A_ (W)w);
4538     if (expect_false (!ev_is_active (w)))
4539     return;
4540    
4541     EV_FREQUENT_CHECK;
4542 root 1.362 ev_ref (EV_A);
4543 root 1.360
4544     {
4545     int active = ev_active (w);
4546    
4547     cleanups [active - 1] = cleanups [--cleanupcnt];
4548     ev_active (cleanups [active - 1]) = active;
4549     }
4550    
4551     ev_stop (EV_A_ (W)w);
4552    
4553     EV_FREQUENT_CHECK;
4554     }
4555     #endif
4556    
4557 root 1.207 #if EV_ASYNC_ENABLE
4558     void
4559 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4560 root 1.207 {
4561     if (expect_false (ev_is_active (w)))
4562     return;
4563    
4564 root 1.352 w->sent = 0;
4565    
4566 root 1.207 evpipe_init (EV_A);
4567    
4568 root 1.248 EV_FREQUENT_CHECK;
4569    
4570 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4571     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4572     asyncs [asynccnt - 1] = w;
4573 root 1.248
4574     EV_FREQUENT_CHECK;
4575 root 1.207 }
4576    
4577     void
4578 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4579 root 1.207 {
4580     clear_pending (EV_A_ (W)w);
4581     if (expect_false (!ev_is_active (w)))
4582     return;
4583    
4584 root 1.248 EV_FREQUENT_CHECK;
4585    
4586 root 1.207 {
4587 root 1.230 int active = ev_active (w);
4588    
4589 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4590 root 1.230 ev_active (asyncs [active - 1]) = active;
4591 root 1.207 }
4592    
4593     ev_stop (EV_A_ (W)w);
4594 root 1.248
4595     EV_FREQUENT_CHECK;
4596 root 1.207 }
4597    
4598     void
4599 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4600 root 1.207 {
4601     w->sent = 1;
4602 root 1.307 evpipe_write (EV_A_ &async_pending);
4603 root 1.207 }
4604     #endif
4605    
4606 root 1.1 /*****************************************************************************/
4607 root 1.10
4608 root 1.16 struct ev_once
4609     {
4610 root 1.136 ev_io io;
4611     ev_timer to;
4612 root 1.16 void (*cb)(int revents, void *arg);
4613     void *arg;
4614     };
4615    
4616     static void
4617 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4618 root 1.16 {
4619     void (*cb)(int revents, void *arg) = once->cb;
4620     void *arg = once->arg;
4621    
4622 root 1.259 ev_io_stop (EV_A_ &once->io);
4623 root 1.51 ev_timer_stop (EV_A_ &once->to);
4624 root 1.69 ev_free (once);
4625 root 1.16
4626     cb (revents, arg);
4627     }
4628    
4629     static void
4630 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4631 root 1.16 {
4632 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4633    
4634     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4635 root 1.16 }
4636    
4637     static void
4638 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4639 root 1.16 {
4640 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4641    
4642     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4643 root 1.16 }
4644    
4645     void
4646 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4647 root 1.16 {
4648 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4649 root 1.16
4650 root 1.123 if (expect_false (!once))
4651 root 1.16 {
4652 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4653 root 1.123 return;
4654     }
4655    
4656     once->cb = cb;
4657     once->arg = arg;
4658 root 1.16
4659 root 1.123 ev_init (&once->io, once_cb_io);
4660     if (fd >= 0)
4661     {
4662     ev_io_set (&once->io, fd, events);
4663     ev_io_start (EV_A_ &once->io);
4664     }
4665 root 1.16
4666 root 1.123 ev_init (&once->to, once_cb_to);
4667     if (timeout >= 0.)
4668     {
4669     ev_timer_set (&once->to, timeout, 0.);
4670     ev_timer_start (EV_A_ &once->to);
4671 root 1.16 }
4672     }
4673    
4674 root 1.282 /*****************************************************************************/
4675    
4676 root 1.288 #if EV_WALK_ENABLE
4677 root 1.379 void ecb_cold
4678 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4679 root 1.282 {
4680     int i, j;
4681     ev_watcher_list *wl, *wn;
4682    
4683     if (types & (EV_IO | EV_EMBED))
4684     for (i = 0; i < anfdmax; ++i)
4685     for (wl = anfds [i].head; wl; )
4686     {
4687     wn = wl->next;
4688    
4689     #if EV_EMBED_ENABLE
4690     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4691     {
4692     if (types & EV_EMBED)
4693     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4694     }
4695     else
4696     #endif
4697     #if EV_USE_INOTIFY
4698     if (ev_cb ((ev_io *)wl) == infy_cb)
4699     ;
4700     else
4701     #endif
4702 root 1.288 if ((ev_io *)wl != &pipe_w)
4703 root 1.282 if (types & EV_IO)
4704     cb (EV_A_ EV_IO, wl);
4705    
4706     wl = wn;
4707     }
4708    
4709     if (types & (EV_TIMER | EV_STAT))
4710     for (i = timercnt + HEAP0; i-- > HEAP0; )
4711     #if EV_STAT_ENABLE
4712     /*TODO: timer is not always active*/
4713     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4714     {
4715     if (types & EV_STAT)
4716     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4717     }
4718     else
4719     #endif
4720     if (types & EV_TIMER)
4721     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4722    
4723     #if EV_PERIODIC_ENABLE
4724     if (types & EV_PERIODIC)
4725     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4726     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4727     #endif
4728    
4729     #if EV_IDLE_ENABLE
4730     if (types & EV_IDLE)
4731 root 1.390 for (j = NUMPRI; j--; )
4732 root 1.282 for (i = idlecnt [j]; i--; )
4733     cb (EV_A_ EV_IDLE, idles [j][i]);
4734     #endif
4735    
4736     #if EV_FORK_ENABLE
4737     if (types & EV_FORK)
4738     for (i = forkcnt; i--; )
4739     if (ev_cb (forks [i]) != embed_fork_cb)
4740     cb (EV_A_ EV_FORK, forks [i]);
4741     #endif
4742    
4743     #if EV_ASYNC_ENABLE
4744     if (types & EV_ASYNC)
4745     for (i = asynccnt; i--; )
4746     cb (EV_A_ EV_ASYNC, asyncs [i]);
4747     #endif
4748    
4749 root 1.337 #if EV_PREPARE_ENABLE
4750 root 1.282 if (types & EV_PREPARE)
4751     for (i = preparecnt; i--; )
4752 root 1.337 # if EV_EMBED_ENABLE
4753 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4754 root 1.337 # endif
4755     cb (EV_A_ EV_PREPARE, prepares [i]);
4756 root 1.282 #endif
4757    
4758 root 1.337 #if EV_CHECK_ENABLE
4759 root 1.282 if (types & EV_CHECK)
4760     for (i = checkcnt; i--; )
4761     cb (EV_A_ EV_CHECK, checks [i]);
4762 root 1.337 #endif
4763 root 1.282
4764 root 1.337 #if EV_SIGNAL_ENABLE
4765 root 1.282 if (types & EV_SIGNAL)
4766 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4767 root 1.282 for (wl = signals [i].head; wl; )
4768     {
4769     wn = wl->next;
4770     cb (EV_A_ EV_SIGNAL, wl);
4771     wl = wn;
4772     }
4773 root 1.337 #endif
4774 root 1.282
4775 root 1.337 #if EV_CHILD_ENABLE
4776 root 1.282 if (types & EV_CHILD)
4777 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4778 root 1.282 for (wl = childs [i]; wl; )
4779     {
4780     wn = wl->next;
4781     cb (EV_A_ EV_CHILD, wl);
4782     wl = wn;
4783     }
4784 root 1.337 #endif
4785 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4786     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4787     }
4788     #endif
4789    
4790 root 1.188 #if EV_MULTIPLICITY
4791     #include "ev_wrap.h"
4792     #endif
4793