ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.456
Committed: Thu Jul 4 22:32:23 2013 UTC (10 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.455: +3 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.418 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246     # error "unable to find value for NSIG, please report"
247 root 1.336 /* to make it compile regardless, just remove the above line, */
248     /* but consider reporting it, too! :) */
249 root 1.306 # define EV_NSIG 65
250 root 1.305 #endif
251    
252 root 1.373 #ifndef EV_USE_FLOOR
253     # define EV_USE_FLOOR 0
254     #endif
255    
256 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
257     # if __linux && __GLIBC__ >= 2
258 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 root 1.274 # else
260     # define EV_USE_CLOCK_SYSCALL 0
261     # endif
262     #endif
263    
264 root 1.29 #ifndef EV_USE_MONOTONIC
265 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 root 1.253 # else
268     # define EV_USE_MONOTONIC 0
269     # endif
270 root 1.37 #endif
271    
272 root 1.118 #ifndef EV_USE_REALTIME
273 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 root 1.118 #endif
275    
276 root 1.193 #ifndef EV_USE_NANOSLEEP
277 root 1.253 # if _POSIX_C_SOURCE >= 199309L
278 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 root 1.253 # else
280     # define EV_USE_NANOSLEEP 0
281     # endif
282 root 1.193 #endif
283    
284 root 1.29 #ifndef EV_USE_SELECT
285 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 root 1.10 #endif
287    
288 root 1.59 #ifndef EV_USE_POLL
289 root 1.104 # ifdef _WIN32
290     # define EV_USE_POLL 0
291     # else
292 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 root 1.104 # endif
294 root 1.41 #endif
295    
296 root 1.29 #ifndef EV_USE_EPOLL
297 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 root 1.220 # else
300     # define EV_USE_EPOLL 0
301     # endif
302 root 1.10 #endif
303    
304 root 1.44 #ifndef EV_USE_KQUEUE
305     # define EV_USE_KQUEUE 0
306     #endif
307    
308 root 1.118 #ifndef EV_USE_PORT
309     # define EV_USE_PORT 0
310 root 1.40 #endif
311    
312 root 1.152 #ifndef EV_USE_INOTIFY
313 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
315 root 1.220 # else
316     # define EV_USE_INOTIFY 0
317     # endif
318 root 1.152 #endif
319    
320 root 1.149 #ifndef EV_PID_HASHSIZE
321 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 root 1.149 #endif
323    
324 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
325 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 root 1.152 #endif
327    
328 root 1.220 #ifndef EV_USE_EVENTFD
329     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
331 root 1.220 # else
332     # define EV_USE_EVENTFD 0
333     # endif
334     #endif
335    
336 root 1.303 #ifndef EV_USE_SIGNALFD
337 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 root 1.303 # else
340     # define EV_USE_SIGNALFD 0
341     # endif
342     #endif
343    
344 root 1.249 #if 0 /* debugging */
345 root 1.250 # define EV_VERIFY 3
346 root 1.249 # define EV_USE_4HEAP 1
347     # define EV_HEAP_CACHE_AT 1
348     #endif
349    
350 root 1.250 #ifndef EV_VERIFY
351 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 root 1.250 #endif
353    
354 root 1.243 #ifndef EV_USE_4HEAP
355 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
356 root 1.243 #endif
357    
358     #ifndef EV_HEAP_CACHE_AT
359 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 root 1.243 #endif
361    
362 root 1.452 #ifdef ANDROID
363     /* supposedly, android doesn't typedef fd_mask */
364     # undef EV_USE_SELECT
365     # define EV_USE_SELECT 0
366     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367     # undef EV_USE_CLOCK_SYSCALL
368     # define EV_USE_CLOCK_SYSCALL 0
369     #endif
370    
371     /* aix's poll.h seems to cause lots of trouble */
372     #ifdef _AIX
373     /* AIX has a completely broken poll.h header */
374     # undef EV_USE_POLL
375     # define EV_USE_POLL 0
376     #endif
377    
378 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379     /* which makes programs even slower. might work on other unices, too. */
380     #if EV_USE_CLOCK_SYSCALL
381 root 1.423 # include <sys/syscall.h>
382 root 1.291 # ifdef SYS_clock_gettime
383     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384     # undef EV_USE_MONOTONIC
385     # define EV_USE_MONOTONIC 1
386     # else
387     # undef EV_USE_CLOCK_SYSCALL
388     # define EV_USE_CLOCK_SYSCALL 0
389     # endif
390     #endif
391    
392 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
393 root 1.40
394     #ifndef CLOCK_MONOTONIC
395     # undef EV_USE_MONOTONIC
396     # define EV_USE_MONOTONIC 0
397     #endif
398    
399 root 1.31 #ifndef CLOCK_REALTIME
400 root 1.40 # undef EV_USE_REALTIME
401 root 1.31 # define EV_USE_REALTIME 0
402     #endif
403 root 1.40
404 root 1.152 #if !EV_STAT_ENABLE
405 root 1.185 # undef EV_USE_INOTIFY
406 root 1.152 # define EV_USE_INOTIFY 0
407     #endif
408    
409 root 1.193 #if !EV_USE_NANOSLEEP
410 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
411 root 1.416 # if !defined _WIN32 && !defined __hpux
412 root 1.193 # include <sys/select.h>
413     # endif
414     #endif
415    
416 root 1.152 #if EV_USE_INOTIFY
417 root 1.273 # include <sys/statfs.h>
418 root 1.152 # include <sys/inotify.h>
419 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420     # ifndef IN_DONT_FOLLOW
421     # undef EV_USE_INOTIFY
422     # define EV_USE_INOTIFY 0
423     # endif
424 root 1.152 #endif
425    
426 root 1.220 #if EV_USE_EVENTFD
427     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428 root 1.221 # include <stdint.h>
429 root 1.303 # ifndef EFD_NONBLOCK
430     # define EFD_NONBLOCK O_NONBLOCK
431     # endif
432     # ifndef EFD_CLOEXEC
433 root 1.311 # ifdef O_CLOEXEC
434     # define EFD_CLOEXEC O_CLOEXEC
435     # else
436     # define EFD_CLOEXEC 02000000
437     # endif
438 root 1.303 # endif
439 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440 root 1.220 #endif
441    
442 root 1.303 #if EV_USE_SIGNALFD
443 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444     # include <stdint.h>
445     # ifndef SFD_NONBLOCK
446     # define SFD_NONBLOCK O_NONBLOCK
447     # endif
448     # ifndef SFD_CLOEXEC
449     # ifdef O_CLOEXEC
450     # define SFD_CLOEXEC O_CLOEXEC
451     # else
452     # define SFD_CLOEXEC 02000000
453     # endif
454     # endif
455 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456 root 1.314
457     struct signalfd_siginfo
458     {
459     uint32_t ssi_signo;
460     char pad[128 - sizeof (uint32_t)];
461     };
462 root 1.303 #endif
463    
464 root 1.40 /**/
465 root 1.1
466 root 1.250 #if EV_VERIFY >= 3
467 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
468 root 1.248 #else
469     # define EV_FREQUENT_CHECK do { } while (0)
470     #endif
471    
472 root 1.176 /*
473 root 1.373 * This is used to work around floating point rounding problems.
474 root 1.177 * This value is good at least till the year 4000.
475 root 1.176 */
476 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
478 root 1.176
479 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
480 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
481 root 1.1
482 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484 root 1.347
485 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486     /* ECB.H BEGIN */
487     /*
488     * libecb - http://software.schmorp.de/pkg/libecb
489     *
490 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
492     * All rights reserved.
493     *
494     * Redistribution and use in source and binary forms, with or without modifica-
495     * tion, are permitted provided that the following conditions are met:
496     *
497     * 1. Redistributions of source code must retain the above copyright notice,
498     * this list of conditions and the following disclaimer.
499     *
500     * 2. Redistributions in binary form must reproduce the above copyright
501     * notice, this list of conditions and the following disclaimer in the
502     * documentation and/or other materials provided with the distribution.
503     *
504     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513     * OF THE POSSIBILITY OF SUCH DAMAGE.
514     */
515    
516     #ifndef ECB_H
517     #define ECB_H
518    
519 root 1.437 /* 16 bits major, 16 bits minor */
520 root 1.454 #define ECB_VERSION 0x00010003
521 root 1.437
522 root 1.391 #ifdef _WIN32
523     typedef signed char int8_t;
524     typedef unsigned char uint8_t;
525     typedef signed short int16_t;
526     typedef unsigned short uint16_t;
527     typedef signed int int32_t;
528     typedef unsigned int uint32_t;
529     #if __GNUC__
530     typedef signed long long int64_t;
531     typedef unsigned long long uint64_t;
532     #else /* _MSC_VER || __BORLANDC__ */
533     typedef signed __int64 int64_t;
534     typedef unsigned __int64 uint64_t;
535     #endif
536 root 1.437 #ifdef _WIN64
537     #define ECB_PTRSIZE 8
538     typedef uint64_t uintptr_t;
539     typedef int64_t intptr_t;
540     #else
541     #define ECB_PTRSIZE 4
542     typedef uint32_t uintptr_t;
543     typedef int32_t intptr_t;
544     #endif
545 root 1.391 #else
546     #include <inttypes.h>
547 root 1.437 #if UINTMAX_MAX > 0xffffffffU
548     #define ECB_PTRSIZE 8
549     #else
550     #define ECB_PTRSIZE 4
551     #endif
552 root 1.391 #endif
553 root 1.379
554 root 1.454 /* work around x32 idiocy by defining proper macros */
555     #if __x86_64 || _M_AMD64
556     #if __ILP32
557     #define ECB_AMD64_X32 1
558     #else
559     #define ECB_AMD64 1
560     #endif
561     #endif
562    
563 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
564     * what their idiot authors think are the "more important" extensions,
565 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
566 root 1.379 * or so.
567     * we try to detect these and simply assume they are not gcc - if they have
568     * an issue with that they should have done it right in the first place.
569     */
570     #ifndef ECB_GCC_VERSION
571 root 1.417 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 root 1.379 #define ECB_GCC_VERSION(major,minor) 0
573     #else
574     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575     #endif
576     #endif
577    
578 root 1.437 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
580     #define ECB_C11 (__STDC_VERSION__ >= 201112L)
581     #define ECB_CPP (__cplusplus+0)
582     #define ECB_CPP11 (__cplusplus >= 201103L)
583    
584 root 1.450 #if ECB_CPP
585     #define ECB_EXTERN_C extern "C"
586     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587     #define ECB_EXTERN_C_END }
588     #else
589     #define ECB_EXTERN_C extern
590     #define ECB_EXTERN_C_BEG
591     #define ECB_EXTERN_C_END
592     #endif
593    
594 root 1.391 /*****************************************************************************/
595    
596     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598    
599 root 1.410 #if ECB_NO_THREADS
600 root 1.439 #define ECB_NO_SMP 1
601 root 1.410 #endif
602    
603 root 1.437 #if ECB_NO_SMP
604 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
605 root 1.40 #endif
606    
607 root 1.383 #ifndef ECB_MEMORY_FENCE
608 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 root 1.404 #if __i386 || __i386__
610 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 root 1.404 #elif __sparc || __sparc__
626 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 root 1.417 #elif defined __s390__ || defined __s390x__
630 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 root 1.417 #elif defined __mips__
632 root 1.456 /* GNU/Linux emulates sync on mips1 architectures, so we force it's use */
633     /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
634     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
635 root 1.419 #elif defined __alpha__
636 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
637     #elif defined __hppa__
638     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
639     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
640     #elif defined __ia64__
641     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
642 root 1.383 #endif
643     #endif
644     #endif
645    
646     #ifndef ECB_MEMORY_FENCE
647 root 1.437 #if ECB_GCC_VERSION(4,7)
648 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
649 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
650 root 1.450
651     /* The __has_feature syntax from clang is so misdesigned that we cannot use it
652     * without risking compile time errors with other compilers. We *could*
653     * define our own ecb_clang_has_feature, but I just can't be bothered to work
654     * around this shit time and again.
655     * #elif defined __clang && __has_feature (cxx_atomic)
656     * // see comment below (stdatomic.h) about the C11 memory model.
657     * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
658     */
659    
660 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
661 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
662 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
663     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
664     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
665     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
666     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
667 root 1.417 #elif defined _WIN32
668 root 1.388 #include <WinNT.h>
669 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
670 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
671     #include <mbarrier.h>
672     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
673     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
674     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
675 root 1.413 #elif __xlC__
676 root 1.414 #define ECB_MEMORY_FENCE __sync ()
677 root 1.383 #endif
678     #endif
679    
680     #ifndef ECB_MEMORY_FENCE
681 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
682     /* we assume that these memory fences work on all variables/all memory accesses, */
683     /* not just C11 atomics and atomic accesses */
684     #include <stdatomic.h>
685 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
686     /* any fence other than seq_cst, which isn't very efficient for us. */
687     /* Why that is, we don't know - either the C11 memory model is quite useless */
688     /* for most usages, or gcc and clang have a bug */
689     /* I *currently* lean towards the latter, and inefficiently implement */
690     /* all three of ecb's fences as a seq_cst fence */
691 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
692     #endif
693     #endif
694    
695     #ifndef ECB_MEMORY_FENCE
696 root 1.392 #if !ECB_AVOID_PTHREADS
697     /*
698     * if you get undefined symbol references to pthread_mutex_lock,
699     * or failure to find pthread.h, then you should implement
700     * the ECB_MEMORY_FENCE operations for your cpu/compiler
701     * OR provide pthread.h and link against the posix thread library
702     * of your system.
703     */
704     #include <pthread.h>
705     #define ECB_NEEDS_PTHREADS 1
706     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
707    
708     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
709     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
710     #endif
711     #endif
712 root 1.383
713 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
714 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
715 root 1.392 #endif
716    
717 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
718 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
719     #endif
720    
721 root 1.391 /*****************************************************************************/
722    
723     #if __cplusplus
724     #define ecb_inline static inline
725     #elif ECB_GCC_VERSION(2,5)
726     #define ecb_inline static __inline__
727     #elif ECB_C99
728     #define ecb_inline static inline
729     #else
730     #define ecb_inline static
731     #endif
732    
733     #if ECB_GCC_VERSION(3,3)
734     #define ecb_restrict __restrict__
735     #elif ECB_C99
736     #define ecb_restrict restrict
737     #else
738     #define ecb_restrict
739     #endif
740    
741     typedef int ecb_bool;
742    
743     #define ECB_CONCAT_(a, b) a ## b
744     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
745     #define ECB_STRINGIFY_(a) # a
746     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
747    
748     #define ecb_function_ ecb_inline
749    
750 root 1.379 #if ECB_GCC_VERSION(3,1)
751     #define ecb_attribute(attrlist) __attribute__(attrlist)
752     #define ecb_is_constant(expr) __builtin_constant_p (expr)
753     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
754     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
755     #else
756     #define ecb_attribute(attrlist)
757     #define ecb_is_constant(expr) 0
758     #define ecb_expect(expr,value) (expr)
759     #define ecb_prefetch(addr,rw,locality)
760     #endif
761    
762 root 1.391 /* no emulation for ecb_decltype */
763     #if ECB_GCC_VERSION(4,5)
764     #define ecb_decltype(x) __decltype(x)
765     #elif ECB_GCC_VERSION(3,0)
766     #define ecb_decltype(x) __typeof(x)
767     #endif
768    
769 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
770     #define ecb_unused ecb_attribute ((__unused__))
771     #define ecb_const ecb_attribute ((__const__))
772     #define ecb_pure ecb_attribute ((__pure__))
773    
774 root 1.437 #if ECB_C11
775     #define ecb_noreturn _Noreturn
776     #else
777     #define ecb_noreturn ecb_attribute ((__noreturn__))
778     #endif
779    
780 root 1.379 #if ECB_GCC_VERSION(4,3)
781     #define ecb_artificial ecb_attribute ((__artificial__))
782     #define ecb_hot ecb_attribute ((__hot__))
783     #define ecb_cold ecb_attribute ((__cold__))
784     #else
785     #define ecb_artificial
786     #define ecb_hot
787     #define ecb_cold
788     #endif
789    
790     /* put around conditional expressions if you are very sure that the */
791     /* expression is mostly true or mostly false. note that these return */
792     /* booleans, not the expression. */
793     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
794     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
795 root 1.391 /* for compatibility to the rest of the world */
796     #define ecb_likely(expr) ecb_expect_true (expr)
797     #define ecb_unlikely(expr) ecb_expect_false (expr)
798    
799     /* count trailing zero bits and count # of one bits */
800     #if ECB_GCC_VERSION(3,4)
801     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
802     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
803     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
804     #define ecb_ctz32(x) __builtin_ctz (x)
805     #define ecb_ctz64(x) __builtin_ctzll (x)
806     #define ecb_popcount32(x) __builtin_popcount (x)
807     /* no popcountll */
808     #else
809     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
810     ecb_function_ int
811     ecb_ctz32 (uint32_t x)
812     {
813     int r = 0;
814    
815     x &= ~x + 1; /* this isolates the lowest bit */
816    
817     #if ECB_branchless_on_i386
818     r += !!(x & 0xaaaaaaaa) << 0;
819     r += !!(x & 0xcccccccc) << 1;
820     r += !!(x & 0xf0f0f0f0) << 2;
821     r += !!(x & 0xff00ff00) << 3;
822     r += !!(x & 0xffff0000) << 4;
823     #else
824     if (x & 0xaaaaaaaa) r += 1;
825     if (x & 0xcccccccc) r += 2;
826     if (x & 0xf0f0f0f0) r += 4;
827     if (x & 0xff00ff00) r += 8;
828     if (x & 0xffff0000) r += 16;
829     #endif
830    
831     return r;
832     }
833    
834     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
835     ecb_function_ int
836     ecb_ctz64 (uint64_t x)
837     {
838     int shift = x & 0xffffffffU ? 0 : 32;
839     return ecb_ctz32 (x >> shift) + shift;
840     }
841    
842     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
843     ecb_function_ int
844     ecb_popcount32 (uint32_t x)
845     {
846     x -= (x >> 1) & 0x55555555;
847     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
848     x = ((x >> 4) + x) & 0x0f0f0f0f;
849     x *= 0x01010101;
850    
851     return x >> 24;
852     }
853    
854     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
855     ecb_function_ int ecb_ld32 (uint32_t x)
856     {
857     int r = 0;
858    
859     if (x >> 16) { x >>= 16; r += 16; }
860     if (x >> 8) { x >>= 8; r += 8; }
861     if (x >> 4) { x >>= 4; r += 4; }
862     if (x >> 2) { x >>= 2; r += 2; }
863     if (x >> 1) { r += 1; }
864    
865     return r;
866     }
867    
868     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
869     ecb_function_ int ecb_ld64 (uint64_t x)
870     {
871     int r = 0;
872    
873     if (x >> 32) { x >>= 32; r += 32; }
874    
875     return r + ecb_ld32 (x);
876     }
877     #endif
878    
879 root 1.437 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
880     ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
881     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
882     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
883    
884 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
885     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
886     {
887     return ( (x * 0x0802U & 0x22110U)
888     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
889     }
890    
891     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
892     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
893     {
894     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
895     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
896     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
897     x = ( x >> 8 ) | ( x << 8);
898    
899     return x;
900     }
901    
902     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
903     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
904     {
905     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
906     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
907     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
908     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
909     x = ( x >> 16 ) | ( x << 16);
910    
911     return x;
912     }
913    
914 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
915     /* so for this version we are lazy */
916     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
917     ecb_function_ int
918     ecb_popcount64 (uint64_t x)
919     {
920     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
921     }
922    
923     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
924     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
925     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
926     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
927     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
928     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
929     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
930     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
931    
932     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
933     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
934     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
935     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
936     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
937     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
938     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
939     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
940    
941     #if ECB_GCC_VERSION(4,3)
942     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
943     #define ecb_bswap32(x) __builtin_bswap32 (x)
944     #define ecb_bswap64(x) __builtin_bswap64 (x)
945     #else
946     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
947     ecb_function_ uint16_t
948     ecb_bswap16 (uint16_t x)
949     {
950     return ecb_rotl16 (x, 8);
951     }
952    
953     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
954     ecb_function_ uint32_t
955     ecb_bswap32 (uint32_t x)
956     {
957     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
958     }
959    
960     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
961     ecb_function_ uint64_t
962     ecb_bswap64 (uint64_t x)
963     {
964     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
965     }
966     #endif
967    
968     #if ECB_GCC_VERSION(4,5)
969     #define ecb_unreachable() __builtin_unreachable ()
970     #else
971     /* this seems to work fine, but gcc always emits a warning for it :/ */
972 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
973     ecb_inline void ecb_unreachable (void) { }
974 root 1.391 #endif
975    
976     /* try to tell the compiler that some condition is definitely true */
977 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
978 root 1.391
979 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
980     ecb_inline unsigned char
981 root 1.391 ecb_byteorder_helper (void)
982     {
983 root 1.450 /* the union code still generates code under pressure in gcc, */
984     /* but less than using pointers, and always seems to */
985     /* successfully return a constant. */
986     /* the reason why we have this horrible preprocessor mess */
987     /* is to avoid it in all cases, at least on common architectures */
988     /* or when using a recent enough gcc version (>= 4.6) */
989     #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
990     return 0x44;
991     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
992     return 0x44;
993     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
994     return 0x11;
995     #else
996     union
997     {
998     uint32_t i;
999     uint8_t c;
1000     } u = { 0x11223344 };
1001     return u.c;
1002     #endif
1003 root 1.391 }
1004    
1005 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1006     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1007     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1008     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1009 root 1.391
1010     #if ECB_GCC_VERSION(3,0) || ECB_C99
1011     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1012     #else
1013     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1014     #endif
1015    
1016 root 1.398 #if __cplusplus
1017     template<typename T>
1018     static inline T ecb_div_rd (T val, T div)
1019     {
1020     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1021     }
1022     template<typename T>
1023     static inline T ecb_div_ru (T val, T div)
1024     {
1025     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1026     }
1027     #else
1028     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1029     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1030     #endif
1031    
1032 root 1.391 #if ecb_cplusplus_does_not_suck
1033     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1034     template<typename T, int N>
1035     static inline int ecb_array_length (const T (&arr)[N])
1036     {
1037     return N;
1038     }
1039     #else
1040     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1041     #endif
1042    
1043 root 1.450 /*******************************************************************************/
1044     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1045    
1046     /* basically, everything uses "ieee pure-endian" floating point numbers */
1047     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1048     #if 0 \
1049     || __i386 || __i386__ \
1050     || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1051     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1052     || defined __arm__ && defined __ARM_EABI__ \
1053     || defined __s390__ || defined __s390x__ \
1054     || defined __mips__ \
1055     || defined __alpha__ \
1056     || defined __hppa__ \
1057     || defined __ia64__ \
1058     || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1059     #define ECB_STDFP 1
1060     #include <string.h> /* for memcpy */
1061     #else
1062     #define ECB_STDFP 0
1063     #include <math.h> /* for frexp*, ldexp* */
1064     #endif
1065    
1066     #ifndef ECB_NO_LIBM
1067    
1068     /* convert a float to ieee single/binary32 */
1069     ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1070     ecb_function_ uint32_t
1071     ecb_float_to_binary32 (float x)
1072     {
1073     uint32_t r;
1074    
1075     #if ECB_STDFP
1076     memcpy (&r, &x, 4);
1077     #else
1078     /* slow emulation, works for anything but -0 */
1079     uint32_t m;
1080     int e;
1081    
1082     if (x == 0e0f ) return 0x00000000U;
1083     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1084     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1085     if (x != x ) return 0x7fbfffffU;
1086    
1087     m = frexpf (x, &e) * 0x1000000U;
1088    
1089     r = m & 0x80000000U;
1090    
1091     if (r)
1092     m = -m;
1093    
1094     if (e <= -126)
1095     {
1096     m &= 0xffffffU;
1097     m >>= (-125 - e);
1098     e = -126;
1099     }
1100    
1101     r |= (e + 126) << 23;
1102     r |= m & 0x7fffffU;
1103     #endif
1104    
1105     return r;
1106     }
1107    
1108     /* converts an ieee single/binary32 to a float */
1109     ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1110     ecb_function_ float
1111     ecb_binary32_to_float (uint32_t x)
1112     {
1113     float r;
1114    
1115     #if ECB_STDFP
1116     memcpy (&r, &x, 4);
1117     #else
1118     /* emulation, only works for normals and subnormals and +0 */
1119     int neg = x >> 31;
1120     int e = (x >> 23) & 0xffU;
1121    
1122     x &= 0x7fffffU;
1123    
1124     if (e)
1125     x |= 0x800000U;
1126     else
1127     e = 1;
1128    
1129     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1130     r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1131    
1132     r = neg ? -r : r;
1133     #endif
1134    
1135     return r;
1136     }
1137    
1138     /* convert a double to ieee double/binary64 */
1139     ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1140     ecb_function_ uint64_t
1141     ecb_double_to_binary64 (double x)
1142     {
1143     uint64_t r;
1144    
1145     #if ECB_STDFP
1146     memcpy (&r, &x, 8);
1147     #else
1148     /* slow emulation, works for anything but -0 */
1149     uint64_t m;
1150     int e;
1151    
1152     if (x == 0e0 ) return 0x0000000000000000U;
1153     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1154     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1155     if (x != x ) return 0X7ff7ffffffffffffU;
1156    
1157     m = frexp (x, &e) * 0x20000000000000U;
1158    
1159     r = m & 0x8000000000000000;;
1160    
1161     if (r)
1162     m = -m;
1163    
1164     if (e <= -1022)
1165     {
1166     m &= 0x1fffffffffffffU;
1167     m >>= (-1021 - e);
1168     e = -1022;
1169     }
1170    
1171     r |= ((uint64_t)(e + 1022)) << 52;
1172     r |= m & 0xfffffffffffffU;
1173     #endif
1174    
1175     return r;
1176     }
1177    
1178     /* converts an ieee double/binary64 to a double */
1179     ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1180     ecb_function_ double
1181     ecb_binary64_to_double (uint64_t x)
1182     {
1183     double r;
1184    
1185     #if ECB_STDFP
1186     memcpy (&r, &x, 8);
1187     #else
1188     /* emulation, only works for normals and subnormals and +0 */
1189     int neg = x >> 63;
1190     int e = (x >> 52) & 0x7ffU;
1191    
1192     x &= 0xfffffffffffffU;
1193    
1194     if (e)
1195     x |= 0x10000000000000U;
1196     else
1197     e = 1;
1198    
1199     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1200     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1201    
1202     r = neg ? -r : r;
1203     #endif
1204    
1205     return r;
1206     }
1207    
1208     #endif
1209    
1210 root 1.391 #endif
1211    
1212     /* ECB.H END */
1213 root 1.379
1214 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1215 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1216 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1217     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1218 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1219 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1220     * which will then provide the memory fences.
1221     */
1222     # error "memory fences not defined for your architecture, please report"
1223     #endif
1224    
1225     #ifndef ECB_MEMORY_FENCE
1226     # define ECB_MEMORY_FENCE do { } while (0)
1227     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1228     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1229 root 1.392 #endif
1230    
1231 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1232     #define expect_true(cond) ecb_expect_true (cond)
1233     #define noinline ecb_noinline
1234    
1235     #define inline_size ecb_inline
1236 root 1.169
1237 root 1.338 #if EV_FEATURE_CODE
1238 root 1.379 # define inline_speed ecb_inline
1239 root 1.338 #else
1240 root 1.169 # define inline_speed static noinline
1241     #endif
1242 root 1.40
1243 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1244    
1245     #if EV_MINPRI == EV_MAXPRI
1246     # define ABSPRI(w) (((W)w), 0)
1247     #else
1248     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1249     #endif
1250 root 1.42
1251 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1252 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1253 root 1.103
1254 root 1.136 typedef ev_watcher *W;
1255     typedef ev_watcher_list *WL;
1256     typedef ev_watcher_time *WT;
1257 root 1.10
1258 root 1.229 #define ev_active(w) ((W)(w))->active
1259 root 1.228 #define ev_at(w) ((WT)(w))->at
1260    
1261 root 1.279 #if EV_USE_REALTIME
1262 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1263 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1264 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1265     #endif
1266    
1267     #if EV_USE_MONOTONIC
1268 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1269 root 1.198 #endif
1270 root 1.54
1271 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1272     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1273     #endif
1274     #ifndef EV_WIN32_HANDLE_TO_FD
1275 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1276 root 1.313 #endif
1277     #ifndef EV_WIN32_CLOSE_FD
1278     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1279     #endif
1280    
1281 root 1.103 #ifdef _WIN32
1282 root 1.98 # include "ev_win32.c"
1283     #endif
1284 root 1.67
1285 root 1.53 /*****************************************************************************/
1286 root 1.1
1287 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1288    
1289     #if EV_USE_FLOOR
1290     # include <math.h>
1291     # define ev_floor(v) floor (v)
1292     #else
1293    
1294     #include <float.h>
1295    
1296     /* a floor() replacement function, should be independent of ev_tstamp type */
1297     static ev_tstamp noinline
1298     ev_floor (ev_tstamp v)
1299     {
1300     /* the choice of shift factor is not terribly important */
1301     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1302     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1303     #else
1304     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1305     #endif
1306    
1307     /* argument too large for an unsigned long? */
1308     if (expect_false (v >= shift))
1309     {
1310     ev_tstamp f;
1311    
1312     if (v == v - 1.)
1313     return v; /* very large number */
1314    
1315     f = shift * ev_floor (v * (1. / shift));
1316     return f + ev_floor (v - f);
1317     }
1318    
1319     /* special treatment for negative args? */
1320     if (expect_false (v < 0.))
1321     {
1322     ev_tstamp f = -ev_floor (-v);
1323    
1324     return f - (f == v ? 0 : 1);
1325     }
1326    
1327     /* fits into an unsigned long */
1328     return (unsigned long)v;
1329     }
1330    
1331     #endif
1332    
1333     /*****************************************************************************/
1334    
1335 root 1.356 #ifdef __linux
1336     # include <sys/utsname.h>
1337     #endif
1338    
1339 root 1.379 static unsigned int noinline ecb_cold
1340 root 1.355 ev_linux_version (void)
1341     {
1342     #ifdef __linux
1343 root 1.359 unsigned int v = 0;
1344 root 1.355 struct utsname buf;
1345     int i;
1346     char *p = buf.release;
1347    
1348     if (uname (&buf))
1349     return 0;
1350    
1351     for (i = 3+1; --i; )
1352     {
1353     unsigned int c = 0;
1354    
1355     for (;;)
1356     {
1357     if (*p >= '0' && *p <= '9')
1358     c = c * 10 + *p++ - '0';
1359     else
1360     {
1361     p += *p == '.';
1362     break;
1363     }
1364     }
1365    
1366     v = (v << 8) | c;
1367     }
1368    
1369     return v;
1370     #else
1371     return 0;
1372     #endif
1373     }
1374    
1375     /*****************************************************************************/
1376    
1377 root 1.331 #if EV_AVOID_STDIO
1378 root 1.379 static void noinline ecb_cold
1379 root 1.331 ev_printerr (const char *msg)
1380     {
1381     write (STDERR_FILENO, msg, strlen (msg));
1382     }
1383     #endif
1384    
1385 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1386 root 1.69
1387 root 1.379 void ecb_cold
1388 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1389 root 1.69 {
1390     syserr_cb = cb;
1391     }
1392    
1393 root 1.379 static void noinline ecb_cold
1394 root 1.269 ev_syserr (const char *msg)
1395 root 1.69 {
1396 root 1.70 if (!msg)
1397     msg = "(libev) system error";
1398    
1399 root 1.69 if (syserr_cb)
1400 root 1.70 syserr_cb (msg);
1401 root 1.69 else
1402     {
1403 root 1.330 #if EV_AVOID_STDIO
1404 root 1.331 ev_printerr (msg);
1405     ev_printerr (": ");
1406 root 1.365 ev_printerr (strerror (errno));
1407 root 1.331 ev_printerr ("\n");
1408 root 1.330 #else
1409 root 1.70 perror (msg);
1410 root 1.330 #endif
1411 root 1.69 abort ();
1412     }
1413     }
1414    
1415 root 1.224 static void *
1416 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1417 root 1.224 {
1418     /* some systems, notably openbsd and darwin, fail to properly
1419 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1420 root 1.224 * the single unix specification, so work around them here.
1421 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1422     * despite documenting it otherwise.
1423 root 1.224 */
1424 root 1.333
1425 root 1.224 if (size)
1426     return realloc (ptr, size);
1427    
1428     free (ptr);
1429     return 0;
1430     }
1431    
1432 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1433 root 1.69
1434 root 1.379 void ecb_cold
1435 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1436 root 1.69 {
1437     alloc = cb;
1438     }
1439    
1440 root 1.150 inline_speed void *
1441 root 1.155 ev_realloc (void *ptr, long size)
1442 root 1.69 {
1443 root 1.224 ptr = alloc (ptr, size);
1444 root 1.69
1445     if (!ptr && size)
1446     {
1447 root 1.330 #if EV_AVOID_STDIO
1448 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1449 root 1.330 #else
1450 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1451 root 1.330 #endif
1452 root 1.69 abort ();
1453     }
1454    
1455     return ptr;
1456     }
1457    
1458     #define ev_malloc(size) ev_realloc (0, (size))
1459     #define ev_free(ptr) ev_realloc ((ptr), 0)
1460    
1461     /*****************************************************************************/
1462    
1463 root 1.298 /* set in reify when reification needed */
1464     #define EV_ANFD_REIFY 1
1465    
1466 root 1.288 /* file descriptor info structure */
1467 root 1.53 typedef struct
1468     {
1469 root 1.68 WL head;
1470 root 1.288 unsigned char events; /* the events watched for */
1471 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1472 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1473 root 1.269 unsigned char unused;
1474     #if EV_USE_EPOLL
1475 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1476 root 1.269 #endif
1477 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1478 root 1.103 SOCKET handle;
1479     #endif
1480 root 1.357 #if EV_USE_IOCP
1481     OVERLAPPED or, ow;
1482     #endif
1483 root 1.53 } ANFD;
1484 root 1.1
1485 root 1.288 /* stores the pending event set for a given watcher */
1486 root 1.53 typedef struct
1487     {
1488     W w;
1489 root 1.288 int events; /* the pending event set for the given watcher */
1490 root 1.53 } ANPENDING;
1491 root 1.51
1492 root 1.155 #if EV_USE_INOTIFY
1493 root 1.241 /* hash table entry per inotify-id */
1494 root 1.152 typedef struct
1495     {
1496     WL head;
1497 root 1.155 } ANFS;
1498 root 1.152 #endif
1499    
1500 root 1.241 /* Heap Entry */
1501     #if EV_HEAP_CACHE_AT
1502 root 1.288 /* a heap element */
1503 root 1.241 typedef struct {
1504 root 1.243 ev_tstamp at;
1505 root 1.241 WT w;
1506     } ANHE;
1507    
1508 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1509     #define ANHE_at(he) (he).at /* access cached at, read-only */
1510     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1511 root 1.241 #else
1512 root 1.288 /* a heap element */
1513 root 1.241 typedef WT ANHE;
1514    
1515 root 1.248 #define ANHE_w(he) (he)
1516     #define ANHE_at(he) (he)->at
1517     #define ANHE_at_cache(he)
1518 root 1.241 #endif
1519    
1520 root 1.55 #if EV_MULTIPLICITY
1521 root 1.54
1522 root 1.80 struct ev_loop
1523     {
1524 root 1.86 ev_tstamp ev_rt_now;
1525 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1526 root 1.80 #define VAR(name,decl) decl;
1527     #include "ev_vars.h"
1528     #undef VAR
1529     };
1530     #include "ev_wrap.h"
1531    
1532 root 1.116 static struct ev_loop default_loop_struct;
1533 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1534 root 1.54
1535 root 1.53 #else
1536 root 1.54
1537 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1538 root 1.80 #define VAR(name,decl) static decl;
1539     #include "ev_vars.h"
1540     #undef VAR
1541    
1542 root 1.116 static int ev_default_loop_ptr;
1543 root 1.54
1544 root 1.51 #endif
1545 root 1.1
1546 root 1.338 #if EV_FEATURE_API
1547 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1548     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1549 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1550     #else
1551 root 1.298 # define EV_RELEASE_CB (void)0
1552     # define EV_ACQUIRE_CB (void)0
1553 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1554     #endif
1555    
1556 root 1.353 #define EVBREAK_RECURSE 0x80
1557 root 1.298
1558 root 1.8 /*****************************************************************************/
1559    
1560 root 1.292 #ifndef EV_HAVE_EV_TIME
1561 root 1.141 ev_tstamp
1562 root 1.420 ev_time (void) EV_THROW
1563 root 1.1 {
1564 root 1.29 #if EV_USE_REALTIME
1565 root 1.279 if (expect_true (have_realtime))
1566     {
1567     struct timespec ts;
1568     clock_gettime (CLOCK_REALTIME, &ts);
1569     return ts.tv_sec + ts.tv_nsec * 1e-9;
1570     }
1571     #endif
1572    
1573 root 1.1 struct timeval tv;
1574     gettimeofday (&tv, 0);
1575     return tv.tv_sec + tv.tv_usec * 1e-6;
1576     }
1577 root 1.292 #endif
1578 root 1.1
1579 root 1.284 inline_size ev_tstamp
1580 root 1.1 get_clock (void)
1581     {
1582 root 1.29 #if EV_USE_MONOTONIC
1583 root 1.40 if (expect_true (have_monotonic))
1584 root 1.1 {
1585     struct timespec ts;
1586     clock_gettime (CLOCK_MONOTONIC, &ts);
1587     return ts.tv_sec + ts.tv_nsec * 1e-9;
1588     }
1589     #endif
1590    
1591     return ev_time ();
1592     }
1593    
1594 root 1.85 #if EV_MULTIPLICITY
1595 root 1.51 ev_tstamp
1596 root 1.420 ev_now (EV_P) EV_THROW
1597 root 1.51 {
1598 root 1.85 return ev_rt_now;
1599 root 1.51 }
1600 root 1.85 #endif
1601 root 1.51
1602 root 1.193 void
1603 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1604 root 1.193 {
1605     if (delay > 0.)
1606     {
1607     #if EV_USE_NANOSLEEP
1608     struct timespec ts;
1609    
1610 root 1.348 EV_TS_SET (ts, delay);
1611 root 1.193 nanosleep (&ts, 0);
1612 root 1.416 #elif defined _WIN32
1613 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1614 root 1.193 #else
1615     struct timeval tv;
1616    
1617 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1618 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1619 root 1.257 /* by older ones */
1620 sf-exg 1.349 EV_TV_SET (tv, delay);
1621 root 1.193 select (0, 0, 0, 0, &tv);
1622     #endif
1623     }
1624     }
1625    
1626     /*****************************************************************************/
1627    
1628 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1629 root 1.232
1630 root 1.288 /* find a suitable new size for the given array, */
1631 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1632 root 1.284 inline_size int
1633 root 1.163 array_nextsize (int elem, int cur, int cnt)
1634     {
1635     int ncur = cur + 1;
1636    
1637     do
1638     ncur <<= 1;
1639     while (cnt > ncur);
1640    
1641 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1642 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1643 root 1.163 {
1644     ncur *= elem;
1645 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1646 root 1.163 ncur = ncur - sizeof (void *) * 4;
1647     ncur /= elem;
1648     }
1649    
1650     return ncur;
1651     }
1652    
1653 root 1.379 static void * noinline ecb_cold
1654 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1655     {
1656     *cur = array_nextsize (elem, *cur, cnt);
1657     return ev_realloc (base, elem * *cur);
1658     }
1659 root 1.29
1660 root 1.265 #define array_init_zero(base,count) \
1661     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1662    
1663 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1664 root 1.163 if (expect_false ((cnt) > (cur))) \
1665 root 1.69 { \
1666 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1667 root 1.163 (base) = (type *)array_realloc \
1668     (sizeof (type), (base), &(cur), (cnt)); \
1669     init ((base) + (ocur_), (cur) - ocur_); \
1670 root 1.1 }
1671    
1672 root 1.163 #if 0
1673 root 1.74 #define array_slim(type,stem) \
1674 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1675     { \
1676     stem ## max = array_roundsize (stem ## cnt >> 1); \
1677 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1678 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1679     }
1680 root 1.163 #endif
1681 root 1.67
1682 root 1.65 #define array_free(stem, idx) \
1683 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1684 root 1.65
1685 root 1.8 /*****************************************************************************/
1686    
1687 root 1.288 /* dummy callback for pending events */
1688     static void noinline
1689     pendingcb (EV_P_ ev_prepare *w, int revents)
1690     {
1691     }
1692    
1693 root 1.140 void noinline
1694 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1695 root 1.1 {
1696 root 1.78 W w_ = (W)w;
1697 root 1.171 int pri = ABSPRI (w_);
1698 root 1.78
1699 root 1.123 if (expect_false (w_->pending))
1700 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1701     else
1702 root 1.32 {
1703 root 1.171 w_->pending = ++pendingcnt [pri];
1704     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1705     pendings [pri][w_->pending - 1].w = w_;
1706     pendings [pri][w_->pending - 1].events = revents;
1707 root 1.32 }
1708 root 1.425
1709     pendingpri = NUMPRI - 1;
1710 root 1.1 }
1711    
1712 root 1.284 inline_speed void
1713     feed_reverse (EV_P_ W w)
1714     {
1715     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1716     rfeeds [rfeedcnt++] = w;
1717     }
1718    
1719     inline_size void
1720     feed_reverse_done (EV_P_ int revents)
1721     {
1722     do
1723     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1724     while (rfeedcnt);
1725     }
1726    
1727     inline_speed void
1728 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1729 root 1.27 {
1730     int i;
1731    
1732     for (i = 0; i < eventcnt; ++i)
1733 root 1.78 ev_feed_event (EV_A_ events [i], type);
1734 root 1.27 }
1735    
1736 root 1.141 /*****************************************************************************/
1737    
1738 root 1.284 inline_speed void
1739 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1740 root 1.1 {
1741     ANFD *anfd = anfds + fd;
1742 root 1.136 ev_io *w;
1743 root 1.1
1744 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1745 root 1.1 {
1746 root 1.79 int ev = w->events & revents;
1747 root 1.1
1748     if (ev)
1749 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1750 root 1.1 }
1751     }
1752    
1753 root 1.298 /* do not submit kernel events for fds that have reify set */
1754     /* because that means they changed while we were polling for new events */
1755     inline_speed void
1756     fd_event (EV_P_ int fd, int revents)
1757     {
1758     ANFD *anfd = anfds + fd;
1759    
1760     if (expect_true (!anfd->reify))
1761 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1762 root 1.298 }
1763    
1764 root 1.79 void
1765 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1766 root 1.79 {
1767 root 1.168 if (fd >= 0 && fd < anfdmax)
1768 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1769 root 1.79 }
1770    
1771 root 1.288 /* make sure the external fd watch events are in-sync */
1772     /* with the kernel/libev internal state */
1773 root 1.284 inline_size void
1774 root 1.51 fd_reify (EV_P)
1775 root 1.9 {
1776     int i;
1777    
1778 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1779     for (i = 0; i < fdchangecnt; ++i)
1780     {
1781     int fd = fdchanges [i];
1782     ANFD *anfd = anfds + fd;
1783    
1784 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1785 root 1.371 {
1786     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1787    
1788     if (handle != anfd->handle)
1789     {
1790     unsigned long arg;
1791    
1792     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1793    
1794     /* handle changed, but fd didn't - we need to do it in two steps */
1795     backend_modify (EV_A_ fd, anfd->events, 0);
1796     anfd->events = 0;
1797     anfd->handle = handle;
1798     }
1799     }
1800     }
1801     #endif
1802    
1803 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1804     {
1805     int fd = fdchanges [i];
1806     ANFD *anfd = anfds + fd;
1807 root 1.136 ev_io *w;
1808 root 1.27
1809 root 1.350 unsigned char o_events = anfd->events;
1810     unsigned char o_reify = anfd->reify;
1811 root 1.27
1812 root 1.350 anfd->reify = 0;
1813 root 1.27
1814 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1815     {
1816     anfd->events = 0;
1817 root 1.184
1818 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1819     anfd->events |= (unsigned char)w->events;
1820 root 1.27
1821 root 1.351 if (o_events != anfd->events)
1822 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1823     }
1824    
1825     if (o_reify & EV__IOFDSET)
1826     backend_modify (EV_A_ fd, o_events, anfd->events);
1827 root 1.27 }
1828    
1829     fdchangecnt = 0;
1830     }
1831    
1832 root 1.288 /* something about the given fd changed */
1833 root 1.284 inline_size void
1834 root 1.183 fd_change (EV_P_ int fd, int flags)
1835 root 1.27 {
1836 root 1.183 unsigned char reify = anfds [fd].reify;
1837 root 1.184 anfds [fd].reify |= flags;
1838 root 1.27
1839 root 1.183 if (expect_true (!reify))
1840     {
1841     ++fdchangecnt;
1842     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1843     fdchanges [fdchangecnt - 1] = fd;
1844     }
1845 root 1.9 }
1846    
1847 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1848 root 1.379 inline_speed void ecb_cold
1849 root 1.51 fd_kill (EV_P_ int fd)
1850 root 1.41 {
1851 root 1.136 ev_io *w;
1852 root 1.41
1853 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1854 root 1.41 {
1855 root 1.51 ev_io_stop (EV_A_ w);
1856 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1857 root 1.41 }
1858     }
1859    
1860 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1861 root 1.379 inline_size int ecb_cold
1862 root 1.71 fd_valid (int fd)
1863     {
1864 root 1.103 #ifdef _WIN32
1865 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1866 root 1.71 #else
1867     return fcntl (fd, F_GETFD) != -1;
1868     #endif
1869     }
1870    
1871 root 1.19 /* called on EBADF to verify fds */
1872 root 1.379 static void noinline ecb_cold
1873 root 1.51 fd_ebadf (EV_P)
1874 root 1.19 {
1875     int fd;
1876    
1877     for (fd = 0; fd < anfdmax; ++fd)
1878 root 1.27 if (anfds [fd].events)
1879 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1880 root 1.51 fd_kill (EV_A_ fd);
1881 root 1.41 }
1882    
1883     /* called on ENOMEM in select/poll to kill some fds and retry */
1884 root 1.379 static void noinline ecb_cold
1885 root 1.51 fd_enomem (EV_P)
1886 root 1.41 {
1887 root 1.62 int fd;
1888 root 1.41
1889 root 1.62 for (fd = anfdmax; fd--; )
1890 root 1.41 if (anfds [fd].events)
1891     {
1892 root 1.51 fd_kill (EV_A_ fd);
1893 root 1.307 break;
1894 root 1.41 }
1895 root 1.19 }
1896    
1897 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1898 root 1.140 static void noinline
1899 root 1.56 fd_rearm_all (EV_P)
1900     {
1901     int fd;
1902    
1903     for (fd = 0; fd < anfdmax; ++fd)
1904     if (anfds [fd].events)
1905     {
1906     anfds [fd].events = 0;
1907 root 1.268 anfds [fd].emask = 0;
1908 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1909 root 1.56 }
1910     }
1911    
1912 root 1.336 /* used to prepare libev internal fd's */
1913     /* this is not fork-safe */
1914     inline_speed void
1915     fd_intern (int fd)
1916     {
1917     #ifdef _WIN32
1918     unsigned long arg = 1;
1919     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1920     #else
1921     fcntl (fd, F_SETFD, FD_CLOEXEC);
1922     fcntl (fd, F_SETFL, O_NONBLOCK);
1923     #endif
1924     }
1925    
1926 root 1.8 /*****************************************************************************/
1927    
1928 root 1.235 /*
1929 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1930 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1931     * the branching factor of the d-tree.
1932     */
1933    
1934     /*
1935 root 1.235 * at the moment we allow libev the luxury of two heaps,
1936     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1937     * which is more cache-efficient.
1938     * the difference is about 5% with 50000+ watchers.
1939     */
1940 root 1.241 #if EV_USE_4HEAP
1941 root 1.235
1942 root 1.237 #define DHEAP 4
1943     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1944 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1945 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1946 root 1.235
1947     /* away from the root */
1948 root 1.284 inline_speed void
1949 root 1.241 downheap (ANHE *heap, int N, int k)
1950 root 1.235 {
1951 root 1.241 ANHE he = heap [k];
1952     ANHE *E = heap + N + HEAP0;
1953 root 1.235
1954     for (;;)
1955     {
1956     ev_tstamp minat;
1957 root 1.241 ANHE *minpos;
1958 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1959 root 1.235
1960 root 1.248 /* find minimum child */
1961 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1962 root 1.235 {
1963 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1964     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1965     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1966     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1967 root 1.235 }
1968 root 1.240 else if (pos < E)
1969 root 1.235 {
1970 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1971     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1972     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1973     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1974 root 1.235 }
1975 root 1.240 else
1976     break;
1977 root 1.235
1978 root 1.241 if (ANHE_at (he) <= minat)
1979 root 1.235 break;
1980    
1981 root 1.247 heap [k] = *minpos;
1982 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1983 root 1.235
1984     k = minpos - heap;
1985     }
1986    
1987 root 1.247 heap [k] = he;
1988 root 1.241 ev_active (ANHE_w (he)) = k;
1989 root 1.235 }
1990    
1991 root 1.248 #else /* 4HEAP */
1992 root 1.235
1993     #define HEAP0 1
1994 root 1.247 #define HPARENT(k) ((k) >> 1)
1995 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
1996 root 1.235
1997 root 1.248 /* away from the root */
1998 root 1.284 inline_speed void
1999 root 1.248 downheap (ANHE *heap, int N, int k)
2000 root 1.1 {
2001 root 1.241 ANHE he = heap [k];
2002 root 1.1
2003 root 1.228 for (;;)
2004 root 1.1 {
2005 root 1.248 int c = k << 1;
2006 root 1.179
2007 root 1.309 if (c >= N + HEAP0)
2008 root 1.179 break;
2009    
2010 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2011     ? 1 : 0;
2012    
2013     if (ANHE_at (he) <= ANHE_at (heap [c]))
2014     break;
2015    
2016     heap [k] = heap [c];
2017 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2018 root 1.248
2019     k = c;
2020 root 1.1 }
2021    
2022 root 1.243 heap [k] = he;
2023 root 1.248 ev_active (ANHE_w (he)) = k;
2024 root 1.1 }
2025 root 1.248 #endif
2026 root 1.1
2027 root 1.248 /* towards the root */
2028 root 1.284 inline_speed void
2029 root 1.248 upheap (ANHE *heap, int k)
2030 root 1.1 {
2031 root 1.241 ANHE he = heap [k];
2032 root 1.1
2033 root 1.179 for (;;)
2034 root 1.1 {
2035 root 1.248 int p = HPARENT (k);
2036 root 1.179
2037 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2038 root 1.179 break;
2039 root 1.1
2040 root 1.248 heap [k] = heap [p];
2041 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2042 root 1.248 k = p;
2043 root 1.1 }
2044    
2045 root 1.241 heap [k] = he;
2046     ev_active (ANHE_w (he)) = k;
2047 root 1.1 }
2048    
2049 root 1.288 /* move an element suitably so it is in a correct place */
2050 root 1.284 inline_size void
2051 root 1.241 adjustheap (ANHE *heap, int N, int k)
2052 root 1.84 {
2053 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2054 root 1.247 upheap (heap, k);
2055     else
2056     downheap (heap, N, k);
2057 root 1.84 }
2058    
2059 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2060 root 1.284 inline_size void
2061 root 1.248 reheap (ANHE *heap, int N)
2062     {
2063     int i;
2064 root 1.251
2065 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2066     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2067     for (i = 0; i < N; ++i)
2068     upheap (heap, i + HEAP0);
2069     }
2070    
2071 root 1.8 /*****************************************************************************/
2072    
2073 root 1.288 /* associate signal watchers to a signal signal */
2074 root 1.7 typedef struct
2075     {
2076 root 1.307 EV_ATOMIC_T pending;
2077 root 1.306 #if EV_MULTIPLICITY
2078     EV_P;
2079     #endif
2080 root 1.68 WL head;
2081 root 1.7 } ANSIG;
2082    
2083 root 1.306 static ANSIG signals [EV_NSIG - 1];
2084 root 1.7
2085 root 1.207 /*****************************************************************************/
2086    
2087 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2088 root 1.207
2089 root 1.379 static void noinline ecb_cold
2090 root 1.207 evpipe_init (EV_P)
2091     {
2092 root 1.288 if (!ev_is_active (&pipe_w))
2093 root 1.207 {
2094 root 1.448 int fds [2];
2095    
2096 root 1.336 # if EV_USE_EVENTFD
2097 root 1.448 fds [0] = -1;
2098     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2099     if (fds [1] < 0 && errno == EINVAL)
2100     fds [1] = eventfd (0, 0);
2101    
2102     if (fds [1] < 0)
2103     # endif
2104     {
2105     while (pipe (fds))
2106     ev_syserr ("(libev) error creating signal/async pipe");
2107    
2108     fd_intern (fds [0]);
2109 root 1.220 }
2110 root 1.448
2111     evpipe [0] = fds [0];
2112    
2113     if (evpipe [1] < 0)
2114     evpipe [1] = fds [1]; /* first call, set write fd */
2115 root 1.220 else
2116     {
2117 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2118     /* so that evpipe_write can always rely on its value. */
2119     /* this branch does not do anything sensible on windows, */
2120     /* so must not be executed on windows */
2121 root 1.207
2122 root 1.448 dup2 (fds [1], evpipe [1]);
2123     close (fds [1]);
2124 root 1.220 }
2125 root 1.207
2126 root 1.455 fd_intern (evpipe [1]);
2127    
2128 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2129 root 1.288 ev_io_start (EV_A_ &pipe_w);
2130 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2131 root 1.207 }
2132     }
2133    
2134 root 1.380 inline_speed void
2135 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2136 root 1.207 {
2137 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2138    
2139 root 1.383 if (expect_true (*flag))
2140 root 1.387 return;
2141 root 1.383
2142     *flag = 1;
2143 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2144 root 1.383
2145     pipe_write_skipped = 1;
2146 root 1.378
2147 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2148 root 1.214
2149 root 1.383 if (pipe_write_wanted)
2150     {
2151     int old_errno;
2152 root 1.378
2153 root 1.436 pipe_write_skipped = 0;
2154     ECB_MEMORY_FENCE_RELEASE;
2155 root 1.220
2156 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2157 root 1.380
2158 root 1.220 #if EV_USE_EVENTFD
2159 root 1.448 if (evpipe [0] < 0)
2160 root 1.383 {
2161     uint64_t counter = 1;
2162 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2163 root 1.383 }
2164     else
2165 root 1.220 #endif
2166 root 1.383 {
2167 root 1.427 #ifdef _WIN32
2168     WSABUF buf;
2169     DWORD sent;
2170     buf.buf = &buf;
2171     buf.len = 1;
2172     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2173     #else
2174 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2175 root 1.427 #endif
2176 root 1.383 }
2177 root 1.214
2178 root 1.383 errno = old_errno;
2179 root 1.207 }
2180     }
2181    
2182 root 1.288 /* called whenever the libev signal pipe */
2183     /* got some events (signal, async) */
2184 root 1.207 static void
2185     pipecb (EV_P_ ev_io *iow, int revents)
2186     {
2187 root 1.307 int i;
2188    
2189 root 1.378 if (revents & EV_READ)
2190     {
2191 root 1.220 #if EV_USE_EVENTFD
2192 root 1.448 if (evpipe [0] < 0)
2193 root 1.378 {
2194     uint64_t counter;
2195 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2196 root 1.378 }
2197     else
2198 root 1.220 #endif
2199 root 1.378 {
2200 root 1.427 char dummy[4];
2201     #ifdef _WIN32
2202     WSABUF buf;
2203     DWORD recvd;
2204 root 1.432 DWORD flags = 0;
2205 root 1.427 buf.buf = dummy;
2206     buf.len = sizeof (dummy);
2207 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2208 root 1.427 #else
2209     read (evpipe [0], &dummy, sizeof (dummy));
2210     #endif
2211 root 1.378 }
2212 root 1.220 }
2213 root 1.207
2214 root 1.378 pipe_write_skipped = 0;
2215    
2216 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2217    
2218 root 1.369 #if EV_SIGNAL_ENABLE
2219 root 1.307 if (sig_pending)
2220 root 1.372 {
2221 root 1.307 sig_pending = 0;
2222 root 1.207
2223 root 1.436 ECB_MEMORY_FENCE;
2224 root 1.424
2225 root 1.307 for (i = EV_NSIG - 1; i--; )
2226     if (expect_false (signals [i].pending))
2227     ev_feed_signal_event (EV_A_ i + 1);
2228 root 1.207 }
2229 root 1.369 #endif
2230 root 1.207
2231 root 1.209 #if EV_ASYNC_ENABLE
2232 root 1.307 if (async_pending)
2233 root 1.207 {
2234 root 1.307 async_pending = 0;
2235 root 1.207
2236 root 1.436 ECB_MEMORY_FENCE;
2237 root 1.424
2238 root 1.207 for (i = asynccnt; i--; )
2239     if (asyncs [i]->sent)
2240     {
2241     asyncs [i]->sent = 0;
2242 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2243 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2244     }
2245     }
2246 root 1.209 #endif
2247 root 1.207 }
2248    
2249     /*****************************************************************************/
2250    
2251 root 1.366 void
2252 root 1.420 ev_feed_signal (int signum) EV_THROW
2253 root 1.7 {
2254 root 1.207 #if EV_MULTIPLICITY
2255 root 1.453 EV_P;
2256 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2257 root 1.453 EV_A = signals [signum - 1].loop;
2258 root 1.366
2259     if (!EV_A)
2260     return;
2261 root 1.207 #endif
2262    
2263 root 1.366 signals [signum - 1].pending = 1;
2264     evpipe_write (EV_A_ &sig_pending);
2265     }
2266    
2267     static void
2268     ev_sighandler (int signum)
2269     {
2270 root 1.322 #ifdef _WIN32
2271 root 1.218 signal (signum, ev_sighandler);
2272 root 1.67 #endif
2273    
2274 root 1.366 ev_feed_signal (signum);
2275 root 1.7 }
2276    
2277 root 1.140 void noinline
2278 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2279 root 1.79 {
2280 root 1.80 WL w;
2281    
2282 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2283 root 1.307 return;
2284    
2285     --signum;
2286    
2287 root 1.79 #if EV_MULTIPLICITY
2288 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2289     /* or, likely more useful, feeding a signal nobody is waiting for */
2290 root 1.79
2291 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2292 root 1.306 return;
2293 root 1.307 #endif
2294 root 1.306
2295 root 1.307 signals [signum].pending = 0;
2296 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2297 root 1.79
2298     for (w = signals [signum].head; w; w = w->next)
2299     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2300     }
2301    
2302 root 1.303 #if EV_USE_SIGNALFD
2303     static void
2304     sigfdcb (EV_P_ ev_io *iow, int revents)
2305     {
2306 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2307 root 1.303
2308     for (;;)
2309     {
2310     ssize_t res = read (sigfd, si, sizeof (si));
2311    
2312     /* not ISO-C, as res might be -1, but works with SuS */
2313     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2314     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2315    
2316     if (res < (ssize_t)sizeof (si))
2317     break;
2318     }
2319     }
2320     #endif
2321    
2322 root 1.336 #endif
2323    
2324 root 1.8 /*****************************************************************************/
2325    
2326 root 1.336 #if EV_CHILD_ENABLE
2327 root 1.182 static WL childs [EV_PID_HASHSIZE];
2328 root 1.71
2329 root 1.136 static ev_signal childev;
2330 root 1.59
2331 root 1.206 #ifndef WIFCONTINUED
2332     # define WIFCONTINUED(status) 0
2333     #endif
2334    
2335 root 1.288 /* handle a single child status event */
2336 root 1.284 inline_speed void
2337 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2338 root 1.47 {
2339 root 1.136 ev_child *w;
2340 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2341 root 1.47
2342 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2343 root 1.206 {
2344     if ((w->pid == pid || !w->pid)
2345     && (!traced || (w->flags & 1)))
2346     {
2347 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2348 root 1.206 w->rpid = pid;
2349     w->rstatus = status;
2350     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2351     }
2352     }
2353 root 1.47 }
2354    
2355 root 1.142 #ifndef WCONTINUED
2356     # define WCONTINUED 0
2357     #endif
2358    
2359 root 1.288 /* called on sigchld etc., calls waitpid */
2360 root 1.47 static void
2361 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2362 root 1.22 {
2363     int pid, status;
2364    
2365 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2366     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2367     if (!WCONTINUED
2368     || errno != EINVAL
2369     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2370     return;
2371    
2372 root 1.216 /* make sure we are called again until all children have been reaped */
2373 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2374     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2375 root 1.47
2376 root 1.216 child_reap (EV_A_ pid, pid, status);
2377 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2378 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2379 root 1.22 }
2380    
2381 root 1.45 #endif
2382    
2383 root 1.22 /*****************************************************************************/
2384    
2385 root 1.357 #if EV_USE_IOCP
2386     # include "ev_iocp.c"
2387     #endif
2388 root 1.118 #if EV_USE_PORT
2389     # include "ev_port.c"
2390     #endif
2391 root 1.44 #if EV_USE_KQUEUE
2392     # include "ev_kqueue.c"
2393     #endif
2394 root 1.29 #if EV_USE_EPOLL
2395 root 1.1 # include "ev_epoll.c"
2396     #endif
2397 root 1.59 #if EV_USE_POLL
2398 root 1.41 # include "ev_poll.c"
2399     #endif
2400 root 1.29 #if EV_USE_SELECT
2401 root 1.1 # include "ev_select.c"
2402     #endif
2403    
2404 root 1.379 int ecb_cold
2405 root 1.420 ev_version_major (void) EV_THROW
2406 root 1.24 {
2407     return EV_VERSION_MAJOR;
2408     }
2409    
2410 root 1.379 int ecb_cold
2411 root 1.420 ev_version_minor (void) EV_THROW
2412 root 1.24 {
2413     return EV_VERSION_MINOR;
2414     }
2415    
2416 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2417 root 1.379 int inline_size ecb_cold
2418 root 1.51 enable_secure (void)
2419 root 1.41 {
2420 root 1.103 #ifdef _WIN32
2421 root 1.49 return 0;
2422     #else
2423 root 1.41 return getuid () != geteuid ()
2424     || getgid () != getegid ();
2425 root 1.49 #endif
2426 root 1.41 }
2427    
2428 root 1.379 unsigned int ecb_cold
2429 root 1.420 ev_supported_backends (void) EV_THROW
2430 root 1.129 {
2431 root 1.130 unsigned int flags = 0;
2432 root 1.129
2433     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2434     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2435     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2436     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2437     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2438    
2439     return flags;
2440     }
2441    
2442 root 1.379 unsigned int ecb_cold
2443 root 1.420 ev_recommended_backends (void) EV_THROW
2444 root 1.1 {
2445 root 1.131 unsigned int flags = ev_supported_backends ();
2446 root 1.129
2447     #ifndef __NetBSD__
2448     /* kqueue is borked on everything but netbsd apparently */
2449     /* it usually doesn't work correctly on anything but sockets and pipes */
2450     flags &= ~EVBACKEND_KQUEUE;
2451     #endif
2452     #ifdef __APPLE__
2453 root 1.278 /* only select works correctly on that "unix-certified" platform */
2454     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2455     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2456 root 1.129 #endif
2457 root 1.342 #ifdef __FreeBSD__
2458     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2459     #endif
2460 root 1.129
2461     return flags;
2462 root 1.51 }
2463    
2464 root 1.379 unsigned int ecb_cold
2465 root 1.420 ev_embeddable_backends (void) EV_THROW
2466 root 1.134 {
2467 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2468    
2469 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2470 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2471     flags &= ~EVBACKEND_EPOLL;
2472 root 1.196
2473     return flags;
2474 root 1.134 }
2475    
2476     unsigned int
2477 root 1.420 ev_backend (EV_P) EV_THROW
2478 root 1.130 {
2479     return backend;
2480     }
2481    
2482 root 1.338 #if EV_FEATURE_API
2483 root 1.162 unsigned int
2484 root 1.420 ev_iteration (EV_P) EV_THROW
2485 root 1.162 {
2486     return loop_count;
2487     }
2488    
2489 root 1.294 unsigned int
2490 root 1.420 ev_depth (EV_P) EV_THROW
2491 root 1.294 {
2492     return loop_depth;
2493     }
2494    
2495 root 1.193 void
2496 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2497 root 1.193 {
2498     io_blocktime = interval;
2499     }
2500    
2501     void
2502 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2503 root 1.193 {
2504     timeout_blocktime = interval;
2505     }
2506    
2507 root 1.297 void
2508 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2509 root 1.297 {
2510     userdata = data;
2511     }
2512    
2513     void *
2514 root 1.420 ev_userdata (EV_P) EV_THROW
2515 root 1.297 {
2516     return userdata;
2517     }
2518    
2519 root 1.379 void
2520 root 1.420 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2521 root 1.297 {
2522     invoke_cb = invoke_pending_cb;
2523     }
2524    
2525 root 1.379 void
2526 root 1.421 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2527 root 1.297 {
2528 root 1.298 release_cb = release;
2529     acquire_cb = acquire;
2530 root 1.297 }
2531     #endif
2532    
2533 root 1.288 /* initialise a loop structure, must be zero-initialised */
2534 root 1.379 static void noinline ecb_cold
2535 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2536 root 1.51 {
2537 root 1.130 if (!backend)
2538 root 1.23 {
2539 root 1.366 origflags = flags;
2540    
2541 root 1.279 #if EV_USE_REALTIME
2542     if (!have_realtime)
2543     {
2544     struct timespec ts;
2545    
2546     if (!clock_gettime (CLOCK_REALTIME, &ts))
2547     have_realtime = 1;
2548     }
2549     #endif
2550    
2551 root 1.29 #if EV_USE_MONOTONIC
2552 root 1.279 if (!have_monotonic)
2553     {
2554     struct timespec ts;
2555    
2556     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2557     have_monotonic = 1;
2558     }
2559 root 1.1 #endif
2560    
2561 root 1.306 /* pid check not overridable via env */
2562     #ifndef _WIN32
2563     if (flags & EVFLAG_FORKCHECK)
2564     curpid = getpid ();
2565     #endif
2566    
2567     if (!(flags & EVFLAG_NOENV)
2568     && !enable_secure ()
2569     && getenv ("LIBEV_FLAGS"))
2570     flags = atoi (getenv ("LIBEV_FLAGS"));
2571    
2572 root 1.378 ev_rt_now = ev_time ();
2573     mn_now = get_clock ();
2574     now_floor = mn_now;
2575     rtmn_diff = ev_rt_now - mn_now;
2576 root 1.338 #if EV_FEATURE_API
2577 root 1.378 invoke_cb = ev_invoke_pending;
2578 root 1.297 #endif
2579 root 1.1
2580 root 1.378 io_blocktime = 0.;
2581     timeout_blocktime = 0.;
2582     backend = 0;
2583     backend_fd = -1;
2584     sig_pending = 0;
2585 root 1.307 #if EV_ASYNC_ENABLE
2586 root 1.378 async_pending = 0;
2587 root 1.307 #endif
2588 root 1.378 pipe_write_skipped = 0;
2589     pipe_write_wanted = 0;
2590 root 1.448 evpipe [0] = -1;
2591     evpipe [1] = -1;
2592 root 1.209 #if EV_USE_INOTIFY
2593 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2594 root 1.209 #endif
2595 root 1.303 #if EV_USE_SIGNALFD
2596 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2597 root 1.303 #endif
2598 root 1.193
2599 root 1.366 if (!(flags & EVBACKEND_MASK))
2600 root 1.129 flags |= ev_recommended_backends ();
2601 root 1.41
2602 root 1.357 #if EV_USE_IOCP
2603     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2604     #endif
2605 root 1.118 #if EV_USE_PORT
2606 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2607 root 1.118 #endif
2608 root 1.44 #if EV_USE_KQUEUE
2609 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2610 root 1.44 #endif
2611 root 1.29 #if EV_USE_EPOLL
2612 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2613 root 1.41 #endif
2614 root 1.59 #if EV_USE_POLL
2615 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2616 root 1.1 #endif
2617 root 1.29 #if EV_USE_SELECT
2618 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2619 root 1.1 #endif
2620 root 1.70
2621 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2622    
2623 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2624 root 1.288 ev_init (&pipe_w, pipecb);
2625     ev_set_priority (&pipe_w, EV_MAXPRI);
2626 root 1.336 #endif
2627 root 1.56 }
2628     }
2629    
2630 root 1.288 /* free up a loop structure */
2631 root 1.379 void ecb_cold
2632 root 1.422 ev_loop_destroy (EV_P)
2633 root 1.56 {
2634 root 1.65 int i;
2635    
2636 root 1.364 #if EV_MULTIPLICITY
2637 root 1.363 /* mimic free (0) */
2638     if (!EV_A)
2639     return;
2640 root 1.364 #endif
2641 root 1.363
2642 root 1.361 #if EV_CLEANUP_ENABLE
2643     /* queue cleanup watchers (and execute them) */
2644     if (expect_false (cleanupcnt))
2645     {
2646     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2647     EV_INVOKE_PENDING;
2648     }
2649     #endif
2650    
2651 root 1.359 #if EV_CHILD_ENABLE
2652 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2653 root 1.359 {
2654     ev_ref (EV_A); /* child watcher */
2655     ev_signal_stop (EV_A_ &childev);
2656     }
2657     #endif
2658    
2659 root 1.288 if (ev_is_active (&pipe_w))
2660 root 1.207 {
2661 root 1.303 /*ev_ref (EV_A);*/
2662     /*ev_io_stop (EV_A_ &pipe_w);*/
2663 root 1.207
2664 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2665     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2666 root 1.207 }
2667    
2668 root 1.303 #if EV_USE_SIGNALFD
2669     if (ev_is_active (&sigfd_w))
2670 root 1.317 close (sigfd);
2671 root 1.303 #endif
2672    
2673 root 1.152 #if EV_USE_INOTIFY
2674     if (fs_fd >= 0)
2675     close (fs_fd);
2676     #endif
2677    
2678     if (backend_fd >= 0)
2679     close (backend_fd);
2680    
2681 root 1.357 #if EV_USE_IOCP
2682     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2683     #endif
2684 root 1.118 #if EV_USE_PORT
2685 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2686 root 1.118 #endif
2687 root 1.56 #if EV_USE_KQUEUE
2688 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2689 root 1.56 #endif
2690     #if EV_USE_EPOLL
2691 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2692 root 1.56 #endif
2693 root 1.59 #if EV_USE_POLL
2694 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2695 root 1.56 #endif
2696     #if EV_USE_SELECT
2697 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2698 root 1.56 #endif
2699 root 1.1
2700 root 1.65 for (i = NUMPRI; i--; )
2701 root 1.164 {
2702     array_free (pending, [i]);
2703     #if EV_IDLE_ENABLE
2704     array_free (idle, [i]);
2705     #endif
2706     }
2707 root 1.65
2708 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2709 root 1.186
2710 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2711 root 1.284 array_free (rfeed, EMPTY);
2712 root 1.164 array_free (fdchange, EMPTY);
2713     array_free (timer, EMPTY);
2714 root 1.140 #if EV_PERIODIC_ENABLE
2715 root 1.164 array_free (periodic, EMPTY);
2716 root 1.93 #endif
2717 root 1.187 #if EV_FORK_ENABLE
2718     array_free (fork, EMPTY);
2719     #endif
2720 root 1.360 #if EV_CLEANUP_ENABLE
2721     array_free (cleanup, EMPTY);
2722     #endif
2723 root 1.164 array_free (prepare, EMPTY);
2724     array_free (check, EMPTY);
2725 root 1.209 #if EV_ASYNC_ENABLE
2726     array_free (async, EMPTY);
2727     #endif
2728 root 1.65
2729 root 1.130 backend = 0;
2730 root 1.359
2731     #if EV_MULTIPLICITY
2732     if (ev_is_default_loop (EV_A))
2733     #endif
2734     ev_default_loop_ptr = 0;
2735     #if EV_MULTIPLICITY
2736     else
2737     ev_free (EV_A);
2738     #endif
2739 root 1.56 }
2740 root 1.22
2741 root 1.226 #if EV_USE_INOTIFY
2742 root 1.284 inline_size void infy_fork (EV_P);
2743 root 1.226 #endif
2744 root 1.154
2745 root 1.284 inline_size void
2746 root 1.56 loop_fork (EV_P)
2747     {
2748 root 1.118 #if EV_USE_PORT
2749 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2750 root 1.56 #endif
2751     #if EV_USE_KQUEUE
2752 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2753 root 1.45 #endif
2754 root 1.118 #if EV_USE_EPOLL
2755 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2756 root 1.118 #endif
2757 root 1.154 #if EV_USE_INOTIFY
2758     infy_fork (EV_A);
2759     #endif
2760 root 1.70
2761 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2762 root 1.288 if (ev_is_active (&pipe_w))
2763 root 1.70 {
2764 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2765 root 1.70
2766     ev_ref (EV_A);
2767 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2768 root 1.220
2769     if (evpipe [0] >= 0)
2770 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
2771 root 1.207
2772     evpipe_init (EV_A);
2773 root 1.443 /* iterate over everything, in case we missed something before */
2774     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2775 root 1.448 }
2776 root 1.337 #endif
2777 root 1.70
2778     postfork = 0;
2779 root 1.1 }
2780    
2781 root 1.55 #if EV_MULTIPLICITY
2782 root 1.250
2783 root 1.379 struct ev_loop * ecb_cold
2784 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2785 root 1.54 {
2786 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2787 root 1.69
2788 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2789 root 1.108 loop_init (EV_A_ flags);
2790 root 1.56
2791 root 1.130 if (ev_backend (EV_A))
2792 root 1.306 return EV_A;
2793 root 1.54
2794 root 1.359 ev_free (EV_A);
2795 root 1.55 return 0;
2796 root 1.54 }
2797    
2798 root 1.297 #endif /* multiplicity */
2799 root 1.248
2800     #if EV_VERIFY
2801 root 1.379 static void noinline ecb_cold
2802 root 1.251 verify_watcher (EV_P_ W w)
2803     {
2804 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2805 root 1.251
2806     if (w->pending)
2807 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2808 root 1.251 }
2809    
2810 root 1.379 static void noinline ecb_cold
2811 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2812     {
2813     int i;
2814    
2815     for (i = HEAP0; i < N + HEAP0; ++i)
2816     {
2817 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2818     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2819     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2820 root 1.251
2821     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2822     }
2823     }
2824    
2825 root 1.379 static void noinline ecb_cold
2826 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2827 root 1.248 {
2828     while (cnt--)
2829 root 1.251 {
2830 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2831 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2832     }
2833 root 1.248 }
2834 root 1.250 #endif
2835 root 1.248
2836 root 1.338 #if EV_FEATURE_API
2837 root 1.379 void ecb_cold
2838 root 1.420 ev_verify (EV_P) EV_THROW
2839 root 1.248 {
2840 root 1.250 #if EV_VERIFY
2841 root 1.429 int i;
2842 root 1.426 WL w, w2;
2843 root 1.251
2844     assert (activecnt >= -1);
2845    
2846     assert (fdchangemax >= fdchangecnt);
2847     for (i = 0; i < fdchangecnt; ++i)
2848 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2849 root 1.251
2850     assert (anfdmax >= 0);
2851 root 1.429 for (i = 0; i < anfdmax; ++i)
2852     {
2853     int j = 0;
2854    
2855     for (w = w2 = anfds [i].head; w; w = w->next)
2856     {
2857     verify_watcher (EV_A_ (W)w);
2858 root 1.426
2859 root 1.429 if (j++ & 1)
2860     {
2861     assert (("libev: io watcher list contains a loop", w != w2));
2862     w2 = w2->next;
2863     }
2864 root 1.426
2865 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2866     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2867     }
2868     }
2869 root 1.251
2870     assert (timermax >= timercnt);
2871     verify_heap (EV_A_ timers, timercnt);
2872 root 1.248
2873     #if EV_PERIODIC_ENABLE
2874 root 1.251 assert (periodicmax >= periodiccnt);
2875     verify_heap (EV_A_ periodics, periodiccnt);
2876 root 1.248 #endif
2877    
2878 root 1.251 for (i = NUMPRI; i--; )
2879     {
2880     assert (pendingmax [i] >= pendingcnt [i]);
2881 root 1.248 #if EV_IDLE_ENABLE
2882 root 1.252 assert (idleall >= 0);
2883 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2884     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2885 root 1.248 #endif
2886 root 1.251 }
2887    
2888 root 1.248 #if EV_FORK_ENABLE
2889 root 1.251 assert (forkmax >= forkcnt);
2890     array_verify (EV_A_ (W *)forks, forkcnt);
2891 root 1.248 #endif
2892 root 1.251
2893 root 1.360 #if EV_CLEANUP_ENABLE
2894     assert (cleanupmax >= cleanupcnt);
2895     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2896     #endif
2897    
2898 root 1.250 #if EV_ASYNC_ENABLE
2899 root 1.251 assert (asyncmax >= asynccnt);
2900     array_verify (EV_A_ (W *)asyncs, asynccnt);
2901 root 1.250 #endif
2902 root 1.251
2903 root 1.337 #if EV_PREPARE_ENABLE
2904 root 1.251 assert (preparemax >= preparecnt);
2905     array_verify (EV_A_ (W *)prepares, preparecnt);
2906 root 1.337 #endif
2907 root 1.251
2908 root 1.337 #if EV_CHECK_ENABLE
2909 root 1.251 assert (checkmax >= checkcnt);
2910     array_verify (EV_A_ (W *)checks, checkcnt);
2911 root 1.337 #endif
2912 root 1.251
2913     # if 0
2914 root 1.336 #if EV_CHILD_ENABLE
2915 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2916 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2917 root 1.336 #endif
2918 root 1.251 # endif
2919 root 1.248 #endif
2920     }
2921 root 1.297 #endif
2922 root 1.56
2923     #if EV_MULTIPLICITY
2924 root 1.379 struct ev_loop * ecb_cold
2925 root 1.54 #else
2926     int
2927 root 1.358 #endif
2928 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
2929 root 1.54 {
2930 root 1.116 if (!ev_default_loop_ptr)
2931 root 1.56 {
2932     #if EV_MULTIPLICITY
2933 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2934 root 1.56 #else
2935 ayin 1.117 ev_default_loop_ptr = 1;
2936 root 1.54 #endif
2937    
2938 root 1.110 loop_init (EV_A_ flags);
2939 root 1.56
2940 root 1.130 if (ev_backend (EV_A))
2941 root 1.56 {
2942 root 1.336 #if EV_CHILD_ENABLE
2943 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2944     ev_set_priority (&childev, EV_MAXPRI);
2945     ev_signal_start (EV_A_ &childev);
2946     ev_unref (EV_A); /* child watcher should not keep loop alive */
2947     #endif
2948     }
2949     else
2950 root 1.116 ev_default_loop_ptr = 0;
2951 root 1.56 }
2952 root 1.8
2953 root 1.116 return ev_default_loop_ptr;
2954 root 1.1 }
2955    
2956 root 1.24 void
2957 root 1.420 ev_loop_fork (EV_P) EV_THROW
2958 root 1.1 {
2959 root 1.440 postfork = 1;
2960 root 1.1 }
2961    
2962 root 1.8 /*****************************************************************************/
2963    
2964 root 1.168 void
2965     ev_invoke (EV_P_ void *w, int revents)
2966     {
2967     EV_CB_INVOKE ((W)w, revents);
2968     }
2969    
2970 root 1.300 unsigned int
2971 root 1.420 ev_pending_count (EV_P) EV_THROW
2972 root 1.300 {
2973     int pri;
2974     unsigned int count = 0;
2975    
2976     for (pri = NUMPRI; pri--; )
2977     count += pendingcnt [pri];
2978    
2979     return count;
2980     }
2981    
2982 root 1.297 void noinline
2983 root 1.296 ev_invoke_pending (EV_P)
2984 root 1.1 {
2985 root 1.445 pendingpri = NUMPRI;
2986    
2987     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2988     {
2989     --pendingpri;
2990    
2991     while (pendingcnt [pendingpri])
2992     {
2993     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2994 root 1.1
2995 root 1.445 p->w->pending = 0;
2996     EV_CB_INVOKE (p->w, p->events);
2997     EV_FREQUENT_CHECK;
2998     }
2999     }
3000 root 1.1 }
3001    
3002 root 1.234 #if EV_IDLE_ENABLE
3003 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3004     /* only when higher priorities are idle" logic */
3005 root 1.284 inline_size void
3006 root 1.234 idle_reify (EV_P)
3007     {
3008     if (expect_false (idleall))
3009     {
3010     int pri;
3011    
3012     for (pri = NUMPRI; pri--; )
3013     {
3014     if (pendingcnt [pri])
3015     break;
3016    
3017     if (idlecnt [pri])
3018     {
3019     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3020     break;
3021     }
3022     }
3023     }
3024     }
3025     #endif
3026    
3027 root 1.288 /* make timers pending */
3028 root 1.284 inline_size void
3029 root 1.51 timers_reify (EV_P)
3030 root 1.1 {
3031 root 1.248 EV_FREQUENT_CHECK;
3032    
3033 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3034 root 1.1 {
3035 root 1.284 do
3036     {
3037     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3038 root 1.1
3039 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3040    
3041     /* first reschedule or stop timer */
3042     if (w->repeat)
3043     {
3044     ev_at (w) += w->repeat;
3045     if (ev_at (w) < mn_now)
3046     ev_at (w) = mn_now;
3047 root 1.61
3048 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3049 root 1.90
3050 root 1.284 ANHE_at_cache (timers [HEAP0]);
3051     downheap (timers, timercnt, HEAP0);
3052     }
3053     else
3054     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3055 root 1.243
3056 root 1.284 EV_FREQUENT_CHECK;
3057     feed_reverse (EV_A_ (W)w);
3058 root 1.12 }
3059 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3060 root 1.30
3061 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3062 root 1.12 }
3063     }
3064 root 1.4
3065 root 1.140 #if EV_PERIODIC_ENABLE
3066 root 1.370
3067 root 1.373 static void noinline
3068 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3069     {
3070 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3071     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3072    
3073     /* the above almost always errs on the low side */
3074     while (at <= ev_rt_now)
3075     {
3076     ev_tstamp nat = at + w->interval;
3077    
3078     /* when resolution fails us, we use ev_rt_now */
3079     if (expect_false (nat == at))
3080     {
3081     at = ev_rt_now;
3082     break;
3083     }
3084    
3085     at = nat;
3086     }
3087    
3088     ev_at (w) = at;
3089 root 1.370 }
3090    
3091 root 1.288 /* make periodics pending */
3092 root 1.284 inline_size void
3093 root 1.51 periodics_reify (EV_P)
3094 root 1.12 {
3095 root 1.248 EV_FREQUENT_CHECK;
3096 root 1.250
3097 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3098 root 1.12 {
3099 root 1.284 do
3100     {
3101     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3102 root 1.1
3103 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3104 root 1.61
3105 root 1.284 /* first reschedule or stop timer */
3106     if (w->reschedule_cb)
3107     {
3108     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3109 root 1.243
3110 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3111 root 1.243
3112 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3113     downheap (periodics, periodiccnt, HEAP0);
3114     }
3115     else if (w->interval)
3116 root 1.246 {
3117 root 1.370 periodic_recalc (EV_A_ w);
3118 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3119     downheap (periodics, periodiccnt, HEAP0);
3120 root 1.246 }
3121 root 1.284 else
3122     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3123 root 1.243
3124 root 1.284 EV_FREQUENT_CHECK;
3125     feed_reverse (EV_A_ (W)w);
3126 root 1.1 }
3127 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3128 root 1.12
3129 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3130 root 1.12 }
3131     }
3132    
3133 root 1.288 /* simply recalculate all periodics */
3134 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3135 root 1.379 static void noinline ecb_cold
3136 root 1.54 periodics_reschedule (EV_P)
3137 root 1.12 {
3138     int i;
3139    
3140 root 1.13 /* adjust periodics after time jump */
3141 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3142 root 1.12 {
3143 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3144 root 1.12
3145 root 1.77 if (w->reschedule_cb)
3146 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3147 root 1.77 else if (w->interval)
3148 root 1.370 periodic_recalc (EV_A_ w);
3149 root 1.242
3150 root 1.248 ANHE_at_cache (periodics [i]);
3151 root 1.77 }
3152 root 1.12
3153 root 1.248 reheap (periodics, periodiccnt);
3154 root 1.1 }
3155 root 1.93 #endif
3156 root 1.1
3157 root 1.288 /* adjust all timers by a given offset */
3158 root 1.379 static void noinline ecb_cold
3159 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3160     {
3161     int i;
3162    
3163     for (i = 0; i < timercnt; ++i)
3164     {
3165     ANHE *he = timers + i + HEAP0;
3166     ANHE_w (*he)->at += adjust;
3167     ANHE_at_cache (*he);
3168     }
3169     }
3170    
3171 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3172 root 1.324 /* also detect if there was a timejump, and act accordingly */
3173 root 1.284 inline_speed void
3174 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3175 root 1.4 {
3176 root 1.40 #if EV_USE_MONOTONIC
3177     if (expect_true (have_monotonic))
3178     {
3179 root 1.289 int i;
3180 root 1.178 ev_tstamp odiff = rtmn_diff;
3181    
3182     mn_now = get_clock ();
3183    
3184     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3185     /* interpolate in the meantime */
3186     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3187 root 1.40 {
3188 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3189     return;
3190     }
3191    
3192     now_floor = mn_now;
3193     ev_rt_now = ev_time ();
3194 root 1.4
3195 root 1.178 /* loop a few times, before making important decisions.
3196     * on the choice of "4": one iteration isn't enough,
3197     * in case we get preempted during the calls to
3198     * ev_time and get_clock. a second call is almost guaranteed
3199     * to succeed in that case, though. and looping a few more times
3200     * doesn't hurt either as we only do this on time-jumps or
3201     * in the unlikely event of having been preempted here.
3202     */
3203     for (i = 4; --i; )
3204     {
3205 root 1.373 ev_tstamp diff;
3206 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3207 root 1.4
3208 root 1.373 diff = odiff - rtmn_diff;
3209    
3210     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3211 root 1.178 return; /* all is well */
3212 root 1.4
3213 root 1.178 ev_rt_now = ev_time ();
3214     mn_now = get_clock ();
3215     now_floor = mn_now;
3216     }
3217 root 1.4
3218 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3219     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3220 root 1.140 # if EV_PERIODIC_ENABLE
3221 root 1.178 periodics_reschedule (EV_A);
3222 root 1.93 # endif
3223 root 1.4 }
3224     else
3225 root 1.40 #endif
3226 root 1.4 {
3227 root 1.85 ev_rt_now = ev_time ();
3228 root 1.40
3229 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3230 root 1.13 {
3231 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3232     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3233 root 1.140 #if EV_PERIODIC_ENABLE
3234 root 1.54 periodics_reschedule (EV_A);
3235 root 1.93 #endif
3236 root 1.13 }
3237 root 1.4
3238 root 1.85 mn_now = ev_rt_now;
3239 root 1.4 }
3240     }
3241    
3242 root 1.418 int
3243 root 1.353 ev_run (EV_P_ int flags)
3244 root 1.1 {
3245 root 1.338 #if EV_FEATURE_API
3246 root 1.294 ++loop_depth;
3247 root 1.297 #endif
3248 root 1.294
3249 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3250 root 1.298
3251 root 1.353 loop_done = EVBREAK_CANCEL;
3252 root 1.1
3253 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3254 root 1.158
3255 root 1.161 do
3256 root 1.9 {
3257 root 1.250 #if EV_VERIFY >= 2
3258 root 1.340 ev_verify (EV_A);
3259 root 1.250 #endif
3260    
3261 root 1.158 #ifndef _WIN32
3262     if (expect_false (curpid)) /* penalise the forking check even more */
3263     if (expect_false (getpid () != curpid))
3264     {
3265     curpid = getpid ();
3266     postfork = 1;
3267     }
3268     #endif
3269    
3270 root 1.157 #if EV_FORK_ENABLE
3271     /* we might have forked, so queue fork handlers */
3272     if (expect_false (postfork))
3273     if (forkcnt)
3274     {
3275     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3276 root 1.297 EV_INVOKE_PENDING;
3277 root 1.157 }
3278     #endif
3279 root 1.147
3280 root 1.337 #if EV_PREPARE_ENABLE
3281 root 1.170 /* queue prepare watchers (and execute them) */
3282 root 1.40 if (expect_false (preparecnt))
3283 root 1.20 {
3284 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3285 root 1.297 EV_INVOKE_PENDING;
3286 root 1.20 }
3287 root 1.337 #endif
3288 root 1.9
3289 root 1.298 if (expect_false (loop_done))
3290     break;
3291    
3292 root 1.70 /* we might have forked, so reify kernel state if necessary */
3293     if (expect_false (postfork))
3294     loop_fork (EV_A);
3295    
3296 root 1.1 /* update fd-related kernel structures */
3297 root 1.51 fd_reify (EV_A);
3298 root 1.1
3299     /* calculate blocking time */
3300 root 1.135 {
3301 root 1.193 ev_tstamp waittime = 0.;
3302     ev_tstamp sleeptime = 0.;
3303 root 1.12
3304 root 1.353 /* remember old timestamp for io_blocktime calculation */
3305     ev_tstamp prev_mn_now = mn_now;
3306 root 1.293
3307 root 1.353 /* update time to cancel out callback processing overhead */
3308     time_update (EV_A_ 1e100);
3309 root 1.135
3310 root 1.378 /* from now on, we want a pipe-wake-up */
3311     pipe_write_wanted = 1;
3312    
3313 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3314 root 1.383
3315 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3316 root 1.353 {
3317 root 1.287 waittime = MAX_BLOCKTIME;
3318    
3319 root 1.135 if (timercnt)
3320     {
3321 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3322 root 1.193 if (waittime > to) waittime = to;
3323 root 1.135 }
3324 root 1.4
3325 root 1.140 #if EV_PERIODIC_ENABLE
3326 root 1.135 if (periodiccnt)
3327     {
3328 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3329 root 1.193 if (waittime > to) waittime = to;
3330 root 1.135 }
3331 root 1.93 #endif
3332 root 1.4
3333 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3334 root 1.193 if (expect_false (waittime < timeout_blocktime))
3335     waittime = timeout_blocktime;
3336    
3337 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3338     /* to pass a minimum nonzero value to the backend */
3339     if (expect_false (waittime < backend_mintime))
3340     waittime = backend_mintime;
3341    
3342 root 1.293 /* extra check because io_blocktime is commonly 0 */
3343     if (expect_false (io_blocktime))
3344     {
3345     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3346 root 1.193
3347 root 1.376 if (sleeptime > waittime - backend_mintime)
3348     sleeptime = waittime - backend_mintime;
3349 root 1.193
3350 root 1.293 if (expect_true (sleeptime > 0.))
3351     {
3352     ev_sleep (sleeptime);
3353     waittime -= sleeptime;
3354     }
3355 root 1.193 }
3356 root 1.135 }
3357 root 1.1
3358 root 1.338 #if EV_FEATURE_API
3359 root 1.162 ++loop_count;
3360 root 1.297 #endif
3361 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3362 root 1.193 backend_poll (EV_A_ waittime);
3363 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3364 root 1.178
3365 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3366 root 1.378
3367 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3368 root 1.378 if (pipe_write_skipped)
3369     {
3370     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3371     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3372     }
3373    
3374    
3375 root 1.178 /* update ev_rt_now, do magic */
3376 root 1.193 time_update (EV_A_ waittime + sleeptime);
3377 root 1.135 }
3378 root 1.1
3379 root 1.9 /* queue pending timers and reschedule them */
3380 root 1.51 timers_reify (EV_A); /* relative timers called last */
3381 root 1.140 #if EV_PERIODIC_ENABLE
3382 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3383 root 1.93 #endif
3384 root 1.1
3385 root 1.164 #if EV_IDLE_ENABLE
3386 root 1.137 /* queue idle watchers unless other events are pending */
3387 root 1.164 idle_reify (EV_A);
3388     #endif
3389 root 1.9
3390 root 1.337 #if EV_CHECK_ENABLE
3391 root 1.20 /* queue check watchers, to be executed first */
3392 root 1.123 if (expect_false (checkcnt))
3393 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3394 root 1.337 #endif
3395 root 1.9
3396 root 1.297 EV_INVOKE_PENDING;
3397 root 1.1 }
3398 root 1.219 while (expect_true (
3399     activecnt
3400     && !loop_done
3401 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3402 root 1.219 ));
3403 root 1.13
3404 root 1.353 if (loop_done == EVBREAK_ONE)
3405     loop_done = EVBREAK_CANCEL;
3406 root 1.294
3407 root 1.338 #if EV_FEATURE_API
3408 root 1.294 --loop_depth;
3409 root 1.297 #endif
3410 root 1.418
3411     return activecnt;
3412 root 1.51 }
3413    
3414     void
3415 root 1.420 ev_break (EV_P_ int how) EV_THROW
3416 root 1.51 {
3417     loop_done = how;
3418 root 1.1 }
3419    
3420 root 1.285 void
3421 root 1.420 ev_ref (EV_P) EV_THROW
3422 root 1.285 {
3423     ++activecnt;
3424     }
3425    
3426     void
3427 root 1.420 ev_unref (EV_P) EV_THROW
3428 root 1.285 {
3429     --activecnt;
3430     }
3431    
3432     void
3433 root 1.420 ev_now_update (EV_P) EV_THROW
3434 root 1.285 {
3435     time_update (EV_A_ 1e100);
3436     }
3437    
3438     void
3439 root 1.420 ev_suspend (EV_P) EV_THROW
3440 root 1.285 {
3441     ev_now_update (EV_A);
3442     }
3443    
3444     void
3445 root 1.420 ev_resume (EV_P) EV_THROW
3446 root 1.285 {
3447     ev_tstamp mn_prev = mn_now;
3448    
3449     ev_now_update (EV_A);
3450     timers_reschedule (EV_A_ mn_now - mn_prev);
3451 root 1.286 #if EV_PERIODIC_ENABLE
3452 root 1.288 /* TODO: really do this? */
3453 root 1.285 periodics_reschedule (EV_A);
3454 root 1.286 #endif
3455 root 1.285 }
3456    
3457 root 1.8 /*****************************************************************************/
3458 root 1.288 /* singly-linked list management, used when the expected list length is short */
3459 root 1.8
3460 root 1.284 inline_size void
3461 root 1.10 wlist_add (WL *head, WL elem)
3462 root 1.1 {
3463     elem->next = *head;
3464     *head = elem;
3465     }
3466    
3467 root 1.284 inline_size void
3468 root 1.10 wlist_del (WL *head, WL elem)
3469 root 1.1 {
3470     while (*head)
3471     {
3472 root 1.307 if (expect_true (*head == elem))
3473 root 1.1 {
3474     *head = elem->next;
3475 root 1.307 break;
3476 root 1.1 }
3477    
3478     head = &(*head)->next;
3479     }
3480     }
3481    
3482 root 1.288 /* internal, faster, version of ev_clear_pending */
3483 root 1.284 inline_speed void
3484 root 1.166 clear_pending (EV_P_ W w)
3485 root 1.16 {
3486     if (w->pending)
3487     {
3488 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3489 root 1.16 w->pending = 0;
3490     }
3491     }
3492    
3493 root 1.167 int
3494 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3495 root 1.166 {
3496     W w_ = (W)w;
3497     int pending = w_->pending;
3498    
3499 root 1.172 if (expect_true (pending))
3500     {
3501     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3502 root 1.288 p->w = (W)&pending_w;
3503 root 1.172 w_->pending = 0;
3504     return p->events;
3505     }
3506     else
3507 root 1.167 return 0;
3508 root 1.166 }
3509    
3510 root 1.284 inline_size void
3511 root 1.164 pri_adjust (EV_P_ W w)
3512     {
3513 root 1.295 int pri = ev_priority (w);
3514 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3515     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3516 root 1.295 ev_set_priority (w, pri);
3517 root 1.164 }
3518    
3519 root 1.284 inline_speed void
3520 root 1.51 ev_start (EV_P_ W w, int active)
3521 root 1.1 {
3522 root 1.164 pri_adjust (EV_A_ w);
3523 root 1.1 w->active = active;
3524 root 1.51 ev_ref (EV_A);
3525 root 1.1 }
3526    
3527 root 1.284 inline_size void
3528 root 1.51 ev_stop (EV_P_ W w)
3529 root 1.1 {
3530 root 1.51 ev_unref (EV_A);
3531 root 1.1 w->active = 0;
3532     }
3533    
3534 root 1.8 /*****************************************************************************/
3535    
3536 root 1.171 void noinline
3537 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3538 root 1.1 {
3539 root 1.37 int fd = w->fd;
3540    
3541 root 1.123 if (expect_false (ev_is_active (w)))
3542 root 1.1 return;
3543    
3544 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3545 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3546 root 1.33
3547 root 1.248 EV_FREQUENT_CHECK;
3548    
3549 root 1.51 ev_start (EV_A_ (W)w, 1);
3550 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3551 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3552 root 1.1
3553 root 1.426 /* common bug, apparently */
3554     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3555    
3556 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3557 root 1.281 w->events &= ~EV__IOFDSET;
3558 root 1.248
3559     EV_FREQUENT_CHECK;
3560 root 1.1 }
3561    
3562 root 1.171 void noinline
3563 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3564 root 1.1 {
3565 root 1.166 clear_pending (EV_A_ (W)w);
3566 root 1.123 if (expect_false (!ev_is_active (w)))
3567 root 1.1 return;
3568    
3569 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3570 root 1.89
3571 root 1.248 EV_FREQUENT_CHECK;
3572    
3573 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3574 root 1.51 ev_stop (EV_A_ (W)w);
3575 root 1.1
3576 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3577 root 1.248
3578     EV_FREQUENT_CHECK;
3579 root 1.1 }
3580    
3581 root 1.171 void noinline
3582 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3583 root 1.1 {
3584 root 1.123 if (expect_false (ev_is_active (w)))
3585 root 1.1 return;
3586    
3587 root 1.228 ev_at (w) += mn_now;
3588 root 1.12
3589 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3590 root 1.13
3591 root 1.248 EV_FREQUENT_CHECK;
3592    
3593     ++timercnt;
3594     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3595 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3596     ANHE_w (timers [ev_active (w)]) = (WT)w;
3597 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3598 root 1.235 upheap (timers, ev_active (w));
3599 root 1.62
3600 root 1.248 EV_FREQUENT_CHECK;
3601    
3602 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3603 root 1.12 }
3604    
3605 root 1.171 void noinline
3606 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3607 root 1.12 {
3608 root 1.166 clear_pending (EV_A_ (W)w);
3609 root 1.123 if (expect_false (!ev_is_active (w)))
3610 root 1.12 return;
3611    
3612 root 1.248 EV_FREQUENT_CHECK;
3613    
3614 root 1.230 {
3615     int active = ev_active (w);
3616 root 1.62
3617 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3618 root 1.151
3619 root 1.248 --timercnt;
3620    
3621     if (expect_true (active < timercnt + HEAP0))
3622 root 1.151 {
3623 root 1.248 timers [active] = timers [timercnt + HEAP0];
3624 root 1.181 adjustheap (timers, timercnt, active);
3625 root 1.151 }
3626 root 1.248 }
3627 root 1.228
3628     ev_at (w) -= mn_now;
3629 root 1.14
3630 root 1.51 ev_stop (EV_A_ (W)w);
3631 root 1.328
3632     EV_FREQUENT_CHECK;
3633 root 1.12 }
3634 root 1.4
3635 root 1.171 void noinline
3636 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3637 root 1.14 {
3638 root 1.248 EV_FREQUENT_CHECK;
3639    
3640 root 1.407 clear_pending (EV_A_ (W)w);
3641 root 1.406
3642 root 1.14 if (ev_is_active (w))
3643     {
3644     if (w->repeat)
3645 root 1.99 {
3646 root 1.228 ev_at (w) = mn_now + w->repeat;
3647 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3648 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3649 root 1.99 }
3650 root 1.14 else
3651 root 1.51 ev_timer_stop (EV_A_ w);
3652 root 1.14 }
3653     else if (w->repeat)
3654 root 1.112 {
3655 root 1.229 ev_at (w) = w->repeat;
3656 root 1.112 ev_timer_start (EV_A_ w);
3657     }
3658 root 1.248
3659     EV_FREQUENT_CHECK;
3660 root 1.14 }
3661    
3662 root 1.301 ev_tstamp
3663 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3664 root 1.301 {
3665     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3666     }
3667    
3668 root 1.140 #if EV_PERIODIC_ENABLE
3669 root 1.171 void noinline
3670 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3671 root 1.12 {
3672 root 1.123 if (expect_false (ev_is_active (w)))
3673 root 1.12 return;
3674 root 1.1
3675 root 1.77 if (w->reschedule_cb)
3676 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3677 root 1.77 else if (w->interval)
3678     {
3679 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3680 root 1.370 periodic_recalc (EV_A_ w);
3681 root 1.77 }
3682 root 1.173 else
3683 root 1.228 ev_at (w) = w->offset;
3684 root 1.12
3685 root 1.248 EV_FREQUENT_CHECK;
3686    
3687     ++periodiccnt;
3688     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3689 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3690     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3691 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3692 root 1.235 upheap (periodics, ev_active (w));
3693 root 1.62
3694 root 1.248 EV_FREQUENT_CHECK;
3695    
3696 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3697 root 1.1 }
3698    
3699 root 1.171 void noinline
3700 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3701 root 1.1 {
3702 root 1.166 clear_pending (EV_A_ (W)w);
3703 root 1.123 if (expect_false (!ev_is_active (w)))
3704 root 1.1 return;
3705    
3706 root 1.248 EV_FREQUENT_CHECK;
3707    
3708 root 1.230 {
3709     int active = ev_active (w);
3710 root 1.62
3711 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3712 root 1.151
3713 root 1.248 --periodiccnt;
3714    
3715     if (expect_true (active < periodiccnt + HEAP0))
3716 root 1.151 {
3717 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3718 root 1.181 adjustheap (periodics, periodiccnt, active);
3719 root 1.151 }
3720 root 1.248 }
3721 root 1.228
3722 root 1.328 ev_stop (EV_A_ (W)w);
3723    
3724 root 1.248 EV_FREQUENT_CHECK;
3725 root 1.1 }
3726    
3727 root 1.171 void noinline
3728 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3729 root 1.77 {
3730 root 1.84 /* TODO: use adjustheap and recalculation */
3731 root 1.77 ev_periodic_stop (EV_A_ w);
3732     ev_periodic_start (EV_A_ w);
3733     }
3734 root 1.93 #endif
3735 root 1.77
3736 root 1.56 #ifndef SA_RESTART
3737     # define SA_RESTART 0
3738     #endif
3739    
3740 root 1.336 #if EV_SIGNAL_ENABLE
3741    
3742 root 1.171 void noinline
3743 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3744 root 1.56 {
3745 root 1.123 if (expect_false (ev_is_active (w)))
3746 root 1.56 return;
3747    
3748 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3749    
3750     #if EV_MULTIPLICITY
3751 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3752 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3753    
3754     signals [w->signum - 1].loop = EV_A;
3755 root 1.449 ECB_MEMORY_FENCE_RELEASE;
3756 root 1.306 #endif
3757 root 1.56
3758 root 1.303 EV_FREQUENT_CHECK;
3759    
3760     #if EV_USE_SIGNALFD
3761     if (sigfd == -2)
3762     {
3763     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3764     if (sigfd < 0 && errno == EINVAL)
3765     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3766    
3767     if (sigfd >= 0)
3768     {
3769     fd_intern (sigfd); /* doing it twice will not hurt */
3770    
3771     sigemptyset (&sigfd_set);
3772    
3773     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3774     ev_set_priority (&sigfd_w, EV_MAXPRI);
3775     ev_io_start (EV_A_ &sigfd_w);
3776     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3777     }
3778     }
3779    
3780     if (sigfd >= 0)
3781     {
3782     /* TODO: check .head */
3783     sigaddset (&sigfd_set, w->signum);
3784     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3785 root 1.207
3786 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3787     }
3788 root 1.180 #endif
3789    
3790 root 1.56 ev_start (EV_A_ (W)w, 1);
3791 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3792 root 1.56
3793 root 1.63 if (!((WL)w)->next)
3794 root 1.304 # if EV_USE_SIGNALFD
3795 root 1.306 if (sigfd < 0) /*TODO*/
3796 root 1.304 # endif
3797 root 1.306 {
3798 root 1.322 # ifdef _WIN32
3799 root 1.317 evpipe_init (EV_A);
3800    
3801 root 1.306 signal (w->signum, ev_sighandler);
3802     # else
3803     struct sigaction sa;
3804    
3805     evpipe_init (EV_A);
3806    
3807     sa.sa_handler = ev_sighandler;
3808     sigfillset (&sa.sa_mask);
3809     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3810     sigaction (w->signum, &sa, 0);
3811    
3812 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3813     {
3814     sigemptyset (&sa.sa_mask);
3815     sigaddset (&sa.sa_mask, w->signum);
3816     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3817     }
3818 root 1.67 #endif
3819 root 1.306 }
3820 root 1.248
3821     EV_FREQUENT_CHECK;
3822 root 1.56 }
3823    
3824 root 1.171 void noinline
3825 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3826 root 1.56 {
3827 root 1.166 clear_pending (EV_A_ (W)w);
3828 root 1.123 if (expect_false (!ev_is_active (w)))
3829 root 1.56 return;
3830    
3831 root 1.248 EV_FREQUENT_CHECK;
3832    
3833 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3834 root 1.56 ev_stop (EV_A_ (W)w);
3835    
3836     if (!signals [w->signum - 1].head)
3837 root 1.306 {
3838 root 1.307 #if EV_MULTIPLICITY
3839 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3840 root 1.307 #endif
3841     #if EV_USE_SIGNALFD
3842 root 1.306 if (sigfd >= 0)
3843     {
3844 root 1.321 sigset_t ss;
3845    
3846     sigemptyset (&ss);
3847     sigaddset (&ss, w->signum);
3848 root 1.306 sigdelset (&sigfd_set, w->signum);
3849 root 1.321
3850 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3851 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3852 root 1.306 }
3853     else
3854 root 1.307 #endif
3855 root 1.306 signal (w->signum, SIG_DFL);
3856     }
3857 root 1.248
3858     EV_FREQUENT_CHECK;
3859 root 1.56 }
3860    
3861 root 1.336 #endif
3862    
3863     #if EV_CHILD_ENABLE
3864    
3865 root 1.28 void
3866 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3867 root 1.22 {
3868 root 1.56 #if EV_MULTIPLICITY
3869 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3870 root 1.56 #endif
3871 root 1.123 if (expect_false (ev_is_active (w)))
3872 root 1.22 return;
3873    
3874 root 1.248 EV_FREQUENT_CHECK;
3875    
3876 root 1.51 ev_start (EV_A_ (W)w, 1);
3877 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3878 root 1.248
3879     EV_FREQUENT_CHECK;
3880 root 1.22 }
3881    
3882 root 1.28 void
3883 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3884 root 1.22 {
3885 root 1.166 clear_pending (EV_A_ (W)w);
3886 root 1.123 if (expect_false (!ev_is_active (w)))
3887 root 1.22 return;
3888    
3889 root 1.248 EV_FREQUENT_CHECK;
3890    
3891 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3892 root 1.51 ev_stop (EV_A_ (W)w);
3893 root 1.248
3894     EV_FREQUENT_CHECK;
3895 root 1.22 }
3896    
3897 root 1.336 #endif
3898    
3899 root 1.140 #if EV_STAT_ENABLE
3900    
3901     # ifdef _WIN32
3902 root 1.146 # undef lstat
3903     # define lstat(a,b) _stati64 (a,b)
3904 root 1.140 # endif
3905    
3906 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3907     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3908     #define MIN_STAT_INTERVAL 0.1074891
3909 root 1.143
3910 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3911 root 1.152
3912     #if EV_USE_INOTIFY
3913 root 1.326
3914     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3915     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3916 root 1.152
3917     static void noinline
3918     infy_add (EV_P_ ev_stat *w)
3919     {
3920 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
3921     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3922     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3923     | IN_DONT_FOLLOW | IN_MASK_ADD);
3924 root 1.152
3925 root 1.318 if (w->wd >= 0)
3926 root 1.152 {
3927 root 1.318 struct statfs sfs;
3928    
3929     /* now local changes will be tracked by inotify, but remote changes won't */
3930     /* unless the filesystem is known to be local, we therefore still poll */
3931     /* also do poll on <2.6.25, but with normal frequency */
3932    
3933     if (!fs_2625)
3934     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3935     else if (!statfs (w->path, &sfs)
3936     && (sfs.f_type == 0x1373 /* devfs */
3937 root 1.451 || sfs.f_type == 0x4006 /* fat */
3938     || sfs.f_type == 0x4d44 /* msdos */
3939 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
3940 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
3941     || sfs.f_type == 0x858458f6 /* ramfs */
3942     || sfs.f_type == 0x5346544e /* ntfs */
3943 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
3944 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
3945 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
3946 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
3947 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
3948     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3949     else
3950     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3951     }
3952     else
3953     {
3954     /* can't use inotify, continue to stat */
3955 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3956 root 1.152
3957 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3958 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3959 root 1.233 /* but an efficiency issue only */
3960 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3961 root 1.152 {
3962 root 1.153 char path [4096];
3963 root 1.152 strcpy (path, w->path);
3964    
3965     do
3966     {
3967     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3968     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3969    
3970     char *pend = strrchr (path, '/');
3971    
3972 root 1.275 if (!pend || pend == path)
3973     break;
3974 root 1.152
3975     *pend = 0;
3976 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3977 root 1.372 }
3978 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3979     }
3980     }
3981 root 1.275
3982     if (w->wd >= 0)
3983 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3984 root 1.152
3985 root 1.318 /* now re-arm timer, if required */
3986     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3987     ev_timer_again (EV_A_ &w->timer);
3988     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3989 root 1.152 }
3990    
3991     static void noinline
3992     infy_del (EV_P_ ev_stat *w)
3993     {
3994     int slot;
3995     int wd = w->wd;
3996    
3997     if (wd < 0)
3998     return;
3999    
4000     w->wd = -2;
4001 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4002 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4003    
4004     /* remove this watcher, if others are watching it, they will rearm */
4005     inotify_rm_watch (fs_fd, wd);
4006     }
4007    
4008     static void noinline
4009     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4010     {
4011     if (slot < 0)
4012 root 1.264 /* overflow, need to check for all hash slots */
4013 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4014 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4015     else
4016     {
4017     WL w_;
4018    
4019 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4020 root 1.152 {
4021     ev_stat *w = (ev_stat *)w_;
4022     w_ = w_->next; /* lets us remove this watcher and all before it */
4023    
4024     if (w->wd == wd || wd == -1)
4025     {
4026     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4027     {
4028 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4029 root 1.152 w->wd = -1;
4030     infy_add (EV_A_ w); /* re-add, no matter what */
4031     }
4032    
4033 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4034 root 1.152 }
4035     }
4036     }
4037     }
4038    
4039     static void
4040     infy_cb (EV_P_ ev_io *w, int revents)
4041     {
4042     char buf [EV_INOTIFY_BUFSIZE];
4043     int ofs;
4044     int len = read (fs_fd, buf, sizeof (buf));
4045    
4046 root 1.326 for (ofs = 0; ofs < len; )
4047     {
4048     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4049     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4050     ofs += sizeof (struct inotify_event) + ev->len;
4051     }
4052 root 1.152 }
4053    
4054 root 1.379 inline_size void ecb_cold
4055 root 1.330 ev_check_2625 (EV_P)
4056     {
4057     /* kernels < 2.6.25 are borked
4058     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4059     */
4060     if (ev_linux_version () < 0x020619)
4061 root 1.273 return;
4062 root 1.264
4063 root 1.273 fs_2625 = 1;
4064     }
4065 root 1.264
4066 root 1.315 inline_size int
4067     infy_newfd (void)
4068     {
4069 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4070 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4071     if (fd >= 0)
4072     return fd;
4073     #endif
4074     return inotify_init ();
4075     }
4076    
4077 root 1.284 inline_size void
4078 root 1.273 infy_init (EV_P)
4079     {
4080     if (fs_fd != -2)
4081     return;
4082 root 1.264
4083 root 1.273 fs_fd = -1;
4084 root 1.264
4085 root 1.330 ev_check_2625 (EV_A);
4086 root 1.264
4087 root 1.315 fs_fd = infy_newfd ();
4088 root 1.152
4089     if (fs_fd >= 0)
4090     {
4091 root 1.315 fd_intern (fs_fd);
4092 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4093     ev_set_priority (&fs_w, EV_MAXPRI);
4094     ev_io_start (EV_A_ &fs_w);
4095 root 1.317 ev_unref (EV_A);
4096 root 1.152 }
4097     }
4098    
4099 root 1.284 inline_size void
4100 root 1.154 infy_fork (EV_P)
4101     {
4102     int slot;
4103    
4104     if (fs_fd < 0)
4105     return;
4106    
4107 root 1.317 ev_ref (EV_A);
4108 root 1.315 ev_io_stop (EV_A_ &fs_w);
4109 root 1.154 close (fs_fd);
4110 root 1.315 fs_fd = infy_newfd ();
4111    
4112     if (fs_fd >= 0)
4113     {
4114     fd_intern (fs_fd);
4115     ev_io_set (&fs_w, fs_fd, EV_READ);
4116     ev_io_start (EV_A_ &fs_w);
4117 root 1.317 ev_unref (EV_A);
4118 root 1.315 }
4119 root 1.154
4120 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4121 root 1.154 {
4122     WL w_ = fs_hash [slot].head;
4123     fs_hash [slot].head = 0;
4124    
4125     while (w_)
4126     {
4127     ev_stat *w = (ev_stat *)w_;
4128     w_ = w_->next; /* lets us add this watcher */
4129    
4130     w->wd = -1;
4131    
4132     if (fs_fd >= 0)
4133     infy_add (EV_A_ w); /* re-add, no matter what */
4134     else
4135 root 1.318 {
4136     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4137     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4138     ev_timer_again (EV_A_ &w->timer);
4139     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4140     }
4141 root 1.154 }
4142     }
4143     }
4144    
4145 root 1.152 #endif
4146    
4147 root 1.255 #ifdef _WIN32
4148     # define EV_LSTAT(p,b) _stati64 (p, b)
4149     #else
4150     # define EV_LSTAT(p,b) lstat (p, b)
4151     #endif
4152    
4153 root 1.140 void
4154 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4155 root 1.140 {
4156     if (lstat (w->path, &w->attr) < 0)
4157     w->attr.st_nlink = 0;
4158     else if (!w->attr.st_nlink)
4159     w->attr.st_nlink = 1;
4160     }
4161    
4162 root 1.157 static void noinline
4163 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4164     {
4165     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4166    
4167 root 1.320 ev_statdata prev = w->attr;
4168 root 1.140 ev_stat_stat (EV_A_ w);
4169    
4170 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4171     if (
4172 root 1.320 prev.st_dev != w->attr.st_dev
4173     || prev.st_ino != w->attr.st_ino
4174     || prev.st_mode != w->attr.st_mode
4175     || prev.st_nlink != w->attr.st_nlink
4176     || prev.st_uid != w->attr.st_uid
4177     || prev.st_gid != w->attr.st_gid
4178     || prev.st_rdev != w->attr.st_rdev
4179     || prev.st_size != w->attr.st_size
4180     || prev.st_atime != w->attr.st_atime
4181     || prev.st_mtime != w->attr.st_mtime
4182     || prev.st_ctime != w->attr.st_ctime
4183 root 1.156 ) {
4184 root 1.320 /* we only update w->prev on actual differences */
4185     /* in case we test more often than invoke the callback, */
4186     /* to ensure that prev is always different to attr */
4187     w->prev = prev;
4188    
4189 root 1.152 #if EV_USE_INOTIFY
4190 root 1.264 if (fs_fd >= 0)
4191     {
4192     infy_del (EV_A_ w);
4193     infy_add (EV_A_ w);
4194     ev_stat_stat (EV_A_ w); /* avoid race... */
4195     }
4196 root 1.152 #endif
4197    
4198     ev_feed_event (EV_A_ w, EV_STAT);
4199     }
4200 root 1.140 }
4201    
4202     void
4203 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4204 root 1.140 {
4205     if (expect_false (ev_is_active (w)))
4206     return;
4207    
4208     ev_stat_stat (EV_A_ w);
4209    
4210 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4211     w->interval = MIN_STAT_INTERVAL;
4212 root 1.143
4213 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4214 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4215 root 1.152
4216     #if EV_USE_INOTIFY
4217     infy_init (EV_A);
4218    
4219     if (fs_fd >= 0)
4220     infy_add (EV_A_ w);
4221     else
4222     #endif
4223 root 1.318 {
4224     ev_timer_again (EV_A_ &w->timer);
4225     ev_unref (EV_A);
4226     }
4227 root 1.140
4228     ev_start (EV_A_ (W)w, 1);
4229 root 1.248
4230     EV_FREQUENT_CHECK;
4231 root 1.140 }
4232    
4233     void
4234 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4235 root 1.140 {
4236 root 1.166 clear_pending (EV_A_ (W)w);
4237 root 1.140 if (expect_false (!ev_is_active (w)))
4238     return;
4239    
4240 root 1.248 EV_FREQUENT_CHECK;
4241    
4242 root 1.152 #if EV_USE_INOTIFY
4243     infy_del (EV_A_ w);
4244     #endif
4245 root 1.318
4246     if (ev_is_active (&w->timer))
4247     {
4248     ev_ref (EV_A);
4249     ev_timer_stop (EV_A_ &w->timer);
4250     }
4251 root 1.140
4252 root 1.134 ev_stop (EV_A_ (W)w);
4253 root 1.248
4254     EV_FREQUENT_CHECK;
4255 root 1.134 }
4256     #endif
4257    
4258 root 1.164 #if EV_IDLE_ENABLE
4259 root 1.144 void
4260 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4261 root 1.144 {
4262     if (expect_false (ev_is_active (w)))
4263     return;
4264    
4265 root 1.164 pri_adjust (EV_A_ (W)w);
4266    
4267 root 1.248 EV_FREQUENT_CHECK;
4268    
4269 root 1.164 {
4270     int active = ++idlecnt [ABSPRI (w)];
4271    
4272     ++idleall;
4273     ev_start (EV_A_ (W)w, active);
4274    
4275     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4276     idles [ABSPRI (w)][active - 1] = w;
4277     }
4278 root 1.248
4279     EV_FREQUENT_CHECK;
4280 root 1.144 }
4281    
4282     void
4283 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4284 root 1.144 {
4285 root 1.166 clear_pending (EV_A_ (W)w);
4286 root 1.144 if (expect_false (!ev_is_active (w)))
4287     return;
4288    
4289 root 1.248 EV_FREQUENT_CHECK;
4290    
4291 root 1.144 {
4292 root 1.230 int active = ev_active (w);
4293 root 1.164
4294     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4295 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4296 root 1.164
4297     ev_stop (EV_A_ (W)w);
4298     --idleall;
4299 root 1.144 }
4300 root 1.248
4301     EV_FREQUENT_CHECK;
4302 root 1.144 }
4303 root 1.164 #endif
4304 root 1.144
4305 root 1.337 #if EV_PREPARE_ENABLE
4306 root 1.144 void
4307 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4308 root 1.144 {
4309     if (expect_false (ev_is_active (w)))
4310     return;
4311    
4312 root 1.248 EV_FREQUENT_CHECK;
4313    
4314 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4315     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4316     prepares [preparecnt - 1] = w;
4317 root 1.248
4318     EV_FREQUENT_CHECK;
4319 root 1.144 }
4320    
4321     void
4322 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4323 root 1.144 {
4324 root 1.166 clear_pending (EV_A_ (W)w);
4325 root 1.144 if (expect_false (!ev_is_active (w)))
4326     return;
4327    
4328 root 1.248 EV_FREQUENT_CHECK;
4329    
4330 root 1.144 {
4331 root 1.230 int active = ev_active (w);
4332    
4333 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4334 root 1.230 ev_active (prepares [active - 1]) = active;
4335 root 1.144 }
4336    
4337     ev_stop (EV_A_ (W)w);
4338 root 1.248
4339     EV_FREQUENT_CHECK;
4340 root 1.144 }
4341 root 1.337 #endif
4342 root 1.144
4343 root 1.337 #if EV_CHECK_ENABLE
4344 root 1.144 void
4345 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4346 root 1.144 {
4347     if (expect_false (ev_is_active (w)))
4348     return;
4349    
4350 root 1.248 EV_FREQUENT_CHECK;
4351    
4352 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4353     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4354     checks [checkcnt - 1] = w;
4355 root 1.248
4356     EV_FREQUENT_CHECK;
4357 root 1.144 }
4358    
4359     void
4360 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4361 root 1.144 {
4362 root 1.166 clear_pending (EV_A_ (W)w);
4363 root 1.144 if (expect_false (!ev_is_active (w)))
4364     return;
4365    
4366 root 1.248 EV_FREQUENT_CHECK;
4367    
4368 root 1.144 {
4369 root 1.230 int active = ev_active (w);
4370    
4371 root 1.144 checks [active - 1] = checks [--checkcnt];
4372 root 1.230 ev_active (checks [active - 1]) = active;
4373 root 1.144 }
4374    
4375     ev_stop (EV_A_ (W)w);
4376 root 1.248
4377     EV_FREQUENT_CHECK;
4378 root 1.144 }
4379 root 1.337 #endif
4380 root 1.144
4381     #if EV_EMBED_ENABLE
4382     void noinline
4383 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4384 root 1.144 {
4385 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4386 root 1.144 }
4387    
4388     static void
4389 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4390 root 1.144 {
4391     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4392    
4393     if (ev_cb (w))
4394     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4395     else
4396 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4397 root 1.144 }
4398    
4399 root 1.189 static void
4400     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4401     {
4402     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4403    
4404 root 1.195 {
4405 root 1.306 EV_P = w->other;
4406 root 1.195
4407     while (fdchangecnt)
4408     {
4409     fd_reify (EV_A);
4410 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4411 root 1.195 }
4412     }
4413     }
4414    
4415 root 1.261 static void
4416     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4417     {
4418     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4419    
4420 root 1.277 ev_embed_stop (EV_A_ w);
4421    
4422 root 1.261 {
4423 root 1.306 EV_P = w->other;
4424 root 1.261
4425     ev_loop_fork (EV_A);
4426 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4427 root 1.261 }
4428 root 1.277
4429     ev_embed_start (EV_A_ w);
4430 root 1.261 }
4431    
4432 root 1.195 #if 0
4433     static void
4434     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4435     {
4436     ev_idle_stop (EV_A_ idle);
4437 root 1.189 }
4438 root 1.195 #endif
4439 root 1.189
4440 root 1.144 void
4441 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4442 root 1.144 {
4443     if (expect_false (ev_is_active (w)))
4444     return;
4445    
4446     {
4447 root 1.306 EV_P = w->other;
4448 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4449 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4450 root 1.144 }
4451    
4452 root 1.248 EV_FREQUENT_CHECK;
4453    
4454 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4455     ev_io_start (EV_A_ &w->io);
4456    
4457 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4458     ev_set_priority (&w->prepare, EV_MINPRI);
4459     ev_prepare_start (EV_A_ &w->prepare);
4460    
4461 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4462     ev_fork_start (EV_A_ &w->fork);
4463    
4464 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4465    
4466 root 1.144 ev_start (EV_A_ (W)w, 1);
4467 root 1.248
4468     EV_FREQUENT_CHECK;
4469 root 1.144 }
4470    
4471     void
4472 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4473 root 1.144 {
4474 root 1.166 clear_pending (EV_A_ (W)w);
4475 root 1.144 if (expect_false (!ev_is_active (w)))
4476     return;
4477    
4478 root 1.248 EV_FREQUENT_CHECK;
4479    
4480 root 1.261 ev_io_stop (EV_A_ &w->io);
4481 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4482 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4483 root 1.248
4484 root 1.328 ev_stop (EV_A_ (W)w);
4485    
4486 root 1.248 EV_FREQUENT_CHECK;
4487 root 1.144 }
4488     #endif
4489    
4490 root 1.147 #if EV_FORK_ENABLE
4491     void
4492 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4493 root 1.147 {
4494     if (expect_false (ev_is_active (w)))
4495     return;
4496    
4497 root 1.248 EV_FREQUENT_CHECK;
4498    
4499 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4500     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4501     forks [forkcnt - 1] = w;
4502 root 1.248
4503     EV_FREQUENT_CHECK;
4504 root 1.147 }
4505    
4506     void
4507 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4508 root 1.147 {
4509 root 1.166 clear_pending (EV_A_ (W)w);
4510 root 1.147 if (expect_false (!ev_is_active (w)))
4511     return;
4512    
4513 root 1.248 EV_FREQUENT_CHECK;
4514    
4515 root 1.147 {
4516 root 1.230 int active = ev_active (w);
4517    
4518 root 1.147 forks [active - 1] = forks [--forkcnt];
4519 root 1.230 ev_active (forks [active - 1]) = active;
4520 root 1.147 }
4521    
4522     ev_stop (EV_A_ (W)w);
4523 root 1.248
4524     EV_FREQUENT_CHECK;
4525 root 1.147 }
4526     #endif
4527    
4528 root 1.360 #if EV_CLEANUP_ENABLE
4529     void
4530 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4531 root 1.360 {
4532     if (expect_false (ev_is_active (w)))
4533     return;
4534    
4535     EV_FREQUENT_CHECK;
4536    
4537     ev_start (EV_A_ (W)w, ++cleanupcnt);
4538     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4539     cleanups [cleanupcnt - 1] = w;
4540    
4541 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4542     ev_unref (EV_A);
4543 root 1.360 EV_FREQUENT_CHECK;
4544     }
4545    
4546     void
4547 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4548 root 1.360 {
4549     clear_pending (EV_A_ (W)w);
4550     if (expect_false (!ev_is_active (w)))
4551     return;
4552    
4553     EV_FREQUENT_CHECK;
4554 root 1.362 ev_ref (EV_A);
4555 root 1.360
4556     {
4557     int active = ev_active (w);
4558    
4559     cleanups [active - 1] = cleanups [--cleanupcnt];
4560     ev_active (cleanups [active - 1]) = active;
4561     }
4562    
4563     ev_stop (EV_A_ (W)w);
4564    
4565     EV_FREQUENT_CHECK;
4566     }
4567     #endif
4568    
4569 root 1.207 #if EV_ASYNC_ENABLE
4570     void
4571 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4572 root 1.207 {
4573     if (expect_false (ev_is_active (w)))
4574     return;
4575    
4576 root 1.352 w->sent = 0;
4577    
4578 root 1.207 evpipe_init (EV_A);
4579    
4580 root 1.248 EV_FREQUENT_CHECK;
4581    
4582 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4583     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4584     asyncs [asynccnt - 1] = w;
4585 root 1.248
4586     EV_FREQUENT_CHECK;
4587 root 1.207 }
4588    
4589     void
4590 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4591 root 1.207 {
4592     clear_pending (EV_A_ (W)w);
4593     if (expect_false (!ev_is_active (w)))
4594     return;
4595    
4596 root 1.248 EV_FREQUENT_CHECK;
4597    
4598 root 1.207 {
4599 root 1.230 int active = ev_active (w);
4600    
4601 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4602 root 1.230 ev_active (asyncs [active - 1]) = active;
4603 root 1.207 }
4604    
4605     ev_stop (EV_A_ (W)w);
4606 root 1.248
4607     EV_FREQUENT_CHECK;
4608 root 1.207 }
4609    
4610     void
4611 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4612 root 1.207 {
4613     w->sent = 1;
4614 root 1.307 evpipe_write (EV_A_ &async_pending);
4615 root 1.207 }
4616     #endif
4617    
4618 root 1.1 /*****************************************************************************/
4619 root 1.10
4620 root 1.16 struct ev_once
4621     {
4622 root 1.136 ev_io io;
4623     ev_timer to;
4624 root 1.16 void (*cb)(int revents, void *arg);
4625     void *arg;
4626     };
4627    
4628     static void
4629 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4630 root 1.16 {
4631     void (*cb)(int revents, void *arg) = once->cb;
4632     void *arg = once->arg;
4633    
4634 root 1.259 ev_io_stop (EV_A_ &once->io);
4635 root 1.51 ev_timer_stop (EV_A_ &once->to);
4636 root 1.69 ev_free (once);
4637 root 1.16
4638     cb (revents, arg);
4639     }
4640    
4641     static void
4642 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4643 root 1.16 {
4644 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4645    
4646     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4647 root 1.16 }
4648    
4649     static void
4650 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4651 root 1.16 {
4652 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4653    
4654     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4655 root 1.16 }
4656    
4657     void
4658 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4659 root 1.16 {
4660 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4661 root 1.16
4662 root 1.123 if (expect_false (!once))
4663 root 1.16 {
4664 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4665 root 1.123 return;
4666     }
4667    
4668     once->cb = cb;
4669     once->arg = arg;
4670 root 1.16
4671 root 1.123 ev_init (&once->io, once_cb_io);
4672     if (fd >= 0)
4673     {
4674     ev_io_set (&once->io, fd, events);
4675     ev_io_start (EV_A_ &once->io);
4676     }
4677 root 1.16
4678 root 1.123 ev_init (&once->to, once_cb_to);
4679     if (timeout >= 0.)
4680     {
4681     ev_timer_set (&once->to, timeout, 0.);
4682     ev_timer_start (EV_A_ &once->to);
4683 root 1.16 }
4684     }
4685    
4686 root 1.282 /*****************************************************************************/
4687    
4688 root 1.288 #if EV_WALK_ENABLE
4689 root 1.379 void ecb_cold
4690 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4691 root 1.282 {
4692     int i, j;
4693     ev_watcher_list *wl, *wn;
4694    
4695     if (types & (EV_IO | EV_EMBED))
4696     for (i = 0; i < anfdmax; ++i)
4697     for (wl = anfds [i].head; wl; )
4698     {
4699     wn = wl->next;
4700    
4701     #if EV_EMBED_ENABLE
4702     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4703     {
4704     if (types & EV_EMBED)
4705     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4706     }
4707     else
4708     #endif
4709     #if EV_USE_INOTIFY
4710     if (ev_cb ((ev_io *)wl) == infy_cb)
4711     ;
4712     else
4713     #endif
4714 root 1.288 if ((ev_io *)wl != &pipe_w)
4715 root 1.282 if (types & EV_IO)
4716     cb (EV_A_ EV_IO, wl);
4717    
4718     wl = wn;
4719     }
4720    
4721     if (types & (EV_TIMER | EV_STAT))
4722     for (i = timercnt + HEAP0; i-- > HEAP0; )
4723     #if EV_STAT_ENABLE
4724     /*TODO: timer is not always active*/
4725     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4726     {
4727     if (types & EV_STAT)
4728     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4729     }
4730     else
4731     #endif
4732     if (types & EV_TIMER)
4733     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4734    
4735     #if EV_PERIODIC_ENABLE
4736     if (types & EV_PERIODIC)
4737     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4738     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4739     #endif
4740    
4741     #if EV_IDLE_ENABLE
4742     if (types & EV_IDLE)
4743 root 1.390 for (j = NUMPRI; j--; )
4744 root 1.282 for (i = idlecnt [j]; i--; )
4745     cb (EV_A_ EV_IDLE, idles [j][i]);
4746     #endif
4747    
4748     #if EV_FORK_ENABLE
4749     if (types & EV_FORK)
4750     for (i = forkcnt; i--; )
4751     if (ev_cb (forks [i]) != embed_fork_cb)
4752     cb (EV_A_ EV_FORK, forks [i]);
4753     #endif
4754    
4755     #if EV_ASYNC_ENABLE
4756     if (types & EV_ASYNC)
4757     for (i = asynccnt; i--; )
4758     cb (EV_A_ EV_ASYNC, asyncs [i]);
4759     #endif
4760    
4761 root 1.337 #if EV_PREPARE_ENABLE
4762 root 1.282 if (types & EV_PREPARE)
4763     for (i = preparecnt; i--; )
4764 root 1.337 # if EV_EMBED_ENABLE
4765 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4766 root 1.337 # endif
4767     cb (EV_A_ EV_PREPARE, prepares [i]);
4768 root 1.282 #endif
4769    
4770 root 1.337 #if EV_CHECK_ENABLE
4771 root 1.282 if (types & EV_CHECK)
4772     for (i = checkcnt; i--; )
4773     cb (EV_A_ EV_CHECK, checks [i]);
4774 root 1.337 #endif
4775 root 1.282
4776 root 1.337 #if EV_SIGNAL_ENABLE
4777 root 1.282 if (types & EV_SIGNAL)
4778 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4779 root 1.282 for (wl = signals [i].head; wl; )
4780     {
4781     wn = wl->next;
4782     cb (EV_A_ EV_SIGNAL, wl);
4783     wl = wn;
4784     }
4785 root 1.337 #endif
4786 root 1.282
4787 root 1.337 #if EV_CHILD_ENABLE
4788 root 1.282 if (types & EV_CHILD)
4789 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4790 root 1.282 for (wl = childs [i]; wl; )
4791     {
4792     wn = wl->next;
4793     cb (EV_A_ EV_CHILD, wl);
4794     wl = wn;
4795     }
4796 root 1.337 #endif
4797 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4798     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4799     }
4800     #endif
4801    
4802 root 1.188 #if EV_MULTIPLICITY
4803     #include "ev_wrap.h"
4804     #endif
4805