ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.457
Committed: Thu Sep 5 18:45:29 2013 UTC (10 years, 8 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.456: +9 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.418 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246     # error "unable to find value for NSIG, please report"
247 root 1.336 /* to make it compile regardless, just remove the above line, */
248     /* but consider reporting it, too! :) */
249 root 1.306 # define EV_NSIG 65
250 root 1.305 #endif
251    
252 root 1.373 #ifndef EV_USE_FLOOR
253     # define EV_USE_FLOOR 0
254     #endif
255    
256 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
257     # if __linux && __GLIBC__ >= 2
258 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 root 1.274 # else
260     # define EV_USE_CLOCK_SYSCALL 0
261     # endif
262     #endif
263    
264 root 1.29 #ifndef EV_USE_MONOTONIC
265 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 root 1.253 # else
268     # define EV_USE_MONOTONIC 0
269     # endif
270 root 1.37 #endif
271    
272 root 1.118 #ifndef EV_USE_REALTIME
273 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 root 1.118 #endif
275    
276 root 1.193 #ifndef EV_USE_NANOSLEEP
277 root 1.253 # if _POSIX_C_SOURCE >= 199309L
278 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 root 1.253 # else
280     # define EV_USE_NANOSLEEP 0
281     # endif
282 root 1.193 #endif
283    
284 root 1.29 #ifndef EV_USE_SELECT
285 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 root 1.10 #endif
287    
288 root 1.59 #ifndef EV_USE_POLL
289 root 1.104 # ifdef _WIN32
290     # define EV_USE_POLL 0
291     # else
292 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 root 1.104 # endif
294 root 1.41 #endif
295    
296 root 1.29 #ifndef EV_USE_EPOLL
297 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 root 1.220 # else
300     # define EV_USE_EPOLL 0
301     # endif
302 root 1.10 #endif
303    
304 root 1.44 #ifndef EV_USE_KQUEUE
305     # define EV_USE_KQUEUE 0
306     #endif
307    
308 root 1.118 #ifndef EV_USE_PORT
309     # define EV_USE_PORT 0
310 root 1.40 #endif
311    
312 root 1.152 #ifndef EV_USE_INOTIFY
313 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
315 root 1.220 # else
316     # define EV_USE_INOTIFY 0
317     # endif
318 root 1.152 #endif
319    
320 root 1.149 #ifndef EV_PID_HASHSIZE
321 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 root 1.149 #endif
323    
324 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
325 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 root 1.152 #endif
327    
328 root 1.220 #ifndef EV_USE_EVENTFD
329     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
331 root 1.220 # else
332     # define EV_USE_EVENTFD 0
333     # endif
334     #endif
335    
336 root 1.303 #ifndef EV_USE_SIGNALFD
337 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 root 1.303 # else
340     # define EV_USE_SIGNALFD 0
341     # endif
342     #endif
343    
344 root 1.249 #if 0 /* debugging */
345 root 1.250 # define EV_VERIFY 3
346 root 1.249 # define EV_USE_4HEAP 1
347     # define EV_HEAP_CACHE_AT 1
348     #endif
349    
350 root 1.250 #ifndef EV_VERIFY
351 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 root 1.250 #endif
353    
354 root 1.243 #ifndef EV_USE_4HEAP
355 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
356 root 1.243 #endif
357    
358     #ifndef EV_HEAP_CACHE_AT
359 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 root 1.243 #endif
361    
362 root 1.452 #ifdef ANDROID
363     /* supposedly, android doesn't typedef fd_mask */
364     # undef EV_USE_SELECT
365     # define EV_USE_SELECT 0
366     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367     # undef EV_USE_CLOCK_SYSCALL
368     # define EV_USE_CLOCK_SYSCALL 0
369     #endif
370    
371     /* aix's poll.h seems to cause lots of trouble */
372     #ifdef _AIX
373     /* AIX has a completely broken poll.h header */
374     # undef EV_USE_POLL
375     # define EV_USE_POLL 0
376     #endif
377    
378 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379     /* which makes programs even slower. might work on other unices, too. */
380     #if EV_USE_CLOCK_SYSCALL
381 root 1.423 # include <sys/syscall.h>
382 root 1.291 # ifdef SYS_clock_gettime
383     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384     # undef EV_USE_MONOTONIC
385     # define EV_USE_MONOTONIC 1
386     # else
387     # undef EV_USE_CLOCK_SYSCALL
388     # define EV_USE_CLOCK_SYSCALL 0
389     # endif
390     #endif
391    
392 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
393 root 1.40
394     #ifndef CLOCK_MONOTONIC
395     # undef EV_USE_MONOTONIC
396     # define EV_USE_MONOTONIC 0
397     #endif
398    
399 root 1.31 #ifndef CLOCK_REALTIME
400 root 1.40 # undef EV_USE_REALTIME
401 root 1.31 # define EV_USE_REALTIME 0
402     #endif
403 root 1.40
404 root 1.152 #if !EV_STAT_ENABLE
405 root 1.185 # undef EV_USE_INOTIFY
406 root 1.152 # define EV_USE_INOTIFY 0
407     #endif
408    
409 root 1.193 #if !EV_USE_NANOSLEEP
410 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
411 root 1.416 # if !defined _WIN32 && !defined __hpux
412 root 1.193 # include <sys/select.h>
413     # endif
414     #endif
415    
416 root 1.152 #if EV_USE_INOTIFY
417 root 1.273 # include <sys/statfs.h>
418 root 1.152 # include <sys/inotify.h>
419 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420     # ifndef IN_DONT_FOLLOW
421     # undef EV_USE_INOTIFY
422     # define EV_USE_INOTIFY 0
423     # endif
424 root 1.152 #endif
425    
426 root 1.220 #if EV_USE_EVENTFD
427     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428 root 1.221 # include <stdint.h>
429 root 1.303 # ifndef EFD_NONBLOCK
430     # define EFD_NONBLOCK O_NONBLOCK
431     # endif
432     # ifndef EFD_CLOEXEC
433 root 1.311 # ifdef O_CLOEXEC
434     # define EFD_CLOEXEC O_CLOEXEC
435     # else
436     # define EFD_CLOEXEC 02000000
437     # endif
438 root 1.303 # endif
439 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440 root 1.220 #endif
441    
442 root 1.303 #if EV_USE_SIGNALFD
443 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444     # include <stdint.h>
445     # ifndef SFD_NONBLOCK
446     # define SFD_NONBLOCK O_NONBLOCK
447     # endif
448     # ifndef SFD_CLOEXEC
449     # ifdef O_CLOEXEC
450     # define SFD_CLOEXEC O_CLOEXEC
451     # else
452     # define SFD_CLOEXEC 02000000
453     # endif
454     # endif
455 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456 root 1.314
457     struct signalfd_siginfo
458     {
459     uint32_t ssi_signo;
460     char pad[128 - sizeof (uint32_t)];
461     };
462 root 1.303 #endif
463    
464 root 1.40 /**/
465 root 1.1
466 root 1.250 #if EV_VERIFY >= 3
467 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
468 root 1.248 #else
469     # define EV_FREQUENT_CHECK do { } while (0)
470     #endif
471    
472 root 1.176 /*
473 root 1.373 * This is used to work around floating point rounding problems.
474 root 1.177 * This value is good at least till the year 4000.
475 root 1.176 */
476 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
478 root 1.176
479 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
480 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
481 root 1.1
482 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484 root 1.347
485 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486     /* ECB.H BEGIN */
487     /*
488     * libecb - http://software.schmorp.de/pkg/libecb
489     *
490 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
492     * All rights reserved.
493     *
494     * Redistribution and use in source and binary forms, with or without modifica-
495     * tion, are permitted provided that the following conditions are met:
496     *
497     * 1. Redistributions of source code must retain the above copyright notice,
498     * this list of conditions and the following disclaimer.
499     *
500     * 2. Redistributions in binary form must reproduce the above copyright
501     * notice, this list of conditions and the following disclaimer in the
502     * documentation and/or other materials provided with the distribution.
503     *
504     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513     * OF THE POSSIBILITY OF SUCH DAMAGE.
514     */
515    
516     #ifndef ECB_H
517     #define ECB_H
518    
519 root 1.437 /* 16 bits major, 16 bits minor */
520 root 1.454 #define ECB_VERSION 0x00010003
521 root 1.437
522 root 1.391 #ifdef _WIN32
523     typedef signed char int8_t;
524     typedef unsigned char uint8_t;
525     typedef signed short int16_t;
526     typedef unsigned short uint16_t;
527     typedef signed int int32_t;
528     typedef unsigned int uint32_t;
529     #if __GNUC__
530     typedef signed long long int64_t;
531     typedef unsigned long long uint64_t;
532     #else /* _MSC_VER || __BORLANDC__ */
533     typedef signed __int64 int64_t;
534     typedef unsigned __int64 uint64_t;
535     #endif
536 root 1.437 #ifdef _WIN64
537     #define ECB_PTRSIZE 8
538     typedef uint64_t uintptr_t;
539     typedef int64_t intptr_t;
540     #else
541     #define ECB_PTRSIZE 4
542     typedef uint32_t uintptr_t;
543     typedef int32_t intptr_t;
544     #endif
545 root 1.391 #else
546     #include <inttypes.h>
547 root 1.437 #if UINTMAX_MAX > 0xffffffffU
548     #define ECB_PTRSIZE 8
549     #else
550     #define ECB_PTRSIZE 4
551     #endif
552 root 1.391 #endif
553 root 1.379
554 root 1.454 /* work around x32 idiocy by defining proper macros */
555     #if __x86_64 || _M_AMD64
556     #if __ILP32
557     #define ECB_AMD64_X32 1
558     #else
559     #define ECB_AMD64 1
560     #endif
561     #endif
562    
563 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
564     * what their idiot authors think are the "more important" extensions,
565 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
566 root 1.379 * or so.
567     * we try to detect these and simply assume they are not gcc - if they have
568     * an issue with that they should have done it right in the first place.
569     */
570     #ifndef ECB_GCC_VERSION
571 root 1.417 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 root 1.379 #define ECB_GCC_VERSION(major,minor) 0
573     #else
574     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575     #endif
576     #endif
577    
578 root 1.437 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
580     #define ECB_C11 (__STDC_VERSION__ >= 201112L)
581     #define ECB_CPP (__cplusplus+0)
582     #define ECB_CPP11 (__cplusplus >= 201103L)
583    
584 root 1.450 #if ECB_CPP
585     #define ECB_EXTERN_C extern "C"
586     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587     #define ECB_EXTERN_C_END }
588     #else
589     #define ECB_EXTERN_C extern
590     #define ECB_EXTERN_C_BEG
591     #define ECB_EXTERN_C_END
592     #endif
593    
594 root 1.391 /*****************************************************************************/
595    
596     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598    
599 root 1.410 #if ECB_NO_THREADS
600 root 1.439 #define ECB_NO_SMP 1
601 root 1.410 #endif
602    
603 root 1.437 #if ECB_NO_SMP
604 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
605 root 1.40 #endif
606    
607 root 1.383 #ifndef ECB_MEMORY_FENCE
608 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 root 1.404 #if __i386 || __i386__
610 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 root 1.404 #elif __sparc || __sparc__
626 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 root 1.417 #elif defined __s390__ || defined __s390x__
630 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 root 1.417 #elif defined __mips__
632 root 1.456 /* GNU/Linux emulates sync on mips1 architectures, so we force it's use */
633     /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
634     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
635 root 1.419 #elif defined __alpha__
636 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
637     #elif defined __hppa__
638     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
639     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
640     #elif defined __ia64__
641     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
642 root 1.457 #elif defined __m68k__
643     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
644     #elif defined __m88k__
645     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
646     #elif defined __sh__
647     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
648 root 1.383 #endif
649     #endif
650     #endif
651    
652     #ifndef ECB_MEMORY_FENCE
653 root 1.437 #if ECB_GCC_VERSION(4,7)
654 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
655 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
656 root 1.450
657     /* The __has_feature syntax from clang is so misdesigned that we cannot use it
658     * without risking compile time errors with other compilers. We *could*
659     * define our own ecb_clang_has_feature, but I just can't be bothered to work
660     * around this shit time and again.
661     * #elif defined __clang && __has_feature (cxx_atomic)
662     * // see comment below (stdatomic.h) about the C11 memory model.
663     * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
664     */
665    
666 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
667 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
668 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
669     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
670     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
671     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
672     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
673 root 1.417 #elif defined _WIN32
674 root 1.388 #include <WinNT.h>
675 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
676 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
677     #include <mbarrier.h>
678     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
679     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
680     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
681 root 1.413 #elif __xlC__
682 root 1.414 #define ECB_MEMORY_FENCE __sync ()
683 root 1.383 #endif
684     #endif
685    
686     #ifndef ECB_MEMORY_FENCE
687 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
688     /* we assume that these memory fences work on all variables/all memory accesses, */
689     /* not just C11 atomics and atomic accesses */
690     #include <stdatomic.h>
691 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
692     /* any fence other than seq_cst, which isn't very efficient for us. */
693     /* Why that is, we don't know - either the C11 memory model is quite useless */
694     /* for most usages, or gcc and clang have a bug */
695     /* I *currently* lean towards the latter, and inefficiently implement */
696     /* all three of ecb's fences as a seq_cst fence */
697 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
698     #endif
699     #endif
700    
701     #ifndef ECB_MEMORY_FENCE
702 root 1.392 #if !ECB_AVOID_PTHREADS
703     /*
704     * if you get undefined symbol references to pthread_mutex_lock,
705     * or failure to find pthread.h, then you should implement
706     * the ECB_MEMORY_FENCE operations for your cpu/compiler
707     * OR provide pthread.h and link against the posix thread library
708     * of your system.
709     */
710     #include <pthread.h>
711     #define ECB_NEEDS_PTHREADS 1
712     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
713    
714     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
715     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
716     #endif
717     #endif
718 root 1.383
719 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
720 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
721 root 1.392 #endif
722    
723 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
724 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
725     #endif
726    
727 root 1.391 /*****************************************************************************/
728    
729     #if __cplusplus
730     #define ecb_inline static inline
731     #elif ECB_GCC_VERSION(2,5)
732     #define ecb_inline static __inline__
733     #elif ECB_C99
734     #define ecb_inline static inline
735     #else
736     #define ecb_inline static
737     #endif
738    
739     #if ECB_GCC_VERSION(3,3)
740     #define ecb_restrict __restrict__
741     #elif ECB_C99
742     #define ecb_restrict restrict
743     #else
744     #define ecb_restrict
745     #endif
746    
747     typedef int ecb_bool;
748    
749     #define ECB_CONCAT_(a, b) a ## b
750     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
751     #define ECB_STRINGIFY_(a) # a
752     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
753    
754     #define ecb_function_ ecb_inline
755    
756 root 1.379 #if ECB_GCC_VERSION(3,1)
757     #define ecb_attribute(attrlist) __attribute__(attrlist)
758     #define ecb_is_constant(expr) __builtin_constant_p (expr)
759     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
760     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
761     #else
762     #define ecb_attribute(attrlist)
763     #define ecb_is_constant(expr) 0
764     #define ecb_expect(expr,value) (expr)
765     #define ecb_prefetch(addr,rw,locality)
766     #endif
767    
768 root 1.391 /* no emulation for ecb_decltype */
769     #if ECB_GCC_VERSION(4,5)
770     #define ecb_decltype(x) __decltype(x)
771     #elif ECB_GCC_VERSION(3,0)
772     #define ecb_decltype(x) __typeof(x)
773     #endif
774    
775 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
776     #define ecb_unused ecb_attribute ((__unused__))
777     #define ecb_const ecb_attribute ((__const__))
778     #define ecb_pure ecb_attribute ((__pure__))
779    
780 root 1.437 #if ECB_C11
781     #define ecb_noreturn _Noreturn
782     #else
783     #define ecb_noreturn ecb_attribute ((__noreturn__))
784     #endif
785    
786 root 1.379 #if ECB_GCC_VERSION(4,3)
787     #define ecb_artificial ecb_attribute ((__artificial__))
788     #define ecb_hot ecb_attribute ((__hot__))
789     #define ecb_cold ecb_attribute ((__cold__))
790     #else
791     #define ecb_artificial
792     #define ecb_hot
793     #define ecb_cold
794     #endif
795    
796     /* put around conditional expressions if you are very sure that the */
797     /* expression is mostly true or mostly false. note that these return */
798     /* booleans, not the expression. */
799     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
800     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
801 root 1.391 /* for compatibility to the rest of the world */
802     #define ecb_likely(expr) ecb_expect_true (expr)
803     #define ecb_unlikely(expr) ecb_expect_false (expr)
804    
805     /* count trailing zero bits and count # of one bits */
806     #if ECB_GCC_VERSION(3,4)
807     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
808     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
809     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
810     #define ecb_ctz32(x) __builtin_ctz (x)
811     #define ecb_ctz64(x) __builtin_ctzll (x)
812     #define ecb_popcount32(x) __builtin_popcount (x)
813     /* no popcountll */
814     #else
815     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
816     ecb_function_ int
817     ecb_ctz32 (uint32_t x)
818     {
819     int r = 0;
820    
821     x &= ~x + 1; /* this isolates the lowest bit */
822    
823     #if ECB_branchless_on_i386
824     r += !!(x & 0xaaaaaaaa) << 0;
825     r += !!(x & 0xcccccccc) << 1;
826     r += !!(x & 0xf0f0f0f0) << 2;
827     r += !!(x & 0xff00ff00) << 3;
828     r += !!(x & 0xffff0000) << 4;
829     #else
830     if (x & 0xaaaaaaaa) r += 1;
831     if (x & 0xcccccccc) r += 2;
832     if (x & 0xf0f0f0f0) r += 4;
833     if (x & 0xff00ff00) r += 8;
834     if (x & 0xffff0000) r += 16;
835     #endif
836    
837     return r;
838     }
839    
840     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
841     ecb_function_ int
842     ecb_ctz64 (uint64_t x)
843     {
844     int shift = x & 0xffffffffU ? 0 : 32;
845     return ecb_ctz32 (x >> shift) + shift;
846     }
847    
848     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
849     ecb_function_ int
850     ecb_popcount32 (uint32_t x)
851     {
852     x -= (x >> 1) & 0x55555555;
853     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
854     x = ((x >> 4) + x) & 0x0f0f0f0f;
855     x *= 0x01010101;
856    
857     return x >> 24;
858     }
859    
860     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
861     ecb_function_ int ecb_ld32 (uint32_t x)
862     {
863     int r = 0;
864    
865     if (x >> 16) { x >>= 16; r += 16; }
866     if (x >> 8) { x >>= 8; r += 8; }
867     if (x >> 4) { x >>= 4; r += 4; }
868     if (x >> 2) { x >>= 2; r += 2; }
869     if (x >> 1) { r += 1; }
870    
871     return r;
872     }
873    
874     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
875     ecb_function_ int ecb_ld64 (uint64_t x)
876     {
877     int r = 0;
878    
879     if (x >> 32) { x >>= 32; r += 32; }
880    
881     return r + ecb_ld32 (x);
882     }
883     #endif
884    
885 root 1.437 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
886     ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
887     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
888     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
889    
890 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
891     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
892     {
893     return ( (x * 0x0802U & 0x22110U)
894     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
895     }
896    
897     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
898     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
899     {
900     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
901     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
902     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
903     x = ( x >> 8 ) | ( x << 8);
904    
905     return x;
906     }
907    
908     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
909     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
910     {
911     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
912     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
913     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
914     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
915     x = ( x >> 16 ) | ( x << 16);
916    
917     return x;
918     }
919    
920 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
921     /* so for this version we are lazy */
922     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
923     ecb_function_ int
924     ecb_popcount64 (uint64_t x)
925     {
926     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
927     }
928    
929     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
930     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
931     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
932     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
933     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
934     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
935     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
936     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
937    
938     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
939     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
940     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
941     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
942     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
943     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
944     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
945     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
946    
947     #if ECB_GCC_VERSION(4,3)
948     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
949     #define ecb_bswap32(x) __builtin_bswap32 (x)
950     #define ecb_bswap64(x) __builtin_bswap64 (x)
951     #else
952     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
953     ecb_function_ uint16_t
954     ecb_bswap16 (uint16_t x)
955     {
956     return ecb_rotl16 (x, 8);
957     }
958    
959     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
960     ecb_function_ uint32_t
961     ecb_bswap32 (uint32_t x)
962     {
963     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
964     }
965    
966     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
967     ecb_function_ uint64_t
968     ecb_bswap64 (uint64_t x)
969     {
970     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
971     }
972     #endif
973    
974     #if ECB_GCC_VERSION(4,5)
975     #define ecb_unreachable() __builtin_unreachable ()
976     #else
977     /* this seems to work fine, but gcc always emits a warning for it :/ */
978 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
979     ecb_inline void ecb_unreachable (void) { }
980 root 1.391 #endif
981    
982     /* try to tell the compiler that some condition is definitely true */
983 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
984 root 1.391
985 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
986     ecb_inline unsigned char
987 root 1.391 ecb_byteorder_helper (void)
988     {
989 root 1.450 /* the union code still generates code under pressure in gcc, */
990     /* but less than using pointers, and always seems to */
991     /* successfully return a constant. */
992     /* the reason why we have this horrible preprocessor mess */
993     /* is to avoid it in all cases, at least on common architectures */
994     /* or when using a recent enough gcc version (>= 4.6) */
995     #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
996     return 0x44;
997     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
998     return 0x44;
999     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1000     return 0x11;
1001     #else
1002     union
1003     {
1004     uint32_t i;
1005     uint8_t c;
1006     } u = { 0x11223344 };
1007     return u.c;
1008     #endif
1009 root 1.391 }
1010    
1011 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1012     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1013     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1014     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1015 root 1.391
1016     #if ECB_GCC_VERSION(3,0) || ECB_C99
1017     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1018     #else
1019     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1020     #endif
1021    
1022 root 1.398 #if __cplusplus
1023     template<typename T>
1024     static inline T ecb_div_rd (T val, T div)
1025     {
1026     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1027     }
1028     template<typename T>
1029     static inline T ecb_div_ru (T val, T div)
1030     {
1031     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1032     }
1033     #else
1034     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1035     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1036     #endif
1037    
1038 root 1.391 #if ecb_cplusplus_does_not_suck
1039     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1040     template<typename T, int N>
1041     static inline int ecb_array_length (const T (&arr)[N])
1042     {
1043     return N;
1044     }
1045     #else
1046     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1047     #endif
1048    
1049 root 1.450 /*******************************************************************************/
1050     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1051    
1052     /* basically, everything uses "ieee pure-endian" floating point numbers */
1053     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1054     #if 0 \
1055     || __i386 || __i386__ \
1056     || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1057     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1058     || defined __arm__ && defined __ARM_EABI__ \
1059     || defined __s390__ || defined __s390x__ \
1060     || defined __mips__ \
1061     || defined __alpha__ \
1062     || defined __hppa__ \
1063     || defined __ia64__ \
1064 root 1.457 || defined __m68k__ \
1065     || defined __m88k__ \
1066     || defined __sh__ \
1067 root 1.450 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1068     #define ECB_STDFP 1
1069     #include <string.h> /* for memcpy */
1070     #else
1071     #define ECB_STDFP 0
1072     #include <math.h> /* for frexp*, ldexp* */
1073     #endif
1074    
1075     #ifndef ECB_NO_LIBM
1076    
1077     /* convert a float to ieee single/binary32 */
1078     ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1079     ecb_function_ uint32_t
1080     ecb_float_to_binary32 (float x)
1081     {
1082     uint32_t r;
1083    
1084     #if ECB_STDFP
1085     memcpy (&r, &x, 4);
1086     #else
1087     /* slow emulation, works for anything but -0 */
1088     uint32_t m;
1089     int e;
1090    
1091     if (x == 0e0f ) return 0x00000000U;
1092     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1093     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1094     if (x != x ) return 0x7fbfffffU;
1095    
1096     m = frexpf (x, &e) * 0x1000000U;
1097    
1098     r = m & 0x80000000U;
1099    
1100     if (r)
1101     m = -m;
1102    
1103     if (e <= -126)
1104     {
1105     m &= 0xffffffU;
1106     m >>= (-125 - e);
1107     e = -126;
1108     }
1109    
1110     r |= (e + 126) << 23;
1111     r |= m & 0x7fffffU;
1112     #endif
1113    
1114     return r;
1115     }
1116    
1117     /* converts an ieee single/binary32 to a float */
1118     ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1119     ecb_function_ float
1120     ecb_binary32_to_float (uint32_t x)
1121     {
1122     float r;
1123    
1124     #if ECB_STDFP
1125     memcpy (&r, &x, 4);
1126     #else
1127     /* emulation, only works for normals and subnormals and +0 */
1128     int neg = x >> 31;
1129     int e = (x >> 23) & 0xffU;
1130    
1131     x &= 0x7fffffU;
1132    
1133     if (e)
1134     x |= 0x800000U;
1135     else
1136     e = 1;
1137    
1138     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1139     r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1140    
1141     r = neg ? -r : r;
1142     #endif
1143    
1144     return r;
1145     }
1146    
1147     /* convert a double to ieee double/binary64 */
1148     ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1149     ecb_function_ uint64_t
1150     ecb_double_to_binary64 (double x)
1151     {
1152     uint64_t r;
1153    
1154     #if ECB_STDFP
1155     memcpy (&r, &x, 8);
1156     #else
1157     /* slow emulation, works for anything but -0 */
1158     uint64_t m;
1159     int e;
1160    
1161     if (x == 0e0 ) return 0x0000000000000000U;
1162     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1163     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1164     if (x != x ) return 0X7ff7ffffffffffffU;
1165    
1166     m = frexp (x, &e) * 0x20000000000000U;
1167    
1168     r = m & 0x8000000000000000;;
1169    
1170     if (r)
1171     m = -m;
1172    
1173     if (e <= -1022)
1174     {
1175     m &= 0x1fffffffffffffU;
1176     m >>= (-1021 - e);
1177     e = -1022;
1178     }
1179    
1180     r |= ((uint64_t)(e + 1022)) << 52;
1181     r |= m & 0xfffffffffffffU;
1182     #endif
1183    
1184     return r;
1185     }
1186    
1187     /* converts an ieee double/binary64 to a double */
1188     ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1189     ecb_function_ double
1190     ecb_binary64_to_double (uint64_t x)
1191     {
1192     double r;
1193    
1194     #if ECB_STDFP
1195     memcpy (&r, &x, 8);
1196     #else
1197     /* emulation, only works for normals and subnormals and +0 */
1198     int neg = x >> 63;
1199     int e = (x >> 52) & 0x7ffU;
1200    
1201     x &= 0xfffffffffffffU;
1202    
1203     if (e)
1204     x |= 0x10000000000000U;
1205     else
1206     e = 1;
1207    
1208     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1209     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1210    
1211     r = neg ? -r : r;
1212     #endif
1213    
1214     return r;
1215     }
1216    
1217     #endif
1218    
1219 root 1.391 #endif
1220    
1221     /* ECB.H END */
1222 root 1.379
1223 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1224 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1225 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1226     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1227 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1228 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1229     * which will then provide the memory fences.
1230     */
1231     # error "memory fences not defined for your architecture, please report"
1232     #endif
1233    
1234     #ifndef ECB_MEMORY_FENCE
1235     # define ECB_MEMORY_FENCE do { } while (0)
1236     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1237     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1238 root 1.392 #endif
1239    
1240 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1241     #define expect_true(cond) ecb_expect_true (cond)
1242     #define noinline ecb_noinline
1243    
1244     #define inline_size ecb_inline
1245 root 1.169
1246 root 1.338 #if EV_FEATURE_CODE
1247 root 1.379 # define inline_speed ecb_inline
1248 root 1.338 #else
1249 root 1.169 # define inline_speed static noinline
1250     #endif
1251 root 1.40
1252 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1253    
1254     #if EV_MINPRI == EV_MAXPRI
1255     # define ABSPRI(w) (((W)w), 0)
1256     #else
1257     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1258     #endif
1259 root 1.42
1260 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1261 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1262 root 1.103
1263 root 1.136 typedef ev_watcher *W;
1264     typedef ev_watcher_list *WL;
1265     typedef ev_watcher_time *WT;
1266 root 1.10
1267 root 1.229 #define ev_active(w) ((W)(w))->active
1268 root 1.228 #define ev_at(w) ((WT)(w))->at
1269    
1270 root 1.279 #if EV_USE_REALTIME
1271 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1272 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1273 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1274     #endif
1275    
1276     #if EV_USE_MONOTONIC
1277 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1278 root 1.198 #endif
1279 root 1.54
1280 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1281     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1282     #endif
1283     #ifndef EV_WIN32_HANDLE_TO_FD
1284 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1285 root 1.313 #endif
1286     #ifndef EV_WIN32_CLOSE_FD
1287     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1288     #endif
1289    
1290 root 1.103 #ifdef _WIN32
1291 root 1.98 # include "ev_win32.c"
1292     #endif
1293 root 1.67
1294 root 1.53 /*****************************************************************************/
1295 root 1.1
1296 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1297    
1298     #if EV_USE_FLOOR
1299     # include <math.h>
1300     # define ev_floor(v) floor (v)
1301     #else
1302    
1303     #include <float.h>
1304    
1305     /* a floor() replacement function, should be independent of ev_tstamp type */
1306     static ev_tstamp noinline
1307     ev_floor (ev_tstamp v)
1308     {
1309     /* the choice of shift factor is not terribly important */
1310     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1311     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1312     #else
1313     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1314     #endif
1315    
1316     /* argument too large for an unsigned long? */
1317     if (expect_false (v >= shift))
1318     {
1319     ev_tstamp f;
1320    
1321     if (v == v - 1.)
1322     return v; /* very large number */
1323    
1324     f = shift * ev_floor (v * (1. / shift));
1325     return f + ev_floor (v - f);
1326     }
1327    
1328     /* special treatment for negative args? */
1329     if (expect_false (v < 0.))
1330     {
1331     ev_tstamp f = -ev_floor (-v);
1332    
1333     return f - (f == v ? 0 : 1);
1334     }
1335    
1336     /* fits into an unsigned long */
1337     return (unsigned long)v;
1338     }
1339    
1340     #endif
1341    
1342     /*****************************************************************************/
1343    
1344 root 1.356 #ifdef __linux
1345     # include <sys/utsname.h>
1346     #endif
1347    
1348 root 1.379 static unsigned int noinline ecb_cold
1349 root 1.355 ev_linux_version (void)
1350     {
1351     #ifdef __linux
1352 root 1.359 unsigned int v = 0;
1353 root 1.355 struct utsname buf;
1354     int i;
1355     char *p = buf.release;
1356    
1357     if (uname (&buf))
1358     return 0;
1359    
1360     for (i = 3+1; --i; )
1361     {
1362     unsigned int c = 0;
1363    
1364     for (;;)
1365     {
1366     if (*p >= '0' && *p <= '9')
1367     c = c * 10 + *p++ - '0';
1368     else
1369     {
1370     p += *p == '.';
1371     break;
1372     }
1373     }
1374    
1375     v = (v << 8) | c;
1376     }
1377    
1378     return v;
1379     #else
1380     return 0;
1381     #endif
1382     }
1383    
1384     /*****************************************************************************/
1385    
1386 root 1.331 #if EV_AVOID_STDIO
1387 root 1.379 static void noinline ecb_cold
1388 root 1.331 ev_printerr (const char *msg)
1389     {
1390     write (STDERR_FILENO, msg, strlen (msg));
1391     }
1392     #endif
1393    
1394 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1395 root 1.69
1396 root 1.379 void ecb_cold
1397 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1398 root 1.69 {
1399     syserr_cb = cb;
1400     }
1401    
1402 root 1.379 static void noinline ecb_cold
1403 root 1.269 ev_syserr (const char *msg)
1404 root 1.69 {
1405 root 1.70 if (!msg)
1406     msg = "(libev) system error";
1407    
1408 root 1.69 if (syserr_cb)
1409 root 1.70 syserr_cb (msg);
1410 root 1.69 else
1411     {
1412 root 1.330 #if EV_AVOID_STDIO
1413 root 1.331 ev_printerr (msg);
1414     ev_printerr (": ");
1415 root 1.365 ev_printerr (strerror (errno));
1416 root 1.331 ev_printerr ("\n");
1417 root 1.330 #else
1418 root 1.70 perror (msg);
1419 root 1.330 #endif
1420 root 1.69 abort ();
1421     }
1422     }
1423    
1424 root 1.224 static void *
1425 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1426 root 1.224 {
1427     /* some systems, notably openbsd and darwin, fail to properly
1428 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1429 root 1.224 * the single unix specification, so work around them here.
1430 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1431     * despite documenting it otherwise.
1432 root 1.224 */
1433 root 1.333
1434 root 1.224 if (size)
1435     return realloc (ptr, size);
1436    
1437     free (ptr);
1438     return 0;
1439     }
1440    
1441 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1442 root 1.69
1443 root 1.379 void ecb_cold
1444 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1445 root 1.69 {
1446     alloc = cb;
1447     }
1448    
1449 root 1.150 inline_speed void *
1450 root 1.155 ev_realloc (void *ptr, long size)
1451 root 1.69 {
1452 root 1.224 ptr = alloc (ptr, size);
1453 root 1.69
1454     if (!ptr && size)
1455     {
1456 root 1.330 #if EV_AVOID_STDIO
1457 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1458 root 1.330 #else
1459 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1460 root 1.330 #endif
1461 root 1.69 abort ();
1462     }
1463    
1464     return ptr;
1465     }
1466    
1467     #define ev_malloc(size) ev_realloc (0, (size))
1468     #define ev_free(ptr) ev_realloc ((ptr), 0)
1469    
1470     /*****************************************************************************/
1471    
1472 root 1.298 /* set in reify when reification needed */
1473     #define EV_ANFD_REIFY 1
1474    
1475 root 1.288 /* file descriptor info structure */
1476 root 1.53 typedef struct
1477     {
1478 root 1.68 WL head;
1479 root 1.288 unsigned char events; /* the events watched for */
1480 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1481 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1482 root 1.269 unsigned char unused;
1483     #if EV_USE_EPOLL
1484 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1485 root 1.269 #endif
1486 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1487 root 1.103 SOCKET handle;
1488     #endif
1489 root 1.357 #if EV_USE_IOCP
1490     OVERLAPPED or, ow;
1491     #endif
1492 root 1.53 } ANFD;
1493 root 1.1
1494 root 1.288 /* stores the pending event set for a given watcher */
1495 root 1.53 typedef struct
1496     {
1497     W w;
1498 root 1.288 int events; /* the pending event set for the given watcher */
1499 root 1.53 } ANPENDING;
1500 root 1.51
1501 root 1.155 #if EV_USE_INOTIFY
1502 root 1.241 /* hash table entry per inotify-id */
1503 root 1.152 typedef struct
1504     {
1505     WL head;
1506 root 1.155 } ANFS;
1507 root 1.152 #endif
1508    
1509 root 1.241 /* Heap Entry */
1510     #if EV_HEAP_CACHE_AT
1511 root 1.288 /* a heap element */
1512 root 1.241 typedef struct {
1513 root 1.243 ev_tstamp at;
1514 root 1.241 WT w;
1515     } ANHE;
1516    
1517 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1518     #define ANHE_at(he) (he).at /* access cached at, read-only */
1519     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1520 root 1.241 #else
1521 root 1.288 /* a heap element */
1522 root 1.241 typedef WT ANHE;
1523    
1524 root 1.248 #define ANHE_w(he) (he)
1525     #define ANHE_at(he) (he)->at
1526     #define ANHE_at_cache(he)
1527 root 1.241 #endif
1528    
1529 root 1.55 #if EV_MULTIPLICITY
1530 root 1.54
1531 root 1.80 struct ev_loop
1532     {
1533 root 1.86 ev_tstamp ev_rt_now;
1534 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1535 root 1.80 #define VAR(name,decl) decl;
1536     #include "ev_vars.h"
1537     #undef VAR
1538     };
1539     #include "ev_wrap.h"
1540    
1541 root 1.116 static struct ev_loop default_loop_struct;
1542 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1543 root 1.54
1544 root 1.53 #else
1545 root 1.54
1546 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1547 root 1.80 #define VAR(name,decl) static decl;
1548     #include "ev_vars.h"
1549     #undef VAR
1550    
1551 root 1.116 static int ev_default_loop_ptr;
1552 root 1.54
1553 root 1.51 #endif
1554 root 1.1
1555 root 1.338 #if EV_FEATURE_API
1556 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1557     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1558 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1559     #else
1560 root 1.298 # define EV_RELEASE_CB (void)0
1561     # define EV_ACQUIRE_CB (void)0
1562 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1563     #endif
1564    
1565 root 1.353 #define EVBREAK_RECURSE 0x80
1566 root 1.298
1567 root 1.8 /*****************************************************************************/
1568    
1569 root 1.292 #ifndef EV_HAVE_EV_TIME
1570 root 1.141 ev_tstamp
1571 root 1.420 ev_time (void) EV_THROW
1572 root 1.1 {
1573 root 1.29 #if EV_USE_REALTIME
1574 root 1.279 if (expect_true (have_realtime))
1575     {
1576     struct timespec ts;
1577     clock_gettime (CLOCK_REALTIME, &ts);
1578     return ts.tv_sec + ts.tv_nsec * 1e-9;
1579     }
1580     #endif
1581    
1582 root 1.1 struct timeval tv;
1583     gettimeofday (&tv, 0);
1584     return tv.tv_sec + tv.tv_usec * 1e-6;
1585     }
1586 root 1.292 #endif
1587 root 1.1
1588 root 1.284 inline_size ev_tstamp
1589 root 1.1 get_clock (void)
1590     {
1591 root 1.29 #if EV_USE_MONOTONIC
1592 root 1.40 if (expect_true (have_monotonic))
1593 root 1.1 {
1594     struct timespec ts;
1595     clock_gettime (CLOCK_MONOTONIC, &ts);
1596     return ts.tv_sec + ts.tv_nsec * 1e-9;
1597     }
1598     #endif
1599    
1600     return ev_time ();
1601     }
1602    
1603 root 1.85 #if EV_MULTIPLICITY
1604 root 1.51 ev_tstamp
1605 root 1.420 ev_now (EV_P) EV_THROW
1606 root 1.51 {
1607 root 1.85 return ev_rt_now;
1608 root 1.51 }
1609 root 1.85 #endif
1610 root 1.51
1611 root 1.193 void
1612 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1613 root 1.193 {
1614     if (delay > 0.)
1615     {
1616     #if EV_USE_NANOSLEEP
1617     struct timespec ts;
1618    
1619 root 1.348 EV_TS_SET (ts, delay);
1620 root 1.193 nanosleep (&ts, 0);
1621 root 1.416 #elif defined _WIN32
1622 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1623 root 1.193 #else
1624     struct timeval tv;
1625    
1626 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1627 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1628 root 1.257 /* by older ones */
1629 sf-exg 1.349 EV_TV_SET (tv, delay);
1630 root 1.193 select (0, 0, 0, 0, &tv);
1631     #endif
1632     }
1633     }
1634    
1635     /*****************************************************************************/
1636    
1637 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1638 root 1.232
1639 root 1.288 /* find a suitable new size for the given array, */
1640 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1641 root 1.284 inline_size int
1642 root 1.163 array_nextsize (int elem, int cur, int cnt)
1643     {
1644     int ncur = cur + 1;
1645    
1646     do
1647     ncur <<= 1;
1648     while (cnt > ncur);
1649    
1650 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1651 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1652 root 1.163 {
1653     ncur *= elem;
1654 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1655 root 1.163 ncur = ncur - sizeof (void *) * 4;
1656     ncur /= elem;
1657     }
1658    
1659     return ncur;
1660     }
1661    
1662 root 1.379 static void * noinline ecb_cold
1663 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1664     {
1665     *cur = array_nextsize (elem, *cur, cnt);
1666     return ev_realloc (base, elem * *cur);
1667     }
1668 root 1.29
1669 root 1.265 #define array_init_zero(base,count) \
1670     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1671    
1672 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1673 root 1.163 if (expect_false ((cnt) > (cur))) \
1674 root 1.69 { \
1675 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1676 root 1.163 (base) = (type *)array_realloc \
1677     (sizeof (type), (base), &(cur), (cnt)); \
1678     init ((base) + (ocur_), (cur) - ocur_); \
1679 root 1.1 }
1680    
1681 root 1.163 #if 0
1682 root 1.74 #define array_slim(type,stem) \
1683 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1684     { \
1685     stem ## max = array_roundsize (stem ## cnt >> 1); \
1686 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1687 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1688     }
1689 root 1.163 #endif
1690 root 1.67
1691 root 1.65 #define array_free(stem, idx) \
1692 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1693 root 1.65
1694 root 1.8 /*****************************************************************************/
1695    
1696 root 1.288 /* dummy callback for pending events */
1697     static void noinline
1698     pendingcb (EV_P_ ev_prepare *w, int revents)
1699     {
1700     }
1701    
1702 root 1.140 void noinline
1703 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1704 root 1.1 {
1705 root 1.78 W w_ = (W)w;
1706 root 1.171 int pri = ABSPRI (w_);
1707 root 1.78
1708 root 1.123 if (expect_false (w_->pending))
1709 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1710     else
1711 root 1.32 {
1712 root 1.171 w_->pending = ++pendingcnt [pri];
1713     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1714     pendings [pri][w_->pending - 1].w = w_;
1715     pendings [pri][w_->pending - 1].events = revents;
1716 root 1.32 }
1717 root 1.425
1718     pendingpri = NUMPRI - 1;
1719 root 1.1 }
1720    
1721 root 1.284 inline_speed void
1722     feed_reverse (EV_P_ W w)
1723     {
1724     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1725     rfeeds [rfeedcnt++] = w;
1726     }
1727    
1728     inline_size void
1729     feed_reverse_done (EV_P_ int revents)
1730     {
1731     do
1732     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1733     while (rfeedcnt);
1734     }
1735    
1736     inline_speed void
1737 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1738 root 1.27 {
1739     int i;
1740    
1741     for (i = 0; i < eventcnt; ++i)
1742 root 1.78 ev_feed_event (EV_A_ events [i], type);
1743 root 1.27 }
1744    
1745 root 1.141 /*****************************************************************************/
1746    
1747 root 1.284 inline_speed void
1748 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1749 root 1.1 {
1750     ANFD *anfd = anfds + fd;
1751 root 1.136 ev_io *w;
1752 root 1.1
1753 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1754 root 1.1 {
1755 root 1.79 int ev = w->events & revents;
1756 root 1.1
1757     if (ev)
1758 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1759 root 1.1 }
1760     }
1761    
1762 root 1.298 /* do not submit kernel events for fds that have reify set */
1763     /* because that means they changed while we were polling for new events */
1764     inline_speed void
1765     fd_event (EV_P_ int fd, int revents)
1766     {
1767     ANFD *anfd = anfds + fd;
1768    
1769     if (expect_true (!anfd->reify))
1770 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1771 root 1.298 }
1772    
1773 root 1.79 void
1774 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1775 root 1.79 {
1776 root 1.168 if (fd >= 0 && fd < anfdmax)
1777 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1778 root 1.79 }
1779    
1780 root 1.288 /* make sure the external fd watch events are in-sync */
1781     /* with the kernel/libev internal state */
1782 root 1.284 inline_size void
1783 root 1.51 fd_reify (EV_P)
1784 root 1.9 {
1785     int i;
1786    
1787 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1788     for (i = 0; i < fdchangecnt; ++i)
1789     {
1790     int fd = fdchanges [i];
1791     ANFD *anfd = anfds + fd;
1792    
1793 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1794 root 1.371 {
1795     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1796    
1797     if (handle != anfd->handle)
1798     {
1799     unsigned long arg;
1800    
1801     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1802    
1803     /* handle changed, but fd didn't - we need to do it in two steps */
1804     backend_modify (EV_A_ fd, anfd->events, 0);
1805     anfd->events = 0;
1806     anfd->handle = handle;
1807     }
1808     }
1809     }
1810     #endif
1811    
1812 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1813     {
1814     int fd = fdchanges [i];
1815     ANFD *anfd = anfds + fd;
1816 root 1.136 ev_io *w;
1817 root 1.27
1818 root 1.350 unsigned char o_events = anfd->events;
1819     unsigned char o_reify = anfd->reify;
1820 root 1.27
1821 root 1.350 anfd->reify = 0;
1822 root 1.27
1823 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1824     {
1825     anfd->events = 0;
1826 root 1.184
1827 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1828     anfd->events |= (unsigned char)w->events;
1829 root 1.27
1830 root 1.351 if (o_events != anfd->events)
1831 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1832     }
1833    
1834     if (o_reify & EV__IOFDSET)
1835     backend_modify (EV_A_ fd, o_events, anfd->events);
1836 root 1.27 }
1837    
1838     fdchangecnt = 0;
1839     }
1840    
1841 root 1.288 /* something about the given fd changed */
1842 root 1.284 inline_size void
1843 root 1.183 fd_change (EV_P_ int fd, int flags)
1844 root 1.27 {
1845 root 1.183 unsigned char reify = anfds [fd].reify;
1846 root 1.184 anfds [fd].reify |= flags;
1847 root 1.27
1848 root 1.183 if (expect_true (!reify))
1849     {
1850     ++fdchangecnt;
1851     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1852     fdchanges [fdchangecnt - 1] = fd;
1853     }
1854 root 1.9 }
1855    
1856 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1857 root 1.379 inline_speed void ecb_cold
1858 root 1.51 fd_kill (EV_P_ int fd)
1859 root 1.41 {
1860 root 1.136 ev_io *w;
1861 root 1.41
1862 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1863 root 1.41 {
1864 root 1.51 ev_io_stop (EV_A_ w);
1865 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1866 root 1.41 }
1867     }
1868    
1869 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1870 root 1.379 inline_size int ecb_cold
1871 root 1.71 fd_valid (int fd)
1872     {
1873 root 1.103 #ifdef _WIN32
1874 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1875 root 1.71 #else
1876     return fcntl (fd, F_GETFD) != -1;
1877     #endif
1878     }
1879    
1880 root 1.19 /* called on EBADF to verify fds */
1881 root 1.379 static void noinline ecb_cold
1882 root 1.51 fd_ebadf (EV_P)
1883 root 1.19 {
1884     int fd;
1885    
1886     for (fd = 0; fd < anfdmax; ++fd)
1887 root 1.27 if (anfds [fd].events)
1888 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1889 root 1.51 fd_kill (EV_A_ fd);
1890 root 1.41 }
1891    
1892     /* called on ENOMEM in select/poll to kill some fds and retry */
1893 root 1.379 static void noinline ecb_cold
1894 root 1.51 fd_enomem (EV_P)
1895 root 1.41 {
1896 root 1.62 int fd;
1897 root 1.41
1898 root 1.62 for (fd = anfdmax; fd--; )
1899 root 1.41 if (anfds [fd].events)
1900     {
1901 root 1.51 fd_kill (EV_A_ fd);
1902 root 1.307 break;
1903 root 1.41 }
1904 root 1.19 }
1905    
1906 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1907 root 1.140 static void noinline
1908 root 1.56 fd_rearm_all (EV_P)
1909     {
1910     int fd;
1911    
1912     for (fd = 0; fd < anfdmax; ++fd)
1913     if (anfds [fd].events)
1914     {
1915     anfds [fd].events = 0;
1916 root 1.268 anfds [fd].emask = 0;
1917 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1918 root 1.56 }
1919     }
1920    
1921 root 1.336 /* used to prepare libev internal fd's */
1922     /* this is not fork-safe */
1923     inline_speed void
1924     fd_intern (int fd)
1925     {
1926     #ifdef _WIN32
1927     unsigned long arg = 1;
1928     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1929     #else
1930     fcntl (fd, F_SETFD, FD_CLOEXEC);
1931     fcntl (fd, F_SETFL, O_NONBLOCK);
1932     #endif
1933     }
1934    
1935 root 1.8 /*****************************************************************************/
1936    
1937 root 1.235 /*
1938 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1939 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1940     * the branching factor of the d-tree.
1941     */
1942    
1943     /*
1944 root 1.235 * at the moment we allow libev the luxury of two heaps,
1945     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1946     * which is more cache-efficient.
1947     * the difference is about 5% with 50000+ watchers.
1948     */
1949 root 1.241 #if EV_USE_4HEAP
1950 root 1.235
1951 root 1.237 #define DHEAP 4
1952     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1953 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1954 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1955 root 1.235
1956     /* away from the root */
1957 root 1.284 inline_speed void
1958 root 1.241 downheap (ANHE *heap, int N, int k)
1959 root 1.235 {
1960 root 1.241 ANHE he = heap [k];
1961     ANHE *E = heap + N + HEAP0;
1962 root 1.235
1963     for (;;)
1964     {
1965     ev_tstamp minat;
1966 root 1.241 ANHE *minpos;
1967 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1968 root 1.235
1969 root 1.248 /* find minimum child */
1970 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1971 root 1.235 {
1972 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1973     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1974     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1975     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1976 root 1.235 }
1977 root 1.240 else if (pos < E)
1978 root 1.235 {
1979 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1980     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1981     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1982     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1983 root 1.235 }
1984 root 1.240 else
1985     break;
1986 root 1.235
1987 root 1.241 if (ANHE_at (he) <= minat)
1988 root 1.235 break;
1989    
1990 root 1.247 heap [k] = *minpos;
1991 root 1.241 ev_active (ANHE_w (*minpos)) = k;
1992 root 1.235
1993     k = minpos - heap;
1994     }
1995    
1996 root 1.247 heap [k] = he;
1997 root 1.241 ev_active (ANHE_w (he)) = k;
1998 root 1.235 }
1999    
2000 root 1.248 #else /* 4HEAP */
2001 root 1.235
2002     #define HEAP0 1
2003 root 1.247 #define HPARENT(k) ((k) >> 1)
2004 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2005 root 1.235
2006 root 1.248 /* away from the root */
2007 root 1.284 inline_speed void
2008 root 1.248 downheap (ANHE *heap, int N, int k)
2009 root 1.1 {
2010 root 1.241 ANHE he = heap [k];
2011 root 1.1
2012 root 1.228 for (;;)
2013 root 1.1 {
2014 root 1.248 int c = k << 1;
2015 root 1.179
2016 root 1.309 if (c >= N + HEAP0)
2017 root 1.179 break;
2018    
2019 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2020     ? 1 : 0;
2021    
2022     if (ANHE_at (he) <= ANHE_at (heap [c]))
2023     break;
2024    
2025     heap [k] = heap [c];
2026 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2027 root 1.248
2028     k = c;
2029 root 1.1 }
2030    
2031 root 1.243 heap [k] = he;
2032 root 1.248 ev_active (ANHE_w (he)) = k;
2033 root 1.1 }
2034 root 1.248 #endif
2035 root 1.1
2036 root 1.248 /* towards the root */
2037 root 1.284 inline_speed void
2038 root 1.248 upheap (ANHE *heap, int k)
2039 root 1.1 {
2040 root 1.241 ANHE he = heap [k];
2041 root 1.1
2042 root 1.179 for (;;)
2043 root 1.1 {
2044 root 1.248 int p = HPARENT (k);
2045 root 1.179
2046 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2047 root 1.179 break;
2048 root 1.1
2049 root 1.248 heap [k] = heap [p];
2050 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2051 root 1.248 k = p;
2052 root 1.1 }
2053    
2054 root 1.241 heap [k] = he;
2055     ev_active (ANHE_w (he)) = k;
2056 root 1.1 }
2057    
2058 root 1.288 /* move an element suitably so it is in a correct place */
2059 root 1.284 inline_size void
2060 root 1.241 adjustheap (ANHE *heap, int N, int k)
2061 root 1.84 {
2062 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2063 root 1.247 upheap (heap, k);
2064     else
2065     downheap (heap, N, k);
2066 root 1.84 }
2067    
2068 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2069 root 1.284 inline_size void
2070 root 1.248 reheap (ANHE *heap, int N)
2071     {
2072     int i;
2073 root 1.251
2074 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2075     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2076     for (i = 0; i < N; ++i)
2077     upheap (heap, i + HEAP0);
2078     }
2079    
2080 root 1.8 /*****************************************************************************/
2081    
2082 root 1.288 /* associate signal watchers to a signal signal */
2083 root 1.7 typedef struct
2084     {
2085 root 1.307 EV_ATOMIC_T pending;
2086 root 1.306 #if EV_MULTIPLICITY
2087     EV_P;
2088     #endif
2089 root 1.68 WL head;
2090 root 1.7 } ANSIG;
2091    
2092 root 1.306 static ANSIG signals [EV_NSIG - 1];
2093 root 1.7
2094 root 1.207 /*****************************************************************************/
2095    
2096 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2097 root 1.207
2098 root 1.379 static void noinline ecb_cold
2099 root 1.207 evpipe_init (EV_P)
2100     {
2101 root 1.288 if (!ev_is_active (&pipe_w))
2102 root 1.207 {
2103 root 1.448 int fds [2];
2104    
2105 root 1.336 # if EV_USE_EVENTFD
2106 root 1.448 fds [0] = -1;
2107     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2108     if (fds [1] < 0 && errno == EINVAL)
2109     fds [1] = eventfd (0, 0);
2110    
2111     if (fds [1] < 0)
2112     # endif
2113     {
2114     while (pipe (fds))
2115     ev_syserr ("(libev) error creating signal/async pipe");
2116    
2117     fd_intern (fds [0]);
2118 root 1.220 }
2119 root 1.448
2120     evpipe [0] = fds [0];
2121    
2122     if (evpipe [1] < 0)
2123     evpipe [1] = fds [1]; /* first call, set write fd */
2124 root 1.220 else
2125     {
2126 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2127     /* so that evpipe_write can always rely on its value. */
2128     /* this branch does not do anything sensible on windows, */
2129     /* so must not be executed on windows */
2130 root 1.207
2131 root 1.448 dup2 (fds [1], evpipe [1]);
2132     close (fds [1]);
2133 root 1.220 }
2134 root 1.207
2135 root 1.455 fd_intern (evpipe [1]);
2136    
2137 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2138 root 1.288 ev_io_start (EV_A_ &pipe_w);
2139 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2140 root 1.207 }
2141     }
2142    
2143 root 1.380 inline_speed void
2144 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2145 root 1.207 {
2146 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2147    
2148 root 1.383 if (expect_true (*flag))
2149 root 1.387 return;
2150 root 1.383
2151     *flag = 1;
2152 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2153 root 1.383
2154     pipe_write_skipped = 1;
2155 root 1.378
2156 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2157 root 1.214
2158 root 1.383 if (pipe_write_wanted)
2159     {
2160     int old_errno;
2161 root 1.378
2162 root 1.436 pipe_write_skipped = 0;
2163     ECB_MEMORY_FENCE_RELEASE;
2164 root 1.220
2165 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2166 root 1.380
2167 root 1.220 #if EV_USE_EVENTFD
2168 root 1.448 if (evpipe [0] < 0)
2169 root 1.383 {
2170     uint64_t counter = 1;
2171 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2172 root 1.383 }
2173     else
2174 root 1.220 #endif
2175 root 1.383 {
2176 root 1.427 #ifdef _WIN32
2177     WSABUF buf;
2178     DWORD sent;
2179     buf.buf = &buf;
2180     buf.len = 1;
2181     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2182     #else
2183 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2184 root 1.427 #endif
2185 root 1.383 }
2186 root 1.214
2187 root 1.383 errno = old_errno;
2188 root 1.207 }
2189     }
2190    
2191 root 1.288 /* called whenever the libev signal pipe */
2192     /* got some events (signal, async) */
2193 root 1.207 static void
2194     pipecb (EV_P_ ev_io *iow, int revents)
2195     {
2196 root 1.307 int i;
2197    
2198 root 1.378 if (revents & EV_READ)
2199     {
2200 root 1.220 #if EV_USE_EVENTFD
2201 root 1.448 if (evpipe [0] < 0)
2202 root 1.378 {
2203     uint64_t counter;
2204 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2205 root 1.378 }
2206     else
2207 root 1.220 #endif
2208 root 1.378 {
2209 root 1.427 char dummy[4];
2210     #ifdef _WIN32
2211     WSABUF buf;
2212     DWORD recvd;
2213 root 1.432 DWORD flags = 0;
2214 root 1.427 buf.buf = dummy;
2215     buf.len = sizeof (dummy);
2216 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2217 root 1.427 #else
2218     read (evpipe [0], &dummy, sizeof (dummy));
2219     #endif
2220 root 1.378 }
2221 root 1.220 }
2222 root 1.207
2223 root 1.378 pipe_write_skipped = 0;
2224    
2225 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2226    
2227 root 1.369 #if EV_SIGNAL_ENABLE
2228 root 1.307 if (sig_pending)
2229 root 1.372 {
2230 root 1.307 sig_pending = 0;
2231 root 1.207
2232 root 1.436 ECB_MEMORY_FENCE;
2233 root 1.424
2234 root 1.307 for (i = EV_NSIG - 1; i--; )
2235     if (expect_false (signals [i].pending))
2236     ev_feed_signal_event (EV_A_ i + 1);
2237 root 1.207 }
2238 root 1.369 #endif
2239 root 1.207
2240 root 1.209 #if EV_ASYNC_ENABLE
2241 root 1.307 if (async_pending)
2242 root 1.207 {
2243 root 1.307 async_pending = 0;
2244 root 1.207
2245 root 1.436 ECB_MEMORY_FENCE;
2246 root 1.424
2247 root 1.207 for (i = asynccnt; i--; )
2248     if (asyncs [i]->sent)
2249     {
2250     asyncs [i]->sent = 0;
2251 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2252 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2253     }
2254     }
2255 root 1.209 #endif
2256 root 1.207 }
2257    
2258     /*****************************************************************************/
2259    
2260 root 1.366 void
2261 root 1.420 ev_feed_signal (int signum) EV_THROW
2262 root 1.7 {
2263 root 1.207 #if EV_MULTIPLICITY
2264 root 1.453 EV_P;
2265 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2266 root 1.453 EV_A = signals [signum - 1].loop;
2267 root 1.366
2268     if (!EV_A)
2269     return;
2270 root 1.207 #endif
2271    
2272 root 1.366 signals [signum - 1].pending = 1;
2273     evpipe_write (EV_A_ &sig_pending);
2274     }
2275    
2276     static void
2277     ev_sighandler (int signum)
2278     {
2279 root 1.322 #ifdef _WIN32
2280 root 1.218 signal (signum, ev_sighandler);
2281 root 1.67 #endif
2282    
2283 root 1.366 ev_feed_signal (signum);
2284 root 1.7 }
2285    
2286 root 1.140 void noinline
2287 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2288 root 1.79 {
2289 root 1.80 WL w;
2290    
2291 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2292 root 1.307 return;
2293    
2294     --signum;
2295    
2296 root 1.79 #if EV_MULTIPLICITY
2297 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2298     /* or, likely more useful, feeding a signal nobody is waiting for */
2299 root 1.79
2300 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2301 root 1.306 return;
2302 root 1.307 #endif
2303 root 1.306
2304 root 1.307 signals [signum].pending = 0;
2305 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2306 root 1.79
2307     for (w = signals [signum].head; w; w = w->next)
2308     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2309     }
2310    
2311 root 1.303 #if EV_USE_SIGNALFD
2312     static void
2313     sigfdcb (EV_P_ ev_io *iow, int revents)
2314     {
2315 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2316 root 1.303
2317     for (;;)
2318     {
2319     ssize_t res = read (sigfd, si, sizeof (si));
2320    
2321     /* not ISO-C, as res might be -1, but works with SuS */
2322     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2323     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2324    
2325     if (res < (ssize_t)sizeof (si))
2326     break;
2327     }
2328     }
2329     #endif
2330    
2331 root 1.336 #endif
2332    
2333 root 1.8 /*****************************************************************************/
2334    
2335 root 1.336 #if EV_CHILD_ENABLE
2336 root 1.182 static WL childs [EV_PID_HASHSIZE];
2337 root 1.71
2338 root 1.136 static ev_signal childev;
2339 root 1.59
2340 root 1.206 #ifndef WIFCONTINUED
2341     # define WIFCONTINUED(status) 0
2342     #endif
2343    
2344 root 1.288 /* handle a single child status event */
2345 root 1.284 inline_speed void
2346 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2347 root 1.47 {
2348 root 1.136 ev_child *w;
2349 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2350 root 1.47
2351 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2352 root 1.206 {
2353     if ((w->pid == pid || !w->pid)
2354     && (!traced || (w->flags & 1)))
2355     {
2356 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2357 root 1.206 w->rpid = pid;
2358     w->rstatus = status;
2359     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2360     }
2361     }
2362 root 1.47 }
2363    
2364 root 1.142 #ifndef WCONTINUED
2365     # define WCONTINUED 0
2366     #endif
2367    
2368 root 1.288 /* called on sigchld etc., calls waitpid */
2369 root 1.47 static void
2370 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2371 root 1.22 {
2372     int pid, status;
2373    
2374 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2375     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2376     if (!WCONTINUED
2377     || errno != EINVAL
2378     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2379     return;
2380    
2381 root 1.216 /* make sure we are called again until all children have been reaped */
2382 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2383     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2384 root 1.47
2385 root 1.216 child_reap (EV_A_ pid, pid, status);
2386 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2387 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2388 root 1.22 }
2389    
2390 root 1.45 #endif
2391    
2392 root 1.22 /*****************************************************************************/
2393    
2394 root 1.357 #if EV_USE_IOCP
2395     # include "ev_iocp.c"
2396     #endif
2397 root 1.118 #if EV_USE_PORT
2398     # include "ev_port.c"
2399     #endif
2400 root 1.44 #if EV_USE_KQUEUE
2401     # include "ev_kqueue.c"
2402     #endif
2403 root 1.29 #if EV_USE_EPOLL
2404 root 1.1 # include "ev_epoll.c"
2405     #endif
2406 root 1.59 #if EV_USE_POLL
2407 root 1.41 # include "ev_poll.c"
2408     #endif
2409 root 1.29 #if EV_USE_SELECT
2410 root 1.1 # include "ev_select.c"
2411     #endif
2412    
2413 root 1.379 int ecb_cold
2414 root 1.420 ev_version_major (void) EV_THROW
2415 root 1.24 {
2416     return EV_VERSION_MAJOR;
2417     }
2418    
2419 root 1.379 int ecb_cold
2420 root 1.420 ev_version_minor (void) EV_THROW
2421 root 1.24 {
2422     return EV_VERSION_MINOR;
2423     }
2424    
2425 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2426 root 1.379 int inline_size ecb_cold
2427 root 1.51 enable_secure (void)
2428 root 1.41 {
2429 root 1.103 #ifdef _WIN32
2430 root 1.49 return 0;
2431     #else
2432 root 1.41 return getuid () != geteuid ()
2433     || getgid () != getegid ();
2434 root 1.49 #endif
2435 root 1.41 }
2436    
2437 root 1.379 unsigned int ecb_cold
2438 root 1.420 ev_supported_backends (void) EV_THROW
2439 root 1.129 {
2440 root 1.130 unsigned int flags = 0;
2441 root 1.129
2442     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2443     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2444     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2445     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2446     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2447    
2448     return flags;
2449     }
2450    
2451 root 1.379 unsigned int ecb_cold
2452 root 1.420 ev_recommended_backends (void) EV_THROW
2453 root 1.1 {
2454 root 1.131 unsigned int flags = ev_supported_backends ();
2455 root 1.129
2456     #ifndef __NetBSD__
2457     /* kqueue is borked on everything but netbsd apparently */
2458     /* it usually doesn't work correctly on anything but sockets and pipes */
2459     flags &= ~EVBACKEND_KQUEUE;
2460     #endif
2461     #ifdef __APPLE__
2462 root 1.278 /* only select works correctly on that "unix-certified" platform */
2463     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2464     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2465 root 1.129 #endif
2466 root 1.342 #ifdef __FreeBSD__
2467     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2468     #endif
2469 root 1.129
2470     return flags;
2471 root 1.51 }
2472    
2473 root 1.379 unsigned int ecb_cold
2474 root 1.420 ev_embeddable_backends (void) EV_THROW
2475 root 1.134 {
2476 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2477    
2478 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2479 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2480     flags &= ~EVBACKEND_EPOLL;
2481 root 1.196
2482     return flags;
2483 root 1.134 }
2484    
2485     unsigned int
2486 root 1.420 ev_backend (EV_P) EV_THROW
2487 root 1.130 {
2488     return backend;
2489     }
2490    
2491 root 1.338 #if EV_FEATURE_API
2492 root 1.162 unsigned int
2493 root 1.420 ev_iteration (EV_P) EV_THROW
2494 root 1.162 {
2495     return loop_count;
2496     }
2497    
2498 root 1.294 unsigned int
2499 root 1.420 ev_depth (EV_P) EV_THROW
2500 root 1.294 {
2501     return loop_depth;
2502     }
2503    
2504 root 1.193 void
2505 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2506 root 1.193 {
2507     io_blocktime = interval;
2508     }
2509    
2510     void
2511 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2512 root 1.193 {
2513     timeout_blocktime = interval;
2514     }
2515    
2516 root 1.297 void
2517 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2518 root 1.297 {
2519     userdata = data;
2520     }
2521    
2522     void *
2523 root 1.420 ev_userdata (EV_P) EV_THROW
2524 root 1.297 {
2525     return userdata;
2526     }
2527    
2528 root 1.379 void
2529 root 1.420 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2530 root 1.297 {
2531     invoke_cb = invoke_pending_cb;
2532     }
2533    
2534 root 1.379 void
2535 root 1.421 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2536 root 1.297 {
2537 root 1.298 release_cb = release;
2538     acquire_cb = acquire;
2539 root 1.297 }
2540     #endif
2541    
2542 root 1.288 /* initialise a loop structure, must be zero-initialised */
2543 root 1.379 static void noinline ecb_cold
2544 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2545 root 1.51 {
2546 root 1.130 if (!backend)
2547 root 1.23 {
2548 root 1.366 origflags = flags;
2549    
2550 root 1.279 #if EV_USE_REALTIME
2551     if (!have_realtime)
2552     {
2553     struct timespec ts;
2554    
2555     if (!clock_gettime (CLOCK_REALTIME, &ts))
2556     have_realtime = 1;
2557     }
2558     #endif
2559    
2560 root 1.29 #if EV_USE_MONOTONIC
2561 root 1.279 if (!have_monotonic)
2562     {
2563     struct timespec ts;
2564    
2565     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2566     have_monotonic = 1;
2567     }
2568 root 1.1 #endif
2569    
2570 root 1.306 /* pid check not overridable via env */
2571     #ifndef _WIN32
2572     if (flags & EVFLAG_FORKCHECK)
2573     curpid = getpid ();
2574     #endif
2575    
2576     if (!(flags & EVFLAG_NOENV)
2577     && !enable_secure ()
2578     && getenv ("LIBEV_FLAGS"))
2579     flags = atoi (getenv ("LIBEV_FLAGS"));
2580    
2581 root 1.378 ev_rt_now = ev_time ();
2582     mn_now = get_clock ();
2583     now_floor = mn_now;
2584     rtmn_diff = ev_rt_now - mn_now;
2585 root 1.338 #if EV_FEATURE_API
2586 root 1.378 invoke_cb = ev_invoke_pending;
2587 root 1.297 #endif
2588 root 1.1
2589 root 1.378 io_blocktime = 0.;
2590     timeout_blocktime = 0.;
2591     backend = 0;
2592     backend_fd = -1;
2593     sig_pending = 0;
2594 root 1.307 #if EV_ASYNC_ENABLE
2595 root 1.378 async_pending = 0;
2596 root 1.307 #endif
2597 root 1.378 pipe_write_skipped = 0;
2598     pipe_write_wanted = 0;
2599 root 1.448 evpipe [0] = -1;
2600     evpipe [1] = -1;
2601 root 1.209 #if EV_USE_INOTIFY
2602 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2603 root 1.209 #endif
2604 root 1.303 #if EV_USE_SIGNALFD
2605 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2606 root 1.303 #endif
2607 root 1.193
2608 root 1.366 if (!(flags & EVBACKEND_MASK))
2609 root 1.129 flags |= ev_recommended_backends ();
2610 root 1.41
2611 root 1.357 #if EV_USE_IOCP
2612     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2613     #endif
2614 root 1.118 #if EV_USE_PORT
2615 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2616 root 1.118 #endif
2617 root 1.44 #if EV_USE_KQUEUE
2618 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2619 root 1.44 #endif
2620 root 1.29 #if EV_USE_EPOLL
2621 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2622 root 1.41 #endif
2623 root 1.59 #if EV_USE_POLL
2624 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2625 root 1.1 #endif
2626 root 1.29 #if EV_USE_SELECT
2627 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2628 root 1.1 #endif
2629 root 1.70
2630 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2631    
2632 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2633 root 1.288 ev_init (&pipe_w, pipecb);
2634     ev_set_priority (&pipe_w, EV_MAXPRI);
2635 root 1.336 #endif
2636 root 1.56 }
2637     }
2638    
2639 root 1.288 /* free up a loop structure */
2640 root 1.379 void ecb_cold
2641 root 1.422 ev_loop_destroy (EV_P)
2642 root 1.56 {
2643 root 1.65 int i;
2644    
2645 root 1.364 #if EV_MULTIPLICITY
2646 root 1.363 /* mimic free (0) */
2647     if (!EV_A)
2648     return;
2649 root 1.364 #endif
2650 root 1.363
2651 root 1.361 #if EV_CLEANUP_ENABLE
2652     /* queue cleanup watchers (and execute them) */
2653     if (expect_false (cleanupcnt))
2654     {
2655     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2656     EV_INVOKE_PENDING;
2657     }
2658     #endif
2659    
2660 root 1.359 #if EV_CHILD_ENABLE
2661 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2662 root 1.359 {
2663     ev_ref (EV_A); /* child watcher */
2664     ev_signal_stop (EV_A_ &childev);
2665     }
2666     #endif
2667    
2668 root 1.288 if (ev_is_active (&pipe_w))
2669 root 1.207 {
2670 root 1.303 /*ev_ref (EV_A);*/
2671     /*ev_io_stop (EV_A_ &pipe_w);*/
2672 root 1.207
2673 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2674     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2675 root 1.207 }
2676    
2677 root 1.303 #if EV_USE_SIGNALFD
2678     if (ev_is_active (&sigfd_w))
2679 root 1.317 close (sigfd);
2680 root 1.303 #endif
2681    
2682 root 1.152 #if EV_USE_INOTIFY
2683     if (fs_fd >= 0)
2684     close (fs_fd);
2685     #endif
2686    
2687     if (backend_fd >= 0)
2688     close (backend_fd);
2689    
2690 root 1.357 #if EV_USE_IOCP
2691     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2692     #endif
2693 root 1.118 #if EV_USE_PORT
2694 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2695 root 1.118 #endif
2696 root 1.56 #if EV_USE_KQUEUE
2697 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2698 root 1.56 #endif
2699     #if EV_USE_EPOLL
2700 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2701 root 1.56 #endif
2702 root 1.59 #if EV_USE_POLL
2703 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2704 root 1.56 #endif
2705     #if EV_USE_SELECT
2706 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2707 root 1.56 #endif
2708 root 1.1
2709 root 1.65 for (i = NUMPRI; i--; )
2710 root 1.164 {
2711     array_free (pending, [i]);
2712     #if EV_IDLE_ENABLE
2713     array_free (idle, [i]);
2714     #endif
2715     }
2716 root 1.65
2717 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2718 root 1.186
2719 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2720 root 1.284 array_free (rfeed, EMPTY);
2721 root 1.164 array_free (fdchange, EMPTY);
2722     array_free (timer, EMPTY);
2723 root 1.140 #if EV_PERIODIC_ENABLE
2724 root 1.164 array_free (periodic, EMPTY);
2725 root 1.93 #endif
2726 root 1.187 #if EV_FORK_ENABLE
2727     array_free (fork, EMPTY);
2728     #endif
2729 root 1.360 #if EV_CLEANUP_ENABLE
2730     array_free (cleanup, EMPTY);
2731     #endif
2732 root 1.164 array_free (prepare, EMPTY);
2733     array_free (check, EMPTY);
2734 root 1.209 #if EV_ASYNC_ENABLE
2735     array_free (async, EMPTY);
2736     #endif
2737 root 1.65
2738 root 1.130 backend = 0;
2739 root 1.359
2740     #if EV_MULTIPLICITY
2741     if (ev_is_default_loop (EV_A))
2742     #endif
2743     ev_default_loop_ptr = 0;
2744     #if EV_MULTIPLICITY
2745     else
2746     ev_free (EV_A);
2747     #endif
2748 root 1.56 }
2749 root 1.22
2750 root 1.226 #if EV_USE_INOTIFY
2751 root 1.284 inline_size void infy_fork (EV_P);
2752 root 1.226 #endif
2753 root 1.154
2754 root 1.284 inline_size void
2755 root 1.56 loop_fork (EV_P)
2756     {
2757 root 1.118 #if EV_USE_PORT
2758 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2759 root 1.56 #endif
2760     #if EV_USE_KQUEUE
2761 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2762 root 1.45 #endif
2763 root 1.118 #if EV_USE_EPOLL
2764 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2765 root 1.118 #endif
2766 root 1.154 #if EV_USE_INOTIFY
2767     infy_fork (EV_A);
2768     #endif
2769 root 1.70
2770 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2771 root 1.288 if (ev_is_active (&pipe_w))
2772 root 1.70 {
2773 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2774 root 1.70
2775     ev_ref (EV_A);
2776 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2777 root 1.220
2778     if (evpipe [0] >= 0)
2779 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
2780 root 1.207
2781     evpipe_init (EV_A);
2782 root 1.443 /* iterate over everything, in case we missed something before */
2783     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2784 root 1.448 }
2785 root 1.337 #endif
2786 root 1.70
2787     postfork = 0;
2788 root 1.1 }
2789    
2790 root 1.55 #if EV_MULTIPLICITY
2791 root 1.250
2792 root 1.379 struct ev_loop * ecb_cold
2793 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2794 root 1.54 {
2795 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2796 root 1.69
2797 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2798 root 1.108 loop_init (EV_A_ flags);
2799 root 1.56
2800 root 1.130 if (ev_backend (EV_A))
2801 root 1.306 return EV_A;
2802 root 1.54
2803 root 1.359 ev_free (EV_A);
2804 root 1.55 return 0;
2805 root 1.54 }
2806    
2807 root 1.297 #endif /* multiplicity */
2808 root 1.248
2809     #if EV_VERIFY
2810 root 1.379 static void noinline ecb_cold
2811 root 1.251 verify_watcher (EV_P_ W w)
2812     {
2813 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2814 root 1.251
2815     if (w->pending)
2816 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2817 root 1.251 }
2818    
2819 root 1.379 static void noinline ecb_cold
2820 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2821     {
2822     int i;
2823    
2824     for (i = HEAP0; i < N + HEAP0; ++i)
2825     {
2826 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2827     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2828     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2829 root 1.251
2830     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2831     }
2832     }
2833    
2834 root 1.379 static void noinline ecb_cold
2835 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2836 root 1.248 {
2837     while (cnt--)
2838 root 1.251 {
2839 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2840 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2841     }
2842 root 1.248 }
2843 root 1.250 #endif
2844 root 1.248
2845 root 1.338 #if EV_FEATURE_API
2846 root 1.379 void ecb_cold
2847 root 1.420 ev_verify (EV_P) EV_THROW
2848 root 1.248 {
2849 root 1.250 #if EV_VERIFY
2850 root 1.429 int i;
2851 root 1.426 WL w, w2;
2852 root 1.251
2853     assert (activecnt >= -1);
2854    
2855     assert (fdchangemax >= fdchangecnt);
2856     for (i = 0; i < fdchangecnt; ++i)
2857 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2858 root 1.251
2859     assert (anfdmax >= 0);
2860 root 1.429 for (i = 0; i < anfdmax; ++i)
2861     {
2862     int j = 0;
2863    
2864     for (w = w2 = anfds [i].head; w; w = w->next)
2865     {
2866     verify_watcher (EV_A_ (W)w);
2867 root 1.426
2868 root 1.429 if (j++ & 1)
2869     {
2870     assert (("libev: io watcher list contains a loop", w != w2));
2871     w2 = w2->next;
2872     }
2873 root 1.426
2874 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2875     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2876     }
2877     }
2878 root 1.251
2879     assert (timermax >= timercnt);
2880     verify_heap (EV_A_ timers, timercnt);
2881 root 1.248
2882     #if EV_PERIODIC_ENABLE
2883 root 1.251 assert (periodicmax >= periodiccnt);
2884     verify_heap (EV_A_ periodics, periodiccnt);
2885 root 1.248 #endif
2886    
2887 root 1.251 for (i = NUMPRI; i--; )
2888     {
2889     assert (pendingmax [i] >= pendingcnt [i]);
2890 root 1.248 #if EV_IDLE_ENABLE
2891 root 1.252 assert (idleall >= 0);
2892 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2893     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2894 root 1.248 #endif
2895 root 1.251 }
2896    
2897 root 1.248 #if EV_FORK_ENABLE
2898 root 1.251 assert (forkmax >= forkcnt);
2899     array_verify (EV_A_ (W *)forks, forkcnt);
2900 root 1.248 #endif
2901 root 1.251
2902 root 1.360 #if EV_CLEANUP_ENABLE
2903     assert (cleanupmax >= cleanupcnt);
2904     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2905     #endif
2906    
2907 root 1.250 #if EV_ASYNC_ENABLE
2908 root 1.251 assert (asyncmax >= asynccnt);
2909     array_verify (EV_A_ (W *)asyncs, asynccnt);
2910 root 1.250 #endif
2911 root 1.251
2912 root 1.337 #if EV_PREPARE_ENABLE
2913 root 1.251 assert (preparemax >= preparecnt);
2914     array_verify (EV_A_ (W *)prepares, preparecnt);
2915 root 1.337 #endif
2916 root 1.251
2917 root 1.337 #if EV_CHECK_ENABLE
2918 root 1.251 assert (checkmax >= checkcnt);
2919     array_verify (EV_A_ (W *)checks, checkcnt);
2920 root 1.337 #endif
2921 root 1.251
2922     # if 0
2923 root 1.336 #if EV_CHILD_ENABLE
2924 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2925 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2926 root 1.336 #endif
2927 root 1.251 # endif
2928 root 1.248 #endif
2929     }
2930 root 1.297 #endif
2931 root 1.56
2932     #if EV_MULTIPLICITY
2933 root 1.379 struct ev_loop * ecb_cold
2934 root 1.54 #else
2935     int
2936 root 1.358 #endif
2937 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
2938 root 1.54 {
2939 root 1.116 if (!ev_default_loop_ptr)
2940 root 1.56 {
2941     #if EV_MULTIPLICITY
2942 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2943 root 1.56 #else
2944 ayin 1.117 ev_default_loop_ptr = 1;
2945 root 1.54 #endif
2946    
2947 root 1.110 loop_init (EV_A_ flags);
2948 root 1.56
2949 root 1.130 if (ev_backend (EV_A))
2950 root 1.56 {
2951 root 1.336 #if EV_CHILD_ENABLE
2952 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2953     ev_set_priority (&childev, EV_MAXPRI);
2954     ev_signal_start (EV_A_ &childev);
2955     ev_unref (EV_A); /* child watcher should not keep loop alive */
2956     #endif
2957     }
2958     else
2959 root 1.116 ev_default_loop_ptr = 0;
2960 root 1.56 }
2961 root 1.8
2962 root 1.116 return ev_default_loop_ptr;
2963 root 1.1 }
2964    
2965 root 1.24 void
2966 root 1.420 ev_loop_fork (EV_P) EV_THROW
2967 root 1.1 {
2968 root 1.440 postfork = 1;
2969 root 1.1 }
2970    
2971 root 1.8 /*****************************************************************************/
2972    
2973 root 1.168 void
2974     ev_invoke (EV_P_ void *w, int revents)
2975     {
2976     EV_CB_INVOKE ((W)w, revents);
2977     }
2978    
2979 root 1.300 unsigned int
2980 root 1.420 ev_pending_count (EV_P) EV_THROW
2981 root 1.300 {
2982     int pri;
2983     unsigned int count = 0;
2984    
2985     for (pri = NUMPRI; pri--; )
2986     count += pendingcnt [pri];
2987    
2988     return count;
2989     }
2990    
2991 root 1.297 void noinline
2992 root 1.296 ev_invoke_pending (EV_P)
2993 root 1.1 {
2994 root 1.445 pendingpri = NUMPRI;
2995    
2996     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2997     {
2998     --pendingpri;
2999    
3000     while (pendingcnt [pendingpri])
3001     {
3002     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3003 root 1.1
3004 root 1.445 p->w->pending = 0;
3005     EV_CB_INVOKE (p->w, p->events);
3006     EV_FREQUENT_CHECK;
3007     }
3008     }
3009 root 1.1 }
3010    
3011 root 1.234 #if EV_IDLE_ENABLE
3012 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3013     /* only when higher priorities are idle" logic */
3014 root 1.284 inline_size void
3015 root 1.234 idle_reify (EV_P)
3016     {
3017     if (expect_false (idleall))
3018     {
3019     int pri;
3020    
3021     for (pri = NUMPRI; pri--; )
3022     {
3023     if (pendingcnt [pri])
3024     break;
3025    
3026     if (idlecnt [pri])
3027     {
3028     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3029     break;
3030     }
3031     }
3032     }
3033     }
3034     #endif
3035    
3036 root 1.288 /* make timers pending */
3037 root 1.284 inline_size void
3038 root 1.51 timers_reify (EV_P)
3039 root 1.1 {
3040 root 1.248 EV_FREQUENT_CHECK;
3041    
3042 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3043 root 1.1 {
3044 root 1.284 do
3045     {
3046     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3047 root 1.1
3048 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3049    
3050     /* first reschedule or stop timer */
3051     if (w->repeat)
3052     {
3053     ev_at (w) += w->repeat;
3054     if (ev_at (w) < mn_now)
3055     ev_at (w) = mn_now;
3056 root 1.61
3057 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3058 root 1.90
3059 root 1.284 ANHE_at_cache (timers [HEAP0]);
3060     downheap (timers, timercnt, HEAP0);
3061     }
3062     else
3063     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3064 root 1.243
3065 root 1.284 EV_FREQUENT_CHECK;
3066     feed_reverse (EV_A_ (W)w);
3067 root 1.12 }
3068 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3069 root 1.30
3070 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3071 root 1.12 }
3072     }
3073 root 1.4
3074 root 1.140 #if EV_PERIODIC_ENABLE
3075 root 1.370
3076 root 1.373 static void noinline
3077 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3078     {
3079 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3080     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3081    
3082     /* the above almost always errs on the low side */
3083     while (at <= ev_rt_now)
3084     {
3085     ev_tstamp nat = at + w->interval;
3086    
3087     /* when resolution fails us, we use ev_rt_now */
3088     if (expect_false (nat == at))
3089     {
3090     at = ev_rt_now;
3091     break;
3092     }
3093    
3094     at = nat;
3095     }
3096    
3097     ev_at (w) = at;
3098 root 1.370 }
3099    
3100 root 1.288 /* make periodics pending */
3101 root 1.284 inline_size void
3102 root 1.51 periodics_reify (EV_P)
3103 root 1.12 {
3104 root 1.248 EV_FREQUENT_CHECK;
3105 root 1.250
3106 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3107 root 1.12 {
3108 root 1.284 do
3109     {
3110     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3111 root 1.1
3112 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3113 root 1.61
3114 root 1.284 /* first reschedule or stop timer */
3115     if (w->reschedule_cb)
3116     {
3117     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3118 root 1.243
3119 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3120 root 1.243
3121 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3122     downheap (periodics, periodiccnt, HEAP0);
3123     }
3124     else if (w->interval)
3125 root 1.246 {
3126 root 1.370 periodic_recalc (EV_A_ w);
3127 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3128     downheap (periodics, periodiccnt, HEAP0);
3129 root 1.246 }
3130 root 1.284 else
3131     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3132 root 1.243
3133 root 1.284 EV_FREQUENT_CHECK;
3134     feed_reverse (EV_A_ (W)w);
3135 root 1.1 }
3136 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3137 root 1.12
3138 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3139 root 1.12 }
3140     }
3141    
3142 root 1.288 /* simply recalculate all periodics */
3143 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3144 root 1.379 static void noinline ecb_cold
3145 root 1.54 periodics_reschedule (EV_P)
3146 root 1.12 {
3147     int i;
3148    
3149 root 1.13 /* adjust periodics after time jump */
3150 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3151 root 1.12 {
3152 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3153 root 1.12
3154 root 1.77 if (w->reschedule_cb)
3155 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3156 root 1.77 else if (w->interval)
3157 root 1.370 periodic_recalc (EV_A_ w);
3158 root 1.242
3159 root 1.248 ANHE_at_cache (periodics [i]);
3160 root 1.77 }
3161 root 1.12
3162 root 1.248 reheap (periodics, periodiccnt);
3163 root 1.1 }
3164 root 1.93 #endif
3165 root 1.1
3166 root 1.288 /* adjust all timers by a given offset */
3167 root 1.379 static void noinline ecb_cold
3168 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3169     {
3170     int i;
3171    
3172     for (i = 0; i < timercnt; ++i)
3173     {
3174     ANHE *he = timers + i + HEAP0;
3175     ANHE_w (*he)->at += adjust;
3176     ANHE_at_cache (*he);
3177     }
3178     }
3179    
3180 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3181 root 1.324 /* also detect if there was a timejump, and act accordingly */
3182 root 1.284 inline_speed void
3183 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3184 root 1.4 {
3185 root 1.40 #if EV_USE_MONOTONIC
3186     if (expect_true (have_monotonic))
3187     {
3188 root 1.289 int i;
3189 root 1.178 ev_tstamp odiff = rtmn_diff;
3190    
3191     mn_now = get_clock ();
3192    
3193     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3194     /* interpolate in the meantime */
3195     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3196 root 1.40 {
3197 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3198     return;
3199     }
3200    
3201     now_floor = mn_now;
3202     ev_rt_now = ev_time ();
3203 root 1.4
3204 root 1.178 /* loop a few times, before making important decisions.
3205     * on the choice of "4": one iteration isn't enough,
3206     * in case we get preempted during the calls to
3207     * ev_time and get_clock. a second call is almost guaranteed
3208     * to succeed in that case, though. and looping a few more times
3209     * doesn't hurt either as we only do this on time-jumps or
3210     * in the unlikely event of having been preempted here.
3211     */
3212     for (i = 4; --i; )
3213     {
3214 root 1.373 ev_tstamp diff;
3215 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3216 root 1.4
3217 root 1.373 diff = odiff - rtmn_diff;
3218    
3219     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3220 root 1.178 return; /* all is well */
3221 root 1.4
3222 root 1.178 ev_rt_now = ev_time ();
3223     mn_now = get_clock ();
3224     now_floor = mn_now;
3225     }
3226 root 1.4
3227 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3228     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3229 root 1.140 # if EV_PERIODIC_ENABLE
3230 root 1.178 periodics_reschedule (EV_A);
3231 root 1.93 # endif
3232 root 1.4 }
3233     else
3234 root 1.40 #endif
3235 root 1.4 {
3236 root 1.85 ev_rt_now = ev_time ();
3237 root 1.40
3238 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3239 root 1.13 {
3240 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3241     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3242 root 1.140 #if EV_PERIODIC_ENABLE
3243 root 1.54 periodics_reschedule (EV_A);
3244 root 1.93 #endif
3245 root 1.13 }
3246 root 1.4
3247 root 1.85 mn_now = ev_rt_now;
3248 root 1.4 }
3249     }
3250    
3251 root 1.418 int
3252 root 1.353 ev_run (EV_P_ int flags)
3253 root 1.1 {
3254 root 1.338 #if EV_FEATURE_API
3255 root 1.294 ++loop_depth;
3256 root 1.297 #endif
3257 root 1.294
3258 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3259 root 1.298
3260 root 1.353 loop_done = EVBREAK_CANCEL;
3261 root 1.1
3262 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3263 root 1.158
3264 root 1.161 do
3265 root 1.9 {
3266 root 1.250 #if EV_VERIFY >= 2
3267 root 1.340 ev_verify (EV_A);
3268 root 1.250 #endif
3269    
3270 root 1.158 #ifndef _WIN32
3271     if (expect_false (curpid)) /* penalise the forking check even more */
3272     if (expect_false (getpid () != curpid))
3273     {
3274     curpid = getpid ();
3275     postfork = 1;
3276     }
3277     #endif
3278    
3279 root 1.157 #if EV_FORK_ENABLE
3280     /* we might have forked, so queue fork handlers */
3281     if (expect_false (postfork))
3282     if (forkcnt)
3283     {
3284     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3285 root 1.297 EV_INVOKE_PENDING;
3286 root 1.157 }
3287     #endif
3288 root 1.147
3289 root 1.337 #if EV_PREPARE_ENABLE
3290 root 1.170 /* queue prepare watchers (and execute them) */
3291 root 1.40 if (expect_false (preparecnt))
3292 root 1.20 {
3293 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3294 root 1.297 EV_INVOKE_PENDING;
3295 root 1.20 }
3296 root 1.337 #endif
3297 root 1.9
3298 root 1.298 if (expect_false (loop_done))
3299     break;
3300    
3301 root 1.70 /* we might have forked, so reify kernel state if necessary */
3302     if (expect_false (postfork))
3303     loop_fork (EV_A);
3304    
3305 root 1.1 /* update fd-related kernel structures */
3306 root 1.51 fd_reify (EV_A);
3307 root 1.1
3308     /* calculate blocking time */
3309 root 1.135 {
3310 root 1.193 ev_tstamp waittime = 0.;
3311     ev_tstamp sleeptime = 0.;
3312 root 1.12
3313 root 1.353 /* remember old timestamp for io_blocktime calculation */
3314     ev_tstamp prev_mn_now = mn_now;
3315 root 1.293
3316 root 1.353 /* update time to cancel out callback processing overhead */
3317     time_update (EV_A_ 1e100);
3318 root 1.135
3319 root 1.378 /* from now on, we want a pipe-wake-up */
3320     pipe_write_wanted = 1;
3321    
3322 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3323 root 1.383
3324 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3325 root 1.353 {
3326 root 1.287 waittime = MAX_BLOCKTIME;
3327    
3328 root 1.135 if (timercnt)
3329     {
3330 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3331 root 1.193 if (waittime > to) waittime = to;
3332 root 1.135 }
3333 root 1.4
3334 root 1.140 #if EV_PERIODIC_ENABLE
3335 root 1.135 if (periodiccnt)
3336     {
3337 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3338 root 1.193 if (waittime > to) waittime = to;
3339 root 1.135 }
3340 root 1.93 #endif
3341 root 1.4
3342 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3343 root 1.193 if (expect_false (waittime < timeout_blocktime))
3344     waittime = timeout_blocktime;
3345    
3346 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3347     /* to pass a minimum nonzero value to the backend */
3348     if (expect_false (waittime < backend_mintime))
3349     waittime = backend_mintime;
3350    
3351 root 1.293 /* extra check because io_blocktime is commonly 0 */
3352     if (expect_false (io_blocktime))
3353     {
3354     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3355 root 1.193
3356 root 1.376 if (sleeptime > waittime - backend_mintime)
3357     sleeptime = waittime - backend_mintime;
3358 root 1.193
3359 root 1.293 if (expect_true (sleeptime > 0.))
3360     {
3361     ev_sleep (sleeptime);
3362     waittime -= sleeptime;
3363     }
3364 root 1.193 }
3365 root 1.135 }
3366 root 1.1
3367 root 1.338 #if EV_FEATURE_API
3368 root 1.162 ++loop_count;
3369 root 1.297 #endif
3370 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3371 root 1.193 backend_poll (EV_A_ waittime);
3372 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3373 root 1.178
3374 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3375 root 1.378
3376 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3377 root 1.378 if (pipe_write_skipped)
3378     {
3379     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3380     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3381     }
3382    
3383    
3384 root 1.178 /* update ev_rt_now, do magic */
3385 root 1.193 time_update (EV_A_ waittime + sleeptime);
3386 root 1.135 }
3387 root 1.1
3388 root 1.9 /* queue pending timers and reschedule them */
3389 root 1.51 timers_reify (EV_A); /* relative timers called last */
3390 root 1.140 #if EV_PERIODIC_ENABLE
3391 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3392 root 1.93 #endif
3393 root 1.1
3394 root 1.164 #if EV_IDLE_ENABLE
3395 root 1.137 /* queue idle watchers unless other events are pending */
3396 root 1.164 idle_reify (EV_A);
3397     #endif
3398 root 1.9
3399 root 1.337 #if EV_CHECK_ENABLE
3400 root 1.20 /* queue check watchers, to be executed first */
3401 root 1.123 if (expect_false (checkcnt))
3402 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3403 root 1.337 #endif
3404 root 1.9
3405 root 1.297 EV_INVOKE_PENDING;
3406 root 1.1 }
3407 root 1.219 while (expect_true (
3408     activecnt
3409     && !loop_done
3410 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3411 root 1.219 ));
3412 root 1.13
3413 root 1.353 if (loop_done == EVBREAK_ONE)
3414     loop_done = EVBREAK_CANCEL;
3415 root 1.294
3416 root 1.338 #if EV_FEATURE_API
3417 root 1.294 --loop_depth;
3418 root 1.297 #endif
3419 root 1.418
3420     return activecnt;
3421 root 1.51 }
3422    
3423     void
3424 root 1.420 ev_break (EV_P_ int how) EV_THROW
3425 root 1.51 {
3426     loop_done = how;
3427 root 1.1 }
3428    
3429 root 1.285 void
3430 root 1.420 ev_ref (EV_P) EV_THROW
3431 root 1.285 {
3432     ++activecnt;
3433     }
3434    
3435     void
3436 root 1.420 ev_unref (EV_P) EV_THROW
3437 root 1.285 {
3438     --activecnt;
3439     }
3440    
3441     void
3442 root 1.420 ev_now_update (EV_P) EV_THROW
3443 root 1.285 {
3444     time_update (EV_A_ 1e100);
3445     }
3446    
3447     void
3448 root 1.420 ev_suspend (EV_P) EV_THROW
3449 root 1.285 {
3450     ev_now_update (EV_A);
3451     }
3452    
3453     void
3454 root 1.420 ev_resume (EV_P) EV_THROW
3455 root 1.285 {
3456     ev_tstamp mn_prev = mn_now;
3457    
3458     ev_now_update (EV_A);
3459     timers_reschedule (EV_A_ mn_now - mn_prev);
3460 root 1.286 #if EV_PERIODIC_ENABLE
3461 root 1.288 /* TODO: really do this? */
3462 root 1.285 periodics_reschedule (EV_A);
3463 root 1.286 #endif
3464 root 1.285 }
3465    
3466 root 1.8 /*****************************************************************************/
3467 root 1.288 /* singly-linked list management, used when the expected list length is short */
3468 root 1.8
3469 root 1.284 inline_size void
3470 root 1.10 wlist_add (WL *head, WL elem)
3471 root 1.1 {
3472     elem->next = *head;
3473     *head = elem;
3474     }
3475    
3476 root 1.284 inline_size void
3477 root 1.10 wlist_del (WL *head, WL elem)
3478 root 1.1 {
3479     while (*head)
3480     {
3481 root 1.307 if (expect_true (*head == elem))
3482 root 1.1 {
3483     *head = elem->next;
3484 root 1.307 break;
3485 root 1.1 }
3486    
3487     head = &(*head)->next;
3488     }
3489     }
3490    
3491 root 1.288 /* internal, faster, version of ev_clear_pending */
3492 root 1.284 inline_speed void
3493 root 1.166 clear_pending (EV_P_ W w)
3494 root 1.16 {
3495     if (w->pending)
3496     {
3497 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3498 root 1.16 w->pending = 0;
3499     }
3500     }
3501    
3502 root 1.167 int
3503 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3504 root 1.166 {
3505     W w_ = (W)w;
3506     int pending = w_->pending;
3507    
3508 root 1.172 if (expect_true (pending))
3509     {
3510     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3511 root 1.288 p->w = (W)&pending_w;
3512 root 1.172 w_->pending = 0;
3513     return p->events;
3514     }
3515     else
3516 root 1.167 return 0;
3517 root 1.166 }
3518    
3519 root 1.284 inline_size void
3520 root 1.164 pri_adjust (EV_P_ W w)
3521     {
3522 root 1.295 int pri = ev_priority (w);
3523 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3524     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3525 root 1.295 ev_set_priority (w, pri);
3526 root 1.164 }
3527    
3528 root 1.284 inline_speed void
3529 root 1.51 ev_start (EV_P_ W w, int active)
3530 root 1.1 {
3531 root 1.164 pri_adjust (EV_A_ w);
3532 root 1.1 w->active = active;
3533 root 1.51 ev_ref (EV_A);
3534 root 1.1 }
3535    
3536 root 1.284 inline_size void
3537 root 1.51 ev_stop (EV_P_ W w)
3538 root 1.1 {
3539 root 1.51 ev_unref (EV_A);
3540 root 1.1 w->active = 0;
3541     }
3542    
3543 root 1.8 /*****************************************************************************/
3544    
3545 root 1.171 void noinline
3546 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3547 root 1.1 {
3548 root 1.37 int fd = w->fd;
3549    
3550 root 1.123 if (expect_false (ev_is_active (w)))
3551 root 1.1 return;
3552    
3553 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3554 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3555 root 1.33
3556 root 1.248 EV_FREQUENT_CHECK;
3557    
3558 root 1.51 ev_start (EV_A_ (W)w, 1);
3559 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3560 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3561 root 1.1
3562 root 1.426 /* common bug, apparently */
3563     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3564    
3565 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3566 root 1.281 w->events &= ~EV__IOFDSET;
3567 root 1.248
3568     EV_FREQUENT_CHECK;
3569 root 1.1 }
3570    
3571 root 1.171 void noinline
3572 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3573 root 1.1 {
3574 root 1.166 clear_pending (EV_A_ (W)w);
3575 root 1.123 if (expect_false (!ev_is_active (w)))
3576 root 1.1 return;
3577    
3578 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3579 root 1.89
3580 root 1.248 EV_FREQUENT_CHECK;
3581    
3582 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3583 root 1.51 ev_stop (EV_A_ (W)w);
3584 root 1.1
3585 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3586 root 1.248
3587     EV_FREQUENT_CHECK;
3588 root 1.1 }
3589    
3590 root 1.171 void noinline
3591 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3592 root 1.1 {
3593 root 1.123 if (expect_false (ev_is_active (w)))
3594 root 1.1 return;
3595    
3596 root 1.228 ev_at (w) += mn_now;
3597 root 1.12
3598 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3599 root 1.13
3600 root 1.248 EV_FREQUENT_CHECK;
3601    
3602     ++timercnt;
3603     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3604 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3605     ANHE_w (timers [ev_active (w)]) = (WT)w;
3606 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3607 root 1.235 upheap (timers, ev_active (w));
3608 root 1.62
3609 root 1.248 EV_FREQUENT_CHECK;
3610    
3611 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3612 root 1.12 }
3613    
3614 root 1.171 void noinline
3615 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3616 root 1.12 {
3617 root 1.166 clear_pending (EV_A_ (W)w);
3618 root 1.123 if (expect_false (!ev_is_active (w)))
3619 root 1.12 return;
3620    
3621 root 1.248 EV_FREQUENT_CHECK;
3622    
3623 root 1.230 {
3624     int active = ev_active (w);
3625 root 1.62
3626 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3627 root 1.151
3628 root 1.248 --timercnt;
3629    
3630     if (expect_true (active < timercnt + HEAP0))
3631 root 1.151 {
3632 root 1.248 timers [active] = timers [timercnt + HEAP0];
3633 root 1.181 adjustheap (timers, timercnt, active);
3634 root 1.151 }
3635 root 1.248 }
3636 root 1.228
3637     ev_at (w) -= mn_now;
3638 root 1.14
3639 root 1.51 ev_stop (EV_A_ (W)w);
3640 root 1.328
3641     EV_FREQUENT_CHECK;
3642 root 1.12 }
3643 root 1.4
3644 root 1.171 void noinline
3645 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3646 root 1.14 {
3647 root 1.248 EV_FREQUENT_CHECK;
3648    
3649 root 1.407 clear_pending (EV_A_ (W)w);
3650 root 1.406
3651 root 1.14 if (ev_is_active (w))
3652     {
3653     if (w->repeat)
3654 root 1.99 {
3655 root 1.228 ev_at (w) = mn_now + w->repeat;
3656 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3657 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3658 root 1.99 }
3659 root 1.14 else
3660 root 1.51 ev_timer_stop (EV_A_ w);
3661 root 1.14 }
3662     else if (w->repeat)
3663 root 1.112 {
3664 root 1.229 ev_at (w) = w->repeat;
3665 root 1.112 ev_timer_start (EV_A_ w);
3666     }
3667 root 1.248
3668     EV_FREQUENT_CHECK;
3669 root 1.14 }
3670    
3671 root 1.301 ev_tstamp
3672 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3673 root 1.301 {
3674     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3675     }
3676    
3677 root 1.140 #if EV_PERIODIC_ENABLE
3678 root 1.171 void noinline
3679 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3680 root 1.12 {
3681 root 1.123 if (expect_false (ev_is_active (w)))
3682 root 1.12 return;
3683 root 1.1
3684 root 1.77 if (w->reschedule_cb)
3685 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3686 root 1.77 else if (w->interval)
3687     {
3688 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3689 root 1.370 periodic_recalc (EV_A_ w);
3690 root 1.77 }
3691 root 1.173 else
3692 root 1.228 ev_at (w) = w->offset;
3693 root 1.12
3694 root 1.248 EV_FREQUENT_CHECK;
3695    
3696     ++periodiccnt;
3697     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3698 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3699     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3700 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3701 root 1.235 upheap (periodics, ev_active (w));
3702 root 1.62
3703 root 1.248 EV_FREQUENT_CHECK;
3704    
3705 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3706 root 1.1 }
3707    
3708 root 1.171 void noinline
3709 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3710 root 1.1 {
3711 root 1.166 clear_pending (EV_A_ (W)w);
3712 root 1.123 if (expect_false (!ev_is_active (w)))
3713 root 1.1 return;
3714    
3715 root 1.248 EV_FREQUENT_CHECK;
3716    
3717 root 1.230 {
3718     int active = ev_active (w);
3719 root 1.62
3720 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3721 root 1.151
3722 root 1.248 --periodiccnt;
3723    
3724     if (expect_true (active < periodiccnt + HEAP0))
3725 root 1.151 {
3726 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3727 root 1.181 adjustheap (periodics, periodiccnt, active);
3728 root 1.151 }
3729 root 1.248 }
3730 root 1.228
3731 root 1.328 ev_stop (EV_A_ (W)w);
3732    
3733 root 1.248 EV_FREQUENT_CHECK;
3734 root 1.1 }
3735    
3736 root 1.171 void noinline
3737 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3738 root 1.77 {
3739 root 1.84 /* TODO: use adjustheap and recalculation */
3740 root 1.77 ev_periodic_stop (EV_A_ w);
3741     ev_periodic_start (EV_A_ w);
3742     }
3743 root 1.93 #endif
3744 root 1.77
3745 root 1.56 #ifndef SA_RESTART
3746     # define SA_RESTART 0
3747     #endif
3748    
3749 root 1.336 #if EV_SIGNAL_ENABLE
3750    
3751 root 1.171 void noinline
3752 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3753 root 1.56 {
3754 root 1.123 if (expect_false (ev_is_active (w)))
3755 root 1.56 return;
3756    
3757 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3758    
3759     #if EV_MULTIPLICITY
3760 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3761 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3762    
3763     signals [w->signum - 1].loop = EV_A;
3764 root 1.449 ECB_MEMORY_FENCE_RELEASE;
3765 root 1.306 #endif
3766 root 1.56
3767 root 1.303 EV_FREQUENT_CHECK;
3768    
3769     #if EV_USE_SIGNALFD
3770     if (sigfd == -2)
3771     {
3772     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3773     if (sigfd < 0 && errno == EINVAL)
3774     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3775    
3776     if (sigfd >= 0)
3777     {
3778     fd_intern (sigfd); /* doing it twice will not hurt */
3779    
3780     sigemptyset (&sigfd_set);
3781    
3782     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3783     ev_set_priority (&sigfd_w, EV_MAXPRI);
3784     ev_io_start (EV_A_ &sigfd_w);
3785     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3786     }
3787     }
3788    
3789     if (sigfd >= 0)
3790     {
3791     /* TODO: check .head */
3792     sigaddset (&sigfd_set, w->signum);
3793     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3794 root 1.207
3795 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3796     }
3797 root 1.180 #endif
3798    
3799 root 1.56 ev_start (EV_A_ (W)w, 1);
3800 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3801 root 1.56
3802 root 1.63 if (!((WL)w)->next)
3803 root 1.304 # if EV_USE_SIGNALFD
3804 root 1.306 if (sigfd < 0) /*TODO*/
3805 root 1.304 # endif
3806 root 1.306 {
3807 root 1.322 # ifdef _WIN32
3808 root 1.317 evpipe_init (EV_A);
3809    
3810 root 1.306 signal (w->signum, ev_sighandler);
3811     # else
3812     struct sigaction sa;
3813    
3814     evpipe_init (EV_A);
3815    
3816     sa.sa_handler = ev_sighandler;
3817     sigfillset (&sa.sa_mask);
3818     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3819     sigaction (w->signum, &sa, 0);
3820    
3821 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3822     {
3823     sigemptyset (&sa.sa_mask);
3824     sigaddset (&sa.sa_mask, w->signum);
3825     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3826     }
3827 root 1.67 #endif
3828 root 1.306 }
3829 root 1.248
3830     EV_FREQUENT_CHECK;
3831 root 1.56 }
3832    
3833 root 1.171 void noinline
3834 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3835 root 1.56 {
3836 root 1.166 clear_pending (EV_A_ (W)w);
3837 root 1.123 if (expect_false (!ev_is_active (w)))
3838 root 1.56 return;
3839    
3840 root 1.248 EV_FREQUENT_CHECK;
3841    
3842 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3843 root 1.56 ev_stop (EV_A_ (W)w);
3844    
3845     if (!signals [w->signum - 1].head)
3846 root 1.306 {
3847 root 1.307 #if EV_MULTIPLICITY
3848 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3849 root 1.307 #endif
3850     #if EV_USE_SIGNALFD
3851 root 1.306 if (sigfd >= 0)
3852     {
3853 root 1.321 sigset_t ss;
3854    
3855     sigemptyset (&ss);
3856     sigaddset (&ss, w->signum);
3857 root 1.306 sigdelset (&sigfd_set, w->signum);
3858 root 1.321
3859 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3860 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3861 root 1.306 }
3862     else
3863 root 1.307 #endif
3864 root 1.306 signal (w->signum, SIG_DFL);
3865     }
3866 root 1.248
3867     EV_FREQUENT_CHECK;
3868 root 1.56 }
3869    
3870 root 1.336 #endif
3871    
3872     #if EV_CHILD_ENABLE
3873    
3874 root 1.28 void
3875 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3876 root 1.22 {
3877 root 1.56 #if EV_MULTIPLICITY
3878 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3879 root 1.56 #endif
3880 root 1.123 if (expect_false (ev_is_active (w)))
3881 root 1.22 return;
3882    
3883 root 1.248 EV_FREQUENT_CHECK;
3884    
3885 root 1.51 ev_start (EV_A_ (W)w, 1);
3886 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3887 root 1.248
3888     EV_FREQUENT_CHECK;
3889 root 1.22 }
3890    
3891 root 1.28 void
3892 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3893 root 1.22 {
3894 root 1.166 clear_pending (EV_A_ (W)w);
3895 root 1.123 if (expect_false (!ev_is_active (w)))
3896 root 1.22 return;
3897    
3898 root 1.248 EV_FREQUENT_CHECK;
3899    
3900 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3901 root 1.51 ev_stop (EV_A_ (W)w);
3902 root 1.248
3903     EV_FREQUENT_CHECK;
3904 root 1.22 }
3905    
3906 root 1.336 #endif
3907    
3908 root 1.140 #if EV_STAT_ENABLE
3909    
3910     # ifdef _WIN32
3911 root 1.146 # undef lstat
3912     # define lstat(a,b) _stati64 (a,b)
3913 root 1.140 # endif
3914    
3915 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3916     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3917     #define MIN_STAT_INTERVAL 0.1074891
3918 root 1.143
3919 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3920 root 1.152
3921     #if EV_USE_INOTIFY
3922 root 1.326
3923     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3924     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3925 root 1.152
3926     static void noinline
3927     infy_add (EV_P_ ev_stat *w)
3928     {
3929 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
3930     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3931     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3932     | IN_DONT_FOLLOW | IN_MASK_ADD);
3933 root 1.152
3934 root 1.318 if (w->wd >= 0)
3935 root 1.152 {
3936 root 1.318 struct statfs sfs;
3937    
3938     /* now local changes will be tracked by inotify, but remote changes won't */
3939     /* unless the filesystem is known to be local, we therefore still poll */
3940     /* also do poll on <2.6.25, but with normal frequency */
3941    
3942     if (!fs_2625)
3943     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3944     else if (!statfs (w->path, &sfs)
3945     && (sfs.f_type == 0x1373 /* devfs */
3946 root 1.451 || sfs.f_type == 0x4006 /* fat */
3947     || sfs.f_type == 0x4d44 /* msdos */
3948 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
3949 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
3950     || sfs.f_type == 0x858458f6 /* ramfs */
3951     || sfs.f_type == 0x5346544e /* ntfs */
3952 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
3953 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
3954 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
3955 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
3956 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
3957     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3958     else
3959     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3960     }
3961     else
3962     {
3963     /* can't use inotify, continue to stat */
3964 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3965 root 1.152
3966 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3967 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3968 root 1.233 /* but an efficiency issue only */
3969 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3970 root 1.152 {
3971 root 1.153 char path [4096];
3972 root 1.152 strcpy (path, w->path);
3973    
3974     do
3975     {
3976     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3977     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3978    
3979     char *pend = strrchr (path, '/');
3980    
3981 root 1.275 if (!pend || pend == path)
3982     break;
3983 root 1.152
3984     *pend = 0;
3985 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
3986 root 1.372 }
3987 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3988     }
3989     }
3990 root 1.275
3991     if (w->wd >= 0)
3992 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3993 root 1.152
3994 root 1.318 /* now re-arm timer, if required */
3995     if (ev_is_active (&w->timer)) ev_ref (EV_A);
3996     ev_timer_again (EV_A_ &w->timer);
3997     if (ev_is_active (&w->timer)) ev_unref (EV_A);
3998 root 1.152 }
3999    
4000     static void noinline
4001     infy_del (EV_P_ ev_stat *w)
4002     {
4003     int slot;
4004     int wd = w->wd;
4005    
4006     if (wd < 0)
4007     return;
4008    
4009     w->wd = -2;
4010 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4011 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4012    
4013     /* remove this watcher, if others are watching it, they will rearm */
4014     inotify_rm_watch (fs_fd, wd);
4015     }
4016    
4017     static void noinline
4018     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4019     {
4020     if (slot < 0)
4021 root 1.264 /* overflow, need to check for all hash slots */
4022 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4023 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4024     else
4025     {
4026     WL w_;
4027    
4028 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4029 root 1.152 {
4030     ev_stat *w = (ev_stat *)w_;
4031     w_ = w_->next; /* lets us remove this watcher and all before it */
4032    
4033     if (w->wd == wd || wd == -1)
4034     {
4035     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4036     {
4037 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4038 root 1.152 w->wd = -1;
4039     infy_add (EV_A_ w); /* re-add, no matter what */
4040     }
4041    
4042 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4043 root 1.152 }
4044     }
4045     }
4046     }
4047    
4048     static void
4049     infy_cb (EV_P_ ev_io *w, int revents)
4050     {
4051     char buf [EV_INOTIFY_BUFSIZE];
4052     int ofs;
4053     int len = read (fs_fd, buf, sizeof (buf));
4054    
4055 root 1.326 for (ofs = 0; ofs < len; )
4056     {
4057     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4058     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4059     ofs += sizeof (struct inotify_event) + ev->len;
4060     }
4061 root 1.152 }
4062    
4063 root 1.379 inline_size void ecb_cold
4064 root 1.330 ev_check_2625 (EV_P)
4065     {
4066     /* kernels < 2.6.25 are borked
4067     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4068     */
4069     if (ev_linux_version () < 0x020619)
4070 root 1.273 return;
4071 root 1.264
4072 root 1.273 fs_2625 = 1;
4073     }
4074 root 1.264
4075 root 1.315 inline_size int
4076     infy_newfd (void)
4077     {
4078 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4079 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4080     if (fd >= 0)
4081     return fd;
4082     #endif
4083     return inotify_init ();
4084     }
4085    
4086 root 1.284 inline_size void
4087 root 1.273 infy_init (EV_P)
4088     {
4089     if (fs_fd != -2)
4090     return;
4091 root 1.264
4092 root 1.273 fs_fd = -1;
4093 root 1.264
4094 root 1.330 ev_check_2625 (EV_A);
4095 root 1.264
4096 root 1.315 fs_fd = infy_newfd ();
4097 root 1.152
4098     if (fs_fd >= 0)
4099     {
4100 root 1.315 fd_intern (fs_fd);
4101 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4102     ev_set_priority (&fs_w, EV_MAXPRI);
4103     ev_io_start (EV_A_ &fs_w);
4104 root 1.317 ev_unref (EV_A);
4105 root 1.152 }
4106     }
4107    
4108 root 1.284 inline_size void
4109 root 1.154 infy_fork (EV_P)
4110     {
4111     int slot;
4112    
4113     if (fs_fd < 0)
4114     return;
4115    
4116 root 1.317 ev_ref (EV_A);
4117 root 1.315 ev_io_stop (EV_A_ &fs_w);
4118 root 1.154 close (fs_fd);
4119 root 1.315 fs_fd = infy_newfd ();
4120    
4121     if (fs_fd >= 0)
4122     {
4123     fd_intern (fs_fd);
4124     ev_io_set (&fs_w, fs_fd, EV_READ);
4125     ev_io_start (EV_A_ &fs_w);
4126 root 1.317 ev_unref (EV_A);
4127 root 1.315 }
4128 root 1.154
4129 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4130 root 1.154 {
4131     WL w_ = fs_hash [slot].head;
4132     fs_hash [slot].head = 0;
4133    
4134     while (w_)
4135     {
4136     ev_stat *w = (ev_stat *)w_;
4137     w_ = w_->next; /* lets us add this watcher */
4138    
4139     w->wd = -1;
4140    
4141     if (fs_fd >= 0)
4142     infy_add (EV_A_ w); /* re-add, no matter what */
4143     else
4144 root 1.318 {
4145     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4146     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4147     ev_timer_again (EV_A_ &w->timer);
4148     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4149     }
4150 root 1.154 }
4151     }
4152     }
4153    
4154 root 1.152 #endif
4155    
4156 root 1.255 #ifdef _WIN32
4157     # define EV_LSTAT(p,b) _stati64 (p, b)
4158     #else
4159     # define EV_LSTAT(p,b) lstat (p, b)
4160     #endif
4161    
4162 root 1.140 void
4163 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4164 root 1.140 {
4165     if (lstat (w->path, &w->attr) < 0)
4166     w->attr.st_nlink = 0;
4167     else if (!w->attr.st_nlink)
4168     w->attr.st_nlink = 1;
4169     }
4170    
4171 root 1.157 static void noinline
4172 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4173     {
4174     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4175    
4176 root 1.320 ev_statdata prev = w->attr;
4177 root 1.140 ev_stat_stat (EV_A_ w);
4178    
4179 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4180     if (
4181 root 1.320 prev.st_dev != w->attr.st_dev
4182     || prev.st_ino != w->attr.st_ino
4183     || prev.st_mode != w->attr.st_mode
4184     || prev.st_nlink != w->attr.st_nlink
4185     || prev.st_uid != w->attr.st_uid
4186     || prev.st_gid != w->attr.st_gid
4187     || prev.st_rdev != w->attr.st_rdev
4188     || prev.st_size != w->attr.st_size
4189     || prev.st_atime != w->attr.st_atime
4190     || prev.st_mtime != w->attr.st_mtime
4191     || prev.st_ctime != w->attr.st_ctime
4192 root 1.156 ) {
4193 root 1.320 /* we only update w->prev on actual differences */
4194     /* in case we test more often than invoke the callback, */
4195     /* to ensure that prev is always different to attr */
4196     w->prev = prev;
4197    
4198 root 1.152 #if EV_USE_INOTIFY
4199 root 1.264 if (fs_fd >= 0)
4200     {
4201     infy_del (EV_A_ w);
4202     infy_add (EV_A_ w);
4203     ev_stat_stat (EV_A_ w); /* avoid race... */
4204     }
4205 root 1.152 #endif
4206    
4207     ev_feed_event (EV_A_ w, EV_STAT);
4208     }
4209 root 1.140 }
4210    
4211     void
4212 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4213 root 1.140 {
4214     if (expect_false (ev_is_active (w)))
4215     return;
4216    
4217     ev_stat_stat (EV_A_ w);
4218    
4219 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4220     w->interval = MIN_STAT_INTERVAL;
4221 root 1.143
4222 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4223 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4224 root 1.152
4225     #if EV_USE_INOTIFY
4226     infy_init (EV_A);
4227    
4228     if (fs_fd >= 0)
4229     infy_add (EV_A_ w);
4230     else
4231     #endif
4232 root 1.318 {
4233     ev_timer_again (EV_A_ &w->timer);
4234     ev_unref (EV_A);
4235     }
4236 root 1.140
4237     ev_start (EV_A_ (W)w, 1);
4238 root 1.248
4239     EV_FREQUENT_CHECK;
4240 root 1.140 }
4241    
4242     void
4243 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4244 root 1.140 {
4245 root 1.166 clear_pending (EV_A_ (W)w);
4246 root 1.140 if (expect_false (!ev_is_active (w)))
4247     return;
4248    
4249 root 1.248 EV_FREQUENT_CHECK;
4250    
4251 root 1.152 #if EV_USE_INOTIFY
4252     infy_del (EV_A_ w);
4253     #endif
4254 root 1.318
4255     if (ev_is_active (&w->timer))
4256     {
4257     ev_ref (EV_A);
4258     ev_timer_stop (EV_A_ &w->timer);
4259     }
4260 root 1.140
4261 root 1.134 ev_stop (EV_A_ (W)w);
4262 root 1.248
4263     EV_FREQUENT_CHECK;
4264 root 1.134 }
4265     #endif
4266    
4267 root 1.164 #if EV_IDLE_ENABLE
4268 root 1.144 void
4269 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4270 root 1.144 {
4271     if (expect_false (ev_is_active (w)))
4272     return;
4273    
4274 root 1.164 pri_adjust (EV_A_ (W)w);
4275    
4276 root 1.248 EV_FREQUENT_CHECK;
4277    
4278 root 1.164 {
4279     int active = ++idlecnt [ABSPRI (w)];
4280    
4281     ++idleall;
4282     ev_start (EV_A_ (W)w, active);
4283    
4284     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4285     idles [ABSPRI (w)][active - 1] = w;
4286     }
4287 root 1.248
4288     EV_FREQUENT_CHECK;
4289 root 1.144 }
4290    
4291     void
4292 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4293 root 1.144 {
4294 root 1.166 clear_pending (EV_A_ (W)w);
4295 root 1.144 if (expect_false (!ev_is_active (w)))
4296     return;
4297    
4298 root 1.248 EV_FREQUENT_CHECK;
4299    
4300 root 1.144 {
4301 root 1.230 int active = ev_active (w);
4302 root 1.164
4303     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4304 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4305 root 1.164
4306     ev_stop (EV_A_ (W)w);
4307     --idleall;
4308 root 1.144 }
4309 root 1.248
4310     EV_FREQUENT_CHECK;
4311 root 1.144 }
4312 root 1.164 #endif
4313 root 1.144
4314 root 1.337 #if EV_PREPARE_ENABLE
4315 root 1.144 void
4316 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4317 root 1.144 {
4318     if (expect_false (ev_is_active (w)))
4319     return;
4320    
4321 root 1.248 EV_FREQUENT_CHECK;
4322    
4323 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4324     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4325     prepares [preparecnt - 1] = w;
4326 root 1.248
4327     EV_FREQUENT_CHECK;
4328 root 1.144 }
4329    
4330     void
4331 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4332 root 1.144 {
4333 root 1.166 clear_pending (EV_A_ (W)w);
4334 root 1.144 if (expect_false (!ev_is_active (w)))
4335     return;
4336    
4337 root 1.248 EV_FREQUENT_CHECK;
4338    
4339 root 1.144 {
4340 root 1.230 int active = ev_active (w);
4341    
4342 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4343 root 1.230 ev_active (prepares [active - 1]) = active;
4344 root 1.144 }
4345    
4346     ev_stop (EV_A_ (W)w);
4347 root 1.248
4348     EV_FREQUENT_CHECK;
4349 root 1.144 }
4350 root 1.337 #endif
4351 root 1.144
4352 root 1.337 #if EV_CHECK_ENABLE
4353 root 1.144 void
4354 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4355 root 1.144 {
4356     if (expect_false (ev_is_active (w)))
4357     return;
4358    
4359 root 1.248 EV_FREQUENT_CHECK;
4360    
4361 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4362     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4363     checks [checkcnt - 1] = w;
4364 root 1.248
4365     EV_FREQUENT_CHECK;
4366 root 1.144 }
4367    
4368     void
4369 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4370 root 1.144 {
4371 root 1.166 clear_pending (EV_A_ (W)w);
4372 root 1.144 if (expect_false (!ev_is_active (w)))
4373     return;
4374    
4375 root 1.248 EV_FREQUENT_CHECK;
4376    
4377 root 1.144 {
4378 root 1.230 int active = ev_active (w);
4379    
4380 root 1.144 checks [active - 1] = checks [--checkcnt];
4381 root 1.230 ev_active (checks [active - 1]) = active;
4382 root 1.144 }
4383    
4384     ev_stop (EV_A_ (W)w);
4385 root 1.248
4386     EV_FREQUENT_CHECK;
4387 root 1.144 }
4388 root 1.337 #endif
4389 root 1.144
4390     #if EV_EMBED_ENABLE
4391     void noinline
4392 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4393 root 1.144 {
4394 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4395 root 1.144 }
4396    
4397     static void
4398 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4399 root 1.144 {
4400     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4401    
4402     if (ev_cb (w))
4403     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4404     else
4405 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4406 root 1.144 }
4407    
4408 root 1.189 static void
4409     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4410     {
4411     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4412    
4413 root 1.195 {
4414 root 1.306 EV_P = w->other;
4415 root 1.195
4416     while (fdchangecnt)
4417     {
4418     fd_reify (EV_A);
4419 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4420 root 1.195 }
4421     }
4422     }
4423    
4424 root 1.261 static void
4425     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4426     {
4427     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4428    
4429 root 1.277 ev_embed_stop (EV_A_ w);
4430    
4431 root 1.261 {
4432 root 1.306 EV_P = w->other;
4433 root 1.261
4434     ev_loop_fork (EV_A);
4435 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4436 root 1.261 }
4437 root 1.277
4438     ev_embed_start (EV_A_ w);
4439 root 1.261 }
4440    
4441 root 1.195 #if 0
4442     static void
4443     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4444     {
4445     ev_idle_stop (EV_A_ idle);
4446 root 1.189 }
4447 root 1.195 #endif
4448 root 1.189
4449 root 1.144 void
4450 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4451 root 1.144 {
4452     if (expect_false (ev_is_active (w)))
4453     return;
4454    
4455     {
4456 root 1.306 EV_P = w->other;
4457 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4458 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4459 root 1.144 }
4460    
4461 root 1.248 EV_FREQUENT_CHECK;
4462    
4463 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4464     ev_io_start (EV_A_ &w->io);
4465    
4466 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4467     ev_set_priority (&w->prepare, EV_MINPRI);
4468     ev_prepare_start (EV_A_ &w->prepare);
4469    
4470 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4471     ev_fork_start (EV_A_ &w->fork);
4472    
4473 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4474    
4475 root 1.144 ev_start (EV_A_ (W)w, 1);
4476 root 1.248
4477     EV_FREQUENT_CHECK;
4478 root 1.144 }
4479    
4480     void
4481 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4482 root 1.144 {
4483 root 1.166 clear_pending (EV_A_ (W)w);
4484 root 1.144 if (expect_false (!ev_is_active (w)))
4485     return;
4486    
4487 root 1.248 EV_FREQUENT_CHECK;
4488    
4489 root 1.261 ev_io_stop (EV_A_ &w->io);
4490 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4491 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4492 root 1.248
4493 root 1.328 ev_stop (EV_A_ (W)w);
4494    
4495 root 1.248 EV_FREQUENT_CHECK;
4496 root 1.144 }
4497     #endif
4498    
4499 root 1.147 #if EV_FORK_ENABLE
4500     void
4501 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4502 root 1.147 {
4503     if (expect_false (ev_is_active (w)))
4504     return;
4505    
4506 root 1.248 EV_FREQUENT_CHECK;
4507    
4508 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4509     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4510     forks [forkcnt - 1] = w;
4511 root 1.248
4512     EV_FREQUENT_CHECK;
4513 root 1.147 }
4514    
4515     void
4516 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4517 root 1.147 {
4518 root 1.166 clear_pending (EV_A_ (W)w);
4519 root 1.147 if (expect_false (!ev_is_active (w)))
4520     return;
4521    
4522 root 1.248 EV_FREQUENT_CHECK;
4523    
4524 root 1.147 {
4525 root 1.230 int active = ev_active (w);
4526    
4527 root 1.147 forks [active - 1] = forks [--forkcnt];
4528 root 1.230 ev_active (forks [active - 1]) = active;
4529 root 1.147 }
4530    
4531     ev_stop (EV_A_ (W)w);
4532 root 1.248
4533     EV_FREQUENT_CHECK;
4534 root 1.147 }
4535     #endif
4536    
4537 root 1.360 #if EV_CLEANUP_ENABLE
4538     void
4539 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4540 root 1.360 {
4541     if (expect_false (ev_is_active (w)))
4542     return;
4543    
4544     EV_FREQUENT_CHECK;
4545    
4546     ev_start (EV_A_ (W)w, ++cleanupcnt);
4547     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4548     cleanups [cleanupcnt - 1] = w;
4549    
4550 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4551     ev_unref (EV_A);
4552 root 1.360 EV_FREQUENT_CHECK;
4553     }
4554    
4555     void
4556 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4557 root 1.360 {
4558     clear_pending (EV_A_ (W)w);
4559     if (expect_false (!ev_is_active (w)))
4560     return;
4561    
4562     EV_FREQUENT_CHECK;
4563 root 1.362 ev_ref (EV_A);
4564 root 1.360
4565     {
4566     int active = ev_active (w);
4567    
4568     cleanups [active - 1] = cleanups [--cleanupcnt];
4569     ev_active (cleanups [active - 1]) = active;
4570     }
4571    
4572     ev_stop (EV_A_ (W)w);
4573    
4574     EV_FREQUENT_CHECK;
4575     }
4576     #endif
4577    
4578 root 1.207 #if EV_ASYNC_ENABLE
4579     void
4580 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4581 root 1.207 {
4582     if (expect_false (ev_is_active (w)))
4583     return;
4584    
4585 root 1.352 w->sent = 0;
4586    
4587 root 1.207 evpipe_init (EV_A);
4588    
4589 root 1.248 EV_FREQUENT_CHECK;
4590    
4591 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4592     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4593     asyncs [asynccnt - 1] = w;
4594 root 1.248
4595     EV_FREQUENT_CHECK;
4596 root 1.207 }
4597    
4598     void
4599 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4600 root 1.207 {
4601     clear_pending (EV_A_ (W)w);
4602     if (expect_false (!ev_is_active (w)))
4603     return;
4604    
4605 root 1.248 EV_FREQUENT_CHECK;
4606    
4607 root 1.207 {
4608 root 1.230 int active = ev_active (w);
4609    
4610 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4611 root 1.230 ev_active (asyncs [active - 1]) = active;
4612 root 1.207 }
4613    
4614     ev_stop (EV_A_ (W)w);
4615 root 1.248
4616     EV_FREQUENT_CHECK;
4617 root 1.207 }
4618    
4619     void
4620 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4621 root 1.207 {
4622     w->sent = 1;
4623 root 1.307 evpipe_write (EV_A_ &async_pending);
4624 root 1.207 }
4625     #endif
4626    
4627 root 1.1 /*****************************************************************************/
4628 root 1.10
4629 root 1.16 struct ev_once
4630     {
4631 root 1.136 ev_io io;
4632     ev_timer to;
4633 root 1.16 void (*cb)(int revents, void *arg);
4634     void *arg;
4635     };
4636    
4637     static void
4638 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4639 root 1.16 {
4640     void (*cb)(int revents, void *arg) = once->cb;
4641     void *arg = once->arg;
4642    
4643 root 1.259 ev_io_stop (EV_A_ &once->io);
4644 root 1.51 ev_timer_stop (EV_A_ &once->to);
4645 root 1.69 ev_free (once);
4646 root 1.16
4647     cb (revents, arg);
4648     }
4649    
4650     static void
4651 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4652 root 1.16 {
4653 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4654    
4655     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4656 root 1.16 }
4657    
4658     static void
4659 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4660 root 1.16 {
4661 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4662    
4663     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4664 root 1.16 }
4665    
4666     void
4667 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4668 root 1.16 {
4669 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4670 root 1.16
4671 root 1.123 if (expect_false (!once))
4672 root 1.16 {
4673 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4674 root 1.123 return;
4675     }
4676    
4677     once->cb = cb;
4678     once->arg = arg;
4679 root 1.16
4680 root 1.123 ev_init (&once->io, once_cb_io);
4681     if (fd >= 0)
4682     {
4683     ev_io_set (&once->io, fd, events);
4684     ev_io_start (EV_A_ &once->io);
4685     }
4686 root 1.16
4687 root 1.123 ev_init (&once->to, once_cb_to);
4688     if (timeout >= 0.)
4689     {
4690     ev_timer_set (&once->to, timeout, 0.);
4691     ev_timer_start (EV_A_ &once->to);
4692 root 1.16 }
4693     }
4694    
4695 root 1.282 /*****************************************************************************/
4696    
4697 root 1.288 #if EV_WALK_ENABLE
4698 root 1.379 void ecb_cold
4699 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4700 root 1.282 {
4701     int i, j;
4702     ev_watcher_list *wl, *wn;
4703    
4704     if (types & (EV_IO | EV_EMBED))
4705     for (i = 0; i < anfdmax; ++i)
4706     for (wl = anfds [i].head; wl; )
4707     {
4708     wn = wl->next;
4709    
4710     #if EV_EMBED_ENABLE
4711     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4712     {
4713     if (types & EV_EMBED)
4714     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4715     }
4716     else
4717     #endif
4718     #if EV_USE_INOTIFY
4719     if (ev_cb ((ev_io *)wl) == infy_cb)
4720     ;
4721     else
4722     #endif
4723 root 1.288 if ((ev_io *)wl != &pipe_w)
4724 root 1.282 if (types & EV_IO)
4725     cb (EV_A_ EV_IO, wl);
4726    
4727     wl = wn;
4728     }
4729    
4730     if (types & (EV_TIMER | EV_STAT))
4731     for (i = timercnt + HEAP0; i-- > HEAP0; )
4732     #if EV_STAT_ENABLE
4733     /*TODO: timer is not always active*/
4734     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4735     {
4736     if (types & EV_STAT)
4737     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4738     }
4739     else
4740     #endif
4741     if (types & EV_TIMER)
4742     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4743    
4744     #if EV_PERIODIC_ENABLE
4745     if (types & EV_PERIODIC)
4746     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4747     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4748     #endif
4749    
4750     #if EV_IDLE_ENABLE
4751     if (types & EV_IDLE)
4752 root 1.390 for (j = NUMPRI; j--; )
4753 root 1.282 for (i = idlecnt [j]; i--; )
4754     cb (EV_A_ EV_IDLE, idles [j][i]);
4755     #endif
4756    
4757     #if EV_FORK_ENABLE
4758     if (types & EV_FORK)
4759     for (i = forkcnt; i--; )
4760     if (ev_cb (forks [i]) != embed_fork_cb)
4761     cb (EV_A_ EV_FORK, forks [i]);
4762     #endif
4763    
4764     #if EV_ASYNC_ENABLE
4765     if (types & EV_ASYNC)
4766     for (i = asynccnt; i--; )
4767     cb (EV_A_ EV_ASYNC, asyncs [i]);
4768     #endif
4769    
4770 root 1.337 #if EV_PREPARE_ENABLE
4771 root 1.282 if (types & EV_PREPARE)
4772     for (i = preparecnt; i--; )
4773 root 1.337 # if EV_EMBED_ENABLE
4774 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4775 root 1.337 # endif
4776     cb (EV_A_ EV_PREPARE, prepares [i]);
4777 root 1.282 #endif
4778    
4779 root 1.337 #if EV_CHECK_ENABLE
4780 root 1.282 if (types & EV_CHECK)
4781     for (i = checkcnt; i--; )
4782     cb (EV_A_ EV_CHECK, checks [i]);
4783 root 1.337 #endif
4784 root 1.282
4785 root 1.337 #if EV_SIGNAL_ENABLE
4786 root 1.282 if (types & EV_SIGNAL)
4787 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4788 root 1.282 for (wl = signals [i].head; wl; )
4789     {
4790     wn = wl->next;
4791     cb (EV_A_ EV_SIGNAL, wl);
4792     wl = wn;
4793     }
4794 root 1.337 #endif
4795 root 1.282
4796 root 1.337 #if EV_CHILD_ENABLE
4797 root 1.282 if (types & EV_CHILD)
4798 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4799 root 1.282 for (wl = childs [i]; wl; )
4800     {
4801     wn = wl->next;
4802     cb (EV_A_ EV_CHILD, wl);
4803     wl = wn;
4804     }
4805 root 1.337 #endif
4806 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4807     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4808     }
4809     #endif
4810    
4811 root 1.188 #if EV_MULTIPLICITY
4812     #include "ev_wrap.h"
4813     #endif
4814