ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.458
Committed: Sun Oct 27 16:26:07 2013 UTC (10 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.457: +27 -3 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.418 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246     # error "unable to find value for NSIG, please report"
247 root 1.336 /* to make it compile regardless, just remove the above line, */
248     /* but consider reporting it, too! :) */
249 root 1.306 # define EV_NSIG 65
250 root 1.305 #endif
251    
252 root 1.373 #ifndef EV_USE_FLOOR
253     # define EV_USE_FLOOR 0
254     #endif
255    
256 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
257     # if __linux && __GLIBC__ >= 2
258 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 root 1.274 # else
260     # define EV_USE_CLOCK_SYSCALL 0
261     # endif
262     #endif
263    
264 root 1.29 #ifndef EV_USE_MONOTONIC
265 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 root 1.253 # else
268     # define EV_USE_MONOTONIC 0
269     # endif
270 root 1.37 #endif
271    
272 root 1.118 #ifndef EV_USE_REALTIME
273 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 root 1.118 #endif
275    
276 root 1.193 #ifndef EV_USE_NANOSLEEP
277 root 1.253 # if _POSIX_C_SOURCE >= 199309L
278 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 root 1.253 # else
280     # define EV_USE_NANOSLEEP 0
281     # endif
282 root 1.193 #endif
283    
284 root 1.29 #ifndef EV_USE_SELECT
285 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 root 1.10 #endif
287    
288 root 1.59 #ifndef EV_USE_POLL
289 root 1.104 # ifdef _WIN32
290     # define EV_USE_POLL 0
291     # else
292 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 root 1.104 # endif
294 root 1.41 #endif
295    
296 root 1.29 #ifndef EV_USE_EPOLL
297 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 root 1.220 # else
300     # define EV_USE_EPOLL 0
301     # endif
302 root 1.10 #endif
303    
304 root 1.44 #ifndef EV_USE_KQUEUE
305     # define EV_USE_KQUEUE 0
306     #endif
307    
308 root 1.118 #ifndef EV_USE_PORT
309     # define EV_USE_PORT 0
310 root 1.40 #endif
311    
312 root 1.152 #ifndef EV_USE_INOTIFY
313 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
315 root 1.220 # else
316     # define EV_USE_INOTIFY 0
317     # endif
318 root 1.152 #endif
319    
320 root 1.149 #ifndef EV_PID_HASHSIZE
321 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 root 1.149 #endif
323    
324 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
325 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 root 1.152 #endif
327    
328 root 1.220 #ifndef EV_USE_EVENTFD
329     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
331 root 1.220 # else
332     # define EV_USE_EVENTFD 0
333     # endif
334     #endif
335    
336 root 1.303 #ifndef EV_USE_SIGNALFD
337 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 root 1.303 # else
340     # define EV_USE_SIGNALFD 0
341     # endif
342     #endif
343    
344 root 1.249 #if 0 /* debugging */
345 root 1.250 # define EV_VERIFY 3
346 root 1.249 # define EV_USE_4HEAP 1
347     # define EV_HEAP_CACHE_AT 1
348     #endif
349    
350 root 1.250 #ifndef EV_VERIFY
351 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 root 1.250 #endif
353    
354 root 1.243 #ifndef EV_USE_4HEAP
355 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
356 root 1.243 #endif
357    
358     #ifndef EV_HEAP_CACHE_AT
359 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 root 1.243 #endif
361    
362 root 1.452 #ifdef ANDROID
363     /* supposedly, android doesn't typedef fd_mask */
364     # undef EV_USE_SELECT
365     # define EV_USE_SELECT 0
366     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367     # undef EV_USE_CLOCK_SYSCALL
368     # define EV_USE_CLOCK_SYSCALL 0
369     #endif
370    
371     /* aix's poll.h seems to cause lots of trouble */
372     #ifdef _AIX
373     /* AIX has a completely broken poll.h header */
374     # undef EV_USE_POLL
375     # define EV_USE_POLL 0
376     #endif
377    
378 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379     /* which makes programs even slower. might work on other unices, too. */
380     #if EV_USE_CLOCK_SYSCALL
381 root 1.423 # include <sys/syscall.h>
382 root 1.291 # ifdef SYS_clock_gettime
383     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384     # undef EV_USE_MONOTONIC
385     # define EV_USE_MONOTONIC 1
386     # else
387     # undef EV_USE_CLOCK_SYSCALL
388     # define EV_USE_CLOCK_SYSCALL 0
389     # endif
390     #endif
391    
392 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
393 root 1.40
394     #ifndef CLOCK_MONOTONIC
395     # undef EV_USE_MONOTONIC
396     # define EV_USE_MONOTONIC 0
397     #endif
398    
399 root 1.31 #ifndef CLOCK_REALTIME
400 root 1.40 # undef EV_USE_REALTIME
401 root 1.31 # define EV_USE_REALTIME 0
402     #endif
403 root 1.40
404 root 1.152 #if !EV_STAT_ENABLE
405 root 1.185 # undef EV_USE_INOTIFY
406 root 1.152 # define EV_USE_INOTIFY 0
407     #endif
408    
409 root 1.193 #if !EV_USE_NANOSLEEP
410 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
411 root 1.416 # if !defined _WIN32 && !defined __hpux
412 root 1.193 # include <sys/select.h>
413     # endif
414     #endif
415    
416 root 1.152 #if EV_USE_INOTIFY
417 root 1.273 # include <sys/statfs.h>
418 root 1.152 # include <sys/inotify.h>
419 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420     # ifndef IN_DONT_FOLLOW
421     # undef EV_USE_INOTIFY
422     # define EV_USE_INOTIFY 0
423     # endif
424 root 1.152 #endif
425    
426 root 1.220 #if EV_USE_EVENTFD
427     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428 root 1.221 # include <stdint.h>
429 root 1.303 # ifndef EFD_NONBLOCK
430     # define EFD_NONBLOCK O_NONBLOCK
431     # endif
432     # ifndef EFD_CLOEXEC
433 root 1.311 # ifdef O_CLOEXEC
434     # define EFD_CLOEXEC O_CLOEXEC
435     # else
436     # define EFD_CLOEXEC 02000000
437     # endif
438 root 1.303 # endif
439 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440 root 1.220 #endif
441    
442 root 1.303 #if EV_USE_SIGNALFD
443 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444     # include <stdint.h>
445     # ifndef SFD_NONBLOCK
446     # define SFD_NONBLOCK O_NONBLOCK
447     # endif
448     # ifndef SFD_CLOEXEC
449     # ifdef O_CLOEXEC
450     # define SFD_CLOEXEC O_CLOEXEC
451     # else
452     # define SFD_CLOEXEC 02000000
453     # endif
454     # endif
455 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456 root 1.314
457     struct signalfd_siginfo
458     {
459     uint32_t ssi_signo;
460     char pad[128 - sizeof (uint32_t)];
461     };
462 root 1.303 #endif
463    
464 root 1.40 /**/
465 root 1.1
466 root 1.250 #if EV_VERIFY >= 3
467 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
468 root 1.248 #else
469     # define EV_FREQUENT_CHECK do { } while (0)
470     #endif
471    
472 root 1.176 /*
473 root 1.373 * This is used to work around floating point rounding problems.
474 root 1.177 * This value is good at least till the year 4000.
475 root 1.176 */
476 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
478 root 1.176
479 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
480 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
481 root 1.1
482 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484 root 1.347
485 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486     /* ECB.H BEGIN */
487     /*
488     * libecb - http://software.schmorp.de/pkg/libecb
489     *
490 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
492     * All rights reserved.
493     *
494     * Redistribution and use in source and binary forms, with or without modifica-
495     * tion, are permitted provided that the following conditions are met:
496     *
497     * 1. Redistributions of source code must retain the above copyright notice,
498     * this list of conditions and the following disclaimer.
499     *
500     * 2. Redistributions in binary form must reproduce the above copyright
501     * notice, this list of conditions and the following disclaimer in the
502     * documentation and/or other materials provided with the distribution.
503     *
504     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513     * OF THE POSSIBILITY OF SUCH DAMAGE.
514     */
515    
516     #ifndef ECB_H
517     #define ECB_H
518    
519 root 1.437 /* 16 bits major, 16 bits minor */
520 root 1.454 #define ECB_VERSION 0x00010003
521 root 1.437
522 root 1.391 #ifdef _WIN32
523     typedef signed char int8_t;
524     typedef unsigned char uint8_t;
525     typedef signed short int16_t;
526     typedef unsigned short uint16_t;
527     typedef signed int int32_t;
528     typedef unsigned int uint32_t;
529     #if __GNUC__
530     typedef signed long long int64_t;
531     typedef unsigned long long uint64_t;
532     #else /* _MSC_VER || __BORLANDC__ */
533     typedef signed __int64 int64_t;
534     typedef unsigned __int64 uint64_t;
535     #endif
536 root 1.437 #ifdef _WIN64
537     #define ECB_PTRSIZE 8
538     typedef uint64_t uintptr_t;
539     typedef int64_t intptr_t;
540     #else
541     #define ECB_PTRSIZE 4
542     typedef uint32_t uintptr_t;
543     typedef int32_t intptr_t;
544     #endif
545 root 1.391 #else
546     #include <inttypes.h>
547 root 1.437 #if UINTMAX_MAX > 0xffffffffU
548     #define ECB_PTRSIZE 8
549     #else
550     #define ECB_PTRSIZE 4
551     #endif
552 root 1.391 #endif
553 root 1.379
554 root 1.454 /* work around x32 idiocy by defining proper macros */
555     #if __x86_64 || _M_AMD64
556 root 1.458 #if _ILP32
557 root 1.454 #define ECB_AMD64_X32 1
558     #else
559     #define ECB_AMD64 1
560     #endif
561     #endif
562    
563 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
564     * what their idiot authors think are the "more important" extensions,
565 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
566 root 1.379 * or so.
567     * we try to detect these and simply assume they are not gcc - if they have
568     * an issue with that they should have done it right in the first place.
569     */
570     #ifndef ECB_GCC_VERSION
571 root 1.417 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 root 1.379 #define ECB_GCC_VERSION(major,minor) 0
573     #else
574     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575     #endif
576     #endif
577    
578 root 1.437 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
580     #define ECB_C11 (__STDC_VERSION__ >= 201112L)
581     #define ECB_CPP (__cplusplus+0)
582     #define ECB_CPP11 (__cplusplus >= 201103L)
583    
584 root 1.450 #if ECB_CPP
585     #define ECB_EXTERN_C extern "C"
586     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587     #define ECB_EXTERN_C_END }
588     #else
589     #define ECB_EXTERN_C extern
590     #define ECB_EXTERN_C_BEG
591     #define ECB_EXTERN_C_END
592     #endif
593    
594 root 1.391 /*****************************************************************************/
595    
596     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598    
599 root 1.410 #if ECB_NO_THREADS
600 root 1.439 #define ECB_NO_SMP 1
601 root 1.410 #endif
602    
603 root 1.437 #if ECB_NO_SMP
604 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
605 root 1.40 #endif
606    
607 root 1.383 #ifndef ECB_MEMORY_FENCE
608 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 root 1.404 #if __i386 || __i386__
610 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 root 1.404 #elif __sparc || __sparc__
626 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 root 1.417 #elif defined __s390__ || defined __s390x__
630 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 root 1.417 #elif defined __mips__
632 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
633 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
634     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
635 root 1.419 #elif defined __alpha__
636 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
637     #elif defined __hppa__
638     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
639     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
640     #elif defined __ia64__
641     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
642 root 1.457 #elif defined __m68k__
643     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
644     #elif defined __m88k__
645     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
646     #elif defined __sh__
647     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
648 root 1.383 #endif
649     #endif
650     #endif
651    
652     #ifndef ECB_MEMORY_FENCE
653 root 1.437 #if ECB_GCC_VERSION(4,7)
654 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
655 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
656 root 1.450
657     /* The __has_feature syntax from clang is so misdesigned that we cannot use it
658     * without risking compile time errors with other compilers. We *could*
659     * define our own ecb_clang_has_feature, but I just can't be bothered to work
660     * around this shit time and again.
661     * #elif defined __clang && __has_feature (cxx_atomic)
662     * // see comment below (stdatomic.h) about the C11 memory model.
663     * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
664     */
665    
666 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
667 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
668 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
669     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
670     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
671     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
672     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
673 root 1.417 #elif defined _WIN32
674 root 1.388 #include <WinNT.h>
675 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
676 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
677     #include <mbarrier.h>
678     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
679     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
680     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
681 root 1.413 #elif __xlC__
682 root 1.414 #define ECB_MEMORY_FENCE __sync ()
683 root 1.383 #endif
684     #endif
685    
686     #ifndef ECB_MEMORY_FENCE
687 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
688     /* we assume that these memory fences work on all variables/all memory accesses, */
689     /* not just C11 atomics and atomic accesses */
690     #include <stdatomic.h>
691 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
692     /* any fence other than seq_cst, which isn't very efficient for us. */
693     /* Why that is, we don't know - either the C11 memory model is quite useless */
694     /* for most usages, or gcc and clang have a bug */
695     /* I *currently* lean towards the latter, and inefficiently implement */
696     /* all three of ecb's fences as a seq_cst fence */
697 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
698     #endif
699     #endif
700    
701     #ifndef ECB_MEMORY_FENCE
702 root 1.392 #if !ECB_AVOID_PTHREADS
703     /*
704     * if you get undefined symbol references to pthread_mutex_lock,
705     * or failure to find pthread.h, then you should implement
706     * the ECB_MEMORY_FENCE operations for your cpu/compiler
707     * OR provide pthread.h and link against the posix thread library
708     * of your system.
709     */
710     #include <pthread.h>
711     #define ECB_NEEDS_PTHREADS 1
712     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
713    
714     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
715     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
716     #endif
717     #endif
718 root 1.383
719 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
720 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
721 root 1.392 #endif
722    
723 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
724 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
725     #endif
726    
727 root 1.391 /*****************************************************************************/
728    
729     #if __cplusplus
730     #define ecb_inline static inline
731     #elif ECB_GCC_VERSION(2,5)
732     #define ecb_inline static __inline__
733     #elif ECB_C99
734     #define ecb_inline static inline
735     #else
736     #define ecb_inline static
737     #endif
738    
739     #if ECB_GCC_VERSION(3,3)
740     #define ecb_restrict __restrict__
741     #elif ECB_C99
742     #define ecb_restrict restrict
743     #else
744     #define ecb_restrict
745     #endif
746    
747     typedef int ecb_bool;
748    
749     #define ECB_CONCAT_(a, b) a ## b
750     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
751     #define ECB_STRINGIFY_(a) # a
752     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
753    
754     #define ecb_function_ ecb_inline
755    
756 root 1.379 #if ECB_GCC_VERSION(3,1)
757     #define ecb_attribute(attrlist) __attribute__(attrlist)
758     #define ecb_is_constant(expr) __builtin_constant_p (expr)
759     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
760     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
761     #else
762     #define ecb_attribute(attrlist)
763     #define ecb_is_constant(expr) 0
764     #define ecb_expect(expr,value) (expr)
765     #define ecb_prefetch(addr,rw,locality)
766     #endif
767    
768 root 1.391 /* no emulation for ecb_decltype */
769     #if ECB_GCC_VERSION(4,5)
770     #define ecb_decltype(x) __decltype(x)
771     #elif ECB_GCC_VERSION(3,0)
772     #define ecb_decltype(x) __typeof(x)
773     #endif
774    
775 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
776     #define ecb_unused ecb_attribute ((__unused__))
777     #define ecb_const ecb_attribute ((__const__))
778     #define ecb_pure ecb_attribute ((__pure__))
779    
780 root 1.437 #if ECB_C11
781     #define ecb_noreturn _Noreturn
782     #else
783     #define ecb_noreturn ecb_attribute ((__noreturn__))
784     #endif
785    
786 root 1.379 #if ECB_GCC_VERSION(4,3)
787     #define ecb_artificial ecb_attribute ((__artificial__))
788     #define ecb_hot ecb_attribute ((__hot__))
789     #define ecb_cold ecb_attribute ((__cold__))
790     #else
791     #define ecb_artificial
792     #define ecb_hot
793     #define ecb_cold
794     #endif
795    
796     /* put around conditional expressions if you are very sure that the */
797     /* expression is mostly true or mostly false. note that these return */
798     /* booleans, not the expression. */
799     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
800     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
801 root 1.391 /* for compatibility to the rest of the world */
802     #define ecb_likely(expr) ecb_expect_true (expr)
803     #define ecb_unlikely(expr) ecb_expect_false (expr)
804    
805     /* count trailing zero bits and count # of one bits */
806     #if ECB_GCC_VERSION(3,4)
807     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
808     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
809     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
810     #define ecb_ctz32(x) __builtin_ctz (x)
811     #define ecb_ctz64(x) __builtin_ctzll (x)
812     #define ecb_popcount32(x) __builtin_popcount (x)
813     /* no popcountll */
814     #else
815     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
816     ecb_function_ int
817     ecb_ctz32 (uint32_t x)
818     {
819     int r = 0;
820    
821     x &= ~x + 1; /* this isolates the lowest bit */
822    
823     #if ECB_branchless_on_i386
824     r += !!(x & 0xaaaaaaaa) << 0;
825     r += !!(x & 0xcccccccc) << 1;
826     r += !!(x & 0xf0f0f0f0) << 2;
827     r += !!(x & 0xff00ff00) << 3;
828     r += !!(x & 0xffff0000) << 4;
829     #else
830     if (x & 0xaaaaaaaa) r += 1;
831     if (x & 0xcccccccc) r += 2;
832     if (x & 0xf0f0f0f0) r += 4;
833     if (x & 0xff00ff00) r += 8;
834     if (x & 0xffff0000) r += 16;
835     #endif
836    
837     return r;
838     }
839    
840     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
841     ecb_function_ int
842     ecb_ctz64 (uint64_t x)
843     {
844     int shift = x & 0xffffffffU ? 0 : 32;
845     return ecb_ctz32 (x >> shift) + shift;
846     }
847    
848     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
849     ecb_function_ int
850     ecb_popcount32 (uint32_t x)
851     {
852     x -= (x >> 1) & 0x55555555;
853     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
854     x = ((x >> 4) + x) & 0x0f0f0f0f;
855     x *= 0x01010101;
856    
857     return x >> 24;
858     }
859    
860     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
861     ecb_function_ int ecb_ld32 (uint32_t x)
862     {
863     int r = 0;
864    
865     if (x >> 16) { x >>= 16; r += 16; }
866     if (x >> 8) { x >>= 8; r += 8; }
867     if (x >> 4) { x >>= 4; r += 4; }
868     if (x >> 2) { x >>= 2; r += 2; }
869     if (x >> 1) { r += 1; }
870    
871     return r;
872     }
873    
874     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
875     ecb_function_ int ecb_ld64 (uint64_t x)
876     {
877     int r = 0;
878    
879     if (x >> 32) { x >>= 32; r += 32; }
880    
881     return r + ecb_ld32 (x);
882     }
883     #endif
884    
885 root 1.437 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
886     ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
887     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
888     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
889    
890 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
891     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
892     {
893     return ( (x * 0x0802U & 0x22110U)
894     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
895     }
896    
897     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
898     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
899     {
900     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
901     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
902     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
903     x = ( x >> 8 ) | ( x << 8);
904    
905     return x;
906     }
907    
908     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
909     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
910     {
911     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
912     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
913     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
914     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
915     x = ( x >> 16 ) | ( x << 16);
916    
917     return x;
918     }
919    
920 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
921     /* so for this version we are lazy */
922     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
923     ecb_function_ int
924     ecb_popcount64 (uint64_t x)
925     {
926     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
927     }
928    
929     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
930     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
931     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
932     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
933     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
934     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
935     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
936     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
937    
938     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
939     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
940     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
941     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
942     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
943     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
944     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
945     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
946    
947     #if ECB_GCC_VERSION(4,3)
948     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
949     #define ecb_bswap32(x) __builtin_bswap32 (x)
950     #define ecb_bswap64(x) __builtin_bswap64 (x)
951     #else
952     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
953     ecb_function_ uint16_t
954     ecb_bswap16 (uint16_t x)
955     {
956     return ecb_rotl16 (x, 8);
957     }
958    
959     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
960     ecb_function_ uint32_t
961     ecb_bswap32 (uint32_t x)
962     {
963     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
964     }
965    
966     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
967     ecb_function_ uint64_t
968     ecb_bswap64 (uint64_t x)
969     {
970     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
971     }
972     #endif
973    
974     #if ECB_GCC_VERSION(4,5)
975     #define ecb_unreachable() __builtin_unreachable ()
976     #else
977     /* this seems to work fine, but gcc always emits a warning for it :/ */
978 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
979     ecb_inline void ecb_unreachable (void) { }
980 root 1.391 #endif
981    
982     /* try to tell the compiler that some condition is definitely true */
983 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
984 root 1.391
985 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
986     ecb_inline unsigned char
987 root 1.391 ecb_byteorder_helper (void)
988     {
989 root 1.450 /* the union code still generates code under pressure in gcc, */
990     /* but less than using pointers, and always seems to */
991     /* successfully return a constant. */
992     /* the reason why we have this horrible preprocessor mess */
993     /* is to avoid it in all cases, at least on common architectures */
994     /* or when using a recent enough gcc version (>= 4.6) */
995     #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
996     return 0x44;
997     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
998     return 0x44;
999     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1000     return 0x11;
1001     #else
1002     union
1003     {
1004     uint32_t i;
1005     uint8_t c;
1006     } u = { 0x11223344 };
1007     return u.c;
1008     #endif
1009 root 1.391 }
1010    
1011 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1012     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1013     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1014     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1015 root 1.391
1016     #if ECB_GCC_VERSION(3,0) || ECB_C99
1017     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1018     #else
1019     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1020     #endif
1021    
1022 root 1.398 #if __cplusplus
1023     template<typename T>
1024     static inline T ecb_div_rd (T val, T div)
1025     {
1026     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1027     }
1028     template<typename T>
1029     static inline T ecb_div_ru (T val, T div)
1030     {
1031     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1032     }
1033     #else
1034     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1035     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1036     #endif
1037    
1038 root 1.391 #if ecb_cplusplus_does_not_suck
1039     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1040     template<typename T, int N>
1041     static inline int ecb_array_length (const T (&arr)[N])
1042     {
1043     return N;
1044     }
1045     #else
1046     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1047     #endif
1048    
1049 root 1.450 /*******************************************************************************/
1050     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1051    
1052     /* basically, everything uses "ieee pure-endian" floating point numbers */
1053     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1054     #if 0 \
1055     || __i386 || __i386__ \
1056     || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1057     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1058     || defined __arm__ && defined __ARM_EABI__ \
1059     || defined __s390__ || defined __s390x__ \
1060     || defined __mips__ \
1061     || defined __alpha__ \
1062     || defined __hppa__ \
1063     || defined __ia64__ \
1064 root 1.457 || defined __m68k__ \
1065     || defined __m88k__ \
1066     || defined __sh__ \
1067 root 1.450 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1068     #define ECB_STDFP 1
1069     #include <string.h> /* for memcpy */
1070     #else
1071     #define ECB_STDFP 0
1072     #endif
1073    
1074     #ifndef ECB_NO_LIBM
1075    
1076 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1077    
1078     #ifdef NEN
1079     #define ECB_NAN NAN
1080     #else
1081     #define ECB_NAN INFINITY
1082     #endif
1083    
1084     /* converts an ieee half/binary16 to a float */
1085     ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1086     ecb_function_ float
1087     ecb_binary16_to_float (uint16_t x)
1088     {
1089     int e = (x >> 10) & 0x1f;
1090     int m = x & 0x3ff;
1091     float r;
1092    
1093     if (!e ) r = ldexpf (m , -24);
1094     else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1095     else if (m ) r = ECB_NAN;
1096     else r = INFINITY;
1097    
1098     return x & 0x8000 ? -r : r;
1099     }
1100    
1101 root 1.450 /* convert a float to ieee single/binary32 */
1102     ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1103     ecb_function_ uint32_t
1104     ecb_float_to_binary32 (float x)
1105     {
1106     uint32_t r;
1107    
1108     #if ECB_STDFP
1109     memcpy (&r, &x, 4);
1110     #else
1111     /* slow emulation, works for anything but -0 */
1112     uint32_t m;
1113     int e;
1114    
1115     if (x == 0e0f ) return 0x00000000U;
1116     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1117     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1118     if (x != x ) return 0x7fbfffffU;
1119    
1120     m = frexpf (x, &e) * 0x1000000U;
1121    
1122     r = m & 0x80000000U;
1123    
1124     if (r)
1125     m = -m;
1126    
1127     if (e <= -126)
1128     {
1129     m &= 0xffffffU;
1130     m >>= (-125 - e);
1131     e = -126;
1132     }
1133    
1134     r |= (e + 126) << 23;
1135     r |= m & 0x7fffffU;
1136     #endif
1137    
1138     return r;
1139     }
1140    
1141     /* converts an ieee single/binary32 to a float */
1142     ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1143     ecb_function_ float
1144     ecb_binary32_to_float (uint32_t x)
1145     {
1146     float r;
1147    
1148     #if ECB_STDFP
1149     memcpy (&r, &x, 4);
1150     #else
1151     /* emulation, only works for normals and subnormals and +0 */
1152     int neg = x >> 31;
1153     int e = (x >> 23) & 0xffU;
1154    
1155     x &= 0x7fffffU;
1156    
1157     if (e)
1158     x |= 0x800000U;
1159     else
1160     e = 1;
1161    
1162     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1163     r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1164    
1165     r = neg ? -r : r;
1166     #endif
1167    
1168     return r;
1169     }
1170    
1171     /* convert a double to ieee double/binary64 */
1172     ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1173     ecb_function_ uint64_t
1174     ecb_double_to_binary64 (double x)
1175     {
1176     uint64_t r;
1177    
1178     #if ECB_STDFP
1179     memcpy (&r, &x, 8);
1180     #else
1181     /* slow emulation, works for anything but -0 */
1182     uint64_t m;
1183     int e;
1184    
1185     if (x == 0e0 ) return 0x0000000000000000U;
1186     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1187     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1188     if (x != x ) return 0X7ff7ffffffffffffU;
1189    
1190     m = frexp (x, &e) * 0x20000000000000U;
1191    
1192     r = m & 0x8000000000000000;;
1193    
1194     if (r)
1195     m = -m;
1196    
1197     if (e <= -1022)
1198     {
1199     m &= 0x1fffffffffffffU;
1200     m >>= (-1021 - e);
1201     e = -1022;
1202     }
1203    
1204     r |= ((uint64_t)(e + 1022)) << 52;
1205     r |= m & 0xfffffffffffffU;
1206     #endif
1207    
1208     return r;
1209     }
1210    
1211     /* converts an ieee double/binary64 to a double */
1212     ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1213     ecb_function_ double
1214     ecb_binary64_to_double (uint64_t x)
1215     {
1216     double r;
1217    
1218     #if ECB_STDFP
1219     memcpy (&r, &x, 8);
1220     #else
1221     /* emulation, only works for normals and subnormals and +0 */
1222     int neg = x >> 63;
1223     int e = (x >> 52) & 0x7ffU;
1224    
1225     x &= 0xfffffffffffffU;
1226    
1227     if (e)
1228     x |= 0x10000000000000U;
1229     else
1230     e = 1;
1231    
1232     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1233     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1234    
1235     r = neg ? -r : r;
1236     #endif
1237    
1238     return r;
1239     }
1240    
1241     #endif
1242    
1243 root 1.391 #endif
1244    
1245     /* ECB.H END */
1246 root 1.379
1247 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1248 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1249 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1250     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1251 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1252 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1253     * which will then provide the memory fences.
1254     */
1255     # error "memory fences not defined for your architecture, please report"
1256     #endif
1257    
1258     #ifndef ECB_MEMORY_FENCE
1259     # define ECB_MEMORY_FENCE do { } while (0)
1260     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1261     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1262 root 1.392 #endif
1263    
1264 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1265     #define expect_true(cond) ecb_expect_true (cond)
1266     #define noinline ecb_noinline
1267    
1268     #define inline_size ecb_inline
1269 root 1.169
1270 root 1.338 #if EV_FEATURE_CODE
1271 root 1.379 # define inline_speed ecb_inline
1272 root 1.338 #else
1273 root 1.169 # define inline_speed static noinline
1274     #endif
1275 root 1.40
1276 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1277    
1278     #if EV_MINPRI == EV_MAXPRI
1279     # define ABSPRI(w) (((W)w), 0)
1280     #else
1281     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1282     #endif
1283 root 1.42
1284 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1285 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1286 root 1.103
1287 root 1.136 typedef ev_watcher *W;
1288     typedef ev_watcher_list *WL;
1289     typedef ev_watcher_time *WT;
1290 root 1.10
1291 root 1.229 #define ev_active(w) ((W)(w))->active
1292 root 1.228 #define ev_at(w) ((WT)(w))->at
1293    
1294 root 1.279 #if EV_USE_REALTIME
1295 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1296 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1297 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1298     #endif
1299    
1300     #if EV_USE_MONOTONIC
1301 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1302 root 1.198 #endif
1303 root 1.54
1304 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1305     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1306     #endif
1307     #ifndef EV_WIN32_HANDLE_TO_FD
1308 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1309 root 1.313 #endif
1310     #ifndef EV_WIN32_CLOSE_FD
1311     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1312     #endif
1313    
1314 root 1.103 #ifdef _WIN32
1315 root 1.98 # include "ev_win32.c"
1316     #endif
1317 root 1.67
1318 root 1.53 /*****************************************************************************/
1319 root 1.1
1320 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1321    
1322     #if EV_USE_FLOOR
1323     # include <math.h>
1324     # define ev_floor(v) floor (v)
1325     #else
1326    
1327     #include <float.h>
1328    
1329     /* a floor() replacement function, should be independent of ev_tstamp type */
1330     static ev_tstamp noinline
1331     ev_floor (ev_tstamp v)
1332     {
1333     /* the choice of shift factor is not terribly important */
1334     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1335     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1336     #else
1337     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1338     #endif
1339    
1340     /* argument too large for an unsigned long? */
1341     if (expect_false (v >= shift))
1342     {
1343     ev_tstamp f;
1344    
1345     if (v == v - 1.)
1346     return v; /* very large number */
1347    
1348     f = shift * ev_floor (v * (1. / shift));
1349     return f + ev_floor (v - f);
1350     }
1351    
1352     /* special treatment for negative args? */
1353     if (expect_false (v < 0.))
1354     {
1355     ev_tstamp f = -ev_floor (-v);
1356    
1357     return f - (f == v ? 0 : 1);
1358     }
1359    
1360     /* fits into an unsigned long */
1361     return (unsigned long)v;
1362     }
1363    
1364     #endif
1365    
1366     /*****************************************************************************/
1367    
1368 root 1.356 #ifdef __linux
1369     # include <sys/utsname.h>
1370     #endif
1371    
1372 root 1.379 static unsigned int noinline ecb_cold
1373 root 1.355 ev_linux_version (void)
1374     {
1375     #ifdef __linux
1376 root 1.359 unsigned int v = 0;
1377 root 1.355 struct utsname buf;
1378     int i;
1379     char *p = buf.release;
1380    
1381     if (uname (&buf))
1382     return 0;
1383    
1384     for (i = 3+1; --i; )
1385     {
1386     unsigned int c = 0;
1387    
1388     for (;;)
1389     {
1390     if (*p >= '0' && *p <= '9')
1391     c = c * 10 + *p++ - '0';
1392     else
1393     {
1394     p += *p == '.';
1395     break;
1396     }
1397     }
1398    
1399     v = (v << 8) | c;
1400     }
1401    
1402     return v;
1403     #else
1404     return 0;
1405     #endif
1406     }
1407    
1408     /*****************************************************************************/
1409    
1410 root 1.331 #if EV_AVOID_STDIO
1411 root 1.379 static void noinline ecb_cold
1412 root 1.331 ev_printerr (const char *msg)
1413     {
1414     write (STDERR_FILENO, msg, strlen (msg));
1415     }
1416     #endif
1417    
1418 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1419 root 1.69
1420 root 1.379 void ecb_cold
1421 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1422 root 1.69 {
1423     syserr_cb = cb;
1424     }
1425    
1426 root 1.379 static void noinline ecb_cold
1427 root 1.269 ev_syserr (const char *msg)
1428 root 1.69 {
1429 root 1.70 if (!msg)
1430     msg = "(libev) system error";
1431    
1432 root 1.69 if (syserr_cb)
1433 root 1.70 syserr_cb (msg);
1434 root 1.69 else
1435     {
1436 root 1.330 #if EV_AVOID_STDIO
1437 root 1.331 ev_printerr (msg);
1438     ev_printerr (": ");
1439 root 1.365 ev_printerr (strerror (errno));
1440 root 1.331 ev_printerr ("\n");
1441 root 1.330 #else
1442 root 1.70 perror (msg);
1443 root 1.330 #endif
1444 root 1.69 abort ();
1445     }
1446     }
1447    
1448 root 1.224 static void *
1449 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1450 root 1.224 {
1451     /* some systems, notably openbsd and darwin, fail to properly
1452 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1453 root 1.224 * the single unix specification, so work around them here.
1454 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1455     * despite documenting it otherwise.
1456 root 1.224 */
1457 root 1.333
1458 root 1.224 if (size)
1459     return realloc (ptr, size);
1460    
1461     free (ptr);
1462     return 0;
1463     }
1464    
1465 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1466 root 1.69
1467 root 1.379 void ecb_cold
1468 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1469 root 1.69 {
1470     alloc = cb;
1471     }
1472    
1473 root 1.150 inline_speed void *
1474 root 1.155 ev_realloc (void *ptr, long size)
1475 root 1.69 {
1476 root 1.224 ptr = alloc (ptr, size);
1477 root 1.69
1478     if (!ptr && size)
1479     {
1480 root 1.330 #if EV_AVOID_STDIO
1481 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1482 root 1.330 #else
1483 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1484 root 1.330 #endif
1485 root 1.69 abort ();
1486     }
1487    
1488     return ptr;
1489     }
1490    
1491     #define ev_malloc(size) ev_realloc (0, (size))
1492     #define ev_free(ptr) ev_realloc ((ptr), 0)
1493    
1494     /*****************************************************************************/
1495    
1496 root 1.298 /* set in reify when reification needed */
1497     #define EV_ANFD_REIFY 1
1498    
1499 root 1.288 /* file descriptor info structure */
1500 root 1.53 typedef struct
1501     {
1502 root 1.68 WL head;
1503 root 1.288 unsigned char events; /* the events watched for */
1504 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1505 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1506 root 1.269 unsigned char unused;
1507     #if EV_USE_EPOLL
1508 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1509 root 1.269 #endif
1510 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1511 root 1.103 SOCKET handle;
1512     #endif
1513 root 1.357 #if EV_USE_IOCP
1514     OVERLAPPED or, ow;
1515     #endif
1516 root 1.53 } ANFD;
1517 root 1.1
1518 root 1.288 /* stores the pending event set for a given watcher */
1519 root 1.53 typedef struct
1520     {
1521     W w;
1522 root 1.288 int events; /* the pending event set for the given watcher */
1523 root 1.53 } ANPENDING;
1524 root 1.51
1525 root 1.155 #if EV_USE_INOTIFY
1526 root 1.241 /* hash table entry per inotify-id */
1527 root 1.152 typedef struct
1528     {
1529     WL head;
1530 root 1.155 } ANFS;
1531 root 1.152 #endif
1532    
1533 root 1.241 /* Heap Entry */
1534     #if EV_HEAP_CACHE_AT
1535 root 1.288 /* a heap element */
1536 root 1.241 typedef struct {
1537 root 1.243 ev_tstamp at;
1538 root 1.241 WT w;
1539     } ANHE;
1540    
1541 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1542     #define ANHE_at(he) (he).at /* access cached at, read-only */
1543     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1544 root 1.241 #else
1545 root 1.288 /* a heap element */
1546 root 1.241 typedef WT ANHE;
1547    
1548 root 1.248 #define ANHE_w(he) (he)
1549     #define ANHE_at(he) (he)->at
1550     #define ANHE_at_cache(he)
1551 root 1.241 #endif
1552    
1553 root 1.55 #if EV_MULTIPLICITY
1554 root 1.54
1555 root 1.80 struct ev_loop
1556     {
1557 root 1.86 ev_tstamp ev_rt_now;
1558 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1559 root 1.80 #define VAR(name,decl) decl;
1560     #include "ev_vars.h"
1561     #undef VAR
1562     };
1563     #include "ev_wrap.h"
1564    
1565 root 1.116 static struct ev_loop default_loop_struct;
1566 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1567 root 1.54
1568 root 1.53 #else
1569 root 1.54
1570 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1571 root 1.80 #define VAR(name,decl) static decl;
1572     #include "ev_vars.h"
1573     #undef VAR
1574    
1575 root 1.116 static int ev_default_loop_ptr;
1576 root 1.54
1577 root 1.51 #endif
1578 root 1.1
1579 root 1.338 #if EV_FEATURE_API
1580 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1581     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1582 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1583     #else
1584 root 1.298 # define EV_RELEASE_CB (void)0
1585     # define EV_ACQUIRE_CB (void)0
1586 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1587     #endif
1588    
1589 root 1.353 #define EVBREAK_RECURSE 0x80
1590 root 1.298
1591 root 1.8 /*****************************************************************************/
1592    
1593 root 1.292 #ifndef EV_HAVE_EV_TIME
1594 root 1.141 ev_tstamp
1595 root 1.420 ev_time (void) EV_THROW
1596 root 1.1 {
1597 root 1.29 #if EV_USE_REALTIME
1598 root 1.279 if (expect_true (have_realtime))
1599     {
1600     struct timespec ts;
1601     clock_gettime (CLOCK_REALTIME, &ts);
1602     return ts.tv_sec + ts.tv_nsec * 1e-9;
1603     }
1604     #endif
1605    
1606 root 1.1 struct timeval tv;
1607     gettimeofday (&tv, 0);
1608     return tv.tv_sec + tv.tv_usec * 1e-6;
1609     }
1610 root 1.292 #endif
1611 root 1.1
1612 root 1.284 inline_size ev_tstamp
1613 root 1.1 get_clock (void)
1614     {
1615 root 1.29 #if EV_USE_MONOTONIC
1616 root 1.40 if (expect_true (have_monotonic))
1617 root 1.1 {
1618     struct timespec ts;
1619     clock_gettime (CLOCK_MONOTONIC, &ts);
1620     return ts.tv_sec + ts.tv_nsec * 1e-9;
1621     }
1622     #endif
1623    
1624     return ev_time ();
1625     }
1626    
1627 root 1.85 #if EV_MULTIPLICITY
1628 root 1.51 ev_tstamp
1629 root 1.420 ev_now (EV_P) EV_THROW
1630 root 1.51 {
1631 root 1.85 return ev_rt_now;
1632 root 1.51 }
1633 root 1.85 #endif
1634 root 1.51
1635 root 1.193 void
1636 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1637 root 1.193 {
1638     if (delay > 0.)
1639     {
1640     #if EV_USE_NANOSLEEP
1641     struct timespec ts;
1642    
1643 root 1.348 EV_TS_SET (ts, delay);
1644 root 1.193 nanosleep (&ts, 0);
1645 root 1.416 #elif defined _WIN32
1646 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1647 root 1.193 #else
1648     struct timeval tv;
1649    
1650 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1651 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1652 root 1.257 /* by older ones */
1653 sf-exg 1.349 EV_TV_SET (tv, delay);
1654 root 1.193 select (0, 0, 0, 0, &tv);
1655     #endif
1656     }
1657     }
1658    
1659     /*****************************************************************************/
1660    
1661 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1662 root 1.232
1663 root 1.288 /* find a suitable new size for the given array, */
1664 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1665 root 1.284 inline_size int
1666 root 1.163 array_nextsize (int elem, int cur, int cnt)
1667     {
1668     int ncur = cur + 1;
1669    
1670     do
1671     ncur <<= 1;
1672     while (cnt > ncur);
1673    
1674 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1675 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1676 root 1.163 {
1677     ncur *= elem;
1678 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1679 root 1.163 ncur = ncur - sizeof (void *) * 4;
1680     ncur /= elem;
1681     }
1682    
1683     return ncur;
1684     }
1685    
1686 root 1.379 static void * noinline ecb_cold
1687 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1688     {
1689     *cur = array_nextsize (elem, *cur, cnt);
1690     return ev_realloc (base, elem * *cur);
1691     }
1692 root 1.29
1693 root 1.265 #define array_init_zero(base,count) \
1694     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1695    
1696 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1697 root 1.163 if (expect_false ((cnt) > (cur))) \
1698 root 1.69 { \
1699 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1700 root 1.163 (base) = (type *)array_realloc \
1701     (sizeof (type), (base), &(cur), (cnt)); \
1702     init ((base) + (ocur_), (cur) - ocur_); \
1703 root 1.1 }
1704    
1705 root 1.163 #if 0
1706 root 1.74 #define array_slim(type,stem) \
1707 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1708     { \
1709     stem ## max = array_roundsize (stem ## cnt >> 1); \
1710 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1711 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1712     }
1713 root 1.163 #endif
1714 root 1.67
1715 root 1.65 #define array_free(stem, idx) \
1716 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1717 root 1.65
1718 root 1.8 /*****************************************************************************/
1719    
1720 root 1.288 /* dummy callback for pending events */
1721     static void noinline
1722     pendingcb (EV_P_ ev_prepare *w, int revents)
1723     {
1724     }
1725    
1726 root 1.140 void noinline
1727 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1728 root 1.1 {
1729 root 1.78 W w_ = (W)w;
1730 root 1.171 int pri = ABSPRI (w_);
1731 root 1.78
1732 root 1.123 if (expect_false (w_->pending))
1733 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1734     else
1735 root 1.32 {
1736 root 1.171 w_->pending = ++pendingcnt [pri];
1737     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1738     pendings [pri][w_->pending - 1].w = w_;
1739     pendings [pri][w_->pending - 1].events = revents;
1740 root 1.32 }
1741 root 1.425
1742     pendingpri = NUMPRI - 1;
1743 root 1.1 }
1744    
1745 root 1.284 inline_speed void
1746     feed_reverse (EV_P_ W w)
1747     {
1748     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1749     rfeeds [rfeedcnt++] = w;
1750     }
1751    
1752     inline_size void
1753     feed_reverse_done (EV_P_ int revents)
1754     {
1755     do
1756     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1757     while (rfeedcnt);
1758     }
1759    
1760     inline_speed void
1761 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1762 root 1.27 {
1763     int i;
1764    
1765     for (i = 0; i < eventcnt; ++i)
1766 root 1.78 ev_feed_event (EV_A_ events [i], type);
1767 root 1.27 }
1768    
1769 root 1.141 /*****************************************************************************/
1770    
1771 root 1.284 inline_speed void
1772 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1773 root 1.1 {
1774     ANFD *anfd = anfds + fd;
1775 root 1.136 ev_io *w;
1776 root 1.1
1777 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1778 root 1.1 {
1779 root 1.79 int ev = w->events & revents;
1780 root 1.1
1781     if (ev)
1782 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1783 root 1.1 }
1784     }
1785    
1786 root 1.298 /* do not submit kernel events for fds that have reify set */
1787     /* because that means they changed while we were polling for new events */
1788     inline_speed void
1789     fd_event (EV_P_ int fd, int revents)
1790     {
1791     ANFD *anfd = anfds + fd;
1792    
1793     if (expect_true (!anfd->reify))
1794 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1795 root 1.298 }
1796    
1797 root 1.79 void
1798 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1799 root 1.79 {
1800 root 1.168 if (fd >= 0 && fd < anfdmax)
1801 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1802 root 1.79 }
1803    
1804 root 1.288 /* make sure the external fd watch events are in-sync */
1805     /* with the kernel/libev internal state */
1806 root 1.284 inline_size void
1807 root 1.51 fd_reify (EV_P)
1808 root 1.9 {
1809     int i;
1810    
1811 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1812     for (i = 0; i < fdchangecnt; ++i)
1813     {
1814     int fd = fdchanges [i];
1815     ANFD *anfd = anfds + fd;
1816    
1817 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1818 root 1.371 {
1819     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1820    
1821     if (handle != anfd->handle)
1822     {
1823     unsigned long arg;
1824    
1825     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1826    
1827     /* handle changed, but fd didn't - we need to do it in two steps */
1828     backend_modify (EV_A_ fd, anfd->events, 0);
1829     anfd->events = 0;
1830     anfd->handle = handle;
1831     }
1832     }
1833     }
1834     #endif
1835    
1836 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1837     {
1838     int fd = fdchanges [i];
1839     ANFD *anfd = anfds + fd;
1840 root 1.136 ev_io *w;
1841 root 1.27
1842 root 1.350 unsigned char o_events = anfd->events;
1843     unsigned char o_reify = anfd->reify;
1844 root 1.27
1845 root 1.350 anfd->reify = 0;
1846 root 1.27
1847 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1848     {
1849     anfd->events = 0;
1850 root 1.184
1851 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1852     anfd->events |= (unsigned char)w->events;
1853 root 1.27
1854 root 1.351 if (o_events != anfd->events)
1855 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1856     }
1857    
1858     if (o_reify & EV__IOFDSET)
1859     backend_modify (EV_A_ fd, o_events, anfd->events);
1860 root 1.27 }
1861    
1862     fdchangecnt = 0;
1863     }
1864    
1865 root 1.288 /* something about the given fd changed */
1866 root 1.284 inline_size void
1867 root 1.183 fd_change (EV_P_ int fd, int flags)
1868 root 1.27 {
1869 root 1.183 unsigned char reify = anfds [fd].reify;
1870 root 1.184 anfds [fd].reify |= flags;
1871 root 1.27
1872 root 1.183 if (expect_true (!reify))
1873     {
1874     ++fdchangecnt;
1875     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1876     fdchanges [fdchangecnt - 1] = fd;
1877     }
1878 root 1.9 }
1879    
1880 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1881 root 1.379 inline_speed void ecb_cold
1882 root 1.51 fd_kill (EV_P_ int fd)
1883 root 1.41 {
1884 root 1.136 ev_io *w;
1885 root 1.41
1886 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1887 root 1.41 {
1888 root 1.51 ev_io_stop (EV_A_ w);
1889 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1890 root 1.41 }
1891     }
1892    
1893 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1894 root 1.379 inline_size int ecb_cold
1895 root 1.71 fd_valid (int fd)
1896     {
1897 root 1.103 #ifdef _WIN32
1898 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1899 root 1.71 #else
1900     return fcntl (fd, F_GETFD) != -1;
1901     #endif
1902     }
1903    
1904 root 1.19 /* called on EBADF to verify fds */
1905 root 1.379 static void noinline ecb_cold
1906 root 1.51 fd_ebadf (EV_P)
1907 root 1.19 {
1908     int fd;
1909    
1910     for (fd = 0; fd < anfdmax; ++fd)
1911 root 1.27 if (anfds [fd].events)
1912 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1913 root 1.51 fd_kill (EV_A_ fd);
1914 root 1.41 }
1915    
1916     /* called on ENOMEM in select/poll to kill some fds and retry */
1917 root 1.379 static void noinline ecb_cold
1918 root 1.51 fd_enomem (EV_P)
1919 root 1.41 {
1920 root 1.62 int fd;
1921 root 1.41
1922 root 1.62 for (fd = anfdmax; fd--; )
1923 root 1.41 if (anfds [fd].events)
1924     {
1925 root 1.51 fd_kill (EV_A_ fd);
1926 root 1.307 break;
1927 root 1.41 }
1928 root 1.19 }
1929    
1930 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1931 root 1.140 static void noinline
1932 root 1.56 fd_rearm_all (EV_P)
1933     {
1934     int fd;
1935    
1936     for (fd = 0; fd < anfdmax; ++fd)
1937     if (anfds [fd].events)
1938     {
1939     anfds [fd].events = 0;
1940 root 1.268 anfds [fd].emask = 0;
1941 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1942 root 1.56 }
1943     }
1944    
1945 root 1.336 /* used to prepare libev internal fd's */
1946     /* this is not fork-safe */
1947     inline_speed void
1948     fd_intern (int fd)
1949     {
1950     #ifdef _WIN32
1951     unsigned long arg = 1;
1952     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1953     #else
1954     fcntl (fd, F_SETFD, FD_CLOEXEC);
1955     fcntl (fd, F_SETFL, O_NONBLOCK);
1956     #endif
1957     }
1958    
1959 root 1.8 /*****************************************************************************/
1960    
1961 root 1.235 /*
1962 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1963 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1964     * the branching factor of the d-tree.
1965     */
1966    
1967     /*
1968 root 1.235 * at the moment we allow libev the luxury of two heaps,
1969     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1970     * which is more cache-efficient.
1971     * the difference is about 5% with 50000+ watchers.
1972     */
1973 root 1.241 #if EV_USE_4HEAP
1974 root 1.235
1975 root 1.237 #define DHEAP 4
1976     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1977 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1978 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1979 root 1.235
1980     /* away from the root */
1981 root 1.284 inline_speed void
1982 root 1.241 downheap (ANHE *heap, int N, int k)
1983 root 1.235 {
1984 root 1.241 ANHE he = heap [k];
1985     ANHE *E = heap + N + HEAP0;
1986 root 1.235
1987     for (;;)
1988     {
1989     ev_tstamp minat;
1990 root 1.241 ANHE *minpos;
1991 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1992 root 1.235
1993 root 1.248 /* find minimum child */
1994 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1995 root 1.235 {
1996 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1997     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1998     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1999     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2000 root 1.235 }
2001 root 1.240 else if (pos < E)
2002 root 1.235 {
2003 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2004     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2005     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2006     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2007 root 1.235 }
2008 root 1.240 else
2009     break;
2010 root 1.235
2011 root 1.241 if (ANHE_at (he) <= minat)
2012 root 1.235 break;
2013    
2014 root 1.247 heap [k] = *minpos;
2015 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2016 root 1.235
2017     k = minpos - heap;
2018     }
2019    
2020 root 1.247 heap [k] = he;
2021 root 1.241 ev_active (ANHE_w (he)) = k;
2022 root 1.235 }
2023    
2024 root 1.248 #else /* 4HEAP */
2025 root 1.235
2026     #define HEAP0 1
2027 root 1.247 #define HPARENT(k) ((k) >> 1)
2028 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2029 root 1.235
2030 root 1.248 /* away from the root */
2031 root 1.284 inline_speed void
2032 root 1.248 downheap (ANHE *heap, int N, int k)
2033 root 1.1 {
2034 root 1.241 ANHE he = heap [k];
2035 root 1.1
2036 root 1.228 for (;;)
2037 root 1.1 {
2038 root 1.248 int c = k << 1;
2039 root 1.179
2040 root 1.309 if (c >= N + HEAP0)
2041 root 1.179 break;
2042    
2043 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2044     ? 1 : 0;
2045    
2046     if (ANHE_at (he) <= ANHE_at (heap [c]))
2047     break;
2048    
2049     heap [k] = heap [c];
2050 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2051 root 1.248
2052     k = c;
2053 root 1.1 }
2054    
2055 root 1.243 heap [k] = he;
2056 root 1.248 ev_active (ANHE_w (he)) = k;
2057 root 1.1 }
2058 root 1.248 #endif
2059 root 1.1
2060 root 1.248 /* towards the root */
2061 root 1.284 inline_speed void
2062 root 1.248 upheap (ANHE *heap, int k)
2063 root 1.1 {
2064 root 1.241 ANHE he = heap [k];
2065 root 1.1
2066 root 1.179 for (;;)
2067 root 1.1 {
2068 root 1.248 int p = HPARENT (k);
2069 root 1.179
2070 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2071 root 1.179 break;
2072 root 1.1
2073 root 1.248 heap [k] = heap [p];
2074 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2075 root 1.248 k = p;
2076 root 1.1 }
2077    
2078 root 1.241 heap [k] = he;
2079     ev_active (ANHE_w (he)) = k;
2080 root 1.1 }
2081    
2082 root 1.288 /* move an element suitably so it is in a correct place */
2083 root 1.284 inline_size void
2084 root 1.241 adjustheap (ANHE *heap, int N, int k)
2085 root 1.84 {
2086 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2087 root 1.247 upheap (heap, k);
2088     else
2089     downheap (heap, N, k);
2090 root 1.84 }
2091    
2092 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2093 root 1.284 inline_size void
2094 root 1.248 reheap (ANHE *heap, int N)
2095     {
2096     int i;
2097 root 1.251
2098 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2099     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2100     for (i = 0; i < N; ++i)
2101     upheap (heap, i + HEAP0);
2102     }
2103    
2104 root 1.8 /*****************************************************************************/
2105    
2106 root 1.288 /* associate signal watchers to a signal signal */
2107 root 1.7 typedef struct
2108     {
2109 root 1.307 EV_ATOMIC_T pending;
2110 root 1.306 #if EV_MULTIPLICITY
2111     EV_P;
2112     #endif
2113 root 1.68 WL head;
2114 root 1.7 } ANSIG;
2115    
2116 root 1.306 static ANSIG signals [EV_NSIG - 1];
2117 root 1.7
2118 root 1.207 /*****************************************************************************/
2119    
2120 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2121 root 1.207
2122 root 1.379 static void noinline ecb_cold
2123 root 1.207 evpipe_init (EV_P)
2124     {
2125 root 1.288 if (!ev_is_active (&pipe_w))
2126 root 1.207 {
2127 root 1.448 int fds [2];
2128    
2129 root 1.336 # if EV_USE_EVENTFD
2130 root 1.448 fds [0] = -1;
2131     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2132     if (fds [1] < 0 && errno == EINVAL)
2133     fds [1] = eventfd (0, 0);
2134    
2135     if (fds [1] < 0)
2136     # endif
2137     {
2138     while (pipe (fds))
2139     ev_syserr ("(libev) error creating signal/async pipe");
2140    
2141     fd_intern (fds [0]);
2142 root 1.220 }
2143 root 1.448
2144     evpipe [0] = fds [0];
2145    
2146     if (evpipe [1] < 0)
2147     evpipe [1] = fds [1]; /* first call, set write fd */
2148 root 1.220 else
2149     {
2150 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2151     /* so that evpipe_write can always rely on its value. */
2152     /* this branch does not do anything sensible on windows, */
2153     /* so must not be executed on windows */
2154 root 1.207
2155 root 1.448 dup2 (fds [1], evpipe [1]);
2156     close (fds [1]);
2157 root 1.220 }
2158 root 1.207
2159 root 1.455 fd_intern (evpipe [1]);
2160    
2161 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2162 root 1.288 ev_io_start (EV_A_ &pipe_w);
2163 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2164 root 1.207 }
2165     }
2166    
2167 root 1.380 inline_speed void
2168 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2169 root 1.207 {
2170 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2171    
2172 root 1.383 if (expect_true (*flag))
2173 root 1.387 return;
2174 root 1.383
2175     *flag = 1;
2176 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2177 root 1.383
2178     pipe_write_skipped = 1;
2179 root 1.378
2180 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2181 root 1.214
2182 root 1.383 if (pipe_write_wanted)
2183     {
2184     int old_errno;
2185 root 1.378
2186 root 1.436 pipe_write_skipped = 0;
2187     ECB_MEMORY_FENCE_RELEASE;
2188 root 1.220
2189 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2190 root 1.380
2191 root 1.220 #if EV_USE_EVENTFD
2192 root 1.448 if (evpipe [0] < 0)
2193 root 1.383 {
2194     uint64_t counter = 1;
2195 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2196 root 1.383 }
2197     else
2198 root 1.220 #endif
2199 root 1.383 {
2200 root 1.427 #ifdef _WIN32
2201     WSABUF buf;
2202     DWORD sent;
2203     buf.buf = &buf;
2204     buf.len = 1;
2205     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2206     #else
2207 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2208 root 1.427 #endif
2209 root 1.383 }
2210 root 1.214
2211 root 1.383 errno = old_errno;
2212 root 1.207 }
2213     }
2214    
2215 root 1.288 /* called whenever the libev signal pipe */
2216     /* got some events (signal, async) */
2217 root 1.207 static void
2218     pipecb (EV_P_ ev_io *iow, int revents)
2219     {
2220 root 1.307 int i;
2221    
2222 root 1.378 if (revents & EV_READ)
2223     {
2224 root 1.220 #if EV_USE_EVENTFD
2225 root 1.448 if (evpipe [0] < 0)
2226 root 1.378 {
2227     uint64_t counter;
2228 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2229 root 1.378 }
2230     else
2231 root 1.220 #endif
2232 root 1.378 {
2233 root 1.427 char dummy[4];
2234     #ifdef _WIN32
2235     WSABUF buf;
2236     DWORD recvd;
2237 root 1.432 DWORD flags = 0;
2238 root 1.427 buf.buf = dummy;
2239     buf.len = sizeof (dummy);
2240 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2241 root 1.427 #else
2242     read (evpipe [0], &dummy, sizeof (dummy));
2243     #endif
2244 root 1.378 }
2245 root 1.220 }
2246 root 1.207
2247 root 1.378 pipe_write_skipped = 0;
2248    
2249 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2250    
2251 root 1.369 #if EV_SIGNAL_ENABLE
2252 root 1.307 if (sig_pending)
2253 root 1.372 {
2254 root 1.307 sig_pending = 0;
2255 root 1.207
2256 root 1.436 ECB_MEMORY_FENCE;
2257 root 1.424
2258 root 1.307 for (i = EV_NSIG - 1; i--; )
2259     if (expect_false (signals [i].pending))
2260     ev_feed_signal_event (EV_A_ i + 1);
2261 root 1.207 }
2262 root 1.369 #endif
2263 root 1.207
2264 root 1.209 #if EV_ASYNC_ENABLE
2265 root 1.307 if (async_pending)
2266 root 1.207 {
2267 root 1.307 async_pending = 0;
2268 root 1.207
2269 root 1.436 ECB_MEMORY_FENCE;
2270 root 1.424
2271 root 1.207 for (i = asynccnt; i--; )
2272     if (asyncs [i]->sent)
2273     {
2274     asyncs [i]->sent = 0;
2275 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2276 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2277     }
2278     }
2279 root 1.209 #endif
2280 root 1.207 }
2281    
2282     /*****************************************************************************/
2283    
2284 root 1.366 void
2285 root 1.420 ev_feed_signal (int signum) EV_THROW
2286 root 1.7 {
2287 root 1.207 #if EV_MULTIPLICITY
2288 root 1.453 EV_P;
2289 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2290 root 1.453 EV_A = signals [signum - 1].loop;
2291 root 1.366
2292     if (!EV_A)
2293     return;
2294 root 1.207 #endif
2295    
2296 root 1.366 signals [signum - 1].pending = 1;
2297     evpipe_write (EV_A_ &sig_pending);
2298     }
2299    
2300     static void
2301     ev_sighandler (int signum)
2302     {
2303 root 1.322 #ifdef _WIN32
2304 root 1.218 signal (signum, ev_sighandler);
2305 root 1.67 #endif
2306    
2307 root 1.366 ev_feed_signal (signum);
2308 root 1.7 }
2309    
2310 root 1.140 void noinline
2311 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2312 root 1.79 {
2313 root 1.80 WL w;
2314    
2315 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2316 root 1.307 return;
2317    
2318     --signum;
2319    
2320 root 1.79 #if EV_MULTIPLICITY
2321 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2322     /* or, likely more useful, feeding a signal nobody is waiting for */
2323 root 1.79
2324 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2325 root 1.306 return;
2326 root 1.307 #endif
2327 root 1.306
2328 root 1.307 signals [signum].pending = 0;
2329 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2330 root 1.79
2331     for (w = signals [signum].head; w; w = w->next)
2332     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2333     }
2334    
2335 root 1.303 #if EV_USE_SIGNALFD
2336     static void
2337     sigfdcb (EV_P_ ev_io *iow, int revents)
2338     {
2339 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2340 root 1.303
2341     for (;;)
2342     {
2343     ssize_t res = read (sigfd, si, sizeof (si));
2344    
2345     /* not ISO-C, as res might be -1, but works with SuS */
2346     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2347     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2348    
2349     if (res < (ssize_t)sizeof (si))
2350     break;
2351     }
2352     }
2353     #endif
2354    
2355 root 1.336 #endif
2356    
2357 root 1.8 /*****************************************************************************/
2358    
2359 root 1.336 #if EV_CHILD_ENABLE
2360 root 1.182 static WL childs [EV_PID_HASHSIZE];
2361 root 1.71
2362 root 1.136 static ev_signal childev;
2363 root 1.59
2364 root 1.206 #ifndef WIFCONTINUED
2365     # define WIFCONTINUED(status) 0
2366     #endif
2367    
2368 root 1.288 /* handle a single child status event */
2369 root 1.284 inline_speed void
2370 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2371 root 1.47 {
2372 root 1.136 ev_child *w;
2373 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2374 root 1.47
2375 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2376 root 1.206 {
2377     if ((w->pid == pid || !w->pid)
2378     && (!traced || (w->flags & 1)))
2379     {
2380 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2381 root 1.206 w->rpid = pid;
2382     w->rstatus = status;
2383     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2384     }
2385     }
2386 root 1.47 }
2387    
2388 root 1.142 #ifndef WCONTINUED
2389     # define WCONTINUED 0
2390     #endif
2391    
2392 root 1.288 /* called on sigchld etc., calls waitpid */
2393 root 1.47 static void
2394 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2395 root 1.22 {
2396     int pid, status;
2397    
2398 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2399     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2400     if (!WCONTINUED
2401     || errno != EINVAL
2402     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2403     return;
2404    
2405 root 1.216 /* make sure we are called again until all children have been reaped */
2406 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2407     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2408 root 1.47
2409 root 1.216 child_reap (EV_A_ pid, pid, status);
2410 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2411 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2412 root 1.22 }
2413    
2414 root 1.45 #endif
2415    
2416 root 1.22 /*****************************************************************************/
2417    
2418 root 1.357 #if EV_USE_IOCP
2419     # include "ev_iocp.c"
2420     #endif
2421 root 1.118 #if EV_USE_PORT
2422     # include "ev_port.c"
2423     #endif
2424 root 1.44 #if EV_USE_KQUEUE
2425     # include "ev_kqueue.c"
2426     #endif
2427 root 1.29 #if EV_USE_EPOLL
2428 root 1.1 # include "ev_epoll.c"
2429     #endif
2430 root 1.59 #if EV_USE_POLL
2431 root 1.41 # include "ev_poll.c"
2432     #endif
2433 root 1.29 #if EV_USE_SELECT
2434 root 1.1 # include "ev_select.c"
2435     #endif
2436    
2437 root 1.379 int ecb_cold
2438 root 1.420 ev_version_major (void) EV_THROW
2439 root 1.24 {
2440     return EV_VERSION_MAJOR;
2441     }
2442    
2443 root 1.379 int ecb_cold
2444 root 1.420 ev_version_minor (void) EV_THROW
2445 root 1.24 {
2446     return EV_VERSION_MINOR;
2447     }
2448    
2449 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2450 root 1.379 int inline_size ecb_cold
2451 root 1.51 enable_secure (void)
2452 root 1.41 {
2453 root 1.103 #ifdef _WIN32
2454 root 1.49 return 0;
2455     #else
2456 root 1.41 return getuid () != geteuid ()
2457     || getgid () != getegid ();
2458 root 1.49 #endif
2459 root 1.41 }
2460    
2461 root 1.379 unsigned int ecb_cold
2462 root 1.420 ev_supported_backends (void) EV_THROW
2463 root 1.129 {
2464 root 1.130 unsigned int flags = 0;
2465 root 1.129
2466     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2467     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2468     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2469     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2470     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2471    
2472     return flags;
2473     }
2474    
2475 root 1.379 unsigned int ecb_cold
2476 root 1.420 ev_recommended_backends (void) EV_THROW
2477 root 1.1 {
2478 root 1.131 unsigned int flags = ev_supported_backends ();
2479 root 1.129
2480     #ifndef __NetBSD__
2481     /* kqueue is borked on everything but netbsd apparently */
2482     /* it usually doesn't work correctly on anything but sockets and pipes */
2483     flags &= ~EVBACKEND_KQUEUE;
2484     #endif
2485     #ifdef __APPLE__
2486 root 1.278 /* only select works correctly on that "unix-certified" platform */
2487     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2488     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2489 root 1.129 #endif
2490 root 1.342 #ifdef __FreeBSD__
2491     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2492     #endif
2493 root 1.129
2494     return flags;
2495 root 1.51 }
2496    
2497 root 1.379 unsigned int ecb_cold
2498 root 1.420 ev_embeddable_backends (void) EV_THROW
2499 root 1.134 {
2500 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2501    
2502 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2503 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2504     flags &= ~EVBACKEND_EPOLL;
2505 root 1.196
2506     return flags;
2507 root 1.134 }
2508    
2509     unsigned int
2510 root 1.420 ev_backend (EV_P) EV_THROW
2511 root 1.130 {
2512     return backend;
2513     }
2514    
2515 root 1.338 #if EV_FEATURE_API
2516 root 1.162 unsigned int
2517 root 1.420 ev_iteration (EV_P) EV_THROW
2518 root 1.162 {
2519     return loop_count;
2520     }
2521    
2522 root 1.294 unsigned int
2523 root 1.420 ev_depth (EV_P) EV_THROW
2524 root 1.294 {
2525     return loop_depth;
2526     }
2527    
2528 root 1.193 void
2529 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2530 root 1.193 {
2531     io_blocktime = interval;
2532     }
2533    
2534     void
2535 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2536 root 1.193 {
2537     timeout_blocktime = interval;
2538     }
2539    
2540 root 1.297 void
2541 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2542 root 1.297 {
2543     userdata = data;
2544     }
2545    
2546     void *
2547 root 1.420 ev_userdata (EV_P) EV_THROW
2548 root 1.297 {
2549     return userdata;
2550     }
2551    
2552 root 1.379 void
2553 root 1.420 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2554 root 1.297 {
2555     invoke_cb = invoke_pending_cb;
2556     }
2557    
2558 root 1.379 void
2559 root 1.421 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2560 root 1.297 {
2561 root 1.298 release_cb = release;
2562     acquire_cb = acquire;
2563 root 1.297 }
2564     #endif
2565    
2566 root 1.288 /* initialise a loop structure, must be zero-initialised */
2567 root 1.379 static void noinline ecb_cold
2568 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2569 root 1.51 {
2570 root 1.130 if (!backend)
2571 root 1.23 {
2572 root 1.366 origflags = flags;
2573    
2574 root 1.279 #if EV_USE_REALTIME
2575     if (!have_realtime)
2576     {
2577     struct timespec ts;
2578    
2579     if (!clock_gettime (CLOCK_REALTIME, &ts))
2580     have_realtime = 1;
2581     }
2582     #endif
2583    
2584 root 1.29 #if EV_USE_MONOTONIC
2585 root 1.279 if (!have_monotonic)
2586     {
2587     struct timespec ts;
2588    
2589     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2590     have_monotonic = 1;
2591     }
2592 root 1.1 #endif
2593    
2594 root 1.306 /* pid check not overridable via env */
2595     #ifndef _WIN32
2596     if (flags & EVFLAG_FORKCHECK)
2597     curpid = getpid ();
2598     #endif
2599    
2600     if (!(flags & EVFLAG_NOENV)
2601     && !enable_secure ()
2602     && getenv ("LIBEV_FLAGS"))
2603     flags = atoi (getenv ("LIBEV_FLAGS"));
2604    
2605 root 1.378 ev_rt_now = ev_time ();
2606     mn_now = get_clock ();
2607     now_floor = mn_now;
2608     rtmn_diff = ev_rt_now - mn_now;
2609 root 1.338 #if EV_FEATURE_API
2610 root 1.378 invoke_cb = ev_invoke_pending;
2611 root 1.297 #endif
2612 root 1.1
2613 root 1.378 io_blocktime = 0.;
2614     timeout_blocktime = 0.;
2615     backend = 0;
2616     backend_fd = -1;
2617     sig_pending = 0;
2618 root 1.307 #if EV_ASYNC_ENABLE
2619 root 1.378 async_pending = 0;
2620 root 1.307 #endif
2621 root 1.378 pipe_write_skipped = 0;
2622     pipe_write_wanted = 0;
2623 root 1.448 evpipe [0] = -1;
2624     evpipe [1] = -1;
2625 root 1.209 #if EV_USE_INOTIFY
2626 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2627 root 1.209 #endif
2628 root 1.303 #if EV_USE_SIGNALFD
2629 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2630 root 1.303 #endif
2631 root 1.193
2632 root 1.366 if (!(flags & EVBACKEND_MASK))
2633 root 1.129 flags |= ev_recommended_backends ();
2634 root 1.41
2635 root 1.357 #if EV_USE_IOCP
2636     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2637     #endif
2638 root 1.118 #if EV_USE_PORT
2639 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2640 root 1.118 #endif
2641 root 1.44 #if EV_USE_KQUEUE
2642 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2643 root 1.44 #endif
2644 root 1.29 #if EV_USE_EPOLL
2645 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2646 root 1.41 #endif
2647 root 1.59 #if EV_USE_POLL
2648 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2649 root 1.1 #endif
2650 root 1.29 #if EV_USE_SELECT
2651 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2652 root 1.1 #endif
2653 root 1.70
2654 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2655    
2656 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2657 root 1.288 ev_init (&pipe_w, pipecb);
2658     ev_set_priority (&pipe_w, EV_MAXPRI);
2659 root 1.336 #endif
2660 root 1.56 }
2661     }
2662    
2663 root 1.288 /* free up a loop structure */
2664 root 1.379 void ecb_cold
2665 root 1.422 ev_loop_destroy (EV_P)
2666 root 1.56 {
2667 root 1.65 int i;
2668    
2669 root 1.364 #if EV_MULTIPLICITY
2670 root 1.363 /* mimic free (0) */
2671     if (!EV_A)
2672     return;
2673 root 1.364 #endif
2674 root 1.363
2675 root 1.361 #if EV_CLEANUP_ENABLE
2676     /* queue cleanup watchers (and execute them) */
2677     if (expect_false (cleanupcnt))
2678     {
2679     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2680     EV_INVOKE_PENDING;
2681     }
2682     #endif
2683    
2684 root 1.359 #if EV_CHILD_ENABLE
2685 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2686 root 1.359 {
2687     ev_ref (EV_A); /* child watcher */
2688     ev_signal_stop (EV_A_ &childev);
2689     }
2690     #endif
2691    
2692 root 1.288 if (ev_is_active (&pipe_w))
2693 root 1.207 {
2694 root 1.303 /*ev_ref (EV_A);*/
2695     /*ev_io_stop (EV_A_ &pipe_w);*/
2696 root 1.207
2697 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2698     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2699 root 1.207 }
2700    
2701 root 1.303 #if EV_USE_SIGNALFD
2702     if (ev_is_active (&sigfd_w))
2703 root 1.317 close (sigfd);
2704 root 1.303 #endif
2705    
2706 root 1.152 #if EV_USE_INOTIFY
2707     if (fs_fd >= 0)
2708     close (fs_fd);
2709     #endif
2710    
2711     if (backend_fd >= 0)
2712     close (backend_fd);
2713    
2714 root 1.357 #if EV_USE_IOCP
2715     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2716     #endif
2717 root 1.118 #if EV_USE_PORT
2718 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2719 root 1.118 #endif
2720 root 1.56 #if EV_USE_KQUEUE
2721 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2722 root 1.56 #endif
2723     #if EV_USE_EPOLL
2724 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2725 root 1.56 #endif
2726 root 1.59 #if EV_USE_POLL
2727 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2728 root 1.56 #endif
2729     #if EV_USE_SELECT
2730 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2731 root 1.56 #endif
2732 root 1.1
2733 root 1.65 for (i = NUMPRI; i--; )
2734 root 1.164 {
2735     array_free (pending, [i]);
2736     #if EV_IDLE_ENABLE
2737     array_free (idle, [i]);
2738     #endif
2739     }
2740 root 1.65
2741 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2742 root 1.186
2743 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2744 root 1.284 array_free (rfeed, EMPTY);
2745 root 1.164 array_free (fdchange, EMPTY);
2746     array_free (timer, EMPTY);
2747 root 1.140 #if EV_PERIODIC_ENABLE
2748 root 1.164 array_free (periodic, EMPTY);
2749 root 1.93 #endif
2750 root 1.187 #if EV_FORK_ENABLE
2751     array_free (fork, EMPTY);
2752     #endif
2753 root 1.360 #if EV_CLEANUP_ENABLE
2754     array_free (cleanup, EMPTY);
2755     #endif
2756 root 1.164 array_free (prepare, EMPTY);
2757     array_free (check, EMPTY);
2758 root 1.209 #if EV_ASYNC_ENABLE
2759     array_free (async, EMPTY);
2760     #endif
2761 root 1.65
2762 root 1.130 backend = 0;
2763 root 1.359
2764     #if EV_MULTIPLICITY
2765     if (ev_is_default_loop (EV_A))
2766     #endif
2767     ev_default_loop_ptr = 0;
2768     #if EV_MULTIPLICITY
2769     else
2770     ev_free (EV_A);
2771     #endif
2772 root 1.56 }
2773 root 1.22
2774 root 1.226 #if EV_USE_INOTIFY
2775 root 1.284 inline_size void infy_fork (EV_P);
2776 root 1.226 #endif
2777 root 1.154
2778 root 1.284 inline_size void
2779 root 1.56 loop_fork (EV_P)
2780     {
2781 root 1.118 #if EV_USE_PORT
2782 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2783 root 1.56 #endif
2784     #if EV_USE_KQUEUE
2785 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2786 root 1.45 #endif
2787 root 1.118 #if EV_USE_EPOLL
2788 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2789 root 1.118 #endif
2790 root 1.154 #if EV_USE_INOTIFY
2791     infy_fork (EV_A);
2792     #endif
2793 root 1.70
2794 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2795 root 1.288 if (ev_is_active (&pipe_w))
2796 root 1.70 {
2797 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2798 root 1.70
2799     ev_ref (EV_A);
2800 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2801 root 1.220
2802     if (evpipe [0] >= 0)
2803 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
2804 root 1.207
2805     evpipe_init (EV_A);
2806 root 1.443 /* iterate over everything, in case we missed something before */
2807     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2808 root 1.448 }
2809 root 1.337 #endif
2810 root 1.70
2811     postfork = 0;
2812 root 1.1 }
2813    
2814 root 1.55 #if EV_MULTIPLICITY
2815 root 1.250
2816 root 1.379 struct ev_loop * ecb_cold
2817 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2818 root 1.54 {
2819 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2820 root 1.69
2821 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2822 root 1.108 loop_init (EV_A_ flags);
2823 root 1.56
2824 root 1.130 if (ev_backend (EV_A))
2825 root 1.306 return EV_A;
2826 root 1.54
2827 root 1.359 ev_free (EV_A);
2828 root 1.55 return 0;
2829 root 1.54 }
2830    
2831 root 1.297 #endif /* multiplicity */
2832 root 1.248
2833     #if EV_VERIFY
2834 root 1.379 static void noinline ecb_cold
2835 root 1.251 verify_watcher (EV_P_ W w)
2836     {
2837 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2838 root 1.251
2839     if (w->pending)
2840 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2841 root 1.251 }
2842    
2843 root 1.379 static void noinline ecb_cold
2844 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2845     {
2846     int i;
2847    
2848     for (i = HEAP0; i < N + HEAP0; ++i)
2849     {
2850 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2851     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2852     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2853 root 1.251
2854     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2855     }
2856     }
2857    
2858 root 1.379 static void noinline ecb_cold
2859 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2860 root 1.248 {
2861     while (cnt--)
2862 root 1.251 {
2863 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2864 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2865     }
2866 root 1.248 }
2867 root 1.250 #endif
2868 root 1.248
2869 root 1.338 #if EV_FEATURE_API
2870 root 1.379 void ecb_cold
2871 root 1.420 ev_verify (EV_P) EV_THROW
2872 root 1.248 {
2873 root 1.250 #if EV_VERIFY
2874 root 1.429 int i;
2875 root 1.426 WL w, w2;
2876 root 1.251
2877     assert (activecnt >= -1);
2878    
2879     assert (fdchangemax >= fdchangecnt);
2880     for (i = 0; i < fdchangecnt; ++i)
2881 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2882 root 1.251
2883     assert (anfdmax >= 0);
2884 root 1.429 for (i = 0; i < anfdmax; ++i)
2885     {
2886     int j = 0;
2887    
2888     for (w = w2 = anfds [i].head; w; w = w->next)
2889     {
2890     verify_watcher (EV_A_ (W)w);
2891 root 1.426
2892 root 1.429 if (j++ & 1)
2893     {
2894     assert (("libev: io watcher list contains a loop", w != w2));
2895     w2 = w2->next;
2896     }
2897 root 1.426
2898 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2899     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2900     }
2901     }
2902 root 1.251
2903     assert (timermax >= timercnt);
2904     verify_heap (EV_A_ timers, timercnt);
2905 root 1.248
2906     #if EV_PERIODIC_ENABLE
2907 root 1.251 assert (periodicmax >= periodiccnt);
2908     verify_heap (EV_A_ periodics, periodiccnt);
2909 root 1.248 #endif
2910    
2911 root 1.251 for (i = NUMPRI; i--; )
2912     {
2913     assert (pendingmax [i] >= pendingcnt [i]);
2914 root 1.248 #if EV_IDLE_ENABLE
2915 root 1.252 assert (idleall >= 0);
2916 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2917     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2918 root 1.248 #endif
2919 root 1.251 }
2920    
2921 root 1.248 #if EV_FORK_ENABLE
2922 root 1.251 assert (forkmax >= forkcnt);
2923     array_verify (EV_A_ (W *)forks, forkcnt);
2924 root 1.248 #endif
2925 root 1.251
2926 root 1.360 #if EV_CLEANUP_ENABLE
2927     assert (cleanupmax >= cleanupcnt);
2928     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2929     #endif
2930    
2931 root 1.250 #if EV_ASYNC_ENABLE
2932 root 1.251 assert (asyncmax >= asynccnt);
2933     array_verify (EV_A_ (W *)asyncs, asynccnt);
2934 root 1.250 #endif
2935 root 1.251
2936 root 1.337 #if EV_PREPARE_ENABLE
2937 root 1.251 assert (preparemax >= preparecnt);
2938     array_verify (EV_A_ (W *)prepares, preparecnt);
2939 root 1.337 #endif
2940 root 1.251
2941 root 1.337 #if EV_CHECK_ENABLE
2942 root 1.251 assert (checkmax >= checkcnt);
2943     array_verify (EV_A_ (W *)checks, checkcnt);
2944 root 1.337 #endif
2945 root 1.251
2946     # if 0
2947 root 1.336 #if EV_CHILD_ENABLE
2948 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2949 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2950 root 1.336 #endif
2951 root 1.251 # endif
2952 root 1.248 #endif
2953     }
2954 root 1.297 #endif
2955 root 1.56
2956     #if EV_MULTIPLICITY
2957 root 1.379 struct ev_loop * ecb_cold
2958 root 1.54 #else
2959     int
2960 root 1.358 #endif
2961 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
2962 root 1.54 {
2963 root 1.116 if (!ev_default_loop_ptr)
2964 root 1.56 {
2965     #if EV_MULTIPLICITY
2966 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2967 root 1.56 #else
2968 ayin 1.117 ev_default_loop_ptr = 1;
2969 root 1.54 #endif
2970    
2971 root 1.110 loop_init (EV_A_ flags);
2972 root 1.56
2973 root 1.130 if (ev_backend (EV_A))
2974 root 1.56 {
2975 root 1.336 #if EV_CHILD_ENABLE
2976 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2977     ev_set_priority (&childev, EV_MAXPRI);
2978     ev_signal_start (EV_A_ &childev);
2979     ev_unref (EV_A); /* child watcher should not keep loop alive */
2980     #endif
2981     }
2982     else
2983 root 1.116 ev_default_loop_ptr = 0;
2984 root 1.56 }
2985 root 1.8
2986 root 1.116 return ev_default_loop_ptr;
2987 root 1.1 }
2988    
2989 root 1.24 void
2990 root 1.420 ev_loop_fork (EV_P) EV_THROW
2991 root 1.1 {
2992 root 1.440 postfork = 1;
2993 root 1.1 }
2994    
2995 root 1.8 /*****************************************************************************/
2996    
2997 root 1.168 void
2998     ev_invoke (EV_P_ void *w, int revents)
2999     {
3000     EV_CB_INVOKE ((W)w, revents);
3001     }
3002    
3003 root 1.300 unsigned int
3004 root 1.420 ev_pending_count (EV_P) EV_THROW
3005 root 1.300 {
3006     int pri;
3007     unsigned int count = 0;
3008    
3009     for (pri = NUMPRI; pri--; )
3010     count += pendingcnt [pri];
3011    
3012     return count;
3013     }
3014    
3015 root 1.297 void noinline
3016 root 1.296 ev_invoke_pending (EV_P)
3017 root 1.1 {
3018 root 1.445 pendingpri = NUMPRI;
3019    
3020     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3021     {
3022     --pendingpri;
3023    
3024     while (pendingcnt [pendingpri])
3025     {
3026     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3027 root 1.1
3028 root 1.445 p->w->pending = 0;
3029     EV_CB_INVOKE (p->w, p->events);
3030     EV_FREQUENT_CHECK;
3031     }
3032     }
3033 root 1.1 }
3034    
3035 root 1.234 #if EV_IDLE_ENABLE
3036 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3037     /* only when higher priorities are idle" logic */
3038 root 1.284 inline_size void
3039 root 1.234 idle_reify (EV_P)
3040     {
3041     if (expect_false (idleall))
3042     {
3043     int pri;
3044    
3045     for (pri = NUMPRI; pri--; )
3046     {
3047     if (pendingcnt [pri])
3048     break;
3049    
3050     if (idlecnt [pri])
3051     {
3052     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3053     break;
3054     }
3055     }
3056     }
3057     }
3058     #endif
3059    
3060 root 1.288 /* make timers pending */
3061 root 1.284 inline_size void
3062 root 1.51 timers_reify (EV_P)
3063 root 1.1 {
3064 root 1.248 EV_FREQUENT_CHECK;
3065    
3066 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3067 root 1.1 {
3068 root 1.284 do
3069     {
3070     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3071 root 1.1
3072 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3073    
3074     /* first reschedule or stop timer */
3075     if (w->repeat)
3076     {
3077     ev_at (w) += w->repeat;
3078     if (ev_at (w) < mn_now)
3079     ev_at (w) = mn_now;
3080 root 1.61
3081 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3082 root 1.90
3083 root 1.284 ANHE_at_cache (timers [HEAP0]);
3084     downheap (timers, timercnt, HEAP0);
3085     }
3086     else
3087     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3088 root 1.243
3089 root 1.284 EV_FREQUENT_CHECK;
3090     feed_reverse (EV_A_ (W)w);
3091 root 1.12 }
3092 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3093 root 1.30
3094 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3095 root 1.12 }
3096     }
3097 root 1.4
3098 root 1.140 #if EV_PERIODIC_ENABLE
3099 root 1.370
3100 root 1.373 static void noinline
3101 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3102     {
3103 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3104     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3105    
3106     /* the above almost always errs on the low side */
3107     while (at <= ev_rt_now)
3108     {
3109     ev_tstamp nat = at + w->interval;
3110    
3111     /* when resolution fails us, we use ev_rt_now */
3112     if (expect_false (nat == at))
3113     {
3114     at = ev_rt_now;
3115     break;
3116     }
3117    
3118     at = nat;
3119     }
3120    
3121     ev_at (w) = at;
3122 root 1.370 }
3123    
3124 root 1.288 /* make periodics pending */
3125 root 1.284 inline_size void
3126 root 1.51 periodics_reify (EV_P)
3127 root 1.12 {
3128 root 1.248 EV_FREQUENT_CHECK;
3129 root 1.250
3130 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3131 root 1.12 {
3132 root 1.284 do
3133     {
3134     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3135 root 1.1
3136 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3137 root 1.61
3138 root 1.284 /* first reschedule or stop timer */
3139     if (w->reschedule_cb)
3140     {
3141     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3142 root 1.243
3143 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3144 root 1.243
3145 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3146     downheap (periodics, periodiccnt, HEAP0);
3147     }
3148     else if (w->interval)
3149 root 1.246 {
3150 root 1.370 periodic_recalc (EV_A_ w);
3151 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3152     downheap (periodics, periodiccnt, HEAP0);
3153 root 1.246 }
3154 root 1.284 else
3155     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3156 root 1.243
3157 root 1.284 EV_FREQUENT_CHECK;
3158     feed_reverse (EV_A_ (W)w);
3159 root 1.1 }
3160 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3161 root 1.12
3162 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3163 root 1.12 }
3164     }
3165    
3166 root 1.288 /* simply recalculate all periodics */
3167 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3168 root 1.379 static void noinline ecb_cold
3169 root 1.54 periodics_reschedule (EV_P)
3170 root 1.12 {
3171     int i;
3172    
3173 root 1.13 /* adjust periodics after time jump */
3174 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3175 root 1.12 {
3176 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3177 root 1.12
3178 root 1.77 if (w->reschedule_cb)
3179 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3180 root 1.77 else if (w->interval)
3181 root 1.370 periodic_recalc (EV_A_ w);
3182 root 1.242
3183 root 1.248 ANHE_at_cache (periodics [i]);
3184 root 1.77 }
3185 root 1.12
3186 root 1.248 reheap (periodics, periodiccnt);
3187 root 1.1 }
3188 root 1.93 #endif
3189 root 1.1
3190 root 1.288 /* adjust all timers by a given offset */
3191 root 1.379 static void noinline ecb_cold
3192 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3193     {
3194     int i;
3195    
3196     for (i = 0; i < timercnt; ++i)
3197     {
3198     ANHE *he = timers + i + HEAP0;
3199     ANHE_w (*he)->at += adjust;
3200     ANHE_at_cache (*he);
3201     }
3202     }
3203    
3204 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3205 root 1.324 /* also detect if there was a timejump, and act accordingly */
3206 root 1.284 inline_speed void
3207 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3208 root 1.4 {
3209 root 1.40 #if EV_USE_MONOTONIC
3210     if (expect_true (have_monotonic))
3211     {
3212 root 1.289 int i;
3213 root 1.178 ev_tstamp odiff = rtmn_diff;
3214    
3215     mn_now = get_clock ();
3216    
3217     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3218     /* interpolate in the meantime */
3219     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3220 root 1.40 {
3221 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3222     return;
3223     }
3224    
3225     now_floor = mn_now;
3226     ev_rt_now = ev_time ();
3227 root 1.4
3228 root 1.178 /* loop a few times, before making important decisions.
3229     * on the choice of "4": one iteration isn't enough,
3230     * in case we get preempted during the calls to
3231     * ev_time and get_clock. a second call is almost guaranteed
3232     * to succeed in that case, though. and looping a few more times
3233     * doesn't hurt either as we only do this on time-jumps or
3234     * in the unlikely event of having been preempted here.
3235     */
3236     for (i = 4; --i; )
3237     {
3238 root 1.373 ev_tstamp diff;
3239 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3240 root 1.4
3241 root 1.373 diff = odiff - rtmn_diff;
3242    
3243     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3244 root 1.178 return; /* all is well */
3245 root 1.4
3246 root 1.178 ev_rt_now = ev_time ();
3247     mn_now = get_clock ();
3248     now_floor = mn_now;
3249     }
3250 root 1.4
3251 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3252     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3253 root 1.140 # if EV_PERIODIC_ENABLE
3254 root 1.178 periodics_reschedule (EV_A);
3255 root 1.93 # endif
3256 root 1.4 }
3257     else
3258 root 1.40 #endif
3259 root 1.4 {
3260 root 1.85 ev_rt_now = ev_time ();
3261 root 1.40
3262 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3263 root 1.13 {
3264 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3265     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3266 root 1.140 #if EV_PERIODIC_ENABLE
3267 root 1.54 periodics_reschedule (EV_A);
3268 root 1.93 #endif
3269 root 1.13 }
3270 root 1.4
3271 root 1.85 mn_now = ev_rt_now;
3272 root 1.4 }
3273     }
3274    
3275 root 1.418 int
3276 root 1.353 ev_run (EV_P_ int flags)
3277 root 1.1 {
3278 root 1.338 #if EV_FEATURE_API
3279 root 1.294 ++loop_depth;
3280 root 1.297 #endif
3281 root 1.294
3282 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3283 root 1.298
3284 root 1.353 loop_done = EVBREAK_CANCEL;
3285 root 1.1
3286 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3287 root 1.158
3288 root 1.161 do
3289 root 1.9 {
3290 root 1.250 #if EV_VERIFY >= 2
3291 root 1.340 ev_verify (EV_A);
3292 root 1.250 #endif
3293    
3294 root 1.158 #ifndef _WIN32
3295     if (expect_false (curpid)) /* penalise the forking check even more */
3296     if (expect_false (getpid () != curpid))
3297     {
3298     curpid = getpid ();
3299     postfork = 1;
3300     }
3301     #endif
3302    
3303 root 1.157 #if EV_FORK_ENABLE
3304     /* we might have forked, so queue fork handlers */
3305     if (expect_false (postfork))
3306     if (forkcnt)
3307     {
3308     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3309 root 1.297 EV_INVOKE_PENDING;
3310 root 1.157 }
3311     #endif
3312 root 1.147
3313 root 1.337 #if EV_PREPARE_ENABLE
3314 root 1.170 /* queue prepare watchers (and execute them) */
3315 root 1.40 if (expect_false (preparecnt))
3316 root 1.20 {
3317 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3318 root 1.297 EV_INVOKE_PENDING;
3319 root 1.20 }
3320 root 1.337 #endif
3321 root 1.9
3322 root 1.298 if (expect_false (loop_done))
3323     break;
3324    
3325 root 1.70 /* we might have forked, so reify kernel state if necessary */
3326     if (expect_false (postfork))
3327     loop_fork (EV_A);
3328    
3329 root 1.1 /* update fd-related kernel structures */
3330 root 1.51 fd_reify (EV_A);
3331 root 1.1
3332     /* calculate blocking time */
3333 root 1.135 {
3334 root 1.193 ev_tstamp waittime = 0.;
3335     ev_tstamp sleeptime = 0.;
3336 root 1.12
3337 root 1.353 /* remember old timestamp for io_blocktime calculation */
3338     ev_tstamp prev_mn_now = mn_now;
3339 root 1.293
3340 root 1.353 /* update time to cancel out callback processing overhead */
3341     time_update (EV_A_ 1e100);
3342 root 1.135
3343 root 1.378 /* from now on, we want a pipe-wake-up */
3344     pipe_write_wanted = 1;
3345    
3346 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3347 root 1.383
3348 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3349 root 1.353 {
3350 root 1.287 waittime = MAX_BLOCKTIME;
3351    
3352 root 1.135 if (timercnt)
3353     {
3354 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3355 root 1.193 if (waittime > to) waittime = to;
3356 root 1.135 }
3357 root 1.4
3358 root 1.140 #if EV_PERIODIC_ENABLE
3359 root 1.135 if (periodiccnt)
3360     {
3361 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3362 root 1.193 if (waittime > to) waittime = to;
3363 root 1.135 }
3364 root 1.93 #endif
3365 root 1.4
3366 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3367 root 1.193 if (expect_false (waittime < timeout_blocktime))
3368     waittime = timeout_blocktime;
3369    
3370 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3371     /* to pass a minimum nonzero value to the backend */
3372     if (expect_false (waittime < backend_mintime))
3373     waittime = backend_mintime;
3374    
3375 root 1.293 /* extra check because io_blocktime is commonly 0 */
3376     if (expect_false (io_blocktime))
3377     {
3378     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3379 root 1.193
3380 root 1.376 if (sleeptime > waittime - backend_mintime)
3381     sleeptime = waittime - backend_mintime;
3382 root 1.193
3383 root 1.293 if (expect_true (sleeptime > 0.))
3384     {
3385     ev_sleep (sleeptime);
3386     waittime -= sleeptime;
3387     }
3388 root 1.193 }
3389 root 1.135 }
3390 root 1.1
3391 root 1.338 #if EV_FEATURE_API
3392 root 1.162 ++loop_count;
3393 root 1.297 #endif
3394 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3395 root 1.193 backend_poll (EV_A_ waittime);
3396 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3397 root 1.178
3398 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3399 root 1.378
3400 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3401 root 1.378 if (pipe_write_skipped)
3402     {
3403     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3404     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3405     }
3406    
3407    
3408 root 1.178 /* update ev_rt_now, do magic */
3409 root 1.193 time_update (EV_A_ waittime + sleeptime);
3410 root 1.135 }
3411 root 1.1
3412 root 1.9 /* queue pending timers and reschedule them */
3413 root 1.51 timers_reify (EV_A); /* relative timers called last */
3414 root 1.140 #if EV_PERIODIC_ENABLE
3415 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3416 root 1.93 #endif
3417 root 1.1
3418 root 1.164 #if EV_IDLE_ENABLE
3419 root 1.137 /* queue idle watchers unless other events are pending */
3420 root 1.164 idle_reify (EV_A);
3421     #endif
3422 root 1.9
3423 root 1.337 #if EV_CHECK_ENABLE
3424 root 1.20 /* queue check watchers, to be executed first */
3425 root 1.123 if (expect_false (checkcnt))
3426 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3427 root 1.337 #endif
3428 root 1.9
3429 root 1.297 EV_INVOKE_PENDING;
3430 root 1.1 }
3431 root 1.219 while (expect_true (
3432     activecnt
3433     && !loop_done
3434 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3435 root 1.219 ));
3436 root 1.13
3437 root 1.353 if (loop_done == EVBREAK_ONE)
3438     loop_done = EVBREAK_CANCEL;
3439 root 1.294
3440 root 1.338 #if EV_FEATURE_API
3441 root 1.294 --loop_depth;
3442 root 1.297 #endif
3443 root 1.418
3444     return activecnt;
3445 root 1.51 }
3446    
3447     void
3448 root 1.420 ev_break (EV_P_ int how) EV_THROW
3449 root 1.51 {
3450     loop_done = how;
3451 root 1.1 }
3452    
3453 root 1.285 void
3454 root 1.420 ev_ref (EV_P) EV_THROW
3455 root 1.285 {
3456     ++activecnt;
3457     }
3458    
3459     void
3460 root 1.420 ev_unref (EV_P) EV_THROW
3461 root 1.285 {
3462     --activecnt;
3463     }
3464    
3465     void
3466 root 1.420 ev_now_update (EV_P) EV_THROW
3467 root 1.285 {
3468     time_update (EV_A_ 1e100);
3469     }
3470    
3471     void
3472 root 1.420 ev_suspend (EV_P) EV_THROW
3473 root 1.285 {
3474     ev_now_update (EV_A);
3475     }
3476    
3477     void
3478 root 1.420 ev_resume (EV_P) EV_THROW
3479 root 1.285 {
3480     ev_tstamp mn_prev = mn_now;
3481    
3482     ev_now_update (EV_A);
3483     timers_reschedule (EV_A_ mn_now - mn_prev);
3484 root 1.286 #if EV_PERIODIC_ENABLE
3485 root 1.288 /* TODO: really do this? */
3486 root 1.285 periodics_reschedule (EV_A);
3487 root 1.286 #endif
3488 root 1.285 }
3489    
3490 root 1.8 /*****************************************************************************/
3491 root 1.288 /* singly-linked list management, used when the expected list length is short */
3492 root 1.8
3493 root 1.284 inline_size void
3494 root 1.10 wlist_add (WL *head, WL elem)
3495 root 1.1 {
3496     elem->next = *head;
3497     *head = elem;
3498     }
3499    
3500 root 1.284 inline_size void
3501 root 1.10 wlist_del (WL *head, WL elem)
3502 root 1.1 {
3503     while (*head)
3504     {
3505 root 1.307 if (expect_true (*head == elem))
3506 root 1.1 {
3507     *head = elem->next;
3508 root 1.307 break;
3509 root 1.1 }
3510    
3511     head = &(*head)->next;
3512     }
3513     }
3514    
3515 root 1.288 /* internal, faster, version of ev_clear_pending */
3516 root 1.284 inline_speed void
3517 root 1.166 clear_pending (EV_P_ W w)
3518 root 1.16 {
3519     if (w->pending)
3520     {
3521 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3522 root 1.16 w->pending = 0;
3523     }
3524     }
3525    
3526 root 1.167 int
3527 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3528 root 1.166 {
3529     W w_ = (W)w;
3530     int pending = w_->pending;
3531    
3532 root 1.172 if (expect_true (pending))
3533     {
3534     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3535 root 1.288 p->w = (W)&pending_w;
3536 root 1.172 w_->pending = 0;
3537     return p->events;
3538     }
3539     else
3540 root 1.167 return 0;
3541 root 1.166 }
3542    
3543 root 1.284 inline_size void
3544 root 1.164 pri_adjust (EV_P_ W w)
3545     {
3546 root 1.295 int pri = ev_priority (w);
3547 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3548     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3549 root 1.295 ev_set_priority (w, pri);
3550 root 1.164 }
3551    
3552 root 1.284 inline_speed void
3553 root 1.51 ev_start (EV_P_ W w, int active)
3554 root 1.1 {
3555 root 1.164 pri_adjust (EV_A_ w);
3556 root 1.1 w->active = active;
3557 root 1.51 ev_ref (EV_A);
3558 root 1.1 }
3559    
3560 root 1.284 inline_size void
3561 root 1.51 ev_stop (EV_P_ W w)
3562 root 1.1 {
3563 root 1.51 ev_unref (EV_A);
3564 root 1.1 w->active = 0;
3565     }
3566    
3567 root 1.8 /*****************************************************************************/
3568    
3569 root 1.171 void noinline
3570 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3571 root 1.1 {
3572 root 1.37 int fd = w->fd;
3573    
3574 root 1.123 if (expect_false (ev_is_active (w)))
3575 root 1.1 return;
3576    
3577 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3578 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3579 root 1.33
3580 root 1.248 EV_FREQUENT_CHECK;
3581    
3582 root 1.51 ev_start (EV_A_ (W)w, 1);
3583 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3584 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3585 root 1.1
3586 root 1.426 /* common bug, apparently */
3587     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3588    
3589 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3590 root 1.281 w->events &= ~EV__IOFDSET;
3591 root 1.248
3592     EV_FREQUENT_CHECK;
3593 root 1.1 }
3594    
3595 root 1.171 void noinline
3596 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3597 root 1.1 {
3598 root 1.166 clear_pending (EV_A_ (W)w);
3599 root 1.123 if (expect_false (!ev_is_active (w)))
3600 root 1.1 return;
3601    
3602 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3603 root 1.89
3604 root 1.248 EV_FREQUENT_CHECK;
3605    
3606 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3607 root 1.51 ev_stop (EV_A_ (W)w);
3608 root 1.1
3609 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3610 root 1.248
3611     EV_FREQUENT_CHECK;
3612 root 1.1 }
3613    
3614 root 1.171 void noinline
3615 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3616 root 1.1 {
3617 root 1.123 if (expect_false (ev_is_active (w)))
3618 root 1.1 return;
3619    
3620 root 1.228 ev_at (w) += mn_now;
3621 root 1.12
3622 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3623 root 1.13
3624 root 1.248 EV_FREQUENT_CHECK;
3625    
3626     ++timercnt;
3627     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3628 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3629     ANHE_w (timers [ev_active (w)]) = (WT)w;
3630 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3631 root 1.235 upheap (timers, ev_active (w));
3632 root 1.62
3633 root 1.248 EV_FREQUENT_CHECK;
3634    
3635 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3636 root 1.12 }
3637    
3638 root 1.171 void noinline
3639 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3640 root 1.12 {
3641 root 1.166 clear_pending (EV_A_ (W)w);
3642 root 1.123 if (expect_false (!ev_is_active (w)))
3643 root 1.12 return;
3644    
3645 root 1.248 EV_FREQUENT_CHECK;
3646    
3647 root 1.230 {
3648     int active = ev_active (w);
3649 root 1.62
3650 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3651 root 1.151
3652 root 1.248 --timercnt;
3653    
3654     if (expect_true (active < timercnt + HEAP0))
3655 root 1.151 {
3656 root 1.248 timers [active] = timers [timercnt + HEAP0];
3657 root 1.181 adjustheap (timers, timercnt, active);
3658 root 1.151 }
3659 root 1.248 }
3660 root 1.228
3661     ev_at (w) -= mn_now;
3662 root 1.14
3663 root 1.51 ev_stop (EV_A_ (W)w);
3664 root 1.328
3665     EV_FREQUENT_CHECK;
3666 root 1.12 }
3667 root 1.4
3668 root 1.171 void noinline
3669 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3670 root 1.14 {
3671 root 1.248 EV_FREQUENT_CHECK;
3672    
3673 root 1.407 clear_pending (EV_A_ (W)w);
3674 root 1.406
3675 root 1.14 if (ev_is_active (w))
3676     {
3677     if (w->repeat)
3678 root 1.99 {
3679 root 1.228 ev_at (w) = mn_now + w->repeat;
3680 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3681 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3682 root 1.99 }
3683 root 1.14 else
3684 root 1.51 ev_timer_stop (EV_A_ w);
3685 root 1.14 }
3686     else if (w->repeat)
3687 root 1.112 {
3688 root 1.229 ev_at (w) = w->repeat;
3689 root 1.112 ev_timer_start (EV_A_ w);
3690     }
3691 root 1.248
3692     EV_FREQUENT_CHECK;
3693 root 1.14 }
3694    
3695 root 1.301 ev_tstamp
3696 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3697 root 1.301 {
3698     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3699     }
3700    
3701 root 1.140 #if EV_PERIODIC_ENABLE
3702 root 1.171 void noinline
3703 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3704 root 1.12 {
3705 root 1.123 if (expect_false (ev_is_active (w)))
3706 root 1.12 return;
3707 root 1.1
3708 root 1.77 if (w->reschedule_cb)
3709 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3710 root 1.77 else if (w->interval)
3711     {
3712 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3713 root 1.370 periodic_recalc (EV_A_ w);
3714 root 1.77 }
3715 root 1.173 else
3716 root 1.228 ev_at (w) = w->offset;
3717 root 1.12
3718 root 1.248 EV_FREQUENT_CHECK;
3719    
3720     ++periodiccnt;
3721     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3722 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3723     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3724 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3725 root 1.235 upheap (periodics, ev_active (w));
3726 root 1.62
3727 root 1.248 EV_FREQUENT_CHECK;
3728    
3729 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3730 root 1.1 }
3731    
3732 root 1.171 void noinline
3733 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3734 root 1.1 {
3735 root 1.166 clear_pending (EV_A_ (W)w);
3736 root 1.123 if (expect_false (!ev_is_active (w)))
3737 root 1.1 return;
3738    
3739 root 1.248 EV_FREQUENT_CHECK;
3740    
3741 root 1.230 {
3742     int active = ev_active (w);
3743 root 1.62
3744 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3745 root 1.151
3746 root 1.248 --periodiccnt;
3747    
3748     if (expect_true (active < periodiccnt + HEAP0))
3749 root 1.151 {
3750 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3751 root 1.181 adjustheap (periodics, periodiccnt, active);
3752 root 1.151 }
3753 root 1.248 }
3754 root 1.228
3755 root 1.328 ev_stop (EV_A_ (W)w);
3756    
3757 root 1.248 EV_FREQUENT_CHECK;
3758 root 1.1 }
3759    
3760 root 1.171 void noinline
3761 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3762 root 1.77 {
3763 root 1.84 /* TODO: use adjustheap and recalculation */
3764 root 1.77 ev_periodic_stop (EV_A_ w);
3765     ev_periodic_start (EV_A_ w);
3766     }
3767 root 1.93 #endif
3768 root 1.77
3769 root 1.56 #ifndef SA_RESTART
3770     # define SA_RESTART 0
3771     #endif
3772    
3773 root 1.336 #if EV_SIGNAL_ENABLE
3774    
3775 root 1.171 void noinline
3776 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3777 root 1.56 {
3778 root 1.123 if (expect_false (ev_is_active (w)))
3779 root 1.56 return;
3780    
3781 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3782    
3783     #if EV_MULTIPLICITY
3784 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3785 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3786    
3787     signals [w->signum - 1].loop = EV_A;
3788 root 1.449 ECB_MEMORY_FENCE_RELEASE;
3789 root 1.306 #endif
3790 root 1.56
3791 root 1.303 EV_FREQUENT_CHECK;
3792    
3793     #if EV_USE_SIGNALFD
3794     if (sigfd == -2)
3795     {
3796     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3797     if (sigfd < 0 && errno == EINVAL)
3798     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3799    
3800     if (sigfd >= 0)
3801     {
3802     fd_intern (sigfd); /* doing it twice will not hurt */
3803    
3804     sigemptyset (&sigfd_set);
3805    
3806     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3807     ev_set_priority (&sigfd_w, EV_MAXPRI);
3808     ev_io_start (EV_A_ &sigfd_w);
3809     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3810     }
3811     }
3812    
3813     if (sigfd >= 0)
3814     {
3815     /* TODO: check .head */
3816     sigaddset (&sigfd_set, w->signum);
3817     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3818 root 1.207
3819 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3820     }
3821 root 1.180 #endif
3822    
3823 root 1.56 ev_start (EV_A_ (W)w, 1);
3824 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3825 root 1.56
3826 root 1.63 if (!((WL)w)->next)
3827 root 1.304 # if EV_USE_SIGNALFD
3828 root 1.306 if (sigfd < 0) /*TODO*/
3829 root 1.304 # endif
3830 root 1.306 {
3831 root 1.322 # ifdef _WIN32
3832 root 1.317 evpipe_init (EV_A);
3833    
3834 root 1.306 signal (w->signum, ev_sighandler);
3835     # else
3836     struct sigaction sa;
3837    
3838     evpipe_init (EV_A);
3839    
3840     sa.sa_handler = ev_sighandler;
3841     sigfillset (&sa.sa_mask);
3842     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3843     sigaction (w->signum, &sa, 0);
3844    
3845 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3846     {
3847     sigemptyset (&sa.sa_mask);
3848     sigaddset (&sa.sa_mask, w->signum);
3849     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3850     }
3851 root 1.67 #endif
3852 root 1.306 }
3853 root 1.248
3854     EV_FREQUENT_CHECK;
3855 root 1.56 }
3856    
3857 root 1.171 void noinline
3858 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3859 root 1.56 {
3860 root 1.166 clear_pending (EV_A_ (W)w);
3861 root 1.123 if (expect_false (!ev_is_active (w)))
3862 root 1.56 return;
3863    
3864 root 1.248 EV_FREQUENT_CHECK;
3865    
3866 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3867 root 1.56 ev_stop (EV_A_ (W)w);
3868    
3869     if (!signals [w->signum - 1].head)
3870 root 1.306 {
3871 root 1.307 #if EV_MULTIPLICITY
3872 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3873 root 1.307 #endif
3874     #if EV_USE_SIGNALFD
3875 root 1.306 if (sigfd >= 0)
3876     {
3877 root 1.321 sigset_t ss;
3878    
3879     sigemptyset (&ss);
3880     sigaddset (&ss, w->signum);
3881 root 1.306 sigdelset (&sigfd_set, w->signum);
3882 root 1.321
3883 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3884 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3885 root 1.306 }
3886     else
3887 root 1.307 #endif
3888 root 1.306 signal (w->signum, SIG_DFL);
3889     }
3890 root 1.248
3891     EV_FREQUENT_CHECK;
3892 root 1.56 }
3893    
3894 root 1.336 #endif
3895    
3896     #if EV_CHILD_ENABLE
3897    
3898 root 1.28 void
3899 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3900 root 1.22 {
3901 root 1.56 #if EV_MULTIPLICITY
3902 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3903 root 1.56 #endif
3904 root 1.123 if (expect_false (ev_is_active (w)))
3905 root 1.22 return;
3906    
3907 root 1.248 EV_FREQUENT_CHECK;
3908    
3909 root 1.51 ev_start (EV_A_ (W)w, 1);
3910 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3911 root 1.248
3912     EV_FREQUENT_CHECK;
3913 root 1.22 }
3914    
3915 root 1.28 void
3916 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3917 root 1.22 {
3918 root 1.166 clear_pending (EV_A_ (W)w);
3919 root 1.123 if (expect_false (!ev_is_active (w)))
3920 root 1.22 return;
3921    
3922 root 1.248 EV_FREQUENT_CHECK;
3923    
3924 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3925 root 1.51 ev_stop (EV_A_ (W)w);
3926 root 1.248
3927     EV_FREQUENT_CHECK;
3928 root 1.22 }
3929    
3930 root 1.336 #endif
3931    
3932 root 1.140 #if EV_STAT_ENABLE
3933    
3934     # ifdef _WIN32
3935 root 1.146 # undef lstat
3936     # define lstat(a,b) _stati64 (a,b)
3937 root 1.140 # endif
3938    
3939 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3940     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3941     #define MIN_STAT_INTERVAL 0.1074891
3942 root 1.143
3943 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3944 root 1.152
3945     #if EV_USE_INOTIFY
3946 root 1.326
3947     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3948     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3949 root 1.152
3950     static void noinline
3951     infy_add (EV_P_ ev_stat *w)
3952     {
3953 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
3954     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3955     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3956     | IN_DONT_FOLLOW | IN_MASK_ADD);
3957 root 1.152
3958 root 1.318 if (w->wd >= 0)
3959 root 1.152 {
3960 root 1.318 struct statfs sfs;
3961    
3962     /* now local changes will be tracked by inotify, but remote changes won't */
3963     /* unless the filesystem is known to be local, we therefore still poll */
3964     /* also do poll on <2.6.25, but with normal frequency */
3965    
3966     if (!fs_2625)
3967     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3968     else if (!statfs (w->path, &sfs)
3969     && (sfs.f_type == 0x1373 /* devfs */
3970 root 1.451 || sfs.f_type == 0x4006 /* fat */
3971     || sfs.f_type == 0x4d44 /* msdos */
3972 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
3973 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
3974     || sfs.f_type == 0x858458f6 /* ramfs */
3975     || sfs.f_type == 0x5346544e /* ntfs */
3976 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
3977 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
3978 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
3979 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
3980 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
3981     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3982     else
3983     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3984     }
3985     else
3986     {
3987     /* can't use inotify, continue to stat */
3988 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3989 root 1.152
3990 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3991 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3992 root 1.233 /* but an efficiency issue only */
3993 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3994 root 1.152 {
3995 root 1.153 char path [4096];
3996 root 1.152 strcpy (path, w->path);
3997    
3998     do
3999     {
4000     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4001     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4002    
4003     char *pend = strrchr (path, '/');
4004    
4005 root 1.275 if (!pend || pend == path)
4006     break;
4007 root 1.152
4008     *pend = 0;
4009 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4010 root 1.372 }
4011 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4012     }
4013     }
4014 root 1.275
4015     if (w->wd >= 0)
4016 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4017 root 1.152
4018 root 1.318 /* now re-arm timer, if required */
4019     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4020     ev_timer_again (EV_A_ &w->timer);
4021     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4022 root 1.152 }
4023    
4024     static void noinline
4025     infy_del (EV_P_ ev_stat *w)
4026     {
4027     int slot;
4028     int wd = w->wd;
4029    
4030     if (wd < 0)
4031     return;
4032    
4033     w->wd = -2;
4034 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4035 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4036    
4037     /* remove this watcher, if others are watching it, they will rearm */
4038     inotify_rm_watch (fs_fd, wd);
4039     }
4040    
4041     static void noinline
4042     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4043     {
4044     if (slot < 0)
4045 root 1.264 /* overflow, need to check for all hash slots */
4046 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4047 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4048     else
4049     {
4050     WL w_;
4051    
4052 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4053 root 1.152 {
4054     ev_stat *w = (ev_stat *)w_;
4055     w_ = w_->next; /* lets us remove this watcher and all before it */
4056    
4057     if (w->wd == wd || wd == -1)
4058     {
4059     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4060     {
4061 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4062 root 1.152 w->wd = -1;
4063     infy_add (EV_A_ w); /* re-add, no matter what */
4064     }
4065    
4066 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4067 root 1.152 }
4068     }
4069     }
4070     }
4071    
4072     static void
4073     infy_cb (EV_P_ ev_io *w, int revents)
4074     {
4075     char buf [EV_INOTIFY_BUFSIZE];
4076     int ofs;
4077     int len = read (fs_fd, buf, sizeof (buf));
4078    
4079 root 1.326 for (ofs = 0; ofs < len; )
4080     {
4081     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4082     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4083     ofs += sizeof (struct inotify_event) + ev->len;
4084     }
4085 root 1.152 }
4086    
4087 root 1.379 inline_size void ecb_cold
4088 root 1.330 ev_check_2625 (EV_P)
4089     {
4090     /* kernels < 2.6.25 are borked
4091     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4092     */
4093     if (ev_linux_version () < 0x020619)
4094 root 1.273 return;
4095 root 1.264
4096 root 1.273 fs_2625 = 1;
4097     }
4098 root 1.264
4099 root 1.315 inline_size int
4100     infy_newfd (void)
4101     {
4102 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4103 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4104     if (fd >= 0)
4105     return fd;
4106     #endif
4107     return inotify_init ();
4108     }
4109    
4110 root 1.284 inline_size void
4111 root 1.273 infy_init (EV_P)
4112     {
4113     if (fs_fd != -2)
4114     return;
4115 root 1.264
4116 root 1.273 fs_fd = -1;
4117 root 1.264
4118 root 1.330 ev_check_2625 (EV_A);
4119 root 1.264
4120 root 1.315 fs_fd = infy_newfd ();
4121 root 1.152
4122     if (fs_fd >= 0)
4123     {
4124 root 1.315 fd_intern (fs_fd);
4125 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4126     ev_set_priority (&fs_w, EV_MAXPRI);
4127     ev_io_start (EV_A_ &fs_w);
4128 root 1.317 ev_unref (EV_A);
4129 root 1.152 }
4130     }
4131    
4132 root 1.284 inline_size void
4133 root 1.154 infy_fork (EV_P)
4134     {
4135     int slot;
4136    
4137     if (fs_fd < 0)
4138     return;
4139    
4140 root 1.317 ev_ref (EV_A);
4141 root 1.315 ev_io_stop (EV_A_ &fs_w);
4142 root 1.154 close (fs_fd);
4143 root 1.315 fs_fd = infy_newfd ();
4144    
4145     if (fs_fd >= 0)
4146     {
4147     fd_intern (fs_fd);
4148     ev_io_set (&fs_w, fs_fd, EV_READ);
4149     ev_io_start (EV_A_ &fs_w);
4150 root 1.317 ev_unref (EV_A);
4151 root 1.315 }
4152 root 1.154
4153 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4154 root 1.154 {
4155     WL w_ = fs_hash [slot].head;
4156     fs_hash [slot].head = 0;
4157    
4158     while (w_)
4159     {
4160     ev_stat *w = (ev_stat *)w_;
4161     w_ = w_->next; /* lets us add this watcher */
4162    
4163     w->wd = -1;
4164    
4165     if (fs_fd >= 0)
4166     infy_add (EV_A_ w); /* re-add, no matter what */
4167     else
4168 root 1.318 {
4169     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4170     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4171     ev_timer_again (EV_A_ &w->timer);
4172     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4173     }
4174 root 1.154 }
4175     }
4176     }
4177    
4178 root 1.152 #endif
4179    
4180 root 1.255 #ifdef _WIN32
4181     # define EV_LSTAT(p,b) _stati64 (p, b)
4182     #else
4183     # define EV_LSTAT(p,b) lstat (p, b)
4184     #endif
4185    
4186 root 1.140 void
4187 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4188 root 1.140 {
4189     if (lstat (w->path, &w->attr) < 0)
4190     w->attr.st_nlink = 0;
4191     else if (!w->attr.st_nlink)
4192     w->attr.st_nlink = 1;
4193     }
4194    
4195 root 1.157 static void noinline
4196 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4197     {
4198     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4199    
4200 root 1.320 ev_statdata prev = w->attr;
4201 root 1.140 ev_stat_stat (EV_A_ w);
4202    
4203 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4204     if (
4205 root 1.320 prev.st_dev != w->attr.st_dev
4206     || prev.st_ino != w->attr.st_ino
4207     || prev.st_mode != w->attr.st_mode
4208     || prev.st_nlink != w->attr.st_nlink
4209     || prev.st_uid != w->attr.st_uid
4210     || prev.st_gid != w->attr.st_gid
4211     || prev.st_rdev != w->attr.st_rdev
4212     || prev.st_size != w->attr.st_size
4213     || prev.st_atime != w->attr.st_atime
4214     || prev.st_mtime != w->attr.st_mtime
4215     || prev.st_ctime != w->attr.st_ctime
4216 root 1.156 ) {
4217 root 1.320 /* we only update w->prev on actual differences */
4218     /* in case we test more often than invoke the callback, */
4219     /* to ensure that prev is always different to attr */
4220     w->prev = prev;
4221    
4222 root 1.152 #if EV_USE_INOTIFY
4223 root 1.264 if (fs_fd >= 0)
4224     {
4225     infy_del (EV_A_ w);
4226     infy_add (EV_A_ w);
4227     ev_stat_stat (EV_A_ w); /* avoid race... */
4228     }
4229 root 1.152 #endif
4230    
4231     ev_feed_event (EV_A_ w, EV_STAT);
4232     }
4233 root 1.140 }
4234    
4235     void
4236 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4237 root 1.140 {
4238     if (expect_false (ev_is_active (w)))
4239     return;
4240    
4241     ev_stat_stat (EV_A_ w);
4242    
4243 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4244     w->interval = MIN_STAT_INTERVAL;
4245 root 1.143
4246 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4247 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4248 root 1.152
4249     #if EV_USE_INOTIFY
4250     infy_init (EV_A);
4251    
4252     if (fs_fd >= 0)
4253     infy_add (EV_A_ w);
4254     else
4255     #endif
4256 root 1.318 {
4257     ev_timer_again (EV_A_ &w->timer);
4258     ev_unref (EV_A);
4259     }
4260 root 1.140
4261     ev_start (EV_A_ (W)w, 1);
4262 root 1.248
4263     EV_FREQUENT_CHECK;
4264 root 1.140 }
4265    
4266     void
4267 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4268 root 1.140 {
4269 root 1.166 clear_pending (EV_A_ (W)w);
4270 root 1.140 if (expect_false (!ev_is_active (w)))
4271     return;
4272    
4273 root 1.248 EV_FREQUENT_CHECK;
4274    
4275 root 1.152 #if EV_USE_INOTIFY
4276     infy_del (EV_A_ w);
4277     #endif
4278 root 1.318
4279     if (ev_is_active (&w->timer))
4280     {
4281     ev_ref (EV_A);
4282     ev_timer_stop (EV_A_ &w->timer);
4283     }
4284 root 1.140
4285 root 1.134 ev_stop (EV_A_ (W)w);
4286 root 1.248
4287     EV_FREQUENT_CHECK;
4288 root 1.134 }
4289     #endif
4290    
4291 root 1.164 #if EV_IDLE_ENABLE
4292 root 1.144 void
4293 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4294 root 1.144 {
4295     if (expect_false (ev_is_active (w)))
4296     return;
4297    
4298 root 1.164 pri_adjust (EV_A_ (W)w);
4299    
4300 root 1.248 EV_FREQUENT_CHECK;
4301    
4302 root 1.164 {
4303     int active = ++idlecnt [ABSPRI (w)];
4304    
4305     ++idleall;
4306     ev_start (EV_A_ (W)w, active);
4307    
4308     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4309     idles [ABSPRI (w)][active - 1] = w;
4310     }
4311 root 1.248
4312     EV_FREQUENT_CHECK;
4313 root 1.144 }
4314    
4315     void
4316 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4317 root 1.144 {
4318 root 1.166 clear_pending (EV_A_ (W)w);
4319 root 1.144 if (expect_false (!ev_is_active (w)))
4320     return;
4321    
4322 root 1.248 EV_FREQUENT_CHECK;
4323    
4324 root 1.144 {
4325 root 1.230 int active = ev_active (w);
4326 root 1.164
4327     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4328 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4329 root 1.164
4330     ev_stop (EV_A_ (W)w);
4331     --idleall;
4332 root 1.144 }
4333 root 1.248
4334     EV_FREQUENT_CHECK;
4335 root 1.144 }
4336 root 1.164 #endif
4337 root 1.144
4338 root 1.337 #if EV_PREPARE_ENABLE
4339 root 1.144 void
4340 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4341 root 1.144 {
4342     if (expect_false (ev_is_active (w)))
4343     return;
4344    
4345 root 1.248 EV_FREQUENT_CHECK;
4346    
4347 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4348     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4349     prepares [preparecnt - 1] = w;
4350 root 1.248
4351     EV_FREQUENT_CHECK;
4352 root 1.144 }
4353    
4354     void
4355 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4356 root 1.144 {
4357 root 1.166 clear_pending (EV_A_ (W)w);
4358 root 1.144 if (expect_false (!ev_is_active (w)))
4359     return;
4360    
4361 root 1.248 EV_FREQUENT_CHECK;
4362    
4363 root 1.144 {
4364 root 1.230 int active = ev_active (w);
4365    
4366 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4367 root 1.230 ev_active (prepares [active - 1]) = active;
4368 root 1.144 }
4369    
4370     ev_stop (EV_A_ (W)w);
4371 root 1.248
4372     EV_FREQUENT_CHECK;
4373 root 1.144 }
4374 root 1.337 #endif
4375 root 1.144
4376 root 1.337 #if EV_CHECK_ENABLE
4377 root 1.144 void
4378 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4379 root 1.144 {
4380     if (expect_false (ev_is_active (w)))
4381     return;
4382    
4383 root 1.248 EV_FREQUENT_CHECK;
4384    
4385 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4386     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4387     checks [checkcnt - 1] = w;
4388 root 1.248
4389     EV_FREQUENT_CHECK;
4390 root 1.144 }
4391    
4392     void
4393 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4394 root 1.144 {
4395 root 1.166 clear_pending (EV_A_ (W)w);
4396 root 1.144 if (expect_false (!ev_is_active (w)))
4397     return;
4398    
4399 root 1.248 EV_FREQUENT_CHECK;
4400    
4401 root 1.144 {
4402 root 1.230 int active = ev_active (w);
4403    
4404 root 1.144 checks [active - 1] = checks [--checkcnt];
4405 root 1.230 ev_active (checks [active - 1]) = active;
4406 root 1.144 }
4407    
4408     ev_stop (EV_A_ (W)w);
4409 root 1.248
4410     EV_FREQUENT_CHECK;
4411 root 1.144 }
4412 root 1.337 #endif
4413 root 1.144
4414     #if EV_EMBED_ENABLE
4415     void noinline
4416 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4417 root 1.144 {
4418 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4419 root 1.144 }
4420    
4421     static void
4422 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4423 root 1.144 {
4424     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4425    
4426     if (ev_cb (w))
4427     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4428     else
4429 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4430 root 1.144 }
4431    
4432 root 1.189 static void
4433     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4434     {
4435     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4436    
4437 root 1.195 {
4438 root 1.306 EV_P = w->other;
4439 root 1.195
4440     while (fdchangecnt)
4441     {
4442     fd_reify (EV_A);
4443 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4444 root 1.195 }
4445     }
4446     }
4447    
4448 root 1.261 static void
4449     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4450     {
4451     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4452    
4453 root 1.277 ev_embed_stop (EV_A_ w);
4454    
4455 root 1.261 {
4456 root 1.306 EV_P = w->other;
4457 root 1.261
4458     ev_loop_fork (EV_A);
4459 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4460 root 1.261 }
4461 root 1.277
4462     ev_embed_start (EV_A_ w);
4463 root 1.261 }
4464    
4465 root 1.195 #if 0
4466     static void
4467     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4468     {
4469     ev_idle_stop (EV_A_ idle);
4470 root 1.189 }
4471 root 1.195 #endif
4472 root 1.189
4473 root 1.144 void
4474 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4475 root 1.144 {
4476     if (expect_false (ev_is_active (w)))
4477     return;
4478    
4479     {
4480 root 1.306 EV_P = w->other;
4481 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4482 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4483 root 1.144 }
4484    
4485 root 1.248 EV_FREQUENT_CHECK;
4486    
4487 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4488     ev_io_start (EV_A_ &w->io);
4489    
4490 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4491     ev_set_priority (&w->prepare, EV_MINPRI);
4492     ev_prepare_start (EV_A_ &w->prepare);
4493    
4494 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4495     ev_fork_start (EV_A_ &w->fork);
4496    
4497 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4498    
4499 root 1.144 ev_start (EV_A_ (W)w, 1);
4500 root 1.248
4501     EV_FREQUENT_CHECK;
4502 root 1.144 }
4503    
4504     void
4505 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4506 root 1.144 {
4507 root 1.166 clear_pending (EV_A_ (W)w);
4508 root 1.144 if (expect_false (!ev_is_active (w)))
4509     return;
4510    
4511 root 1.248 EV_FREQUENT_CHECK;
4512    
4513 root 1.261 ev_io_stop (EV_A_ &w->io);
4514 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4515 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4516 root 1.248
4517 root 1.328 ev_stop (EV_A_ (W)w);
4518    
4519 root 1.248 EV_FREQUENT_CHECK;
4520 root 1.144 }
4521     #endif
4522    
4523 root 1.147 #if EV_FORK_ENABLE
4524     void
4525 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4526 root 1.147 {
4527     if (expect_false (ev_is_active (w)))
4528     return;
4529    
4530 root 1.248 EV_FREQUENT_CHECK;
4531    
4532 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4533     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4534     forks [forkcnt - 1] = w;
4535 root 1.248
4536     EV_FREQUENT_CHECK;
4537 root 1.147 }
4538    
4539     void
4540 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4541 root 1.147 {
4542 root 1.166 clear_pending (EV_A_ (W)w);
4543 root 1.147 if (expect_false (!ev_is_active (w)))
4544     return;
4545    
4546 root 1.248 EV_FREQUENT_CHECK;
4547    
4548 root 1.147 {
4549 root 1.230 int active = ev_active (w);
4550    
4551 root 1.147 forks [active - 1] = forks [--forkcnt];
4552 root 1.230 ev_active (forks [active - 1]) = active;
4553 root 1.147 }
4554    
4555     ev_stop (EV_A_ (W)w);
4556 root 1.248
4557     EV_FREQUENT_CHECK;
4558 root 1.147 }
4559     #endif
4560    
4561 root 1.360 #if EV_CLEANUP_ENABLE
4562     void
4563 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4564 root 1.360 {
4565     if (expect_false (ev_is_active (w)))
4566     return;
4567    
4568     EV_FREQUENT_CHECK;
4569    
4570     ev_start (EV_A_ (W)w, ++cleanupcnt);
4571     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4572     cleanups [cleanupcnt - 1] = w;
4573    
4574 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4575     ev_unref (EV_A);
4576 root 1.360 EV_FREQUENT_CHECK;
4577     }
4578    
4579     void
4580 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4581 root 1.360 {
4582     clear_pending (EV_A_ (W)w);
4583     if (expect_false (!ev_is_active (w)))
4584     return;
4585    
4586     EV_FREQUENT_CHECK;
4587 root 1.362 ev_ref (EV_A);
4588 root 1.360
4589     {
4590     int active = ev_active (w);
4591    
4592     cleanups [active - 1] = cleanups [--cleanupcnt];
4593     ev_active (cleanups [active - 1]) = active;
4594     }
4595    
4596     ev_stop (EV_A_ (W)w);
4597    
4598     EV_FREQUENT_CHECK;
4599     }
4600     #endif
4601    
4602 root 1.207 #if EV_ASYNC_ENABLE
4603     void
4604 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4605 root 1.207 {
4606     if (expect_false (ev_is_active (w)))
4607     return;
4608    
4609 root 1.352 w->sent = 0;
4610    
4611 root 1.207 evpipe_init (EV_A);
4612    
4613 root 1.248 EV_FREQUENT_CHECK;
4614    
4615 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4616     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4617     asyncs [asynccnt - 1] = w;
4618 root 1.248
4619     EV_FREQUENT_CHECK;
4620 root 1.207 }
4621    
4622     void
4623 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4624 root 1.207 {
4625     clear_pending (EV_A_ (W)w);
4626     if (expect_false (!ev_is_active (w)))
4627     return;
4628    
4629 root 1.248 EV_FREQUENT_CHECK;
4630    
4631 root 1.207 {
4632 root 1.230 int active = ev_active (w);
4633    
4634 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4635 root 1.230 ev_active (asyncs [active - 1]) = active;
4636 root 1.207 }
4637    
4638     ev_stop (EV_A_ (W)w);
4639 root 1.248
4640     EV_FREQUENT_CHECK;
4641 root 1.207 }
4642    
4643     void
4644 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4645 root 1.207 {
4646     w->sent = 1;
4647 root 1.307 evpipe_write (EV_A_ &async_pending);
4648 root 1.207 }
4649     #endif
4650    
4651 root 1.1 /*****************************************************************************/
4652 root 1.10
4653 root 1.16 struct ev_once
4654     {
4655 root 1.136 ev_io io;
4656     ev_timer to;
4657 root 1.16 void (*cb)(int revents, void *arg);
4658     void *arg;
4659     };
4660    
4661     static void
4662 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4663 root 1.16 {
4664     void (*cb)(int revents, void *arg) = once->cb;
4665     void *arg = once->arg;
4666    
4667 root 1.259 ev_io_stop (EV_A_ &once->io);
4668 root 1.51 ev_timer_stop (EV_A_ &once->to);
4669 root 1.69 ev_free (once);
4670 root 1.16
4671     cb (revents, arg);
4672     }
4673    
4674     static void
4675 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4676 root 1.16 {
4677 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4678    
4679     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4680 root 1.16 }
4681    
4682     static void
4683 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4684 root 1.16 {
4685 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4686    
4687     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4688 root 1.16 }
4689    
4690     void
4691 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4692 root 1.16 {
4693 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4694 root 1.16
4695 root 1.123 if (expect_false (!once))
4696 root 1.16 {
4697 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4698 root 1.123 return;
4699     }
4700    
4701     once->cb = cb;
4702     once->arg = arg;
4703 root 1.16
4704 root 1.123 ev_init (&once->io, once_cb_io);
4705     if (fd >= 0)
4706     {
4707     ev_io_set (&once->io, fd, events);
4708     ev_io_start (EV_A_ &once->io);
4709     }
4710 root 1.16
4711 root 1.123 ev_init (&once->to, once_cb_to);
4712     if (timeout >= 0.)
4713     {
4714     ev_timer_set (&once->to, timeout, 0.);
4715     ev_timer_start (EV_A_ &once->to);
4716 root 1.16 }
4717     }
4718    
4719 root 1.282 /*****************************************************************************/
4720    
4721 root 1.288 #if EV_WALK_ENABLE
4722 root 1.379 void ecb_cold
4723 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4724 root 1.282 {
4725     int i, j;
4726     ev_watcher_list *wl, *wn;
4727    
4728     if (types & (EV_IO | EV_EMBED))
4729     for (i = 0; i < anfdmax; ++i)
4730     for (wl = anfds [i].head; wl; )
4731     {
4732     wn = wl->next;
4733    
4734     #if EV_EMBED_ENABLE
4735     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4736     {
4737     if (types & EV_EMBED)
4738     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4739     }
4740     else
4741     #endif
4742     #if EV_USE_INOTIFY
4743     if (ev_cb ((ev_io *)wl) == infy_cb)
4744     ;
4745     else
4746     #endif
4747 root 1.288 if ((ev_io *)wl != &pipe_w)
4748 root 1.282 if (types & EV_IO)
4749     cb (EV_A_ EV_IO, wl);
4750    
4751     wl = wn;
4752     }
4753    
4754     if (types & (EV_TIMER | EV_STAT))
4755     for (i = timercnt + HEAP0; i-- > HEAP0; )
4756     #if EV_STAT_ENABLE
4757     /*TODO: timer is not always active*/
4758     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4759     {
4760     if (types & EV_STAT)
4761     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4762     }
4763     else
4764     #endif
4765     if (types & EV_TIMER)
4766     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4767    
4768     #if EV_PERIODIC_ENABLE
4769     if (types & EV_PERIODIC)
4770     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4771     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4772     #endif
4773    
4774     #if EV_IDLE_ENABLE
4775     if (types & EV_IDLE)
4776 root 1.390 for (j = NUMPRI; j--; )
4777 root 1.282 for (i = idlecnt [j]; i--; )
4778     cb (EV_A_ EV_IDLE, idles [j][i]);
4779     #endif
4780    
4781     #if EV_FORK_ENABLE
4782     if (types & EV_FORK)
4783     for (i = forkcnt; i--; )
4784     if (ev_cb (forks [i]) != embed_fork_cb)
4785     cb (EV_A_ EV_FORK, forks [i]);
4786     #endif
4787    
4788     #if EV_ASYNC_ENABLE
4789     if (types & EV_ASYNC)
4790     for (i = asynccnt; i--; )
4791     cb (EV_A_ EV_ASYNC, asyncs [i]);
4792     #endif
4793    
4794 root 1.337 #if EV_PREPARE_ENABLE
4795 root 1.282 if (types & EV_PREPARE)
4796     for (i = preparecnt; i--; )
4797 root 1.337 # if EV_EMBED_ENABLE
4798 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4799 root 1.337 # endif
4800     cb (EV_A_ EV_PREPARE, prepares [i]);
4801 root 1.282 #endif
4802    
4803 root 1.337 #if EV_CHECK_ENABLE
4804 root 1.282 if (types & EV_CHECK)
4805     for (i = checkcnt; i--; )
4806     cb (EV_A_ EV_CHECK, checks [i]);
4807 root 1.337 #endif
4808 root 1.282
4809 root 1.337 #if EV_SIGNAL_ENABLE
4810 root 1.282 if (types & EV_SIGNAL)
4811 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4812 root 1.282 for (wl = signals [i].head; wl; )
4813     {
4814     wn = wl->next;
4815     cb (EV_A_ EV_SIGNAL, wl);
4816     wl = wn;
4817     }
4818 root 1.337 #endif
4819 root 1.282
4820 root 1.337 #if EV_CHILD_ENABLE
4821 root 1.282 if (types & EV_CHILD)
4822 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4823 root 1.282 for (wl = childs [i]; wl; )
4824     {
4825     wn = wl->next;
4826     cb (EV_A_ EV_CHILD, wl);
4827     wl = wn;
4828     }
4829 root 1.337 #endif
4830 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4831     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4832     }
4833     #endif
4834    
4835 root 1.188 #if EV_MULTIPLICITY
4836     #include "ev_wrap.h"
4837     #endif
4838