ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.460
Committed: Tue Oct 29 12:53:38 2013 UTC (10 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.459: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.418 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 root 1.305 #endif
248    
249 root 1.373 #ifndef EV_USE_FLOOR
250     # define EV_USE_FLOOR 0
251     #endif
252    
253 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
254 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 root 1.274 # else
257     # define EV_USE_CLOCK_SYSCALL 0
258     # endif
259     #endif
260    
261 root 1.29 #ifndef EV_USE_MONOTONIC
262 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
264 root 1.253 # else
265     # define EV_USE_MONOTONIC 0
266     # endif
267 root 1.37 #endif
268    
269 root 1.118 #ifndef EV_USE_REALTIME
270 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271 root 1.118 #endif
272    
273 root 1.193 #ifndef EV_USE_NANOSLEEP
274 root 1.253 # if _POSIX_C_SOURCE >= 199309L
275 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
276 root 1.253 # else
277     # define EV_USE_NANOSLEEP 0
278     # endif
279 root 1.193 #endif
280    
281 root 1.29 #ifndef EV_USE_SELECT
282 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
283 root 1.10 #endif
284    
285 root 1.59 #ifndef EV_USE_POLL
286 root 1.104 # ifdef _WIN32
287     # define EV_USE_POLL 0
288     # else
289 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
290 root 1.104 # endif
291 root 1.41 #endif
292    
293 root 1.29 #ifndef EV_USE_EPOLL
294 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
296 root 1.220 # else
297     # define EV_USE_EPOLL 0
298     # endif
299 root 1.10 #endif
300    
301 root 1.44 #ifndef EV_USE_KQUEUE
302     # define EV_USE_KQUEUE 0
303     #endif
304    
305 root 1.118 #ifndef EV_USE_PORT
306     # define EV_USE_PORT 0
307 root 1.40 #endif
308    
309 root 1.152 #ifndef EV_USE_INOTIFY
310 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
312 root 1.220 # else
313     # define EV_USE_INOTIFY 0
314     # endif
315 root 1.152 #endif
316    
317 root 1.149 #ifndef EV_PID_HASHSIZE
318 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
319 root 1.149 #endif
320    
321 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
322 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323 root 1.152 #endif
324    
325 root 1.220 #ifndef EV_USE_EVENTFD
326     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
328 root 1.220 # else
329     # define EV_USE_EVENTFD 0
330     # endif
331     #endif
332    
333 root 1.303 #ifndef EV_USE_SIGNALFD
334 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
336 root 1.303 # else
337     # define EV_USE_SIGNALFD 0
338     # endif
339     #endif
340    
341 root 1.249 #if 0 /* debugging */
342 root 1.250 # define EV_VERIFY 3
343 root 1.249 # define EV_USE_4HEAP 1
344     # define EV_HEAP_CACHE_AT 1
345     #endif
346    
347 root 1.250 #ifndef EV_VERIFY
348 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349 root 1.250 #endif
350    
351 root 1.243 #ifndef EV_USE_4HEAP
352 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
353 root 1.243 #endif
354    
355     #ifndef EV_HEAP_CACHE_AT
356 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357 root 1.243 #endif
358    
359 root 1.452 #ifdef ANDROID
360     /* supposedly, android doesn't typedef fd_mask */
361     # undef EV_USE_SELECT
362     # define EV_USE_SELECT 0
363     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364     # undef EV_USE_CLOCK_SYSCALL
365     # define EV_USE_CLOCK_SYSCALL 0
366     #endif
367    
368     /* aix's poll.h seems to cause lots of trouble */
369     #ifdef _AIX
370     /* AIX has a completely broken poll.h header */
371     # undef EV_USE_POLL
372     # define EV_USE_POLL 0
373     #endif
374    
375 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376     /* which makes programs even slower. might work on other unices, too. */
377     #if EV_USE_CLOCK_SYSCALL
378 root 1.423 # include <sys/syscall.h>
379 root 1.291 # ifdef SYS_clock_gettime
380     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381     # undef EV_USE_MONOTONIC
382     # define EV_USE_MONOTONIC 1
383     # else
384     # undef EV_USE_CLOCK_SYSCALL
385     # define EV_USE_CLOCK_SYSCALL 0
386     # endif
387     #endif
388    
389 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
390 root 1.40
391     #ifndef CLOCK_MONOTONIC
392     # undef EV_USE_MONOTONIC
393     # define EV_USE_MONOTONIC 0
394     #endif
395    
396 root 1.31 #ifndef CLOCK_REALTIME
397 root 1.40 # undef EV_USE_REALTIME
398 root 1.31 # define EV_USE_REALTIME 0
399     #endif
400 root 1.40
401 root 1.152 #if !EV_STAT_ENABLE
402 root 1.185 # undef EV_USE_INOTIFY
403 root 1.152 # define EV_USE_INOTIFY 0
404     #endif
405    
406 root 1.193 #if !EV_USE_NANOSLEEP
407 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
408 root 1.416 # if !defined _WIN32 && !defined __hpux
409 root 1.193 # include <sys/select.h>
410     # endif
411     #endif
412    
413 root 1.152 #if EV_USE_INOTIFY
414 root 1.273 # include <sys/statfs.h>
415 root 1.152 # include <sys/inotify.h>
416 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417     # ifndef IN_DONT_FOLLOW
418     # undef EV_USE_INOTIFY
419     # define EV_USE_INOTIFY 0
420     # endif
421 root 1.152 #endif
422    
423 root 1.220 #if EV_USE_EVENTFD
424     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
425 root 1.221 # include <stdint.h>
426 root 1.303 # ifndef EFD_NONBLOCK
427     # define EFD_NONBLOCK O_NONBLOCK
428     # endif
429     # ifndef EFD_CLOEXEC
430 root 1.311 # ifdef O_CLOEXEC
431     # define EFD_CLOEXEC O_CLOEXEC
432     # else
433     # define EFD_CLOEXEC 02000000
434     # endif
435 root 1.303 # endif
436 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437 root 1.220 #endif
438    
439 root 1.303 #if EV_USE_SIGNALFD
440 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441     # include <stdint.h>
442     # ifndef SFD_NONBLOCK
443     # define SFD_NONBLOCK O_NONBLOCK
444     # endif
445     # ifndef SFD_CLOEXEC
446     # ifdef O_CLOEXEC
447     # define SFD_CLOEXEC O_CLOEXEC
448     # else
449     # define SFD_CLOEXEC 02000000
450     # endif
451     # endif
452 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453 root 1.314
454     struct signalfd_siginfo
455     {
456     uint32_t ssi_signo;
457     char pad[128 - sizeof (uint32_t)];
458     };
459 root 1.303 #endif
460    
461 root 1.40 /**/
462 root 1.1
463 root 1.250 #if EV_VERIFY >= 3
464 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
465 root 1.248 #else
466     # define EV_FREQUENT_CHECK do { } while (0)
467     #endif
468    
469 root 1.176 /*
470 root 1.373 * This is used to work around floating point rounding problems.
471 root 1.177 * This value is good at least till the year 4000.
472 root 1.176 */
473 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
475 root 1.176
476 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
477 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
478 root 1.1
479 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481 root 1.347
482 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483     /* ECB.H BEGIN */
484     /*
485     * libecb - http://software.schmorp.de/pkg/libecb
486     *
487 root 1.403 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
488 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
489     * All rights reserved.
490     *
491     * Redistribution and use in source and binary forms, with or without modifica-
492     * tion, are permitted provided that the following conditions are met:
493     *
494     * 1. Redistributions of source code must retain the above copyright notice,
495     * this list of conditions and the following disclaimer.
496     *
497     * 2. Redistributions in binary form must reproduce the above copyright
498     * notice, this list of conditions and the following disclaimer in the
499     * documentation and/or other materials provided with the distribution.
500     *
501     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510     * OF THE POSSIBILITY OF SUCH DAMAGE.
511     */
512    
513     #ifndef ECB_H
514     #define ECB_H
515    
516 root 1.437 /* 16 bits major, 16 bits minor */
517 root 1.454 #define ECB_VERSION 0x00010003
518 root 1.437
519 root 1.391 #ifdef _WIN32
520     typedef signed char int8_t;
521     typedef unsigned char uint8_t;
522     typedef signed short int16_t;
523     typedef unsigned short uint16_t;
524     typedef signed int int32_t;
525     typedef unsigned int uint32_t;
526     #if __GNUC__
527     typedef signed long long int64_t;
528     typedef unsigned long long uint64_t;
529     #else /* _MSC_VER || __BORLANDC__ */
530     typedef signed __int64 int64_t;
531     typedef unsigned __int64 uint64_t;
532     #endif
533 root 1.437 #ifdef _WIN64
534     #define ECB_PTRSIZE 8
535     typedef uint64_t uintptr_t;
536     typedef int64_t intptr_t;
537     #else
538     #define ECB_PTRSIZE 4
539     typedef uint32_t uintptr_t;
540     typedef int32_t intptr_t;
541     #endif
542 root 1.391 #else
543     #include <inttypes.h>
544 root 1.437 #if UINTMAX_MAX > 0xffffffffU
545     #define ECB_PTRSIZE 8
546     #else
547     #define ECB_PTRSIZE 4
548     #endif
549 root 1.391 #endif
550 root 1.379
551 root 1.454 /* work around x32 idiocy by defining proper macros */
552     #if __x86_64 || _M_AMD64
553 root 1.458 #if _ILP32
554 root 1.454 #define ECB_AMD64_X32 1
555     #else
556     #define ECB_AMD64 1
557     #endif
558     #endif
559    
560 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
561     * what their idiot authors think are the "more important" extensions,
562 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
563 root 1.379 * or so.
564     * we try to detect these and simply assume they are not gcc - if they have
565     * an issue with that they should have done it right in the first place.
566     */
567     #ifndef ECB_GCC_VERSION
568 root 1.417 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 root 1.379 #define ECB_GCC_VERSION(major,minor) 0
570     #else
571     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572     #endif
573     #endif
574    
575 root 1.437 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
576     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
577     #define ECB_C11 (__STDC_VERSION__ >= 201112L)
578     #define ECB_CPP (__cplusplus+0)
579     #define ECB_CPP11 (__cplusplus >= 201103L)
580    
581 root 1.450 #if ECB_CPP
582     #define ECB_EXTERN_C extern "C"
583     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
584     #define ECB_EXTERN_C_END }
585     #else
586     #define ECB_EXTERN_C extern
587     #define ECB_EXTERN_C_BEG
588     #define ECB_EXTERN_C_END
589     #endif
590    
591 root 1.391 /*****************************************************************************/
592    
593     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
594     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
595    
596 root 1.410 #if ECB_NO_THREADS
597 root 1.439 #define ECB_NO_SMP 1
598 root 1.410 #endif
599    
600 root 1.437 #if ECB_NO_SMP
601 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
602 root 1.40 #endif
603    
604 root 1.383 #ifndef ECB_MEMORY_FENCE
605 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
606 root 1.404 #if __i386 || __i386__
607 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
608 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
609     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
611 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
612     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
613     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
614 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
615 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
616 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
617     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
618 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
619 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
620 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
621     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
622 root 1.404 #elif __sparc || __sparc__
623 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
624     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
625     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
626 root 1.417 #elif defined __s390__ || defined __s390x__
627 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
628 root 1.417 #elif defined __mips__
629 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
630 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
631     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
632 root 1.419 #elif defined __alpha__
633 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
634     #elif defined __hppa__
635     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
636     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
637     #elif defined __ia64__
638     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
639 root 1.457 #elif defined __m68k__
640     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
641     #elif defined __m88k__
642     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
643     #elif defined __sh__
644     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
645 root 1.383 #endif
646     #endif
647     #endif
648    
649     #ifndef ECB_MEMORY_FENCE
650 root 1.437 #if ECB_GCC_VERSION(4,7)
651 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
652 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
653 root 1.450
654     /* The __has_feature syntax from clang is so misdesigned that we cannot use it
655     * without risking compile time errors with other compilers. We *could*
656     * define our own ecb_clang_has_feature, but I just can't be bothered to work
657     * around this shit time and again.
658     * #elif defined __clang && __has_feature (cxx_atomic)
659     * // see comment below (stdatomic.h) about the C11 memory model.
660     * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
661     */
662    
663 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
664 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
665 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
666     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
667     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
668     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
669     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
670 root 1.417 #elif defined _WIN32
671 root 1.388 #include <WinNT.h>
672 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
673 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
674     #include <mbarrier.h>
675     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
676     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
677     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
678 root 1.413 #elif __xlC__
679 root 1.414 #define ECB_MEMORY_FENCE __sync ()
680 root 1.383 #endif
681     #endif
682    
683     #ifndef ECB_MEMORY_FENCE
684 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
685     /* we assume that these memory fences work on all variables/all memory accesses, */
686     /* not just C11 atomics and atomic accesses */
687     #include <stdatomic.h>
688 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
689     /* any fence other than seq_cst, which isn't very efficient for us. */
690     /* Why that is, we don't know - either the C11 memory model is quite useless */
691     /* for most usages, or gcc and clang have a bug */
692     /* I *currently* lean towards the latter, and inefficiently implement */
693     /* all three of ecb's fences as a seq_cst fence */
694 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
695     #endif
696     #endif
697    
698     #ifndef ECB_MEMORY_FENCE
699 root 1.392 #if !ECB_AVOID_PTHREADS
700     /*
701     * if you get undefined symbol references to pthread_mutex_lock,
702     * or failure to find pthread.h, then you should implement
703     * the ECB_MEMORY_FENCE operations for your cpu/compiler
704     * OR provide pthread.h and link against the posix thread library
705     * of your system.
706     */
707     #include <pthread.h>
708     #define ECB_NEEDS_PTHREADS 1
709     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
710    
711     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
712     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
713     #endif
714     #endif
715 root 1.383
716 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
717 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
718 root 1.392 #endif
719    
720 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
721 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
722     #endif
723    
724 root 1.391 /*****************************************************************************/
725    
726     #if __cplusplus
727     #define ecb_inline static inline
728     #elif ECB_GCC_VERSION(2,5)
729     #define ecb_inline static __inline__
730     #elif ECB_C99
731     #define ecb_inline static inline
732     #else
733     #define ecb_inline static
734     #endif
735    
736     #if ECB_GCC_VERSION(3,3)
737     #define ecb_restrict __restrict__
738     #elif ECB_C99
739     #define ecb_restrict restrict
740     #else
741     #define ecb_restrict
742     #endif
743    
744     typedef int ecb_bool;
745    
746     #define ECB_CONCAT_(a, b) a ## b
747     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
748     #define ECB_STRINGIFY_(a) # a
749     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
750    
751     #define ecb_function_ ecb_inline
752    
753 root 1.379 #if ECB_GCC_VERSION(3,1)
754     #define ecb_attribute(attrlist) __attribute__(attrlist)
755     #define ecb_is_constant(expr) __builtin_constant_p (expr)
756     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
757     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
758     #else
759     #define ecb_attribute(attrlist)
760     #define ecb_is_constant(expr) 0
761     #define ecb_expect(expr,value) (expr)
762     #define ecb_prefetch(addr,rw,locality)
763     #endif
764    
765 root 1.391 /* no emulation for ecb_decltype */
766     #if ECB_GCC_VERSION(4,5)
767     #define ecb_decltype(x) __decltype(x)
768     #elif ECB_GCC_VERSION(3,0)
769     #define ecb_decltype(x) __typeof(x)
770     #endif
771    
772 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
773     #define ecb_unused ecb_attribute ((__unused__))
774     #define ecb_const ecb_attribute ((__const__))
775     #define ecb_pure ecb_attribute ((__pure__))
776    
777 root 1.437 #if ECB_C11
778     #define ecb_noreturn _Noreturn
779     #else
780     #define ecb_noreturn ecb_attribute ((__noreturn__))
781     #endif
782    
783 root 1.379 #if ECB_GCC_VERSION(4,3)
784     #define ecb_artificial ecb_attribute ((__artificial__))
785     #define ecb_hot ecb_attribute ((__hot__))
786     #define ecb_cold ecb_attribute ((__cold__))
787     #else
788     #define ecb_artificial
789     #define ecb_hot
790     #define ecb_cold
791     #endif
792    
793     /* put around conditional expressions if you are very sure that the */
794     /* expression is mostly true or mostly false. note that these return */
795     /* booleans, not the expression. */
796     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
797     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
798 root 1.391 /* for compatibility to the rest of the world */
799     #define ecb_likely(expr) ecb_expect_true (expr)
800     #define ecb_unlikely(expr) ecb_expect_false (expr)
801    
802     /* count trailing zero bits and count # of one bits */
803     #if ECB_GCC_VERSION(3,4)
804     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
805     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
806     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
807     #define ecb_ctz32(x) __builtin_ctz (x)
808     #define ecb_ctz64(x) __builtin_ctzll (x)
809     #define ecb_popcount32(x) __builtin_popcount (x)
810     /* no popcountll */
811     #else
812     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
813     ecb_function_ int
814     ecb_ctz32 (uint32_t x)
815     {
816     int r = 0;
817    
818     x &= ~x + 1; /* this isolates the lowest bit */
819    
820     #if ECB_branchless_on_i386
821     r += !!(x & 0xaaaaaaaa) << 0;
822     r += !!(x & 0xcccccccc) << 1;
823     r += !!(x & 0xf0f0f0f0) << 2;
824     r += !!(x & 0xff00ff00) << 3;
825     r += !!(x & 0xffff0000) << 4;
826     #else
827     if (x & 0xaaaaaaaa) r += 1;
828     if (x & 0xcccccccc) r += 2;
829     if (x & 0xf0f0f0f0) r += 4;
830     if (x & 0xff00ff00) r += 8;
831     if (x & 0xffff0000) r += 16;
832     #endif
833    
834     return r;
835     }
836    
837     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
838     ecb_function_ int
839     ecb_ctz64 (uint64_t x)
840     {
841     int shift = x & 0xffffffffU ? 0 : 32;
842     return ecb_ctz32 (x >> shift) + shift;
843     }
844    
845     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
846     ecb_function_ int
847     ecb_popcount32 (uint32_t x)
848     {
849     x -= (x >> 1) & 0x55555555;
850     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
851     x = ((x >> 4) + x) & 0x0f0f0f0f;
852     x *= 0x01010101;
853    
854     return x >> 24;
855     }
856    
857     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
858     ecb_function_ int ecb_ld32 (uint32_t x)
859     {
860     int r = 0;
861    
862     if (x >> 16) { x >>= 16; r += 16; }
863     if (x >> 8) { x >>= 8; r += 8; }
864     if (x >> 4) { x >>= 4; r += 4; }
865     if (x >> 2) { x >>= 2; r += 2; }
866     if (x >> 1) { r += 1; }
867    
868     return r;
869     }
870    
871     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
872     ecb_function_ int ecb_ld64 (uint64_t x)
873     {
874     int r = 0;
875    
876     if (x >> 32) { x >>= 32; r += 32; }
877    
878     return r + ecb_ld32 (x);
879     }
880     #endif
881    
882 root 1.437 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
883     ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
884     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
885     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
886    
887 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
888     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
889     {
890     return ( (x * 0x0802U & 0x22110U)
891     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
892     }
893    
894     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
895     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
896     {
897     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
898     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
899     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
900     x = ( x >> 8 ) | ( x << 8);
901    
902     return x;
903     }
904    
905     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
906     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
907     {
908     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
909     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
910     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
911     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
912     x = ( x >> 16 ) | ( x << 16);
913    
914     return x;
915     }
916    
917 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
918     /* so for this version we are lazy */
919     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
920     ecb_function_ int
921     ecb_popcount64 (uint64_t x)
922     {
923     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
924     }
925    
926     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
927     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
928     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
929     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
930     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
931     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
932     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
933     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
934    
935     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
936     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
937     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
938     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
939     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
940     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
941     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
942     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
943    
944     #if ECB_GCC_VERSION(4,3)
945     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
946     #define ecb_bswap32(x) __builtin_bswap32 (x)
947     #define ecb_bswap64(x) __builtin_bswap64 (x)
948     #else
949     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
950     ecb_function_ uint16_t
951     ecb_bswap16 (uint16_t x)
952     {
953     return ecb_rotl16 (x, 8);
954     }
955    
956     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
957     ecb_function_ uint32_t
958     ecb_bswap32 (uint32_t x)
959     {
960     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
961     }
962    
963     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
964     ecb_function_ uint64_t
965     ecb_bswap64 (uint64_t x)
966     {
967     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
968     }
969     #endif
970    
971     #if ECB_GCC_VERSION(4,5)
972     #define ecb_unreachable() __builtin_unreachable ()
973     #else
974     /* this seems to work fine, but gcc always emits a warning for it :/ */
975 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
976     ecb_inline void ecb_unreachable (void) { }
977 root 1.391 #endif
978    
979     /* try to tell the compiler that some condition is definitely true */
980 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
981 root 1.391
982 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
983     ecb_inline unsigned char
984 root 1.391 ecb_byteorder_helper (void)
985     {
986 root 1.450 /* the union code still generates code under pressure in gcc, */
987     /* but less than using pointers, and always seems to */
988     /* successfully return a constant. */
989     /* the reason why we have this horrible preprocessor mess */
990     /* is to avoid it in all cases, at least on common architectures */
991     /* or when using a recent enough gcc version (>= 4.6) */
992     #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
993     return 0x44;
994     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
995     return 0x44;
996     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
997     return 0x11;
998     #else
999     union
1000     {
1001     uint32_t i;
1002     uint8_t c;
1003     } u = { 0x11223344 };
1004     return u.c;
1005     #endif
1006 root 1.391 }
1007    
1008 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1009     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1010     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1011     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1012 root 1.391
1013     #if ECB_GCC_VERSION(3,0) || ECB_C99
1014     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1015     #else
1016     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1017     #endif
1018    
1019 root 1.398 #if __cplusplus
1020     template<typename T>
1021     static inline T ecb_div_rd (T val, T div)
1022     {
1023     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1024     }
1025     template<typename T>
1026     static inline T ecb_div_ru (T val, T div)
1027     {
1028     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1029     }
1030     #else
1031     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1032     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1033     #endif
1034    
1035 root 1.391 #if ecb_cplusplus_does_not_suck
1036     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1037     template<typename T, int N>
1038     static inline int ecb_array_length (const T (&arr)[N])
1039     {
1040     return N;
1041     }
1042     #else
1043     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1044     #endif
1045    
1046 root 1.450 /*******************************************************************************/
1047     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1048    
1049     /* basically, everything uses "ieee pure-endian" floating point numbers */
1050     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1051     #if 0 \
1052     || __i386 || __i386__ \
1053     || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1054     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1055     || defined __arm__ && defined __ARM_EABI__ \
1056     || defined __s390__ || defined __s390x__ \
1057     || defined __mips__ \
1058     || defined __alpha__ \
1059     || defined __hppa__ \
1060     || defined __ia64__ \
1061 root 1.457 || defined __m68k__ \
1062     || defined __m88k__ \
1063     || defined __sh__ \
1064 root 1.450 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1065     #define ECB_STDFP 1
1066     #include <string.h> /* for memcpy */
1067     #else
1068     #define ECB_STDFP 0
1069     #endif
1070    
1071     #ifndef ECB_NO_LIBM
1072    
1073 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1074    
1075     #ifdef NEN
1076     #define ECB_NAN NAN
1077     #else
1078     #define ECB_NAN INFINITY
1079     #endif
1080    
1081     /* converts an ieee half/binary16 to a float */
1082     ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1083     ecb_function_ float
1084     ecb_binary16_to_float (uint16_t x)
1085     {
1086     int e = (x >> 10) & 0x1f;
1087     int m = x & 0x3ff;
1088     float r;
1089    
1090     if (!e ) r = ldexpf (m , -24);
1091     else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1092     else if (m ) r = ECB_NAN;
1093     else r = INFINITY;
1094    
1095     return x & 0x8000 ? -r : r;
1096     }
1097    
1098 root 1.450 /* convert a float to ieee single/binary32 */
1099     ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1100     ecb_function_ uint32_t
1101     ecb_float_to_binary32 (float x)
1102     {
1103     uint32_t r;
1104    
1105     #if ECB_STDFP
1106     memcpy (&r, &x, 4);
1107     #else
1108     /* slow emulation, works for anything but -0 */
1109     uint32_t m;
1110     int e;
1111    
1112     if (x == 0e0f ) return 0x00000000U;
1113     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1114     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1115     if (x != x ) return 0x7fbfffffU;
1116    
1117     m = frexpf (x, &e) * 0x1000000U;
1118    
1119     r = m & 0x80000000U;
1120    
1121     if (r)
1122     m = -m;
1123    
1124     if (e <= -126)
1125     {
1126     m &= 0xffffffU;
1127     m >>= (-125 - e);
1128     e = -126;
1129     }
1130    
1131     r |= (e + 126) << 23;
1132     r |= m & 0x7fffffU;
1133     #endif
1134    
1135     return r;
1136     }
1137    
1138     /* converts an ieee single/binary32 to a float */
1139     ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1140     ecb_function_ float
1141     ecb_binary32_to_float (uint32_t x)
1142     {
1143     float r;
1144    
1145     #if ECB_STDFP
1146     memcpy (&r, &x, 4);
1147     #else
1148     /* emulation, only works for normals and subnormals and +0 */
1149     int neg = x >> 31;
1150     int e = (x >> 23) & 0xffU;
1151    
1152     x &= 0x7fffffU;
1153    
1154     if (e)
1155     x |= 0x800000U;
1156     else
1157     e = 1;
1158    
1159     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1160     r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1161    
1162     r = neg ? -r : r;
1163     #endif
1164    
1165     return r;
1166     }
1167    
1168     /* convert a double to ieee double/binary64 */
1169     ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1170     ecb_function_ uint64_t
1171     ecb_double_to_binary64 (double x)
1172     {
1173     uint64_t r;
1174    
1175     #if ECB_STDFP
1176     memcpy (&r, &x, 8);
1177     #else
1178     /* slow emulation, works for anything but -0 */
1179     uint64_t m;
1180     int e;
1181    
1182     if (x == 0e0 ) return 0x0000000000000000U;
1183     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1184     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1185     if (x != x ) return 0X7ff7ffffffffffffU;
1186    
1187     m = frexp (x, &e) * 0x20000000000000U;
1188    
1189     r = m & 0x8000000000000000;;
1190    
1191     if (r)
1192     m = -m;
1193    
1194     if (e <= -1022)
1195     {
1196     m &= 0x1fffffffffffffU;
1197     m >>= (-1021 - e);
1198     e = -1022;
1199     }
1200    
1201     r |= ((uint64_t)(e + 1022)) << 52;
1202     r |= m & 0xfffffffffffffU;
1203     #endif
1204    
1205     return r;
1206     }
1207    
1208     /* converts an ieee double/binary64 to a double */
1209     ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1210     ecb_function_ double
1211     ecb_binary64_to_double (uint64_t x)
1212     {
1213     double r;
1214    
1215     #if ECB_STDFP
1216     memcpy (&r, &x, 8);
1217     #else
1218     /* emulation, only works for normals and subnormals and +0 */
1219     int neg = x >> 63;
1220     int e = (x >> 52) & 0x7ffU;
1221    
1222     x &= 0xfffffffffffffU;
1223    
1224     if (e)
1225     x |= 0x10000000000000U;
1226     else
1227     e = 1;
1228    
1229     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1230     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1231    
1232     r = neg ? -r : r;
1233     #endif
1234    
1235     return r;
1236     }
1237    
1238     #endif
1239    
1240 root 1.391 #endif
1241    
1242     /* ECB.H END */
1243 root 1.379
1244 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1245 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1246 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1247     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1248 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1249 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1250     * which will then provide the memory fences.
1251     */
1252     # error "memory fences not defined for your architecture, please report"
1253     #endif
1254    
1255     #ifndef ECB_MEMORY_FENCE
1256     # define ECB_MEMORY_FENCE do { } while (0)
1257     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1258     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1259 root 1.392 #endif
1260    
1261 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1262     #define expect_true(cond) ecb_expect_true (cond)
1263     #define noinline ecb_noinline
1264    
1265     #define inline_size ecb_inline
1266 root 1.169
1267 root 1.338 #if EV_FEATURE_CODE
1268 root 1.379 # define inline_speed ecb_inline
1269 root 1.338 #else
1270 root 1.169 # define inline_speed static noinline
1271     #endif
1272 root 1.40
1273 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1274    
1275     #if EV_MINPRI == EV_MAXPRI
1276     # define ABSPRI(w) (((W)w), 0)
1277     #else
1278     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1279     #endif
1280 root 1.42
1281 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1282 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1283 root 1.103
1284 root 1.136 typedef ev_watcher *W;
1285     typedef ev_watcher_list *WL;
1286     typedef ev_watcher_time *WT;
1287 root 1.10
1288 root 1.229 #define ev_active(w) ((W)(w))->active
1289 root 1.228 #define ev_at(w) ((WT)(w))->at
1290    
1291 root 1.279 #if EV_USE_REALTIME
1292 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1293 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1294 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1295     #endif
1296    
1297     #if EV_USE_MONOTONIC
1298 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1299 root 1.198 #endif
1300 root 1.54
1301 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1302     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1303     #endif
1304     #ifndef EV_WIN32_HANDLE_TO_FD
1305 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1306 root 1.313 #endif
1307     #ifndef EV_WIN32_CLOSE_FD
1308     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1309     #endif
1310    
1311 root 1.103 #ifdef _WIN32
1312 root 1.98 # include "ev_win32.c"
1313     #endif
1314 root 1.67
1315 root 1.53 /*****************************************************************************/
1316 root 1.1
1317 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1318    
1319     #if EV_USE_FLOOR
1320     # include <math.h>
1321     # define ev_floor(v) floor (v)
1322     #else
1323    
1324     #include <float.h>
1325    
1326     /* a floor() replacement function, should be independent of ev_tstamp type */
1327     static ev_tstamp noinline
1328     ev_floor (ev_tstamp v)
1329     {
1330     /* the choice of shift factor is not terribly important */
1331     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1332     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1333     #else
1334     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1335     #endif
1336    
1337     /* argument too large for an unsigned long? */
1338     if (expect_false (v >= shift))
1339     {
1340     ev_tstamp f;
1341    
1342     if (v == v - 1.)
1343     return v; /* very large number */
1344    
1345     f = shift * ev_floor (v * (1. / shift));
1346     return f + ev_floor (v - f);
1347     }
1348    
1349     /* special treatment for negative args? */
1350     if (expect_false (v < 0.))
1351     {
1352     ev_tstamp f = -ev_floor (-v);
1353    
1354     return f - (f == v ? 0 : 1);
1355     }
1356    
1357     /* fits into an unsigned long */
1358     return (unsigned long)v;
1359     }
1360    
1361     #endif
1362    
1363     /*****************************************************************************/
1364    
1365 root 1.356 #ifdef __linux
1366     # include <sys/utsname.h>
1367     #endif
1368    
1369 root 1.379 static unsigned int noinline ecb_cold
1370 root 1.355 ev_linux_version (void)
1371     {
1372     #ifdef __linux
1373 root 1.359 unsigned int v = 0;
1374 root 1.355 struct utsname buf;
1375     int i;
1376     char *p = buf.release;
1377    
1378     if (uname (&buf))
1379     return 0;
1380    
1381     for (i = 3+1; --i; )
1382     {
1383     unsigned int c = 0;
1384    
1385     for (;;)
1386     {
1387     if (*p >= '0' && *p <= '9')
1388     c = c * 10 + *p++ - '0';
1389     else
1390     {
1391     p += *p == '.';
1392     break;
1393     }
1394     }
1395    
1396     v = (v << 8) | c;
1397     }
1398    
1399     return v;
1400     #else
1401     return 0;
1402     #endif
1403     }
1404    
1405     /*****************************************************************************/
1406    
1407 root 1.331 #if EV_AVOID_STDIO
1408 root 1.379 static void noinline ecb_cold
1409 root 1.331 ev_printerr (const char *msg)
1410     {
1411     write (STDERR_FILENO, msg, strlen (msg));
1412     }
1413     #endif
1414    
1415 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1416 root 1.69
1417 root 1.379 void ecb_cold
1418 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1419 root 1.69 {
1420     syserr_cb = cb;
1421     }
1422    
1423 root 1.379 static void noinline ecb_cold
1424 root 1.269 ev_syserr (const char *msg)
1425 root 1.69 {
1426 root 1.70 if (!msg)
1427     msg = "(libev) system error";
1428    
1429 root 1.69 if (syserr_cb)
1430 root 1.70 syserr_cb (msg);
1431 root 1.69 else
1432     {
1433 root 1.330 #if EV_AVOID_STDIO
1434 root 1.331 ev_printerr (msg);
1435     ev_printerr (": ");
1436 root 1.365 ev_printerr (strerror (errno));
1437 root 1.331 ev_printerr ("\n");
1438 root 1.330 #else
1439 root 1.70 perror (msg);
1440 root 1.330 #endif
1441 root 1.69 abort ();
1442     }
1443     }
1444    
1445 root 1.224 static void *
1446 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1447 root 1.224 {
1448     /* some systems, notably openbsd and darwin, fail to properly
1449 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1450 root 1.224 * the single unix specification, so work around them here.
1451 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1452     * despite documenting it otherwise.
1453 root 1.224 */
1454 root 1.333
1455 root 1.224 if (size)
1456     return realloc (ptr, size);
1457    
1458     free (ptr);
1459     return 0;
1460     }
1461    
1462 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1463 root 1.69
1464 root 1.379 void ecb_cold
1465 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1466 root 1.69 {
1467     alloc = cb;
1468     }
1469    
1470 root 1.150 inline_speed void *
1471 root 1.155 ev_realloc (void *ptr, long size)
1472 root 1.69 {
1473 root 1.224 ptr = alloc (ptr, size);
1474 root 1.69
1475     if (!ptr && size)
1476     {
1477 root 1.330 #if EV_AVOID_STDIO
1478 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1479 root 1.330 #else
1480 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1481 root 1.330 #endif
1482 root 1.69 abort ();
1483     }
1484    
1485     return ptr;
1486     }
1487    
1488     #define ev_malloc(size) ev_realloc (0, (size))
1489     #define ev_free(ptr) ev_realloc ((ptr), 0)
1490    
1491     /*****************************************************************************/
1492    
1493 root 1.298 /* set in reify when reification needed */
1494     #define EV_ANFD_REIFY 1
1495    
1496 root 1.288 /* file descriptor info structure */
1497 root 1.53 typedef struct
1498     {
1499 root 1.68 WL head;
1500 root 1.288 unsigned char events; /* the events watched for */
1501 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1502 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1503 root 1.269 unsigned char unused;
1504     #if EV_USE_EPOLL
1505 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1506 root 1.269 #endif
1507 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1508 root 1.103 SOCKET handle;
1509     #endif
1510 root 1.357 #if EV_USE_IOCP
1511     OVERLAPPED or, ow;
1512     #endif
1513 root 1.53 } ANFD;
1514 root 1.1
1515 root 1.288 /* stores the pending event set for a given watcher */
1516 root 1.53 typedef struct
1517     {
1518     W w;
1519 root 1.288 int events; /* the pending event set for the given watcher */
1520 root 1.53 } ANPENDING;
1521 root 1.51
1522 root 1.155 #if EV_USE_INOTIFY
1523 root 1.241 /* hash table entry per inotify-id */
1524 root 1.152 typedef struct
1525     {
1526     WL head;
1527 root 1.155 } ANFS;
1528 root 1.152 #endif
1529    
1530 root 1.241 /* Heap Entry */
1531     #if EV_HEAP_CACHE_AT
1532 root 1.288 /* a heap element */
1533 root 1.241 typedef struct {
1534 root 1.243 ev_tstamp at;
1535 root 1.241 WT w;
1536     } ANHE;
1537    
1538 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1539     #define ANHE_at(he) (he).at /* access cached at, read-only */
1540     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1541 root 1.241 #else
1542 root 1.288 /* a heap element */
1543 root 1.241 typedef WT ANHE;
1544    
1545 root 1.248 #define ANHE_w(he) (he)
1546     #define ANHE_at(he) (he)->at
1547     #define ANHE_at_cache(he)
1548 root 1.241 #endif
1549    
1550 root 1.55 #if EV_MULTIPLICITY
1551 root 1.54
1552 root 1.80 struct ev_loop
1553     {
1554 root 1.86 ev_tstamp ev_rt_now;
1555 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1556 root 1.80 #define VAR(name,decl) decl;
1557     #include "ev_vars.h"
1558     #undef VAR
1559     };
1560     #include "ev_wrap.h"
1561    
1562 root 1.116 static struct ev_loop default_loop_struct;
1563 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1564 root 1.54
1565 root 1.53 #else
1566 root 1.54
1567 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1568 root 1.80 #define VAR(name,decl) static decl;
1569     #include "ev_vars.h"
1570     #undef VAR
1571    
1572 root 1.116 static int ev_default_loop_ptr;
1573 root 1.54
1574 root 1.51 #endif
1575 root 1.1
1576 root 1.338 #if EV_FEATURE_API
1577 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1578     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1579 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1580     #else
1581 root 1.298 # define EV_RELEASE_CB (void)0
1582     # define EV_ACQUIRE_CB (void)0
1583 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1584     #endif
1585    
1586 root 1.353 #define EVBREAK_RECURSE 0x80
1587 root 1.298
1588 root 1.8 /*****************************************************************************/
1589    
1590 root 1.292 #ifndef EV_HAVE_EV_TIME
1591 root 1.141 ev_tstamp
1592 root 1.420 ev_time (void) EV_THROW
1593 root 1.1 {
1594 root 1.29 #if EV_USE_REALTIME
1595 root 1.279 if (expect_true (have_realtime))
1596     {
1597     struct timespec ts;
1598     clock_gettime (CLOCK_REALTIME, &ts);
1599     return ts.tv_sec + ts.tv_nsec * 1e-9;
1600     }
1601     #endif
1602    
1603 root 1.1 struct timeval tv;
1604     gettimeofday (&tv, 0);
1605     return tv.tv_sec + tv.tv_usec * 1e-6;
1606     }
1607 root 1.292 #endif
1608 root 1.1
1609 root 1.284 inline_size ev_tstamp
1610 root 1.1 get_clock (void)
1611     {
1612 root 1.29 #if EV_USE_MONOTONIC
1613 root 1.40 if (expect_true (have_monotonic))
1614 root 1.1 {
1615     struct timespec ts;
1616     clock_gettime (CLOCK_MONOTONIC, &ts);
1617     return ts.tv_sec + ts.tv_nsec * 1e-9;
1618     }
1619     #endif
1620    
1621     return ev_time ();
1622     }
1623    
1624 root 1.85 #if EV_MULTIPLICITY
1625 root 1.51 ev_tstamp
1626 root 1.420 ev_now (EV_P) EV_THROW
1627 root 1.51 {
1628 root 1.85 return ev_rt_now;
1629 root 1.51 }
1630 root 1.85 #endif
1631 root 1.51
1632 root 1.193 void
1633 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1634 root 1.193 {
1635     if (delay > 0.)
1636     {
1637     #if EV_USE_NANOSLEEP
1638     struct timespec ts;
1639    
1640 root 1.348 EV_TS_SET (ts, delay);
1641 root 1.193 nanosleep (&ts, 0);
1642 root 1.416 #elif defined _WIN32
1643 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1644 root 1.193 #else
1645     struct timeval tv;
1646    
1647 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1648 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1649 root 1.257 /* by older ones */
1650 sf-exg 1.349 EV_TV_SET (tv, delay);
1651 root 1.193 select (0, 0, 0, 0, &tv);
1652     #endif
1653     }
1654     }
1655    
1656     /*****************************************************************************/
1657    
1658 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1659 root 1.232
1660 root 1.288 /* find a suitable new size for the given array, */
1661 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1662 root 1.284 inline_size int
1663 root 1.163 array_nextsize (int elem, int cur, int cnt)
1664     {
1665     int ncur = cur + 1;
1666    
1667     do
1668     ncur <<= 1;
1669     while (cnt > ncur);
1670    
1671 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1672 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1673 root 1.163 {
1674     ncur *= elem;
1675 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1676 root 1.163 ncur = ncur - sizeof (void *) * 4;
1677     ncur /= elem;
1678     }
1679    
1680     return ncur;
1681     }
1682    
1683 root 1.379 static void * noinline ecb_cold
1684 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1685     {
1686     *cur = array_nextsize (elem, *cur, cnt);
1687     return ev_realloc (base, elem * *cur);
1688     }
1689 root 1.29
1690 root 1.265 #define array_init_zero(base,count) \
1691     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1692    
1693 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1694 root 1.163 if (expect_false ((cnt) > (cur))) \
1695 root 1.69 { \
1696 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1697 root 1.163 (base) = (type *)array_realloc \
1698     (sizeof (type), (base), &(cur), (cnt)); \
1699     init ((base) + (ocur_), (cur) - ocur_); \
1700 root 1.1 }
1701    
1702 root 1.163 #if 0
1703 root 1.74 #define array_slim(type,stem) \
1704 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1705     { \
1706     stem ## max = array_roundsize (stem ## cnt >> 1); \
1707 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1708 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1709     }
1710 root 1.163 #endif
1711 root 1.67
1712 root 1.65 #define array_free(stem, idx) \
1713 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1714 root 1.65
1715 root 1.8 /*****************************************************************************/
1716    
1717 root 1.288 /* dummy callback for pending events */
1718     static void noinline
1719     pendingcb (EV_P_ ev_prepare *w, int revents)
1720     {
1721     }
1722    
1723 root 1.140 void noinline
1724 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1725 root 1.1 {
1726 root 1.78 W w_ = (W)w;
1727 root 1.171 int pri = ABSPRI (w_);
1728 root 1.78
1729 root 1.123 if (expect_false (w_->pending))
1730 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1731     else
1732 root 1.32 {
1733 root 1.171 w_->pending = ++pendingcnt [pri];
1734     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1735     pendings [pri][w_->pending - 1].w = w_;
1736     pendings [pri][w_->pending - 1].events = revents;
1737 root 1.32 }
1738 root 1.425
1739     pendingpri = NUMPRI - 1;
1740 root 1.1 }
1741    
1742 root 1.284 inline_speed void
1743     feed_reverse (EV_P_ W w)
1744     {
1745     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1746     rfeeds [rfeedcnt++] = w;
1747     }
1748    
1749     inline_size void
1750     feed_reverse_done (EV_P_ int revents)
1751     {
1752     do
1753     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1754     while (rfeedcnt);
1755     }
1756    
1757     inline_speed void
1758 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1759 root 1.27 {
1760     int i;
1761    
1762     for (i = 0; i < eventcnt; ++i)
1763 root 1.78 ev_feed_event (EV_A_ events [i], type);
1764 root 1.27 }
1765    
1766 root 1.141 /*****************************************************************************/
1767    
1768 root 1.284 inline_speed void
1769 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1770 root 1.1 {
1771     ANFD *anfd = anfds + fd;
1772 root 1.136 ev_io *w;
1773 root 1.1
1774 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1775 root 1.1 {
1776 root 1.79 int ev = w->events & revents;
1777 root 1.1
1778     if (ev)
1779 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1780 root 1.1 }
1781     }
1782    
1783 root 1.298 /* do not submit kernel events for fds that have reify set */
1784     /* because that means they changed while we were polling for new events */
1785     inline_speed void
1786     fd_event (EV_P_ int fd, int revents)
1787     {
1788     ANFD *anfd = anfds + fd;
1789    
1790     if (expect_true (!anfd->reify))
1791 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1792 root 1.298 }
1793    
1794 root 1.79 void
1795 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1796 root 1.79 {
1797 root 1.168 if (fd >= 0 && fd < anfdmax)
1798 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1799 root 1.79 }
1800    
1801 root 1.288 /* make sure the external fd watch events are in-sync */
1802     /* with the kernel/libev internal state */
1803 root 1.284 inline_size void
1804 root 1.51 fd_reify (EV_P)
1805 root 1.9 {
1806     int i;
1807    
1808 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1809     for (i = 0; i < fdchangecnt; ++i)
1810     {
1811     int fd = fdchanges [i];
1812     ANFD *anfd = anfds + fd;
1813    
1814 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1815 root 1.371 {
1816     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1817    
1818     if (handle != anfd->handle)
1819     {
1820     unsigned long arg;
1821    
1822     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1823    
1824     /* handle changed, but fd didn't - we need to do it in two steps */
1825     backend_modify (EV_A_ fd, anfd->events, 0);
1826     anfd->events = 0;
1827     anfd->handle = handle;
1828     }
1829     }
1830     }
1831     #endif
1832    
1833 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1834     {
1835     int fd = fdchanges [i];
1836     ANFD *anfd = anfds + fd;
1837 root 1.136 ev_io *w;
1838 root 1.27
1839 root 1.350 unsigned char o_events = anfd->events;
1840     unsigned char o_reify = anfd->reify;
1841 root 1.27
1842 root 1.350 anfd->reify = 0;
1843 root 1.27
1844 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1845     {
1846     anfd->events = 0;
1847 root 1.184
1848 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1849     anfd->events |= (unsigned char)w->events;
1850 root 1.27
1851 root 1.351 if (o_events != anfd->events)
1852 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1853     }
1854    
1855     if (o_reify & EV__IOFDSET)
1856     backend_modify (EV_A_ fd, o_events, anfd->events);
1857 root 1.27 }
1858    
1859     fdchangecnt = 0;
1860     }
1861    
1862 root 1.288 /* something about the given fd changed */
1863 root 1.284 inline_size void
1864 root 1.183 fd_change (EV_P_ int fd, int flags)
1865 root 1.27 {
1866 root 1.183 unsigned char reify = anfds [fd].reify;
1867 root 1.184 anfds [fd].reify |= flags;
1868 root 1.27
1869 root 1.183 if (expect_true (!reify))
1870     {
1871     ++fdchangecnt;
1872     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1873     fdchanges [fdchangecnt - 1] = fd;
1874     }
1875 root 1.9 }
1876    
1877 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1878 root 1.379 inline_speed void ecb_cold
1879 root 1.51 fd_kill (EV_P_ int fd)
1880 root 1.41 {
1881 root 1.136 ev_io *w;
1882 root 1.41
1883 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1884 root 1.41 {
1885 root 1.51 ev_io_stop (EV_A_ w);
1886 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1887 root 1.41 }
1888     }
1889    
1890 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1891 root 1.379 inline_size int ecb_cold
1892 root 1.71 fd_valid (int fd)
1893     {
1894 root 1.103 #ifdef _WIN32
1895 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1896 root 1.71 #else
1897     return fcntl (fd, F_GETFD) != -1;
1898     #endif
1899     }
1900    
1901 root 1.19 /* called on EBADF to verify fds */
1902 root 1.379 static void noinline ecb_cold
1903 root 1.51 fd_ebadf (EV_P)
1904 root 1.19 {
1905     int fd;
1906    
1907     for (fd = 0; fd < anfdmax; ++fd)
1908 root 1.27 if (anfds [fd].events)
1909 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1910 root 1.51 fd_kill (EV_A_ fd);
1911 root 1.41 }
1912    
1913     /* called on ENOMEM in select/poll to kill some fds and retry */
1914 root 1.379 static void noinline ecb_cold
1915 root 1.51 fd_enomem (EV_P)
1916 root 1.41 {
1917 root 1.62 int fd;
1918 root 1.41
1919 root 1.62 for (fd = anfdmax; fd--; )
1920 root 1.41 if (anfds [fd].events)
1921     {
1922 root 1.51 fd_kill (EV_A_ fd);
1923 root 1.307 break;
1924 root 1.41 }
1925 root 1.19 }
1926    
1927 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1928 root 1.140 static void noinline
1929 root 1.56 fd_rearm_all (EV_P)
1930     {
1931     int fd;
1932    
1933     for (fd = 0; fd < anfdmax; ++fd)
1934     if (anfds [fd].events)
1935     {
1936     anfds [fd].events = 0;
1937 root 1.268 anfds [fd].emask = 0;
1938 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1939 root 1.56 }
1940     }
1941    
1942 root 1.336 /* used to prepare libev internal fd's */
1943     /* this is not fork-safe */
1944     inline_speed void
1945     fd_intern (int fd)
1946     {
1947     #ifdef _WIN32
1948     unsigned long arg = 1;
1949     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1950     #else
1951     fcntl (fd, F_SETFD, FD_CLOEXEC);
1952     fcntl (fd, F_SETFL, O_NONBLOCK);
1953     #endif
1954     }
1955    
1956 root 1.8 /*****************************************************************************/
1957    
1958 root 1.235 /*
1959 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1960 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1961     * the branching factor of the d-tree.
1962     */
1963    
1964     /*
1965 root 1.235 * at the moment we allow libev the luxury of two heaps,
1966     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1967     * which is more cache-efficient.
1968     * the difference is about 5% with 50000+ watchers.
1969     */
1970 root 1.241 #if EV_USE_4HEAP
1971 root 1.235
1972 root 1.237 #define DHEAP 4
1973     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1974 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1975 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1976 root 1.235
1977     /* away from the root */
1978 root 1.284 inline_speed void
1979 root 1.241 downheap (ANHE *heap, int N, int k)
1980 root 1.235 {
1981 root 1.241 ANHE he = heap [k];
1982     ANHE *E = heap + N + HEAP0;
1983 root 1.235
1984     for (;;)
1985     {
1986     ev_tstamp minat;
1987 root 1.241 ANHE *minpos;
1988 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1989 root 1.235
1990 root 1.248 /* find minimum child */
1991 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
1992 root 1.235 {
1993 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1994     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1995     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1996     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1997 root 1.235 }
1998 root 1.240 else if (pos < E)
1999 root 1.235 {
2000 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2001     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2002     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2003     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2004 root 1.235 }
2005 root 1.240 else
2006     break;
2007 root 1.235
2008 root 1.241 if (ANHE_at (he) <= minat)
2009 root 1.235 break;
2010    
2011 root 1.247 heap [k] = *minpos;
2012 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2013 root 1.235
2014     k = minpos - heap;
2015     }
2016    
2017 root 1.247 heap [k] = he;
2018 root 1.241 ev_active (ANHE_w (he)) = k;
2019 root 1.235 }
2020    
2021 root 1.248 #else /* 4HEAP */
2022 root 1.235
2023     #define HEAP0 1
2024 root 1.247 #define HPARENT(k) ((k) >> 1)
2025 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2026 root 1.235
2027 root 1.248 /* away from the root */
2028 root 1.284 inline_speed void
2029 root 1.248 downheap (ANHE *heap, int N, int k)
2030 root 1.1 {
2031 root 1.241 ANHE he = heap [k];
2032 root 1.1
2033 root 1.228 for (;;)
2034 root 1.1 {
2035 root 1.248 int c = k << 1;
2036 root 1.179
2037 root 1.309 if (c >= N + HEAP0)
2038 root 1.179 break;
2039    
2040 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2041     ? 1 : 0;
2042    
2043     if (ANHE_at (he) <= ANHE_at (heap [c]))
2044     break;
2045    
2046     heap [k] = heap [c];
2047 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2048 root 1.248
2049     k = c;
2050 root 1.1 }
2051    
2052 root 1.243 heap [k] = he;
2053 root 1.248 ev_active (ANHE_w (he)) = k;
2054 root 1.1 }
2055 root 1.248 #endif
2056 root 1.1
2057 root 1.248 /* towards the root */
2058 root 1.284 inline_speed void
2059 root 1.248 upheap (ANHE *heap, int k)
2060 root 1.1 {
2061 root 1.241 ANHE he = heap [k];
2062 root 1.1
2063 root 1.179 for (;;)
2064 root 1.1 {
2065 root 1.248 int p = HPARENT (k);
2066 root 1.179
2067 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2068 root 1.179 break;
2069 root 1.1
2070 root 1.248 heap [k] = heap [p];
2071 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2072 root 1.248 k = p;
2073 root 1.1 }
2074    
2075 root 1.241 heap [k] = he;
2076     ev_active (ANHE_w (he)) = k;
2077 root 1.1 }
2078    
2079 root 1.288 /* move an element suitably so it is in a correct place */
2080 root 1.284 inline_size void
2081 root 1.241 adjustheap (ANHE *heap, int N, int k)
2082 root 1.84 {
2083 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2084 root 1.247 upheap (heap, k);
2085     else
2086     downheap (heap, N, k);
2087 root 1.84 }
2088    
2089 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2090 root 1.284 inline_size void
2091 root 1.248 reheap (ANHE *heap, int N)
2092     {
2093     int i;
2094 root 1.251
2095 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2096     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2097     for (i = 0; i < N; ++i)
2098     upheap (heap, i + HEAP0);
2099     }
2100    
2101 root 1.8 /*****************************************************************************/
2102    
2103 root 1.288 /* associate signal watchers to a signal signal */
2104 root 1.7 typedef struct
2105     {
2106 root 1.307 EV_ATOMIC_T pending;
2107 root 1.306 #if EV_MULTIPLICITY
2108     EV_P;
2109     #endif
2110 root 1.68 WL head;
2111 root 1.7 } ANSIG;
2112    
2113 root 1.306 static ANSIG signals [EV_NSIG - 1];
2114 root 1.7
2115 root 1.207 /*****************************************************************************/
2116    
2117 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2118 root 1.207
2119 root 1.379 static void noinline ecb_cold
2120 root 1.207 evpipe_init (EV_P)
2121     {
2122 root 1.288 if (!ev_is_active (&pipe_w))
2123 root 1.207 {
2124 root 1.448 int fds [2];
2125    
2126 root 1.336 # if EV_USE_EVENTFD
2127 root 1.448 fds [0] = -1;
2128     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2129     if (fds [1] < 0 && errno == EINVAL)
2130     fds [1] = eventfd (0, 0);
2131    
2132     if (fds [1] < 0)
2133     # endif
2134     {
2135     while (pipe (fds))
2136     ev_syserr ("(libev) error creating signal/async pipe");
2137    
2138     fd_intern (fds [0]);
2139 root 1.220 }
2140 root 1.448
2141     evpipe [0] = fds [0];
2142    
2143     if (evpipe [1] < 0)
2144     evpipe [1] = fds [1]; /* first call, set write fd */
2145 root 1.220 else
2146     {
2147 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2148     /* so that evpipe_write can always rely on its value. */
2149     /* this branch does not do anything sensible on windows, */
2150     /* so must not be executed on windows */
2151 root 1.207
2152 root 1.448 dup2 (fds [1], evpipe [1]);
2153     close (fds [1]);
2154 root 1.220 }
2155 root 1.207
2156 root 1.455 fd_intern (evpipe [1]);
2157    
2158 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2159 root 1.288 ev_io_start (EV_A_ &pipe_w);
2160 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2161 root 1.207 }
2162     }
2163    
2164 root 1.380 inline_speed void
2165 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2166 root 1.207 {
2167 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2168    
2169 root 1.383 if (expect_true (*flag))
2170 root 1.387 return;
2171 root 1.383
2172     *flag = 1;
2173 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2174 root 1.383
2175     pipe_write_skipped = 1;
2176 root 1.378
2177 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2178 root 1.214
2179 root 1.383 if (pipe_write_wanted)
2180     {
2181     int old_errno;
2182 root 1.378
2183 root 1.436 pipe_write_skipped = 0;
2184     ECB_MEMORY_FENCE_RELEASE;
2185 root 1.220
2186 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2187 root 1.380
2188 root 1.220 #if EV_USE_EVENTFD
2189 root 1.448 if (evpipe [0] < 0)
2190 root 1.383 {
2191     uint64_t counter = 1;
2192 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2193 root 1.383 }
2194     else
2195 root 1.220 #endif
2196 root 1.383 {
2197 root 1.427 #ifdef _WIN32
2198     WSABUF buf;
2199     DWORD sent;
2200     buf.buf = &buf;
2201     buf.len = 1;
2202     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2203     #else
2204 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2205 root 1.427 #endif
2206 root 1.383 }
2207 root 1.214
2208 root 1.383 errno = old_errno;
2209 root 1.207 }
2210     }
2211    
2212 root 1.288 /* called whenever the libev signal pipe */
2213     /* got some events (signal, async) */
2214 root 1.207 static void
2215     pipecb (EV_P_ ev_io *iow, int revents)
2216     {
2217 root 1.307 int i;
2218    
2219 root 1.378 if (revents & EV_READ)
2220     {
2221 root 1.220 #if EV_USE_EVENTFD
2222 root 1.448 if (evpipe [0] < 0)
2223 root 1.378 {
2224     uint64_t counter;
2225 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2226 root 1.378 }
2227     else
2228 root 1.220 #endif
2229 root 1.378 {
2230 root 1.427 char dummy[4];
2231     #ifdef _WIN32
2232     WSABUF buf;
2233     DWORD recvd;
2234 root 1.432 DWORD flags = 0;
2235 root 1.427 buf.buf = dummy;
2236     buf.len = sizeof (dummy);
2237 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2238 root 1.427 #else
2239     read (evpipe [0], &dummy, sizeof (dummy));
2240     #endif
2241 root 1.378 }
2242 root 1.220 }
2243 root 1.207
2244 root 1.378 pipe_write_skipped = 0;
2245    
2246 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2247    
2248 root 1.369 #if EV_SIGNAL_ENABLE
2249 root 1.307 if (sig_pending)
2250 root 1.372 {
2251 root 1.307 sig_pending = 0;
2252 root 1.207
2253 root 1.436 ECB_MEMORY_FENCE;
2254 root 1.424
2255 root 1.307 for (i = EV_NSIG - 1; i--; )
2256     if (expect_false (signals [i].pending))
2257     ev_feed_signal_event (EV_A_ i + 1);
2258 root 1.207 }
2259 root 1.369 #endif
2260 root 1.207
2261 root 1.209 #if EV_ASYNC_ENABLE
2262 root 1.307 if (async_pending)
2263 root 1.207 {
2264 root 1.307 async_pending = 0;
2265 root 1.207
2266 root 1.436 ECB_MEMORY_FENCE;
2267 root 1.424
2268 root 1.207 for (i = asynccnt; i--; )
2269     if (asyncs [i]->sent)
2270     {
2271     asyncs [i]->sent = 0;
2272 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2273 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2274     }
2275     }
2276 root 1.209 #endif
2277 root 1.207 }
2278    
2279     /*****************************************************************************/
2280    
2281 root 1.366 void
2282 root 1.420 ev_feed_signal (int signum) EV_THROW
2283 root 1.7 {
2284 root 1.207 #if EV_MULTIPLICITY
2285 root 1.453 EV_P;
2286 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2287 root 1.453 EV_A = signals [signum - 1].loop;
2288 root 1.366
2289     if (!EV_A)
2290     return;
2291 root 1.207 #endif
2292    
2293 root 1.366 signals [signum - 1].pending = 1;
2294     evpipe_write (EV_A_ &sig_pending);
2295     }
2296    
2297     static void
2298     ev_sighandler (int signum)
2299     {
2300 root 1.322 #ifdef _WIN32
2301 root 1.218 signal (signum, ev_sighandler);
2302 root 1.67 #endif
2303    
2304 root 1.366 ev_feed_signal (signum);
2305 root 1.7 }
2306    
2307 root 1.140 void noinline
2308 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2309 root 1.79 {
2310 root 1.80 WL w;
2311    
2312 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2313 root 1.307 return;
2314    
2315     --signum;
2316    
2317 root 1.79 #if EV_MULTIPLICITY
2318 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2319     /* or, likely more useful, feeding a signal nobody is waiting for */
2320 root 1.79
2321 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2322 root 1.306 return;
2323 root 1.307 #endif
2324 root 1.306
2325 root 1.307 signals [signum].pending = 0;
2326 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2327 root 1.79
2328     for (w = signals [signum].head; w; w = w->next)
2329     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2330     }
2331    
2332 root 1.303 #if EV_USE_SIGNALFD
2333     static void
2334     sigfdcb (EV_P_ ev_io *iow, int revents)
2335     {
2336 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2337 root 1.303
2338     for (;;)
2339     {
2340     ssize_t res = read (sigfd, si, sizeof (si));
2341    
2342     /* not ISO-C, as res might be -1, but works with SuS */
2343     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2344     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2345    
2346     if (res < (ssize_t)sizeof (si))
2347     break;
2348     }
2349     }
2350     #endif
2351    
2352 root 1.336 #endif
2353    
2354 root 1.8 /*****************************************************************************/
2355    
2356 root 1.336 #if EV_CHILD_ENABLE
2357 root 1.182 static WL childs [EV_PID_HASHSIZE];
2358 root 1.71
2359 root 1.136 static ev_signal childev;
2360 root 1.59
2361 root 1.206 #ifndef WIFCONTINUED
2362     # define WIFCONTINUED(status) 0
2363     #endif
2364    
2365 root 1.288 /* handle a single child status event */
2366 root 1.284 inline_speed void
2367 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2368 root 1.47 {
2369 root 1.136 ev_child *w;
2370 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2371 root 1.47
2372 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2373 root 1.206 {
2374     if ((w->pid == pid || !w->pid)
2375     && (!traced || (w->flags & 1)))
2376     {
2377 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2378 root 1.206 w->rpid = pid;
2379     w->rstatus = status;
2380     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2381     }
2382     }
2383 root 1.47 }
2384    
2385 root 1.142 #ifndef WCONTINUED
2386     # define WCONTINUED 0
2387     #endif
2388    
2389 root 1.288 /* called on sigchld etc., calls waitpid */
2390 root 1.47 static void
2391 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2392 root 1.22 {
2393     int pid, status;
2394    
2395 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2396     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2397     if (!WCONTINUED
2398     || errno != EINVAL
2399     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2400     return;
2401    
2402 root 1.216 /* make sure we are called again until all children have been reaped */
2403 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2404     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2405 root 1.47
2406 root 1.216 child_reap (EV_A_ pid, pid, status);
2407 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2408 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2409 root 1.22 }
2410    
2411 root 1.45 #endif
2412    
2413 root 1.22 /*****************************************************************************/
2414    
2415 root 1.357 #if EV_USE_IOCP
2416     # include "ev_iocp.c"
2417     #endif
2418 root 1.118 #if EV_USE_PORT
2419     # include "ev_port.c"
2420     #endif
2421 root 1.44 #if EV_USE_KQUEUE
2422     # include "ev_kqueue.c"
2423     #endif
2424 root 1.29 #if EV_USE_EPOLL
2425 root 1.1 # include "ev_epoll.c"
2426     #endif
2427 root 1.59 #if EV_USE_POLL
2428 root 1.41 # include "ev_poll.c"
2429     #endif
2430 root 1.29 #if EV_USE_SELECT
2431 root 1.1 # include "ev_select.c"
2432     #endif
2433    
2434 root 1.379 int ecb_cold
2435 root 1.420 ev_version_major (void) EV_THROW
2436 root 1.24 {
2437     return EV_VERSION_MAJOR;
2438     }
2439    
2440 root 1.379 int ecb_cold
2441 root 1.420 ev_version_minor (void) EV_THROW
2442 root 1.24 {
2443     return EV_VERSION_MINOR;
2444     }
2445    
2446 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2447 root 1.379 int inline_size ecb_cold
2448 root 1.51 enable_secure (void)
2449 root 1.41 {
2450 root 1.103 #ifdef _WIN32
2451 root 1.49 return 0;
2452     #else
2453 root 1.41 return getuid () != geteuid ()
2454     || getgid () != getegid ();
2455 root 1.49 #endif
2456 root 1.41 }
2457    
2458 root 1.379 unsigned int ecb_cold
2459 root 1.420 ev_supported_backends (void) EV_THROW
2460 root 1.129 {
2461 root 1.130 unsigned int flags = 0;
2462 root 1.129
2463     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2464     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2465     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2466     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2467     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2468    
2469     return flags;
2470     }
2471    
2472 root 1.379 unsigned int ecb_cold
2473 root 1.420 ev_recommended_backends (void) EV_THROW
2474 root 1.1 {
2475 root 1.131 unsigned int flags = ev_supported_backends ();
2476 root 1.129
2477     #ifndef __NetBSD__
2478     /* kqueue is borked on everything but netbsd apparently */
2479     /* it usually doesn't work correctly on anything but sockets and pipes */
2480     flags &= ~EVBACKEND_KQUEUE;
2481     #endif
2482     #ifdef __APPLE__
2483 root 1.278 /* only select works correctly on that "unix-certified" platform */
2484     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2485     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2486 root 1.129 #endif
2487 root 1.342 #ifdef __FreeBSD__
2488     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2489     #endif
2490 root 1.129
2491     return flags;
2492 root 1.51 }
2493    
2494 root 1.379 unsigned int ecb_cold
2495 root 1.420 ev_embeddable_backends (void) EV_THROW
2496 root 1.134 {
2497 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2498    
2499 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2500 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2501     flags &= ~EVBACKEND_EPOLL;
2502 root 1.196
2503     return flags;
2504 root 1.134 }
2505    
2506     unsigned int
2507 root 1.420 ev_backend (EV_P) EV_THROW
2508 root 1.130 {
2509     return backend;
2510     }
2511    
2512 root 1.338 #if EV_FEATURE_API
2513 root 1.162 unsigned int
2514 root 1.420 ev_iteration (EV_P) EV_THROW
2515 root 1.162 {
2516     return loop_count;
2517     }
2518    
2519 root 1.294 unsigned int
2520 root 1.420 ev_depth (EV_P) EV_THROW
2521 root 1.294 {
2522     return loop_depth;
2523     }
2524    
2525 root 1.193 void
2526 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2527 root 1.193 {
2528     io_blocktime = interval;
2529     }
2530    
2531     void
2532 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2533 root 1.193 {
2534     timeout_blocktime = interval;
2535     }
2536    
2537 root 1.297 void
2538 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2539 root 1.297 {
2540     userdata = data;
2541     }
2542    
2543     void *
2544 root 1.420 ev_userdata (EV_P) EV_THROW
2545 root 1.297 {
2546     return userdata;
2547     }
2548    
2549 root 1.379 void
2550 root 1.420 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2551 root 1.297 {
2552     invoke_cb = invoke_pending_cb;
2553     }
2554    
2555 root 1.379 void
2556 root 1.421 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2557 root 1.297 {
2558 root 1.298 release_cb = release;
2559     acquire_cb = acquire;
2560 root 1.297 }
2561     #endif
2562    
2563 root 1.288 /* initialise a loop structure, must be zero-initialised */
2564 root 1.379 static void noinline ecb_cold
2565 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2566 root 1.51 {
2567 root 1.130 if (!backend)
2568 root 1.23 {
2569 root 1.366 origflags = flags;
2570    
2571 root 1.279 #if EV_USE_REALTIME
2572     if (!have_realtime)
2573     {
2574     struct timespec ts;
2575    
2576     if (!clock_gettime (CLOCK_REALTIME, &ts))
2577     have_realtime = 1;
2578     }
2579     #endif
2580    
2581 root 1.29 #if EV_USE_MONOTONIC
2582 root 1.279 if (!have_monotonic)
2583     {
2584     struct timespec ts;
2585    
2586     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2587     have_monotonic = 1;
2588     }
2589 root 1.1 #endif
2590    
2591 root 1.306 /* pid check not overridable via env */
2592     #ifndef _WIN32
2593     if (flags & EVFLAG_FORKCHECK)
2594     curpid = getpid ();
2595     #endif
2596    
2597     if (!(flags & EVFLAG_NOENV)
2598     && !enable_secure ()
2599     && getenv ("LIBEV_FLAGS"))
2600     flags = atoi (getenv ("LIBEV_FLAGS"));
2601    
2602 root 1.378 ev_rt_now = ev_time ();
2603     mn_now = get_clock ();
2604     now_floor = mn_now;
2605     rtmn_diff = ev_rt_now - mn_now;
2606 root 1.338 #if EV_FEATURE_API
2607 root 1.378 invoke_cb = ev_invoke_pending;
2608 root 1.297 #endif
2609 root 1.1
2610 root 1.378 io_blocktime = 0.;
2611     timeout_blocktime = 0.;
2612     backend = 0;
2613     backend_fd = -1;
2614     sig_pending = 0;
2615 root 1.307 #if EV_ASYNC_ENABLE
2616 root 1.378 async_pending = 0;
2617 root 1.307 #endif
2618 root 1.378 pipe_write_skipped = 0;
2619     pipe_write_wanted = 0;
2620 root 1.448 evpipe [0] = -1;
2621     evpipe [1] = -1;
2622 root 1.209 #if EV_USE_INOTIFY
2623 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2624 root 1.209 #endif
2625 root 1.303 #if EV_USE_SIGNALFD
2626 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2627 root 1.303 #endif
2628 root 1.193
2629 root 1.366 if (!(flags & EVBACKEND_MASK))
2630 root 1.129 flags |= ev_recommended_backends ();
2631 root 1.41
2632 root 1.357 #if EV_USE_IOCP
2633     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2634     #endif
2635 root 1.118 #if EV_USE_PORT
2636 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2637 root 1.118 #endif
2638 root 1.44 #if EV_USE_KQUEUE
2639 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2640 root 1.44 #endif
2641 root 1.29 #if EV_USE_EPOLL
2642 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2643 root 1.41 #endif
2644 root 1.59 #if EV_USE_POLL
2645 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2646 root 1.1 #endif
2647 root 1.29 #if EV_USE_SELECT
2648 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2649 root 1.1 #endif
2650 root 1.70
2651 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2652    
2653 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2654 root 1.288 ev_init (&pipe_w, pipecb);
2655     ev_set_priority (&pipe_w, EV_MAXPRI);
2656 root 1.336 #endif
2657 root 1.56 }
2658     }
2659    
2660 root 1.288 /* free up a loop structure */
2661 root 1.379 void ecb_cold
2662 root 1.422 ev_loop_destroy (EV_P)
2663 root 1.56 {
2664 root 1.65 int i;
2665    
2666 root 1.364 #if EV_MULTIPLICITY
2667 root 1.363 /* mimic free (0) */
2668     if (!EV_A)
2669     return;
2670 root 1.364 #endif
2671 root 1.363
2672 root 1.361 #if EV_CLEANUP_ENABLE
2673     /* queue cleanup watchers (and execute them) */
2674     if (expect_false (cleanupcnt))
2675     {
2676     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2677     EV_INVOKE_PENDING;
2678     }
2679     #endif
2680    
2681 root 1.359 #if EV_CHILD_ENABLE
2682 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2683 root 1.359 {
2684     ev_ref (EV_A); /* child watcher */
2685     ev_signal_stop (EV_A_ &childev);
2686     }
2687     #endif
2688    
2689 root 1.288 if (ev_is_active (&pipe_w))
2690 root 1.207 {
2691 root 1.303 /*ev_ref (EV_A);*/
2692     /*ev_io_stop (EV_A_ &pipe_w);*/
2693 root 1.207
2694 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2695     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2696 root 1.207 }
2697    
2698 root 1.303 #if EV_USE_SIGNALFD
2699     if (ev_is_active (&sigfd_w))
2700 root 1.317 close (sigfd);
2701 root 1.303 #endif
2702    
2703 root 1.152 #if EV_USE_INOTIFY
2704     if (fs_fd >= 0)
2705     close (fs_fd);
2706     #endif
2707    
2708     if (backend_fd >= 0)
2709     close (backend_fd);
2710    
2711 root 1.357 #if EV_USE_IOCP
2712     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2713     #endif
2714 root 1.118 #if EV_USE_PORT
2715 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2716 root 1.118 #endif
2717 root 1.56 #if EV_USE_KQUEUE
2718 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2719 root 1.56 #endif
2720     #if EV_USE_EPOLL
2721 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2722 root 1.56 #endif
2723 root 1.59 #if EV_USE_POLL
2724 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2725 root 1.56 #endif
2726     #if EV_USE_SELECT
2727 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2728 root 1.56 #endif
2729 root 1.1
2730 root 1.65 for (i = NUMPRI; i--; )
2731 root 1.164 {
2732     array_free (pending, [i]);
2733     #if EV_IDLE_ENABLE
2734     array_free (idle, [i]);
2735     #endif
2736     }
2737 root 1.65
2738 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2739 root 1.186
2740 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2741 root 1.284 array_free (rfeed, EMPTY);
2742 root 1.164 array_free (fdchange, EMPTY);
2743     array_free (timer, EMPTY);
2744 root 1.140 #if EV_PERIODIC_ENABLE
2745 root 1.164 array_free (periodic, EMPTY);
2746 root 1.93 #endif
2747 root 1.187 #if EV_FORK_ENABLE
2748     array_free (fork, EMPTY);
2749     #endif
2750 root 1.360 #if EV_CLEANUP_ENABLE
2751     array_free (cleanup, EMPTY);
2752     #endif
2753 root 1.164 array_free (prepare, EMPTY);
2754     array_free (check, EMPTY);
2755 root 1.209 #if EV_ASYNC_ENABLE
2756     array_free (async, EMPTY);
2757     #endif
2758 root 1.65
2759 root 1.130 backend = 0;
2760 root 1.359
2761     #if EV_MULTIPLICITY
2762     if (ev_is_default_loop (EV_A))
2763     #endif
2764     ev_default_loop_ptr = 0;
2765     #if EV_MULTIPLICITY
2766     else
2767     ev_free (EV_A);
2768     #endif
2769 root 1.56 }
2770 root 1.22
2771 root 1.226 #if EV_USE_INOTIFY
2772 root 1.284 inline_size void infy_fork (EV_P);
2773 root 1.226 #endif
2774 root 1.154
2775 root 1.284 inline_size void
2776 root 1.56 loop_fork (EV_P)
2777     {
2778 root 1.118 #if EV_USE_PORT
2779 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2780 root 1.56 #endif
2781     #if EV_USE_KQUEUE
2782 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2783 root 1.45 #endif
2784 root 1.118 #if EV_USE_EPOLL
2785 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2786 root 1.118 #endif
2787 root 1.154 #if EV_USE_INOTIFY
2788     infy_fork (EV_A);
2789     #endif
2790 root 1.70
2791 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2792 root 1.288 if (ev_is_active (&pipe_w))
2793 root 1.70 {
2794 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2795 root 1.70
2796     ev_ref (EV_A);
2797 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2798 root 1.220
2799     if (evpipe [0] >= 0)
2800 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
2801 root 1.207
2802     evpipe_init (EV_A);
2803 root 1.443 /* iterate over everything, in case we missed something before */
2804     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2805 root 1.448 }
2806 root 1.337 #endif
2807 root 1.70
2808     postfork = 0;
2809 root 1.1 }
2810    
2811 root 1.55 #if EV_MULTIPLICITY
2812 root 1.250
2813 root 1.379 struct ev_loop * ecb_cold
2814 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2815 root 1.54 {
2816 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2817 root 1.69
2818 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2819 root 1.108 loop_init (EV_A_ flags);
2820 root 1.56
2821 root 1.130 if (ev_backend (EV_A))
2822 root 1.306 return EV_A;
2823 root 1.54
2824 root 1.359 ev_free (EV_A);
2825 root 1.55 return 0;
2826 root 1.54 }
2827    
2828 root 1.297 #endif /* multiplicity */
2829 root 1.248
2830     #if EV_VERIFY
2831 root 1.379 static void noinline ecb_cold
2832 root 1.251 verify_watcher (EV_P_ W w)
2833     {
2834 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2835 root 1.251
2836     if (w->pending)
2837 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2838 root 1.251 }
2839    
2840 root 1.379 static void noinline ecb_cold
2841 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2842     {
2843     int i;
2844    
2845     for (i = HEAP0; i < N + HEAP0; ++i)
2846     {
2847 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2848     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2849     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2850 root 1.251
2851     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2852     }
2853     }
2854    
2855 root 1.379 static void noinline ecb_cold
2856 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2857 root 1.248 {
2858     while (cnt--)
2859 root 1.251 {
2860 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2861 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2862     }
2863 root 1.248 }
2864 root 1.250 #endif
2865 root 1.248
2866 root 1.338 #if EV_FEATURE_API
2867 root 1.379 void ecb_cold
2868 root 1.420 ev_verify (EV_P) EV_THROW
2869 root 1.248 {
2870 root 1.250 #if EV_VERIFY
2871 root 1.429 int i;
2872 root 1.426 WL w, w2;
2873 root 1.251
2874     assert (activecnt >= -1);
2875    
2876     assert (fdchangemax >= fdchangecnt);
2877     for (i = 0; i < fdchangecnt; ++i)
2878 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2879 root 1.251
2880     assert (anfdmax >= 0);
2881 root 1.429 for (i = 0; i < anfdmax; ++i)
2882     {
2883     int j = 0;
2884    
2885     for (w = w2 = anfds [i].head; w; w = w->next)
2886     {
2887     verify_watcher (EV_A_ (W)w);
2888 root 1.426
2889 root 1.429 if (j++ & 1)
2890     {
2891     assert (("libev: io watcher list contains a loop", w != w2));
2892     w2 = w2->next;
2893     }
2894 root 1.426
2895 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2896     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2897     }
2898     }
2899 root 1.251
2900     assert (timermax >= timercnt);
2901     verify_heap (EV_A_ timers, timercnt);
2902 root 1.248
2903     #if EV_PERIODIC_ENABLE
2904 root 1.251 assert (periodicmax >= periodiccnt);
2905     verify_heap (EV_A_ periodics, periodiccnt);
2906 root 1.248 #endif
2907    
2908 root 1.251 for (i = NUMPRI; i--; )
2909     {
2910     assert (pendingmax [i] >= pendingcnt [i]);
2911 root 1.248 #if EV_IDLE_ENABLE
2912 root 1.252 assert (idleall >= 0);
2913 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2914     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2915 root 1.248 #endif
2916 root 1.251 }
2917    
2918 root 1.248 #if EV_FORK_ENABLE
2919 root 1.251 assert (forkmax >= forkcnt);
2920     array_verify (EV_A_ (W *)forks, forkcnt);
2921 root 1.248 #endif
2922 root 1.251
2923 root 1.360 #if EV_CLEANUP_ENABLE
2924     assert (cleanupmax >= cleanupcnt);
2925     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2926     #endif
2927    
2928 root 1.250 #if EV_ASYNC_ENABLE
2929 root 1.251 assert (asyncmax >= asynccnt);
2930     array_verify (EV_A_ (W *)asyncs, asynccnt);
2931 root 1.250 #endif
2932 root 1.251
2933 root 1.337 #if EV_PREPARE_ENABLE
2934 root 1.251 assert (preparemax >= preparecnt);
2935     array_verify (EV_A_ (W *)prepares, preparecnt);
2936 root 1.337 #endif
2937 root 1.251
2938 root 1.337 #if EV_CHECK_ENABLE
2939 root 1.251 assert (checkmax >= checkcnt);
2940     array_verify (EV_A_ (W *)checks, checkcnt);
2941 root 1.337 #endif
2942 root 1.251
2943     # if 0
2944 root 1.336 #if EV_CHILD_ENABLE
2945 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2946 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2947 root 1.336 #endif
2948 root 1.251 # endif
2949 root 1.248 #endif
2950     }
2951 root 1.297 #endif
2952 root 1.56
2953     #if EV_MULTIPLICITY
2954 root 1.379 struct ev_loop * ecb_cold
2955 root 1.54 #else
2956     int
2957 root 1.358 #endif
2958 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
2959 root 1.54 {
2960 root 1.116 if (!ev_default_loop_ptr)
2961 root 1.56 {
2962     #if EV_MULTIPLICITY
2963 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2964 root 1.56 #else
2965 ayin 1.117 ev_default_loop_ptr = 1;
2966 root 1.54 #endif
2967    
2968 root 1.110 loop_init (EV_A_ flags);
2969 root 1.56
2970 root 1.130 if (ev_backend (EV_A))
2971 root 1.56 {
2972 root 1.336 #if EV_CHILD_ENABLE
2973 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2974     ev_set_priority (&childev, EV_MAXPRI);
2975     ev_signal_start (EV_A_ &childev);
2976     ev_unref (EV_A); /* child watcher should not keep loop alive */
2977     #endif
2978     }
2979     else
2980 root 1.116 ev_default_loop_ptr = 0;
2981 root 1.56 }
2982 root 1.8
2983 root 1.116 return ev_default_loop_ptr;
2984 root 1.1 }
2985    
2986 root 1.24 void
2987 root 1.420 ev_loop_fork (EV_P) EV_THROW
2988 root 1.1 {
2989 root 1.440 postfork = 1;
2990 root 1.1 }
2991    
2992 root 1.8 /*****************************************************************************/
2993    
2994 root 1.168 void
2995     ev_invoke (EV_P_ void *w, int revents)
2996     {
2997     EV_CB_INVOKE ((W)w, revents);
2998     }
2999    
3000 root 1.300 unsigned int
3001 root 1.420 ev_pending_count (EV_P) EV_THROW
3002 root 1.300 {
3003     int pri;
3004     unsigned int count = 0;
3005    
3006     for (pri = NUMPRI; pri--; )
3007     count += pendingcnt [pri];
3008    
3009     return count;
3010     }
3011    
3012 root 1.297 void noinline
3013 root 1.296 ev_invoke_pending (EV_P)
3014 root 1.1 {
3015 root 1.445 pendingpri = NUMPRI;
3016    
3017     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3018     {
3019     --pendingpri;
3020    
3021     while (pendingcnt [pendingpri])
3022     {
3023     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3024 root 1.1
3025 root 1.445 p->w->pending = 0;
3026     EV_CB_INVOKE (p->w, p->events);
3027     EV_FREQUENT_CHECK;
3028     }
3029     }
3030 root 1.1 }
3031    
3032 root 1.234 #if EV_IDLE_ENABLE
3033 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3034     /* only when higher priorities are idle" logic */
3035 root 1.284 inline_size void
3036 root 1.234 idle_reify (EV_P)
3037     {
3038     if (expect_false (idleall))
3039     {
3040     int pri;
3041    
3042     for (pri = NUMPRI; pri--; )
3043     {
3044     if (pendingcnt [pri])
3045     break;
3046    
3047     if (idlecnt [pri])
3048     {
3049     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3050     break;
3051     }
3052     }
3053     }
3054     }
3055     #endif
3056    
3057 root 1.288 /* make timers pending */
3058 root 1.284 inline_size void
3059 root 1.51 timers_reify (EV_P)
3060 root 1.1 {
3061 root 1.248 EV_FREQUENT_CHECK;
3062    
3063 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3064 root 1.1 {
3065 root 1.284 do
3066     {
3067     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3068 root 1.1
3069 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3070    
3071     /* first reschedule or stop timer */
3072     if (w->repeat)
3073     {
3074     ev_at (w) += w->repeat;
3075     if (ev_at (w) < mn_now)
3076     ev_at (w) = mn_now;
3077 root 1.61
3078 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3079 root 1.90
3080 root 1.284 ANHE_at_cache (timers [HEAP0]);
3081     downheap (timers, timercnt, HEAP0);
3082     }
3083     else
3084     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3085 root 1.243
3086 root 1.284 EV_FREQUENT_CHECK;
3087     feed_reverse (EV_A_ (W)w);
3088 root 1.12 }
3089 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3090 root 1.30
3091 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3092 root 1.12 }
3093     }
3094 root 1.4
3095 root 1.140 #if EV_PERIODIC_ENABLE
3096 root 1.370
3097 root 1.373 static void noinline
3098 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3099     {
3100 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3101     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3102    
3103     /* the above almost always errs on the low side */
3104     while (at <= ev_rt_now)
3105     {
3106     ev_tstamp nat = at + w->interval;
3107    
3108     /* when resolution fails us, we use ev_rt_now */
3109     if (expect_false (nat == at))
3110     {
3111     at = ev_rt_now;
3112     break;
3113     }
3114    
3115     at = nat;
3116     }
3117    
3118     ev_at (w) = at;
3119 root 1.370 }
3120    
3121 root 1.288 /* make periodics pending */
3122 root 1.284 inline_size void
3123 root 1.51 periodics_reify (EV_P)
3124 root 1.12 {
3125 root 1.248 EV_FREQUENT_CHECK;
3126 root 1.250
3127 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3128 root 1.12 {
3129 root 1.284 do
3130     {
3131     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3132 root 1.1
3133 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3134 root 1.61
3135 root 1.284 /* first reschedule or stop timer */
3136     if (w->reschedule_cb)
3137     {
3138     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3139 root 1.243
3140 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3141 root 1.243
3142 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3143     downheap (periodics, periodiccnt, HEAP0);
3144     }
3145     else if (w->interval)
3146 root 1.246 {
3147 root 1.370 periodic_recalc (EV_A_ w);
3148 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3149     downheap (periodics, periodiccnt, HEAP0);
3150 root 1.246 }
3151 root 1.284 else
3152     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3153 root 1.243
3154 root 1.284 EV_FREQUENT_CHECK;
3155     feed_reverse (EV_A_ (W)w);
3156 root 1.1 }
3157 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3158 root 1.12
3159 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3160 root 1.12 }
3161     }
3162    
3163 root 1.288 /* simply recalculate all periodics */
3164 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3165 root 1.379 static void noinline ecb_cold
3166 root 1.54 periodics_reschedule (EV_P)
3167 root 1.12 {
3168     int i;
3169    
3170 root 1.13 /* adjust periodics after time jump */
3171 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3172 root 1.12 {
3173 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3174 root 1.12
3175 root 1.77 if (w->reschedule_cb)
3176 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3177 root 1.77 else if (w->interval)
3178 root 1.370 periodic_recalc (EV_A_ w);
3179 root 1.242
3180 root 1.248 ANHE_at_cache (periodics [i]);
3181 root 1.77 }
3182 root 1.12
3183 root 1.248 reheap (periodics, periodiccnt);
3184 root 1.1 }
3185 root 1.93 #endif
3186 root 1.1
3187 root 1.288 /* adjust all timers by a given offset */
3188 root 1.379 static void noinline ecb_cold
3189 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3190     {
3191     int i;
3192    
3193     for (i = 0; i < timercnt; ++i)
3194     {
3195     ANHE *he = timers + i + HEAP0;
3196     ANHE_w (*he)->at += adjust;
3197     ANHE_at_cache (*he);
3198     }
3199     }
3200    
3201 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3202 root 1.324 /* also detect if there was a timejump, and act accordingly */
3203 root 1.284 inline_speed void
3204 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3205 root 1.4 {
3206 root 1.40 #if EV_USE_MONOTONIC
3207     if (expect_true (have_monotonic))
3208     {
3209 root 1.289 int i;
3210 root 1.178 ev_tstamp odiff = rtmn_diff;
3211    
3212     mn_now = get_clock ();
3213    
3214     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3215     /* interpolate in the meantime */
3216     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3217 root 1.40 {
3218 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3219     return;
3220     }
3221    
3222     now_floor = mn_now;
3223     ev_rt_now = ev_time ();
3224 root 1.4
3225 root 1.178 /* loop a few times, before making important decisions.
3226     * on the choice of "4": one iteration isn't enough,
3227     * in case we get preempted during the calls to
3228     * ev_time and get_clock. a second call is almost guaranteed
3229     * to succeed in that case, though. and looping a few more times
3230     * doesn't hurt either as we only do this on time-jumps or
3231     * in the unlikely event of having been preempted here.
3232     */
3233     for (i = 4; --i; )
3234     {
3235 root 1.373 ev_tstamp diff;
3236 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3237 root 1.4
3238 root 1.373 diff = odiff - rtmn_diff;
3239    
3240     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3241 root 1.178 return; /* all is well */
3242 root 1.4
3243 root 1.178 ev_rt_now = ev_time ();
3244     mn_now = get_clock ();
3245     now_floor = mn_now;
3246     }
3247 root 1.4
3248 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3249     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3250 root 1.140 # if EV_PERIODIC_ENABLE
3251 root 1.178 periodics_reschedule (EV_A);
3252 root 1.93 # endif
3253 root 1.4 }
3254     else
3255 root 1.40 #endif
3256 root 1.4 {
3257 root 1.85 ev_rt_now = ev_time ();
3258 root 1.40
3259 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3260 root 1.13 {
3261 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3262     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3263 root 1.140 #if EV_PERIODIC_ENABLE
3264 root 1.54 periodics_reschedule (EV_A);
3265 root 1.93 #endif
3266 root 1.13 }
3267 root 1.4
3268 root 1.85 mn_now = ev_rt_now;
3269 root 1.4 }
3270     }
3271    
3272 root 1.418 int
3273 root 1.353 ev_run (EV_P_ int flags)
3274 root 1.1 {
3275 root 1.338 #if EV_FEATURE_API
3276 root 1.294 ++loop_depth;
3277 root 1.297 #endif
3278 root 1.294
3279 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3280 root 1.298
3281 root 1.353 loop_done = EVBREAK_CANCEL;
3282 root 1.1
3283 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3284 root 1.158
3285 root 1.161 do
3286 root 1.9 {
3287 root 1.250 #if EV_VERIFY >= 2
3288 root 1.340 ev_verify (EV_A);
3289 root 1.250 #endif
3290    
3291 root 1.158 #ifndef _WIN32
3292     if (expect_false (curpid)) /* penalise the forking check even more */
3293     if (expect_false (getpid () != curpid))
3294     {
3295     curpid = getpid ();
3296     postfork = 1;
3297     }
3298     #endif
3299    
3300 root 1.157 #if EV_FORK_ENABLE
3301     /* we might have forked, so queue fork handlers */
3302     if (expect_false (postfork))
3303     if (forkcnt)
3304     {
3305     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3306 root 1.297 EV_INVOKE_PENDING;
3307 root 1.157 }
3308     #endif
3309 root 1.147
3310 root 1.337 #if EV_PREPARE_ENABLE
3311 root 1.170 /* queue prepare watchers (and execute them) */
3312 root 1.40 if (expect_false (preparecnt))
3313 root 1.20 {
3314 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3315 root 1.297 EV_INVOKE_PENDING;
3316 root 1.20 }
3317 root 1.337 #endif
3318 root 1.9
3319 root 1.298 if (expect_false (loop_done))
3320     break;
3321    
3322 root 1.70 /* we might have forked, so reify kernel state if necessary */
3323     if (expect_false (postfork))
3324     loop_fork (EV_A);
3325    
3326 root 1.1 /* update fd-related kernel structures */
3327 root 1.51 fd_reify (EV_A);
3328 root 1.1
3329     /* calculate blocking time */
3330 root 1.135 {
3331 root 1.193 ev_tstamp waittime = 0.;
3332     ev_tstamp sleeptime = 0.;
3333 root 1.12
3334 root 1.353 /* remember old timestamp for io_blocktime calculation */
3335     ev_tstamp prev_mn_now = mn_now;
3336 root 1.293
3337 root 1.353 /* update time to cancel out callback processing overhead */
3338     time_update (EV_A_ 1e100);
3339 root 1.135
3340 root 1.378 /* from now on, we want a pipe-wake-up */
3341     pipe_write_wanted = 1;
3342    
3343 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3344 root 1.383
3345 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3346 root 1.353 {
3347 root 1.287 waittime = MAX_BLOCKTIME;
3348    
3349 root 1.135 if (timercnt)
3350     {
3351 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3352 root 1.193 if (waittime > to) waittime = to;
3353 root 1.135 }
3354 root 1.4
3355 root 1.140 #if EV_PERIODIC_ENABLE
3356 root 1.135 if (periodiccnt)
3357     {
3358 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3359 root 1.193 if (waittime > to) waittime = to;
3360 root 1.135 }
3361 root 1.93 #endif
3362 root 1.4
3363 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3364 root 1.193 if (expect_false (waittime < timeout_blocktime))
3365     waittime = timeout_blocktime;
3366    
3367 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3368     /* to pass a minimum nonzero value to the backend */
3369     if (expect_false (waittime < backend_mintime))
3370     waittime = backend_mintime;
3371    
3372 root 1.293 /* extra check because io_blocktime is commonly 0 */
3373     if (expect_false (io_blocktime))
3374     {
3375     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3376 root 1.193
3377 root 1.376 if (sleeptime > waittime - backend_mintime)
3378     sleeptime = waittime - backend_mintime;
3379 root 1.193
3380 root 1.293 if (expect_true (sleeptime > 0.))
3381     {
3382     ev_sleep (sleeptime);
3383     waittime -= sleeptime;
3384     }
3385 root 1.193 }
3386 root 1.135 }
3387 root 1.1
3388 root 1.338 #if EV_FEATURE_API
3389 root 1.162 ++loop_count;
3390 root 1.297 #endif
3391 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3392 root 1.193 backend_poll (EV_A_ waittime);
3393 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3394 root 1.178
3395 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3396 root 1.378
3397 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3398 root 1.378 if (pipe_write_skipped)
3399     {
3400     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3401     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3402     }
3403    
3404    
3405 root 1.178 /* update ev_rt_now, do magic */
3406 root 1.193 time_update (EV_A_ waittime + sleeptime);
3407 root 1.135 }
3408 root 1.1
3409 root 1.9 /* queue pending timers and reschedule them */
3410 root 1.51 timers_reify (EV_A); /* relative timers called last */
3411 root 1.140 #if EV_PERIODIC_ENABLE
3412 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3413 root 1.93 #endif
3414 root 1.1
3415 root 1.164 #if EV_IDLE_ENABLE
3416 root 1.137 /* queue idle watchers unless other events are pending */
3417 root 1.164 idle_reify (EV_A);
3418     #endif
3419 root 1.9
3420 root 1.337 #if EV_CHECK_ENABLE
3421 root 1.20 /* queue check watchers, to be executed first */
3422 root 1.123 if (expect_false (checkcnt))
3423 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3424 root 1.337 #endif
3425 root 1.9
3426 root 1.297 EV_INVOKE_PENDING;
3427 root 1.1 }
3428 root 1.219 while (expect_true (
3429     activecnt
3430     && !loop_done
3431 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3432 root 1.219 ));
3433 root 1.13
3434 root 1.353 if (loop_done == EVBREAK_ONE)
3435     loop_done = EVBREAK_CANCEL;
3436 root 1.294
3437 root 1.338 #if EV_FEATURE_API
3438 root 1.294 --loop_depth;
3439 root 1.297 #endif
3440 root 1.418
3441     return activecnt;
3442 root 1.51 }
3443    
3444     void
3445 root 1.420 ev_break (EV_P_ int how) EV_THROW
3446 root 1.51 {
3447     loop_done = how;
3448 root 1.1 }
3449    
3450 root 1.285 void
3451 root 1.420 ev_ref (EV_P) EV_THROW
3452 root 1.285 {
3453     ++activecnt;
3454     }
3455    
3456     void
3457 root 1.420 ev_unref (EV_P) EV_THROW
3458 root 1.285 {
3459     --activecnt;
3460     }
3461    
3462     void
3463 root 1.420 ev_now_update (EV_P) EV_THROW
3464 root 1.285 {
3465     time_update (EV_A_ 1e100);
3466     }
3467    
3468     void
3469 root 1.420 ev_suspend (EV_P) EV_THROW
3470 root 1.285 {
3471     ev_now_update (EV_A);
3472     }
3473    
3474     void
3475 root 1.420 ev_resume (EV_P) EV_THROW
3476 root 1.285 {
3477     ev_tstamp mn_prev = mn_now;
3478    
3479     ev_now_update (EV_A);
3480     timers_reschedule (EV_A_ mn_now - mn_prev);
3481 root 1.286 #if EV_PERIODIC_ENABLE
3482 root 1.288 /* TODO: really do this? */
3483 root 1.285 periodics_reschedule (EV_A);
3484 root 1.286 #endif
3485 root 1.285 }
3486    
3487 root 1.8 /*****************************************************************************/
3488 root 1.288 /* singly-linked list management, used when the expected list length is short */
3489 root 1.8
3490 root 1.284 inline_size void
3491 root 1.10 wlist_add (WL *head, WL elem)
3492 root 1.1 {
3493     elem->next = *head;
3494     *head = elem;
3495     }
3496    
3497 root 1.284 inline_size void
3498 root 1.10 wlist_del (WL *head, WL elem)
3499 root 1.1 {
3500     while (*head)
3501     {
3502 root 1.307 if (expect_true (*head == elem))
3503 root 1.1 {
3504     *head = elem->next;
3505 root 1.307 break;
3506 root 1.1 }
3507    
3508     head = &(*head)->next;
3509     }
3510     }
3511    
3512 root 1.288 /* internal, faster, version of ev_clear_pending */
3513 root 1.284 inline_speed void
3514 root 1.166 clear_pending (EV_P_ W w)
3515 root 1.16 {
3516     if (w->pending)
3517     {
3518 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3519 root 1.16 w->pending = 0;
3520     }
3521     }
3522    
3523 root 1.167 int
3524 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3525 root 1.166 {
3526     W w_ = (W)w;
3527     int pending = w_->pending;
3528    
3529 root 1.172 if (expect_true (pending))
3530     {
3531     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3532 root 1.288 p->w = (W)&pending_w;
3533 root 1.172 w_->pending = 0;
3534     return p->events;
3535     }
3536     else
3537 root 1.167 return 0;
3538 root 1.166 }
3539    
3540 root 1.284 inline_size void
3541 root 1.164 pri_adjust (EV_P_ W w)
3542     {
3543 root 1.295 int pri = ev_priority (w);
3544 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3545     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3546 root 1.295 ev_set_priority (w, pri);
3547 root 1.164 }
3548    
3549 root 1.284 inline_speed void
3550 root 1.51 ev_start (EV_P_ W w, int active)
3551 root 1.1 {
3552 root 1.164 pri_adjust (EV_A_ w);
3553 root 1.1 w->active = active;
3554 root 1.51 ev_ref (EV_A);
3555 root 1.1 }
3556    
3557 root 1.284 inline_size void
3558 root 1.51 ev_stop (EV_P_ W w)
3559 root 1.1 {
3560 root 1.51 ev_unref (EV_A);
3561 root 1.1 w->active = 0;
3562     }
3563    
3564 root 1.8 /*****************************************************************************/
3565    
3566 root 1.171 void noinline
3567 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3568 root 1.1 {
3569 root 1.37 int fd = w->fd;
3570    
3571 root 1.123 if (expect_false (ev_is_active (w)))
3572 root 1.1 return;
3573    
3574 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3575 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3576 root 1.33
3577 root 1.248 EV_FREQUENT_CHECK;
3578    
3579 root 1.51 ev_start (EV_A_ (W)w, 1);
3580 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3581 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3582 root 1.1
3583 root 1.426 /* common bug, apparently */
3584     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3585    
3586 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3587 root 1.281 w->events &= ~EV__IOFDSET;
3588 root 1.248
3589     EV_FREQUENT_CHECK;
3590 root 1.1 }
3591    
3592 root 1.171 void noinline
3593 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3594 root 1.1 {
3595 root 1.166 clear_pending (EV_A_ (W)w);
3596 root 1.123 if (expect_false (!ev_is_active (w)))
3597 root 1.1 return;
3598    
3599 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3600 root 1.89
3601 root 1.248 EV_FREQUENT_CHECK;
3602    
3603 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3604 root 1.51 ev_stop (EV_A_ (W)w);
3605 root 1.1
3606 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3607 root 1.248
3608     EV_FREQUENT_CHECK;
3609 root 1.1 }
3610    
3611 root 1.171 void noinline
3612 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3613 root 1.1 {
3614 root 1.123 if (expect_false (ev_is_active (w)))
3615 root 1.1 return;
3616    
3617 root 1.228 ev_at (w) += mn_now;
3618 root 1.12
3619 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3620 root 1.13
3621 root 1.248 EV_FREQUENT_CHECK;
3622    
3623     ++timercnt;
3624     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3625 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3626     ANHE_w (timers [ev_active (w)]) = (WT)w;
3627 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3628 root 1.235 upheap (timers, ev_active (w));
3629 root 1.62
3630 root 1.248 EV_FREQUENT_CHECK;
3631    
3632 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3633 root 1.12 }
3634    
3635 root 1.171 void noinline
3636 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3637 root 1.12 {
3638 root 1.166 clear_pending (EV_A_ (W)w);
3639 root 1.123 if (expect_false (!ev_is_active (w)))
3640 root 1.12 return;
3641    
3642 root 1.248 EV_FREQUENT_CHECK;
3643    
3644 root 1.230 {
3645     int active = ev_active (w);
3646 root 1.62
3647 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3648 root 1.151
3649 root 1.248 --timercnt;
3650    
3651     if (expect_true (active < timercnt + HEAP0))
3652 root 1.151 {
3653 root 1.248 timers [active] = timers [timercnt + HEAP0];
3654 root 1.181 adjustheap (timers, timercnt, active);
3655 root 1.151 }
3656 root 1.248 }
3657 root 1.228
3658     ev_at (w) -= mn_now;
3659 root 1.14
3660 root 1.51 ev_stop (EV_A_ (W)w);
3661 root 1.328
3662     EV_FREQUENT_CHECK;
3663 root 1.12 }
3664 root 1.4
3665 root 1.171 void noinline
3666 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3667 root 1.14 {
3668 root 1.248 EV_FREQUENT_CHECK;
3669    
3670 root 1.407 clear_pending (EV_A_ (W)w);
3671 root 1.406
3672 root 1.14 if (ev_is_active (w))
3673     {
3674     if (w->repeat)
3675 root 1.99 {
3676 root 1.228 ev_at (w) = mn_now + w->repeat;
3677 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3678 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3679 root 1.99 }
3680 root 1.14 else
3681 root 1.51 ev_timer_stop (EV_A_ w);
3682 root 1.14 }
3683     else if (w->repeat)
3684 root 1.112 {
3685 root 1.229 ev_at (w) = w->repeat;
3686 root 1.112 ev_timer_start (EV_A_ w);
3687     }
3688 root 1.248
3689     EV_FREQUENT_CHECK;
3690 root 1.14 }
3691    
3692 root 1.301 ev_tstamp
3693 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3694 root 1.301 {
3695     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3696     }
3697    
3698 root 1.140 #if EV_PERIODIC_ENABLE
3699 root 1.171 void noinline
3700 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3701 root 1.12 {
3702 root 1.123 if (expect_false (ev_is_active (w)))
3703 root 1.12 return;
3704 root 1.1
3705 root 1.77 if (w->reschedule_cb)
3706 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3707 root 1.77 else if (w->interval)
3708     {
3709 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3710 root 1.370 periodic_recalc (EV_A_ w);
3711 root 1.77 }
3712 root 1.173 else
3713 root 1.228 ev_at (w) = w->offset;
3714 root 1.12
3715 root 1.248 EV_FREQUENT_CHECK;
3716    
3717     ++periodiccnt;
3718     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3719 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3720     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3721 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3722 root 1.235 upheap (periodics, ev_active (w));
3723 root 1.62
3724 root 1.248 EV_FREQUENT_CHECK;
3725    
3726 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3727 root 1.1 }
3728    
3729 root 1.171 void noinline
3730 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3731 root 1.1 {
3732 root 1.166 clear_pending (EV_A_ (W)w);
3733 root 1.123 if (expect_false (!ev_is_active (w)))
3734 root 1.1 return;
3735    
3736 root 1.248 EV_FREQUENT_CHECK;
3737    
3738 root 1.230 {
3739     int active = ev_active (w);
3740 root 1.62
3741 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3742 root 1.151
3743 root 1.248 --periodiccnt;
3744    
3745     if (expect_true (active < periodiccnt + HEAP0))
3746 root 1.151 {
3747 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3748 root 1.181 adjustheap (periodics, periodiccnt, active);
3749 root 1.151 }
3750 root 1.248 }
3751 root 1.228
3752 root 1.328 ev_stop (EV_A_ (W)w);
3753    
3754 root 1.248 EV_FREQUENT_CHECK;
3755 root 1.1 }
3756    
3757 root 1.171 void noinline
3758 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3759 root 1.77 {
3760 root 1.84 /* TODO: use adjustheap and recalculation */
3761 root 1.77 ev_periodic_stop (EV_A_ w);
3762     ev_periodic_start (EV_A_ w);
3763     }
3764 root 1.93 #endif
3765 root 1.77
3766 root 1.56 #ifndef SA_RESTART
3767     # define SA_RESTART 0
3768     #endif
3769    
3770 root 1.336 #if EV_SIGNAL_ENABLE
3771    
3772 root 1.171 void noinline
3773 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3774 root 1.56 {
3775 root 1.123 if (expect_false (ev_is_active (w)))
3776 root 1.56 return;
3777    
3778 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3779    
3780     #if EV_MULTIPLICITY
3781 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3782 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3783    
3784     signals [w->signum - 1].loop = EV_A;
3785 root 1.449 ECB_MEMORY_FENCE_RELEASE;
3786 root 1.306 #endif
3787 root 1.56
3788 root 1.303 EV_FREQUENT_CHECK;
3789    
3790     #if EV_USE_SIGNALFD
3791     if (sigfd == -2)
3792     {
3793     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3794     if (sigfd < 0 && errno == EINVAL)
3795     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3796    
3797     if (sigfd >= 0)
3798     {
3799     fd_intern (sigfd); /* doing it twice will not hurt */
3800    
3801     sigemptyset (&sigfd_set);
3802    
3803     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3804     ev_set_priority (&sigfd_w, EV_MAXPRI);
3805     ev_io_start (EV_A_ &sigfd_w);
3806     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3807     }
3808     }
3809    
3810     if (sigfd >= 0)
3811     {
3812     /* TODO: check .head */
3813     sigaddset (&sigfd_set, w->signum);
3814     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3815 root 1.207
3816 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3817     }
3818 root 1.180 #endif
3819    
3820 root 1.56 ev_start (EV_A_ (W)w, 1);
3821 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3822 root 1.56
3823 root 1.63 if (!((WL)w)->next)
3824 root 1.304 # if EV_USE_SIGNALFD
3825 root 1.306 if (sigfd < 0) /*TODO*/
3826 root 1.304 # endif
3827 root 1.306 {
3828 root 1.322 # ifdef _WIN32
3829 root 1.317 evpipe_init (EV_A);
3830    
3831 root 1.306 signal (w->signum, ev_sighandler);
3832     # else
3833     struct sigaction sa;
3834    
3835     evpipe_init (EV_A);
3836    
3837     sa.sa_handler = ev_sighandler;
3838     sigfillset (&sa.sa_mask);
3839     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3840     sigaction (w->signum, &sa, 0);
3841    
3842 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3843     {
3844     sigemptyset (&sa.sa_mask);
3845     sigaddset (&sa.sa_mask, w->signum);
3846     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3847     }
3848 root 1.67 #endif
3849 root 1.306 }
3850 root 1.248
3851     EV_FREQUENT_CHECK;
3852 root 1.56 }
3853    
3854 root 1.171 void noinline
3855 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3856 root 1.56 {
3857 root 1.166 clear_pending (EV_A_ (W)w);
3858 root 1.123 if (expect_false (!ev_is_active (w)))
3859 root 1.56 return;
3860    
3861 root 1.248 EV_FREQUENT_CHECK;
3862    
3863 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3864 root 1.56 ev_stop (EV_A_ (W)w);
3865    
3866     if (!signals [w->signum - 1].head)
3867 root 1.306 {
3868 root 1.307 #if EV_MULTIPLICITY
3869 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3870 root 1.307 #endif
3871     #if EV_USE_SIGNALFD
3872 root 1.306 if (sigfd >= 0)
3873     {
3874 root 1.321 sigset_t ss;
3875    
3876     sigemptyset (&ss);
3877     sigaddset (&ss, w->signum);
3878 root 1.306 sigdelset (&sigfd_set, w->signum);
3879 root 1.321
3880 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3881 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3882 root 1.306 }
3883     else
3884 root 1.307 #endif
3885 root 1.306 signal (w->signum, SIG_DFL);
3886     }
3887 root 1.248
3888     EV_FREQUENT_CHECK;
3889 root 1.56 }
3890    
3891 root 1.336 #endif
3892    
3893     #if EV_CHILD_ENABLE
3894    
3895 root 1.28 void
3896 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3897 root 1.22 {
3898 root 1.56 #if EV_MULTIPLICITY
3899 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3900 root 1.56 #endif
3901 root 1.123 if (expect_false (ev_is_active (w)))
3902 root 1.22 return;
3903    
3904 root 1.248 EV_FREQUENT_CHECK;
3905    
3906 root 1.51 ev_start (EV_A_ (W)w, 1);
3907 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3908 root 1.248
3909     EV_FREQUENT_CHECK;
3910 root 1.22 }
3911    
3912 root 1.28 void
3913 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3914 root 1.22 {
3915 root 1.166 clear_pending (EV_A_ (W)w);
3916 root 1.123 if (expect_false (!ev_is_active (w)))
3917 root 1.22 return;
3918    
3919 root 1.248 EV_FREQUENT_CHECK;
3920    
3921 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3922 root 1.51 ev_stop (EV_A_ (W)w);
3923 root 1.248
3924     EV_FREQUENT_CHECK;
3925 root 1.22 }
3926    
3927 root 1.336 #endif
3928    
3929 root 1.140 #if EV_STAT_ENABLE
3930    
3931     # ifdef _WIN32
3932 root 1.146 # undef lstat
3933     # define lstat(a,b) _stati64 (a,b)
3934 root 1.140 # endif
3935    
3936 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3937     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3938     #define MIN_STAT_INTERVAL 0.1074891
3939 root 1.143
3940 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3941 root 1.152
3942     #if EV_USE_INOTIFY
3943 root 1.326
3944     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3945     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3946 root 1.152
3947     static void noinline
3948     infy_add (EV_P_ ev_stat *w)
3949     {
3950 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
3951     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3952     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3953     | IN_DONT_FOLLOW | IN_MASK_ADD);
3954 root 1.152
3955 root 1.318 if (w->wd >= 0)
3956 root 1.152 {
3957 root 1.318 struct statfs sfs;
3958    
3959     /* now local changes will be tracked by inotify, but remote changes won't */
3960     /* unless the filesystem is known to be local, we therefore still poll */
3961     /* also do poll on <2.6.25, but with normal frequency */
3962    
3963     if (!fs_2625)
3964     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3965     else if (!statfs (w->path, &sfs)
3966     && (sfs.f_type == 0x1373 /* devfs */
3967 root 1.451 || sfs.f_type == 0x4006 /* fat */
3968     || sfs.f_type == 0x4d44 /* msdos */
3969 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
3970 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
3971     || sfs.f_type == 0x858458f6 /* ramfs */
3972     || sfs.f_type == 0x5346544e /* ntfs */
3973 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
3974 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
3975 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
3976 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
3977 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
3978     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3979     else
3980     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3981     }
3982     else
3983     {
3984     /* can't use inotify, continue to stat */
3985 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3986 root 1.152
3987 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
3988 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3989 root 1.233 /* but an efficiency issue only */
3990 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3991 root 1.152 {
3992 root 1.153 char path [4096];
3993 root 1.152 strcpy (path, w->path);
3994    
3995     do
3996     {
3997     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3998     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3999    
4000     char *pend = strrchr (path, '/');
4001    
4002 root 1.275 if (!pend || pend == path)
4003     break;
4004 root 1.152
4005     *pend = 0;
4006 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4007 root 1.372 }
4008 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4009     }
4010     }
4011 root 1.275
4012     if (w->wd >= 0)
4013 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4014 root 1.152
4015 root 1.318 /* now re-arm timer, if required */
4016     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4017     ev_timer_again (EV_A_ &w->timer);
4018     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4019 root 1.152 }
4020    
4021     static void noinline
4022     infy_del (EV_P_ ev_stat *w)
4023     {
4024     int slot;
4025     int wd = w->wd;
4026    
4027     if (wd < 0)
4028     return;
4029    
4030     w->wd = -2;
4031 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4032 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4033    
4034     /* remove this watcher, if others are watching it, they will rearm */
4035     inotify_rm_watch (fs_fd, wd);
4036     }
4037    
4038     static void noinline
4039     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4040     {
4041     if (slot < 0)
4042 root 1.264 /* overflow, need to check for all hash slots */
4043 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4044 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4045     else
4046     {
4047     WL w_;
4048    
4049 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4050 root 1.152 {
4051     ev_stat *w = (ev_stat *)w_;
4052     w_ = w_->next; /* lets us remove this watcher and all before it */
4053    
4054     if (w->wd == wd || wd == -1)
4055     {
4056     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4057     {
4058 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4059 root 1.152 w->wd = -1;
4060     infy_add (EV_A_ w); /* re-add, no matter what */
4061     }
4062    
4063 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4064 root 1.152 }
4065     }
4066     }
4067     }
4068    
4069     static void
4070     infy_cb (EV_P_ ev_io *w, int revents)
4071     {
4072     char buf [EV_INOTIFY_BUFSIZE];
4073     int ofs;
4074     int len = read (fs_fd, buf, sizeof (buf));
4075    
4076 root 1.326 for (ofs = 0; ofs < len; )
4077     {
4078     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4079     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4080     ofs += sizeof (struct inotify_event) + ev->len;
4081     }
4082 root 1.152 }
4083    
4084 root 1.379 inline_size void ecb_cold
4085 root 1.330 ev_check_2625 (EV_P)
4086     {
4087     /* kernels < 2.6.25 are borked
4088     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4089     */
4090     if (ev_linux_version () < 0x020619)
4091 root 1.273 return;
4092 root 1.264
4093 root 1.273 fs_2625 = 1;
4094     }
4095 root 1.264
4096 root 1.315 inline_size int
4097     infy_newfd (void)
4098     {
4099 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4100 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4101     if (fd >= 0)
4102     return fd;
4103     #endif
4104     return inotify_init ();
4105     }
4106    
4107 root 1.284 inline_size void
4108 root 1.273 infy_init (EV_P)
4109     {
4110     if (fs_fd != -2)
4111     return;
4112 root 1.264
4113 root 1.273 fs_fd = -1;
4114 root 1.264
4115 root 1.330 ev_check_2625 (EV_A);
4116 root 1.264
4117 root 1.315 fs_fd = infy_newfd ();
4118 root 1.152
4119     if (fs_fd >= 0)
4120     {
4121 root 1.315 fd_intern (fs_fd);
4122 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4123     ev_set_priority (&fs_w, EV_MAXPRI);
4124     ev_io_start (EV_A_ &fs_w);
4125 root 1.317 ev_unref (EV_A);
4126 root 1.152 }
4127     }
4128    
4129 root 1.284 inline_size void
4130 root 1.154 infy_fork (EV_P)
4131     {
4132     int slot;
4133    
4134     if (fs_fd < 0)
4135     return;
4136    
4137 root 1.317 ev_ref (EV_A);
4138 root 1.315 ev_io_stop (EV_A_ &fs_w);
4139 root 1.154 close (fs_fd);
4140 root 1.315 fs_fd = infy_newfd ();
4141    
4142     if (fs_fd >= 0)
4143     {
4144     fd_intern (fs_fd);
4145     ev_io_set (&fs_w, fs_fd, EV_READ);
4146     ev_io_start (EV_A_ &fs_w);
4147 root 1.317 ev_unref (EV_A);
4148 root 1.315 }
4149 root 1.154
4150 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4151 root 1.154 {
4152     WL w_ = fs_hash [slot].head;
4153     fs_hash [slot].head = 0;
4154    
4155     while (w_)
4156     {
4157     ev_stat *w = (ev_stat *)w_;
4158     w_ = w_->next; /* lets us add this watcher */
4159    
4160     w->wd = -1;
4161    
4162     if (fs_fd >= 0)
4163     infy_add (EV_A_ w); /* re-add, no matter what */
4164     else
4165 root 1.318 {
4166     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4167     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4168     ev_timer_again (EV_A_ &w->timer);
4169     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4170     }
4171 root 1.154 }
4172     }
4173     }
4174    
4175 root 1.152 #endif
4176    
4177 root 1.255 #ifdef _WIN32
4178     # define EV_LSTAT(p,b) _stati64 (p, b)
4179     #else
4180     # define EV_LSTAT(p,b) lstat (p, b)
4181     #endif
4182    
4183 root 1.140 void
4184 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4185 root 1.140 {
4186     if (lstat (w->path, &w->attr) < 0)
4187     w->attr.st_nlink = 0;
4188     else if (!w->attr.st_nlink)
4189     w->attr.st_nlink = 1;
4190     }
4191    
4192 root 1.157 static void noinline
4193 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4194     {
4195     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4196    
4197 root 1.320 ev_statdata prev = w->attr;
4198 root 1.140 ev_stat_stat (EV_A_ w);
4199    
4200 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4201     if (
4202 root 1.320 prev.st_dev != w->attr.st_dev
4203     || prev.st_ino != w->attr.st_ino
4204     || prev.st_mode != w->attr.st_mode
4205     || prev.st_nlink != w->attr.st_nlink
4206     || prev.st_uid != w->attr.st_uid
4207     || prev.st_gid != w->attr.st_gid
4208     || prev.st_rdev != w->attr.st_rdev
4209     || prev.st_size != w->attr.st_size
4210     || prev.st_atime != w->attr.st_atime
4211     || prev.st_mtime != w->attr.st_mtime
4212     || prev.st_ctime != w->attr.st_ctime
4213 root 1.156 ) {
4214 root 1.320 /* we only update w->prev on actual differences */
4215     /* in case we test more often than invoke the callback, */
4216     /* to ensure that prev is always different to attr */
4217     w->prev = prev;
4218    
4219 root 1.152 #if EV_USE_INOTIFY
4220 root 1.264 if (fs_fd >= 0)
4221     {
4222     infy_del (EV_A_ w);
4223     infy_add (EV_A_ w);
4224     ev_stat_stat (EV_A_ w); /* avoid race... */
4225     }
4226 root 1.152 #endif
4227    
4228     ev_feed_event (EV_A_ w, EV_STAT);
4229     }
4230 root 1.140 }
4231    
4232     void
4233 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4234 root 1.140 {
4235     if (expect_false (ev_is_active (w)))
4236     return;
4237    
4238     ev_stat_stat (EV_A_ w);
4239    
4240 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4241     w->interval = MIN_STAT_INTERVAL;
4242 root 1.143
4243 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4244 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4245 root 1.152
4246     #if EV_USE_INOTIFY
4247     infy_init (EV_A);
4248    
4249     if (fs_fd >= 0)
4250     infy_add (EV_A_ w);
4251     else
4252     #endif
4253 root 1.318 {
4254     ev_timer_again (EV_A_ &w->timer);
4255     ev_unref (EV_A);
4256     }
4257 root 1.140
4258     ev_start (EV_A_ (W)w, 1);
4259 root 1.248
4260     EV_FREQUENT_CHECK;
4261 root 1.140 }
4262    
4263     void
4264 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4265 root 1.140 {
4266 root 1.166 clear_pending (EV_A_ (W)w);
4267 root 1.140 if (expect_false (!ev_is_active (w)))
4268     return;
4269    
4270 root 1.248 EV_FREQUENT_CHECK;
4271    
4272 root 1.152 #if EV_USE_INOTIFY
4273     infy_del (EV_A_ w);
4274     #endif
4275 root 1.318
4276     if (ev_is_active (&w->timer))
4277     {
4278     ev_ref (EV_A);
4279     ev_timer_stop (EV_A_ &w->timer);
4280     }
4281 root 1.140
4282 root 1.134 ev_stop (EV_A_ (W)w);
4283 root 1.248
4284     EV_FREQUENT_CHECK;
4285 root 1.134 }
4286     #endif
4287    
4288 root 1.164 #if EV_IDLE_ENABLE
4289 root 1.144 void
4290 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4291 root 1.144 {
4292     if (expect_false (ev_is_active (w)))
4293     return;
4294    
4295 root 1.164 pri_adjust (EV_A_ (W)w);
4296    
4297 root 1.248 EV_FREQUENT_CHECK;
4298    
4299 root 1.164 {
4300     int active = ++idlecnt [ABSPRI (w)];
4301    
4302     ++idleall;
4303     ev_start (EV_A_ (W)w, active);
4304    
4305     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4306     idles [ABSPRI (w)][active - 1] = w;
4307     }
4308 root 1.248
4309     EV_FREQUENT_CHECK;
4310 root 1.144 }
4311    
4312     void
4313 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4314 root 1.144 {
4315 root 1.166 clear_pending (EV_A_ (W)w);
4316 root 1.144 if (expect_false (!ev_is_active (w)))
4317     return;
4318    
4319 root 1.248 EV_FREQUENT_CHECK;
4320    
4321 root 1.144 {
4322 root 1.230 int active = ev_active (w);
4323 root 1.164
4324     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4325 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4326 root 1.164
4327     ev_stop (EV_A_ (W)w);
4328     --idleall;
4329 root 1.144 }
4330 root 1.248
4331     EV_FREQUENT_CHECK;
4332 root 1.144 }
4333 root 1.164 #endif
4334 root 1.144
4335 root 1.337 #if EV_PREPARE_ENABLE
4336 root 1.144 void
4337 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4338 root 1.144 {
4339     if (expect_false (ev_is_active (w)))
4340     return;
4341    
4342 root 1.248 EV_FREQUENT_CHECK;
4343    
4344 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4345     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4346     prepares [preparecnt - 1] = w;
4347 root 1.248
4348     EV_FREQUENT_CHECK;
4349 root 1.144 }
4350    
4351     void
4352 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4353 root 1.144 {
4354 root 1.166 clear_pending (EV_A_ (W)w);
4355 root 1.144 if (expect_false (!ev_is_active (w)))
4356     return;
4357    
4358 root 1.248 EV_FREQUENT_CHECK;
4359    
4360 root 1.144 {
4361 root 1.230 int active = ev_active (w);
4362    
4363 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4364 root 1.230 ev_active (prepares [active - 1]) = active;
4365 root 1.144 }
4366    
4367     ev_stop (EV_A_ (W)w);
4368 root 1.248
4369     EV_FREQUENT_CHECK;
4370 root 1.144 }
4371 root 1.337 #endif
4372 root 1.144
4373 root 1.337 #if EV_CHECK_ENABLE
4374 root 1.144 void
4375 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4376 root 1.144 {
4377     if (expect_false (ev_is_active (w)))
4378     return;
4379    
4380 root 1.248 EV_FREQUENT_CHECK;
4381    
4382 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4383     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4384     checks [checkcnt - 1] = w;
4385 root 1.248
4386     EV_FREQUENT_CHECK;
4387 root 1.144 }
4388    
4389     void
4390 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4391 root 1.144 {
4392 root 1.166 clear_pending (EV_A_ (W)w);
4393 root 1.144 if (expect_false (!ev_is_active (w)))
4394     return;
4395    
4396 root 1.248 EV_FREQUENT_CHECK;
4397    
4398 root 1.144 {
4399 root 1.230 int active = ev_active (w);
4400    
4401 root 1.144 checks [active - 1] = checks [--checkcnt];
4402 root 1.230 ev_active (checks [active - 1]) = active;
4403 root 1.144 }
4404    
4405     ev_stop (EV_A_ (W)w);
4406 root 1.248
4407     EV_FREQUENT_CHECK;
4408 root 1.144 }
4409 root 1.337 #endif
4410 root 1.144
4411     #if EV_EMBED_ENABLE
4412     void noinline
4413 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4414 root 1.144 {
4415 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4416 root 1.144 }
4417    
4418     static void
4419 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4420 root 1.144 {
4421     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4422    
4423     if (ev_cb (w))
4424     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4425     else
4426 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4427 root 1.144 }
4428    
4429 root 1.189 static void
4430     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4431     {
4432     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4433    
4434 root 1.195 {
4435 root 1.306 EV_P = w->other;
4436 root 1.195
4437     while (fdchangecnt)
4438     {
4439     fd_reify (EV_A);
4440 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4441 root 1.195 }
4442     }
4443     }
4444    
4445 root 1.261 static void
4446     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4447     {
4448     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4449    
4450 root 1.277 ev_embed_stop (EV_A_ w);
4451    
4452 root 1.261 {
4453 root 1.306 EV_P = w->other;
4454 root 1.261
4455     ev_loop_fork (EV_A);
4456 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4457 root 1.261 }
4458 root 1.277
4459     ev_embed_start (EV_A_ w);
4460 root 1.261 }
4461    
4462 root 1.195 #if 0
4463     static void
4464     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4465     {
4466     ev_idle_stop (EV_A_ idle);
4467 root 1.189 }
4468 root 1.195 #endif
4469 root 1.189
4470 root 1.144 void
4471 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4472 root 1.144 {
4473     if (expect_false (ev_is_active (w)))
4474     return;
4475    
4476     {
4477 root 1.306 EV_P = w->other;
4478 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4479 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4480 root 1.144 }
4481    
4482 root 1.248 EV_FREQUENT_CHECK;
4483    
4484 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4485     ev_io_start (EV_A_ &w->io);
4486    
4487 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4488     ev_set_priority (&w->prepare, EV_MINPRI);
4489     ev_prepare_start (EV_A_ &w->prepare);
4490    
4491 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4492     ev_fork_start (EV_A_ &w->fork);
4493    
4494 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4495    
4496 root 1.144 ev_start (EV_A_ (W)w, 1);
4497 root 1.248
4498     EV_FREQUENT_CHECK;
4499 root 1.144 }
4500    
4501     void
4502 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4503 root 1.144 {
4504 root 1.166 clear_pending (EV_A_ (W)w);
4505 root 1.144 if (expect_false (!ev_is_active (w)))
4506     return;
4507    
4508 root 1.248 EV_FREQUENT_CHECK;
4509    
4510 root 1.261 ev_io_stop (EV_A_ &w->io);
4511 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4512 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4513 root 1.248
4514 root 1.328 ev_stop (EV_A_ (W)w);
4515    
4516 root 1.248 EV_FREQUENT_CHECK;
4517 root 1.144 }
4518     #endif
4519    
4520 root 1.147 #if EV_FORK_ENABLE
4521     void
4522 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4523 root 1.147 {
4524     if (expect_false (ev_is_active (w)))
4525     return;
4526    
4527 root 1.248 EV_FREQUENT_CHECK;
4528    
4529 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4530     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4531     forks [forkcnt - 1] = w;
4532 root 1.248
4533     EV_FREQUENT_CHECK;
4534 root 1.147 }
4535    
4536     void
4537 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4538 root 1.147 {
4539 root 1.166 clear_pending (EV_A_ (W)w);
4540 root 1.147 if (expect_false (!ev_is_active (w)))
4541     return;
4542    
4543 root 1.248 EV_FREQUENT_CHECK;
4544    
4545 root 1.147 {
4546 root 1.230 int active = ev_active (w);
4547    
4548 root 1.147 forks [active - 1] = forks [--forkcnt];
4549 root 1.230 ev_active (forks [active - 1]) = active;
4550 root 1.147 }
4551    
4552     ev_stop (EV_A_ (W)w);
4553 root 1.248
4554     EV_FREQUENT_CHECK;
4555 root 1.147 }
4556     #endif
4557    
4558 root 1.360 #if EV_CLEANUP_ENABLE
4559     void
4560 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4561 root 1.360 {
4562     if (expect_false (ev_is_active (w)))
4563     return;
4564    
4565     EV_FREQUENT_CHECK;
4566    
4567     ev_start (EV_A_ (W)w, ++cleanupcnt);
4568     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4569     cleanups [cleanupcnt - 1] = w;
4570    
4571 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4572     ev_unref (EV_A);
4573 root 1.360 EV_FREQUENT_CHECK;
4574     }
4575    
4576     void
4577 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4578 root 1.360 {
4579     clear_pending (EV_A_ (W)w);
4580     if (expect_false (!ev_is_active (w)))
4581     return;
4582    
4583     EV_FREQUENT_CHECK;
4584 root 1.362 ev_ref (EV_A);
4585 root 1.360
4586     {
4587     int active = ev_active (w);
4588    
4589     cleanups [active - 1] = cleanups [--cleanupcnt];
4590     ev_active (cleanups [active - 1]) = active;
4591     }
4592    
4593     ev_stop (EV_A_ (W)w);
4594    
4595     EV_FREQUENT_CHECK;
4596     }
4597     #endif
4598    
4599 root 1.207 #if EV_ASYNC_ENABLE
4600     void
4601 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4602 root 1.207 {
4603     if (expect_false (ev_is_active (w)))
4604     return;
4605    
4606 root 1.352 w->sent = 0;
4607    
4608 root 1.207 evpipe_init (EV_A);
4609    
4610 root 1.248 EV_FREQUENT_CHECK;
4611    
4612 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4613     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4614     asyncs [asynccnt - 1] = w;
4615 root 1.248
4616     EV_FREQUENT_CHECK;
4617 root 1.207 }
4618    
4619     void
4620 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4621 root 1.207 {
4622     clear_pending (EV_A_ (W)w);
4623     if (expect_false (!ev_is_active (w)))
4624     return;
4625    
4626 root 1.248 EV_FREQUENT_CHECK;
4627    
4628 root 1.207 {
4629 root 1.230 int active = ev_active (w);
4630    
4631 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4632 root 1.230 ev_active (asyncs [active - 1]) = active;
4633 root 1.207 }
4634    
4635     ev_stop (EV_A_ (W)w);
4636 root 1.248
4637     EV_FREQUENT_CHECK;
4638 root 1.207 }
4639    
4640     void
4641 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4642 root 1.207 {
4643     w->sent = 1;
4644 root 1.307 evpipe_write (EV_A_ &async_pending);
4645 root 1.207 }
4646     #endif
4647    
4648 root 1.1 /*****************************************************************************/
4649 root 1.10
4650 root 1.16 struct ev_once
4651     {
4652 root 1.136 ev_io io;
4653     ev_timer to;
4654 root 1.16 void (*cb)(int revents, void *arg);
4655     void *arg;
4656     };
4657    
4658     static void
4659 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4660 root 1.16 {
4661     void (*cb)(int revents, void *arg) = once->cb;
4662     void *arg = once->arg;
4663    
4664 root 1.259 ev_io_stop (EV_A_ &once->io);
4665 root 1.51 ev_timer_stop (EV_A_ &once->to);
4666 root 1.69 ev_free (once);
4667 root 1.16
4668     cb (revents, arg);
4669     }
4670    
4671     static void
4672 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4673 root 1.16 {
4674 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4675    
4676     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4677 root 1.16 }
4678    
4679     static void
4680 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4681 root 1.16 {
4682 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4683    
4684     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4685 root 1.16 }
4686    
4687     void
4688 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4689 root 1.16 {
4690 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4691 root 1.16
4692 root 1.123 if (expect_false (!once))
4693 root 1.16 {
4694 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4695 root 1.123 return;
4696     }
4697    
4698     once->cb = cb;
4699     once->arg = arg;
4700 root 1.16
4701 root 1.123 ev_init (&once->io, once_cb_io);
4702     if (fd >= 0)
4703     {
4704     ev_io_set (&once->io, fd, events);
4705     ev_io_start (EV_A_ &once->io);
4706     }
4707 root 1.16
4708 root 1.123 ev_init (&once->to, once_cb_to);
4709     if (timeout >= 0.)
4710     {
4711     ev_timer_set (&once->to, timeout, 0.);
4712     ev_timer_start (EV_A_ &once->to);
4713 root 1.16 }
4714     }
4715    
4716 root 1.282 /*****************************************************************************/
4717    
4718 root 1.288 #if EV_WALK_ENABLE
4719 root 1.379 void ecb_cold
4720 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4721 root 1.282 {
4722     int i, j;
4723     ev_watcher_list *wl, *wn;
4724    
4725     if (types & (EV_IO | EV_EMBED))
4726     for (i = 0; i < anfdmax; ++i)
4727     for (wl = anfds [i].head; wl; )
4728     {
4729     wn = wl->next;
4730    
4731     #if EV_EMBED_ENABLE
4732     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4733     {
4734     if (types & EV_EMBED)
4735     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4736     }
4737     else
4738     #endif
4739     #if EV_USE_INOTIFY
4740     if (ev_cb ((ev_io *)wl) == infy_cb)
4741     ;
4742     else
4743     #endif
4744 root 1.288 if ((ev_io *)wl != &pipe_w)
4745 root 1.282 if (types & EV_IO)
4746     cb (EV_A_ EV_IO, wl);
4747    
4748     wl = wn;
4749     }
4750    
4751     if (types & (EV_TIMER | EV_STAT))
4752     for (i = timercnt + HEAP0; i-- > HEAP0; )
4753     #if EV_STAT_ENABLE
4754     /*TODO: timer is not always active*/
4755     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4756     {
4757     if (types & EV_STAT)
4758     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4759     }
4760     else
4761     #endif
4762     if (types & EV_TIMER)
4763     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4764    
4765     #if EV_PERIODIC_ENABLE
4766     if (types & EV_PERIODIC)
4767     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4768     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4769     #endif
4770    
4771     #if EV_IDLE_ENABLE
4772     if (types & EV_IDLE)
4773 root 1.390 for (j = NUMPRI; j--; )
4774 root 1.282 for (i = idlecnt [j]; i--; )
4775     cb (EV_A_ EV_IDLE, idles [j][i]);
4776     #endif
4777    
4778     #if EV_FORK_ENABLE
4779     if (types & EV_FORK)
4780     for (i = forkcnt; i--; )
4781     if (ev_cb (forks [i]) != embed_fork_cb)
4782     cb (EV_A_ EV_FORK, forks [i]);
4783     #endif
4784    
4785     #if EV_ASYNC_ENABLE
4786     if (types & EV_ASYNC)
4787     for (i = asynccnt; i--; )
4788     cb (EV_A_ EV_ASYNC, asyncs [i]);
4789     #endif
4790    
4791 root 1.337 #if EV_PREPARE_ENABLE
4792 root 1.282 if (types & EV_PREPARE)
4793     for (i = preparecnt; i--; )
4794 root 1.337 # if EV_EMBED_ENABLE
4795 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4796 root 1.337 # endif
4797     cb (EV_A_ EV_PREPARE, prepares [i]);
4798 root 1.282 #endif
4799    
4800 root 1.337 #if EV_CHECK_ENABLE
4801 root 1.282 if (types & EV_CHECK)
4802     for (i = checkcnt; i--; )
4803     cb (EV_A_ EV_CHECK, checks [i]);
4804 root 1.337 #endif
4805 root 1.282
4806 root 1.337 #if EV_SIGNAL_ENABLE
4807 root 1.282 if (types & EV_SIGNAL)
4808 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4809 root 1.282 for (wl = signals [i].head; wl; )
4810     {
4811     wn = wl->next;
4812     cb (EV_A_ EV_SIGNAL, wl);
4813     wl = wn;
4814     }
4815 root 1.337 #endif
4816 root 1.282
4817 root 1.337 #if EV_CHILD_ENABLE
4818 root 1.282 if (types & EV_CHILD)
4819 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4820 root 1.282 for (wl = childs [i]; wl; )
4821     {
4822     wn = wl->next;
4823     cb (EV_A_ EV_CHILD, wl);
4824     wl = wn;
4825     }
4826 root 1.337 #endif
4827 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4828     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4829     }
4830     #endif
4831    
4832 root 1.188 #if EV_MULTIPLICITY
4833     #include "ev_wrap.h"
4834     #endif
4835