ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.462
Committed: Sun Jan 5 02:59:36 2014 UTC (10 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.461: +19 -6 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.418 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 root 1.305 #endif
248    
249 root 1.373 #ifndef EV_USE_FLOOR
250     # define EV_USE_FLOOR 0
251     #endif
252    
253 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
254 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 root 1.274 # else
257     # define EV_USE_CLOCK_SYSCALL 0
258     # endif
259     #endif
260    
261 root 1.29 #ifndef EV_USE_MONOTONIC
262 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
264 root 1.253 # else
265     # define EV_USE_MONOTONIC 0
266     # endif
267 root 1.37 #endif
268    
269 root 1.118 #ifndef EV_USE_REALTIME
270 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271 root 1.118 #endif
272    
273 root 1.193 #ifndef EV_USE_NANOSLEEP
274 root 1.253 # if _POSIX_C_SOURCE >= 199309L
275 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
276 root 1.253 # else
277     # define EV_USE_NANOSLEEP 0
278     # endif
279 root 1.193 #endif
280    
281 root 1.29 #ifndef EV_USE_SELECT
282 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
283 root 1.10 #endif
284    
285 root 1.59 #ifndef EV_USE_POLL
286 root 1.104 # ifdef _WIN32
287     # define EV_USE_POLL 0
288     # else
289 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
290 root 1.104 # endif
291 root 1.41 #endif
292    
293 root 1.29 #ifndef EV_USE_EPOLL
294 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
296 root 1.220 # else
297     # define EV_USE_EPOLL 0
298     # endif
299 root 1.10 #endif
300    
301 root 1.44 #ifndef EV_USE_KQUEUE
302     # define EV_USE_KQUEUE 0
303     #endif
304    
305 root 1.118 #ifndef EV_USE_PORT
306     # define EV_USE_PORT 0
307 root 1.40 #endif
308    
309 root 1.152 #ifndef EV_USE_INOTIFY
310 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
312 root 1.220 # else
313     # define EV_USE_INOTIFY 0
314     # endif
315 root 1.152 #endif
316    
317 root 1.149 #ifndef EV_PID_HASHSIZE
318 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
319 root 1.149 #endif
320    
321 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
322 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323 root 1.152 #endif
324    
325 root 1.220 #ifndef EV_USE_EVENTFD
326     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
328 root 1.220 # else
329     # define EV_USE_EVENTFD 0
330     # endif
331     #endif
332    
333 root 1.303 #ifndef EV_USE_SIGNALFD
334 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
336 root 1.303 # else
337     # define EV_USE_SIGNALFD 0
338     # endif
339     #endif
340    
341 root 1.249 #if 0 /* debugging */
342 root 1.250 # define EV_VERIFY 3
343 root 1.249 # define EV_USE_4HEAP 1
344     # define EV_HEAP_CACHE_AT 1
345     #endif
346    
347 root 1.250 #ifndef EV_VERIFY
348 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349 root 1.250 #endif
350    
351 root 1.243 #ifndef EV_USE_4HEAP
352 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
353 root 1.243 #endif
354    
355     #ifndef EV_HEAP_CACHE_AT
356 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357 root 1.243 #endif
358    
359 root 1.452 #ifdef ANDROID
360     /* supposedly, android doesn't typedef fd_mask */
361     # undef EV_USE_SELECT
362     # define EV_USE_SELECT 0
363     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364     # undef EV_USE_CLOCK_SYSCALL
365     # define EV_USE_CLOCK_SYSCALL 0
366     #endif
367    
368     /* aix's poll.h seems to cause lots of trouble */
369     #ifdef _AIX
370     /* AIX has a completely broken poll.h header */
371     # undef EV_USE_POLL
372     # define EV_USE_POLL 0
373     #endif
374    
375 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376     /* which makes programs even slower. might work on other unices, too. */
377     #if EV_USE_CLOCK_SYSCALL
378 root 1.423 # include <sys/syscall.h>
379 root 1.291 # ifdef SYS_clock_gettime
380     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381     # undef EV_USE_MONOTONIC
382     # define EV_USE_MONOTONIC 1
383     # else
384     # undef EV_USE_CLOCK_SYSCALL
385     # define EV_USE_CLOCK_SYSCALL 0
386     # endif
387     #endif
388    
389 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
390 root 1.40
391     #ifndef CLOCK_MONOTONIC
392     # undef EV_USE_MONOTONIC
393     # define EV_USE_MONOTONIC 0
394     #endif
395    
396 root 1.31 #ifndef CLOCK_REALTIME
397 root 1.40 # undef EV_USE_REALTIME
398 root 1.31 # define EV_USE_REALTIME 0
399     #endif
400 root 1.40
401 root 1.152 #if !EV_STAT_ENABLE
402 root 1.185 # undef EV_USE_INOTIFY
403 root 1.152 # define EV_USE_INOTIFY 0
404     #endif
405    
406 root 1.193 #if !EV_USE_NANOSLEEP
407 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
408 root 1.416 # if !defined _WIN32 && !defined __hpux
409 root 1.193 # include <sys/select.h>
410     # endif
411     #endif
412    
413 root 1.152 #if EV_USE_INOTIFY
414 root 1.273 # include <sys/statfs.h>
415 root 1.152 # include <sys/inotify.h>
416 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417     # ifndef IN_DONT_FOLLOW
418     # undef EV_USE_INOTIFY
419     # define EV_USE_INOTIFY 0
420     # endif
421 root 1.152 #endif
422    
423 root 1.220 #if EV_USE_EVENTFD
424     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
425 root 1.221 # include <stdint.h>
426 root 1.303 # ifndef EFD_NONBLOCK
427     # define EFD_NONBLOCK O_NONBLOCK
428     # endif
429     # ifndef EFD_CLOEXEC
430 root 1.311 # ifdef O_CLOEXEC
431     # define EFD_CLOEXEC O_CLOEXEC
432     # else
433     # define EFD_CLOEXEC 02000000
434     # endif
435 root 1.303 # endif
436 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437 root 1.220 #endif
438    
439 root 1.303 #if EV_USE_SIGNALFD
440 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441     # include <stdint.h>
442     # ifndef SFD_NONBLOCK
443     # define SFD_NONBLOCK O_NONBLOCK
444     # endif
445     # ifndef SFD_CLOEXEC
446     # ifdef O_CLOEXEC
447     # define SFD_CLOEXEC O_CLOEXEC
448     # else
449     # define SFD_CLOEXEC 02000000
450     # endif
451     # endif
452 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453 root 1.314
454     struct signalfd_siginfo
455     {
456     uint32_t ssi_signo;
457     char pad[128 - sizeof (uint32_t)];
458     };
459 root 1.303 #endif
460    
461 root 1.40 /**/
462 root 1.1
463 root 1.250 #if EV_VERIFY >= 3
464 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
465 root 1.248 #else
466     # define EV_FREQUENT_CHECK do { } while (0)
467     #endif
468    
469 root 1.176 /*
470 root 1.373 * This is used to work around floating point rounding problems.
471 root 1.177 * This value is good at least till the year 4000.
472 root 1.176 */
473 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
475 root 1.176
476 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
477 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
478 root 1.1
479 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481 root 1.347
482 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483     /* ECB.H BEGIN */
484     /*
485     * libecb - http://software.schmorp.de/pkg/libecb
486     *
487 root 1.462 * Copyright (©) 2009-2013 Marc Alexander Lehmann <libecb@schmorp.de>
488 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
489     * All rights reserved.
490     *
491     * Redistribution and use in source and binary forms, with or without modifica-
492     * tion, are permitted provided that the following conditions are met:
493     *
494     * 1. Redistributions of source code must retain the above copyright notice,
495     * this list of conditions and the following disclaimer.
496     *
497     * 2. Redistributions in binary form must reproduce the above copyright
498     * notice, this list of conditions and the following disclaimer in the
499     * documentation and/or other materials provided with the distribution.
500     *
501     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510     * OF THE POSSIBILITY OF SUCH DAMAGE.
511     */
512    
513     #ifndef ECB_H
514     #define ECB_H
515    
516 root 1.437 /* 16 bits major, 16 bits minor */
517 root 1.454 #define ECB_VERSION 0x00010003
518 root 1.437
519 root 1.391 #ifdef _WIN32
520     typedef signed char int8_t;
521     typedef unsigned char uint8_t;
522     typedef signed short int16_t;
523     typedef unsigned short uint16_t;
524     typedef signed int int32_t;
525     typedef unsigned int uint32_t;
526     #if __GNUC__
527     typedef signed long long int64_t;
528     typedef unsigned long long uint64_t;
529     #else /* _MSC_VER || __BORLANDC__ */
530     typedef signed __int64 int64_t;
531     typedef unsigned __int64 uint64_t;
532     #endif
533 root 1.437 #ifdef _WIN64
534     #define ECB_PTRSIZE 8
535     typedef uint64_t uintptr_t;
536     typedef int64_t intptr_t;
537     #else
538     #define ECB_PTRSIZE 4
539     typedef uint32_t uintptr_t;
540     typedef int32_t intptr_t;
541     #endif
542 root 1.391 #else
543     #include <inttypes.h>
544 root 1.437 #if UINTMAX_MAX > 0xffffffffU
545     #define ECB_PTRSIZE 8
546     #else
547     #define ECB_PTRSIZE 4
548     #endif
549 root 1.391 #endif
550 root 1.379
551 root 1.454 /* work around x32 idiocy by defining proper macros */
552 root 1.462 #if __amd64 || __x86_64 || _M_AMD64 || _M_X64
553 root 1.458 #if _ILP32
554 root 1.454 #define ECB_AMD64_X32 1
555     #else
556     #define ECB_AMD64 1
557     #endif
558     #endif
559    
560 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
561     * what their idiot authors think are the "more important" extensions,
562 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
563 root 1.379 * or so.
564     * we try to detect these and simply assume they are not gcc - if they have
565     * an issue with that they should have done it right in the first place.
566     */
567     #ifndef ECB_GCC_VERSION
568 root 1.417 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 root 1.379 #define ECB_GCC_VERSION(major,minor) 0
570     #else
571     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572     #endif
573     #endif
574    
575 root 1.437 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
576     #define ECB_C99 (__STDC_VERSION__ >= 199901L)
577     #define ECB_C11 (__STDC_VERSION__ >= 201112L)
578     #define ECB_CPP (__cplusplus+0)
579     #define ECB_CPP11 (__cplusplus >= 201103L)
580    
581 root 1.450 #if ECB_CPP
582     #define ECB_EXTERN_C extern "C"
583     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
584     #define ECB_EXTERN_C_END }
585     #else
586     #define ECB_EXTERN_C extern
587     #define ECB_EXTERN_C_BEG
588     #define ECB_EXTERN_C_END
589     #endif
590    
591 root 1.391 /*****************************************************************************/
592    
593     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
594     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
595    
596 root 1.410 #if ECB_NO_THREADS
597 root 1.439 #define ECB_NO_SMP 1
598 root 1.410 #endif
599    
600 root 1.437 #if ECB_NO_SMP
601 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
602 root 1.40 #endif
603    
604 root 1.383 #ifndef ECB_MEMORY_FENCE
605 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
606 root 1.404 #if __i386 || __i386__
607 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
608 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
609     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
611 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
612     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
613     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
614 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
615 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
616 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
617     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
618 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
619 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
620 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
621     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
622 root 1.462 #elif (__sparc || __sparc__) && !__sparcv8
623 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
624     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
625     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
626 root 1.417 #elif defined __s390__ || defined __s390x__
627 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
628 root 1.417 #elif defined __mips__
629 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
630 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
631     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
632 root 1.419 #elif defined __alpha__
633 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
634     #elif defined __hppa__
635     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
636     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
637     #elif defined __ia64__
638     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
639 root 1.457 #elif defined __m68k__
640     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
641     #elif defined __m88k__
642     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
643     #elif defined __sh__
644     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
645 root 1.383 #endif
646     #endif
647     #endif
648    
649     #ifndef ECB_MEMORY_FENCE
650 root 1.437 #if ECB_GCC_VERSION(4,7)
651 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
652 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
653 root 1.450
654     /* The __has_feature syntax from clang is so misdesigned that we cannot use it
655     * without risking compile time errors with other compilers. We *could*
656     * define our own ecb_clang_has_feature, but I just can't be bothered to work
657     * around this shit time and again.
658     * #elif defined __clang && __has_feature (cxx_atomic)
659     * // see comment below (stdatomic.h) about the C11 memory model.
660     * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
661     */
662    
663 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
664 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
665 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
666     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
667     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
668     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
669     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
670     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
671 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
672     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
673     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
674     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
675     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
676 root 1.417 #elif defined _WIN32
677 root 1.388 #include <WinNT.h>
678 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
679 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
680     #include <mbarrier.h>
681     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
682     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
683     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
684 root 1.413 #elif __xlC__
685 root 1.414 #define ECB_MEMORY_FENCE __sync ()
686 root 1.383 #endif
687     #endif
688    
689     #ifndef ECB_MEMORY_FENCE
690 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
691     /* we assume that these memory fences work on all variables/all memory accesses, */
692     /* not just C11 atomics and atomic accesses */
693     #include <stdatomic.h>
694 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
695     /* any fence other than seq_cst, which isn't very efficient for us. */
696     /* Why that is, we don't know - either the C11 memory model is quite useless */
697     /* for most usages, or gcc and clang have a bug */
698     /* I *currently* lean towards the latter, and inefficiently implement */
699     /* all three of ecb's fences as a seq_cst fence */
700 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
701     #endif
702     #endif
703    
704     #ifndef ECB_MEMORY_FENCE
705 root 1.392 #if !ECB_AVOID_PTHREADS
706     /*
707     * if you get undefined symbol references to pthread_mutex_lock,
708     * or failure to find pthread.h, then you should implement
709     * the ECB_MEMORY_FENCE operations for your cpu/compiler
710     * OR provide pthread.h and link against the posix thread library
711     * of your system.
712     */
713     #include <pthread.h>
714     #define ECB_NEEDS_PTHREADS 1
715     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
716    
717     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
718     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
719     #endif
720     #endif
721 root 1.383
722 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
723 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
724 root 1.392 #endif
725    
726 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
727 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
728     #endif
729    
730 root 1.391 /*****************************************************************************/
731    
732     #if __cplusplus
733     #define ecb_inline static inline
734     #elif ECB_GCC_VERSION(2,5)
735     #define ecb_inline static __inline__
736     #elif ECB_C99
737     #define ecb_inline static inline
738     #else
739     #define ecb_inline static
740     #endif
741    
742     #if ECB_GCC_VERSION(3,3)
743     #define ecb_restrict __restrict__
744     #elif ECB_C99
745     #define ecb_restrict restrict
746     #else
747     #define ecb_restrict
748     #endif
749    
750     typedef int ecb_bool;
751    
752     #define ECB_CONCAT_(a, b) a ## b
753     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
754     #define ECB_STRINGIFY_(a) # a
755     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
756    
757     #define ecb_function_ ecb_inline
758    
759 root 1.379 #if ECB_GCC_VERSION(3,1)
760     #define ecb_attribute(attrlist) __attribute__(attrlist)
761     #define ecb_is_constant(expr) __builtin_constant_p (expr)
762     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
763     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
764     #else
765     #define ecb_attribute(attrlist)
766     #define ecb_is_constant(expr) 0
767     #define ecb_expect(expr,value) (expr)
768     #define ecb_prefetch(addr,rw,locality)
769     #endif
770    
771 root 1.391 /* no emulation for ecb_decltype */
772     #if ECB_GCC_VERSION(4,5)
773     #define ecb_decltype(x) __decltype(x)
774     #elif ECB_GCC_VERSION(3,0)
775     #define ecb_decltype(x) __typeof(x)
776     #endif
777    
778 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
779     #define ecb_unused ecb_attribute ((__unused__))
780     #define ecb_const ecb_attribute ((__const__))
781     #define ecb_pure ecb_attribute ((__pure__))
782    
783 root 1.437 #if ECB_C11
784     #define ecb_noreturn _Noreturn
785     #else
786     #define ecb_noreturn ecb_attribute ((__noreturn__))
787     #endif
788    
789 root 1.379 #if ECB_GCC_VERSION(4,3)
790     #define ecb_artificial ecb_attribute ((__artificial__))
791     #define ecb_hot ecb_attribute ((__hot__))
792     #define ecb_cold ecb_attribute ((__cold__))
793     #else
794     #define ecb_artificial
795     #define ecb_hot
796     #define ecb_cold
797     #endif
798    
799     /* put around conditional expressions if you are very sure that the */
800     /* expression is mostly true or mostly false. note that these return */
801     /* booleans, not the expression. */
802     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
803     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
804 root 1.391 /* for compatibility to the rest of the world */
805     #define ecb_likely(expr) ecb_expect_true (expr)
806     #define ecb_unlikely(expr) ecb_expect_false (expr)
807    
808     /* count trailing zero bits and count # of one bits */
809     #if ECB_GCC_VERSION(3,4)
810     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
811     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
812     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
813     #define ecb_ctz32(x) __builtin_ctz (x)
814     #define ecb_ctz64(x) __builtin_ctzll (x)
815     #define ecb_popcount32(x) __builtin_popcount (x)
816     /* no popcountll */
817     #else
818     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
819     ecb_function_ int
820     ecb_ctz32 (uint32_t x)
821     {
822     int r = 0;
823    
824     x &= ~x + 1; /* this isolates the lowest bit */
825    
826     #if ECB_branchless_on_i386
827     r += !!(x & 0xaaaaaaaa) << 0;
828     r += !!(x & 0xcccccccc) << 1;
829     r += !!(x & 0xf0f0f0f0) << 2;
830     r += !!(x & 0xff00ff00) << 3;
831     r += !!(x & 0xffff0000) << 4;
832     #else
833     if (x & 0xaaaaaaaa) r += 1;
834     if (x & 0xcccccccc) r += 2;
835     if (x & 0xf0f0f0f0) r += 4;
836     if (x & 0xff00ff00) r += 8;
837     if (x & 0xffff0000) r += 16;
838     #endif
839    
840     return r;
841     }
842    
843     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
844     ecb_function_ int
845     ecb_ctz64 (uint64_t x)
846     {
847     int shift = x & 0xffffffffU ? 0 : 32;
848     return ecb_ctz32 (x >> shift) + shift;
849     }
850    
851     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
852     ecb_function_ int
853     ecb_popcount32 (uint32_t x)
854     {
855     x -= (x >> 1) & 0x55555555;
856     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
857     x = ((x >> 4) + x) & 0x0f0f0f0f;
858     x *= 0x01010101;
859    
860     return x >> 24;
861     }
862    
863     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
864     ecb_function_ int ecb_ld32 (uint32_t x)
865     {
866     int r = 0;
867    
868     if (x >> 16) { x >>= 16; r += 16; }
869     if (x >> 8) { x >>= 8; r += 8; }
870     if (x >> 4) { x >>= 4; r += 4; }
871     if (x >> 2) { x >>= 2; r += 2; }
872     if (x >> 1) { r += 1; }
873    
874     return r;
875     }
876    
877     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
878     ecb_function_ int ecb_ld64 (uint64_t x)
879     {
880     int r = 0;
881    
882     if (x >> 32) { x >>= 32; r += 32; }
883    
884     return r + ecb_ld32 (x);
885     }
886     #endif
887    
888 root 1.437 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
889     ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
890     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
891     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
892    
893 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
894     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
895     {
896     return ( (x * 0x0802U & 0x22110U)
897     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
898     }
899    
900     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
901     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
902     {
903     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
904     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
905     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
906     x = ( x >> 8 ) | ( x << 8);
907    
908     return x;
909     }
910    
911     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
912     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
913     {
914     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
915     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
916     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
917     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
918     x = ( x >> 16 ) | ( x << 16);
919    
920     return x;
921     }
922    
923 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
924     /* so for this version we are lazy */
925     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
926     ecb_function_ int
927     ecb_popcount64 (uint64_t x)
928     {
929     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
930     }
931    
932     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
933     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
934     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
935     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
936     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
937     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
938     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
939     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
940    
941     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
942     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
943     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
944     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
945     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
946     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
947     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
948     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
949    
950     #if ECB_GCC_VERSION(4,3)
951     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
952     #define ecb_bswap32(x) __builtin_bswap32 (x)
953     #define ecb_bswap64(x) __builtin_bswap64 (x)
954     #else
955     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
956     ecb_function_ uint16_t
957     ecb_bswap16 (uint16_t x)
958     {
959     return ecb_rotl16 (x, 8);
960     }
961    
962     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
963     ecb_function_ uint32_t
964     ecb_bswap32 (uint32_t x)
965     {
966     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
967     }
968    
969     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
970     ecb_function_ uint64_t
971     ecb_bswap64 (uint64_t x)
972     {
973     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
974     }
975     #endif
976    
977     #if ECB_GCC_VERSION(4,5)
978     #define ecb_unreachable() __builtin_unreachable ()
979     #else
980     /* this seems to work fine, but gcc always emits a warning for it :/ */
981 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
982     ecb_inline void ecb_unreachable (void) { }
983 root 1.391 #endif
984    
985     /* try to tell the compiler that some condition is definitely true */
986 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
987 root 1.391
988 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
989     ecb_inline unsigned char
990 root 1.391 ecb_byteorder_helper (void)
991     {
992 root 1.450 /* the union code still generates code under pressure in gcc, */
993     /* but less than using pointers, and always seems to */
994     /* successfully return a constant. */
995     /* the reason why we have this horrible preprocessor mess */
996     /* is to avoid it in all cases, at least on common architectures */
997     /* or when using a recent enough gcc version (>= 4.6) */
998     #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
999     return 0x44;
1000     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1001     return 0x44;
1002     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1003     return 0x11;
1004     #else
1005     union
1006     {
1007     uint32_t i;
1008     uint8_t c;
1009     } u = { 0x11223344 };
1010     return u.c;
1011     #endif
1012 root 1.391 }
1013    
1014 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1015     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1016     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1017     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1018 root 1.391
1019     #if ECB_GCC_VERSION(3,0) || ECB_C99
1020     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1021     #else
1022     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1023     #endif
1024    
1025 root 1.398 #if __cplusplus
1026     template<typename T>
1027     static inline T ecb_div_rd (T val, T div)
1028     {
1029     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1030     }
1031     template<typename T>
1032     static inline T ecb_div_ru (T val, T div)
1033     {
1034     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1035     }
1036     #else
1037     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1038     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1039     #endif
1040    
1041 root 1.391 #if ecb_cplusplus_does_not_suck
1042     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1043     template<typename T, int N>
1044     static inline int ecb_array_length (const T (&arr)[N])
1045     {
1046     return N;
1047     }
1048     #else
1049     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1050     #endif
1051    
1052 root 1.450 /*******************************************************************************/
1053     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1054    
1055     /* basically, everything uses "ieee pure-endian" floating point numbers */
1056     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1057     #if 0 \
1058     || __i386 || __i386__ \
1059     || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1060     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1061     || defined __arm__ && defined __ARM_EABI__ \
1062     || defined __s390__ || defined __s390x__ \
1063     || defined __mips__ \
1064     || defined __alpha__ \
1065     || defined __hppa__ \
1066     || defined __ia64__ \
1067 root 1.457 || defined __m68k__ \
1068     || defined __m88k__ \
1069     || defined __sh__ \
1070 root 1.450 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1071     #define ECB_STDFP 1
1072     #include <string.h> /* for memcpy */
1073     #else
1074     #define ECB_STDFP 0
1075     #endif
1076    
1077     #ifndef ECB_NO_LIBM
1078    
1079 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1080    
1081 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1082     #ifdef INFINITY
1083     #define ECB_INFINITY INFINITY
1084     #else
1085     #define ECB_INFINITY HUGE_VAL
1086     #endif
1087    
1088     #ifdef NAN
1089 root 1.458 #define ECB_NAN NAN
1090     #else
1091 root 1.462 #define ECB_NAN ECB_INFINITY
1092 root 1.458 #endif
1093    
1094     /* converts an ieee half/binary16 to a float */
1095     ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1096     ecb_function_ float
1097     ecb_binary16_to_float (uint16_t x)
1098     {
1099     int e = (x >> 10) & 0x1f;
1100     int m = x & 0x3ff;
1101     float r;
1102    
1103     if (!e ) r = ldexpf (m , -24);
1104     else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1105     else if (m ) r = ECB_NAN;
1106 root 1.462 else r = ECB_INFINITY;
1107 root 1.458
1108     return x & 0x8000 ? -r : r;
1109     }
1110    
1111 root 1.450 /* convert a float to ieee single/binary32 */
1112     ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1113     ecb_function_ uint32_t
1114     ecb_float_to_binary32 (float x)
1115     {
1116     uint32_t r;
1117    
1118     #if ECB_STDFP
1119     memcpy (&r, &x, 4);
1120     #else
1121     /* slow emulation, works for anything but -0 */
1122     uint32_t m;
1123     int e;
1124    
1125     if (x == 0e0f ) return 0x00000000U;
1126     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1127     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1128     if (x != x ) return 0x7fbfffffU;
1129    
1130     m = frexpf (x, &e) * 0x1000000U;
1131    
1132     r = m & 0x80000000U;
1133    
1134     if (r)
1135     m = -m;
1136    
1137     if (e <= -126)
1138     {
1139     m &= 0xffffffU;
1140     m >>= (-125 - e);
1141     e = -126;
1142     }
1143    
1144     r |= (e + 126) << 23;
1145     r |= m & 0x7fffffU;
1146     #endif
1147    
1148     return r;
1149     }
1150    
1151     /* converts an ieee single/binary32 to a float */
1152     ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1153     ecb_function_ float
1154     ecb_binary32_to_float (uint32_t x)
1155     {
1156     float r;
1157    
1158     #if ECB_STDFP
1159     memcpy (&r, &x, 4);
1160     #else
1161     /* emulation, only works for normals and subnormals and +0 */
1162     int neg = x >> 31;
1163     int e = (x >> 23) & 0xffU;
1164    
1165     x &= 0x7fffffU;
1166    
1167     if (e)
1168     x |= 0x800000U;
1169     else
1170     e = 1;
1171    
1172     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1173     r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1174    
1175     r = neg ? -r : r;
1176     #endif
1177    
1178     return r;
1179     }
1180    
1181     /* convert a double to ieee double/binary64 */
1182     ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1183     ecb_function_ uint64_t
1184     ecb_double_to_binary64 (double x)
1185     {
1186     uint64_t r;
1187    
1188     #if ECB_STDFP
1189     memcpy (&r, &x, 8);
1190     #else
1191     /* slow emulation, works for anything but -0 */
1192     uint64_t m;
1193     int e;
1194    
1195     if (x == 0e0 ) return 0x0000000000000000U;
1196     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1197     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1198     if (x != x ) return 0X7ff7ffffffffffffU;
1199    
1200     m = frexp (x, &e) * 0x20000000000000U;
1201    
1202     r = m & 0x8000000000000000;;
1203    
1204     if (r)
1205     m = -m;
1206    
1207     if (e <= -1022)
1208     {
1209     m &= 0x1fffffffffffffU;
1210     m >>= (-1021 - e);
1211     e = -1022;
1212     }
1213    
1214     r |= ((uint64_t)(e + 1022)) << 52;
1215     r |= m & 0xfffffffffffffU;
1216     #endif
1217    
1218     return r;
1219     }
1220    
1221     /* converts an ieee double/binary64 to a double */
1222     ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1223     ecb_function_ double
1224     ecb_binary64_to_double (uint64_t x)
1225     {
1226     double r;
1227    
1228     #if ECB_STDFP
1229     memcpy (&r, &x, 8);
1230     #else
1231     /* emulation, only works for normals and subnormals and +0 */
1232     int neg = x >> 63;
1233     int e = (x >> 52) & 0x7ffU;
1234    
1235     x &= 0xfffffffffffffU;
1236    
1237     if (e)
1238     x |= 0x10000000000000U;
1239     else
1240     e = 1;
1241    
1242     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1243     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1244    
1245     r = neg ? -r : r;
1246     #endif
1247    
1248     return r;
1249     }
1250    
1251     #endif
1252    
1253 root 1.391 #endif
1254    
1255     /* ECB.H END */
1256 root 1.379
1257 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1258 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1259 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1260     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1261 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1262 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1263     * which will then provide the memory fences.
1264     */
1265     # error "memory fences not defined for your architecture, please report"
1266     #endif
1267    
1268     #ifndef ECB_MEMORY_FENCE
1269     # define ECB_MEMORY_FENCE do { } while (0)
1270     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1271     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1272 root 1.392 #endif
1273    
1274 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1275     #define expect_true(cond) ecb_expect_true (cond)
1276     #define noinline ecb_noinline
1277    
1278     #define inline_size ecb_inline
1279 root 1.169
1280 root 1.338 #if EV_FEATURE_CODE
1281 root 1.379 # define inline_speed ecb_inline
1282 root 1.338 #else
1283 root 1.169 # define inline_speed static noinline
1284     #endif
1285 root 1.40
1286 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1287    
1288     #if EV_MINPRI == EV_MAXPRI
1289     # define ABSPRI(w) (((W)w), 0)
1290     #else
1291     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1292     #endif
1293 root 1.42
1294 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1295 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1296 root 1.103
1297 root 1.136 typedef ev_watcher *W;
1298     typedef ev_watcher_list *WL;
1299     typedef ev_watcher_time *WT;
1300 root 1.10
1301 root 1.229 #define ev_active(w) ((W)(w))->active
1302 root 1.228 #define ev_at(w) ((WT)(w))->at
1303    
1304 root 1.279 #if EV_USE_REALTIME
1305 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1306 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1307 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1308     #endif
1309    
1310     #if EV_USE_MONOTONIC
1311 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1312 root 1.198 #endif
1313 root 1.54
1314 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1315     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1316     #endif
1317     #ifndef EV_WIN32_HANDLE_TO_FD
1318 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1319 root 1.313 #endif
1320     #ifndef EV_WIN32_CLOSE_FD
1321     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1322     #endif
1323    
1324 root 1.103 #ifdef _WIN32
1325 root 1.98 # include "ev_win32.c"
1326     #endif
1327 root 1.67
1328 root 1.53 /*****************************************************************************/
1329 root 1.1
1330 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1331    
1332     #if EV_USE_FLOOR
1333     # include <math.h>
1334     # define ev_floor(v) floor (v)
1335     #else
1336    
1337     #include <float.h>
1338    
1339     /* a floor() replacement function, should be independent of ev_tstamp type */
1340     static ev_tstamp noinline
1341     ev_floor (ev_tstamp v)
1342     {
1343     /* the choice of shift factor is not terribly important */
1344     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1345     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1346     #else
1347     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1348     #endif
1349    
1350     /* argument too large for an unsigned long? */
1351     if (expect_false (v >= shift))
1352     {
1353     ev_tstamp f;
1354    
1355     if (v == v - 1.)
1356     return v; /* very large number */
1357    
1358     f = shift * ev_floor (v * (1. / shift));
1359     return f + ev_floor (v - f);
1360     }
1361    
1362     /* special treatment for negative args? */
1363     if (expect_false (v < 0.))
1364     {
1365     ev_tstamp f = -ev_floor (-v);
1366    
1367     return f - (f == v ? 0 : 1);
1368     }
1369    
1370     /* fits into an unsigned long */
1371     return (unsigned long)v;
1372     }
1373    
1374     #endif
1375    
1376     /*****************************************************************************/
1377    
1378 root 1.356 #ifdef __linux
1379     # include <sys/utsname.h>
1380     #endif
1381    
1382 root 1.379 static unsigned int noinline ecb_cold
1383 root 1.355 ev_linux_version (void)
1384     {
1385     #ifdef __linux
1386 root 1.359 unsigned int v = 0;
1387 root 1.355 struct utsname buf;
1388     int i;
1389     char *p = buf.release;
1390    
1391     if (uname (&buf))
1392     return 0;
1393    
1394     for (i = 3+1; --i; )
1395     {
1396     unsigned int c = 0;
1397    
1398     for (;;)
1399     {
1400     if (*p >= '0' && *p <= '9')
1401     c = c * 10 + *p++ - '0';
1402     else
1403     {
1404     p += *p == '.';
1405     break;
1406     }
1407     }
1408    
1409     v = (v << 8) | c;
1410     }
1411    
1412     return v;
1413     #else
1414     return 0;
1415     #endif
1416     }
1417    
1418     /*****************************************************************************/
1419    
1420 root 1.331 #if EV_AVOID_STDIO
1421 root 1.379 static void noinline ecb_cold
1422 root 1.331 ev_printerr (const char *msg)
1423     {
1424     write (STDERR_FILENO, msg, strlen (msg));
1425     }
1426     #endif
1427    
1428 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1429 root 1.69
1430 root 1.379 void ecb_cold
1431 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1432 root 1.69 {
1433     syserr_cb = cb;
1434     }
1435    
1436 root 1.379 static void noinline ecb_cold
1437 root 1.269 ev_syserr (const char *msg)
1438 root 1.69 {
1439 root 1.70 if (!msg)
1440     msg = "(libev) system error";
1441    
1442 root 1.69 if (syserr_cb)
1443 root 1.70 syserr_cb (msg);
1444 root 1.69 else
1445     {
1446 root 1.330 #if EV_AVOID_STDIO
1447 root 1.331 ev_printerr (msg);
1448     ev_printerr (": ");
1449 root 1.365 ev_printerr (strerror (errno));
1450 root 1.331 ev_printerr ("\n");
1451 root 1.330 #else
1452 root 1.70 perror (msg);
1453 root 1.330 #endif
1454 root 1.69 abort ();
1455     }
1456     }
1457    
1458 root 1.224 static void *
1459 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1460 root 1.224 {
1461     /* some systems, notably openbsd and darwin, fail to properly
1462 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1463 root 1.224 * the single unix specification, so work around them here.
1464 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1465     * despite documenting it otherwise.
1466 root 1.224 */
1467 root 1.333
1468 root 1.224 if (size)
1469     return realloc (ptr, size);
1470    
1471     free (ptr);
1472     return 0;
1473     }
1474    
1475 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1476 root 1.69
1477 root 1.379 void ecb_cold
1478 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1479 root 1.69 {
1480     alloc = cb;
1481     }
1482    
1483 root 1.150 inline_speed void *
1484 root 1.155 ev_realloc (void *ptr, long size)
1485 root 1.69 {
1486 root 1.224 ptr = alloc (ptr, size);
1487 root 1.69
1488     if (!ptr && size)
1489     {
1490 root 1.330 #if EV_AVOID_STDIO
1491 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1492 root 1.330 #else
1493 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1494 root 1.330 #endif
1495 root 1.69 abort ();
1496     }
1497    
1498     return ptr;
1499     }
1500    
1501     #define ev_malloc(size) ev_realloc (0, (size))
1502     #define ev_free(ptr) ev_realloc ((ptr), 0)
1503    
1504     /*****************************************************************************/
1505    
1506 root 1.298 /* set in reify when reification needed */
1507     #define EV_ANFD_REIFY 1
1508    
1509 root 1.288 /* file descriptor info structure */
1510 root 1.53 typedef struct
1511     {
1512 root 1.68 WL head;
1513 root 1.288 unsigned char events; /* the events watched for */
1514 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1515 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1516 root 1.269 unsigned char unused;
1517     #if EV_USE_EPOLL
1518 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1519 root 1.269 #endif
1520 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1521 root 1.103 SOCKET handle;
1522     #endif
1523 root 1.357 #if EV_USE_IOCP
1524     OVERLAPPED or, ow;
1525     #endif
1526 root 1.53 } ANFD;
1527 root 1.1
1528 root 1.288 /* stores the pending event set for a given watcher */
1529 root 1.53 typedef struct
1530     {
1531     W w;
1532 root 1.288 int events; /* the pending event set for the given watcher */
1533 root 1.53 } ANPENDING;
1534 root 1.51
1535 root 1.155 #if EV_USE_INOTIFY
1536 root 1.241 /* hash table entry per inotify-id */
1537 root 1.152 typedef struct
1538     {
1539     WL head;
1540 root 1.155 } ANFS;
1541 root 1.152 #endif
1542    
1543 root 1.241 /* Heap Entry */
1544     #if EV_HEAP_CACHE_AT
1545 root 1.288 /* a heap element */
1546 root 1.241 typedef struct {
1547 root 1.243 ev_tstamp at;
1548 root 1.241 WT w;
1549     } ANHE;
1550    
1551 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1552     #define ANHE_at(he) (he).at /* access cached at, read-only */
1553     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1554 root 1.241 #else
1555 root 1.288 /* a heap element */
1556 root 1.241 typedef WT ANHE;
1557    
1558 root 1.248 #define ANHE_w(he) (he)
1559     #define ANHE_at(he) (he)->at
1560     #define ANHE_at_cache(he)
1561 root 1.241 #endif
1562    
1563 root 1.55 #if EV_MULTIPLICITY
1564 root 1.54
1565 root 1.80 struct ev_loop
1566     {
1567 root 1.86 ev_tstamp ev_rt_now;
1568 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1569 root 1.80 #define VAR(name,decl) decl;
1570     #include "ev_vars.h"
1571     #undef VAR
1572     };
1573     #include "ev_wrap.h"
1574    
1575 root 1.116 static struct ev_loop default_loop_struct;
1576 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1577 root 1.54
1578 root 1.53 #else
1579 root 1.54
1580 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1581 root 1.80 #define VAR(name,decl) static decl;
1582     #include "ev_vars.h"
1583     #undef VAR
1584    
1585 root 1.116 static int ev_default_loop_ptr;
1586 root 1.54
1587 root 1.51 #endif
1588 root 1.1
1589 root 1.338 #if EV_FEATURE_API
1590 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1591     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1592 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1593     #else
1594 root 1.298 # define EV_RELEASE_CB (void)0
1595     # define EV_ACQUIRE_CB (void)0
1596 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1597     #endif
1598    
1599 root 1.353 #define EVBREAK_RECURSE 0x80
1600 root 1.298
1601 root 1.8 /*****************************************************************************/
1602    
1603 root 1.292 #ifndef EV_HAVE_EV_TIME
1604 root 1.141 ev_tstamp
1605 root 1.420 ev_time (void) EV_THROW
1606 root 1.1 {
1607 root 1.29 #if EV_USE_REALTIME
1608 root 1.279 if (expect_true (have_realtime))
1609     {
1610     struct timespec ts;
1611     clock_gettime (CLOCK_REALTIME, &ts);
1612     return ts.tv_sec + ts.tv_nsec * 1e-9;
1613     }
1614     #endif
1615    
1616 root 1.1 struct timeval tv;
1617     gettimeofday (&tv, 0);
1618     return tv.tv_sec + tv.tv_usec * 1e-6;
1619     }
1620 root 1.292 #endif
1621 root 1.1
1622 root 1.284 inline_size ev_tstamp
1623 root 1.1 get_clock (void)
1624     {
1625 root 1.29 #if EV_USE_MONOTONIC
1626 root 1.40 if (expect_true (have_monotonic))
1627 root 1.1 {
1628     struct timespec ts;
1629     clock_gettime (CLOCK_MONOTONIC, &ts);
1630     return ts.tv_sec + ts.tv_nsec * 1e-9;
1631     }
1632     #endif
1633    
1634     return ev_time ();
1635     }
1636    
1637 root 1.85 #if EV_MULTIPLICITY
1638 root 1.51 ev_tstamp
1639 root 1.420 ev_now (EV_P) EV_THROW
1640 root 1.51 {
1641 root 1.85 return ev_rt_now;
1642 root 1.51 }
1643 root 1.85 #endif
1644 root 1.51
1645 root 1.193 void
1646 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1647 root 1.193 {
1648     if (delay > 0.)
1649     {
1650     #if EV_USE_NANOSLEEP
1651     struct timespec ts;
1652    
1653 root 1.348 EV_TS_SET (ts, delay);
1654 root 1.193 nanosleep (&ts, 0);
1655 root 1.416 #elif defined _WIN32
1656 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1657 root 1.193 #else
1658     struct timeval tv;
1659    
1660 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1661 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1662 root 1.257 /* by older ones */
1663 sf-exg 1.349 EV_TV_SET (tv, delay);
1664 root 1.193 select (0, 0, 0, 0, &tv);
1665     #endif
1666     }
1667     }
1668    
1669     /*****************************************************************************/
1670    
1671 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1672 root 1.232
1673 root 1.288 /* find a suitable new size for the given array, */
1674 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1675 root 1.284 inline_size int
1676 root 1.163 array_nextsize (int elem, int cur, int cnt)
1677     {
1678     int ncur = cur + 1;
1679    
1680     do
1681     ncur <<= 1;
1682     while (cnt > ncur);
1683    
1684 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1685 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1686 root 1.163 {
1687     ncur *= elem;
1688 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1689 root 1.163 ncur = ncur - sizeof (void *) * 4;
1690     ncur /= elem;
1691     }
1692    
1693     return ncur;
1694     }
1695    
1696 root 1.379 static void * noinline ecb_cold
1697 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1698     {
1699     *cur = array_nextsize (elem, *cur, cnt);
1700     return ev_realloc (base, elem * *cur);
1701     }
1702 root 1.29
1703 root 1.265 #define array_init_zero(base,count) \
1704     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1705    
1706 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1707 root 1.163 if (expect_false ((cnt) > (cur))) \
1708 root 1.69 { \
1709 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1710 root 1.163 (base) = (type *)array_realloc \
1711     (sizeof (type), (base), &(cur), (cnt)); \
1712     init ((base) + (ocur_), (cur) - ocur_); \
1713 root 1.1 }
1714    
1715 root 1.163 #if 0
1716 root 1.74 #define array_slim(type,stem) \
1717 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1718     { \
1719     stem ## max = array_roundsize (stem ## cnt >> 1); \
1720 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1721 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1722     }
1723 root 1.163 #endif
1724 root 1.67
1725 root 1.65 #define array_free(stem, idx) \
1726 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1727 root 1.65
1728 root 1.8 /*****************************************************************************/
1729    
1730 root 1.288 /* dummy callback for pending events */
1731     static void noinline
1732     pendingcb (EV_P_ ev_prepare *w, int revents)
1733     {
1734     }
1735    
1736 root 1.140 void noinline
1737 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1738 root 1.1 {
1739 root 1.78 W w_ = (W)w;
1740 root 1.171 int pri = ABSPRI (w_);
1741 root 1.78
1742 root 1.123 if (expect_false (w_->pending))
1743 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1744     else
1745 root 1.32 {
1746 root 1.171 w_->pending = ++pendingcnt [pri];
1747     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1748     pendings [pri][w_->pending - 1].w = w_;
1749     pendings [pri][w_->pending - 1].events = revents;
1750 root 1.32 }
1751 root 1.425
1752     pendingpri = NUMPRI - 1;
1753 root 1.1 }
1754    
1755 root 1.284 inline_speed void
1756     feed_reverse (EV_P_ W w)
1757     {
1758     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1759     rfeeds [rfeedcnt++] = w;
1760     }
1761    
1762     inline_size void
1763     feed_reverse_done (EV_P_ int revents)
1764     {
1765     do
1766     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1767     while (rfeedcnt);
1768     }
1769    
1770     inline_speed void
1771 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1772 root 1.27 {
1773     int i;
1774    
1775     for (i = 0; i < eventcnt; ++i)
1776 root 1.78 ev_feed_event (EV_A_ events [i], type);
1777 root 1.27 }
1778    
1779 root 1.141 /*****************************************************************************/
1780    
1781 root 1.284 inline_speed void
1782 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1783 root 1.1 {
1784     ANFD *anfd = anfds + fd;
1785 root 1.136 ev_io *w;
1786 root 1.1
1787 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1788 root 1.1 {
1789 root 1.79 int ev = w->events & revents;
1790 root 1.1
1791     if (ev)
1792 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1793 root 1.1 }
1794     }
1795    
1796 root 1.298 /* do not submit kernel events for fds that have reify set */
1797     /* because that means they changed while we were polling for new events */
1798     inline_speed void
1799     fd_event (EV_P_ int fd, int revents)
1800     {
1801     ANFD *anfd = anfds + fd;
1802    
1803     if (expect_true (!anfd->reify))
1804 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1805 root 1.298 }
1806    
1807 root 1.79 void
1808 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1809 root 1.79 {
1810 root 1.168 if (fd >= 0 && fd < anfdmax)
1811 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1812 root 1.79 }
1813    
1814 root 1.288 /* make sure the external fd watch events are in-sync */
1815     /* with the kernel/libev internal state */
1816 root 1.284 inline_size void
1817 root 1.51 fd_reify (EV_P)
1818 root 1.9 {
1819     int i;
1820    
1821 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1822     for (i = 0; i < fdchangecnt; ++i)
1823     {
1824     int fd = fdchanges [i];
1825     ANFD *anfd = anfds + fd;
1826    
1827 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1828 root 1.371 {
1829     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1830    
1831     if (handle != anfd->handle)
1832     {
1833     unsigned long arg;
1834    
1835     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1836    
1837     /* handle changed, but fd didn't - we need to do it in two steps */
1838     backend_modify (EV_A_ fd, anfd->events, 0);
1839     anfd->events = 0;
1840     anfd->handle = handle;
1841     }
1842     }
1843     }
1844     #endif
1845    
1846 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1847     {
1848     int fd = fdchanges [i];
1849     ANFD *anfd = anfds + fd;
1850 root 1.136 ev_io *w;
1851 root 1.27
1852 root 1.350 unsigned char o_events = anfd->events;
1853     unsigned char o_reify = anfd->reify;
1854 root 1.27
1855 root 1.350 anfd->reify = 0;
1856 root 1.27
1857 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1858     {
1859     anfd->events = 0;
1860 root 1.184
1861 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1862     anfd->events |= (unsigned char)w->events;
1863 root 1.27
1864 root 1.351 if (o_events != anfd->events)
1865 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1866     }
1867    
1868     if (o_reify & EV__IOFDSET)
1869     backend_modify (EV_A_ fd, o_events, anfd->events);
1870 root 1.27 }
1871    
1872     fdchangecnt = 0;
1873     }
1874    
1875 root 1.288 /* something about the given fd changed */
1876 root 1.284 inline_size void
1877 root 1.183 fd_change (EV_P_ int fd, int flags)
1878 root 1.27 {
1879 root 1.183 unsigned char reify = anfds [fd].reify;
1880 root 1.184 anfds [fd].reify |= flags;
1881 root 1.27
1882 root 1.183 if (expect_true (!reify))
1883     {
1884     ++fdchangecnt;
1885     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1886     fdchanges [fdchangecnt - 1] = fd;
1887     }
1888 root 1.9 }
1889    
1890 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1891 root 1.379 inline_speed void ecb_cold
1892 root 1.51 fd_kill (EV_P_ int fd)
1893 root 1.41 {
1894 root 1.136 ev_io *w;
1895 root 1.41
1896 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1897 root 1.41 {
1898 root 1.51 ev_io_stop (EV_A_ w);
1899 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1900 root 1.41 }
1901     }
1902    
1903 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1904 root 1.379 inline_size int ecb_cold
1905 root 1.71 fd_valid (int fd)
1906     {
1907 root 1.103 #ifdef _WIN32
1908 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1909 root 1.71 #else
1910     return fcntl (fd, F_GETFD) != -1;
1911     #endif
1912     }
1913    
1914 root 1.19 /* called on EBADF to verify fds */
1915 root 1.379 static void noinline ecb_cold
1916 root 1.51 fd_ebadf (EV_P)
1917 root 1.19 {
1918     int fd;
1919    
1920     for (fd = 0; fd < anfdmax; ++fd)
1921 root 1.27 if (anfds [fd].events)
1922 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1923 root 1.51 fd_kill (EV_A_ fd);
1924 root 1.41 }
1925    
1926     /* called on ENOMEM in select/poll to kill some fds and retry */
1927 root 1.379 static void noinline ecb_cold
1928 root 1.51 fd_enomem (EV_P)
1929 root 1.41 {
1930 root 1.62 int fd;
1931 root 1.41
1932 root 1.62 for (fd = anfdmax; fd--; )
1933 root 1.41 if (anfds [fd].events)
1934     {
1935 root 1.51 fd_kill (EV_A_ fd);
1936 root 1.307 break;
1937 root 1.41 }
1938 root 1.19 }
1939    
1940 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1941 root 1.140 static void noinline
1942 root 1.56 fd_rearm_all (EV_P)
1943     {
1944     int fd;
1945    
1946     for (fd = 0; fd < anfdmax; ++fd)
1947     if (anfds [fd].events)
1948     {
1949     anfds [fd].events = 0;
1950 root 1.268 anfds [fd].emask = 0;
1951 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1952 root 1.56 }
1953     }
1954    
1955 root 1.336 /* used to prepare libev internal fd's */
1956     /* this is not fork-safe */
1957     inline_speed void
1958     fd_intern (int fd)
1959     {
1960     #ifdef _WIN32
1961     unsigned long arg = 1;
1962     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1963     #else
1964     fcntl (fd, F_SETFD, FD_CLOEXEC);
1965     fcntl (fd, F_SETFL, O_NONBLOCK);
1966     #endif
1967     }
1968    
1969 root 1.8 /*****************************************************************************/
1970    
1971 root 1.235 /*
1972 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
1973 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1974     * the branching factor of the d-tree.
1975     */
1976    
1977     /*
1978 root 1.235 * at the moment we allow libev the luxury of two heaps,
1979     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1980     * which is more cache-efficient.
1981     * the difference is about 5% with 50000+ watchers.
1982     */
1983 root 1.241 #if EV_USE_4HEAP
1984 root 1.235
1985 root 1.237 #define DHEAP 4
1986     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1987 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1988 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
1989 root 1.235
1990     /* away from the root */
1991 root 1.284 inline_speed void
1992 root 1.241 downheap (ANHE *heap, int N, int k)
1993 root 1.235 {
1994 root 1.241 ANHE he = heap [k];
1995     ANHE *E = heap + N + HEAP0;
1996 root 1.235
1997     for (;;)
1998     {
1999     ev_tstamp minat;
2000 root 1.241 ANHE *minpos;
2001 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2002 root 1.235
2003 root 1.248 /* find minimum child */
2004 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
2005 root 1.235 {
2006 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2007     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2008     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2009     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2010 root 1.235 }
2011 root 1.240 else if (pos < E)
2012 root 1.235 {
2013 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2014     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2015     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2016     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2017 root 1.235 }
2018 root 1.240 else
2019     break;
2020 root 1.235
2021 root 1.241 if (ANHE_at (he) <= minat)
2022 root 1.235 break;
2023    
2024 root 1.247 heap [k] = *minpos;
2025 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2026 root 1.235
2027     k = minpos - heap;
2028     }
2029    
2030 root 1.247 heap [k] = he;
2031 root 1.241 ev_active (ANHE_w (he)) = k;
2032 root 1.235 }
2033    
2034 root 1.248 #else /* 4HEAP */
2035 root 1.235
2036     #define HEAP0 1
2037 root 1.247 #define HPARENT(k) ((k) >> 1)
2038 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2039 root 1.235
2040 root 1.248 /* away from the root */
2041 root 1.284 inline_speed void
2042 root 1.248 downheap (ANHE *heap, int N, int k)
2043 root 1.1 {
2044 root 1.241 ANHE he = heap [k];
2045 root 1.1
2046 root 1.228 for (;;)
2047 root 1.1 {
2048 root 1.248 int c = k << 1;
2049 root 1.179
2050 root 1.309 if (c >= N + HEAP0)
2051 root 1.179 break;
2052    
2053 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2054     ? 1 : 0;
2055    
2056     if (ANHE_at (he) <= ANHE_at (heap [c]))
2057     break;
2058    
2059     heap [k] = heap [c];
2060 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2061 root 1.248
2062     k = c;
2063 root 1.1 }
2064    
2065 root 1.243 heap [k] = he;
2066 root 1.248 ev_active (ANHE_w (he)) = k;
2067 root 1.1 }
2068 root 1.248 #endif
2069 root 1.1
2070 root 1.248 /* towards the root */
2071 root 1.284 inline_speed void
2072 root 1.248 upheap (ANHE *heap, int k)
2073 root 1.1 {
2074 root 1.241 ANHE he = heap [k];
2075 root 1.1
2076 root 1.179 for (;;)
2077 root 1.1 {
2078 root 1.248 int p = HPARENT (k);
2079 root 1.179
2080 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2081 root 1.179 break;
2082 root 1.1
2083 root 1.248 heap [k] = heap [p];
2084 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2085 root 1.248 k = p;
2086 root 1.1 }
2087    
2088 root 1.241 heap [k] = he;
2089     ev_active (ANHE_w (he)) = k;
2090 root 1.1 }
2091    
2092 root 1.288 /* move an element suitably so it is in a correct place */
2093 root 1.284 inline_size void
2094 root 1.241 adjustheap (ANHE *heap, int N, int k)
2095 root 1.84 {
2096 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2097 root 1.247 upheap (heap, k);
2098     else
2099     downheap (heap, N, k);
2100 root 1.84 }
2101    
2102 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2103 root 1.284 inline_size void
2104 root 1.248 reheap (ANHE *heap, int N)
2105     {
2106     int i;
2107 root 1.251
2108 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2109     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2110     for (i = 0; i < N; ++i)
2111     upheap (heap, i + HEAP0);
2112     }
2113    
2114 root 1.8 /*****************************************************************************/
2115    
2116 root 1.288 /* associate signal watchers to a signal signal */
2117 root 1.7 typedef struct
2118     {
2119 root 1.307 EV_ATOMIC_T pending;
2120 root 1.306 #if EV_MULTIPLICITY
2121     EV_P;
2122     #endif
2123 root 1.68 WL head;
2124 root 1.7 } ANSIG;
2125    
2126 root 1.306 static ANSIG signals [EV_NSIG - 1];
2127 root 1.7
2128 root 1.207 /*****************************************************************************/
2129    
2130 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2131 root 1.207
2132 root 1.379 static void noinline ecb_cold
2133 root 1.207 evpipe_init (EV_P)
2134     {
2135 root 1.288 if (!ev_is_active (&pipe_w))
2136 root 1.207 {
2137 root 1.448 int fds [2];
2138    
2139 root 1.336 # if EV_USE_EVENTFD
2140 root 1.448 fds [0] = -1;
2141     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2142     if (fds [1] < 0 && errno == EINVAL)
2143     fds [1] = eventfd (0, 0);
2144    
2145     if (fds [1] < 0)
2146     # endif
2147     {
2148     while (pipe (fds))
2149     ev_syserr ("(libev) error creating signal/async pipe");
2150    
2151     fd_intern (fds [0]);
2152 root 1.220 }
2153 root 1.448
2154     evpipe [0] = fds [0];
2155    
2156     if (evpipe [1] < 0)
2157     evpipe [1] = fds [1]; /* first call, set write fd */
2158 root 1.220 else
2159     {
2160 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2161     /* so that evpipe_write can always rely on its value. */
2162     /* this branch does not do anything sensible on windows, */
2163     /* so must not be executed on windows */
2164 root 1.207
2165 root 1.448 dup2 (fds [1], evpipe [1]);
2166     close (fds [1]);
2167 root 1.220 }
2168 root 1.207
2169 root 1.455 fd_intern (evpipe [1]);
2170    
2171 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2172 root 1.288 ev_io_start (EV_A_ &pipe_w);
2173 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2174 root 1.207 }
2175     }
2176    
2177 root 1.380 inline_speed void
2178 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2179 root 1.207 {
2180 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2181    
2182 root 1.383 if (expect_true (*flag))
2183 root 1.387 return;
2184 root 1.383
2185     *flag = 1;
2186 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2187 root 1.383
2188     pipe_write_skipped = 1;
2189 root 1.378
2190 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2191 root 1.214
2192 root 1.383 if (pipe_write_wanted)
2193     {
2194     int old_errno;
2195 root 1.378
2196 root 1.436 pipe_write_skipped = 0;
2197     ECB_MEMORY_FENCE_RELEASE;
2198 root 1.220
2199 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2200 root 1.380
2201 root 1.220 #if EV_USE_EVENTFD
2202 root 1.448 if (evpipe [0] < 0)
2203 root 1.383 {
2204     uint64_t counter = 1;
2205 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2206 root 1.383 }
2207     else
2208 root 1.220 #endif
2209 root 1.383 {
2210 root 1.427 #ifdef _WIN32
2211     WSABUF buf;
2212     DWORD sent;
2213     buf.buf = &buf;
2214     buf.len = 1;
2215     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2216     #else
2217 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2218 root 1.427 #endif
2219 root 1.383 }
2220 root 1.214
2221 root 1.383 errno = old_errno;
2222 root 1.207 }
2223     }
2224    
2225 root 1.288 /* called whenever the libev signal pipe */
2226     /* got some events (signal, async) */
2227 root 1.207 static void
2228     pipecb (EV_P_ ev_io *iow, int revents)
2229     {
2230 root 1.307 int i;
2231    
2232 root 1.378 if (revents & EV_READ)
2233     {
2234 root 1.220 #if EV_USE_EVENTFD
2235 root 1.448 if (evpipe [0] < 0)
2236 root 1.378 {
2237     uint64_t counter;
2238 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2239 root 1.378 }
2240     else
2241 root 1.220 #endif
2242 root 1.378 {
2243 root 1.427 char dummy[4];
2244     #ifdef _WIN32
2245     WSABUF buf;
2246     DWORD recvd;
2247 root 1.432 DWORD flags = 0;
2248 root 1.427 buf.buf = dummy;
2249     buf.len = sizeof (dummy);
2250 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2251 root 1.427 #else
2252     read (evpipe [0], &dummy, sizeof (dummy));
2253     #endif
2254 root 1.378 }
2255 root 1.220 }
2256 root 1.207
2257 root 1.378 pipe_write_skipped = 0;
2258    
2259 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2260    
2261 root 1.369 #if EV_SIGNAL_ENABLE
2262 root 1.307 if (sig_pending)
2263 root 1.372 {
2264 root 1.307 sig_pending = 0;
2265 root 1.207
2266 root 1.436 ECB_MEMORY_FENCE;
2267 root 1.424
2268 root 1.307 for (i = EV_NSIG - 1; i--; )
2269     if (expect_false (signals [i].pending))
2270     ev_feed_signal_event (EV_A_ i + 1);
2271 root 1.207 }
2272 root 1.369 #endif
2273 root 1.207
2274 root 1.209 #if EV_ASYNC_ENABLE
2275 root 1.307 if (async_pending)
2276 root 1.207 {
2277 root 1.307 async_pending = 0;
2278 root 1.207
2279 root 1.436 ECB_MEMORY_FENCE;
2280 root 1.424
2281 root 1.207 for (i = asynccnt; i--; )
2282     if (asyncs [i]->sent)
2283     {
2284     asyncs [i]->sent = 0;
2285 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2286 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2287     }
2288     }
2289 root 1.209 #endif
2290 root 1.207 }
2291    
2292     /*****************************************************************************/
2293    
2294 root 1.366 void
2295 root 1.420 ev_feed_signal (int signum) EV_THROW
2296 root 1.7 {
2297 root 1.207 #if EV_MULTIPLICITY
2298 root 1.453 EV_P;
2299 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2300 root 1.453 EV_A = signals [signum - 1].loop;
2301 root 1.366
2302     if (!EV_A)
2303     return;
2304 root 1.207 #endif
2305    
2306 root 1.366 signals [signum - 1].pending = 1;
2307     evpipe_write (EV_A_ &sig_pending);
2308     }
2309    
2310     static void
2311     ev_sighandler (int signum)
2312     {
2313 root 1.322 #ifdef _WIN32
2314 root 1.218 signal (signum, ev_sighandler);
2315 root 1.67 #endif
2316    
2317 root 1.366 ev_feed_signal (signum);
2318 root 1.7 }
2319    
2320 root 1.140 void noinline
2321 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2322 root 1.79 {
2323 root 1.80 WL w;
2324    
2325 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2326 root 1.307 return;
2327    
2328     --signum;
2329    
2330 root 1.79 #if EV_MULTIPLICITY
2331 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2332     /* or, likely more useful, feeding a signal nobody is waiting for */
2333 root 1.79
2334 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2335 root 1.306 return;
2336 root 1.307 #endif
2337 root 1.306
2338 root 1.307 signals [signum].pending = 0;
2339 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2340 root 1.79
2341     for (w = signals [signum].head; w; w = w->next)
2342     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2343     }
2344    
2345 root 1.303 #if EV_USE_SIGNALFD
2346     static void
2347     sigfdcb (EV_P_ ev_io *iow, int revents)
2348     {
2349 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2350 root 1.303
2351     for (;;)
2352     {
2353     ssize_t res = read (sigfd, si, sizeof (si));
2354    
2355     /* not ISO-C, as res might be -1, but works with SuS */
2356     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2357     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2358    
2359     if (res < (ssize_t)sizeof (si))
2360     break;
2361     }
2362     }
2363     #endif
2364    
2365 root 1.336 #endif
2366    
2367 root 1.8 /*****************************************************************************/
2368    
2369 root 1.336 #if EV_CHILD_ENABLE
2370 root 1.182 static WL childs [EV_PID_HASHSIZE];
2371 root 1.71
2372 root 1.136 static ev_signal childev;
2373 root 1.59
2374 root 1.206 #ifndef WIFCONTINUED
2375     # define WIFCONTINUED(status) 0
2376     #endif
2377    
2378 root 1.288 /* handle a single child status event */
2379 root 1.284 inline_speed void
2380 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2381 root 1.47 {
2382 root 1.136 ev_child *w;
2383 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2384 root 1.47
2385 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2386 root 1.206 {
2387     if ((w->pid == pid || !w->pid)
2388     && (!traced || (w->flags & 1)))
2389     {
2390 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2391 root 1.206 w->rpid = pid;
2392     w->rstatus = status;
2393     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2394     }
2395     }
2396 root 1.47 }
2397    
2398 root 1.142 #ifndef WCONTINUED
2399     # define WCONTINUED 0
2400     #endif
2401    
2402 root 1.288 /* called on sigchld etc., calls waitpid */
2403 root 1.47 static void
2404 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2405 root 1.22 {
2406     int pid, status;
2407    
2408 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2409     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2410     if (!WCONTINUED
2411     || errno != EINVAL
2412     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2413     return;
2414    
2415 root 1.216 /* make sure we are called again until all children have been reaped */
2416 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2417     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2418 root 1.47
2419 root 1.216 child_reap (EV_A_ pid, pid, status);
2420 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2421 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2422 root 1.22 }
2423    
2424 root 1.45 #endif
2425    
2426 root 1.22 /*****************************************************************************/
2427    
2428 root 1.357 #if EV_USE_IOCP
2429     # include "ev_iocp.c"
2430     #endif
2431 root 1.118 #if EV_USE_PORT
2432     # include "ev_port.c"
2433     #endif
2434 root 1.44 #if EV_USE_KQUEUE
2435     # include "ev_kqueue.c"
2436     #endif
2437 root 1.29 #if EV_USE_EPOLL
2438 root 1.1 # include "ev_epoll.c"
2439     #endif
2440 root 1.59 #if EV_USE_POLL
2441 root 1.41 # include "ev_poll.c"
2442     #endif
2443 root 1.29 #if EV_USE_SELECT
2444 root 1.1 # include "ev_select.c"
2445     #endif
2446    
2447 root 1.379 int ecb_cold
2448 root 1.420 ev_version_major (void) EV_THROW
2449 root 1.24 {
2450     return EV_VERSION_MAJOR;
2451     }
2452    
2453 root 1.379 int ecb_cold
2454 root 1.420 ev_version_minor (void) EV_THROW
2455 root 1.24 {
2456     return EV_VERSION_MINOR;
2457     }
2458    
2459 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2460 root 1.379 int inline_size ecb_cold
2461 root 1.51 enable_secure (void)
2462 root 1.41 {
2463 root 1.103 #ifdef _WIN32
2464 root 1.49 return 0;
2465     #else
2466 root 1.41 return getuid () != geteuid ()
2467     || getgid () != getegid ();
2468 root 1.49 #endif
2469 root 1.41 }
2470    
2471 root 1.379 unsigned int ecb_cold
2472 root 1.420 ev_supported_backends (void) EV_THROW
2473 root 1.129 {
2474 root 1.130 unsigned int flags = 0;
2475 root 1.129
2476     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2477     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2478     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2479     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2480     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2481    
2482     return flags;
2483     }
2484    
2485 root 1.379 unsigned int ecb_cold
2486 root 1.420 ev_recommended_backends (void) EV_THROW
2487 root 1.1 {
2488 root 1.131 unsigned int flags = ev_supported_backends ();
2489 root 1.129
2490     #ifndef __NetBSD__
2491     /* kqueue is borked on everything but netbsd apparently */
2492     /* it usually doesn't work correctly on anything but sockets and pipes */
2493     flags &= ~EVBACKEND_KQUEUE;
2494     #endif
2495     #ifdef __APPLE__
2496 root 1.278 /* only select works correctly on that "unix-certified" platform */
2497     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2498     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2499 root 1.129 #endif
2500 root 1.342 #ifdef __FreeBSD__
2501     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2502     #endif
2503 root 1.129
2504     return flags;
2505 root 1.51 }
2506    
2507 root 1.379 unsigned int ecb_cold
2508 root 1.420 ev_embeddable_backends (void) EV_THROW
2509 root 1.134 {
2510 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2511    
2512 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2513 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2514     flags &= ~EVBACKEND_EPOLL;
2515 root 1.196
2516     return flags;
2517 root 1.134 }
2518    
2519     unsigned int
2520 root 1.420 ev_backend (EV_P) EV_THROW
2521 root 1.130 {
2522     return backend;
2523     }
2524    
2525 root 1.338 #if EV_FEATURE_API
2526 root 1.162 unsigned int
2527 root 1.420 ev_iteration (EV_P) EV_THROW
2528 root 1.162 {
2529     return loop_count;
2530     }
2531    
2532 root 1.294 unsigned int
2533 root 1.420 ev_depth (EV_P) EV_THROW
2534 root 1.294 {
2535     return loop_depth;
2536     }
2537    
2538 root 1.193 void
2539 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2540 root 1.193 {
2541     io_blocktime = interval;
2542     }
2543    
2544     void
2545 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2546 root 1.193 {
2547     timeout_blocktime = interval;
2548     }
2549    
2550 root 1.297 void
2551 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2552 root 1.297 {
2553     userdata = data;
2554     }
2555    
2556     void *
2557 root 1.420 ev_userdata (EV_P) EV_THROW
2558 root 1.297 {
2559     return userdata;
2560     }
2561    
2562 root 1.379 void
2563 root 1.461 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2564 root 1.297 {
2565     invoke_cb = invoke_pending_cb;
2566     }
2567    
2568 root 1.379 void
2569 root 1.461 ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2570 root 1.297 {
2571 root 1.298 release_cb = release;
2572     acquire_cb = acquire;
2573 root 1.297 }
2574     #endif
2575    
2576 root 1.288 /* initialise a loop structure, must be zero-initialised */
2577 root 1.379 static void noinline ecb_cold
2578 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2579 root 1.51 {
2580 root 1.130 if (!backend)
2581 root 1.23 {
2582 root 1.366 origflags = flags;
2583    
2584 root 1.279 #if EV_USE_REALTIME
2585     if (!have_realtime)
2586     {
2587     struct timespec ts;
2588    
2589     if (!clock_gettime (CLOCK_REALTIME, &ts))
2590     have_realtime = 1;
2591     }
2592     #endif
2593    
2594 root 1.29 #if EV_USE_MONOTONIC
2595 root 1.279 if (!have_monotonic)
2596     {
2597     struct timespec ts;
2598    
2599     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2600     have_monotonic = 1;
2601     }
2602 root 1.1 #endif
2603    
2604 root 1.306 /* pid check not overridable via env */
2605     #ifndef _WIN32
2606     if (flags & EVFLAG_FORKCHECK)
2607     curpid = getpid ();
2608     #endif
2609    
2610     if (!(flags & EVFLAG_NOENV)
2611     && !enable_secure ()
2612     && getenv ("LIBEV_FLAGS"))
2613     flags = atoi (getenv ("LIBEV_FLAGS"));
2614    
2615 root 1.378 ev_rt_now = ev_time ();
2616     mn_now = get_clock ();
2617     now_floor = mn_now;
2618     rtmn_diff = ev_rt_now - mn_now;
2619 root 1.338 #if EV_FEATURE_API
2620 root 1.378 invoke_cb = ev_invoke_pending;
2621 root 1.297 #endif
2622 root 1.1
2623 root 1.378 io_blocktime = 0.;
2624     timeout_blocktime = 0.;
2625     backend = 0;
2626     backend_fd = -1;
2627     sig_pending = 0;
2628 root 1.307 #if EV_ASYNC_ENABLE
2629 root 1.378 async_pending = 0;
2630 root 1.307 #endif
2631 root 1.378 pipe_write_skipped = 0;
2632     pipe_write_wanted = 0;
2633 root 1.448 evpipe [0] = -1;
2634     evpipe [1] = -1;
2635 root 1.209 #if EV_USE_INOTIFY
2636 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2637 root 1.209 #endif
2638 root 1.303 #if EV_USE_SIGNALFD
2639 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2640 root 1.303 #endif
2641 root 1.193
2642 root 1.366 if (!(flags & EVBACKEND_MASK))
2643 root 1.129 flags |= ev_recommended_backends ();
2644 root 1.41
2645 root 1.357 #if EV_USE_IOCP
2646     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2647     #endif
2648 root 1.118 #if EV_USE_PORT
2649 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2650 root 1.118 #endif
2651 root 1.44 #if EV_USE_KQUEUE
2652 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2653 root 1.44 #endif
2654 root 1.29 #if EV_USE_EPOLL
2655 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2656 root 1.41 #endif
2657 root 1.59 #if EV_USE_POLL
2658 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2659 root 1.1 #endif
2660 root 1.29 #if EV_USE_SELECT
2661 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2662 root 1.1 #endif
2663 root 1.70
2664 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2665    
2666 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2667 root 1.288 ev_init (&pipe_w, pipecb);
2668     ev_set_priority (&pipe_w, EV_MAXPRI);
2669 root 1.336 #endif
2670 root 1.56 }
2671     }
2672    
2673 root 1.288 /* free up a loop structure */
2674 root 1.379 void ecb_cold
2675 root 1.422 ev_loop_destroy (EV_P)
2676 root 1.56 {
2677 root 1.65 int i;
2678    
2679 root 1.364 #if EV_MULTIPLICITY
2680 root 1.363 /* mimic free (0) */
2681     if (!EV_A)
2682     return;
2683 root 1.364 #endif
2684 root 1.363
2685 root 1.361 #if EV_CLEANUP_ENABLE
2686     /* queue cleanup watchers (and execute them) */
2687     if (expect_false (cleanupcnt))
2688     {
2689     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2690     EV_INVOKE_PENDING;
2691     }
2692     #endif
2693    
2694 root 1.359 #if EV_CHILD_ENABLE
2695 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2696 root 1.359 {
2697     ev_ref (EV_A); /* child watcher */
2698     ev_signal_stop (EV_A_ &childev);
2699     }
2700     #endif
2701    
2702 root 1.288 if (ev_is_active (&pipe_w))
2703 root 1.207 {
2704 root 1.303 /*ev_ref (EV_A);*/
2705     /*ev_io_stop (EV_A_ &pipe_w);*/
2706 root 1.207
2707 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2708     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2709 root 1.207 }
2710    
2711 root 1.303 #if EV_USE_SIGNALFD
2712     if (ev_is_active (&sigfd_w))
2713 root 1.317 close (sigfd);
2714 root 1.303 #endif
2715    
2716 root 1.152 #if EV_USE_INOTIFY
2717     if (fs_fd >= 0)
2718     close (fs_fd);
2719     #endif
2720    
2721     if (backend_fd >= 0)
2722     close (backend_fd);
2723    
2724 root 1.357 #if EV_USE_IOCP
2725     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2726     #endif
2727 root 1.118 #if EV_USE_PORT
2728 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2729 root 1.118 #endif
2730 root 1.56 #if EV_USE_KQUEUE
2731 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2732 root 1.56 #endif
2733     #if EV_USE_EPOLL
2734 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2735 root 1.56 #endif
2736 root 1.59 #if EV_USE_POLL
2737 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2738 root 1.56 #endif
2739     #if EV_USE_SELECT
2740 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2741 root 1.56 #endif
2742 root 1.1
2743 root 1.65 for (i = NUMPRI; i--; )
2744 root 1.164 {
2745     array_free (pending, [i]);
2746     #if EV_IDLE_ENABLE
2747     array_free (idle, [i]);
2748     #endif
2749     }
2750 root 1.65
2751 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2752 root 1.186
2753 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2754 root 1.284 array_free (rfeed, EMPTY);
2755 root 1.164 array_free (fdchange, EMPTY);
2756     array_free (timer, EMPTY);
2757 root 1.140 #if EV_PERIODIC_ENABLE
2758 root 1.164 array_free (periodic, EMPTY);
2759 root 1.93 #endif
2760 root 1.187 #if EV_FORK_ENABLE
2761     array_free (fork, EMPTY);
2762     #endif
2763 root 1.360 #if EV_CLEANUP_ENABLE
2764     array_free (cleanup, EMPTY);
2765     #endif
2766 root 1.164 array_free (prepare, EMPTY);
2767     array_free (check, EMPTY);
2768 root 1.209 #if EV_ASYNC_ENABLE
2769     array_free (async, EMPTY);
2770     #endif
2771 root 1.65
2772 root 1.130 backend = 0;
2773 root 1.359
2774     #if EV_MULTIPLICITY
2775     if (ev_is_default_loop (EV_A))
2776     #endif
2777     ev_default_loop_ptr = 0;
2778     #if EV_MULTIPLICITY
2779     else
2780     ev_free (EV_A);
2781     #endif
2782 root 1.56 }
2783 root 1.22
2784 root 1.226 #if EV_USE_INOTIFY
2785 root 1.284 inline_size void infy_fork (EV_P);
2786 root 1.226 #endif
2787 root 1.154
2788 root 1.284 inline_size void
2789 root 1.56 loop_fork (EV_P)
2790     {
2791 root 1.118 #if EV_USE_PORT
2792 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2793 root 1.56 #endif
2794     #if EV_USE_KQUEUE
2795 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2796 root 1.45 #endif
2797 root 1.118 #if EV_USE_EPOLL
2798 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2799 root 1.118 #endif
2800 root 1.154 #if EV_USE_INOTIFY
2801     infy_fork (EV_A);
2802     #endif
2803 root 1.70
2804 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2805 root 1.288 if (ev_is_active (&pipe_w))
2806 root 1.70 {
2807 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2808 root 1.70
2809     ev_ref (EV_A);
2810 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2811 root 1.220
2812     if (evpipe [0] >= 0)
2813 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
2814 root 1.207
2815     evpipe_init (EV_A);
2816 root 1.443 /* iterate over everything, in case we missed something before */
2817     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2818 root 1.448 }
2819 root 1.337 #endif
2820 root 1.70
2821     postfork = 0;
2822 root 1.1 }
2823    
2824 root 1.55 #if EV_MULTIPLICITY
2825 root 1.250
2826 root 1.379 struct ev_loop * ecb_cold
2827 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2828 root 1.54 {
2829 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2830 root 1.69
2831 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2832 root 1.108 loop_init (EV_A_ flags);
2833 root 1.56
2834 root 1.130 if (ev_backend (EV_A))
2835 root 1.306 return EV_A;
2836 root 1.54
2837 root 1.359 ev_free (EV_A);
2838 root 1.55 return 0;
2839 root 1.54 }
2840    
2841 root 1.297 #endif /* multiplicity */
2842 root 1.248
2843     #if EV_VERIFY
2844 root 1.379 static void noinline ecb_cold
2845 root 1.251 verify_watcher (EV_P_ W w)
2846     {
2847 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2848 root 1.251
2849     if (w->pending)
2850 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2851 root 1.251 }
2852    
2853 root 1.379 static void noinline ecb_cold
2854 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2855     {
2856     int i;
2857    
2858     for (i = HEAP0; i < N + HEAP0; ++i)
2859     {
2860 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2861     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2862     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2863 root 1.251
2864     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2865     }
2866     }
2867    
2868 root 1.379 static void noinline ecb_cold
2869 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2870 root 1.248 {
2871     while (cnt--)
2872 root 1.251 {
2873 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2874 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2875     }
2876 root 1.248 }
2877 root 1.250 #endif
2878 root 1.248
2879 root 1.338 #if EV_FEATURE_API
2880 root 1.379 void ecb_cold
2881 root 1.420 ev_verify (EV_P) EV_THROW
2882 root 1.248 {
2883 root 1.250 #if EV_VERIFY
2884 root 1.429 int i;
2885 root 1.426 WL w, w2;
2886 root 1.251
2887     assert (activecnt >= -1);
2888    
2889     assert (fdchangemax >= fdchangecnt);
2890     for (i = 0; i < fdchangecnt; ++i)
2891 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2892 root 1.251
2893     assert (anfdmax >= 0);
2894 root 1.429 for (i = 0; i < anfdmax; ++i)
2895     {
2896     int j = 0;
2897    
2898     for (w = w2 = anfds [i].head; w; w = w->next)
2899     {
2900     verify_watcher (EV_A_ (W)w);
2901 root 1.426
2902 root 1.429 if (j++ & 1)
2903     {
2904     assert (("libev: io watcher list contains a loop", w != w2));
2905     w2 = w2->next;
2906     }
2907 root 1.426
2908 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2909     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2910     }
2911     }
2912 root 1.251
2913     assert (timermax >= timercnt);
2914     verify_heap (EV_A_ timers, timercnt);
2915 root 1.248
2916     #if EV_PERIODIC_ENABLE
2917 root 1.251 assert (periodicmax >= periodiccnt);
2918     verify_heap (EV_A_ periodics, periodiccnt);
2919 root 1.248 #endif
2920    
2921 root 1.251 for (i = NUMPRI; i--; )
2922     {
2923     assert (pendingmax [i] >= pendingcnt [i]);
2924 root 1.248 #if EV_IDLE_ENABLE
2925 root 1.252 assert (idleall >= 0);
2926 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2927     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2928 root 1.248 #endif
2929 root 1.251 }
2930    
2931 root 1.248 #if EV_FORK_ENABLE
2932 root 1.251 assert (forkmax >= forkcnt);
2933     array_verify (EV_A_ (W *)forks, forkcnt);
2934 root 1.248 #endif
2935 root 1.251
2936 root 1.360 #if EV_CLEANUP_ENABLE
2937     assert (cleanupmax >= cleanupcnt);
2938     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2939     #endif
2940    
2941 root 1.250 #if EV_ASYNC_ENABLE
2942 root 1.251 assert (asyncmax >= asynccnt);
2943     array_verify (EV_A_ (W *)asyncs, asynccnt);
2944 root 1.250 #endif
2945 root 1.251
2946 root 1.337 #if EV_PREPARE_ENABLE
2947 root 1.251 assert (preparemax >= preparecnt);
2948     array_verify (EV_A_ (W *)prepares, preparecnt);
2949 root 1.337 #endif
2950 root 1.251
2951 root 1.337 #if EV_CHECK_ENABLE
2952 root 1.251 assert (checkmax >= checkcnt);
2953     array_verify (EV_A_ (W *)checks, checkcnt);
2954 root 1.337 #endif
2955 root 1.251
2956     # if 0
2957 root 1.336 #if EV_CHILD_ENABLE
2958 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2959 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2960 root 1.336 #endif
2961 root 1.251 # endif
2962 root 1.248 #endif
2963     }
2964 root 1.297 #endif
2965 root 1.56
2966     #if EV_MULTIPLICITY
2967 root 1.379 struct ev_loop * ecb_cold
2968 root 1.54 #else
2969     int
2970 root 1.358 #endif
2971 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
2972 root 1.54 {
2973 root 1.116 if (!ev_default_loop_ptr)
2974 root 1.56 {
2975     #if EV_MULTIPLICITY
2976 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
2977 root 1.56 #else
2978 ayin 1.117 ev_default_loop_ptr = 1;
2979 root 1.54 #endif
2980    
2981 root 1.110 loop_init (EV_A_ flags);
2982 root 1.56
2983 root 1.130 if (ev_backend (EV_A))
2984 root 1.56 {
2985 root 1.336 #if EV_CHILD_ENABLE
2986 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
2987     ev_set_priority (&childev, EV_MAXPRI);
2988     ev_signal_start (EV_A_ &childev);
2989     ev_unref (EV_A); /* child watcher should not keep loop alive */
2990     #endif
2991     }
2992     else
2993 root 1.116 ev_default_loop_ptr = 0;
2994 root 1.56 }
2995 root 1.8
2996 root 1.116 return ev_default_loop_ptr;
2997 root 1.1 }
2998    
2999 root 1.24 void
3000 root 1.420 ev_loop_fork (EV_P) EV_THROW
3001 root 1.1 {
3002 root 1.440 postfork = 1;
3003 root 1.1 }
3004    
3005 root 1.8 /*****************************************************************************/
3006    
3007 root 1.168 void
3008     ev_invoke (EV_P_ void *w, int revents)
3009     {
3010     EV_CB_INVOKE ((W)w, revents);
3011     }
3012    
3013 root 1.300 unsigned int
3014 root 1.420 ev_pending_count (EV_P) EV_THROW
3015 root 1.300 {
3016     int pri;
3017     unsigned int count = 0;
3018    
3019     for (pri = NUMPRI; pri--; )
3020     count += pendingcnt [pri];
3021    
3022     return count;
3023     }
3024    
3025 root 1.297 void noinline
3026 root 1.296 ev_invoke_pending (EV_P)
3027 root 1.1 {
3028 root 1.445 pendingpri = NUMPRI;
3029    
3030     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3031     {
3032     --pendingpri;
3033    
3034     while (pendingcnt [pendingpri])
3035     {
3036     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3037 root 1.1
3038 root 1.445 p->w->pending = 0;
3039     EV_CB_INVOKE (p->w, p->events);
3040     EV_FREQUENT_CHECK;
3041     }
3042     }
3043 root 1.1 }
3044    
3045 root 1.234 #if EV_IDLE_ENABLE
3046 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3047     /* only when higher priorities are idle" logic */
3048 root 1.284 inline_size void
3049 root 1.234 idle_reify (EV_P)
3050     {
3051     if (expect_false (idleall))
3052     {
3053     int pri;
3054    
3055     for (pri = NUMPRI; pri--; )
3056     {
3057     if (pendingcnt [pri])
3058     break;
3059    
3060     if (idlecnt [pri])
3061     {
3062     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3063     break;
3064     }
3065     }
3066     }
3067     }
3068     #endif
3069    
3070 root 1.288 /* make timers pending */
3071 root 1.284 inline_size void
3072 root 1.51 timers_reify (EV_P)
3073 root 1.1 {
3074 root 1.248 EV_FREQUENT_CHECK;
3075    
3076 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3077 root 1.1 {
3078 root 1.284 do
3079     {
3080     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3081 root 1.1
3082 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3083    
3084     /* first reschedule or stop timer */
3085     if (w->repeat)
3086     {
3087     ev_at (w) += w->repeat;
3088     if (ev_at (w) < mn_now)
3089     ev_at (w) = mn_now;
3090 root 1.61
3091 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3092 root 1.90
3093 root 1.284 ANHE_at_cache (timers [HEAP0]);
3094     downheap (timers, timercnt, HEAP0);
3095     }
3096     else
3097     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3098 root 1.243
3099 root 1.284 EV_FREQUENT_CHECK;
3100     feed_reverse (EV_A_ (W)w);
3101 root 1.12 }
3102 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3103 root 1.30
3104 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3105 root 1.12 }
3106     }
3107 root 1.4
3108 root 1.140 #if EV_PERIODIC_ENABLE
3109 root 1.370
3110 root 1.373 static void noinline
3111 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3112     {
3113 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3114     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3115    
3116     /* the above almost always errs on the low side */
3117     while (at <= ev_rt_now)
3118     {
3119     ev_tstamp nat = at + w->interval;
3120    
3121     /* when resolution fails us, we use ev_rt_now */
3122     if (expect_false (nat == at))
3123     {
3124     at = ev_rt_now;
3125     break;
3126     }
3127    
3128     at = nat;
3129     }
3130    
3131     ev_at (w) = at;
3132 root 1.370 }
3133    
3134 root 1.288 /* make periodics pending */
3135 root 1.284 inline_size void
3136 root 1.51 periodics_reify (EV_P)
3137 root 1.12 {
3138 root 1.248 EV_FREQUENT_CHECK;
3139 root 1.250
3140 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3141 root 1.12 {
3142 root 1.284 do
3143     {
3144     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3145 root 1.1
3146 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3147 root 1.61
3148 root 1.284 /* first reschedule or stop timer */
3149     if (w->reschedule_cb)
3150     {
3151     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3152 root 1.243
3153 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3154 root 1.243
3155 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3156     downheap (periodics, periodiccnt, HEAP0);
3157     }
3158     else if (w->interval)
3159 root 1.246 {
3160 root 1.370 periodic_recalc (EV_A_ w);
3161 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3162     downheap (periodics, periodiccnt, HEAP0);
3163 root 1.246 }
3164 root 1.284 else
3165     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3166 root 1.243
3167 root 1.284 EV_FREQUENT_CHECK;
3168     feed_reverse (EV_A_ (W)w);
3169 root 1.1 }
3170 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3171 root 1.12
3172 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3173 root 1.12 }
3174     }
3175    
3176 root 1.288 /* simply recalculate all periodics */
3177 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3178 root 1.379 static void noinline ecb_cold
3179 root 1.54 periodics_reschedule (EV_P)
3180 root 1.12 {
3181     int i;
3182    
3183 root 1.13 /* adjust periodics after time jump */
3184 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3185 root 1.12 {
3186 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3187 root 1.12
3188 root 1.77 if (w->reschedule_cb)
3189 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3190 root 1.77 else if (w->interval)
3191 root 1.370 periodic_recalc (EV_A_ w);
3192 root 1.242
3193 root 1.248 ANHE_at_cache (periodics [i]);
3194 root 1.77 }
3195 root 1.12
3196 root 1.248 reheap (periodics, periodiccnt);
3197 root 1.1 }
3198 root 1.93 #endif
3199 root 1.1
3200 root 1.288 /* adjust all timers by a given offset */
3201 root 1.379 static void noinline ecb_cold
3202 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3203     {
3204     int i;
3205    
3206     for (i = 0; i < timercnt; ++i)
3207     {
3208     ANHE *he = timers + i + HEAP0;
3209     ANHE_w (*he)->at += adjust;
3210     ANHE_at_cache (*he);
3211     }
3212     }
3213    
3214 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3215 root 1.324 /* also detect if there was a timejump, and act accordingly */
3216 root 1.284 inline_speed void
3217 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3218 root 1.4 {
3219 root 1.40 #if EV_USE_MONOTONIC
3220     if (expect_true (have_monotonic))
3221     {
3222 root 1.289 int i;
3223 root 1.178 ev_tstamp odiff = rtmn_diff;
3224    
3225     mn_now = get_clock ();
3226    
3227     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3228     /* interpolate in the meantime */
3229     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3230 root 1.40 {
3231 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3232     return;
3233     }
3234    
3235     now_floor = mn_now;
3236     ev_rt_now = ev_time ();
3237 root 1.4
3238 root 1.178 /* loop a few times, before making important decisions.
3239     * on the choice of "4": one iteration isn't enough,
3240     * in case we get preempted during the calls to
3241     * ev_time and get_clock. a second call is almost guaranteed
3242     * to succeed in that case, though. and looping a few more times
3243     * doesn't hurt either as we only do this on time-jumps or
3244     * in the unlikely event of having been preempted here.
3245     */
3246     for (i = 4; --i; )
3247     {
3248 root 1.373 ev_tstamp diff;
3249 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3250 root 1.4
3251 root 1.373 diff = odiff - rtmn_diff;
3252    
3253     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3254 root 1.178 return; /* all is well */
3255 root 1.4
3256 root 1.178 ev_rt_now = ev_time ();
3257     mn_now = get_clock ();
3258     now_floor = mn_now;
3259     }
3260 root 1.4
3261 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3262     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3263 root 1.140 # if EV_PERIODIC_ENABLE
3264 root 1.178 periodics_reschedule (EV_A);
3265 root 1.93 # endif
3266 root 1.4 }
3267     else
3268 root 1.40 #endif
3269 root 1.4 {
3270 root 1.85 ev_rt_now = ev_time ();
3271 root 1.40
3272 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3273 root 1.13 {
3274 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3275     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3276 root 1.140 #if EV_PERIODIC_ENABLE
3277 root 1.54 periodics_reschedule (EV_A);
3278 root 1.93 #endif
3279 root 1.13 }
3280 root 1.4
3281 root 1.85 mn_now = ev_rt_now;
3282 root 1.4 }
3283     }
3284    
3285 root 1.418 int
3286 root 1.353 ev_run (EV_P_ int flags)
3287 root 1.1 {
3288 root 1.338 #if EV_FEATURE_API
3289 root 1.294 ++loop_depth;
3290 root 1.297 #endif
3291 root 1.294
3292 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3293 root 1.298
3294 root 1.353 loop_done = EVBREAK_CANCEL;
3295 root 1.1
3296 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3297 root 1.158
3298 root 1.161 do
3299 root 1.9 {
3300 root 1.250 #if EV_VERIFY >= 2
3301 root 1.340 ev_verify (EV_A);
3302 root 1.250 #endif
3303    
3304 root 1.158 #ifndef _WIN32
3305     if (expect_false (curpid)) /* penalise the forking check even more */
3306     if (expect_false (getpid () != curpid))
3307     {
3308     curpid = getpid ();
3309     postfork = 1;
3310     }
3311     #endif
3312    
3313 root 1.157 #if EV_FORK_ENABLE
3314     /* we might have forked, so queue fork handlers */
3315     if (expect_false (postfork))
3316     if (forkcnt)
3317     {
3318     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3319 root 1.297 EV_INVOKE_PENDING;
3320 root 1.157 }
3321     #endif
3322 root 1.147
3323 root 1.337 #if EV_PREPARE_ENABLE
3324 root 1.170 /* queue prepare watchers (and execute them) */
3325 root 1.40 if (expect_false (preparecnt))
3326 root 1.20 {
3327 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3328 root 1.297 EV_INVOKE_PENDING;
3329 root 1.20 }
3330 root 1.337 #endif
3331 root 1.9
3332 root 1.298 if (expect_false (loop_done))
3333     break;
3334    
3335 root 1.70 /* we might have forked, so reify kernel state if necessary */
3336     if (expect_false (postfork))
3337     loop_fork (EV_A);
3338    
3339 root 1.1 /* update fd-related kernel structures */
3340 root 1.51 fd_reify (EV_A);
3341 root 1.1
3342     /* calculate blocking time */
3343 root 1.135 {
3344 root 1.193 ev_tstamp waittime = 0.;
3345     ev_tstamp sleeptime = 0.;
3346 root 1.12
3347 root 1.353 /* remember old timestamp for io_blocktime calculation */
3348     ev_tstamp prev_mn_now = mn_now;
3349 root 1.293
3350 root 1.353 /* update time to cancel out callback processing overhead */
3351     time_update (EV_A_ 1e100);
3352 root 1.135
3353 root 1.378 /* from now on, we want a pipe-wake-up */
3354     pipe_write_wanted = 1;
3355    
3356 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3357 root 1.383
3358 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3359 root 1.353 {
3360 root 1.287 waittime = MAX_BLOCKTIME;
3361    
3362 root 1.135 if (timercnt)
3363     {
3364 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3365 root 1.193 if (waittime > to) waittime = to;
3366 root 1.135 }
3367 root 1.4
3368 root 1.140 #if EV_PERIODIC_ENABLE
3369 root 1.135 if (periodiccnt)
3370     {
3371 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3372 root 1.193 if (waittime > to) waittime = to;
3373 root 1.135 }
3374 root 1.93 #endif
3375 root 1.4
3376 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3377 root 1.193 if (expect_false (waittime < timeout_blocktime))
3378     waittime = timeout_blocktime;
3379    
3380 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3381     /* to pass a minimum nonzero value to the backend */
3382     if (expect_false (waittime < backend_mintime))
3383     waittime = backend_mintime;
3384    
3385 root 1.293 /* extra check because io_blocktime is commonly 0 */
3386     if (expect_false (io_blocktime))
3387     {
3388     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3389 root 1.193
3390 root 1.376 if (sleeptime > waittime - backend_mintime)
3391     sleeptime = waittime - backend_mintime;
3392 root 1.193
3393 root 1.293 if (expect_true (sleeptime > 0.))
3394     {
3395     ev_sleep (sleeptime);
3396     waittime -= sleeptime;
3397     }
3398 root 1.193 }
3399 root 1.135 }
3400 root 1.1
3401 root 1.338 #if EV_FEATURE_API
3402 root 1.162 ++loop_count;
3403 root 1.297 #endif
3404 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3405 root 1.193 backend_poll (EV_A_ waittime);
3406 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3407 root 1.178
3408 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3409 root 1.378
3410 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3411 root 1.378 if (pipe_write_skipped)
3412     {
3413     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3414     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3415     }
3416    
3417    
3418 root 1.178 /* update ev_rt_now, do magic */
3419 root 1.193 time_update (EV_A_ waittime + sleeptime);
3420 root 1.135 }
3421 root 1.1
3422 root 1.9 /* queue pending timers and reschedule them */
3423 root 1.51 timers_reify (EV_A); /* relative timers called last */
3424 root 1.140 #if EV_PERIODIC_ENABLE
3425 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3426 root 1.93 #endif
3427 root 1.1
3428 root 1.164 #if EV_IDLE_ENABLE
3429 root 1.137 /* queue idle watchers unless other events are pending */
3430 root 1.164 idle_reify (EV_A);
3431     #endif
3432 root 1.9
3433 root 1.337 #if EV_CHECK_ENABLE
3434 root 1.20 /* queue check watchers, to be executed first */
3435 root 1.123 if (expect_false (checkcnt))
3436 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3437 root 1.337 #endif
3438 root 1.9
3439 root 1.297 EV_INVOKE_PENDING;
3440 root 1.1 }
3441 root 1.219 while (expect_true (
3442     activecnt
3443     && !loop_done
3444 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3445 root 1.219 ));
3446 root 1.13
3447 root 1.353 if (loop_done == EVBREAK_ONE)
3448     loop_done = EVBREAK_CANCEL;
3449 root 1.294
3450 root 1.338 #if EV_FEATURE_API
3451 root 1.294 --loop_depth;
3452 root 1.297 #endif
3453 root 1.418
3454     return activecnt;
3455 root 1.51 }
3456    
3457     void
3458 root 1.420 ev_break (EV_P_ int how) EV_THROW
3459 root 1.51 {
3460     loop_done = how;
3461 root 1.1 }
3462    
3463 root 1.285 void
3464 root 1.420 ev_ref (EV_P) EV_THROW
3465 root 1.285 {
3466     ++activecnt;
3467     }
3468    
3469     void
3470 root 1.420 ev_unref (EV_P) EV_THROW
3471 root 1.285 {
3472     --activecnt;
3473     }
3474    
3475     void
3476 root 1.420 ev_now_update (EV_P) EV_THROW
3477 root 1.285 {
3478     time_update (EV_A_ 1e100);
3479     }
3480    
3481     void
3482 root 1.420 ev_suspend (EV_P) EV_THROW
3483 root 1.285 {
3484     ev_now_update (EV_A);
3485     }
3486    
3487     void
3488 root 1.420 ev_resume (EV_P) EV_THROW
3489 root 1.285 {
3490     ev_tstamp mn_prev = mn_now;
3491    
3492     ev_now_update (EV_A);
3493     timers_reschedule (EV_A_ mn_now - mn_prev);
3494 root 1.286 #if EV_PERIODIC_ENABLE
3495 root 1.288 /* TODO: really do this? */
3496 root 1.285 periodics_reschedule (EV_A);
3497 root 1.286 #endif
3498 root 1.285 }
3499    
3500 root 1.8 /*****************************************************************************/
3501 root 1.288 /* singly-linked list management, used when the expected list length is short */
3502 root 1.8
3503 root 1.284 inline_size void
3504 root 1.10 wlist_add (WL *head, WL elem)
3505 root 1.1 {
3506     elem->next = *head;
3507     *head = elem;
3508     }
3509    
3510 root 1.284 inline_size void
3511 root 1.10 wlist_del (WL *head, WL elem)
3512 root 1.1 {
3513     while (*head)
3514     {
3515 root 1.307 if (expect_true (*head == elem))
3516 root 1.1 {
3517     *head = elem->next;
3518 root 1.307 break;
3519 root 1.1 }
3520    
3521     head = &(*head)->next;
3522     }
3523     }
3524    
3525 root 1.288 /* internal, faster, version of ev_clear_pending */
3526 root 1.284 inline_speed void
3527 root 1.166 clear_pending (EV_P_ W w)
3528 root 1.16 {
3529     if (w->pending)
3530     {
3531 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3532 root 1.16 w->pending = 0;
3533     }
3534     }
3535    
3536 root 1.167 int
3537 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3538 root 1.166 {
3539     W w_ = (W)w;
3540     int pending = w_->pending;
3541    
3542 root 1.172 if (expect_true (pending))
3543     {
3544     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3545 root 1.288 p->w = (W)&pending_w;
3546 root 1.172 w_->pending = 0;
3547     return p->events;
3548     }
3549     else
3550 root 1.167 return 0;
3551 root 1.166 }
3552    
3553 root 1.284 inline_size void
3554 root 1.164 pri_adjust (EV_P_ W w)
3555     {
3556 root 1.295 int pri = ev_priority (w);
3557 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3558     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3559 root 1.295 ev_set_priority (w, pri);
3560 root 1.164 }
3561    
3562 root 1.284 inline_speed void
3563 root 1.51 ev_start (EV_P_ W w, int active)
3564 root 1.1 {
3565 root 1.164 pri_adjust (EV_A_ w);
3566 root 1.1 w->active = active;
3567 root 1.51 ev_ref (EV_A);
3568 root 1.1 }
3569    
3570 root 1.284 inline_size void
3571 root 1.51 ev_stop (EV_P_ W w)
3572 root 1.1 {
3573 root 1.51 ev_unref (EV_A);
3574 root 1.1 w->active = 0;
3575     }
3576    
3577 root 1.8 /*****************************************************************************/
3578    
3579 root 1.171 void noinline
3580 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3581 root 1.1 {
3582 root 1.37 int fd = w->fd;
3583    
3584 root 1.123 if (expect_false (ev_is_active (w)))
3585 root 1.1 return;
3586    
3587 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3588 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3589 root 1.33
3590 root 1.248 EV_FREQUENT_CHECK;
3591    
3592 root 1.51 ev_start (EV_A_ (W)w, 1);
3593 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3594 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3595 root 1.1
3596 root 1.426 /* common bug, apparently */
3597     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3598    
3599 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3600 root 1.281 w->events &= ~EV__IOFDSET;
3601 root 1.248
3602     EV_FREQUENT_CHECK;
3603 root 1.1 }
3604    
3605 root 1.171 void noinline
3606 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3607 root 1.1 {
3608 root 1.166 clear_pending (EV_A_ (W)w);
3609 root 1.123 if (expect_false (!ev_is_active (w)))
3610 root 1.1 return;
3611    
3612 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3613 root 1.89
3614 root 1.248 EV_FREQUENT_CHECK;
3615    
3616 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3617 root 1.51 ev_stop (EV_A_ (W)w);
3618 root 1.1
3619 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3620 root 1.248
3621     EV_FREQUENT_CHECK;
3622 root 1.1 }
3623    
3624 root 1.171 void noinline
3625 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3626 root 1.1 {
3627 root 1.123 if (expect_false (ev_is_active (w)))
3628 root 1.1 return;
3629    
3630 root 1.228 ev_at (w) += mn_now;
3631 root 1.12
3632 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3633 root 1.13
3634 root 1.248 EV_FREQUENT_CHECK;
3635    
3636     ++timercnt;
3637     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3638 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3639     ANHE_w (timers [ev_active (w)]) = (WT)w;
3640 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3641 root 1.235 upheap (timers, ev_active (w));
3642 root 1.62
3643 root 1.248 EV_FREQUENT_CHECK;
3644    
3645 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3646 root 1.12 }
3647    
3648 root 1.171 void noinline
3649 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3650 root 1.12 {
3651 root 1.166 clear_pending (EV_A_ (W)w);
3652 root 1.123 if (expect_false (!ev_is_active (w)))
3653 root 1.12 return;
3654    
3655 root 1.248 EV_FREQUENT_CHECK;
3656    
3657 root 1.230 {
3658     int active = ev_active (w);
3659 root 1.62
3660 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3661 root 1.151
3662 root 1.248 --timercnt;
3663    
3664     if (expect_true (active < timercnt + HEAP0))
3665 root 1.151 {
3666 root 1.248 timers [active] = timers [timercnt + HEAP0];
3667 root 1.181 adjustheap (timers, timercnt, active);
3668 root 1.151 }
3669 root 1.248 }
3670 root 1.228
3671     ev_at (w) -= mn_now;
3672 root 1.14
3673 root 1.51 ev_stop (EV_A_ (W)w);
3674 root 1.328
3675     EV_FREQUENT_CHECK;
3676 root 1.12 }
3677 root 1.4
3678 root 1.171 void noinline
3679 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3680 root 1.14 {
3681 root 1.248 EV_FREQUENT_CHECK;
3682    
3683 root 1.407 clear_pending (EV_A_ (W)w);
3684 root 1.406
3685 root 1.14 if (ev_is_active (w))
3686     {
3687     if (w->repeat)
3688 root 1.99 {
3689 root 1.228 ev_at (w) = mn_now + w->repeat;
3690 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3691 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3692 root 1.99 }
3693 root 1.14 else
3694 root 1.51 ev_timer_stop (EV_A_ w);
3695 root 1.14 }
3696     else if (w->repeat)
3697 root 1.112 {
3698 root 1.229 ev_at (w) = w->repeat;
3699 root 1.112 ev_timer_start (EV_A_ w);
3700     }
3701 root 1.248
3702     EV_FREQUENT_CHECK;
3703 root 1.14 }
3704    
3705 root 1.301 ev_tstamp
3706 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3707 root 1.301 {
3708     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3709     }
3710    
3711 root 1.140 #if EV_PERIODIC_ENABLE
3712 root 1.171 void noinline
3713 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3714 root 1.12 {
3715 root 1.123 if (expect_false (ev_is_active (w)))
3716 root 1.12 return;
3717 root 1.1
3718 root 1.77 if (w->reschedule_cb)
3719 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3720 root 1.77 else if (w->interval)
3721     {
3722 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3723 root 1.370 periodic_recalc (EV_A_ w);
3724 root 1.77 }
3725 root 1.173 else
3726 root 1.228 ev_at (w) = w->offset;
3727 root 1.12
3728 root 1.248 EV_FREQUENT_CHECK;
3729    
3730     ++periodiccnt;
3731     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3732 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3733     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3734 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3735 root 1.235 upheap (periodics, ev_active (w));
3736 root 1.62
3737 root 1.248 EV_FREQUENT_CHECK;
3738    
3739 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3740 root 1.1 }
3741    
3742 root 1.171 void noinline
3743 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3744 root 1.1 {
3745 root 1.166 clear_pending (EV_A_ (W)w);
3746 root 1.123 if (expect_false (!ev_is_active (w)))
3747 root 1.1 return;
3748    
3749 root 1.248 EV_FREQUENT_CHECK;
3750    
3751 root 1.230 {
3752     int active = ev_active (w);
3753 root 1.62
3754 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3755 root 1.151
3756 root 1.248 --periodiccnt;
3757    
3758     if (expect_true (active < periodiccnt + HEAP0))
3759 root 1.151 {
3760 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3761 root 1.181 adjustheap (periodics, periodiccnt, active);
3762 root 1.151 }
3763 root 1.248 }
3764 root 1.228
3765 root 1.328 ev_stop (EV_A_ (W)w);
3766    
3767 root 1.248 EV_FREQUENT_CHECK;
3768 root 1.1 }
3769    
3770 root 1.171 void noinline
3771 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3772 root 1.77 {
3773 root 1.84 /* TODO: use adjustheap and recalculation */
3774 root 1.77 ev_periodic_stop (EV_A_ w);
3775     ev_periodic_start (EV_A_ w);
3776     }
3777 root 1.93 #endif
3778 root 1.77
3779 root 1.56 #ifndef SA_RESTART
3780     # define SA_RESTART 0
3781     #endif
3782    
3783 root 1.336 #if EV_SIGNAL_ENABLE
3784    
3785 root 1.171 void noinline
3786 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3787 root 1.56 {
3788 root 1.123 if (expect_false (ev_is_active (w)))
3789 root 1.56 return;
3790    
3791 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3792    
3793     #if EV_MULTIPLICITY
3794 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3795 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3796    
3797     signals [w->signum - 1].loop = EV_A;
3798 root 1.449 ECB_MEMORY_FENCE_RELEASE;
3799 root 1.306 #endif
3800 root 1.56
3801 root 1.303 EV_FREQUENT_CHECK;
3802    
3803     #if EV_USE_SIGNALFD
3804     if (sigfd == -2)
3805     {
3806     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3807     if (sigfd < 0 && errno == EINVAL)
3808     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3809    
3810     if (sigfd >= 0)
3811     {
3812     fd_intern (sigfd); /* doing it twice will not hurt */
3813    
3814     sigemptyset (&sigfd_set);
3815    
3816     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3817     ev_set_priority (&sigfd_w, EV_MAXPRI);
3818     ev_io_start (EV_A_ &sigfd_w);
3819     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3820     }
3821     }
3822    
3823     if (sigfd >= 0)
3824     {
3825     /* TODO: check .head */
3826     sigaddset (&sigfd_set, w->signum);
3827     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3828 root 1.207
3829 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3830     }
3831 root 1.180 #endif
3832    
3833 root 1.56 ev_start (EV_A_ (W)w, 1);
3834 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3835 root 1.56
3836 root 1.63 if (!((WL)w)->next)
3837 root 1.304 # if EV_USE_SIGNALFD
3838 root 1.306 if (sigfd < 0) /*TODO*/
3839 root 1.304 # endif
3840 root 1.306 {
3841 root 1.322 # ifdef _WIN32
3842 root 1.317 evpipe_init (EV_A);
3843    
3844 root 1.306 signal (w->signum, ev_sighandler);
3845     # else
3846     struct sigaction sa;
3847    
3848     evpipe_init (EV_A);
3849    
3850     sa.sa_handler = ev_sighandler;
3851     sigfillset (&sa.sa_mask);
3852     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3853     sigaction (w->signum, &sa, 0);
3854    
3855 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3856     {
3857     sigemptyset (&sa.sa_mask);
3858     sigaddset (&sa.sa_mask, w->signum);
3859     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3860     }
3861 root 1.67 #endif
3862 root 1.306 }
3863 root 1.248
3864     EV_FREQUENT_CHECK;
3865 root 1.56 }
3866    
3867 root 1.171 void noinline
3868 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3869 root 1.56 {
3870 root 1.166 clear_pending (EV_A_ (W)w);
3871 root 1.123 if (expect_false (!ev_is_active (w)))
3872 root 1.56 return;
3873    
3874 root 1.248 EV_FREQUENT_CHECK;
3875    
3876 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3877 root 1.56 ev_stop (EV_A_ (W)w);
3878    
3879     if (!signals [w->signum - 1].head)
3880 root 1.306 {
3881 root 1.307 #if EV_MULTIPLICITY
3882 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3883 root 1.307 #endif
3884     #if EV_USE_SIGNALFD
3885 root 1.306 if (sigfd >= 0)
3886     {
3887 root 1.321 sigset_t ss;
3888    
3889     sigemptyset (&ss);
3890     sigaddset (&ss, w->signum);
3891 root 1.306 sigdelset (&sigfd_set, w->signum);
3892 root 1.321
3893 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3894 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3895 root 1.306 }
3896     else
3897 root 1.307 #endif
3898 root 1.306 signal (w->signum, SIG_DFL);
3899     }
3900 root 1.248
3901     EV_FREQUENT_CHECK;
3902 root 1.56 }
3903    
3904 root 1.336 #endif
3905    
3906     #if EV_CHILD_ENABLE
3907    
3908 root 1.28 void
3909 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3910 root 1.22 {
3911 root 1.56 #if EV_MULTIPLICITY
3912 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3913 root 1.56 #endif
3914 root 1.123 if (expect_false (ev_is_active (w)))
3915 root 1.22 return;
3916    
3917 root 1.248 EV_FREQUENT_CHECK;
3918    
3919 root 1.51 ev_start (EV_A_ (W)w, 1);
3920 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3921 root 1.248
3922     EV_FREQUENT_CHECK;
3923 root 1.22 }
3924    
3925 root 1.28 void
3926 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3927 root 1.22 {
3928 root 1.166 clear_pending (EV_A_ (W)w);
3929 root 1.123 if (expect_false (!ev_is_active (w)))
3930 root 1.22 return;
3931    
3932 root 1.248 EV_FREQUENT_CHECK;
3933    
3934 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3935 root 1.51 ev_stop (EV_A_ (W)w);
3936 root 1.248
3937     EV_FREQUENT_CHECK;
3938 root 1.22 }
3939    
3940 root 1.336 #endif
3941    
3942 root 1.140 #if EV_STAT_ENABLE
3943    
3944     # ifdef _WIN32
3945 root 1.146 # undef lstat
3946     # define lstat(a,b) _stati64 (a,b)
3947 root 1.140 # endif
3948    
3949 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3950     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3951     #define MIN_STAT_INTERVAL 0.1074891
3952 root 1.143
3953 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3954 root 1.152
3955     #if EV_USE_INOTIFY
3956 root 1.326
3957     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3958     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3959 root 1.152
3960     static void noinline
3961     infy_add (EV_P_ ev_stat *w)
3962     {
3963 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
3964     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3965     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3966     | IN_DONT_FOLLOW | IN_MASK_ADD);
3967 root 1.152
3968 root 1.318 if (w->wd >= 0)
3969 root 1.152 {
3970 root 1.318 struct statfs sfs;
3971    
3972     /* now local changes will be tracked by inotify, but remote changes won't */
3973     /* unless the filesystem is known to be local, we therefore still poll */
3974     /* also do poll on <2.6.25, but with normal frequency */
3975    
3976     if (!fs_2625)
3977     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3978     else if (!statfs (w->path, &sfs)
3979     && (sfs.f_type == 0x1373 /* devfs */
3980 root 1.451 || sfs.f_type == 0x4006 /* fat */
3981     || sfs.f_type == 0x4d44 /* msdos */
3982 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
3983 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
3984     || sfs.f_type == 0x858458f6 /* ramfs */
3985     || sfs.f_type == 0x5346544e /* ntfs */
3986 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
3987 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
3988 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
3989 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
3990 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
3991     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3992     else
3993     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3994     }
3995     else
3996     {
3997     /* can't use inotify, continue to stat */
3998 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3999 root 1.152
4000 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4001 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4002 root 1.233 /* but an efficiency issue only */
4003 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4004 root 1.152 {
4005 root 1.153 char path [4096];
4006 root 1.152 strcpy (path, w->path);
4007    
4008     do
4009     {
4010     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4011     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4012    
4013     char *pend = strrchr (path, '/');
4014    
4015 root 1.275 if (!pend || pend == path)
4016     break;
4017 root 1.152
4018     *pend = 0;
4019 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4020 root 1.372 }
4021 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4022     }
4023     }
4024 root 1.275
4025     if (w->wd >= 0)
4026 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4027 root 1.152
4028 root 1.318 /* now re-arm timer, if required */
4029     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4030     ev_timer_again (EV_A_ &w->timer);
4031     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4032 root 1.152 }
4033    
4034     static void noinline
4035     infy_del (EV_P_ ev_stat *w)
4036     {
4037     int slot;
4038     int wd = w->wd;
4039    
4040     if (wd < 0)
4041     return;
4042    
4043     w->wd = -2;
4044 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4045 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4046    
4047     /* remove this watcher, if others are watching it, they will rearm */
4048     inotify_rm_watch (fs_fd, wd);
4049     }
4050    
4051     static void noinline
4052     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4053     {
4054     if (slot < 0)
4055 root 1.264 /* overflow, need to check for all hash slots */
4056 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4057 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4058     else
4059     {
4060     WL w_;
4061    
4062 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4063 root 1.152 {
4064     ev_stat *w = (ev_stat *)w_;
4065     w_ = w_->next; /* lets us remove this watcher and all before it */
4066    
4067     if (w->wd == wd || wd == -1)
4068     {
4069     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4070     {
4071 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4072 root 1.152 w->wd = -1;
4073     infy_add (EV_A_ w); /* re-add, no matter what */
4074     }
4075    
4076 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4077 root 1.152 }
4078     }
4079     }
4080     }
4081    
4082     static void
4083     infy_cb (EV_P_ ev_io *w, int revents)
4084     {
4085     char buf [EV_INOTIFY_BUFSIZE];
4086     int ofs;
4087     int len = read (fs_fd, buf, sizeof (buf));
4088    
4089 root 1.326 for (ofs = 0; ofs < len; )
4090     {
4091     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4092     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4093     ofs += sizeof (struct inotify_event) + ev->len;
4094     }
4095 root 1.152 }
4096    
4097 root 1.379 inline_size void ecb_cold
4098 root 1.330 ev_check_2625 (EV_P)
4099     {
4100     /* kernels < 2.6.25 are borked
4101     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4102     */
4103     if (ev_linux_version () < 0x020619)
4104 root 1.273 return;
4105 root 1.264
4106 root 1.273 fs_2625 = 1;
4107     }
4108 root 1.264
4109 root 1.315 inline_size int
4110     infy_newfd (void)
4111     {
4112 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4113 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4114     if (fd >= 0)
4115     return fd;
4116     #endif
4117     return inotify_init ();
4118     }
4119    
4120 root 1.284 inline_size void
4121 root 1.273 infy_init (EV_P)
4122     {
4123     if (fs_fd != -2)
4124     return;
4125 root 1.264
4126 root 1.273 fs_fd = -1;
4127 root 1.264
4128 root 1.330 ev_check_2625 (EV_A);
4129 root 1.264
4130 root 1.315 fs_fd = infy_newfd ();
4131 root 1.152
4132     if (fs_fd >= 0)
4133     {
4134 root 1.315 fd_intern (fs_fd);
4135 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4136     ev_set_priority (&fs_w, EV_MAXPRI);
4137     ev_io_start (EV_A_ &fs_w);
4138 root 1.317 ev_unref (EV_A);
4139 root 1.152 }
4140     }
4141    
4142 root 1.284 inline_size void
4143 root 1.154 infy_fork (EV_P)
4144     {
4145     int slot;
4146    
4147     if (fs_fd < 0)
4148     return;
4149    
4150 root 1.317 ev_ref (EV_A);
4151 root 1.315 ev_io_stop (EV_A_ &fs_w);
4152 root 1.154 close (fs_fd);
4153 root 1.315 fs_fd = infy_newfd ();
4154    
4155     if (fs_fd >= 0)
4156     {
4157     fd_intern (fs_fd);
4158     ev_io_set (&fs_w, fs_fd, EV_READ);
4159     ev_io_start (EV_A_ &fs_w);
4160 root 1.317 ev_unref (EV_A);
4161 root 1.315 }
4162 root 1.154
4163 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4164 root 1.154 {
4165     WL w_ = fs_hash [slot].head;
4166     fs_hash [slot].head = 0;
4167    
4168     while (w_)
4169     {
4170     ev_stat *w = (ev_stat *)w_;
4171     w_ = w_->next; /* lets us add this watcher */
4172    
4173     w->wd = -1;
4174    
4175     if (fs_fd >= 0)
4176     infy_add (EV_A_ w); /* re-add, no matter what */
4177     else
4178 root 1.318 {
4179     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4180     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4181     ev_timer_again (EV_A_ &w->timer);
4182     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4183     }
4184 root 1.154 }
4185     }
4186     }
4187    
4188 root 1.152 #endif
4189    
4190 root 1.255 #ifdef _WIN32
4191     # define EV_LSTAT(p,b) _stati64 (p, b)
4192     #else
4193     # define EV_LSTAT(p,b) lstat (p, b)
4194     #endif
4195    
4196 root 1.140 void
4197 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4198 root 1.140 {
4199     if (lstat (w->path, &w->attr) < 0)
4200     w->attr.st_nlink = 0;
4201     else if (!w->attr.st_nlink)
4202     w->attr.st_nlink = 1;
4203     }
4204    
4205 root 1.157 static void noinline
4206 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4207     {
4208     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4209    
4210 root 1.320 ev_statdata prev = w->attr;
4211 root 1.140 ev_stat_stat (EV_A_ w);
4212    
4213 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4214     if (
4215 root 1.320 prev.st_dev != w->attr.st_dev
4216     || prev.st_ino != w->attr.st_ino
4217     || prev.st_mode != w->attr.st_mode
4218     || prev.st_nlink != w->attr.st_nlink
4219     || prev.st_uid != w->attr.st_uid
4220     || prev.st_gid != w->attr.st_gid
4221     || prev.st_rdev != w->attr.st_rdev
4222     || prev.st_size != w->attr.st_size
4223     || prev.st_atime != w->attr.st_atime
4224     || prev.st_mtime != w->attr.st_mtime
4225     || prev.st_ctime != w->attr.st_ctime
4226 root 1.156 ) {
4227 root 1.320 /* we only update w->prev on actual differences */
4228     /* in case we test more often than invoke the callback, */
4229     /* to ensure that prev is always different to attr */
4230     w->prev = prev;
4231    
4232 root 1.152 #if EV_USE_INOTIFY
4233 root 1.264 if (fs_fd >= 0)
4234     {
4235     infy_del (EV_A_ w);
4236     infy_add (EV_A_ w);
4237     ev_stat_stat (EV_A_ w); /* avoid race... */
4238     }
4239 root 1.152 #endif
4240    
4241     ev_feed_event (EV_A_ w, EV_STAT);
4242     }
4243 root 1.140 }
4244    
4245     void
4246 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4247 root 1.140 {
4248     if (expect_false (ev_is_active (w)))
4249     return;
4250    
4251     ev_stat_stat (EV_A_ w);
4252    
4253 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4254     w->interval = MIN_STAT_INTERVAL;
4255 root 1.143
4256 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4257 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4258 root 1.152
4259     #if EV_USE_INOTIFY
4260     infy_init (EV_A);
4261    
4262     if (fs_fd >= 0)
4263     infy_add (EV_A_ w);
4264     else
4265     #endif
4266 root 1.318 {
4267     ev_timer_again (EV_A_ &w->timer);
4268     ev_unref (EV_A);
4269     }
4270 root 1.140
4271     ev_start (EV_A_ (W)w, 1);
4272 root 1.248
4273     EV_FREQUENT_CHECK;
4274 root 1.140 }
4275    
4276     void
4277 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4278 root 1.140 {
4279 root 1.166 clear_pending (EV_A_ (W)w);
4280 root 1.140 if (expect_false (!ev_is_active (w)))
4281     return;
4282    
4283 root 1.248 EV_FREQUENT_CHECK;
4284    
4285 root 1.152 #if EV_USE_INOTIFY
4286     infy_del (EV_A_ w);
4287     #endif
4288 root 1.318
4289     if (ev_is_active (&w->timer))
4290     {
4291     ev_ref (EV_A);
4292     ev_timer_stop (EV_A_ &w->timer);
4293     }
4294 root 1.140
4295 root 1.134 ev_stop (EV_A_ (W)w);
4296 root 1.248
4297     EV_FREQUENT_CHECK;
4298 root 1.134 }
4299     #endif
4300    
4301 root 1.164 #if EV_IDLE_ENABLE
4302 root 1.144 void
4303 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4304 root 1.144 {
4305     if (expect_false (ev_is_active (w)))
4306     return;
4307    
4308 root 1.164 pri_adjust (EV_A_ (W)w);
4309    
4310 root 1.248 EV_FREQUENT_CHECK;
4311    
4312 root 1.164 {
4313     int active = ++idlecnt [ABSPRI (w)];
4314    
4315     ++idleall;
4316     ev_start (EV_A_ (W)w, active);
4317    
4318     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4319     idles [ABSPRI (w)][active - 1] = w;
4320     }
4321 root 1.248
4322     EV_FREQUENT_CHECK;
4323 root 1.144 }
4324    
4325     void
4326 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4327 root 1.144 {
4328 root 1.166 clear_pending (EV_A_ (W)w);
4329 root 1.144 if (expect_false (!ev_is_active (w)))
4330     return;
4331    
4332 root 1.248 EV_FREQUENT_CHECK;
4333    
4334 root 1.144 {
4335 root 1.230 int active = ev_active (w);
4336 root 1.164
4337     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4338 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4339 root 1.164
4340     ev_stop (EV_A_ (W)w);
4341     --idleall;
4342 root 1.144 }
4343 root 1.248
4344     EV_FREQUENT_CHECK;
4345 root 1.144 }
4346 root 1.164 #endif
4347 root 1.144
4348 root 1.337 #if EV_PREPARE_ENABLE
4349 root 1.144 void
4350 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4351 root 1.144 {
4352     if (expect_false (ev_is_active (w)))
4353     return;
4354    
4355 root 1.248 EV_FREQUENT_CHECK;
4356    
4357 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4358     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4359     prepares [preparecnt - 1] = w;
4360 root 1.248
4361     EV_FREQUENT_CHECK;
4362 root 1.144 }
4363    
4364     void
4365 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4366 root 1.144 {
4367 root 1.166 clear_pending (EV_A_ (W)w);
4368 root 1.144 if (expect_false (!ev_is_active (w)))
4369     return;
4370    
4371 root 1.248 EV_FREQUENT_CHECK;
4372    
4373 root 1.144 {
4374 root 1.230 int active = ev_active (w);
4375    
4376 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4377 root 1.230 ev_active (prepares [active - 1]) = active;
4378 root 1.144 }
4379    
4380     ev_stop (EV_A_ (W)w);
4381 root 1.248
4382     EV_FREQUENT_CHECK;
4383 root 1.144 }
4384 root 1.337 #endif
4385 root 1.144
4386 root 1.337 #if EV_CHECK_ENABLE
4387 root 1.144 void
4388 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4389 root 1.144 {
4390     if (expect_false (ev_is_active (w)))
4391     return;
4392    
4393 root 1.248 EV_FREQUENT_CHECK;
4394    
4395 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4396     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4397     checks [checkcnt - 1] = w;
4398 root 1.248
4399     EV_FREQUENT_CHECK;
4400 root 1.144 }
4401    
4402     void
4403 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4404 root 1.144 {
4405 root 1.166 clear_pending (EV_A_ (W)w);
4406 root 1.144 if (expect_false (!ev_is_active (w)))
4407     return;
4408    
4409 root 1.248 EV_FREQUENT_CHECK;
4410    
4411 root 1.144 {
4412 root 1.230 int active = ev_active (w);
4413    
4414 root 1.144 checks [active - 1] = checks [--checkcnt];
4415 root 1.230 ev_active (checks [active - 1]) = active;
4416 root 1.144 }
4417    
4418     ev_stop (EV_A_ (W)w);
4419 root 1.248
4420     EV_FREQUENT_CHECK;
4421 root 1.144 }
4422 root 1.337 #endif
4423 root 1.144
4424     #if EV_EMBED_ENABLE
4425     void noinline
4426 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4427 root 1.144 {
4428 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4429 root 1.144 }
4430    
4431     static void
4432 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4433 root 1.144 {
4434     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4435    
4436     if (ev_cb (w))
4437     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4438     else
4439 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4440 root 1.144 }
4441    
4442 root 1.189 static void
4443     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4444     {
4445     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4446    
4447 root 1.195 {
4448 root 1.306 EV_P = w->other;
4449 root 1.195
4450     while (fdchangecnt)
4451     {
4452     fd_reify (EV_A);
4453 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4454 root 1.195 }
4455     }
4456     }
4457    
4458 root 1.261 static void
4459     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4460     {
4461     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4462    
4463 root 1.277 ev_embed_stop (EV_A_ w);
4464    
4465 root 1.261 {
4466 root 1.306 EV_P = w->other;
4467 root 1.261
4468     ev_loop_fork (EV_A);
4469 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4470 root 1.261 }
4471 root 1.277
4472     ev_embed_start (EV_A_ w);
4473 root 1.261 }
4474    
4475 root 1.195 #if 0
4476     static void
4477     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4478     {
4479     ev_idle_stop (EV_A_ idle);
4480 root 1.189 }
4481 root 1.195 #endif
4482 root 1.189
4483 root 1.144 void
4484 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4485 root 1.144 {
4486     if (expect_false (ev_is_active (w)))
4487     return;
4488    
4489     {
4490 root 1.306 EV_P = w->other;
4491 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4492 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4493 root 1.144 }
4494    
4495 root 1.248 EV_FREQUENT_CHECK;
4496    
4497 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4498     ev_io_start (EV_A_ &w->io);
4499    
4500 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4501     ev_set_priority (&w->prepare, EV_MINPRI);
4502     ev_prepare_start (EV_A_ &w->prepare);
4503    
4504 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4505     ev_fork_start (EV_A_ &w->fork);
4506    
4507 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4508    
4509 root 1.144 ev_start (EV_A_ (W)w, 1);
4510 root 1.248
4511     EV_FREQUENT_CHECK;
4512 root 1.144 }
4513    
4514     void
4515 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4516 root 1.144 {
4517 root 1.166 clear_pending (EV_A_ (W)w);
4518 root 1.144 if (expect_false (!ev_is_active (w)))
4519     return;
4520    
4521 root 1.248 EV_FREQUENT_CHECK;
4522    
4523 root 1.261 ev_io_stop (EV_A_ &w->io);
4524 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4525 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4526 root 1.248
4527 root 1.328 ev_stop (EV_A_ (W)w);
4528    
4529 root 1.248 EV_FREQUENT_CHECK;
4530 root 1.144 }
4531     #endif
4532    
4533 root 1.147 #if EV_FORK_ENABLE
4534     void
4535 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4536 root 1.147 {
4537     if (expect_false (ev_is_active (w)))
4538     return;
4539    
4540 root 1.248 EV_FREQUENT_CHECK;
4541    
4542 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4543     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4544     forks [forkcnt - 1] = w;
4545 root 1.248
4546     EV_FREQUENT_CHECK;
4547 root 1.147 }
4548    
4549     void
4550 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4551 root 1.147 {
4552 root 1.166 clear_pending (EV_A_ (W)w);
4553 root 1.147 if (expect_false (!ev_is_active (w)))
4554     return;
4555    
4556 root 1.248 EV_FREQUENT_CHECK;
4557    
4558 root 1.147 {
4559 root 1.230 int active = ev_active (w);
4560    
4561 root 1.147 forks [active - 1] = forks [--forkcnt];
4562 root 1.230 ev_active (forks [active - 1]) = active;
4563 root 1.147 }
4564    
4565     ev_stop (EV_A_ (W)w);
4566 root 1.248
4567     EV_FREQUENT_CHECK;
4568 root 1.147 }
4569     #endif
4570    
4571 root 1.360 #if EV_CLEANUP_ENABLE
4572     void
4573 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4574 root 1.360 {
4575     if (expect_false (ev_is_active (w)))
4576     return;
4577    
4578     EV_FREQUENT_CHECK;
4579    
4580     ev_start (EV_A_ (W)w, ++cleanupcnt);
4581     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4582     cleanups [cleanupcnt - 1] = w;
4583    
4584 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4585     ev_unref (EV_A);
4586 root 1.360 EV_FREQUENT_CHECK;
4587     }
4588    
4589     void
4590 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4591 root 1.360 {
4592     clear_pending (EV_A_ (W)w);
4593     if (expect_false (!ev_is_active (w)))
4594     return;
4595    
4596     EV_FREQUENT_CHECK;
4597 root 1.362 ev_ref (EV_A);
4598 root 1.360
4599     {
4600     int active = ev_active (w);
4601    
4602     cleanups [active - 1] = cleanups [--cleanupcnt];
4603     ev_active (cleanups [active - 1]) = active;
4604     }
4605    
4606     ev_stop (EV_A_ (W)w);
4607    
4608     EV_FREQUENT_CHECK;
4609     }
4610     #endif
4611    
4612 root 1.207 #if EV_ASYNC_ENABLE
4613     void
4614 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4615 root 1.207 {
4616     if (expect_false (ev_is_active (w)))
4617     return;
4618    
4619 root 1.352 w->sent = 0;
4620    
4621 root 1.207 evpipe_init (EV_A);
4622    
4623 root 1.248 EV_FREQUENT_CHECK;
4624    
4625 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4626     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4627     asyncs [asynccnt - 1] = w;
4628 root 1.248
4629     EV_FREQUENT_CHECK;
4630 root 1.207 }
4631    
4632     void
4633 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4634 root 1.207 {
4635     clear_pending (EV_A_ (W)w);
4636     if (expect_false (!ev_is_active (w)))
4637     return;
4638    
4639 root 1.248 EV_FREQUENT_CHECK;
4640    
4641 root 1.207 {
4642 root 1.230 int active = ev_active (w);
4643    
4644 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4645 root 1.230 ev_active (asyncs [active - 1]) = active;
4646 root 1.207 }
4647    
4648     ev_stop (EV_A_ (W)w);
4649 root 1.248
4650     EV_FREQUENT_CHECK;
4651 root 1.207 }
4652    
4653     void
4654 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4655 root 1.207 {
4656     w->sent = 1;
4657 root 1.307 evpipe_write (EV_A_ &async_pending);
4658 root 1.207 }
4659     #endif
4660    
4661 root 1.1 /*****************************************************************************/
4662 root 1.10
4663 root 1.16 struct ev_once
4664     {
4665 root 1.136 ev_io io;
4666     ev_timer to;
4667 root 1.16 void (*cb)(int revents, void *arg);
4668     void *arg;
4669     };
4670    
4671     static void
4672 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4673 root 1.16 {
4674     void (*cb)(int revents, void *arg) = once->cb;
4675     void *arg = once->arg;
4676    
4677 root 1.259 ev_io_stop (EV_A_ &once->io);
4678 root 1.51 ev_timer_stop (EV_A_ &once->to);
4679 root 1.69 ev_free (once);
4680 root 1.16
4681     cb (revents, arg);
4682     }
4683    
4684     static void
4685 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4686 root 1.16 {
4687 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4688    
4689     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4690 root 1.16 }
4691    
4692     static void
4693 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4694 root 1.16 {
4695 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4696    
4697     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4698 root 1.16 }
4699    
4700     void
4701 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4702 root 1.16 {
4703 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4704 root 1.16
4705 root 1.123 if (expect_false (!once))
4706 root 1.16 {
4707 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4708 root 1.123 return;
4709     }
4710    
4711     once->cb = cb;
4712     once->arg = arg;
4713 root 1.16
4714 root 1.123 ev_init (&once->io, once_cb_io);
4715     if (fd >= 0)
4716     {
4717     ev_io_set (&once->io, fd, events);
4718     ev_io_start (EV_A_ &once->io);
4719     }
4720 root 1.16
4721 root 1.123 ev_init (&once->to, once_cb_to);
4722     if (timeout >= 0.)
4723     {
4724     ev_timer_set (&once->to, timeout, 0.);
4725     ev_timer_start (EV_A_ &once->to);
4726 root 1.16 }
4727     }
4728    
4729 root 1.282 /*****************************************************************************/
4730    
4731 root 1.288 #if EV_WALK_ENABLE
4732 root 1.379 void ecb_cold
4733 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4734 root 1.282 {
4735     int i, j;
4736     ev_watcher_list *wl, *wn;
4737    
4738     if (types & (EV_IO | EV_EMBED))
4739     for (i = 0; i < anfdmax; ++i)
4740     for (wl = anfds [i].head; wl; )
4741     {
4742     wn = wl->next;
4743    
4744     #if EV_EMBED_ENABLE
4745     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4746     {
4747     if (types & EV_EMBED)
4748     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4749     }
4750     else
4751     #endif
4752     #if EV_USE_INOTIFY
4753     if (ev_cb ((ev_io *)wl) == infy_cb)
4754     ;
4755     else
4756     #endif
4757 root 1.288 if ((ev_io *)wl != &pipe_w)
4758 root 1.282 if (types & EV_IO)
4759     cb (EV_A_ EV_IO, wl);
4760    
4761     wl = wn;
4762     }
4763    
4764     if (types & (EV_TIMER | EV_STAT))
4765     for (i = timercnt + HEAP0; i-- > HEAP0; )
4766     #if EV_STAT_ENABLE
4767     /*TODO: timer is not always active*/
4768     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4769     {
4770     if (types & EV_STAT)
4771     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4772     }
4773     else
4774     #endif
4775     if (types & EV_TIMER)
4776     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4777    
4778     #if EV_PERIODIC_ENABLE
4779     if (types & EV_PERIODIC)
4780     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4781     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4782     #endif
4783    
4784     #if EV_IDLE_ENABLE
4785     if (types & EV_IDLE)
4786 root 1.390 for (j = NUMPRI; j--; )
4787 root 1.282 for (i = idlecnt [j]; i--; )
4788     cb (EV_A_ EV_IDLE, idles [j][i]);
4789     #endif
4790    
4791     #if EV_FORK_ENABLE
4792     if (types & EV_FORK)
4793     for (i = forkcnt; i--; )
4794     if (ev_cb (forks [i]) != embed_fork_cb)
4795     cb (EV_A_ EV_FORK, forks [i]);
4796     #endif
4797    
4798     #if EV_ASYNC_ENABLE
4799     if (types & EV_ASYNC)
4800     for (i = asynccnt; i--; )
4801     cb (EV_A_ EV_ASYNC, asyncs [i]);
4802     #endif
4803    
4804 root 1.337 #if EV_PREPARE_ENABLE
4805 root 1.282 if (types & EV_PREPARE)
4806     for (i = preparecnt; i--; )
4807 root 1.337 # if EV_EMBED_ENABLE
4808 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4809 root 1.337 # endif
4810     cb (EV_A_ EV_PREPARE, prepares [i]);
4811 root 1.282 #endif
4812    
4813 root 1.337 #if EV_CHECK_ENABLE
4814 root 1.282 if (types & EV_CHECK)
4815     for (i = checkcnt; i--; )
4816     cb (EV_A_ EV_CHECK, checks [i]);
4817 root 1.337 #endif
4818 root 1.282
4819 root 1.337 #if EV_SIGNAL_ENABLE
4820 root 1.282 if (types & EV_SIGNAL)
4821 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4822 root 1.282 for (wl = signals [i].head; wl; )
4823     {
4824     wn = wl->next;
4825     cb (EV_A_ EV_SIGNAL, wl);
4826     wl = wn;
4827     }
4828 root 1.337 #endif
4829 root 1.282
4830 root 1.337 #if EV_CHILD_ENABLE
4831 root 1.282 if (types & EV_CHILD)
4832 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4833 root 1.282 for (wl = childs [i]; wl; )
4834     {
4835     wn = wl->next;
4836     cb (EV_A_ EV_CHILD, wl);
4837     wl = wn;
4838     }
4839 root 1.337 #endif
4840 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4841     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4842     }
4843     #endif
4844    
4845 root 1.188 #if EV_MULTIPLICITY
4846     #include "ev_wrap.h"
4847     #endif
4848