ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.467
Committed: Fri May 16 15:15:39 2014 UTC (10 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.466: +11 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.463 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 root 1.305 #endif
248    
249 root 1.373 #ifndef EV_USE_FLOOR
250     # define EV_USE_FLOOR 0
251     #endif
252    
253 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
254 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 root 1.274 # else
257     # define EV_USE_CLOCK_SYSCALL 0
258     # endif
259     #endif
260    
261 root 1.29 #ifndef EV_USE_MONOTONIC
262 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
264 root 1.253 # else
265     # define EV_USE_MONOTONIC 0
266     # endif
267 root 1.37 #endif
268    
269 root 1.118 #ifndef EV_USE_REALTIME
270 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271 root 1.118 #endif
272    
273 root 1.193 #ifndef EV_USE_NANOSLEEP
274 root 1.253 # if _POSIX_C_SOURCE >= 199309L
275 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
276 root 1.253 # else
277     # define EV_USE_NANOSLEEP 0
278     # endif
279 root 1.193 #endif
280    
281 root 1.29 #ifndef EV_USE_SELECT
282 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
283 root 1.10 #endif
284    
285 root 1.59 #ifndef EV_USE_POLL
286 root 1.104 # ifdef _WIN32
287     # define EV_USE_POLL 0
288     # else
289 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
290 root 1.104 # endif
291 root 1.41 #endif
292    
293 root 1.29 #ifndef EV_USE_EPOLL
294 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
296 root 1.220 # else
297     # define EV_USE_EPOLL 0
298     # endif
299 root 1.10 #endif
300    
301 root 1.44 #ifndef EV_USE_KQUEUE
302     # define EV_USE_KQUEUE 0
303     #endif
304    
305 root 1.118 #ifndef EV_USE_PORT
306     # define EV_USE_PORT 0
307 root 1.40 #endif
308    
309 root 1.152 #ifndef EV_USE_INOTIFY
310 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
312 root 1.220 # else
313     # define EV_USE_INOTIFY 0
314     # endif
315 root 1.152 #endif
316    
317 root 1.149 #ifndef EV_PID_HASHSIZE
318 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
319 root 1.149 #endif
320    
321 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
322 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323 root 1.152 #endif
324    
325 root 1.220 #ifndef EV_USE_EVENTFD
326     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
328 root 1.220 # else
329     # define EV_USE_EVENTFD 0
330     # endif
331     #endif
332    
333 root 1.303 #ifndef EV_USE_SIGNALFD
334 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
336 root 1.303 # else
337     # define EV_USE_SIGNALFD 0
338     # endif
339     #endif
340    
341 root 1.249 #if 0 /* debugging */
342 root 1.250 # define EV_VERIFY 3
343 root 1.249 # define EV_USE_4HEAP 1
344     # define EV_HEAP_CACHE_AT 1
345     #endif
346    
347 root 1.250 #ifndef EV_VERIFY
348 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349 root 1.250 #endif
350    
351 root 1.243 #ifndef EV_USE_4HEAP
352 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
353 root 1.243 #endif
354    
355     #ifndef EV_HEAP_CACHE_AT
356 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357 root 1.243 #endif
358    
359 root 1.452 #ifdef ANDROID
360     /* supposedly, android doesn't typedef fd_mask */
361     # undef EV_USE_SELECT
362     # define EV_USE_SELECT 0
363     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364     # undef EV_USE_CLOCK_SYSCALL
365     # define EV_USE_CLOCK_SYSCALL 0
366     #endif
367    
368     /* aix's poll.h seems to cause lots of trouble */
369     #ifdef _AIX
370     /* AIX has a completely broken poll.h header */
371     # undef EV_USE_POLL
372     # define EV_USE_POLL 0
373     #endif
374    
375 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376     /* which makes programs even slower. might work on other unices, too. */
377     #if EV_USE_CLOCK_SYSCALL
378 root 1.423 # include <sys/syscall.h>
379 root 1.291 # ifdef SYS_clock_gettime
380     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381     # undef EV_USE_MONOTONIC
382     # define EV_USE_MONOTONIC 1
383     # else
384     # undef EV_USE_CLOCK_SYSCALL
385     # define EV_USE_CLOCK_SYSCALL 0
386     # endif
387     #endif
388    
389 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
390 root 1.40
391     #ifndef CLOCK_MONOTONIC
392     # undef EV_USE_MONOTONIC
393     # define EV_USE_MONOTONIC 0
394     #endif
395    
396 root 1.31 #ifndef CLOCK_REALTIME
397 root 1.40 # undef EV_USE_REALTIME
398 root 1.31 # define EV_USE_REALTIME 0
399     #endif
400 root 1.40
401 root 1.152 #if !EV_STAT_ENABLE
402 root 1.185 # undef EV_USE_INOTIFY
403 root 1.152 # define EV_USE_INOTIFY 0
404     #endif
405    
406 root 1.193 #if !EV_USE_NANOSLEEP
407 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
408 root 1.416 # if !defined _WIN32 && !defined __hpux
409 root 1.193 # include <sys/select.h>
410     # endif
411     #endif
412    
413 root 1.152 #if EV_USE_INOTIFY
414 root 1.273 # include <sys/statfs.h>
415 root 1.152 # include <sys/inotify.h>
416 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417     # ifndef IN_DONT_FOLLOW
418     # undef EV_USE_INOTIFY
419     # define EV_USE_INOTIFY 0
420     # endif
421 root 1.152 #endif
422    
423 root 1.220 #if EV_USE_EVENTFD
424     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
425 root 1.221 # include <stdint.h>
426 root 1.303 # ifndef EFD_NONBLOCK
427     # define EFD_NONBLOCK O_NONBLOCK
428     # endif
429     # ifndef EFD_CLOEXEC
430 root 1.311 # ifdef O_CLOEXEC
431     # define EFD_CLOEXEC O_CLOEXEC
432     # else
433     # define EFD_CLOEXEC 02000000
434     # endif
435 root 1.303 # endif
436 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437 root 1.220 #endif
438    
439 root 1.303 #if EV_USE_SIGNALFD
440 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441     # include <stdint.h>
442     # ifndef SFD_NONBLOCK
443     # define SFD_NONBLOCK O_NONBLOCK
444     # endif
445     # ifndef SFD_CLOEXEC
446     # ifdef O_CLOEXEC
447     # define SFD_CLOEXEC O_CLOEXEC
448     # else
449     # define SFD_CLOEXEC 02000000
450     # endif
451     # endif
452 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453 root 1.314
454     struct signalfd_siginfo
455     {
456     uint32_t ssi_signo;
457     char pad[128 - sizeof (uint32_t)];
458     };
459 root 1.303 #endif
460    
461 root 1.40 /**/
462 root 1.1
463 root 1.250 #if EV_VERIFY >= 3
464 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
465 root 1.248 #else
466     # define EV_FREQUENT_CHECK do { } while (0)
467     #endif
468    
469 root 1.176 /*
470 root 1.373 * This is used to work around floating point rounding problems.
471 root 1.177 * This value is good at least till the year 4000.
472 root 1.176 */
473 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
475 root 1.176
476 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
477 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
478 root 1.1
479 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481 root 1.347
482 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483     /* ECB.H BEGIN */
484     /*
485     * libecb - http://software.schmorp.de/pkg/libecb
486     *
487 root 1.464 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
489     * All rights reserved.
490     *
491     * Redistribution and use in source and binary forms, with or without modifica-
492     * tion, are permitted provided that the following conditions are met:
493     *
494     * 1. Redistributions of source code must retain the above copyright notice,
495     * this list of conditions and the following disclaimer.
496     *
497     * 2. Redistributions in binary form must reproduce the above copyright
498     * notice, this list of conditions and the following disclaimer in the
499     * documentation and/or other materials provided with the distribution.
500     *
501     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510     * OF THE POSSIBILITY OF SUCH DAMAGE.
511 root 1.467 *
512     * Alternatively, the contents of this file may be used under the terms of
513     * the GNU General Public License ("GPL") version 2 or any later version,
514     * in which case the provisions of the GPL are applicable instead of
515     * the above. If you wish to allow the use of your version of this file
516     * only under the terms of the GPL and not to allow others to use your
517     * version of this file under the BSD license, indicate your decision
518     * by deleting the provisions above and replace them with the notice
519     * and other provisions required by the GPL. If you do not delete the
520     * provisions above, a recipient may use your version of this file under
521     * either the BSD or the GPL.
522 root 1.391 */
523    
524     #ifndef ECB_H
525     #define ECB_H
526    
527 root 1.437 /* 16 bits major, 16 bits minor */
528 root 1.454 #define ECB_VERSION 0x00010003
529 root 1.437
530 root 1.391 #ifdef _WIN32
531     typedef signed char int8_t;
532     typedef unsigned char uint8_t;
533     typedef signed short int16_t;
534     typedef unsigned short uint16_t;
535     typedef signed int int32_t;
536     typedef unsigned int uint32_t;
537     #if __GNUC__
538     typedef signed long long int64_t;
539     typedef unsigned long long uint64_t;
540     #else /* _MSC_VER || __BORLANDC__ */
541     typedef signed __int64 int64_t;
542     typedef unsigned __int64 uint64_t;
543     #endif
544 root 1.437 #ifdef _WIN64
545     #define ECB_PTRSIZE 8
546     typedef uint64_t uintptr_t;
547     typedef int64_t intptr_t;
548     #else
549     #define ECB_PTRSIZE 4
550     typedef uint32_t uintptr_t;
551     typedef int32_t intptr_t;
552     #endif
553 root 1.391 #else
554     #include <inttypes.h>
555 root 1.437 #if UINTMAX_MAX > 0xffffffffU
556     #define ECB_PTRSIZE 8
557     #else
558     #define ECB_PTRSIZE 4
559     #endif
560 root 1.391 #endif
561 root 1.379
562 root 1.454 /* work around x32 idiocy by defining proper macros */
563 root 1.462 #if __amd64 || __x86_64 || _M_AMD64 || _M_X64
564 root 1.458 #if _ILP32
565 root 1.454 #define ECB_AMD64_X32 1
566     #else
567     #define ECB_AMD64 1
568     #endif
569     #endif
570    
571 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
572     * what their idiot authors think are the "more important" extensions,
573 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
574 root 1.379 * or so.
575     * we try to detect these and simply assume they are not gcc - if they have
576     * an issue with that they should have done it right in the first place.
577     */
578     #ifndef ECB_GCC_VERSION
579 root 1.417 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
580 root 1.379 #define ECB_GCC_VERSION(major,minor) 0
581     #else
582     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
583     #endif
584     #endif
585    
586 root 1.437 #define ECB_CPP (__cplusplus+0)
587     #define ECB_CPP11 (__cplusplus >= 201103L)
588    
589 root 1.450 #if ECB_CPP
590 root 1.464 #define ECB_C 0
591     #define ECB_STDC_VERSION 0
592     #else
593     #define ECB_C 1
594     #define ECB_STDC_VERSION __STDC_VERSION__
595     #endif
596    
597     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
598     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
599    
600     #if ECB_CPP
601 root 1.450 #define ECB_EXTERN_C extern "C"
602     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
603     #define ECB_EXTERN_C_END }
604     #else
605     #define ECB_EXTERN_C extern
606     #define ECB_EXTERN_C_BEG
607     #define ECB_EXTERN_C_END
608     #endif
609    
610 root 1.391 /*****************************************************************************/
611    
612     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
613     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
614    
615 root 1.410 #if ECB_NO_THREADS
616 root 1.439 #define ECB_NO_SMP 1
617 root 1.410 #endif
618    
619 root 1.437 #if ECB_NO_SMP
620 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
621 root 1.40 #endif
622    
623 root 1.383 #ifndef ECB_MEMORY_FENCE
624 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
625 root 1.404 #if __i386 || __i386__
626 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
627 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
628     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
630 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
631     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
632     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
633 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
634 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
635 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
636     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
637 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
638 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
639 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
640     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
641 root 1.464 #elif __aarch64__
642     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
643 root 1.462 #elif (__sparc || __sparc__) && !__sparcv8
644 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
645     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
646     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
647 root 1.417 #elif defined __s390__ || defined __s390x__
648 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
649 root 1.417 #elif defined __mips__
650 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
651 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
652     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
653 root 1.419 #elif defined __alpha__
654 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
655     #elif defined __hppa__
656     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
657     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658     #elif defined __ia64__
659     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
660 root 1.457 #elif defined __m68k__
661     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
662     #elif defined __m88k__
663     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
664     #elif defined __sh__
665     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 root 1.383 #endif
667     #endif
668     #endif
669    
670     #ifndef ECB_MEMORY_FENCE
671 root 1.437 #if ECB_GCC_VERSION(4,7)
672 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
673 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
674 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
675     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
676 root 1.450
677     /* The __has_feature syntax from clang is so misdesigned that we cannot use it
678     * without risking compile time errors with other compilers. We *could*
679     * define our own ecb_clang_has_feature, but I just can't be bothered to work
680     * around this shit time and again.
681     * #elif defined __clang && __has_feature (cxx_atomic)
682     * // see comment below (stdatomic.h) about the C11 memory model.
683     * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
684 root 1.464 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
685     * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
686 root 1.450 */
687    
688 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
689 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
690 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
691     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
692     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
693     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
694     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
695     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
696 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
697     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
698     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
699     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
700     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
701 root 1.417 #elif defined _WIN32
702 root 1.388 #include <WinNT.h>
703 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
704 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
705     #include <mbarrier.h>
706     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
707     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
708     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
709 root 1.413 #elif __xlC__
710 root 1.414 #define ECB_MEMORY_FENCE __sync ()
711 root 1.383 #endif
712     #endif
713    
714     #ifndef ECB_MEMORY_FENCE
715 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
716     /* we assume that these memory fences work on all variables/all memory accesses, */
717     /* not just C11 atomics and atomic accesses */
718     #include <stdatomic.h>
719 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
720     /* any fence other than seq_cst, which isn't very efficient for us. */
721     /* Why that is, we don't know - either the C11 memory model is quite useless */
722     /* for most usages, or gcc and clang have a bug */
723     /* I *currently* lean towards the latter, and inefficiently implement */
724     /* all three of ecb's fences as a seq_cst fence */
725 root 1.464 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
726     /* for all __atomic_thread_fence's except seq_cst */
727 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
728     #endif
729     #endif
730    
731     #ifndef ECB_MEMORY_FENCE
732 root 1.392 #if !ECB_AVOID_PTHREADS
733     /*
734     * if you get undefined symbol references to pthread_mutex_lock,
735     * or failure to find pthread.h, then you should implement
736     * the ECB_MEMORY_FENCE operations for your cpu/compiler
737     * OR provide pthread.h and link against the posix thread library
738     * of your system.
739     */
740     #include <pthread.h>
741     #define ECB_NEEDS_PTHREADS 1
742     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
743    
744     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
745     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
746     #endif
747     #endif
748 root 1.383
749 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
750 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
751 root 1.392 #endif
752    
753 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
754 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
755     #endif
756    
757 root 1.391 /*****************************************************************************/
758    
759     #if __cplusplus
760     #define ecb_inline static inline
761     #elif ECB_GCC_VERSION(2,5)
762     #define ecb_inline static __inline__
763     #elif ECB_C99
764     #define ecb_inline static inline
765     #else
766     #define ecb_inline static
767     #endif
768    
769     #if ECB_GCC_VERSION(3,3)
770     #define ecb_restrict __restrict__
771     #elif ECB_C99
772     #define ecb_restrict restrict
773     #else
774     #define ecb_restrict
775     #endif
776    
777     typedef int ecb_bool;
778    
779     #define ECB_CONCAT_(a, b) a ## b
780     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
781     #define ECB_STRINGIFY_(a) # a
782     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
783    
784     #define ecb_function_ ecb_inline
785    
786 root 1.379 #if ECB_GCC_VERSION(3,1)
787     #define ecb_attribute(attrlist) __attribute__(attrlist)
788     #define ecb_is_constant(expr) __builtin_constant_p (expr)
789     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
790     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
791     #else
792     #define ecb_attribute(attrlist)
793 root 1.464
794     /* possible C11 impl for integral types
795     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
796     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
797    
798 root 1.379 #define ecb_is_constant(expr) 0
799     #define ecb_expect(expr,value) (expr)
800     #define ecb_prefetch(addr,rw,locality)
801     #endif
802    
803 root 1.391 /* no emulation for ecb_decltype */
804     #if ECB_GCC_VERSION(4,5)
805     #define ecb_decltype(x) __decltype(x)
806     #elif ECB_GCC_VERSION(3,0)
807     #define ecb_decltype(x) __typeof(x)
808     #endif
809    
810 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
811     #define ecb_unused ecb_attribute ((__unused__))
812     #define ecb_const ecb_attribute ((__const__))
813     #define ecb_pure ecb_attribute ((__pure__))
814    
815 root 1.437 #if ECB_C11
816     #define ecb_noreturn _Noreturn
817     #else
818     #define ecb_noreturn ecb_attribute ((__noreturn__))
819     #endif
820    
821 root 1.379 #if ECB_GCC_VERSION(4,3)
822     #define ecb_artificial ecb_attribute ((__artificial__))
823     #define ecb_hot ecb_attribute ((__hot__))
824     #define ecb_cold ecb_attribute ((__cold__))
825     #else
826     #define ecb_artificial
827     #define ecb_hot
828     #define ecb_cold
829     #endif
830    
831     /* put around conditional expressions if you are very sure that the */
832     /* expression is mostly true or mostly false. note that these return */
833     /* booleans, not the expression. */
834     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
835     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
836 root 1.391 /* for compatibility to the rest of the world */
837     #define ecb_likely(expr) ecb_expect_true (expr)
838     #define ecb_unlikely(expr) ecb_expect_false (expr)
839    
840     /* count trailing zero bits and count # of one bits */
841     #if ECB_GCC_VERSION(3,4)
842     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
843     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
844     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
845     #define ecb_ctz32(x) __builtin_ctz (x)
846     #define ecb_ctz64(x) __builtin_ctzll (x)
847     #define ecb_popcount32(x) __builtin_popcount (x)
848     /* no popcountll */
849     #else
850     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
851     ecb_function_ int
852     ecb_ctz32 (uint32_t x)
853     {
854     int r = 0;
855    
856     x &= ~x + 1; /* this isolates the lowest bit */
857    
858     #if ECB_branchless_on_i386
859     r += !!(x & 0xaaaaaaaa) << 0;
860     r += !!(x & 0xcccccccc) << 1;
861     r += !!(x & 0xf0f0f0f0) << 2;
862     r += !!(x & 0xff00ff00) << 3;
863     r += !!(x & 0xffff0000) << 4;
864     #else
865     if (x & 0xaaaaaaaa) r += 1;
866     if (x & 0xcccccccc) r += 2;
867     if (x & 0xf0f0f0f0) r += 4;
868     if (x & 0xff00ff00) r += 8;
869     if (x & 0xffff0000) r += 16;
870     #endif
871    
872     return r;
873     }
874    
875     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
876     ecb_function_ int
877     ecb_ctz64 (uint64_t x)
878     {
879     int shift = x & 0xffffffffU ? 0 : 32;
880     return ecb_ctz32 (x >> shift) + shift;
881     }
882    
883     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
884     ecb_function_ int
885     ecb_popcount32 (uint32_t x)
886     {
887     x -= (x >> 1) & 0x55555555;
888     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
889     x = ((x >> 4) + x) & 0x0f0f0f0f;
890     x *= 0x01010101;
891    
892     return x >> 24;
893     }
894    
895     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
896     ecb_function_ int ecb_ld32 (uint32_t x)
897     {
898     int r = 0;
899    
900     if (x >> 16) { x >>= 16; r += 16; }
901     if (x >> 8) { x >>= 8; r += 8; }
902     if (x >> 4) { x >>= 4; r += 4; }
903     if (x >> 2) { x >>= 2; r += 2; }
904     if (x >> 1) { r += 1; }
905    
906     return r;
907     }
908    
909     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
910     ecb_function_ int ecb_ld64 (uint64_t x)
911     {
912     int r = 0;
913    
914     if (x >> 32) { x >>= 32; r += 32; }
915    
916     return r + ecb_ld32 (x);
917     }
918     #endif
919    
920 root 1.437 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
921     ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
922     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
923     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
924    
925 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
926     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
927     {
928     return ( (x * 0x0802U & 0x22110U)
929     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
930     }
931    
932     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
933     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
934     {
935     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
936     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
937     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
938     x = ( x >> 8 ) | ( x << 8);
939    
940     return x;
941     }
942    
943     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
944     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
945     {
946     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
947     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
948     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
949     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
950     x = ( x >> 16 ) | ( x << 16);
951    
952     return x;
953     }
954    
955 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
956     /* so for this version we are lazy */
957     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
958     ecb_function_ int
959     ecb_popcount64 (uint64_t x)
960     {
961     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
962     }
963    
964     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
965     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
966     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
967     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
968     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
969     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
970     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
971     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
972    
973     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
974     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
975     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
976     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
977     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
978     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
979     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
980     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
981    
982     #if ECB_GCC_VERSION(4,3)
983     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
984     #define ecb_bswap32(x) __builtin_bswap32 (x)
985     #define ecb_bswap64(x) __builtin_bswap64 (x)
986     #else
987     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
988     ecb_function_ uint16_t
989     ecb_bswap16 (uint16_t x)
990     {
991     return ecb_rotl16 (x, 8);
992     }
993    
994     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
995     ecb_function_ uint32_t
996     ecb_bswap32 (uint32_t x)
997     {
998     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
999     }
1000    
1001     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1002     ecb_function_ uint64_t
1003     ecb_bswap64 (uint64_t x)
1004     {
1005     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1006     }
1007     #endif
1008    
1009     #if ECB_GCC_VERSION(4,5)
1010     #define ecb_unreachable() __builtin_unreachable ()
1011     #else
1012     /* this seems to work fine, but gcc always emits a warning for it :/ */
1013 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1014     ecb_inline void ecb_unreachable (void) { }
1015 root 1.391 #endif
1016    
1017     /* try to tell the compiler that some condition is definitely true */
1018 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1019 root 1.391
1020 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1021     ecb_inline unsigned char
1022 root 1.391 ecb_byteorder_helper (void)
1023     {
1024 root 1.450 /* the union code still generates code under pressure in gcc, */
1025     /* but less than using pointers, and always seems to */
1026     /* successfully return a constant. */
1027     /* the reason why we have this horrible preprocessor mess */
1028     /* is to avoid it in all cases, at least on common architectures */
1029     /* or when using a recent enough gcc version (>= 4.6) */
1030     #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1031     return 0x44;
1032     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1033     return 0x44;
1034     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1035     return 0x11;
1036     #else
1037     union
1038     {
1039     uint32_t i;
1040     uint8_t c;
1041     } u = { 0x11223344 };
1042     return u.c;
1043     #endif
1044 root 1.391 }
1045    
1046 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1047     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1048     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1049     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1050 root 1.391
1051     #if ECB_GCC_VERSION(3,0) || ECB_C99
1052     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1053     #else
1054     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1055     #endif
1056    
1057 root 1.398 #if __cplusplus
1058     template<typename T>
1059     static inline T ecb_div_rd (T val, T div)
1060     {
1061     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1062     }
1063     template<typename T>
1064     static inline T ecb_div_ru (T val, T div)
1065     {
1066     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1067     }
1068     #else
1069     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1070     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1071     #endif
1072    
1073 root 1.391 #if ecb_cplusplus_does_not_suck
1074     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1075     template<typename T, int N>
1076     static inline int ecb_array_length (const T (&arr)[N])
1077     {
1078     return N;
1079     }
1080     #else
1081     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1082     #endif
1083    
1084 root 1.450 /*******************************************************************************/
1085     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1086    
1087     /* basically, everything uses "ieee pure-endian" floating point numbers */
1088     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1089     #if 0 \
1090     || __i386 || __i386__ \
1091     || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1092     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1093     || defined __s390__ || defined __s390x__ \
1094     || defined __mips__ \
1095     || defined __alpha__ \
1096     || defined __hppa__ \
1097     || defined __ia64__ \
1098 root 1.457 || defined __m68k__ \
1099     || defined __m88k__ \
1100     || defined __sh__ \
1101 root 1.464 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1102 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1103 root 1.466 || defined __aarch64__
1104 root 1.450 #define ECB_STDFP 1
1105     #include <string.h> /* for memcpy */
1106     #else
1107     #define ECB_STDFP 0
1108     #endif
1109    
1110     #ifndef ECB_NO_LIBM
1111    
1112 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1113    
1114 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1115     #ifdef INFINITY
1116     #define ECB_INFINITY INFINITY
1117     #else
1118     #define ECB_INFINITY HUGE_VAL
1119     #endif
1120    
1121     #ifdef NAN
1122 root 1.458 #define ECB_NAN NAN
1123     #else
1124 root 1.462 #define ECB_NAN ECB_INFINITY
1125 root 1.458 #endif
1126    
1127     /* converts an ieee half/binary16 to a float */
1128     ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1129     ecb_function_ float
1130     ecb_binary16_to_float (uint16_t x)
1131     {
1132     int e = (x >> 10) & 0x1f;
1133     int m = x & 0x3ff;
1134     float r;
1135    
1136     if (!e ) r = ldexpf (m , -24);
1137     else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1138     else if (m ) r = ECB_NAN;
1139 root 1.462 else r = ECB_INFINITY;
1140 root 1.458
1141     return x & 0x8000 ? -r : r;
1142     }
1143    
1144 root 1.450 /* convert a float to ieee single/binary32 */
1145     ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1146     ecb_function_ uint32_t
1147     ecb_float_to_binary32 (float x)
1148     {
1149     uint32_t r;
1150    
1151     #if ECB_STDFP
1152     memcpy (&r, &x, 4);
1153     #else
1154     /* slow emulation, works for anything but -0 */
1155     uint32_t m;
1156     int e;
1157    
1158     if (x == 0e0f ) return 0x00000000U;
1159     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1160     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1161     if (x != x ) return 0x7fbfffffU;
1162    
1163     m = frexpf (x, &e) * 0x1000000U;
1164    
1165     r = m & 0x80000000U;
1166    
1167     if (r)
1168     m = -m;
1169    
1170     if (e <= -126)
1171     {
1172     m &= 0xffffffU;
1173     m >>= (-125 - e);
1174     e = -126;
1175     }
1176    
1177     r |= (e + 126) << 23;
1178     r |= m & 0x7fffffU;
1179     #endif
1180    
1181     return r;
1182     }
1183    
1184     /* converts an ieee single/binary32 to a float */
1185     ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1186     ecb_function_ float
1187     ecb_binary32_to_float (uint32_t x)
1188     {
1189     float r;
1190    
1191     #if ECB_STDFP
1192     memcpy (&r, &x, 4);
1193     #else
1194     /* emulation, only works for normals and subnormals and +0 */
1195     int neg = x >> 31;
1196     int e = (x >> 23) & 0xffU;
1197    
1198     x &= 0x7fffffU;
1199    
1200     if (e)
1201     x |= 0x800000U;
1202     else
1203     e = 1;
1204    
1205     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1206     r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1207    
1208     r = neg ? -r : r;
1209     #endif
1210    
1211     return r;
1212     }
1213    
1214     /* convert a double to ieee double/binary64 */
1215     ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1216     ecb_function_ uint64_t
1217     ecb_double_to_binary64 (double x)
1218     {
1219     uint64_t r;
1220    
1221     #if ECB_STDFP
1222     memcpy (&r, &x, 8);
1223     #else
1224     /* slow emulation, works for anything but -0 */
1225     uint64_t m;
1226     int e;
1227    
1228     if (x == 0e0 ) return 0x0000000000000000U;
1229     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1230     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1231     if (x != x ) return 0X7ff7ffffffffffffU;
1232    
1233     m = frexp (x, &e) * 0x20000000000000U;
1234    
1235     r = m & 0x8000000000000000;;
1236    
1237     if (r)
1238     m = -m;
1239    
1240     if (e <= -1022)
1241     {
1242     m &= 0x1fffffffffffffU;
1243     m >>= (-1021 - e);
1244     e = -1022;
1245     }
1246    
1247     r |= ((uint64_t)(e + 1022)) << 52;
1248     r |= m & 0xfffffffffffffU;
1249     #endif
1250    
1251     return r;
1252     }
1253    
1254     /* converts an ieee double/binary64 to a double */
1255     ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1256     ecb_function_ double
1257     ecb_binary64_to_double (uint64_t x)
1258     {
1259     double r;
1260    
1261     #if ECB_STDFP
1262     memcpy (&r, &x, 8);
1263     #else
1264     /* emulation, only works for normals and subnormals and +0 */
1265     int neg = x >> 63;
1266     int e = (x >> 52) & 0x7ffU;
1267    
1268     x &= 0xfffffffffffffU;
1269    
1270     if (e)
1271     x |= 0x10000000000000U;
1272     else
1273     e = 1;
1274    
1275     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1276     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1277    
1278     r = neg ? -r : r;
1279     #endif
1280    
1281     return r;
1282     }
1283    
1284     #endif
1285    
1286 root 1.391 #endif
1287    
1288     /* ECB.H END */
1289 root 1.379
1290 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1291 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1292 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1293     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1294 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1295 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1296     * which will then provide the memory fences.
1297     */
1298     # error "memory fences not defined for your architecture, please report"
1299     #endif
1300    
1301     #ifndef ECB_MEMORY_FENCE
1302     # define ECB_MEMORY_FENCE do { } while (0)
1303     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1304     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1305 root 1.392 #endif
1306    
1307 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1308     #define expect_true(cond) ecb_expect_true (cond)
1309     #define noinline ecb_noinline
1310    
1311     #define inline_size ecb_inline
1312 root 1.169
1313 root 1.338 #if EV_FEATURE_CODE
1314 root 1.379 # define inline_speed ecb_inline
1315 root 1.338 #else
1316 root 1.169 # define inline_speed static noinline
1317     #endif
1318 root 1.40
1319 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1320    
1321     #if EV_MINPRI == EV_MAXPRI
1322     # define ABSPRI(w) (((W)w), 0)
1323     #else
1324     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1325     #endif
1326 root 1.42
1327 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1328 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1329 root 1.103
1330 root 1.136 typedef ev_watcher *W;
1331     typedef ev_watcher_list *WL;
1332     typedef ev_watcher_time *WT;
1333 root 1.10
1334 root 1.229 #define ev_active(w) ((W)(w))->active
1335 root 1.228 #define ev_at(w) ((WT)(w))->at
1336    
1337 root 1.279 #if EV_USE_REALTIME
1338 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1339 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1340 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1341     #endif
1342    
1343     #if EV_USE_MONOTONIC
1344 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1345 root 1.198 #endif
1346 root 1.54
1347 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1348     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1349     #endif
1350     #ifndef EV_WIN32_HANDLE_TO_FD
1351 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1352 root 1.313 #endif
1353     #ifndef EV_WIN32_CLOSE_FD
1354     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1355     #endif
1356    
1357 root 1.103 #ifdef _WIN32
1358 root 1.98 # include "ev_win32.c"
1359     #endif
1360 root 1.67
1361 root 1.53 /*****************************************************************************/
1362 root 1.1
1363 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1364    
1365     #if EV_USE_FLOOR
1366     # include <math.h>
1367     # define ev_floor(v) floor (v)
1368     #else
1369    
1370     #include <float.h>
1371    
1372     /* a floor() replacement function, should be independent of ev_tstamp type */
1373     static ev_tstamp noinline
1374     ev_floor (ev_tstamp v)
1375     {
1376     /* the choice of shift factor is not terribly important */
1377     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1378     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1379     #else
1380     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1381     #endif
1382    
1383     /* argument too large for an unsigned long? */
1384     if (expect_false (v >= shift))
1385     {
1386     ev_tstamp f;
1387    
1388     if (v == v - 1.)
1389     return v; /* very large number */
1390    
1391     f = shift * ev_floor (v * (1. / shift));
1392     return f + ev_floor (v - f);
1393     }
1394    
1395     /* special treatment for negative args? */
1396     if (expect_false (v < 0.))
1397     {
1398     ev_tstamp f = -ev_floor (-v);
1399    
1400     return f - (f == v ? 0 : 1);
1401     }
1402    
1403     /* fits into an unsigned long */
1404     return (unsigned long)v;
1405     }
1406    
1407     #endif
1408    
1409     /*****************************************************************************/
1410    
1411 root 1.356 #ifdef __linux
1412     # include <sys/utsname.h>
1413     #endif
1414    
1415 root 1.379 static unsigned int noinline ecb_cold
1416 root 1.355 ev_linux_version (void)
1417     {
1418     #ifdef __linux
1419 root 1.359 unsigned int v = 0;
1420 root 1.355 struct utsname buf;
1421     int i;
1422     char *p = buf.release;
1423    
1424     if (uname (&buf))
1425     return 0;
1426    
1427     for (i = 3+1; --i; )
1428     {
1429     unsigned int c = 0;
1430    
1431     for (;;)
1432     {
1433     if (*p >= '0' && *p <= '9')
1434     c = c * 10 + *p++ - '0';
1435     else
1436     {
1437     p += *p == '.';
1438     break;
1439     }
1440     }
1441    
1442     v = (v << 8) | c;
1443     }
1444    
1445     return v;
1446     #else
1447     return 0;
1448     #endif
1449     }
1450    
1451     /*****************************************************************************/
1452    
1453 root 1.331 #if EV_AVOID_STDIO
1454 root 1.379 static void noinline ecb_cold
1455 root 1.331 ev_printerr (const char *msg)
1456     {
1457     write (STDERR_FILENO, msg, strlen (msg));
1458     }
1459     #endif
1460    
1461 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1462 root 1.69
1463 root 1.379 void ecb_cold
1464 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1465 root 1.69 {
1466     syserr_cb = cb;
1467     }
1468    
1469 root 1.379 static void noinline ecb_cold
1470 root 1.269 ev_syserr (const char *msg)
1471 root 1.69 {
1472 root 1.70 if (!msg)
1473     msg = "(libev) system error";
1474    
1475 root 1.69 if (syserr_cb)
1476 root 1.70 syserr_cb (msg);
1477 root 1.69 else
1478     {
1479 root 1.330 #if EV_AVOID_STDIO
1480 root 1.331 ev_printerr (msg);
1481     ev_printerr (": ");
1482 root 1.365 ev_printerr (strerror (errno));
1483 root 1.331 ev_printerr ("\n");
1484 root 1.330 #else
1485 root 1.70 perror (msg);
1486 root 1.330 #endif
1487 root 1.69 abort ();
1488     }
1489     }
1490    
1491 root 1.224 static void *
1492 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1493 root 1.224 {
1494     /* some systems, notably openbsd and darwin, fail to properly
1495 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1496 root 1.224 * the single unix specification, so work around them here.
1497 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1498     * despite documenting it otherwise.
1499 root 1.224 */
1500 root 1.333
1501 root 1.224 if (size)
1502     return realloc (ptr, size);
1503    
1504     free (ptr);
1505     return 0;
1506     }
1507    
1508 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1509 root 1.69
1510 root 1.379 void ecb_cold
1511 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1512 root 1.69 {
1513     alloc = cb;
1514     }
1515    
1516 root 1.150 inline_speed void *
1517 root 1.155 ev_realloc (void *ptr, long size)
1518 root 1.69 {
1519 root 1.224 ptr = alloc (ptr, size);
1520 root 1.69
1521     if (!ptr && size)
1522     {
1523 root 1.330 #if EV_AVOID_STDIO
1524 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1525 root 1.330 #else
1526 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1527 root 1.330 #endif
1528 root 1.69 abort ();
1529     }
1530    
1531     return ptr;
1532     }
1533    
1534     #define ev_malloc(size) ev_realloc (0, (size))
1535     #define ev_free(ptr) ev_realloc ((ptr), 0)
1536    
1537     /*****************************************************************************/
1538    
1539 root 1.298 /* set in reify when reification needed */
1540     #define EV_ANFD_REIFY 1
1541    
1542 root 1.288 /* file descriptor info structure */
1543 root 1.53 typedef struct
1544     {
1545 root 1.68 WL head;
1546 root 1.288 unsigned char events; /* the events watched for */
1547 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1548 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1549 root 1.269 unsigned char unused;
1550     #if EV_USE_EPOLL
1551 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1552 root 1.269 #endif
1553 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1554 root 1.103 SOCKET handle;
1555     #endif
1556 root 1.357 #if EV_USE_IOCP
1557     OVERLAPPED or, ow;
1558     #endif
1559 root 1.53 } ANFD;
1560 root 1.1
1561 root 1.288 /* stores the pending event set for a given watcher */
1562 root 1.53 typedef struct
1563     {
1564     W w;
1565 root 1.288 int events; /* the pending event set for the given watcher */
1566 root 1.53 } ANPENDING;
1567 root 1.51
1568 root 1.155 #if EV_USE_INOTIFY
1569 root 1.241 /* hash table entry per inotify-id */
1570 root 1.152 typedef struct
1571     {
1572     WL head;
1573 root 1.155 } ANFS;
1574 root 1.152 #endif
1575    
1576 root 1.241 /* Heap Entry */
1577     #if EV_HEAP_CACHE_AT
1578 root 1.288 /* a heap element */
1579 root 1.241 typedef struct {
1580 root 1.243 ev_tstamp at;
1581 root 1.241 WT w;
1582     } ANHE;
1583    
1584 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1585     #define ANHE_at(he) (he).at /* access cached at, read-only */
1586     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1587 root 1.241 #else
1588 root 1.288 /* a heap element */
1589 root 1.241 typedef WT ANHE;
1590    
1591 root 1.248 #define ANHE_w(he) (he)
1592     #define ANHE_at(he) (he)->at
1593     #define ANHE_at_cache(he)
1594 root 1.241 #endif
1595    
1596 root 1.55 #if EV_MULTIPLICITY
1597 root 1.54
1598 root 1.80 struct ev_loop
1599     {
1600 root 1.86 ev_tstamp ev_rt_now;
1601 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1602 root 1.80 #define VAR(name,decl) decl;
1603     #include "ev_vars.h"
1604     #undef VAR
1605     };
1606     #include "ev_wrap.h"
1607    
1608 root 1.116 static struct ev_loop default_loop_struct;
1609 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1610 root 1.54
1611 root 1.53 #else
1612 root 1.54
1613 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1614 root 1.80 #define VAR(name,decl) static decl;
1615     #include "ev_vars.h"
1616     #undef VAR
1617    
1618 root 1.116 static int ev_default_loop_ptr;
1619 root 1.54
1620 root 1.51 #endif
1621 root 1.1
1622 root 1.338 #if EV_FEATURE_API
1623 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1624     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1625 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1626     #else
1627 root 1.298 # define EV_RELEASE_CB (void)0
1628     # define EV_ACQUIRE_CB (void)0
1629 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1630     #endif
1631    
1632 root 1.353 #define EVBREAK_RECURSE 0x80
1633 root 1.298
1634 root 1.8 /*****************************************************************************/
1635    
1636 root 1.292 #ifndef EV_HAVE_EV_TIME
1637 root 1.141 ev_tstamp
1638 root 1.420 ev_time (void) EV_THROW
1639 root 1.1 {
1640 root 1.29 #if EV_USE_REALTIME
1641 root 1.279 if (expect_true (have_realtime))
1642     {
1643     struct timespec ts;
1644     clock_gettime (CLOCK_REALTIME, &ts);
1645     return ts.tv_sec + ts.tv_nsec * 1e-9;
1646     }
1647     #endif
1648    
1649 root 1.1 struct timeval tv;
1650     gettimeofday (&tv, 0);
1651     return tv.tv_sec + tv.tv_usec * 1e-6;
1652     }
1653 root 1.292 #endif
1654 root 1.1
1655 root 1.284 inline_size ev_tstamp
1656 root 1.1 get_clock (void)
1657     {
1658 root 1.29 #if EV_USE_MONOTONIC
1659 root 1.40 if (expect_true (have_monotonic))
1660 root 1.1 {
1661     struct timespec ts;
1662     clock_gettime (CLOCK_MONOTONIC, &ts);
1663     return ts.tv_sec + ts.tv_nsec * 1e-9;
1664     }
1665     #endif
1666    
1667     return ev_time ();
1668     }
1669    
1670 root 1.85 #if EV_MULTIPLICITY
1671 root 1.51 ev_tstamp
1672 root 1.420 ev_now (EV_P) EV_THROW
1673 root 1.51 {
1674 root 1.85 return ev_rt_now;
1675 root 1.51 }
1676 root 1.85 #endif
1677 root 1.51
1678 root 1.193 void
1679 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1680 root 1.193 {
1681     if (delay > 0.)
1682     {
1683     #if EV_USE_NANOSLEEP
1684     struct timespec ts;
1685    
1686 root 1.348 EV_TS_SET (ts, delay);
1687 root 1.193 nanosleep (&ts, 0);
1688 root 1.416 #elif defined _WIN32
1689 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1690 root 1.193 #else
1691     struct timeval tv;
1692    
1693 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1694 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1695 root 1.257 /* by older ones */
1696 sf-exg 1.349 EV_TV_SET (tv, delay);
1697 root 1.193 select (0, 0, 0, 0, &tv);
1698     #endif
1699     }
1700     }
1701    
1702     /*****************************************************************************/
1703    
1704 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1705 root 1.232
1706 root 1.288 /* find a suitable new size for the given array, */
1707 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1708 root 1.284 inline_size int
1709 root 1.163 array_nextsize (int elem, int cur, int cnt)
1710     {
1711     int ncur = cur + 1;
1712    
1713     do
1714     ncur <<= 1;
1715     while (cnt > ncur);
1716    
1717 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1718 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1719 root 1.163 {
1720     ncur *= elem;
1721 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1722 root 1.163 ncur = ncur - sizeof (void *) * 4;
1723     ncur /= elem;
1724     }
1725    
1726     return ncur;
1727     }
1728    
1729 root 1.379 static void * noinline ecb_cold
1730 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1731     {
1732     *cur = array_nextsize (elem, *cur, cnt);
1733     return ev_realloc (base, elem * *cur);
1734     }
1735 root 1.29
1736 root 1.265 #define array_init_zero(base,count) \
1737     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1738    
1739 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1740 root 1.163 if (expect_false ((cnt) > (cur))) \
1741 root 1.69 { \
1742 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1743 root 1.163 (base) = (type *)array_realloc \
1744     (sizeof (type), (base), &(cur), (cnt)); \
1745     init ((base) + (ocur_), (cur) - ocur_); \
1746 root 1.1 }
1747    
1748 root 1.163 #if 0
1749 root 1.74 #define array_slim(type,stem) \
1750 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1751     { \
1752     stem ## max = array_roundsize (stem ## cnt >> 1); \
1753 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1754 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1755     }
1756 root 1.163 #endif
1757 root 1.67
1758 root 1.65 #define array_free(stem, idx) \
1759 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1760 root 1.65
1761 root 1.8 /*****************************************************************************/
1762    
1763 root 1.288 /* dummy callback for pending events */
1764     static void noinline
1765     pendingcb (EV_P_ ev_prepare *w, int revents)
1766     {
1767     }
1768    
1769 root 1.140 void noinline
1770 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1771 root 1.1 {
1772 root 1.78 W w_ = (W)w;
1773 root 1.171 int pri = ABSPRI (w_);
1774 root 1.78
1775 root 1.123 if (expect_false (w_->pending))
1776 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1777     else
1778 root 1.32 {
1779 root 1.171 w_->pending = ++pendingcnt [pri];
1780     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1781     pendings [pri][w_->pending - 1].w = w_;
1782     pendings [pri][w_->pending - 1].events = revents;
1783 root 1.32 }
1784 root 1.425
1785     pendingpri = NUMPRI - 1;
1786 root 1.1 }
1787    
1788 root 1.284 inline_speed void
1789     feed_reverse (EV_P_ W w)
1790     {
1791     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1792     rfeeds [rfeedcnt++] = w;
1793     }
1794    
1795     inline_size void
1796     feed_reverse_done (EV_P_ int revents)
1797     {
1798     do
1799     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1800     while (rfeedcnt);
1801     }
1802    
1803     inline_speed void
1804 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1805 root 1.27 {
1806     int i;
1807    
1808     for (i = 0; i < eventcnt; ++i)
1809 root 1.78 ev_feed_event (EV_A_ events [i], type);
1810 root 1.27 }
1811    
1812 root 1.141 /*****************************************************************************/
1813    
1814 root 1.284 inline_speed void
1815 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1816 root 1.1 {
1817     ANFD *anfd = anfds + fd;
1818 root 1.136 ev_io *w;
1819 root 1.1
1820 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1821 root 1.1 {
1822 root 1.79 int ev = w->events & revents;
1823 root 1.1
1824     if (ev)
1825 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1826 root 1.1 }
1827     }
1828    
1829 root 1.298 /* do not submit kernel events for fds that have reify set */
1830     /* because that means they changed while we were polling for new events */
1831     inline_speed void
1832     fd_event (EV_P_ int fd, int revents)
1833     {
1834     ANFD *anfd = anfds + fd;
1835    
1836     if (expect_true (!anfd->reify))
1837 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1838 root 1.298 }
1839    
1840 root 1.79 void
1841 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1842 root 1.79 {
1843 root 1.168 if (fd >= 0 && fd < anfdmax)
1844 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1845 root 1.79 }
1846    
1847 root 1.288 /* make sure the external fd watch events are in-sync */
1848     /* with the kernel/libev internal state */
1849 root 1.284 inline_size void
1850 root 1.51 fd_reify (EV_P)
1851 root 1.9 {
1852     int i;
1853    
1854 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1855     for (i = 0; i < fdchangecnt; ++i)
1856     {
1857     int fd = fdchanges [i];
1858     ANFD *anfd = anfds + fd;
1859    
1860 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1861 root 1.371 {
1862     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1863    
1864     if (handle != anfd->handle)
1865     {
1866     unsigned long arg;
1867    
1868     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1869    
1870     /* handle changed, but fd didn't - we need to do it in two steps */
1871     backend_modify (EV_A_ fd, anfd->events, 0);
1872     anfd->events = 0;
1873     anfd->handle = handle;
1874     }
1875     }
1876     }
1877     #endif
1878    
1879 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1880     {
1881     int fd = fdchanges [i];
1882     ANFD *anfd = anfds + fd;
1883 root 1.136 ev_io *w;
1884 root 1.27
1885 root 1.350 unsigned char o_events = anfd->events;
1886     unsigned char o_reify = anfd->reify;
1887 root 1.27
1888 root 1.350 anfd->reify = 0;
1889 root 1.27
1890 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1891     {
1892     anfd->events = 0;
1893 root 1.184
1894 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1895     anfd->events |= (unsigned char)w->events;
1896 root 1.27
1897 root 1.351 if (o_events != anfd->events)
1898 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1899     }
1900    
1901     if (o_reify & EV__IOFDSET)
1902     backend_modify (EV_A_ fd, o_events, anfd->events);
1903 root 1.27 }
1904    
1905     fdchangecnt = 0;
1906     }
1907    
1908 root 1.288 /* something about the given fd changed */
1909 root 1.284 inline_size void
1910 root 1.183 fd_change (EV_P_ int fd, int flags)
1911 root 1.27 {
1912 root 1.183 unsigned char reify = anfds [fd].reify;
1913 root 1.184 anfds [fd].reify |= flags;
1914 root 1.27
1915 root 1.183 if (expect_true (!reify))
1916     {
1917     ++fdchangecnt;
1918     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1919     fdchanges [fdchangecnt - 1] = fd;
1920     }
1921 root 1.9 }
1922    
1923 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1924 root 1.379 inline_speed void ecb_cold
1925 root 1.51 fd_kill (EV_P_ int fd)
1926 root 1.41 {
1927 root 1.136 ev_io *w;
1928 root 1.41
1929 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1930 root 1.41 {
1931 root 1.51 ev_io_stop (EV_A_ w);
1932 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1933 root 1.41 }
1934     }
1935    
1936 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1937 root 1.379 inline_size int ecb_cold
1938 root 1.71 fd_valid (int fd)
1939     {
1940 root 1.103 #ifdef _WIN32
1941 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1942 root 1.71 #else
1943     return fcntl (fd, F_GETFD) != -1;
1944     #endif
1945     }
1946    
1947 root 1.19 /* called on EBADF to verify fds */
1948 root 1.379 static void noinline ecb_cold
1949 root 1.51 fd_ebadf (EV_P)
1950 root 1.19 {
1951     int fd;
1952    
1953     for (fd = 0; fd < anfdmax; ++fd)
1954 root 1.27 if (anfds [fd].events)
1955 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1956 root 1.51 fd_kill (EV_A_ fd);
1957 root 1.41 }
1958    
1959     /* called on ENOMEM in select/poll to kill some fds and retry */
1960 root 1.379 static void noinline ecb_cold
1961 root 1.51 fd_enomem (EV_P)
1962 root 1.41 {
1963 root 1.62 int fd;
1964 root 1.41
1965 root 1.62 for (fd = anfdmax; fd--; )
1966 root 1.41 if (anfds [fd].events)
1967     {
1968 root 1.51 fd_kill (EV_A_ fd);
1969 root 1.307 break;
1970 root 1.41 }
1971 root 1.19 }
1972    
1973 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1974 root 1.140 static void noinline
1975 root 1.56 fd_rearm_all (EV_P)
1976     {
1977     int fd;
1978    
1979     for (fd = 0; fd < anfdmax; ++fd)
1980     if (anfds [fd].events)
1981     {
1982     anfds [fd].events = 0;
1983 root 1.268 anfds [fd].emask = 0;
1984 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1985 root 1.56 }
1986     }
1987    
1988 root 1.336 /* used to prepare libev internal fd's */
1989     /* this is not fork-safe */
1990     inline_speed void
1991     fd_intern (int fd)
1992     {
1993     #ifdef _WIN32
1994     unsigned long arg = 1;
1995     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1996     #else
1997     fcntl (fd, F_SETFD, FD_CLOEXEC);
1998     fcntl (fd, F_SETFL, O_NONBLOCK);
1999     #endif
2000     }
2001    
2002 root 1.8 /*****************************************************************************/
2003    
2004 root 1.235 /*
2005 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2006 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2007     * the branching factor of the d-tree.
2008     */
2009    
2010     /*
2011 root 1.235 * at the moment we allow libev the luxury of two heaps,
2012     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2013     * which is more cache-efficient.
2014     * the difference is about 5% with 50000+ watchers.
2015     */
2016 root 1.241 #if EV_USE_4HEAP
2017 root 1.235
2018 root 1.237 #define DHEAP 4
2019     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2020 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2021 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2022 root 1.235
2023     /* away from the root */
2024 root 1.284 inline_speed void
2025 root 1.241 downheap (ANHE *heap, int N, int k)
2026 root 1.235 {
2027 root 1.241 ANHE he = heap [k];
2028     ANHE *E = heap + N + HEAP0;
2029 root 1.235
2030     for (;;)
2031     {
2032     ev_tstamp minat;
2033 root 1.241 ANHE *minpos;
2034 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2035 root 1.235
2036 root 1.248 /* find minimum child */
2037 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
2038 root 1.235 {
2039 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2040     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2041     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2042     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2043 root 1.235 }
2044 root 1.240 else if (pos < E)
2045 root 1.235 {
2046 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2047     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2048     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2049     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2050 root 1.235 }
2051 root 1.240 else
2052     break;
2053 root 1.235
2054 root 1.241 if (ANHE_at (he) <= minat)
2055 root 1.235 break;
2056    
2057 root 1.247 heap [k] = *minpos;
2058 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2059 root 1.235
2060     k = minpos - heap;
2061     }
2062    
2063 root 1.247 heap [k] = he;
2064 root 1.241 ev_active (ANHE_w (he)) = k;
2065 root 1.235 }
2066    
2067 root 1.248 #else /* 4HEAP */
2068 root 1.235
2069     #define HEAP0 1
2070 root 1.247 #define HPARENT(k) ((k) >> 1)
2071 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2072 root 1.235
2073 root 1.248 /* away from the root */
2074 root 1.284 inline_speed void
2075 root 1.248 downheap (ANHE *heap, int N, int k)
2076 root 1.1 {
2077 root 1.241 ANHE he = heap [k];
2078 root 1.1
2079 root 1.228 for (;;)
2080 root 1.1 {
2081 root 1.248 int c = k << 1;
2082 root 1.179
2083 root 1.309 if (c >= N + HEAP0)
2084 root 1.179 break;
2085    
2086 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2087     ? 1 : 0;
2088    
2089     if (ANHE_at (he) <= ANHE_at (heap [c]))
2090     break;
2091    
2092     heap [k] = heap [c];
2093 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2094 root 1.248
2095     k = c;
2096 root 1.1 }
2097    
2098 root 1.243 heap [k] = he;
2099 root 1.248 ev_active (ANHE_w (he)) = k;
2100 root 1.1 }
2101 root 1.248 #endif
2102 root 1.1
2103 root 1.248 /* towards the root */
2104 root 1.284 inline_speed void
2105 root 1.248 upheap (ANHE *heap, int k)
2106 root 1.1 {
2107 root 1.241 ANHE he = heap [k];
2108 root 1.1
2109 root 1.179 for (;;)
2110 root 1.1 {
2111 root 1.248 int p = HPARENT (k);
2112 root 1.179
2113 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2114 root 1.179 break;
2115 root 1.1
2116 root 1.248 heap [k] = heap [p];
2117 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2118 root 1.248 k = p;
2119 root 1.1 }
2120    
2121 root 1.241 heap [k] = he;
2122     ev_active (ANHE_w (he)) = k;
2123 root 1.1 }
2124    
2125 root 1.288 /* move an element suitably so it is in a correct place */
2126 root 1.284 inline_size void
2127 root 1.241 adjustheap (ANHE *heap, int N, int k)
2128 root 1.84 {
2129 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2130 root 1.247 upheap (heap, k);
2131     else
2132     downheap (heap, N, k);
2133 root 1.84 }
2134    
2135 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2136 root 1.284 inline_size void
2137 root 1.248 reheap (ANHE *heap, int N)
2138     {
2139     int i;
2140 root 1.251
2141 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2142     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2143     for (i = 0; i < N; ++i)
2144     upheap (heap, i + HEAP0);
2145     }
2146    
2147 root 1.8 /*****************************************************************************/
2148    
2149 root 1.288 /* associate signal watchers to a signal signal */
2150 root 1.7 typedef struct
2151     {
2152 root 1.307 EV_ATOMIC_T pending;
2153 root 1.306 #if EV_MULTIPLICITY
2154     EV_P;
2155     #endif
2156 root 1.68 WL head;
2157 root 1.7 } ANSIG;
2158    
2159 root 1.306 static ANSIG signals [EV_NSIG - 1];
2160 root 1.7
2161 root 1.207 /*****************************************************************************/
2162    
2163 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2164 root 1.207
2165 root 1.379 static void noinline ecb_cold
2166 root 1.207 evpipe_init (EV_P)
2167     {
2168 root 1.288 if (!ev_is_active (&pipe_w))
2169 root 1.207 {
2170 root 1.448 int fds [2];
2171    
2172 root 1.336 # if EV_USE_EVENTFD
2173 root 1.448 fds [0] = -1;
2174     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2175     if (fds [1] < 0 && errno == EINVAL)
2176     fds [1] = eventfd (0, 0);
2177    
2178     if (fds [1] < 0)
2179     # endif
2180     {
2181     while (pipe (fds))
2182     ev_syserr ("(libev) error creating signal/async pipe");
2183    
2184     fd_intern (fds [0]);
2185 root 1.220 }
2186 root 1.448
2187     evpipe [0] = fds [0];
2188    
2189     if (evpipe [1] < 0)
2190     evpipe [1] = fds [1]; /* first call, set write fd */
2191 root 1.220 else
2192     {
2193 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2194     /* so that evpipe_write can always rely on its value. */
2195     /* this branch does not do anything sensible on windows, */
2196     /* so must not be executed on windows */
2197 root 1.207
2198 root 1.448 dup2 (fds [1], evpipe [1]);
2199     close (fds [1]);
2200 root 1.220 }
2201 root 1.207
2202 root 1.455 fd_intern (evpipe [1]);
2203    
2204 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2205 root 1.288 ev_io_start (EV_A_ &pipe_w);
2206 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2207 root 1.207 }
2208     }
2209    
2210 root 1.380 inline_speed void
2211 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2212 root 1.207 {
2213 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2214    
2215 root 1.383 if (expect_true (*flag))
2216 root 1.387 return;
2217 root 1.383
2218     *flag = 1;
2219 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2220 root 1.383
2221     pipe_write_skipped = 1;
2222 root 1.378
2223 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2224 root 1.214
2225 root 1.383 if (pipe_write_wanted)
2226     {
2227     int old_errno;
2228 root 1.378
2229 root 1.436 pipe_write_skipped = 0;
2230     ECB_MEMORY_FENCE_RELEASE;
2231 root 1.220
2232 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2233 root 1.380
2234 root 1.220 #if EV_USE_EVENTFD
2235 root 1.448 if (evpipe [0] < 0)
2236 root 1.383 {
2237     uint64_t counter = 1;
2238 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2239 root 1.383 }
2240     else
2241 root 1.220 #endif
2242 root 1.383 {
2243 root 1.427 #ifdef _WIN32
2244     WSABUF buf;
2245     DWORD sent;
2246     buf.buf = &buf;
2247     buf.len = 1;
2248     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2249     #else
2250 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2251 root 1.427 #endif
2252 root 1.383 }
2253 root 1.214
2254 root 1.383 errno = old_errno;
2255 root 1.207 }
2256     }
2257    
2258 root 1.288 /* called whenever the libev signal pipe */
2259     /* got some events (signal, async) */
2260 root 1.207 static void
2261     pipecb (EV_P_ ev_io *iow, int revents)
2262     {
2263 root 1.307 int i;
2264    
2265 root 1.378 if (revents & EV_READ)
2266     {
2267 root 1.220 #if EV_USE_EVENTFD
2268 root 1.448 if (evpipe [0] < 0)
2269 root 1.378 {
2270     uint64_t counter;
2271 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2272 root 1.378 }
2273     else
2274 root 1.220 #endif
2275 root 1.378 {
2276 root 1.427 char dummy[4];
2277     #ifdef _WIN32
2278     WSABUF buf;
2279     DWORD recvd;
2280 root 1.432 DWORD flags = 0;
2281 root 1.427 buf.buf = dummy;
2282     buf.len = sizeof (dummy);
2283 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2284 root 1.427 #else
2285     read (evpipe [0], &dummy, sizeof (dummy));
2286     #endif
2287 root 1.378 }
2288 root 1.220 }
2289 root 1.207
2290 root 1.378 pipe_write_skipped = 0;
2291    
2292 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2293    
2294 root 1.369 #if EV_SIGNAL_ENABLE
2295 root 1.307 if (sig_pending)
2296 root 1.372 {
2297 root 1.307 sig_pending = 0;
2298 root 1.207
2299 root 1.436 ECB_MEMORY_FENCE;
2300 root 1.424
2301 root 1.307 for (i = EV_NSIG - 1; i--; )
2302     if (expect_false (signals [i].pending))
2303     ev_feed_signal_event (EV_A_ i + 1);
2304 root 1.207 }
2305 root 1.369 #endif
2306 root 1.207
2307 root 1.209 #if EV_ASYNC_ENABLE
2308 root 1.307 if (async_pending)
2309 root 1.207 {
2310 root 1.307 async_pending = 0;
2311 root 1.207
2312 root 1.436 ECB_MEMORY_FENCE;
2313 root 1.424
2314 root 1.207 for (i = asynccnt; i--; )
2315     if (asyncs [i]->sent)
2316     {
2317     asyncs [i]->sent = 0;
2318 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2319 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2320     }
2321     }
2322 root 1.209 #endif
2323 root 1.207 }
2324    
2325     /*****************************************************************************/
2326    
2327 root 1.366 void
2328 root 1.420 ev_feed_signal (int signum) EV_THROW
2329 root 1.7 {
2330 root 1.207 #if EV_MULTIPLICITY
2331 root 1.453 EV_P;
2332 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2333 root 1.453 EV_A = signals [signum - 1].loop;
2334 root 1.366
2335     if (!EV_A)
2336     return;
2337 root 1.207 #endif
2338    
2339 root 1.366 signals [signum - 1].pending = 1;
2340     evpipe_write (EV_A_ &sig_pending);
2341     }
2342    
2343     static void
2344     ev_sighandler (int signum)
2345     {
2346 root 1.322 #ifdef _WIN32
2347 root 1.218 signal (signum, ev_sighandler);
2348 root 1.67 #endif
2349    
2350 root 1.366 ev_feed_signal (signum);
2351 root 1.7 }
2352    
2353 root 1.140 void noinline
2354 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2355 root 1.79 {
2356 root 1.80 WL w;
2357    
2358 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2359 root 1.307 return;
2360    
2361     --signum;
2362    
2363 root 1.79 #if EV_MULTIPLICITY
2364 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2365     /* or, likely more useful, feeding a signal nobody is waiting for */
2366 root 1.79
2367 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2368 root 1.306 return;
2369 root 1.307 #endif
2370 root 1.306
2371 root 1.307 signals [signum].pending = 0;
2372 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2373 root 1.79
2374     for (w = signals [signum].head; w; w = w->next)
2375     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2376     }
2377    
2378 root 1.303 #if EV_USE_SIGNALFD
2379     static void
2380     sigfdcb (EV_P_ ev_io *iow, int revents)
2381     {
2382 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2383 root 1.303
2384     for (;;)
2385     {
2386     ssize_t res = read (sigfd, si, sizeof (si));
2387    
2388     /* not ISO-C, as res might be -1, but works with SuS */
2389     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2390     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2391    
2392     if (res < (ssize_t)sizeof (si))
2393     break;
2394     }
2395     }
2396     #endif
2397    
2398 root 1.336 #endif
2399    
2400 root 1.8 /*****************************************************************************/
2401    
2402 root 1.336 #if EV_CHILD_ENABLE
2403 root 1.182 static WL childs [EV_PID_HASHSIZE];
2404 root 1.71
2405 root 1.136 static ev_signal childev;
2406 root 1.59
2407 root 1.206 #ifndef WIFCONTINUED
2408     # define WIFCONTINUED(status) 0
2409     #endif
2410    
2411 root 1.288 /* handle a single child status event */
2412 root 1.284 inline_speed void
2413 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2414 root 1.47 {
2415 root 1.136 ev_child *w;
2416 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2417 root 1.47
2418 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2419 root 1.206 {
2420     if ((w->pid == pid || !w->pid)
2421     && (!traced || (w->flags & 1)))
2422     {
2423 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2424 root 1.206 w->rpid = pid;
2425     w->rstatus = status;
2426     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2427     }
2428     }
2429 root 1.47 }
2430    
2431 root 1.142 #ifndef WCONTINUED
2432     # define WCONTINUED 0
2433     #endif
2434    
2435 root 1.288 /* called on sigchld etc., calls waitpid */
2436 root 1.47 static void
2437 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2438 root 1.22 {
2439     int pid, status;
2440    
2441 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2442     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2443     if (!WCONTINUED
2444     || errno != EINVAL
2445     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2446     return;
2447    
2448 root 1.216 /* make sure we are called again until all children have been reaped */
2449 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2450     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2451 root 1.47
2452 root 1.216 child_reap (EV_A_ pid, pid, status);
2453 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2454 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2455 root 1.22 }
2456    
2457 root 1.45 #endif
2458    
2459 root 1.22 /*****************************************************************************/
2460    
2461 root 1.357 #if EV_USE_IOCP
2462     # include "ev_iocp.c"
2463     #endif
2464 root 1.118 #if EV_USE_PORT
2465     # include "ev_port.c"
2466     #endif
2467 root 1.44 #if EV_USE_KQUEUE
2468     # include "ev_kqueue.c"
2469     #endif
2470 root 1.29 #if EV_USE_EPOLL
2471 root 1.1 # include "ev_epoll.c"
2472     #endif
2473 root 1.59 #if EV_USE_POLL
2474 root 1.41 # include "ev_poll.c"
2475     #endif
2476 root 1.29 #if EV_USE_SELECT
2477 root 1.1 # include "ev_select.c"
2478     #endif
2479    
2480 root 1.379 int ecb_cold
2481 root 1.420 ev_version_major (void) EV_THROW
2482 root 1.24 {
2483     return EV_VERSION_MAJOR;
2484     }
2485    
2486 root 1.379 int ecb_cold
2487 root 1.420 ev_version_minor (void) EV_THROW
2488 root 1.24 {
2489     return EV_VERSION_MINOR;
2490     }
2491    
2492 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2493 root 1.379 int inline_size ecb_cold
2494 root 1.51 enable_secure (void)
2495 root 1.41 {
2496 root 1.103 #ifdef _WIN32
2497 root 1.49 return 0;
2498     #else
2499 root 1.41 return getuid () != geteuid ()
2500     || getgid () != getegid ();
2501 root 1.49 #endif
2502 root 1.41 }
2503    
2504 root 1.379 unsigned int ecb_cold
2505 root 1.420 ev_supported_backends (void) EV_THROW
2506 root 1.129 {
2507 root 1.130 unsigned int flags = 0;
2508 root 1.129
2509     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2510     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2511     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2512     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2513     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2514    
2515     return flags;
2516     }
2517    
2518 root 1.379 unsigned int ecb_cold
2519 root 1.420 ev_recommended_backends (void) EV_THROW
2520 root 1.1 {
2521 root 1.131 unsigned int flags = ev_supported_backends ();
2522 root 1.129
2523     #ifndef __NetBSD__
2524     /* kqueue is borked on everything but netbsd apparently */
2525     /* it usually doesn't work correctly on anything but sockets and pipes */
2526     flags &= ~EVBACKEND_KQUEUE;
2527     #endif
2528     #ifdef __APPLE__
2529 root 1.278 /* only select works correctly on that "unix-certified" platform */
2530     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2531     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2532 root 1.129 #endif
2533 root 1.342 #ifdef __FreeBSD__
2534     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2535     #endif
2536 root 1.129
2537     return flags;
2538 root 1.51 }
2539    
2540 root 1.379 unsigned int ecb_cold
2541 root 1.420 ev_embeddable_backends (void) EV_THROW
2542 root 1.134 {
2543 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2544    
2545 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2546 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2547     flags &= ~EVBACKEND_EPOLL;
2548 root 1.196
2549     return flags;
2550 root 1.134 }
2551    
2552     unsigned int
2553 root 1.420 ev_backend (EV_P) EV_THROW
2554 root 1.130 {
2555     return backend;
2556     }
2557    
2558 root 1.338 #if EV_FEATURE_API
2559 root 1.162 unsigned int
2560 root 1.420 ev_iteration (EV_P) EV_THROW
2561 root 1.162 {
2562     return loop_count;
2563     }
2564    
2565 root 1.294 unsigned int
2566 root 1.420 ev_depth (EV_P) EV_THROW
2567 root 1.294 {
2568     return loop_depth;
2569     }
2570    
2571 root 1.193 void
2572 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2573 root 1.193 {
2574     io_blocktime = interval;
2575     }
2576    
2577     void
2578 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2579 root 1.193 {
2580     timeout_blocktime = interval;
2581     }
2582    
2583 root 1.297 void
2584 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2585 root 1.297 {
2586     userdata = data;
2587     }
2588    
2589     void *
2590 root 1.420 ev_userdata (EV_P) EV_THROW
2591 root 1.297 {
2592     return userdata;
2593     }
2594    
2595 root 1.379 void
2596 root 1.461 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2597 root 1.297 {
2598     invoke_cb = invoke_pending_cb;
2599     }
2600    
2601 root 1.379 void
2602 root 1.461 ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2603 root 1.297 {
2604 root 1.298 release_cb = release;
2605     acquire_cb = acquire;
2606 root 1.297 }
2607     #endif
2608    
2609 root 1.288 /* initialise a loop structure, must be zero-initialised */
2610 root 1.379 static void noinline ecb_cold
2611 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2612 root 1.51 {
2613 root 1.130 if (!backend)
2614 root 1.23 {
2615 root 1.366 origflags = flags;
2616    
2617 root 1.279 #if EV_USE_REALTIME
2618     if (!have_realtime)
2619     {
2620     struct timespec ts;
2621    
2622     if (!clock_gettime (CLOCK_REALTIME, &ts))
2623     have_realtime = 1;
2624     }
2625     #endif
2626    
2627 root 1.29 #if EV_USE_MONOTONIC
2628 root 1.279 if (!have_monotonic)
2629     {
2630     struct timespec ts;
2631    
2632     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2633     have_monotonic = 1;
2634     }
2635 root 1.1 #endif
2636    
2637 root 1.306 /* pid check not overridable via env */
2638     #ifndef _WIN32
2639     if (flags & EVFLAG_FORKCHECK)
2640     curpid = getpid ();
2641     #endif
2642    
2643     if (!(flags & EVFLAG_NOENV)
2644     && !enable_secure ()
2645     && getenv ("LIBEV_FLAGS"))
2646     flags = atoi (getenv ("LIBEV_FLAGS"));
2647    
2648 root 1.378 ev_rt_now = ev_time ();
2649     mn_now = get_clock ();
2650     now_floor = mn_now;
2651     rtmn_diff = ev_rt_now - mn_now;
2652 root 1.338 #if EV_FEATURE_API
2653 root 1.378 invoke_cb = ev_invoke_pending;
2654 root 1.297 #endif
2655 root 1.1
2656 root 1.378 io_blocktime = 0.;
2657     timeout_blocktime = 0.;
2658     backend = 0;
2659     backend_fd = -1;
2660     sig_pending = 0;
2661 root 1.307 #if EV_ASYNC_ENABLE
2662 root 1.378 async_pending = 0;
2663 root 1.307 #endif
2664 root 1.378 pipe_write_skipped = 0;
2665     pipe_write_wanted = 0;
2666 root 1.448 evpipe [0] = -1;
2667     evpipe [1] = -1;
2668 root 1.209 #if EV_USE_INOTIFY
2669 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2670 root 1.209 #endif
2671 root 1.303 #if EV_USE_SIGNALFD
2672 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2673 root 1.303 #endif
2674 root 1.193
2675 root 1.366 if (!(flags & EVBACKEND_MASK))
2676 root 1.129 flags |= ev_recommended_backends ();
2677 root 1.41
2678 root 1.357 #if EV_USE_IOCP
2679     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2680     #endif
2681 root 1.118 #if EV_USE_PORT
2682 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2683 root 1.118 #endif
2684 root 1.44 #if EV_USE_KQUEUE
2685 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2686 root 1.44 #endif
2687 root 1.29 #if EV_USE_EPOLL
2688 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2689 root 1.41 #endif
2690 root 1.59 #if EV_USE_POLL
2691 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2692 root 1.1 #endif
2693 root 1.29 #if EV_USE_SELECT
2694 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2695 root 1.1 #endif
2696 root 1.70
2697 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2698    
2699 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2700 root 1.288 ev_init (&pipe_w, pipecb);
2701     ev_set_priority (&pipe_w, EV_MAXPRI);
2702 root 1.336 #endif
2703 root 1.56 }
2704     }
2705    
2706 root 1.288 /* free up a loop structure */
2707 root 1.379 void ecb_cold
2708 root 1.422 ev_loop_destroy (EV_P)
2709 root 1.56 {
2710 root 1.65 int i;
2711    
2712 root 1.364 #if EV_MULTIPLICITY
2713 root 1.363 /* mimic free (0) */
2714     if (!EV_A)
2715     return;
2716 root 1.364 #endif
2717 root 1.363
2718 root 1.361 #if EV_CLEANUP_ENABLE
2719     /* queue cleanup watchers (and execute them) */
2720     if (expect_false (cleanupcnt))
2721     {
2722     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2723     EV_INVOKE_PENDING;
2724     }
2725     #endif
2726    
2727 root 1.359 #if EV_CHILD_ENABLE
2728 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2729 root 1.359 {
2730     ev_ref (EV_A); /* child watcher */
2731     ev_signal_stop (EV_A_ &childev);
2732     }
2733     #endif
2734    
2735 root 1.288 if (ev_is_active (&pipe_w))
2736 root 1.207 {
2737 root 1.303 /*ev_ref (EV_A);*/
2738     /*ev_io_stop (EV_A_ &pipe_w);*/
2739 root 1.207
2740 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2741     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2742 root 1.207 }
2743    
2744 root 1.303 #if EV_USE_SIGNALFD
2745     if (ev_is_active (&sigfd_w))
2746 root 1.317 close (sigfd);
2747 root 1.303 #endif
2748    
2749 root 1.152 #if EV_USE_INOTIFY
2750     if (fs_fd >= 0)
2751     close (fs_fd);
2752     #endif
2753    
2754     if (backend_fd >= 0)
2755     close (backend_fd);
2756    
2757 root 1.357 #if EV_USE_IOCP
2758     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2759     #endif
2760 root 1.118 #if EV_USE_PORT
2761 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2762 root 1.118 #endif
2763 root 1.56 #if EV_USE_KQUEUE
2764 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2765 root 1.56 #endif
2766     #if EV_USE_EPOLL
2767 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2768 root 1.56 #endif
2769 root 1.59 #if EV_USE_POLL
2770 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2771 root 1.56 #endif
2772     #if EV_USE_SELECT
2773 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2774 root 1.56 #endif
2775 root 1.1
2776 root 1.65 for (i = NUMPRI; i--; )
2777 root 1.164 {
2778     array_free (pending, [i]);
2779     #if EV_IDLE_ENABLE
2780     array_free (idle, [i]);
2781     #endif
2782     }
2783 root 1.65
2784 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2785 root 1.186
2786 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2787 root 1.284 array_free (rfeed, EMPTY);
2788 root 1.164 array_free (fdchange, EMPTY);
2789     array_free (timer, EMPTY);
2790 root 1.140 #if EV_PERIODIC_ENABLE
2791 root 1.164 array_free (periodic, EMPTY);
2792 root 1.93 #endif
2793 root 1.187 #if EV_FORK_ENABLE
2794     array_free (fork, EMPTY);
2795     #endif
2796 root 1.360 #if EV_CLEANUP_ENABLE
2797     array_free (cleanup, EMPTY);
2798     #endif
2799 root 1.164 array_free (prepare, EMPTY);
2800     array_free (check, EMPTY);
2801 root 1.209 #if EV_ASYNC_ENABLE
2802     array_free (async, EMPTY);
2803     #endif
2804 root 1.65
2805 root 1.130 backend = 0;
2806 root 1.359
2807     #if EV_MULTIPLICITY
2808     if (ev_is_default_loop (EV_A))
2809     #endif
2810     ev_default_loop_ptr = 0;
2811     #if EV_MULTIPLICITY
2812     else
2813     ev_free (EV_A);
2814     #endif
2815 root 1.56 }
2816 root 1.22
2817 root 1.226 #if EV_USE_INOTIFY
2818 root 1.284 inline_size void infy_fork (EV_P);
2819 root 1.226 #endif
2820 root 1.154
2821 root 1.284 inline_size void
2822 root 1.56 loop_fork (EV_P)
2823     {
2824 root 1.118 #if EV_USE_PORT
2825 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2826 root 1.56 #endif
2827     #if EV_USE_KQUEUE
2828 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2829 root 1.45 #endif
2830 root 1.118 #if EV_USE_EPOLL
2831 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2832 root 1.118 #endif
2833 root 1.154 #if EV_USE_INOTIFY
2834     infy_fork (EV_A);
2835     #endif
2836 root 1.70
2837 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2838 root 1.288 if (ev_is_active (&pipe_w))
2839 root 1.70 {
2840 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2841 root 1.70
2842     ev_ref (EV_A);
2843 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2844 root 1.220
2845     if (evpipe [0] >= 0)
2846 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
2847 root 1.207
2848     evpipe_init (EV_A);
2849 root 1.443 /* iterate over everything, in case we missed something before */
2850     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2851 root 1.448 }
2852 root 1.337 #endif
2853 root 1.70
2854     postfork = 0;
2855 root 1.1 }
2856    
2857 root 1.55 #if EV_MULTIPLICITY
2858 root 1.250
2859 root 1.379 struct ev_loop * ecb_cold
2860 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2861 root 1.54 {
2862 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2863 root 1.69
2864 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2865 root 1.108 loop_init (EV_A_ flags);
2866 root 1.56
2867 root 1.130 if (ev_backend (EV_A))
2868 root 1.306 return EV_A;
2869 root 1.54
2870 root 1.359 ev_free (EV_A);
2871 root 1.55 return 0;
2872 root 1.54 }
2873    
2874 root 1.297 #endif /* multiplicity */
2875 root 1.248
2876     #if EV_VERIFY
2877 root 1.379 static void noinline ecb_cold
2878 root 1.251 verify_watcher (EV_P_ W w)
2879     {
2880 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2881 root 1.251
2882     if (w->pending)
2883 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2884 root 1.251 }
2885    
2886 root 1.379 static void noinline ecb_cold
2887 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2888     {
2889     int i;
2890    
2891     for (i = HEAP0; i < N + HEAP0; ++i)
2892     {
2893 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2894     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2895     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2896 root 1.251
2897     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2898     }
2899     }
2900    
2901 root 1.379 static void noinline ecb_cold
2902 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2903 root 1.248 {
2904     while (cnt--)
2905 root 1.251 {
2906 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2907 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2908     }
2909 root 1.248 }
2910 root 1.250 #endif
2911 root 1.248
2912 root 1.338 #if EV_FEATURE_API
2913 root 1.379 void ecb_cold
2914 root 1.420 ev_verify (EV_P) EV_THROW
2915 root 1.248 {
2916 root 1.250 #if EV_VERIFY
2917 root 1.429 int i;
2918 root 1.426 WL w, w2;
2919 root 1.251
2920     assert (activecnt >= -1);
2921    
2922     assert (fdchangemax >= fdchangecnt);
2923     for (i = 0; i < fdchangecnt; ++i)
2924 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2925 root 1.251
2926     assert (anfdmax >= 0);
2927 root 1.429 for (i = 0; i < anfdmax; ++i)
2928     {
2929     int j = 0;
2930    
2931     for (w = w2 = anfds [i].head; w; w = w->next)
2932     {
2933     verify_watcher (EV_A_ (W)w);
2934 root 1.426
2935 root 1.429 if (j++ & 1)
2936     {
2937     assert (("libev: io watcher list contains a loop", w != w2));
2938     w2 = w2->next;
2939     }
2940 root 1.426
2941 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2942     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2943     }
2944     }
2945 root 1.251
2946     assert (timermax >= timercnt);
2947     verify_heap (EV_A_ timers, timercnt);
2948 root 1.248
2949     #if EV_PERIODIC_ENABLE
2950 root 1.251 assert (periodicmax >= periodiccnt);
2951     verify_heap (EV_A_ periodics, periodiccnt);
2952 root 1.248 #endif
2953    
2954 root 1.251 for (i = NUMPRI; i--; )
2955     {
2956     assert (pendingmax [i] >= pendingcnt [i]);
2957 root 1.248 #if EV_IDLE_ENABLE
2958 root 1.252 assert (idleall >= 0);
2959 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2960     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2961 root 1.248 #endif
2962 root 1.251 }
2963    
2964 root 1.248 #if EV_FORK_ENABLE
2965 root 1.251 assert (forkmax >= forkcnt);
2966     array_verify (EV_A_ (W *)forks, forkcnt);
2967 root 1.248 #endif
2968 root 1.251
2969 root 1.360 #if EV_CLEANUP_ENABLE
2970     assert (cleanupmax >= cleanupcnt);
2971     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2972     #endif
2973    
2974 root 1.250 #if EV_ASYNC_ENABLE
2975 root 1.251 assert (asyncmax >= asynccnt);
2976     array_verify (EV_A_ (W *)asyncs, asynccnt);
2977 root 1.250 #endif
2978 root 1.251
2979 root 1.337 #if EV_PREPARE_ENABLE
2980 root 1.251 assert (preparemax >= preparecnt);
2981     array_verify (EV_A_ (W *)prepares, preparecnt);
2982 root 1.337 #endif
2983 root 1.251
2984 root 1.337 #if EV_CHECK_ENABLE
2985 root 1.251 assert (checkmax >= checkcnt);
2986     array_verify (EV_A_ (W *)checks, checkcnt);
2987 root 1.337 #endif
2988 root 1.251
2989     # if 0
2990 root 1.336 #if EV_CHILD_ENABLE
2991 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2992 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2993 root 1.336 #endif
2994 root 1.251 # endif
2995 root 1.248 #endif
2996     }
2997 root 1.297 #endif
2998 root 1.56
2999     #if EV_MULTIPLICITY
3000 root 1.379 struct ev_loop * ecb_cold
3001 root 1.54 #else
3002     int
3003 root 1.358 #endif
3004 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
3005 root 1.54 {
3006 root 1.116 if (!ev_default_loop_ptr)
3007 root 1.56 {
3008     #if EV_MULTIPLICITY
3009 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3010 root 1.56 #else
3011 ayin 1.117 ev_default_loop_ptr = 1;
3012 root 1.54 #endif
3013    
3014 root 1.110 loop_init (EV_A_ flags);
3015 root 1.56
3016 root 1.130 if (ev_backend (EV_A))
3017 root 1.56 {
3018 root 1.336 #if EV_CHILD_ENABLE
3019 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3020     ev_set_priority (&childev, EV_MAXPRI);
3021     ev_signal_start (EV_A_ &childev);
3022     ev_unref (EV_A); /* child watcher should not keep loop alive */
3023     #endif
3024     }
3025     else
3026 root 1.116 ev_default_loop_ptr = 0;
3027 root 1.56 }
3028 root 1.8
3029 root 1.116 return ev_default_loop_ptr;
3030 root 1.1 }
3031    
3032 root 1.24 void
3033 root 1.420 ev_loop_fork (EV_P) EV_THROW
3034 root 1.1 {
3035 root 1.440 postfork = 1;
3036 root 1.1 }
3037    
3038 root 1.8 /*****************************************************************************/
3039    
3040 root 1.168 void
3041     ev_invoke (EV_P_ void *w, int revents)
3042     {
3043     EV_CB_INVOKE ((W)w, revents);
3044     }
3045    
3046 root 1.300 unsigned int
3047 root 1.420 ev_pending_count (EV_P) EV_THROW
3048 root 1.300 {
3049     int pri;
3050     unsigned int count = 0;
3051    
3052     for (pri = NUMPRI; pri--; )
3053     count += pendingcnt [pri];
3054    
3055     return count;
3056     }
3057    
3058 root 1.297 void noinline
3059 root 1.296 ev_invoke_pending (EV_P)
3060 root 1.1 {
3061 root 1.445 pendingpri = NUMPRI;
3062    
3063     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3064     {
3065     --pendingpri;
3066    
3067     while (pendingcnt [pendingpri])
3068     {
3069     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3070 root 1.1
3071 root 1.445 p->w->pending = 0;
3072     EV_CB_INVOKE (p->w, p->events);
3073     EV_FREQUENT_CHECK;
3074     }
3075     }
3076 root 1.1 }
3077    
3078 root 1.234 #if EV_IDLE_ENABLE
3079 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3080     /* only when higher priorities are idle" logic */
3081 root 1.284 inline_size void
3082 root 1.234 idle_reify (EV_P)
3083     {
3084     if (expect_false (idleall))
3085     {
3086     int pri;
3087    
3088     for (pri = NUMPRI; pri--; )
3089     {
3090     if (pendingcnt [pri])
3091     break;
3092    
3093     if (idlecnt [pri])
3094     {
3095     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3096     break;
3097     }
3098     }
3099     }
3100     }
3101     #endif
3102    
3103 root 1.288 /* make timers pending */
3104 root 1.284 inline_size void
3105 root 1.51 timers_reify (EV_P)
3106 root 1.1 {
3107 root 1.248 EV_FREQUENT_CHECK;
3108    
3109 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3110 root 1.1 {
3111 root 1.284 do
3112     {
3113     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3114 root 1.1
3115 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3116    
3117     /* first reschedule or stop timer */
3118     if (w->repeat)
3119     {
3120     ev_at (w) += w->repeat;
3121     if (ev_at (w) < mn_now)
3122     ev_at (w) = mn_now;
3123 root 1.61
3124 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3125 root 1.90
3126 root 1.284 ANHE_at_cache (timers [HEAP0]);
3127     downheap (timers, timercnt, HEAP0);
3128     }
3129     else
3130     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3131 root 1.243
3132 root 1.284 EV_FREQUENT_CHECK;
3133     feed_reverse (EV_A_ (W)w);
3134 root 1.12 }
3135 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3136 root 1.30
3137 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3138 root 1.12 }
3139     }
3140 root 1.4
3141 root 1.140 #if EV_PERIODIC_ENABLE
3142 root 1.370
3143 root 1.373 static void noinline
3144 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3145     {
3146 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3147     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3148    
3149     /* the above almost always errs on the low side */
3150     while (at <= ev_rt_now)
3151     {
3152     ev_tstamp nat = at + w->interval;
3153    
3154     /* when resolution fails us, we use ev_rt_now */
3155     if (expect_false (nat == at))
3156     {
3157     at = ev_rt_now;
3158     break;
3159     }
3160    
3161     at = nat;
3162     }
3163    
3164     ev_at (w) = at;
3165 root 1.370 }
3166    
3167 root 1.288 /* make periodics pending */
3168 root 1.284 inline_size void
3169 root 1.51 periodics_reify (EV_P)
3170 root 1.12 {
3171 root 1.248 EV_FREQUENT_CHECK;
3172 root 1.250
3173 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3174 root 1.12 {
3175 root 1.284 do
3176     {
3177     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3178 root 1.1
3179 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3180 root 1.61
3181 root 1.284 /* first reschedule or stop timer */
3182     if (w->reschedule_cb)
3183     {
3184     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3185 root 1.243
3186 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3187 root 1.243
3188 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3189     downheap (periodics, periodiccnt, HEAP0);
3190     }
3191     else if (w->interval)
3192 root 1.246 {
3193 root 1.370 periodic_recalc (EV_A_ w);
3194 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3195     downheap (periodics, periodiccnt, HEAP0);
3196 root 1.246 }
3197 root 1.284 else
3198     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3199 root 1.243
3200 root 1.284 EV_FREQUENT_CHECK;
3201     feed_reverse (EV_A_ (W)w);
3202 root 1.1 }
3203 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3204 root 1.12
3205 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3206 root 1.12 }
3207     }
3208    
3209 root 1.288 /* simply recalculate all periodics */
3210 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3211 root 1.379 static void noinline ecb_cold
3212 root 1.54 periodics_reschedule (EV_P)
3213 root 1.12 {
3214     int i;
3215    
3216 root 1.13 /* adjust periodics after time jump */
3217 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3218 root 1.12 {
3219 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3220 root 1.12
3221 root 1.77 if (w->reschedule_cb)
3222 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3223 root 1.77 else if (w->interval)
3224 root 1.370 periodic_recalc (EV_A_ w);
3225 root 1.242
3226 root 1.248 ANHE_at_cache (periodics [i]);
3227 root 1.77 }
3228 root 1.12
3229 root 1.248 reheap (periodics, periodiccnt);
3230 root 1.1 }
3231 root 1.93 #endif
3232 root 1.1
3233 root 1.288 /* adjust all timers by a given offset */
3234 root 1.379 static void noinline ecb_cold
3235 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3236     {
3237     int i;
3238    
3239     for (i = 0; i < timercnt; ++i)
3240     {
3241     ANHE *he = timers + i + HEAP0;
3242     ANHE_w (*he)->at += adjust;
3243     ANHE_at_cache (*he);
3244     }
3245     }
3246    
3247 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3248 root 1.324 /* also detect if there was a timejump, and act accordingly */
3249 root 1.284 inline_speed void
3250 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3251 root 1.4 {
3252 root 1.40 #if EV_USE_MONOTONIC
3253     if (expect_true (have_monotonic))
3254     {
3255 root 1.289 int i;
3256 root 1.178 ev_tstamp odiff = rtmn_diff;
3257    
3258     mn_now = get_clock ();
3259    
3260     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3261     /* interpolate in the meantime */
3262     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3263 root 1.40 {
3264 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3265     return;
3266     }
3267    
3268     now_floor = mn_now;
3269     ev_rt_now = ev_time ();
3270 root 1.4
3271 root 1.178 /* loop a few times, before making important decisions.
3272     * on the choice of "4": one iteration isn't enough,
3273     * in case we get preempted during the calls to
3274     * ev_time and get_clock. a second call is almost guaranteed
3275     * to succeed in that case, though. and looping a few more times
3276     * doesn't hurt either as we only do this on time-jumps or
3277     * in the unlikely event of having been preempted here.
3278     */
3279     for (i = 4; --i; )
3280     {
3281 root 1.373 ev_tstamp diff;
3282 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3283 root 1.4
3284 root 1.373 diff = odiff - rtmn_diff;
3285    
3286     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3287 root 1.178 return; /* all is well */
3288 root 1.4
3289 root 1.178 ev_rt_now = ev_time ();
3290     mn_now = get_clock ();
3291     now_floor = mn_now;
3292     }
3293 root 1.4
3294 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3295     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3296 root 1.140 # if EV_PERIODIC_ENABLE
3297 root 1.178 periodics_reschedule (EV_A);
3298 root 1.93 # endif
3299 root 1.4 }
3300     else
3301 root 1.40 #endif
3302 root 1.4 {
3303 root 1.85 ev_rt_now = ev_time ();
3304 root 1.40
3305 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3306 root 1.13 {
3307 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3308     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3309 root 1.140 #if EV_PERIODIC_ENABLE
3310 root 1.54 periodics_reschedule (EV_A);
3311 root 1.93 #endif
3312 root 1.13 }
3313 root 1.4
3314 root 1.85 mn_now = ev_rt_now;
3315 root 1.4 }
3316     }
3317    
3318 root 1.418 int
3319 root 1.353 ev_run (EV_P_ int flags)
3320 root 1.1 {
3321 root 1.338 #if EV_FEATURE_API
3322 root 1.294 ++loop_depth;
3323 root 1.297 #endif
3324 root 1.294
3325 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3326 root 1.298
3327 root 1.353 loop_done = EVBREAK_CANCEL;
3328 root 1.1
3329 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3330 root 1.158
3331 root 1.161 do
3332 root 1.9 {
3333 root 1.250 #if EV_VERIFY >= 2
3334 root 1.340 ev_verify (EV_A);
3335 root 1.250 #endif
3336    
3337 root 1.158 #ifndef _WIN32
3338     if (expect_false (curpid)) /* penalise the forking check even more */
3339     if (expect_false (getpid () != curpid))
3340     {
3341     curpid = getpid ();
3342     postfork = 1;
3343     }
3344     #endif
3345    
3346 root 1.157 #if EV_FORK_ENABLE
3347     /* we might have forked, so queue fork handlers */
3348     if (expect_false (postfork))
3349     if (forkcnt)
3350     {
3351     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3352 root 1.297 EV_INVOKE_PENDING;
3353 root 1.157 }
3354     #endif
3355 root 1.147
3356 root 1.337 #if EV_PREPARE_ENABLE
3357 root 1.170 /* queue prepare watchers (and execute them) */
3358 root 1.40 if (expect_false (preparecnt))
3359 root 1.20 {
3360 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3361 root 1.297 EV_INVOKE_PENDING;
3362 root 1.20 }
3363 root 1.337 #endif
3364 root 1.9
3365 root 1.298 if (expect_false (loop_done))
3366     break;
3367    
3368 root 1.70 /* we might have forked, so reify kernel state if necessary */
3369     if (expect_false (postfork))
3370     loop_fork (EV_A);
3371    
3372 root 1.1 /* update fd-related kernel structures */
3373 root 1.51 fd_reify (EV_A);
3374 root 1.1
3375     /* calculate blocking time */
3376 root 1.135 {
3377 root 1.193 ev_tstamp waittime = 0.;
3378     ev_tstamp sleeptime = 0.;
3379 root 1.12
3380 root 1.353 /* remember old timestamp for io_blocktime calculation */
3381     ev_tstamp prev_mn_now = mn_now;
3382 root 1.293
3383 root 1.353 /* update time to cancel out callback processing overhead */
3384     time_update (EV_A_ 1e100);
3385 root 1.135
3386 root 1.378 /* from now on, we want a pipe-wake-up */
3387     pipe_write_wanted = 1;
3388    
3389 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3390 root 1.383
3391 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3392 root 1.353 {
3393 root 1.287 waittime = MAX_BLOCKTIME;
3394    
3395 root 1.135 if (timercnt)
3396     {
3397 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3398 root 1.193 if (waittime > to) waittime = to;
3399 root 1.135 }
3400 root 1.4
3401 root 1.140 #if EV_PERIODIC_ENABLE
3402 root 1.135 if (periodiccnt)
3403     {
3404 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3405 root 1.193 if (waittime > to) waittime = to;
3406 root 1.135 }
3407 root 1.93 #endif
3408 root 1.4
3409 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3410 root 1.193 if (expect_false (waittime < timeout_blocktime))
3411     waittime = timeout_blocktime;
3412    
3413 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3414     /* to pass a minimum nonzero value to the backend */
3415     if (expect_false (waittime < backend_mintime))
3416     waittime = backend_mintime;
3417    
3418 root 1.293 /* extra check because io_blocktime is commonly 0 */
3419     if (expect_false (io_blocktime))
3420     {
3421     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3422 root 1.193
3423 root 1.376 if (sleeptime > waittime - backend_mintime)
3424     sleeptime = waittime - backend_mintime;
3425 root 1.193
3426 root 1.293 if (expect_true (sleeptime > 0.))
3427     {
3428     ev_sleep (sleeptime);
3429     waittime -= sleeptime;
3430     }
3431 root 1.193 }
3432 root 1.135 }
3433 root 1.1
3434 root 1.338 #if EV_FEATURE_API
3435 root 1.162 ++loop_count;
3436 root 1.297 #endif
3437 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3438 root 1.193 backend_poll (EV_A_ waittime);
3439 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3440 root 1.178
3441 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3442 root 1.378
3443 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3444 root 1.378 if (pipe_write_skipped)
3445     {
3446     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3447     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3448     }
3449    
3450    
3451 root 1.178 /* update ev_rt_now, do magic */
3452 root 1.193 time_update (EV_A_ waittime + sleeptime);
3453 root 1.135 }
3454 root 1.1
3455 root 1.9 /* queue pending timers and reschedule them */
3456 root 1.51 timers_reify (EV_A); /* relative timers called last */
3457 root 1.140 #if EV_PERIODIC_ENABLE
3458 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3459 root 1.93 #endif
3460 root 1.1
3461 root 1.164 #if EV_IDLE_ENABLE
3462 root 1.137 /* queue idle watchers unless other events are pending */
3463 root 1.164 idle_reify (EV_A);
3464     #endif
3465 root 1.9
3466 root 1.337 #if EV_CHECK_ENABLE
3467 root 1.20 /* queue check watchers, to be executed first */
3468 root 1.123 if (expect_false (checkcnt))
3469 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3470 root 1.337 #endif
3471 root 1.9
3472 root 1.297 EV_INVOKE_PENDING;
3473 root 1.1 }
3474 root 1.219 while (expect_true (
3475     activecnt
3476     && !loop_done
3477 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3478 root 1.219 ));
3479 root 1.13
3480 root 1.353 if (loop_done == EVBREAK_ONE)
3481     loop_done = EVBREAK_CANCEL;
3482 root 1.294
3483 root 1.338 #if EV_FEATURE_API
3484 root 1.294 --loop_depth;
3485 root 1.297 #endif
3486 root 1.418
3487     return activecnt;
3488 root 1.51 }
3489    
3490     void
3491 root 1.420 ev_break (EV_P_ int how) EV_THROW
3492 root 1.51 {
3493     loop_done = how;
3494 root 1.1 }
3495    
3496 root 1.285 void
3497 root 1.420 ev_ref (EV_P) EV_THROW
3498 root 1.285 {
3499     ++activecnt;
3500     }
3501    
3502     void
3503 root 1.420 ev_unref (EV_P) EV_THROW
3504 root 1.285 {
3505     --activecnt;
3506     }
3507    
3508     void
3509 root 1.420 ev_now_update (EV_P) EV_THROW
3510 root 1.285 {
3511     time_update (EV_A_ 1e100);
3512     }
3513    
3514     void
3515 root 1.420 ev_suspend (EV_P) EV_THROW
3516 root 1.285 {
3517     ev_now_update (EV_A);
3518     }
3519    
3520     void
3521 root 1.420 ev_resume (EV_P) EV_THROW
3522 root 1.285 {
3523     ev_tstamp mn_prev = mn_now;
3524    
3525     ev_now_update (EV_A);
3526     timers_reschedule (EV_A_ mn_now - mn_prev);
3527 root 1.286 #if EV_PERIODIC_ENABLE
3528 root 1.288 /* TODO: really do this? */
3529 root 1.285 periodics_reschedule (EV_A);
3530 root 1.286 #endif
3531 root 1.285 }
3532    
3533 root 1.8 /*****************************************************************************/
3534 root 1.288 /* singly-linked list management, used when the expected list length is short */
3535 root 1.8
3536 root 1.284 inline_size void
3537 root 1.10 wlist_add (WL *head, WL elem)
3538 root 1.1 {
3539     elem->next = *head;
3540     *head = elem;
3541     }
3542    
3543 root 1.284 inline_size void
3544 root 1.10 wlist_del (WL *head, WL elem)
3545 root 1.1 {
3546     while (*head)
3547     {
3548 root 1.307 if (expect_true (*head == elem))
3549 root 1.1 {
3550     *head = elem->next;
3551 root 1.307 break;
3552 root 1.1 }
3553    
3554     head = &(*head)->next;
3555     }
3556     }
3557    
3558 root 1.288 /* internal, faster, version of ev_clear_pending */
3559 root 1.284 inline_speed void
3560 root 1.166 clear_pending (EV_P_ W w)
3561 root 1.16 {
3562     if (w->pending)
3563     {
3564 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3565 root 1.16 w->pending = 0;
3566     }
3567     }
3568    
3569 root 1.167 int
3570 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3571 root 1.166 {
3572     W w_ = (W)w;
3573     int pending = w_->pending;
3574    
3575 root 1.172 if (expect_true (pending))
3576     {
3577     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3578 root 1.288 p->w = (W)&pending_w;
3579 root 1.172 w_->pending = 0;
3580     return p->events;
3581     }
3582     else
3583 root 1.167 return 0;
3584 root 1.166 }
3585    
3586 root 1.284 inline_size void
3587 root 1.164 pri_adjust (EV_P_ W w)
3588     {
3589 root 1.295 int pri = ev_priority (w);
3590 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3591     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3592 root 1.295 ev_set_priority (w, pri);
3593 root 1.164 }
3594    
3595 root 1.284 inline_speed void
3596 root 1.51 ev_start (EV_P_ W w, int active)
3597 root 1.1 {
3598 root 1.164 pri_adjust (EV_A_ w);
3599 root 1.1 w->active = active;
3600 root 1.51 ev_ref (EV_A);
3601 root 1.1 }
3602    
3603 root 1.284 inline_size void
3604 root 1.51 ev_stop (EV_P_ W w)
3605 root 1.1 {
3606 root 1.51 ev_unref (EV_A);
3607 root 1.1 w->active = 0;
3608     }
3609    
3610 root 1.8 /*****************************************************************************/
3611    
3612 root 1.171 void noinline
3613 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3614 root 1.1 {
3615 root 1.37 int fd = w->fd;
3616    
3617 root 1.123 if (expect_false (ev_is_active (w)))
3618 root 1.1 return;
3619    
3620 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3621 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3622 root 1.33
3623 root 1.248 EV_FREQUENT_CHECK;
3624    
3625 root 1.51 ev_start (EV_A_ (W)w, 1);
3626 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3627 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3628 root 1.1
3629 root 1.426 /* common bug, apparently */
3630     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3631    
3632 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3633 root 1.281 w->events &= ~EV__IOFDSET;
3634 root 1.248
3635     EV_FREQUENT_CHECK;
3636 root 1.1 }
3637    
3638 root 1.171 void noinline
3639 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3640 root 1.1 {
3641 root 1.166 clear_pending (EV_A_ (W)w);
3642 root 1.123 if (expect_false (!ev_is_active (w)))
3643 root 1.1 return;
3644    
3645 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3646 root 1.89
3647 root 1.248 EV_FREQUENT_CHECK;
3648    
3649 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3650 root 1.51 ev_stop (EV_A_ (W)w);
3651 root 1.1
3652 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3653 root 1.248
3654     EV_FREQUENT_CHECK;
3655 root 1.1 }
3656    
3657 root 1.171 void noinline
3658 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3659 root 1.1 {
3660 root 1.123 if (expect_false (ev_is_active (w)))
3661 root 1.1 return;
3662    
3663 root 1.228 ev_at (w) += mn_now;
3664 root 1.12
3665 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3666 root 1.13
3667 root 1.248 EV_FREQUENT_CHECK;
3668    
3669     ++timercnt;
3670     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3671 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3672     ANHE_w (timers [ev_active (w)]) = (WT)w;
3673 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3674 root 1.235 upheap (timers, ev_active (w));
3675 root 1.62
3676 root 1.248 EV_FREQUENT_CHECK;
3677    
3678 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3679 root 1.12 }
3680    
3681 root 1.171 void noinline
3682 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3683 root 1.12 {
3684 root 1.166 clear_pending (EV_A_ (W)w);
3685 root 1.123 if (expect_false (!ev_is_active (w)))
3686 root 1.12 return;
3687    
3688 root 1.248 EV_FREQUENT_CHECK;
3689    
3690 root 1.230 {
3691     int active = ev_active (w);
3692 root 1.62
3693 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3694 root 1.151
3695 root 1.248 --timercnt;
3696    
3697     if (expect_true (active < timercnt + HEAP0))
3698 root 1.151 {
3699 root 1.248 timers [active] = timers [timercnt + HEAP0];
3700 root 1.181 adjustheap (timers, timercnt, active);
3701 root 1.151 }
3702 root 1.248 }
3703 root 1.228
3704     ev_at (w) -= mn_now;
3705 root 1.14
3706 root 1.51 ev_stop (EV_A_ (W)w);
3707 root 1.328
3708     EV_FREQUENT_CHECK;
3709 root 1.12 }
3710 root 1.4
3711 root 1.171 void noinline
3712 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3713 root 1.14 {
3714 root 1.248 EV_FREQUENT_CHECK;
3715    
3716 root 1.407 clear_pending (EV_A_ (W)w);
3717 root 1.406
3718 root 1.14 if (ev_is_active (w))
3719     {
3720     if (w->repeat)
3721 root 1.99 {
3722 root 1.228 ev_at (w) = mn_now + w->repeat;
3723 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3724 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3725 root 1.99 }
3726 root 1.14 else
3727 root 1.51 ev_timer_stop (EV_A_ w);
3728 root 1.14 }
3729     else if (w->repeat)
3730 root 1.112 {
3731 root 1.229 ev_at (w) = w->repeat;
3732 root 1.112 ev_timer_start (EV_A_ w);
3733     }
3734 root 1.248
3735     EV_FREQUENT_CHECK;
3736 root 1.14 }
3737    
3738 root 1.301 ev_tstamp
3739 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3740 root 1.301 {
3741     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3742     }
3743    
3744 root 1.140 #if EV_PERIODIC_ENABLE
3745 root 1.171 void noinline
3746 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3747 root 1.12 {
3748 root 1.123 if (expect_false (ev_is_active (w)))
3749 root 1.12 return;
3750 root 1.1
3751 root 1.77 if (w->reschedule_cb)
3752 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3753 root 1.77 else if (w->interval)
3754     {
3755 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3756 root 1.370 periodic_recalc (EV_A_ w);
3757 root 1.77 }
3758 root 1.173 else
3759 root 1.228 ev_at (w) = w->offset;
3760 root 1.12
3761 root 1.248 EV_FREQUENT_CHECK;
3762    
3763     ++periodiccnt;
3764     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3765 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3766     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3767 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3768 root 1.235 upheap (periodics, ev_active (w));
3769 root 1.62
3770 root 1.248 EV_FREQUENT_CHECK;
3771    
3772 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3773 root 1.1 }
3774    
3775 root 1.171 void noinline
3776 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3777 root 1.1 {
3778 root 1.166 clear_pending (EV_A_ (W)w);
3779 root 1.123 if (expect_false (!ev_is_active (w)))
3780 root 1.1 return;
3781    
3782 root 1.248 EV_FREQUENT_CHECK;
3783    
3784 root 1.230 {
3785     int active = ev_active (w);
3786 root 1.62
3787 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3788 root 1.151
3789 root 1.248 --periodiccnt;
3790    
3791     if (expect_true (active < periodiccnt + HEAP0))
3792 root 1.151 {
3793 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3794 root 1.181 adjustheap (periodics, periodiccnt, active);
3795 root 1.151 }
3796 root 1.248 }
3797 root 1.228
3798 root 1.328 ev_stop (EV_A_ (W)w);
3799    
3800 root 1.248 EV_FREQUENT_CHECK;
3801 root 1.1 }
3802    
3803 root 1.171 void noinline
3804 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3805 root 1.77 {
3806 root 1.84 /* TODO: use adjustheap and recalculation */
3807 root 1.77 ev_periodic_stop (EV_A_ w);
3808     ev_periodic_start (EV_A_ w);
3809     }
3810 root 1.93 #endif
3811 root 1.77
3812 root 1.56 #ifndef SA_RESTART
3813     # define SA_RESTART 0
3814     #endif
3815    
3816 root 1.336 #if EV_SIGNAL_ENABLE
3817    
3818 root 1.171 void noinline
3819 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3820 root 1.56 {
3821 root 1.123 if (expect_false (ev_is_active (w)))
3822 root 1.56 return;
3823    
3824 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3825    
3826     #if EV_MULTIPLICITY
3827 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3828 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3829    
3830     signals [w->signum - 1].loop = EV_A;
3831 root 1.449 ECB_MEMORY_FENCE_RELEASE;
3832 root 1.306 #endif
3833 root 1.56
3834 root 1.303 EV_FREQUENT_CHECK;
3835    
3836     #if EV_USE_SIGNALFD
3837     if (sigfd == -2)
3838     {
3839     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3840     if (sigfd < 0 && errno == EINVAL)
3841     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3842    
3843     if (sigfd >= 0)
3844     {
3845     fd_intern (sigfd); /* doing it twice will not hurt */
3846    
3847     sigemptyset (&sigfd_set);
3848    
3849     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3850     ev_set_priority (&sigfd_w, EV_MAXPRI);
3851     ev_io_start (EV_A_ &sigfd_w);
3852     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3853     }
3854     }
3855    
3856     if (sigfd >= 0)
3857     {
3858     /* TODO: check .head */
3859     sigaddset (&sigfd_set, w->signum);
3860     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3861 root 1.207
3862 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3863     }
3864 root 1.180 #endif
3865    
3866 root 1.56 ev_start (EV_A_ (W)w, 1);
3867 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3868 root 1.56
3869 root 1.63 if (!((WL)w)->next)
3870 root 1.304 # if EV_USE_SIGNALFD
3871 root 1.306 if (sigfd < 0) /*TODO*/
3872 root 1.304 # endif
3873 root 1.306 {
3874 root 1.322 # ifdef _WIN32
3875 root 1.317 evpipe_init (EV_A);
3876    
3877 root 1.306 signal (w->signum, ev_sighandler);
3878     # else
3879     struct sigaction sa;
3880    
3881     evpipe_init (EV_A);
3882    
3883     sa.sa_handler = ev_sighandler;
3884     sigfillset (&sa.sa_mask);
3885     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3886     sigaction (w->signum, &sa, 0);
3887    
3888 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3889     {
3890     sigemptyset (&sa.sa_mask);
3891     sigaddset (&sa.sa_mask, w->signum);
3892     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3893     }
3894 root 1.67 #endif
3895 root 1.306 }
3896 root 1.248
3897     EV_FREQUENT_CHECK;
3898 root 1.56 }
3899    
3900 root 1.171 void noinline
3901 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3902 root 1.56 {
3903 root 1.166 clear_pending (EV_A_ (W)w);
3904 root 1.123 if (expect_false (!ev_is_active (w)))
3905 root 1.56 return;
3906    
3907 root 1.248 EV_FREQUENT_CHECK;
3908    
3909 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3910 root 1.56 ev_stop (EV_A_ (W)w);
3911    
3912     if (!signals [w->signum - 1].head)
3913 root 1.306 {
3914 root 1.307 #if EV_MULTIPLICITY
3915 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3916 root 1.307 #endif
3917     #if EV_USE_SIGNALFD
3918 root 1.306 if (sigfd >= 0)
3919     {
3920 root 1.321 sigset_t ss;
3921    
3922     sigemptyset (&ss);
3923     sigaddset (&ss, w->signum);
3924 root 1.306 sigdelset (&sigfd_set, w->signum);
3925 root 1.321
3926 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3927 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3928 root 1.306 }
3929     else
3930 root 1.307 #endif
3931 root 1.306 signal (w->signum, SIG_DFL);
3932     }
3933 root 1.248
3934     EV_FREQUENT_CHECK;
3935 root 1.56 }
3936    
3937 root 1.336 #endif
3938    
3939     #if EV_CHILD_ENABLE
3940    
3941 root 1.28 void
3942 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3943 root 1.22 {
3944 root 1.56 #if EV_MULTIPLICITY
3945 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3946 root 1.56 #endif
3947 root 1.123 if (expect_false (ev_is_active (w)))
3948 root 1.22 return;
3949    
3950 root 1.248 EV_FREQUENT_CHECK;
3951    
3952 root 1.51 ev_start (EV_A_ (W)w, 1);
3953 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3954 root 1.248
3955     EV_FREQUENT_CHECK;
3956 root 1.22 }
3957    
3958 root 1.28 void
3959 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3960 root 1.22 {
3961 root 1.166 clear_pending (EV_A_ (W)w);
3962 root 1.123 if (expect_false (!ev_is_active (w)))
3963 root 1.22 return;
3964    
3965 root 1.248 EV_FREQUENT_CHECK;
3966    
3967 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3968 root 1.51 ev_stop (EV_A_ (W)w);
3969 root 1.248
3970     EV_FREQUENT_CHECK;
3971 root 1.22 }
3972    
3973 root 1.336 #endif
3974    
3975 root 1.140 #if EV_STAT_ENABLE
3976    
3977     # ifdef _WIN32
3978 root 1.146 # undef lstat
3979     # define lstat(a,b) _stati64 (a,b)
3980 root 1.140 # endif
3981    
3982 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3983     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3984     #define MIN_STAT_INTERVAL 0.1074891
3985 root 1.143
3986 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3987 root 1.152
3988     #if EV_USE_INOTIFY
3989 root 1.326
3990     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3991     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3992 root 1.152
3993     static void noinline
3994     infy_add (EV_P_ ev_stat *w)
3995     {
3996 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
3997     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3998     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3999     | IN_DONT_FOLLOW | IN_MASK_ADD);
4000 root 1.152
4001 root 1.318 if (w->wd >= 0)
4002 root 1.152 {
4003 root 1.318 struct statfs sfs;
4004    
4005     /* now local changes will be tracked by inotify, but remote changes won't */
4006     /* unless the filesystem is known to be local, we therefore still poll */
4007     /* also do poll on <2.6.25, but with normal frequency */
4008    
4009     if (!fs_2625)
4010     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4011     else if (!statfs (w->path, &sfs)
4012     && (sfs.f_type == 0x1373 /* devfs */
4013 root 1.451 || sfs.f_type == 0x4006 /* fat */
4014     || sfs.f_type == 0x4d44 /* msdos */
4015 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4016 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4017     || sfs.f_type == 0x858458f6 /* ramfs */
4018     || sfs.f_type == 0x5346544e /* ntfs */
4019 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4020 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4021 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4022 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4023 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4024     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4025     else
4026     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4027     }
4028     else
4029     {
4030     /* can't use inotify, continue to stat */
4031 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4032 root 1.152
4033 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4034 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4035 root 1.233 /* but an efficiency issue only */
4036 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4037 root 1.152 {
4038 root 1.153 char path [4096];
4039 root 1.152 strcpy (path, w->path);
4040    
4041     do
4042     {
4043     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4044     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4045    
4046     char *pend = strrchr (path, '/');
4047    
4048 root 1.275 if (!pend || pend == path)
4049     break;
4050 root 1.152
4051     *pend = 0;
4052 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4053 root 1.372 }
4054 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4055     }
4056     }
4057 root 1.275
4058     if (w->wd >= 0)
4059 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4060 root 1.152
4061 root 1.318 /* now re-arm timer, if required */
4062     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4063     ev_timer_again (EV_A_ &w->timer);
4064     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4065 root 1.152 }
4066    
4067     static void noinline
4068     infy_del (EV_P_ ev_stat *w)
4069     {
4070     int slot;
4071     int wd = w->wd;
4072    
4073     if (wd < 0)
4074     return;
4075    
4076     w->wd = -2;
4077 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4078 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4079    
4080     /* remove this watcher, if others are watching it, they will rearm */
4081     inotify_rm_watch (fs_fd, wd);
4082     }
4083    
4084     static void noinline
4085     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4086     {
4087     if (slot < 0)
4088 root 1.264 /* overflow, need to check for all hash slots */
4089 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4090 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4091     else
4092     {
4093     WL w_;
4094    
4095 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4096 root 1.152 {
4097     ev_stat *w = (ev_stat *)w_;
4098     w_ = w_->next; /* lets us remove this watcher and all before it */
4099    
4100     if (w->wd == wd || wd == -1)
4101     {
4102     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4103     {
4104 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4105 root 1.152 w->wd = -1;
4106     infy_add (EV_A_ w); /* re-add, no matter what */
4107     }
4108    
4109 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4110 root 1.152 }
4111     }
4112     }
4113     }
4114    
4115     static void
4116     infy_cb (EV_P_ ev_io *w, int revents)
4117     {
4118     char buf [EV_INOTIFY_BUFSIZE];
4119     int ofs;
4120     int len = read (fs_fd, buf, sizeof (buf));
4121    
4122 root 1.326 for (ofs = 0; ofs < len; )
4123     {
4124     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4125     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4126     ofs += sizeof (struct inotify_event) + ev->len;
4127     }
4128 root 1.152 }
4129    
4130 root 1.379 inline_size void ecb_cold
4131 root 1.330 ev_check_2625 (EV_P)
4132     {
4133     /* kernels < 2.6.25 are borked
4134     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4135     */
4136     if (ev_linux_version () < 0x020619)
4137 root 1.273 return;
4138 root 1.264
4139 root 1.273 fs_2625 = 1;
4140     }
4141 root 1.264
4142 root 1.315 inline_size int
4143     infy_newfd (void)
4144     {
4145 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4146 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4147     if (fd >= 0)
4148     return fd;
4149     #endif
4150     return inotify_init ();
4151     }
4152    
4153 root 1.284 inline_size void
4154 root 1.273 infy_init (EV_P)
4155     {
4156     if (fs_fd != -2)
4157     return;
4158 root 1.264
4159 root 1.273 fs_fd = -1;
4160 root 1.264
4161 root 1.330 ev_check_2625 (EV_A);
4162 root 1.264
4163 root 1.315 fs_fd = infy_newfd ();
4164 root 1.152
4165     if (fs_fd >= 0)
4166     {
4167 root 1.315 fd_intern (fs_fd);
4168 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4169     ev_set_priority (&fs_w, EV_MAXPRI);
4170     ev_io_start (EV_A_ &fs_w);
4171 root 1.317 ev_unref (EV_A);
4172 root 1.152 }
4173     }
4174    
4175 root 1.284 inline_size void
4176 root 1.154 infy_fork (EV_P)
4177     {
4178     int slot;
4179    
4180     if (fs_fd < 0)
4181     return;
4182    
4183 root 1.317 ev_ref (EV_A);
4184 root 1.315 ev_io_stop (EV_A_ &fs_w);
4185 root 1.154 close (fs_fd);
4186 root 1.315 fs_fd = infy_newfd ();
4187    
4188     if (fs_fd >= 0)
4189     {
4190     fd_intern (fs_fd);
4191     ev_io_set (&fs_w, fs_fd, EV_READ);
4192     ev_io_start (EV_A_ &fs_w);
4193 root 1.317 ev_unref (EV_A);
4194 root 1.315 }
4195 root 1.154
4196 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4197 root 1.154 {
4198     WL w_ = fs_hash [slot].head;
4199     fs_hash [slot].head = 0;
4200    
4201     while (w_)
4202     {
4203     ev_stat *w = (ev_stat *)w_;
4204     w_ = w_->next; /* lets us add this watcher */
4205    
4206     w->wd = -1;
4207    
4208     if (fs_fd >= 0)
4209     infy_add (EV_A_ w); /* re-add, no matter what */
4210     else
4211 root 1.318 {
4212     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4213     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4214     ev_timer_again (EV_A_ &w->timer);
4215     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4216     }
4217 root 1.154 }
4218     }
4219     }
4220    
4221 root 1.152 #endif
4222    
4223 root 1.255 #ifdef _WIN32
4224     # define EV_LSTAT(p,b) _stati64 (p, b)
4225     #else
4226     # define EV_LSTAT(p,b) lstat (p, b)
4227     #endif
4228    
4229 root 1.140 void
4230 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4231 root 1.140 {
4232     if (lstat (w->path, &w->attr) < 0)
4233     w->attr.st_nlink = 0;
4234     else if (!w->attr.st_nlink)
4235     w->attr.st_nlink = 1;
4236     }
4237    
4238 root 1.157 static void noinline
4239 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4240     {
4241     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4242    
4243 root 1.320 ev_statdata prev = w->attr;
4244 root 1.140 ev_stat_stat (EV_A_ w);
4245    
4246 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4247     if (
4248 root 1.320 prev.st_dev != w->attr.st_dev
4249     || prev.st_ino != w->attr.st_ino
4250     || prev.st_mode != w->attr.st_mode
4251     || prev.st_nlink != w->attr.st_nlink
4252     || prev.st_uid != w->attr.st_uid
4253     || prev.st_gid != w->attr.st_gid
4254     || prev.st_rdev != w->attr.st_rdev
4255     || prev.st_size != w->attr.st_size
4256     || prev.st_atime != w->attr.st_atime
4257     || prev.st_mtime != w->attr.st_mtime
4258     || prev.st_ctime != w->attr.st_ctime
4259 root 1.156 ) {
4260 root 1.320 /* we only update w->prev on actual differences */
4261     /* in case we test more often than invoke the callback, */
4262     /* to ensure that prev is always different to attr */
4263     w->prev = prev;
4264    
4265 root 1.152 #if EV_USE_INOTIFY
4266 root 1.264 if (fs_fd >= 0)
4267     {
4268     infy_del (EV_A_ w);
4269     infy_add (EV_A_ w);
4270     ev_stat_stat (EV_A_ w); /* avoid race... */
4271     }
4272 root 1.152 #endif
4273    
4274     ev_feed_event (EV_A_ w, EV_STAT);
4275     }
4276 root 1.140 }
4277    
4278     void
4279 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4280 root 1.140 {
4281     if (expect_false (ev_is_active (w)))
4282     return;
4283    
4284     ev_stat_stat (EV_A_ w);
4285    
4286 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4287     w->interval = MIN_STAT_INTERVAL;
4288 root 1.143
4289 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4290 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4291 root 1.152
4292     #if EV_USE_INOTIFY
4293     infy_init (EV_A);
4294    
4295     if (fs_fd >= 0)
4296     infy_add (EV_A_ w);
4297     else
4298     #endif
4299 root 1.318 {
4300     ev_timer_again (EV_A_ &w->timer);
4301     ev_unref (EV_A);
4302     }
4303 root 1.140
4304     ev_start (EV_A_ (W)w, 1);
4305 root 1.248
4306     EV_FREQUENT_CHECK;
4307 root 1.140 }
4308    
4309     void
4310 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4311 root 1.140 {
4312 root 1.166 clear_pending (EV_A_ (W)w);
4313 root 1.140 if (expect_false (!ev_is_active (w)))
4314     return;
4315    
4316 root 1.248 EV_FREQUENT_CHECK;
4317    
4318 root 1.152 #if EV_USE_INOTIFY
4319     infy_del (EV_A_ w);
4320     #endif
4321 root 1.318
4322     if (ev_is_active (&w->timer))
4323     {
4324     ev_ref (EV_A);
4325     ev_timer_stop (EV_A_ &w->timer);
4326     }
4327 root 1.140
4328 root 1.134 ev_stop (EV_A_ (W)w);
4329 root 1.248
4330     EV_FREQUENT_CHECK;
4331 root 1.134 }
4332     #endif
4333    
4334 root 1.164 #if EV_IDLE_ENABLE
4335 root 1.144 void
4336 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4337 root 1.144 {
4338     if (expect_false (ev_is_active (w)))
4339     return;
4340    
4341 root 1.164 pri_adjust (EV_A_ (W)w);
4342    
4343 root 1.248 EV_FREQUENT_CHECK;
4344    
4345 root 1.164 {
4346     int active = ++idlecnt [ABSPRI (w)];
4347    
4348     ++idleall;
4349     ev_start (EV_A_ (W)w, active);
4350    
4351     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4352     idles [ABSPRI (w)][active - 1] = w;
4353     }
4354 root 1.248
4355     EV_FREQUENT_CHECK;
4356 root 1.144 }
4357    
4358     void
4359 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4360 root 1.144 {
4361 root 1.166 clear_pending (EV_A_ (W)w);
4362 root 1.144 if (expect_false (!ev_is_active (w)))
4363     return;
4364    
4365 root 1.248 EV_FREQUENT_CHECK;
4366    
4367 root 1.144 {
4368 root 1.230 int active = ev_active (w);
4369 root 1.164
4370     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4371 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4372 root 1.164
4373     ev_stop (EV_A_ (W)w);
4374     --idleall;
4375 root 1.144 }
4376 root 1.248
4377     EV_FREQUENT_CHECK;
4378 root 1.144 }
4379 root 1.164 #endif
4380 root 1.144
4381 root 1.337 #if EV_PREPARE_ENABLE
4382 root 1.144 void
4383 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4384 root 1.144 {
4385     if (expect_false (ev_is_active (w)))
4386     return;
4387    
4388 root 1.248 EV_FREQUENT_CHECK;
4389    
4390 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4391     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4392     prepares [preparecnt - 1] = w;
4393 root 1.248
4394     EV_FREQUENT_CHECK;
4395 root 1.144 }
4396    
4397     void
4398 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4399 root 1.144 {
4400 root 1.166 clear_pending (EV_A_ (W)w);
4401 root 1.144 if (expect_false (!ev_is_active (w)))
4402     return;
4403    
4404 root 1.248 EV_FREQUENT_CHECK;
4405    
4406 root 1.144 {
4407 root 1.230 int active = ev_active (w);
4408    
4409 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4410 root 1.230 ev_active (prepares [active - 1]) = active;
4411 root 1.144 }
4412    
4413     ev_stop (EV_A_ (W)w);
4414 root 1.248
4415     EV_FREQUENT_CHECK;
4416 root 1.144 }
4417 root 1.337 #endif
4418 root 1.144
4419 root 1.337 #if EV_CHECK_ENABLE
4420 root 1.144 void
4421 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4422 root 1.144 {
4423     if (expect_false (ev_is_active (w)))
4424     return;
4425    
4426 root 1.248 EV_FREQUENT_CHECK;
4427    
4428 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4429     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4430     checks [checkcnt - 1] = w;
4431 root 1.248
4432     EV_FREQUENT_CHECK;
4433 root 1.144 }
4434    
4435     void
4436 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4437 root 1.144 {
4438 root 1.166 clear_pending (EV_A_ (W)w);
4439 root 1.144 if (expect_false (!ev_is_active (w)))
4440     return;
4441    
4442 root 1.248 EV_FREQUENT_CHECK;
4443    
4444 root 1.144 {
4445 root 1.230 int active = ev_active (w);
4446    
4447 root 1.144 checks [active - 1] = checks [--checkcnt];
4448 root 1.230 ev_active (checks [active - 1]) = active;
4449 root 1.144 }
4450    
4451     ev_stop (EV_A_ (W)w);
4452 root 1.248
4453     EV_FREQUENT_CHECK;
4454 root 1.144 }
4455 root 1.337 #endif
4456 root 1.144
4457     #if EV_EMBED_ENABLE
4458     void noinline
4459 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4460 root 1.144 {
4461 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4462 root 1.144 }
4463    
4464     static void
4465 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4466 root 1.144 {
4467     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4468    
4469     if (ev_cb (w))
4470     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4471     else
4472 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4473 root 1.144 }
4474    
4475 root 1.189 static void
4476     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4477     {
4478     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4479    
4480 root 1.195 {
4481 root 1.306 EV_P = w->other;
4482 root 1.195
4483     while (fdchangecnt)
4484     {
4485     fd_reify (EV_A);
4486 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4487 root 1.195 }
4488     }
4489     }
4490    
4491 root 1.261 static void
4492     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4493     {
4494     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4495    
4496 root 1.277 ev_embed_stop (EV_A_ w);
4497    
4498 root 1.261 {
4499 root 1.306 EV_P = w->other;
4500 root 1.261
4501     ev_loop_fork (EV_A);
4502 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4503 root 1.261 }
4504 root 1.277
4505     ev_embed_start (EV_A_ w);
4506 root 1.261 }
4507    
4508 root 1.195 #if 0
4509     static void
4510     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4511     {
4512     ev_idle_stop (EV_A_ idle);
4513 root 1.189 }
4514 root 1.195 #endif
4515 root 1.189
4516 root 1.144 void
4517 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4518 root 1.144 {
4519     if (expect_false (ev_is_active (w)))
4520     return;
4521    
4522     {
4523 root 1.306 EV_P = w->other;
4524 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4525 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4526 root 1.144 }
4527    
4528 root 1.248 EV_FREQUENT_CHECK;
4529    
4530 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4531     ev_io_start (EV_A_ &w->io);
4532    
4533 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4534     ev_set_priority (&w->prepare, EV_MINPRI);
4535     ev_prepare_start (EV_A_ &w->prepare);
4536    
4537 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4538     ev_fork_start (EV_A_ &w->fork);
4539    
4540 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4541    
4542 root 1.144 ev_start (EV_A_ (W)w, 1);
4543 root 1.248
4544     EV_FREQUENT_CHECK;
4545 root 1.144 }
4546    
4547     void
4548 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4549 root 1.144 {
4550 root 1.166 clear_pending (EV_A_ (W)w);
4551 root 1.144 if (expect_false (!ev_is_active (w)))
4552     return;
4553    
4554 root 1.248 EV_FREQUENT_CHECK;
4555    
4556 root 1.261 ev_io_stop (EV_A_ &w->io);
4557 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4558 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4559 root 1.248
4560 root 1.328 ev_stop (EV_A_ (W)w);
4561    
4562 root 1.248 EV_FREQUENT_CHECK;
4563 root 1.144 }
4564     #endif
4565    
4566 root 1.147 #if EV_FORK_ENABLE
4567     void
4568 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4569 root 1.147 {
4570     if (expect_false (ev_is_active (w)))
4571     return;
4572    
4573 root 1.248 EV_FREQUENT_CHECK;
4574    
4575 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4576     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4577     forks [forkcnt - 1] = w;
4578 root 1.248
4579     EV_FREQUENT_CHECK;
4580 root 1.147 }
4581    
4582     void
4583 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4584 root 1.147 {
4585 root 1.166 clear_pending (EV_A_ (W)w);
4586 root 1.147 if (expect_false (!ev_is_active (w)))
4587     return;
4588    
4589 root 1.248 EV_FREQUENT_CHECK;
4590    
4591 root 1.147 {
4592 root 1.230 int active = ev_active (w);
4593    
4594 root 1.147 forks [active - 1] = forks [--forkcnt];
4595 root 1.230 ev_active (forks [active - 1]) = active;
4596 root 1.147 }
4597    
4598     ev_stop (EV_A_ (W)w);
4599 root 1.248
4600     EV_FREQUENT_CHECK;
4601 root 1.147 }
4602     #endif
4603    
4604 root 1.360 #if EV_CLEANUP_ENABLE
4605     void
4606 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4607 root 1.360 {
4608     if (expect_false (ev_is_active (w)))
4609     return;
4610    
4611     EV_FREQUENT_CHECK;
4612    
4613     ev_start (EV_A_ (W)w, ++cleanupcnt);
4614     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4615     cleanups [cleanupcnt - 1] = w;
4616    
4617 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4618     ev_unref (EV_A);
4619 root 1.360 EV_FREQUENT_CHECK;
4620     }
4621    
4622     void
4623 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4624 root 1.360 {
4625     clear_pending (EV_A_ (W)w);
4626     if (expect_false (!ev_is_active (w)))
4627     return;
4628    
4629     EV_FREQUENT_CHECK;
4630 root 1.362 ev_ref (EV_A);
4631 root 1.360
4632     {
4633     int active = ev_active (w);
4634    
4635     cleanups [active - 1] = cleanups [--cleanupcnt];
4636     ev_active (cleanups [active - 1]) = active;
4637     }
4638    
4639     ev_stop (EV_A_ (W)w);
4640    
4641     EV_FREQUENT_CHECK;
4642     }
4643     #endif
4644    
4645 root 1.207 #if EV_ASYNC_ENABLE
4646     void
4647 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4648 root 1.207 {
4649     if (expect_false (ev_is_active (w)))
4650     return;
4651    
4652 root 1.352 w->sent = 0;
4653    
4654 root 1.207 evpipe_init (EV_A);
4655    
4656 root 1.248 EV_FREQUENT_CHECK;
4657    
4658 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4659     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4660     asyncs [asynccnt - 1] = w;
4661 root 1.248
4662     EV_FREQUENT_CHECK;
4663 root 1.207 }
4664    
4665     void
4666 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4667 root 1.207 {
4668     clear_pending (EV_A_ (W)w);
4669     if (expect_false (!ev_is_active (w)))
4670     return;
4671    
4672 root 1.248 EV_FREQUENT_CHECK;
4673    
4674 root 1.207 {
4675 root 1.230 int active = ev_active (w);
4676    
4677 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4678 root 1.230 ev_active (asyncs [active - 1]) = active;
4679 root 1.207 }
4680    
4681     ev_stop (EV_A_ (W)w);
4682 root 1.248
4683     EV_FREQUENT_CHECK;
4684 root 1.207 }
4685    
4686     void
4687 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4688 root 1.207 {
4689     w->sent = 1;
4690 root 1.307 evpipe_write (EV_A_ &async_pending);
4691 root 1.207 }
4692     #endif
4693    
4694 root 1.1 /*****************************************************************************/
4695 root 1.10
4696 root 1.16 struct ev_once
4697     {
4698 root 1.136 ev_io io;
4699     ev_timer to;
4700 root 1.16 void (*cb)(int revents, void *arg);
4701     void *arg;
4702     };
4703    
4704     static void
4705 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4706 root 1.16 {
4707     void (*cb)(int revents, void *arg) = once->cb;
4708     void *arg = once->arg;
4709    
4710 root 1.259 ev_io_stop (EV_A_ &once->io);
4711 root 1.51 ev_timer_stop (EV_A_ &once->to);
4712 root 1.69 ev_free (once);
4713 root 1.16
4714     cb (revents, arg);
4715     }
4716    
4717     static void
4718 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4719 root 1.16 {
4720 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4721    
4722     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4723 root 1.16 }
4724    
4725     static void
4726 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4727 root 1.16 {
4728 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4729    
4730     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4731 root 1.16 }
4732    
4733     void
4734 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4735 root 1.16 {
4736 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4737 root 1.16
4738 root 1.123 if (expect_false (!once))
4739 root 1.16 {
4740 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4741 root 1.123 return;
4742     }
4743    
4744     once->cb = cb;
4745     once->arg = arg;
4746 root 1.16
4747 root 1.123 ev_init (&once->io, once_cb_io);
4748     if (fd >= 0)
4749     {
4750     ev_io_set (&once->io, fd, events);
4751     ev_io_start (EV_A_ &once->io);
4752     }
4753 root 1.16
4754 root 1.123 ev_init (&once->to, once_cb_to);
4755     if (timeout >= 0.)
4756     {
4757     ev_timer_set (&once->to, timeout, 0.);
4758     ev_timer_start (EV_A_ &once->to);
4759 root 1.16 }
4760     }
4761    
4762 root 1.282 /*****************************************************************************/
4763    
4764 root 1.288 #if EV_WALK_ENABLE
4765 root 1.379 void ecb_cold
4766 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4767 root 1.282 {
4768     int i, j;
4769     ev_watcher_list *wl, *wn;
4770    
4771     if (types & (EV_IO | EV_EMBED))
4772     for (i = 0; i < anfdmax; ++i)
4773     for (wl = anfds [i].head; wl; )
4774     {
4775     wn = wl->next;
4776    
4777     #if EV_EMBED_ENABLE
4778     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4779     {
4780     if (types & EV_EMBED)
4781     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4782     }
4783     else
4784     #endif
4785     #if EV_USE_INOTIFY
4786     if (ev_cb ((ev_io *)wl) == infy_cb)
4787     ;
4788     else
4789     #endif
4790 root 1.288 if ((ev_io *)wl != &pipe_w)
4791 root 1.282 if (types & EV_IO)
4792     cb (EV_A_ EV_IO, wl);
4793    
4794     wl = wn;
4795     }
4796    
4797     if (types & (EV_TIMER | EV_STAT))
4798     for (i = timercnt + HEAP0; i-- > HEAP0; )
4799     #if EV_STAT_ENABLE
4800     /*TODO: timer is not always active*/
4801     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4802     {
4803     if (types & EV_STAT)
4804     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4805     }
4806     else
4807     #endif
4808     if (types & EV_TIMER)
4809     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4810    
4811     #if EV_PERIODIC_ENABLE
4812     if (types & EV_PERIODIC)
4813     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4814     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4815     #endif
4816    
4817     #if EV_IDLE_ENABLE
4818     if (types & EV_IDLE)
4819 root 1.390 for (j = NUMPRI; j--; )
4820 root 1.282 for (i = idlecnt [j]; i--; )
4821     cb (EV_A_ EV_IDLE, idles [j][i]);
4822     #endif
4823    
4824     #if EV_FORK_ENABLE
4825     if (types & EV_FORK)
4826     for (i = forkcnt; i--; )
4827     if (ev_cb (forks [i]) != embed_fork_cb)
4828     cb (EV_A_ EV_FORK, forks [i]);
4829     #endif
4830    
4831     #if EV_ASYNC_ENABLE
4832     if (types & EV_ASYNC)
4833     for (i = asynccnt; i--; )
4834     cb (EV_A_ EV_ASYNC, asyncs [i]);
4835     #endif
4836    
4837 root 1.337 #if EV_PREPARE_ENABLE
4838 root 1.282 if (types & EV_PREPARE)
4839     for (i = preparecnt; i--; )
4840 root 1.337 # if EV_EMBED_ENABLE
4841 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4842 root 1.337 # endif
4843     cb (EV_A_ EV_PREPARE, prepares [i]);
4844 root 1.282 #endif
4845    
4846 root 1.337 #if EV_CHECK_ENABLE
4847 root 1.282 if (types & EV_CHECK)
4848     for (i = checkcnt; i--; )
4849     cb (EV_A_ EV_CHECK, checks [i]);
4850 root 1.337 #endif
4851 root 1.282
4852 root 1.337 #if EV_SIGNAL_ENABLE
4853 root 1.282 if (types & EV_SIGNAL)
4854 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4855 root 1.282 for (wl = signals [i].head; wl; )
4856     {
4857     wn = wl->next;
4858     cb (EV_A_ EV_SIGNAL, wl);
4859     wl = wn;
4860     }
4861 root 1.337 #endif
4862 root 1.282
4863 root 1.337 #if EV_CHILD_ENABLE
4864 root 1.282 if (types & EV_CHILD)
4865 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4866 root 1.282 for (wl = childs [i]; wl; )
4867     {
4868     wn = wl->next;
4869     cb (EV_A_ EV_CHILD, wl);
4870     wl = wn;
4871     }
4872 root 1.337 #endif
4873 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4874     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4875     }
4876     #endif
4877    
4878 root 1.188 #if EV_MULTIPLICITY
4879     #include "ev_wrap.h"
4880     #endif
4881