ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.468
Committed: Fri Sep 5 16:00:17 2014 UTC (9 years, 8 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.467: +7 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.463 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.373 #if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52     #endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 root 1.305 #endif
248    
249 root 1.373 #ifndef EV_USE_FLOOR
250     # define EV_USE_FLOOR 0
251     #endif
252    
253 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
254 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 root 1.274 # else
257     # define EV_USE_CLOCK_SYSCALL 0
258     # endif
259     #endif
260    
261 root 1.29 #ifndef EV_USE_MONOTONIC
262 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
264 root 1.253 # else
265     # define EV_USE_MONOTONIC 0
266     # endif
267 root 1.37 #endif
268    
269 root 1.118 #ifndef EV_USE_REALTIME
270 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271 root 1.118 #endif
272    
273 root 1.193 #ifndef EV_USE_NANOSLEEP
274 root 1.253 # if _POSIX_C_SOURCE >= 199309L
275 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
276 root 1.253 # else
277     # define EV_USE_NANOSLEEP 0
278     # endif
279 root 1.193 #endif
280    
281 root 1.29 #ifndef EV_USE_SELECT
282 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
283 root 1.10 #endif
284    
285 root 1.59 #ifndef EV_USE_POLL
286 root 1.104 # ifdef _WIN32
287     # define EV_USE_POLL 0
288     # else
289 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
290 root 1.104 # endif
291 root 1.41 #endif
292    
293 root 1.29 #ifndef EV_USE_EPOLL
294 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
296 root 1.220 # else
297     # define EV_USE_EPOLL 0
298     # endif
299 root 1.10 #endif
300    
301 root 1.44 #ifndef EV_USE_KQUEUE
302     # define EV_USE_KQUEUE 0
303     #endif
304    
305 root 1.118 #ifndef EV_USE_PORT
306     # define EV_USE_PORT 0
307 root 1.40 #endif
308    
309 root 1.152 #ifndef EV_USE_INOTIFY
310 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
312 root 1.220 # else
313     # define EV_USE_INOTIFY 0
314     # endif
315 root 1.152 #endif
316    
317 root 1.149 #ifndef EV_PID_HASHSIZE
318 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
319 root 1.149 #endif
320    
321 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
322 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323 root 1.152 #endif
324    
325 root 1.220 #ifndef EV_USE_EVENTFD
326     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
328 root 1.220 # else
329     # define EV_USE_EVENTFD 0
330     # endif
331     #endif
332    
333 root 1.303 #ifndef EV_USE_SIGNALFD
334 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
336 root 1.303 # else
337     # define EV_USE_SIGNALFD 0
338     # endif
339     #endif
340    
341 root 1.249 #if 0 /* debugging */
342 root 1.250 # define EV_VERIFY 3
343 root 1.249 # define EV_USE_4HEAP 1
344     # define EV_HEAP_CACHE_AT 1
345     #endif
346    
347 root 1.250 #ifndef EV_VERIFY
348 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349 root 1.250 #endif
350    
351 root 1.243 #ifndef EV_USE_4HEAP
352 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
353 root 1.243 #endif
354    
355     #ifndef EV_HEAP_CACHE_AT
356 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357 root 1.243 #endif
358    
359 root 1.452 #ifdef ANDROID
360     /* supposedly, android doesn't typedef fd_mask */
361     # undef EV_USE_SELECT
362     # define EV_USE_SELECT 0
363     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364     # undef EV_USE_CLOCK_SYSCALL
365     # define EV_USE_CLOCK_SYSCALL 0
366     #endif
367    
368     /* aix's poll.h seems to cause lots of trouble */
369     #ifdef _AIX
370     /* AIX has a completely broken poll.h header */
371     # undef EV_USE_POLL
372     # define EV_USE_POLL 0
373     #endif
374    
375 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376     /* which makes programs even slower. might work on other unices, too. */
377     #if EV_USE_CLOCK_SYSCALL
378 root 1.423 # include <sys/syscall.h>
379 root 1.291 # ifdef SYS_clock_gettime
380     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381     # undef EV_USE_MONOTONIC
382     # define EV_USE_MONOTONIC 1
383     # else
384     # undef EV_USE_CLOCK_SYSCALL
385     # define EV_USE_CLOCK_SYSCALL 0
386     # endif
387     #endif
388    
389 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
390 root 1.40
391     #ifndef CLOCK_MONOTONIC
392     # undef EV_USE_MONOTONIC
393     # define EV_USE_MONOTONIC 0
394     #endif
395    
396 root 1.31 #ifndef CLOCK_REALTIME
397 root 1.40 # undef EV_USE_REALTIME
398 root 1.31 # define EV_USE_REALTIME 0
399     #endif
400 root 1.40
401 root 1.152 #if !EV_STAT_ENABLE
402 root 1.185 # undef EV_USE_INOTIFY
403 root 1.152 # define EV_USE_INOTIFY 0
404     #endif
405    
406 root 1.193 #if !EV_USE_NANOSLEEP
407 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
408 root 1.416 # if !defined _WIN32 && !defined __hpux
409 root 1.193 # include <sys/select.h>
410     # endif
411     #endif
412    
413 root 1.152 #if EV_USE_INOTIFY
414 root 1.273 # include <sys/statfs.h>
415 root 1.152 # include <sys/inotify.h>
416 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417     # ifndef IN_DONT_FOLLOW
418     # undef EV_USE_INOTIFY
419     # define EV_USE_INOTIFY 0
420     # endif
421 root 1.152 #endif
422    
423 root 1.220 #if EV_USE_EVENTFD
424     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
425 root 1.221 # include <stdint.h>
426 root 1.303 # ifndef EFD_NONBLOCK
427     # define EFD_NONBLOCK O_NONBLOCK
428     # endif
429     # ifndef EFD_CLOEXEC
430 root 1.311 # ifdef O_CLOEXEC
431     # define EFD_CLOEXEC O_CLOEXEC
432     # else
433     # define EFD_CLOEXEC 02000000
434     # endif
435 root 1.303 # endif
436 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437 root 1.220 #endif
438    
439 root 1.303 #if EV_USE_SIGNALFD
440 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441     # include <stdint.h>
442     # ifndef SFD_NONBLOCK
443     # define SFD_NONBLOCK O_NONBLOCK
444     # endif
445     # ifndef SFD_CLOEXEC
446     # ifdef O_CLOEXEC
447     # define SFD_CLOEXEC O_CLOEXEC
448     # else
449     # define SFD_CLOEXEC 02000000
450     # endif
451     # endif
452 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453 root 1.314
454     struct signalfd_siginfo
455     {
456     uint32_t ssi_signo;
457     char pad[128 - sizeof (uint32_t)];
458     };
459 root 1.303 #endif
460    
461 root 1.40 /**/
462 root 1.1
463 root 1.250 #if EV_VERIFY >= 3
464 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
465 root 1.248 #else
466     # define EV_FREQUENT_CHECK do { } while (0)
467     #endif
468    
469 root 1.176 /*
470 root 1.373 * This is used to work around floating point rounding problems.
471 root 1.177 * This value is good at least till the year 4000.
472 root 1.176 */
473 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
475 root 1.176
476 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
477 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
478 root 1.1
479 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481 root 1.347
482 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483     /* ECB.H BEGIN */
484     /*
485     * libecb - http://software.schmorp.de/pkg/libecb
486     *
487 root 1.464 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
489     * All rights reserved.
490     *
491     * Redistribution and use in source and binary forms, with or without modifica-
492     * tion, are permitted provided that the following conditions are met:
493     *
494     * 1. Redistributions of source code must retain the above copyright notice,
495     * this list of conditions and the following disclaimer.
496     *
497     * 2. Redistributions in binary form must reproduce the above copyright
498     * notice, this list of conditions and the following disclaimer in the
499     * documentation and/or other materials provided with the distribution.
500     *
501     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510     * OF THE POSSIBILITY OF SUCH DAMAGE.
511 root 1.467 *
512     * Alternatively, the contents of this file may be used under the terms of
513     * the GNU General Public License ("GPL") version 2 or any later version,
514     * in which case the provisions of the GPL are applicable instead of
515     * the above. If you wish to allow the use of your version of this file
516     * only under the terms of the GPL and not to allow others to use your
517     * version of this file under the BSD license, indicate your decision
518     * by deleting the provisions above and replace them with the notice
519     * and other provisions required by the GPL. If you do not delete the
520     * provisions above, a recipient may use your version of this file under
521     * either the BSD or the GPL.
522 root 1.391 */
523    
524     #ifndef ECB_H
525     #define ECB_H
526    
527 root 1.437 /* 16 bits major, 16 bits minor */
528 root 1.454 #define ECB_VERSION 0x00010003
529 root 1.437
530 root 1.391 #ifdef _WIN32
531     typedef signed char int8_t;
532     typedef unsigned char uint8_t;
533     typedef signed short int16_t;
534     typedef unsigned short uint16_t;
535     typedef signed int int32_t;
536     typedef unsigned int uint32_t;
537     #if __GNUC__
538     typedef signed long long int64_t;
539     typedef unsigned long long uint64_t;
540     #else /* _MSC_VER || __BORLANDC__ */
541     typedef signed __int64 int64_t;
542     typedef unsigned __int64 uint64_t;
543     #endif
544 root 1.437 #ifdef _WIN64
545     #define ECB_PTRSIZE 8
546     typedef uint64_t uintptr_t;
547     typedef int64_t intptr_t;
548     #else
549     #define ECB_PTRSIZE 4
550     typedef uint32_t uintptr_t;
551     typedef int32_t intptr_t;
552     #endif
553 root 1.391 #else
554     #include <inttypes.h>
555 root 1.437 #if UINTMAX_MAX > 0xffffffffU
556     #define ECB_PTRSIZE 8
557     #else
558     #define ECB_PTRSIZE 4
559     #endif
560 root 1.391 #endif
561 root 1.379
562 root 1.454 /* work around x32 idiocy by defining proper macros */
563 root 1.462 #if __amd64 || __x86_64 || _M_AMD64 || _M_X64
564 root 1.458 #if _ILP32
565 root 1.454 #define ECB_AMD64_X32 1
566     #else
567     #define ECB_AMD64 1
568     #endif
569     #endif
570    
571 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
572     * what their idiot authors think are the "more important" extensions,
573 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
574 root 1.379 * or so.
575     * we try to detect these and simply assume they are not gcc - if they have
576     * an issue with that they should have done it right in the first place.
577     */
578     #ifndef ECB_GCC_VERSION
579 root 1.417 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
580 root 1.379 #define ECB_GCC_VERSION(major,minor) 0
581     #else
582     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
583     #endif
584     #endif
585    
586 root 1.437 #define ECB_CPP (__cplusplus+0)
587     #define ECB_CPP11 (__cplusplus >= 201103L)
588    
589 root 1.450 #if ECB_CPP
590 root 1.464 #define ECB_C 0
591     #define ECB_STDC_VERSION 0
592     #else
593     #define ECB_C 1
594     #define ECB_STDC_VERSION __STDC_VERSION__
595     #endif
596    
597     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
598     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
599    
600     #if ECB_CPP
601 root 1.450 #define ECB_EXTERN_C extern "C"
602     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
603     #define ECB_EXTERN_C_END }
604     #else
605     #define ECB_EXTERN_C extern
606     #define ECB_EXTERN_C_BEG
607     #define ECB_EXTERN_C_END
608     #endif
609    
610 root 1.391 /*****************************************************************************/
611    
612     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
613     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
614    
615 root 1.410 #if ECB_NO_THREADS
616 root 1.439 #define ECB_NO_SMP 1
617 root 1.410 #endif
618    
619 root 1.437 #if ECB_NO_SMP
620 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
621 root 1.40 #endif
622    
623 root 1.383 #ifndef ECB_MEMORY_FENCE
624 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
625 root 1.404 #if __i386 || __i386__
626 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
627 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
628     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
630 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
631     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
632     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
633 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
634 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
635 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
636     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
637 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
638 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
639 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
640     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
641 root 1.464 #elif __aarch64__
642     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
643 root 1.462 #elif (__sparc || __sparc__) && !__sparcv8
644 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
645     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
646     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
647 root 1.417 #elif defined __s390__ || defined __s390x__
648 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
649 root 1.417 #elif defined __mips__
650 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
651 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
652     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
653 root 1.419 #elif defined __alpha__
654 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
655     #elif defined __hppa__
656     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
657     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658     #elif defined __ia64__
659     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
660 root 1.457 #elif defined __m68k__
661     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
662     #elif defined __m88k__
663     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
664     #elif defined __sh__
665     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 root 1.383 #endif
667     #endif
668     #endif
669    
670     #ifndef ECB_MEMORY_FENCE
671 root 1.437 #if ECB_GCC_VERSION(4,7)
672 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
673 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
674 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
675     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
676 root 1.450
677     /* The __has_feature syntax from clang is so misdesigned that we cannot use it
678     * without risking compile time errors with other compilers. We *could*
679     * define our own ecb_clang_has_feature, but I just can't be bothered to work
680     * around this shit time and again.
681     * #elif defined __clang && __has_feature (cxx_atomic)
682     * // see comment below (stdatomic.h) about the C11 memory model.
683     * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
684 root 1.464 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
685     * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
686 root 1.450 */
687    
688 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
689 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
690 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
691     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
692     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
693     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
694     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
695     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
696 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
697     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
698     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
699     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
700     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
701 root 1.417 #elif defined _WIN32
702 root 1.388 #include <WinNT.h>
703 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
704 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
705     #include <mbarrier.h>
706     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
707     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
708     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
709 root 1.413 #elif __xlC__
710 root 1.414 #define ECB_MEMORY_FENCE __sync ()
711 root 1.383 #endif
712     #endif
713    
714     #ifndef ECB_MEMORY_FENCE
715 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
716     /* we assume that these memory fences work on all variables/all memory accesses, */
717     /* not just C11 atomics and atomic accesses */
718     #include <stdatomic.h>
719 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
720     /* any fence other than seq_cst, which isn't very efficient for us. */
721     /* Why that is, we don't know - either the C11 memory model is quite useless */
722     /* for most usages, or gcc and clang have a bug */
723     /* I *currently* lean towards the latter, and inefficiently implement */
724     /* all three of ecb's fences as a seq_cst fence */
725 root 1.464 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
726     /* for all __atomic_thread_fence's except seq_cst */
727 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
728     #endif
729     #endif
730    
731     #ifndef ECB_MEMORY_FENCE
732 root 1.392 #if !ECB_AVOID_PTHREADS
733     /*
734     * if you get undefined symbol references to pthread_mutex_lock,
735     * or failure to find pthread.h, then you should implement
736     * the ECB_MEMORY_FENCE operations for your cpu/compiler
737     * OR provide pthread.h and link against the posix thread library
738     * of your system.
739     */
740     #include <pthread.h>
741     #define ECB_NEEDS_PTHREADS 1
742     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
743    
744     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
745     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
746     #endif
747     #endif
748 root 1.383
749 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
750 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
751 root 1.392 #endif
752    
753 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
754 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
755     #endif
756    
757 root 1.391 /*****************************************************************************/
758    
759     #if __cplusplus
760     #define ecb_inline static inline
761     #elif ECB_GCC_VERSION(2,5)
762     #define ecb_inline static __inline__
763     #elif ECB_C99
764     #define ecb_inline static inline
765     #else
766     #define ecb_inline static
767     #endif
768    
769     #if ECB_GCC_VERSION(3,3)
770     #define ecb_restrict __restrict__
771     #elif ECB_C99
772     #define ecb_restrict restrict
773     #else
774     #define ecb_restrict
775     #endif
776    
777     typedef int ecb_bool;
778    
779     #define ECB_CONCAT_(a, b) a ## b
780     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
781     #define ECB_STRINGIFY_(a) # a
782     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
783    
784     #define ecb_function_ ecb_inline
785    
786 root 1.379 #if ECB_GCC_VERSION(3,1)
787     #define ecb_attribute(attrlist) __attribute__(attrlist)
788     #define ecb_is_constant(expr) __builtin_constant_p (expr)
789     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
790     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
791     #else
792     #define ecb_attribute(attrlist)
793 root 1.464
794     /* possible C11 impl for integral types
795     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
796     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
797    
798 root 1.379 #define ecb_is_constant(expr) 0
799     #define ecb_expect(expr,value) (expr)
800     #define ecb_prefetch(addr,rw,locality)
801     #endif
802    
803 root 1.391 /* no emulation for ecb_decltype */
804     #if ECB_GCC_VERSION(4,5)
805     #define ecb_decltype(x) __decltype(x)
806     #elif ECB_GCC_VERSION(3,0)
807     #define ecb_decltype(x) __typeof(x)
808     #endif
809    
810 root 1.468 #if _MSC_VER >= 1300
811     #define ecb_deprecated __declspec(deprecated)
812     #else
813     #define ecb_deprecated ecb_attribute ((__deprecated__))
814     #endif
815    
816 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
817     #define ecb_unused ecb_attribute ((__unused__))
818     #define ecb_const ecb_attribute ((__const__))
819     #define ecb_pure ecb_attribute ((__pure__))
820    
821 root 1.468 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
822 root 1.437 #if ECB_C11
823     #define ecb_noreturn _Noreturn
824     #else
825     #define ecb_noreturn ecb_attribute ((__noreturn__))
826     #endif
827    
828 root 1.379 #if ECB_GCC_VERSION(4,3)
829     #define ecb_artificial ecb_attribute ((__artificial__))
830     #define ecb_hot ecb_attribute ((__hot__))
831     #define ecb_cold ecb_attribute ((__cold__))
832     #else
833     #define ecb_artificial
834     #define ecb_hot
835     #define ecb_cold
836     #endif
837    
838     /* put around conditional expressions if you are very sure that the */
839     /* expression is mostly true or mostly false. note that these return */
840     /* booleans, not the expression. */
841     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
842     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
843 root 1.391 /* for compatibility to the rest of the world */
844     #define ecb_likely(expr) ecb_expect_true (expr)
845     #define ecb_unlikely(expr) ecb_expect_false (expr)
846    
847     /* count trailing zero bits and count # of one bits */
848     #if ECB_GCC_VERSION(3,4)
849     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
850     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
851     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
852     #define ecb_ctz32(x) __builtin_ctz (x)
853     #define ecb_ctz64(x) __builtin_ctzll (x)
854     #define ecb_popcount32(x) __builtin_popcount (x)
855     /* no popcountll */
856     #else
857     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
858     ecb_function_ int
859     ecb_ctz32 (uint32_t x)
860     {
861     int r = 0;
862    
863     x &= ~x + 1; /* this isolates the lowest bit */
864    
865     #if ECB_branchless_on_i386
866     r += !!(x & 0xaaaaaaaa) << 0;
867     r += !!(x & 0xcccccccc) << 1;
868     r += !!(x & 0xf0f0f0f0) << 2;
869     r += !!(x & 0xff00ff00) << 3;
870     r += !!(x & 0xffff0000) << 4;
871     #else
872     if (x & 0xaaaaaaaa) r += 1;
873     if (x & 0xcccccccc) r += 2;
874     if (x & 0xf0f0f0f0) r += 4;
875     if (x & 0xff00ff00) r += 8;
876     if (x & 0xffff0000) r += 16;
877     #endif
878    
879     return r;
880     }
881    
882     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
883     ecb_function_ int
884     ecb_ctz64 (uint64_t x)
885     {
886     int shift = x & 0xffffffffU ? 0 : 32;
887     return ecb_ctz32 (x >> shift) + shift;
888     }
889    
890     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
891     ecb_function_ int
892     ecb_popcount32 (uint32_t x)
893     {
894     x -= (x >> 1) & 0x55555555;
895     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
896     x = ((x >> 4) + x) & 0x0f0f0f0f;
897     x *= 0x01010101;
898    
899     return x >> 24;
900     }
901    
902     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
903     ecb_function_ int ecb_ld32 (uint32_t x)
904     {
905     int r = 0;
906    
907     if (x >> 16) { x >>= 16; r += 16; }
908     if (x >> 8) { x >>= 8; r += 8; }
909     if (x >> 4) { x >>= 4; r += 4; }
910     if (x >> 2) { x >>= 2; r += 2; }
911     if (x >> 1) { r += 1; }
912    
913     return r;
914     }
915    
916     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
917     ecb_function_ int ecb_ld64 (uint64_t x)
918     {
919     int r = 0;
920    
921     if (x >> 32) { x >>= 32; r += 32; }
922    
923     return r + ecb_ld32 (x);
924     }
925     #endif
926    
927 root 1.437 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
928     ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
929     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
930     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
931    
932 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
933     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
934     {
935     return ( (x * 0x0802U & 0x22110U)
936     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
937     }
938    
939     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
940     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
941     {
942     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
943     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
944     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
945     x = ( x >> 8 ) | ( x << 8);
946    
947     return x;
948     }
949    
950     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
951     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
952     {
953     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
954     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
955     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
956     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
957     x = ( x >> 16 ) | ( x << 16);
958    
959     return x;
960     }
961    
962 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
963     /* so for this version we are lazy */
964     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
965     ecb_function_ int
966     ecb_popcount64 (uint64_t x)
967     {
968     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
969     }
970    
971     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
972     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
973     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
974     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
975     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
976     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
977     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
978     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
979    
980     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
981     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
982     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
983     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
984     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
985     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
986     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
987     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
988    
989     #if ECB_GCC_VERSION(4,3)
990     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
991     #define ecb_bswap32(x) __builtin_bswap32 (x)
992     #define ecb_bswap64(x) __builtin_bswap64 (x)
993     #else
994     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
995     ecb_function_ uint16_t
996     ecb_bswap16 (uint16_t x)
997     {
998     return ecb_rotl16 (x, 8);
999     }
1000    
1001     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
1002     ecb_function_ uint32_t
1003     ecb_bswap32 (uint32_t x)
1004     {
1005     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1006     }
1007    
1008     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1009     ecb_function_ uint64_t
1010     ecb_bswap64 (uint64_t x)
1011     {
1012     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1013     }
1014     #endif
1015    
1016     #if ECB_GCC_VERSION(4,5)
1017     #define ecb_unreachable() __builtin_unreachable ()
1018     #else
1019     /* this seems to work fine, but gcc always emits a warning for it :/ */
1020 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1021     ecb_inline void ecb_unreachable (void) { }
1022 root 1.391 #endif
1023    
1024     /* try to tell the compiler that some condition is definitely true */
1025 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1026 root 1.391
1027 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1028     ecb_inline unsigned char
1029 root 1.391 ecb_byteorder_helper (void)
1030     {
1031 root 1.450 /* the union code still generates code under pressure in gcc, */
1032     /* but less than using pointers, and always seems to */
1033     /* successfully return a constant. */
1034     /* the reason why we have this horrible preprocessor mess */
1035     /* is to avoid it in all cases, at least on common architectures */
1036     /* or when using a recent enough gcc version (>= 4.6) */
1037     #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1038     return 0x44;
1039     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1040     return 0x44;
1041     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1042     return 0x11;
1043     #else
1044     union
1045     {
1046     uint32_t i;
1047     uint8_t c;
1048     } u = { 0x11223344 };
1049     return u.c;
1050     #endif
1051 root 1.391 }
1052    
1053 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1054     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1055     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1056     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1057 root 1.391
1058     #if ECB_GCC_VERSION(3,0) || ECB_C99
1059     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1060     #else
1061     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1062     #endif
1063    
1064 root 1.398 #if __cplusplus
1065     template<typename T>
1066     static inline T ecb_div_rd (T val, T div)
1067     {
1068     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1069     }
1070     template<typename T>
1071     static inline T ecb_div_ru (T val, T div)
1072     {
1073     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1074     }
1075     #else
1076     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1077     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1078     #endif
1079    
1080 root 1.391 #if ecb_cplusplus_does_not_suck
1081     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1082     template<typename T, int N>
1083     static inline int ecb_array_length (const T (&arr)[N])
1084     {
1085     return N;
1086     }
1087     #else
1088     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1089     #endif
1090    
1091 root 1.450 /*******************************************************************************/
1092     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1093    
1094     /* basically, everything uses "ieee pure-endian" floating point numbers */
1095     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1096     #if 0 \
1097     || __i386 || __i386__ \
1098     || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1099     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1100     || defined __s390__ || defined __s390x__ \
1101     || defined __mips__ \
1102     || defined __alpha__ \
1103     || defined __hppa__ \
1104     || defined __ia64__ \
1105 root 1.457 || defined __m68k__ \
1106     || defined __m88k__ \
1107     || defined __sh__ \
1108 root 1.464 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1109 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1110 root 1.466 || defined __aarch64__
1111 root 1.450 #define ECB_STDFP 1
1112     #include <string.h> /* for memcpy */
1113     #else
1114     #define ECB_STDFP 0
1115     #endif
1116    
1117     #ifndef ECB_NO_LIBM
1118    
1119 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1120    
1121 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1122     #ifdef INFINITY
1123     #define ECB_INFINITY INFINITY
1124     #else
1125     #define ECB_INFINITY HUGE_VAL
1126     #endif
1127    
1128     #ifdef NAN
1129 root 1.458 #define ECB_NAN NAN
1130     #else
1131 root 1.462 #define ECB_NAN ECB_INFINITY
1132 root 1.458 #endif
1133    
1134     /* converts an ieee half/binary16 to a float */
1135     ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1136     ecb_function_ float
1137     ecb_binary16_to_float (uint16_t x)
1138     {
1139     int e = (x >> 10) & 0x1f;
1140     int m = x & 0x3ff;
1141     float r;
1142    
1143     if (!e ) r = ldexpf (m , -24);
1144     else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1145     else if (m ) r = ECB_NAN;
1146 root 1.462 else r = ECB_INFINITY;
1147 root 1.458
1148     return x & 0x8000 ? -r : r;
1149     }
1150    
1151 root 1.450 /* convert a float to ieee single/binary32 */
1152     ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1153     ecb_function_ uint32_t
1154     ecb_float_to_binary32 (float x)
1155     {
1156     uint32_t r;
1157    
1158     #if ECB_STDFP
1159     memcpy (&r, &x, 4);
1160     #else
1161     /* slow emulation, works for anything but -0 */
1162     uint32_t m;
1163     int e;
1164    
1165     if (x == 0e0f ) return 0x00000000U;
1166     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1167     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1168     if (x != x ) return 0x7fbfffffU;
1169    
1170     m = frexpf (x, &e) * 0x1000000U;
1171    
1172     r = m & 0x80000000U;
1173    
1174     if (r)
1175     m = -m;
1176    
1177     if (e <= -126)
1178     {
1179     m &= 0xffffffU;
1180     m >>= (-125 - e);
1181     e = -126;
1182     }
1183    
1184     r |= (e + 126) << 23;
1185     r |= m & 0x7fffffU;
1186     #endif
1187    
1188     return r;
1189     }
1190    
1191     /* converts an ieee single/binary32 to a float */
1192     ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1193     ecb_function_ float
1194     ecb_binary32_to_float (uint32_t x)
1195     {
1196     float r;
1197    
1198     #if ECB_STDFP
1199     memcpy (&r, &x, 4);
1200     #else
1201     /* emulation, only works for normals and subnormals and +0 */
1202     int neg = x >> 31;
1203     int e = (x >> 23) & 0xffU;
1204    
1205     x &= 0x7fffffU;
1206    
1207     if (e)
1208     x |= 0x800000U;
1209     else
1210     e = 1;
1211    
1212     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1213     r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1214    
1215     r = neg ? -r : r;
1216     #endif
1217    
1218     return r;
1219     }
1220    
1221     /* convert a double to ieee double/binary64 */
1222     ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1223     ecb_function_ uint64_t
1224     ecb_double_to_binary64 (double x)
1225     {
1226     uint64_t r;
1227    
1228     #if ECB_STDFP
1229     memcpy (&r, &x, 8);
1230     #else
1231     /* slow emulation, works for anything but -0 */
1232     uint64_t m;
1233     int e;
1234    
1235     if (x == 0e0 ) return 0x0000000000000000U;
1236     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1237     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1238     if (x != x ) return 0X7ff7ffffffffffffU;
1239    
1240     m = frexp (x, &e) * 0x20000000000000U;
1241    
1242     r = m & 0x8000000000000000;;
1243    
1244     if (r)
1245     m = -m;
1246    
1247     if (e <= -1022)
1248     {
1249     m &= 0x1fffffffffffffU;
1250     m >>= (-1021 - e);
1251     e = -1022;
1252     }
1253    
1254     r |= ((uint64_t)(e + 1022)) << 52;
1255     r |= m & 0xfffffffffffffU;
1256     #endif
1257    
1258     return r;
1259     }
1260    
1261     /* converts an ieee double/binary64 to a double */
1262     ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1263     ecb_function_ double
1264     ecb_binary64_to_double (uint64_t x)
1265     {
1266     double r;
1267    
1268     #if ECB_STDFP
1269     memcpy (&r, &x, 8);
1270     #else
1271     /* emulation, only works for normals and subnormals and +0 */
1272     int neg = x >> 63;
1273     int e = (x >> 52) & 0x7ffU;
1274    
1275     x &= 0xfffffffffffffU;
1276    
1277     if (e)
1278     x |= 0x10000000000000U;
1279     else
1280     e = 1;
1281    
1282     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1283     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1284    
1285     r = neg ? -r : r;
1286     #endif
1287    
1288     return r;
1289     }
1290    
1291     #endif
1292    
1293 root 1.391 #endif
1294    
1295     /* ECB.H END */
1296 root 1.379
1297 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1298 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1299 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1300     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1301 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1302 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1303     * which will then provide the memory fences.
1304     */
1305     # error "memory fences not defined for your architecture, please report"
1306     #endif
1307    
1308     #ifndef ECB_MEMORY_FENCE
1309     # define ECB_MEMORY_FENCE do { } while (0)
1310     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1311     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1312 root 1.392 #endif
1313    
1314 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1315     #define expect_true(cond) ecb_expect_true (cond)
1316     #define noinline ecb_noinline
1317    
1318     #define inline_size ecb_inline
1319 root 1.169
1320 root 1.338 #if EV_FEATURE_CODE
1321 root 1.379 # define inline_speed ecb_inline
1322 root 1.338 #else
1323 root 1.169 # define inline_speed static noinline
1324     #endif
1325 root 1.40
1326 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1327    
1328     #if EV_MINPRI == EV_MAXPRI
1329     # define ABSPRI(w) (((W)w), 0)
1330     #else
1331     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1332     #endif
1333 root 1.42
1334 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1335 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1336 root 1.103
1337 root 1.136 typedef ev_watcher *W;
1338     typedef ev_watcher_list *WL;
1339     typedef ev_watcher_time *WT;
1340 root 1.10
1341 root 1.229 #define ev_active(w) ((W)(w))->active
1342 root 1.228 #define ev_at(w) ((WT)(w))->at
1343    
1344 root 1.279 #if EV_USE_REALTIME
1345 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1346 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1347 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1348     #endif
1349    
1350     #if EV_USE_MONOTONIC
1351 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1352 root 1.198 #endif
1353 root 1.54
1354 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1355     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1356     #endif
1357     #ifndef EV_WIN32_HANDLE_TO_FD
1358 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1359 root 1.313 #endif
1360     #ifndef EV_WIN32_CLOSE_FD
1361     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1362     #endif
1363    
1364 root 1.103 #ifdef _WIN32
1365 root 1.98 # include "ev_win32.c"
1366     #endif
1367 root 1.67
1368 root 1.53 /*****************************************************************************/
1369 root 1.1
1370 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1371    
1372     #if EV_USE_FLOOR
1373     # include <math.h>
1374     # define ev_floor(v) floor (v)
1375     #else
1376    
1377     #include <float.h>
1378    
1379     /* a floor() replacement function, should be independent of ev_tstamp type */
1380     static ev_tstamp noinline
1381     ev_floor (ev_tstamp v)
1382     {
1383     /* the choice of shift factor is not terribly important */
1384     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1385     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1386     #else
1387     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1388     #endif
1389    
1390     /* argument too large for an unsigned long? */
1391     if (expect_false (v >= shift))
1392     {
1393     ev_tstamp f;
1394    
1395     if (v == v - 1.)
1396     return v; /* very large number */
1397    
1398     f = shift * ev_floor (v * (1. / shift));
1399     return f + ev_floor (v - f);
1400     }
1401    
1402     /* special treatment for negative args? */
1403     if (expect_false (v < 0.))
1404     {
1405     ev_tstamp f = -ev_floor (-v);
1406    
1407     return f - (f == v ? 0 : 1);
1408     }
1409    
1410     /* fits into an unsigned long */
1411     return (unsigned long)v;
1412     }
1413    
1414     #endif
1415    
1416     /*****************************************************************************/
1417    
1418 root 1.356 #ifdef __linux
1419     # include <sys/utsname.h>
1420     #endif
1421    
1422 root 1.379 static unsigned int noinline ecb_cold
1423 root 1.355 ev_linux_version (void)
1424     {
1425     #ifdef __linux
1426 root 1.359 unsigned int v = 0;
1427 root 1.355 struct utsname buf;
1428     int i;
1429     char *p = buf.release;
1430    
1431     if (uname (&buf))
1432     return 0;
1433    
1434     for (i = 3+1; --i; )
1435     {
1436     unsigned int c = 0;
1437    
1438     for (;;)
1439     {
1440     if (*p >= '0' && *p <= '9')
1441     c = c * 10 + *p++ - '0';
1442     else
1443     {
1444     p += *p == '.';
1445     break;
1446     }
1447     }
1448    
1449     v = (v << 8) | c;
1450     }
1451    
1452     return v;
1453     #else
1454     return 0;
1455     #endif
1456     }
1457    
1458     /*****************************************************************************/
1459    
1460 root 1.331 #if EV_AVOID_STDIO
1461 root 1.379 static void noinline ecb_cold
1462 root 1.331 ev_printerr (const char *msg)
1463     {
1464     write (STDERR_FILENO, msg, strlen (msg));
1465     }
1466     #endif
1467    
1468 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1469 root 1.69
1470 root 1.379 void ecb_cold
1471 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1472 root 1.69 {
1473     syserr_cb = cb;
1474     }
1475    
1476 root 1.379 static void noinline ecb_cold
1477 root 1.269 ev_syserr (const char *msg)
1478 root 1.69 {
1479 root 1.70 if (!msg)
1480     msg = "(libev) system error";
1481    
1482 root 1.69 if (syserr_cb)
1483 root 1.70 syserr_cb (msg);
1484 root 1.69 else
1485     {
1486 root 1.330 #if EV_AVOID_STDIO
1487 root 1.331 ev_printerr (msg);
1488     ev_printerr (": ");
1489 root 1.365 ev_printerr (strerror (errno));
1490 root 1.331 ev_printerr ("\n");
1491 root 1.330 #else
1492 root 1.70 perror (msg);
1493 root 1.330 #endif
1494 root 1.69 abort ();
1495     }
1496     }
1497    
1498 root 1.224 static void *
1499 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1500 root 1.224 {
1501     /* some systems, notably openbsd and darwin, fail to properly
1502 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1503 root 1.224 * the single unix specification, so work around them here.
1504 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1505     * despite documenting it otherwise.
1506 root 1.224 */
1507 root 1.333
1508 root 1.224 if (size)
1509     return realloc (ptr, size);
1510    
1511     free (ptr);
1512     return 0;
1513     }
1514    
1515 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1516 root 1.69
1517 root 1.379 void ecb_cold
1518 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1519 root 1.69 {
1520     alloc = cb;
1521     }
1522    
1523 root 1.150 inline_speed void *
1524 root 1.155 ev_realloc (void *ptr, long size)
1525 root 1.69 {
1526 root 1.224 ptr = alloc (ptr, size);
1527 root 1.69
1528     if (!ptr && size)
1529     {
1530 root 1.330 #if EV_AVOID_STDIO
1531 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1532 root 1.330 #else
1533 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1534 root 1.330 #endif
1535 root 1.69 abort ();
1536     }
1537    
1538     return ptr;
1539     }
1540    
1541     #define ev_malloc(size) ev_realloc (0, (size))
1542     #define ev_free(ptr) ev_realloc ((ptr), 0)
1543    
1544     /*****************************************************************************/
1545    
1546 root 1.298 /* set in reify when reification needed */
1547     #define EV_ANFD_REIFY 1
1548    
1549 root 1.288 /* file descriptor info structure */
1550 root 1.53 typedef struct
1551     {
1552 root 1.68 WL head;
1553 root 1.288 unsigned char events; /* the events watched for */
1554 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1555 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1556 root 1.269 unsigned char unused;
1557     #if EV_USE_EPOLL
1558 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1559 root 1.269 #endif
1560 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1561 root 1.103 SOCKET handle;
1562     #endif
1563 root 1.357 #if EV_USE_IOCP
1564     OVERLAPPED or, ow;
1565     #endif
1566 root 1.53 } ANFD;
1567 root 1.1
1568 root 1.288 /* stores the pending event set for a given watcher */
1569 root 1.53 typedef struct
1570     {
1571     W w;
1572 root 1.288 int events; /* the pending event set for the given watcher */
1573 root 1.53 } ANPENDING;
1574 root 1.51
1575 root 1.155 #if EV_USE_INOTIFY
1576 root 1.241 /* hash table entry per inotify-id */
1577 root 1.152 typedef struct
1578     {
1579     WL head;
1580 root 1.155 } ANFS;
1581 root 1.152 #endif
1582    
1583 root 1.241 /* Heap Entry */
1584     #if EV_HEAP_CACHE_AT
1585 root 1.288 /* a heap element */
1586 root 1.241 typedef struct {
1587 root 1.243 ev_tstamp at;
1588 root 1.241 WT w;
1589     } ANHE;
1590    
1591 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1592     #define ANHE_at(he) (he).at /* access cached at, read-only */
1593     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1594 root 1.241 #else
1595 root 1.288 /* a heap element */
1596 root 1.241 typedef WT ANHE;
1597    
1598 root 1.248 #define ANHE_w(he) (he)
1599     #define ANHE_at(he) (he)->at
1600     #define ANHE_at_cache(he)
1601 root 1.241 #endif
1602    
1603 root 1.55 #if EV_MULTIPLICITY
1604 root 1.54
1605 root 1.80 struct ev_loop
1606     {
1607 root 1.86 ev_tstamp ev_rt_now;
1608 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1609 root 1.80 #define VAR(name,decl) decl;
1610     #include "ev_vars.h"
1611     #undef VAR
1612     };
1613     #include "ev_wrap.h"
1614    
1615 root 1.116 static struct ev_loop default_loop_struct;
1616 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1617 root 1.54
1618 root 1.53 #else
1619 root 1.54
1620 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1621 root 1.80 #define VAR(name,decl) static decl;
1622     #include "ev_vars.h"
1623     #undef VAR
1624    
1625 root 1.116 static int ev_default_loop_ptr;
1626 root 1.54
1627 root 1.51 #endif
1628 root 1.1
1629 root 1.338 #if EV_FEATURE_API
1630 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1631     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1632 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1633     #else
1634 root 1.298 # define EV_RELEASE_CB (void)0
1635     # define EV_ACQUIRE_CB (void)0
1636 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1637     #endif
1638    
1639 root 1.353 #define EVBREAK_RECURSE 0x80
1640 root 1.298
1641 root 1.8 /*****************************************************************************/
1642    
1643 root 1.292 #ifndef EV_HAVE_EV_TIME
1644 root 1.141 ev_tstamp
1645 root 1.420 ev_time (void) EV_THROW
1646 root 1.1 {
1647 root 1.29 #if EV_USE_REALTIME
1648 root 1.279 if (expect_true (have_realtime))
1649     {
1650     struct timespec ts;
1651     clock_gettime (CLOCK_REALTIME, &ts);
1652     return ts.tv_sec + ts.tv_nsec * 1e-9;
1653     }
1654     #endif
1655    
1656 root 1.1 struct timeval tv;
1657     gettimeofday (&tv, 0);
1658     return tv.tv_sec + tv.tv_usec * 1e-6;
1659     }
1660 root 1.292 #endif
1661 root 1.1
1662 root 1.284 inline_size ev_tstamp
1663 root 1.1 get_clock (void)
1664     {
1665 root 1.29 #if EV_USE_MONOTONIC
1666 root 1.40 if (expect_true (have_monotonic))
1667 root 1.1 {
1668     struct timespec ts;
1669     clock_gettime (CLOCK_MONOTONIC, &ts);
1670     return ts.tv_sec + ts.tv_nsec * 1e-9;
1671     }
1672     #endif
1673    
1674     return ev_time ();
1675     }
1676    
1677 root 1.85 #if EV_MULTIPLICITY
1678 root 1.51 ev_tstamp
1679 root 1.420 ev_now (EV_P) EV_THROW
1680 root 1.51 {
1681 root 1.85 return ev_rt_now;
1682 root 1.51 }
1683 root 1.85 #endif
1684 root 1.51
1685 root 1.193 void
1686 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1687 root 1.193 {
1688     if (delay > 0.)
1689     {
1690     #if EV_USE_NANOSLEEP
1691     struct timespec ts;
1692    
1693 root 1.348 EV_TS_SET (ts, delay);
1694 root 1.193 nanosleep (&ts, 0);
1695 root 1.416 #elif defined _WIN32
1696 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1697 root 1.193 #else
1698     struct timeval tv;
1699    
1700 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1701 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1702 root 1.257 /* by older ones */
1703 sf-exg 1.349 EV_TV_SET (tv, delay);
1704 root 1.193 select (0, 0, 0, 0, &tv);
1705     #endif
1706     }
1707     }
1708    
1709     /*****************************************************************************/
1710    
1711 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1712 root 1.232
1713 root 1.288 /* find a suitable new size for the given array, */
1714 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1715 root 1.284 inline_size int
1716 root 1.163 array_nextsize (int elem, int cur, int cnt)
1717     {
1718     int ncur = cur + 1;
1719    
1720     do
1721     ncur <<= 1;
1722     while (cnt > ncur);
1723    
1724 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1725 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1726 root 1.163 {
1727     ncur *= elem;
1728 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1729 root 1.163 ncur = ncur - sizeof (void *) * 4;
1730     ncur /= elem;
1731     }
1732    
1733     return ncur;
1734     }
1735    
1736 root 1.379 static void * noinline ecb_cold
1737 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1738     {
1739     *cur = array_nextsize (elem, *cur, cnt);
1740     return ev_realloc (base, elem * *cur);
1741     }
1742 root 1.29
1743 root 1.265 #define array_init_zero(base,count) \
1744     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1745    
1746 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1747 root 1.163 if (expect_false ((cnt) > (cur))) \
1748 root 1.69 { \
1749 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1750 root 1.163 (base) = (type *)array_realloc \
1751     (sizeof (type), (base), &(cur), (cnt)); \
1752     init ((base) + (ocur_), (cur) - ocur_); \
1753 root 1.1 }
1754    
1755 root 1.163 #if 0
1756 root 1.74 #define array_slim(type,stem) \
1757 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1758     { \
1759     stem ## max = array_roundsize (stem ## cnt >> 1); \
1760 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1761 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1762     }
1763 root 1.163 #endif
1764 root 1.67
1765 root 1.65 #define array_free(stem, idx) \
1766 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1767 root 1.65
1768 root 1.8 /*****************************************************************************/
1769    
1770 root 1.288 /* dummy callback for pending events */
1771     static void noinline
1772     pendingcb (EV_P_ ev_prepare *w, int revents)
1773     {
1774     }
1775    
1776 root 1.140 void noinline
1777 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1778 root 1.1 {
1779 root 1.78 W w_ = (W)w;
1780 root 1.171 int pri = ABSPRI (w_);
1781 root 1.78
1782 root 1.123 if (expect_false (w_->pending))
1783 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1784     else
1785 root 1.32 {
1786 root 1.171 w_->pending = ++pendingcnt [pri];
1787     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1788     pendings [pri][w_->pending - 1].w = w_;
1789     pendings [pri][w_->pending - 1].events = revents;
1790 root 1.32 }
1791 root 1.425
1792     pendingpri = NUMPRI - 1;
1793 root 1.1 }
1794    
1795 root 1.284 inline_speed void
1796     feed_reverse (EV_P_ W w)
1797     {
1798     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1799     rfeeds [rfeedcnt++] = w;
1800     }
1801    
1802     inline_size void
1803     feed_reverse_done (EV_P_ int revents)
1804     {
1805     do
1806     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1807     while (rfeedcnt);
1808     }
1809    
1810     inline_speed void
1811 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1812 root 1.27 {
1813     int i;
1814    
1815     for (i = 0; i < eventcnt; ++i)
1816 root 1.78 ev_feed_event (EV_A_ events [i], type);
1817 root 1.27 }
1818    
1819 root 1.141 /*****************************************************************************/
1820    
1821 root 1.284 inline_speed void
1822 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1823 root 1.1 {
1824     ANFD *anfd = anfds + fd;
1825 root 1.136 ev_io *w;
1826 root 1.1
1827 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1828 root 1.1 {
1829 root 1.79 int ev = w->events & revents;
1830 root 1.1
1831     if (ev)
1832 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1833 root 1.1 }
1834     }
1835    
1836 root 1.298 /* do not submit kernel events for fds that have reify set */
1837     /* because that means they changed while we were polling for new events */
1838     inline_speed void
1839     fd_event (EV_P_ int fd, int revents)
1840     {
1841     ANFD *anfd = anfds + fd;
1842    
1843     if (expect_true (!anfd->reify))
1844 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1845 root 1.298 }
1846    
1847 root 1.79 void
1848 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1849 root 1.79 {
1850 root 1.168 if (fd >= 0 && fd < anfdmax)
1851 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1852 root 1.79 }
1853    
1854 root 1.288 /* make sure the external fd watch events are in-sync */
1855     /* with the kernel/libev internal state */
1856 root 1.284 inline_size void
1857 root 1.51 fd_reify (EV_P)
1858 root 1.9 {
1859     int i;
1860    
1861 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1862     for (i = 0; i < fdchangecnt; ++i)
1863     {
1864     int fd = fdchanges [i];
1865     ANFD *anfd = anfds + fd;
1866    
1867 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1868 root 1.371 {
1869     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1870    
1871     if (handle != anfd->handle)
1872     {
1873     unsigned long arg;
1874    
1875     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1876    
1877     /* handle changed, but fd didn't - we need to do it in two steps */
1878     backend_modify (EV_A_ fd, anfd->events, 0);
1879     anfd->events = 0;
1880     anfd->handle = handle;
1881     }
1882     }
1883     }
1884     #endif
1885    
1886 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1887     {
1888     int fd = fdchanges [i];
1889     ANFD *anfd = anfds + fd;
1890 root 1.136 ev_io *w;
1891 root 1.27
1892 root 1.350 unsigned char o_events = anfd->events;
1893     unsigned char o_reify = anfd->reify;
1894 root 1.27
1895 root 1.350 anfd->reify = 0;
1896 root 1.27
1897 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1898     {
1899     anfd->events = 0;
1900 root 1.184
1901 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1902     anfd->events |= (unsigned char)w->events;
1903 root 1.27
1904 root 1.351 if (o_events != anfd->events)
1905 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1906     }
1907    
1908     if (o_reify & EV__IOFDSET)
1909     backend_modify (EV_A_ fd, o_events, anfd->events);
1910 root 1.27 }
1911    
1912     fdchangecnt = 0;
1913     }
1914    
1915 root 1.288 /* something about the given fd changed */
1916 root 1.284 inline_size void
1917 root 1.183 fd_change (EV_P_ int fd, int flags)
1918 root 1.27 {
1919 root 1.183 unsigned char reify = anfds [fd].reify;
1920 root 1.184 anfds [fd].reify |= flags;
1921 root 1.27
1922 root 1.183 if (expect_true (!reify))
1923     {
1924     ++fdchangecnt;
1925     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1926     fdchanges [fdchangecnt - 1] = fd;
1927     }
1928 root 1.9 }
1929    
1930 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1931 root 1.379 inline_speed void ecb_cold
1932 root 1.51 fd_kill (EV_P_ int fd)
1933 root 1.41 {
1934 root 1.136 ev_io *w;
1935 root 1.41
1936 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1937 root 1.41 {
1938 root 1.51 ev_io_stop (EV_A_ w);
1939 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1940 root 1.41 }
1941     }
1942    
1943 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1944 root 1.379 inline_size int ecb_cold
1945 root 1.71 fd_valid (int fd)
1946     {
1947 root 1.103 #ifdef _WIN32
1948 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1949 root 1.71 #else
1950     return fcntl (fd, F_GETFD) != -1;
1951     #endif
1952     }
1953    
1954 root 1.19 /* called on EBADF to verify fds */
1955 root 1.379 static void noinline ecb_cold
1956 root 1.51 fd_ebadf (EV_P)
1957 root 1.19 {
1958     int fd;
1959    
1960     for (fd = 0; fd < anfdmax; ++fd)
1961 root 1.27 if (anfds [fd].events)
1962 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1963 root 1.51 fd_kill (EV_A_ fd);
1964 root 1.41 }
1965    
1966     /* called on ENOMEM in select/poll to kill some fds and retry */
1967 root 1.379 static void noinline ecb_cold
1968 root 1.51 fd_enomem (EV_P)
1969 root 1.41 {
1970 root 1.62 int fd;
1971 root 1.41
1972 root 1.62 for (fd = anfdmax; fd--; )
1973 root 1.41 if (anfds [fd].events)
1974     {
1975 root 1.51 fd_kill (EV_A_ fd);
1976 root 1.307 break;
1977 root 1.41 }
1978 root 1.19 }
1979    
1980 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1981 root 1.140 static void noinline
1982 root 1.56 fd_rearm_all (EV_P)
1983     {
1984     int fd;
1985    
1986     for (fd = 0; fd < anfdmax; ++fd)
1987     if (anfds [fd].events)
1988     {
1989     anfds [fd].events = 0;
1990 root 1.268 anfds [fd].emask = 0;
1991 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1992 root 1.56 }
1993     }
1994    
1995 root 1.336 /* used to prepare libev internal fd's */
1996     /* this is not fork-safe */
1997     inline_speed void
1998     fd_intern (int fd)
1999     {
2000     #ifdef _WIN32
2001     unsigned long arg = 1;
2002     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2003     #else
2004     fcntl (fd, F_SETFD, FD_CLOEXEC);
2005     fcntl (fd, F_SETFL, O_NONBLOCK);
2006     #endif
2007     }
2008    
2009 root 1.8 /*****************************************************************************/
2010    
2011 root 1.235 /*
2012 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2013 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2014     * the branching factor of the d-tree.
2015     */
2016    
2017     /*
2018 root 1.235 * at the moment we allow libev the luxury of two heaps,
2019     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2020     * which is more cache-efficient.
2021     * the difference is about 5% with 50000+ watchers.
2022     */
2023 root 1.241 #if EV_USE_4HEAP
2024 root 1.235
2025 root 1.237 #define DHEAP 4
2026     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2027 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2028 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2029 root 1.235
2030     /* away from the root */
2031 root 1.284 inline_speed void
2032 root 1.241 downheap (ANHE *heap, int N, int k)
2033 root 1.235 {
2034 root 1.241 ANHE he = heap [k];
2035     ANHE *E = heap + N + HEAP0;
2036 root 1.235
2037     for (;;)
2038     {
2039     ev_tstamp minat;
2040 root 1.241 ANHE *minpos;
2041 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2042 root 1.235
2043 root 1.248 /* find minimum child */
2044 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
2045 root 1.235 {
2046 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2047     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2048     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2049     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2050 root 1.235 }
2051 root 1.240 else if (pos < E)
2052 root 1.235 {
2053 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2054     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2055     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2056     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2057 root 1.235 }
2058 root 1.240 else
2059     break;
2060 root 1.235
2061 root 1.241 if (ANHE_at (he) <= minat)
2062 root 1.235 break;
2063    
2064 root 1.247 heap [k] = *minpos;
2065 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2066 root 1.235
2067     k = minpos - heap;
2068     }
2069    
2070 root 1.247 heap [k] = he;
2071 root 1.241 ev_active (ANHE_w (he)) = k;
2072 root 1.235 }
2073    
2074 root 1.248 #else /* 4HEAP */
2075 root 1.235
2076     #define HEAP0 1
2077 root 1.247 #define HPARENT(k) ((k) >> 1)
2078 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2079 root 1.235
2080 root 1.248 /* away from the root */
2081 root 1.284 inline_speed void
2082 root 1.248 downheap (ANHE *heap, int N, int k)
2083 root 1.1 {
2084 root 1.241 ANHE he = heap [k];
2085 root 1.1
2086 root 1.228 for (;;)
2087 root 1.1 {
2088 root 1.248 int c = k << 1;
2089 root 1.179
2090 root 1.309 if (c >= N + HEAP0)
2091 root 1.179 break;
2092    
2093 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2094     ? 1 : 0;
2095    
2096     if (ANHE_at (he) <= ANHE_at (heap [c]))
2097     break;
2098    
2099     heap [k] = heap [c];
2100 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2101 root 1.248
2102     k = c;
2103 root 1.1 }
2104    
2105 root 1.243 heap [k] = he;
2106 root 1.248 ev_active (ANHE_w (he)) = k;
2107 root 1.1 }
2108 root 1.248 #endif
2109 root 1.1
2110 root 1.248 /* towards the root */
2111 root 1.284 inline_speed void
2112 root 1.248 upheap (ANHE *heap, int k)
2113 root 1.1 {
2114 root 1.241 ANHE he = heap [k];
2115 root 1.1
2116 root 1.179 for (;;)
2117 root 1.1 {
2118 root 1.248 int p = HPARENT (k);
2119 root 1.179
2120 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2121 root 1.179 break;
2122 root 1.1
2123 root 1.248 heap [k] = heap [p];
2124 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2125 root 1.248 k = p;
2126 root 1.1 }
2127    
2128 root 1.241 heap [k] = he;
2129     ev_active (ANHE_w (he)) = k;
2130 root 1.1 }
2131    
2132 root 1.288 /* move an element suitably so it is in a correct place */
2133 root 1.284 inline_size void
2134 root 1.241 adjustheap (ANHE *heap, int N, int k)
2135 root 1.84 {
2136 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2137 root 1.247 upheap (heap, k);
2138     else
2139     downheap (heap, N, k);
2140 root 1.84 }
2141    
2142 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2143 root 1.284 inline_size void
2144 root 1.248 reheap (ANHE *heap, int N)
2145     {
2146     int i;
2147 root 1.251
2148 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2149     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2150     for (i = 0; i < N; ++i)
2151     upheap (heap, i + HEAP0);
2152     }
2153    
2154 root 1.8 /*****************************************************************************/
2155    
2156 root 1.288 /* associate signal watchers to a signal signal */
2157 root 1.7 typedef struct
2158     {
2159 root 1.307 EV_ATOMIC_T pending;
2160 root 1.306 #if EV_MULTIPLICITY
2161     EV_P;
2162     #endif
2163 root 1.68 WL head;
2164 root 1.7 } ANSIG;
2165    
2166 root 1.306 static ANSIG signals [EV_NSIG - 1];
2167 root 1.7
2168 root 1.207 /*****************************************************************************/
2169    
2170 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2171 root 1.207
2172 root 1.379 static void noinline ecb_cold
2173 root 1.207 evpipe_init (EV_P)
2174     {
2175 root 1.288 if (!ev_is_active (&pipe_w))
2176 root 1.207 {
2177 root 1.448 int fds [2];
2178    
2179 root 1.336 # if EV_USE_EVENTFD
2180 root 1.448 fds [0] = -1;
2181     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2182     if (fds [1] < 0 && errno == EINVAL)
2183     fds [1] = eventfd (0, 0);
2184    
2185     if (fds [1] < 0)
2186     # endif
2187     {
2188     while (pipe (fds))
2189     ev_syserr ("(libev) error creating signal/async pipe");
2190    
2191     fd_intern (fds [0]);
2192 root 1.220 }
2193 root 1.448
2194     evpipe [0] = fds [0];
2195    
2196     if (evpipe [1] < 0)
2197     evpipe [1] = fds [1]; /* first call, set write fd */
2198 root 1.220 else
2199     {
2200 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2201     /* so that evpipe_write can always rely on its value. */
2202     /* this branch does not do anything sensible on windows, */
2203     /* so must not be executed on windows */
2204 root 1.207
2205 root 1.448 dup2 (fds [1], evpipe [1]);
2206     close (fds [1]);
2207 root 1.220 }
2208 root 1.207
2209 root 1.455 fd_intern (evpipe [1]);
2210    
2211 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2212 root 1.288 ev_io_start (EV_A_ &pipe_w);
2213 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2214 root 1.207 }
2215     }
2216    
2217 root 1.380 inline_speed void
2218 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2219 root 1.207 {
2220 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2221    
2222 root 1.383 if (expect_true (*flag))
2223 root 1.387 return;
2224 root 1.383
2225     *flag = 1;
2226 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2227 root 1.383
2228     pipe_write_skipped = 1;
2229 root 1.378
2230 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2231 root 1.214
2232 root 1.383 if (pipe_write_wanted)
2233     {
2234     int old_errno;
2235 root 1.378
2236 root 1.436 pipe_write_skipped = 0;
2237     ECB_MEMORY_FENCE_RELEASE;
2238 root 1.220
2239 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2240 root 1.380
2241 root 1.220 #if EV_USE_EVENTFD
2242 root 1.448 if (evpipe [0] < 0)
2243 root 1.383 {
2244     uint64_t counter = 1;
2245 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2246 root 1.383 }
2247     else
2248 root 1.220 #endif
2249 root 1.383 {
2250 root 1.427 #ifdef _WIN32
2251     WSABUF buf;
2252     DWORD sent;
2253     buf.buf = &buf;
2254     buf.len = 1;
2255     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2256     #else
2257 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2258 root 1.427 #endif
2259 root 1.383 }
2260 root 1.214
2261 root 1.383 errno = old_errno;
2262 root 1.207 }
2263     }
2264    
2265 root 1.288 /* called whenever the libev signal pipe */
2266     /* got some events (signal, async) */
2267 root 1.207 static void
2268     pipecb (EV_P_ ev_io *iow, int revents)
2269     {
2270 root 1.307 int i;
2271    
2272 root 1.378 if (revents & EV_READ)
2273     {
2274 root 1.220 #if EV_USE_EVENTFD
2275 root 1.448 if (evpipe [0] < 0)
2276 root 1.378 {
2277     uint64_t counter;
2278 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2279 root 1.378 }
2280     else
2281 root 1.220 #endif
2282 root 1.378 {
2283 root 1.427 char dummy[4];
2284     #ifdef _WIN32
2285     WSABUF buf;
2286     DWORD recvd;
2287 root 1.432 DWORD flags = 0;
2288 root 1.427 buf.buf = dummy;
2289     buf.len = sizeof (dummy);
2290 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2291 root 1.427 #else
2292     read (evpipe [0], &dummy, sizeof (dummy));
2293     #endif
2294 root 1.378 }
2295 root 1.220 }
2296 root 1.207
2297 root 1.378 pipe_write_skipped = 0;
2298    
2299 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2300    
2301 root 1.369 #if EV_SIGNAL_ENABLE
2302 root 1.307 if (sig_pending)
2303 root 1.372 {
2304 root 1.307 sig_pending = 0;
2305 root 1.207
2306 root 1.436 ECB_MEMORY_FENCE;
2307 root 1.424
2308 root 1.307 for (i = EV_NSIG - 1; i--; )
2309     if (expect_false (signals [i].pending))
2310     ev_feed_signal_event (EV_A_ i + 1);
2311 root 1.207 }
2312 root 1.369 #endif
2313 root 1.207
2314 root 1.209 #if EV_ASYNC_ENABLE
2315 root 1.307 if (async_pending)
2316 root 1.207 {
2317 root 1.307 async_pending = 0;
2318 root 1.207
2319 root 1.436 ECB_MEMORY_FENCE;
2320 root 1.424
2321 root 1.207 for (i = asynccnt; i--; )
2322     if (asyncs [i]->sent)
2323     {
2324     asyncs [i]->sent = 0;
2325 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2326 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2327     }
2328     }
2329 root 1.209 #endif
2330 root 1.207 }
2331    
2332     /*****************************************************************************/
2333    
2334 root 1.366 void
2335 root 1.420 ev_feed_signal (int signum) EV_THROW
2336 root 1.7 {
2337 root 1.207 #if EV_MULTIPLICITY
2338 root 1.453 EV_P;
2339 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2340 root 1.453 EV_A = signals [signum - 1].loop;
2341 root 1.366
2342     if (!EV_A)
2343     return;
2344 root 1.207 #endif
2345    
2346 root 1.366 signals [signum - 1].pending = 1;
2347     evpipe_write (EV_A_ &sig_pending);
2348     }
2349    
2350     static void
2351     ev_sighandler (int signum)
2352     {
2353 root 1.322 #ifdef _WIN32
2354 root 1.218 signal (signum, ev_sighandler);
2355 root 1.67 #endif
2356    
2357 root 1.366 ev_feed_signal (signum);
2358 root 1.7 }
2359    
2360 root 1.140 void noinline
2361 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2362 root 1.79 {
2363 root 1.80 WL w;
2364    
2365 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2366 root 1.307 return;
2367    
2368     --signum;
2369    
2370 root 1.79 #if EV_MULTIPLICITY
2371 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2372     /* or, likely more useful, feeding a signal nobody is waiting for */
2373 root 1.79
2374 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2375 root 1.306 return;
2376 root 1.307 #endif
2377 root 1.306
2378 root 1.307 signals [signum].pending = 0;
2379 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2380 root 1.79
2381     for (w = signals [signum].head; w; w = w->next)
2382     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2383     }
2384    
2385 root 1.303 #if EV_USE_SIGNALFD
2386     static void
2387     sigfdcb (EV_P_ ev_io *iow, int revents)
2388     {
2389 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2390 root 1.303
2391     for (;;)
2392     {
2393     ssize_t res = read (sigfd, si, sizeof (si));
2394    
2395     /* not ISO-C, as res might be -1, but works with SuS */
2396     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2397     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2398    
2399     if (res < (ssize_t)sizeof (si))
2400     break;
2401     }
2402     }
2403     #endif
2404    
2405 root 1.336 #endif
2406    
2407 root 1.8 /*****************************************************************************/
2408    
2409 root 1.336 #if EV_CHILD_ENABLE
2410 root 1.182 static WL childs [EV_PID_HASHSIZE];
2411 root 1.71
2412 root 1.136 static ev_signal childev;
2413 root 1.59
2414 root 1.206 #ifndef WIFCONTINUED
2415     # define WIFCONTINUED(status) 0
2416     #endif
2417    
2418 root 1.288 /* handle a single child status event */
2419 root 1.284 inline_speed void
2420 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2421 root 1.47 {
2422 root 1.136 ev_child *w;
2423 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2424 root 1.47
2425 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2426 root 1.206 {
2427     if ((w->pid == pid || !w->pid)
2428     && (!traced || (w->flags & 1)))
2429     {
2430 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2431 root 1.206 w->rpid = pid;
2432     w->rstatus = status;
2433     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2434     }
2435     }
2436 root 1.47 }
2437    
2438 root 1.142 #ifndef WCONTINUED
2439     # define WCONTINUED 0
2440     #endif
2441    
2442 root 1.288 /* called on sigchld etc., calls waitpid */
2443 root 1.47 static void
2444 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2445 root 1.22 {
2446     int pid, status;
2447    
2448 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2449     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2450     if (!WCONTINUED
2451     || errno != EINVAL
2452     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2453     return;
2454    
2455 root 1.216 /* make sure we are called again until all children have been reaped */
2456 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2457     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2458 root 1.47
2459 root 1.216 child_reap (EV_A_ pid, pid, status);
2460 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2461 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2462 root 1.22 }
2463    
2464 root 1.45 #endif
2465    
2466 root 1.22 /*****************************************************************************/
2467    
2468 root 1.357 #if EV_USE_IOCP
2469     # include "ev_iocp.c"
2470     #endif
2471 root 1.118 #if EV_USE_PORT
2472     # include "ev_port.c"
2473     #endif
2474 root 1.44 #if EV_USE_KQUEUE
2475     # include "ev_kqueue.c"
2476     #endif
2477 root 1.29 #if EV_USE_EPOLL
2478 root 1.1 # include "ev_epoll.c"
2479     #endif
2480 root 1.59 #if EV_USE_POLL
2481 root 1.41 # include "ev_poll.c"
2482     #endif
2483 root 1.29 #if EV_USE_SELECT
2484 root 1.1 # include "ev_select.c"
2485     #endif
2486    
2487 root 1.379 int ecb_cold
2488 root 1.420 ev_version_major (void) EV_THROW
2489 root 1.24 {
2490     return EV_VERSION_MAJOR;
2491     }
2492    
2493 root 1.379 int ecb_cold
2494 root 1.420 ev_version_minor (void) EV_THROW
2495 root 1.24 {
2496     return EV_VERSION_MINOR;
2497     }
2498    
2499 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2500 root 1.379 int inline_size ecb_cold
2501 root 1.51 enable_secure (void)
2502 root 1.41 {
2503 root 1.103 #ifdef _WIN32
2504 root 1.49 return 0;
2505     #else
2506 root 1.41 return getuid () != geteuid ()
2507     || getgid () != getegid ();
2508 root 1.49 #endif
2509 root 1.41 }
2510    
2511 root 1.379 unsigned int ecb_cold
2512 root 1.420 ev_supported_backends (void) EV_THROW
2513 root 1.129 {
2514 root 1.130 unsigned int flags = 0;
2515 root 1.129
2516     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2517     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2518     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2519     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2520     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2521    
2522     return flags;
2523     }
2524    
2525 root 1.379 unsigned int ecb_cold
2526 root 1.420 ev_recommended_backends (void) EV_THROW
2527 root 1.1 {
2528 root 1.131 unsigned int flags = ev_supported_backends ();
2529 root 1.129
2530     #ifndef __NetBSD__
2531     /* kqueue is borked on everything but netbsd apparently */
2532     /* it usually doesn't work correctly on anything but sockets and pipes */
2533     flags &= ~EVBACKEND_KQUEUE;
2534     #endif
2535     #ifdef __APPLE__
2536 root 1.278 /* only select works correctly on that "unix-certified" platform */
2537     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2538     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2539 root 1.129 #endif
2540 root 1.342 #ifdef __FreeBSD__
2541     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2542     #endif
2543 root 1.129
2544     return flags;
2545 root 1.51 }
2546    
2547 root 1.379 unsigned int ecb_cold
2548 root 1.420 ev_embeddable_backends (void) EV_THROW
2549 root 1.134 {
2550 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2551    
2552 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2553 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2554     flags &= ~EVBACKEND_EPOLL;
2555 root 1.196
2556     return flags;
2557 root 1.134 }
2558    
2559     unsigned int
2560 root 1.420 ev_backend (EV_P) EV_THROW
2561 root 1.130 {
2562     return backend;
2563     }
2564    
2565 root 1.338 #if EV_FEATURE_API
2566 root 1.162 unsigned int
2567 root 1.420 ev_iteration (EV_P) EV_THROW
2568 root 1.162 {
2569     return loop_count;
2570     }
2571    
2572 root 1.294 unsigned int
2573 root 1.420 ev_depth (EV_P) EV_THROW
2574 root 1.294 {
2575     return loop_depth;
2576     }
2577    
2578 root 1.193 void
2579 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2580 root 1.193 {
2581     io_blocktime = interval;
2582     }
2583    
2584     void
2585 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2586 root 1.193 {
2587     timeout_blocktime = interval;
2588     }
2589    
2590 root 1.297 void
2591 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2592 root 1.297 {
2593     userdata = data;
2594     }
2595    
2596     void *
2597 root 1.420 ev_userdata (EV_P) EV_THROW
2598 root 1.297 {
2599     return userdata;
2600     }
2601    
2602 root 1.379 void
2603 root 1.461 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2604 root 1.297 {
2605     invoke_cb = invoke_pending_cb;
2606     }
2607    
2608 root 1.379 void
2609 root 1.461 ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2610 root 1.297 {
2611 root 1.298 release_cb = release;
2612     acquire_cb = acquire;
2613 root 1.297 }
2614     #endif
2615    
2616 root 1.288 /* initialise a loop structure, must be zero-initialised */
2617 root 1.379 static void noinline ecb_cold
2618 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2619 root 1.51 {
2620 root 1.130 if (!backend)
2621 root 1.23 {
2622 root 1.366 origflags = flags;
2623    
2624 root 1.279 #if EV_USE_REALTIME
2625     if (!have_realtime)
2626     {
2627     struct timespec ts;
2628    
2629     if (!clock_gettime (CLOCK_REALTIME, &ts))
2630     have_realtime = 1;
2631     }
2632     #endif
2633    
2634 root 1.29 #if EV_USE_MONOTONIC
2635 root 1.279 if (!have_monotonic)
2636     {
2637     struct timespec ts;
2638    
2639     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2640     have_monotonic = 1;
2641     }
2642 root 1.1 #endif
2643    
2644 root 1.306 /* pid check not overridable via env */
2645     #ifndef _WIN32
2646     if (flags & EVFLAG_FORKCHECK)
2647     curpid = getpid ();
2648     #endif
2649    
2650     if (!(flags & EVFLAG_NOENV)
2651     && !enable_secure ()
2652     && getenv ("LIBEV_FLAGS"))
2653     flags = atoi (getenv ("LIBEV_FLAGS"));
2654    
2655 root 1.378 ev_rt_now = ev_time ();
2656     mn_now = get_clock ();
2657     now_floor = mn_now;
2658     rtmn_diff = ev_rt_now - mn_now;
2659 root 1.338 #if EV_FEATURE_API
2660 root 1.378 invoke_cb = ev_invoke_pending;
2661 root 1.297 #endif
2662 root 1.1
2663 root 1.378 io_blocktime = 0.;
2664     timeout_blocktime = 0.;
2665     backend = 0;
2666     backend_fd = -1;
2667     sig_pending = 0;
2668 root 1.307 #if EV_ASYNC_ENABLE
2669 root 1.378 async_pending = 0;
2670 root 1.307 #endif
2671 root 1.378 pipe_write_skipped = 0;
2672     pipe_write_wanted = 0;
2673 root 1.448 evpipe [0] = -1;
2674     evpipe [1] = -1;
2675 root 1.209 #if EV_USE_INOTIFY
2676 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2677 root 1.209 #endif
2678 root 1.303 #if EV_USE_SIGNALFD
2679 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2680 root 1.303 #endif
2681 root 1.193
2682 root 1.366 if (!(flags & EVBACKEND_MASK))
2683 root 1.129 flags |= ev_recommended_backends ();
2684 root 1.41
2685 root 1.357 #if EV_USE_IOCP
2686     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2687     #endif
2688 root 1.118 #if EV_USE_PORT
2689 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2690 root 1.118 #endif
2691 root 1.44 #if EV_USE_KQUEUE
2692 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2693 root 1.44 #endif
2694 root 1.29 #if EV_USE_EPOLL
2695 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2696 root 1.41 #endif
2697 root 1.59 #if EV_USE_POLL
2698 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2699 root 1.1 #endif
2700 root 1.29 #if EV_USE_SELECT
2701 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2702 root 1.1 #endif
2703 root 1.70
2704 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2705    
2706 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2707 root 1.288 ev_init (&pipe_w, pipecb);
2708     ev_set_priority (&pipe_w, EV_MAXPRI);
2709 root 1.336 #endif
2710 root 1.56 }
2711     }
2712    
2713 root 1.288 /* free up a loop structure */
2714 root 1.379 void ecb_cold
2715 root 1.422 ev_loop_destroy (EV_P)
2716 root 1.56 {
2717 root 1.65 int i;
2718    
2719 root 1.364 #if EV_MULTIPLICITY
2720 root 1.363 /* mimic free (0) */
2721     if (!EV_A)
2722     return;
2723 root 1.364 #endif
2724 root 1.363
2725 root 1.361 #if EV_CLEANUP_ENABLE
2726     /* queue cleanup watchers (and execute them) */
2727     if (expect_false (cleanupcnt))
2728     {
2729     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2730     EV_INVOKE_PENDING;
2731     }
2732     #endif
2733    
2734 root 1.359 #if EV_CHILD_ENABLE
2735 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2736 root 1.359 {
2737     ev_ref (EV_A); /* child watcher */
2738     ev_signal_stop (EV_A_ &childev);
2739     }
2740     #endif
2741    
2742 root 1.288 if (ev_is_active (&pipe_w))
2743 root 1.207 {
2744 root 1.303 /*ev_ref (EV_A);*/
2745     /*ev_io_stop (EV_A_ &pipe_w);*/
2746 root 1.207
2747 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2748     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2749 root 1.207 }
2750    
2751 root 1.303 #if EV_USE_SIGNALFD
2752     if (ev_is_active (&sigfd_w))
2753 root 1.317 close (sigfd);
2754 root 1.303 #endif
2755    
2756 root 1.152 #if EV_USE_INOTIFY
2757     if (fs_fd >= 0)
2758     close (fs_fd);
2759     #endif
2760    
2761     if (backend_fd >= 0)
2762     close (backend_fd);
2763    
2764 root 1.357 #if EV_USE_IOCP
2765     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2766     #endif
2767 root 1.118 #if EV_USE_PORT
2768 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2769 root 1.118 #endif
2770 root 1.56 #if EV_USE_KQUEUE
2771 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2772 root 1.56 #endif
2773     #if EV_USE_EPOLL
2774 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2775 root 1.56 #endif
2776 root 1.59 #if EV_USE_POLL
2777 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2778 root 1.56 #endif
2779     #if EV_USE_SELECT
2780 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2781 root 1.56 #endif
2782 root 1.1
2783 root 1.65 for (i = NUMPRI; i--; )
2784 root 1.164 {
2785     array_free (pending, [i]);
2786     #if EV_IDLE_ENABLE
2787     array_free (idle, [i]);
2788     #endif
2789     }
2790 root 1.65
2791 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2792 root 1.186
2793 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2794 root 1.284 array_free (rfeed, EMPTY);
2795 root 1.164 array_free (fdchange, EMPTY);
2796     array_free (timer, EMPTY);
2797 root 1.140 #if EV_PERIODIC_ENABLE
2798 root 1.164 array_free (periodic, EMPTY);
2799 root 1.93 #endif
2800 root 1.187 #if EV_FORK_ENABLE
2801     array_free (fork, EMPTY);
2802     #endif
2803 root 1.360 #if EV_CLEANUP_ENABLE
2804     array_free (cleanup, EMPTY);
2805     #endif
2806 root 1.164 array_free (prepare, EMPTY);
2807     array_free (check, EMPTY);
2808 root 1.209 #if EV_ASYNC_ENABLE
2809     array_free (async, EMPTY);
2810     #endif
2811 root 1.65
2812 root 1.130 backend = 0;
2813 root 1.359
2814     #if EV_MULTIPLICITY
2815     if (ev_is_default_loop (EV_A))
2816     #endif
2817     ev_default_loop_ptr = 0;
2818     #if EV_MULTIPLICITY
2819     else
2820     ev_free (EV_A);
2821     #endif
2822 root 1.56 }
2823 root 1.22
2824 root 1.226 #if EV_USE_INOTIFY
2825 root 1.284 inline_size void infy_fork (EV_P);
2826 root 1.226 #endif
2827 root 1.154
2828 root 1.284 inline_size void
2829 root 1.56 loop_fork (EV_P)
2830     {
2831 root 1.118 #if EV_USE_PORT
2832 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2833 root 1.56 #endif
2834     #if EV_USE_KQUEUE
2835 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2836 root 1.45 #endif
2837 root 1.118 #if EV_USE_EPOLL
2838 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2839 root 1.118 #endif
2840 root 1.154 #if EV_USE_INOTIFY
2841     infy_fork (EV_A);
2842     #endif
2843 root 1.70
2844 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2845 root 1.288 if (ev_is_active (&pipe_w))
2846 root 1.70 {
2847 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2848 root 1.70
2849     ev_ref (EV_A);
2850 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2851 root 1.220
2852     if (evpipe [0] >= 0)
2853 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
2854 root 1.207
2855     evpipe_init (EV_A);
2856 root 1.443 /* iterate over everything, in case we missed something before */
2857     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2858 root 1.448 }
2859 root 1.337 #endif
2860 root 1.70
2861     postfork = 0;
2862 root 1.1 }
2863    
2864 root 1.55 #if EV_MULTIPLICITY
2865 root 1.250
2866 root 1.379 struct ev_loop * ecb_cold
2867 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2868 root 1.54 {
2869 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2870 root 1.69
2871 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2872 root 1.108 loop_init (EV_A_ flags);
2873 root 1.56
2874 root 1.130 if (ev_backend (EV_A))
2875 root 1.306 return EV_A;
2876 root 1.54
2877 root 1.359 ev_free (EV_A);
2878 root 1.55 return 0;
2879 root 1.54 }
2880    
2881 root 1.297 #endif /* multiplicity */
2882 root 1.248
2883     #if EV_VERIFY
2884 root 1.379 static void noinline ecb_cold
2885 root 1.251 verify_watcher (EV_P_ W w)
2886     {
2887 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2888 root 1.251
2889     if (w->pending)
2890 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2891 root 1.251 }
2892    
2893 root 1.379 static void noinline ecb_cold
2894 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2895     {
2896     int i;
2897    
2898     for (i = HEAP0; i < N + HEAP0; ++i)
2899     {
2900 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2901     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2902     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2903 root 1.251
2904     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2905     }
2906     }
2907    
2908 root 1.379 static void noinline ecb_cold
2909 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2910 root 1.248 {
2911     while (cnt--)
2912 root 1.251 {
2913 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2914 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2915     }
2916 root 1.248 }
2917 root 1.250 #endif
2918 root 1.248
2919 root 1.338 #if EV_FEATURE_API
2920 root 1.379 void ecb_cold
2921 root 1.420 ev_verify (EV_P) EV_THROW
2922 root 1.248 {
2923 root 1.250 #if EV_VERIFY
2924 root 1.429 int i;
2925 root 1.426 WL w, w2;
2926 root 1.251
2927     assert (activecnt >= -1);
2928    
2929     assert (fdchangemax >= fdchangecnt);
2930     for (i = 0; i < fdchangecnt; ++i)
2931 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2932 root 1.251
2933     assert (anfdmax >= 0);
2934 root 1.429 for (i = 0; i < anfdmax; ++i)
2935     {
2936     int j = 0;
2937    
2938     for (w = w2 = anfds [i].head; w; w = w->next)
2939     {
2940     verify_watcher (EV_A_ (W)w);
2941 root 1.426
2942 root 1.429 if (j++ & 1)
2943     {
2944     assert (("libev: io watcher list contains a loop", w != w2));
2945     w2 = w2->next;
2946     }
2947 root 1.426
2948 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2949     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2950     }
2951     }
2952 root 1.251
2953     assert (timermax >= timercnt);
2954     verify_heap (EV_A_ timers, timercnt);
2955 root 1.248
2956     #if EV_PERIODIC_ENABLE
2957 root 1.251 assert (periodicmax >= periodiccnt);
2958     verify_heap (EV_A_ periodics, periodiccnt);
2959 root 1.248 #endif
2960    
2961 root 1.251 for (i = NUMPRI; i--; )
2962     {
2963     assert (pendingmax [i] >= pendingcnt [i]);
2964 root 1.248 #if EV_IDLE_ENABLE
2965 root 1.252 assert (idleall >= 0);
2966 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2967     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2968 root 1.248 #endif
2969 root 1.251 }
2970    
2971 root 1.248 #if EV_FORK_ENABLE
2972 root 1.251 assert (forkmax >= forkcnt);
2973     array_verify (EV_A_ (W *)forks, forkcnt);
2974 root 1.248 #endif
2975 root 1.251
2976 root 1.360 #if EV_CLEANUP_ENABLE
2977     assert (cleanupmax >= cleanupcnt);
2978     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2979     #endif
2980    
2981 root 1.250 #if EV_ASYNC_ENABLE
2982 root 1.251 assert (asyncmax >= asynccnt);
2983     array_verify (EV_A_ (W *)asyncs, asynccnt);
2984 root 1.250 #endif
2985 root 1.251
2986 root 1.337 #if EV_PREPARE_ENABLE
2987 root 1.251 assert (preparemax >= preparecnt);
2988     array_verify (EV_A_ (W *)prepares, preparecnt);
2989 root 1.337 #endif
2990 root 1.251
2991 root 1.337 #if EV_CHECK_ENABLE
2992 root 1.251 assert (checkmax >= checkcnt);
2993     array_verify (EV_A_ (W *)checks, checkcnt);
2994 root 1.337 #endif
2995 root 1.251
2996     # if 0
2997 root 1.336 #if EV_CHILD_ENABLE
2998 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2999 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3000 root 1.336 #endif
3001 root 1.251 # endif
3002 root 1.248 #endif
3003     }
3004 root 1.297 #endif
3005 root 1.56
3006     #if EV_MULTIPLICITY
3007 root 1.379 struct ev_loop * ecb_cold
3008 root 1.54 #else
3009     int
3010 root 1.358 #endif
3011 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
3012 root 1.54 {
3013 root 1.116 if (!ev_default_loop_ptr)
3014 root 1.56 {
3015     #if EV_MULTIPLICITY
3016 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3017 root 1.56 #else
3018 ayin 1.117 ev_default_loop_ptr = 1;
3019 root 1.54 #endif
3020    
3021 root 1.110 loop_init (EV_A_ flags);
3022 root 1.56
3023 root 1.130 if (ev_backend (EV_A))
3024 root 1.56 {
3025 root 1.336 #if EV_CHILD_ENABLE
3026 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3027     ev_set_priority (&childev, EV_MAXPRI);
3028     ev_signal_start (EV_A_ &childev);
3029     ev_unref (EV_A); /* child watcher should not keep loop alive */
3030     #endif
3031     }
3032     else
3033 root 1.116 ev_default_loop_ptr = 0;
3034 root 1.56 }
3035 root 1.8
3036 root 1.116 return ev_default_loop_ptr;
3037 root 1.1 }
3038    
3039 root 1.24 void
3040 root 1.420 ev_loop_fork (EV_P) EV_THROW
3041 root 1.1 {
3042 root 1.440 postfork = 1;
3043 root 1.1 }
3044    
3045 root 1.8 /*****************************************************************************/
3046    
3047 root 1.168 void
3048     ev_invoke (EV_P_ void *w, int revents)
3049     {
3050     EV_CB_INVOKE ((W)w, revents);
3051     }
3052    
3053 root 1.300 unsigned int
3054 root 1.420 ev_pending_count (EV_P) EV_THROW
3055 root 1.300 {
3056     int pri;
3057     unsigned int count = 0;
3058    
3059     for (pri = NUMPRI; pri--; )
3060     count += pendingcnt [pri];
3061    
3062     return count;
3063     }
3064    
3065 root 1.297 void noinline
3066 root 1.296 ev_invoke_pending (EV_P)
3067 root 1.1 {
3068 root 1.445 pendingpri = NUMPRI;
3069    
3070     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3071     {
3072     --pendingpri;
3073    
3074     while (pendingcnt [pendingpri])
3075     {
3076     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3077 root 1.1
3078 root 1.445 p->w->pending = 0;
3079     EV_CB_INVOKE (p->w, p->events);
3080     EV_FREQUENT_CHECK;
3081     }
3082     }
3083 root 1.1 }
3084    
3085 root 1.234 #if EV_IDLE_ENABLE
3086 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3087     /* only when higher priorities are idle" logic */
3088 root 1.284 inline_size void
3089 root 1.234 idle_reify (EV_P)
3090     {
3091     if (expect_false (idleall))
3092     {
3093     int pri;
3094    
3095     for (pri = NUMPRI; pri--; )
3096     {
3097     if (pendingcnt [pri])
3098     break;
3099    
3100     if (idlecnt [pri])
3101     {
3102     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3103     break;
3104     }
3105     }
3106     }
3107     }
3108     #endif
3109    
3110 root 1.288 /* make timers pending */
3111 root 1.284 inline_size void
3112 root 1.51 timers_reify (EV_P)
3113 root 1.1 {
3114 root 1.248 EV_FREQUENT_CHECK;
3115    
3116 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3117 root 1.1 {
3118 root 1.284 do
3119     {
3120     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3121 root 1.1
3122 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3123    
3124     /* first reschedule or stop timer */
3125     if (w->repeat)
3126     {
3127     ev_at (w) += w->repeat;
3128     if (ev_at (w) < mn_now)
3129     ev_at (w) = mn_now;
3130 root 1.61
3131 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3132 root 1.90
3133 root 1.284 ANHE_at_cache (timers [HEAP0]);
3134     downheap (timers, timercnt, HEAP0);
3135     }
3136     else
3137     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3138 root 1.243
3139 root 1.284 EV_FREQUENT_CHECK;
3140     feed_reverse (EV_A_ (W)w);
3141 root 1.12 }
3142 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3143 root 1.30
3144 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3145 root 1.12 }
3146     }
3147 root 1.4
3148 root 1.140 #if EV_PERIODIC_ENABLE
3149 root 1.370
3150 root 1.373 static void noinline
3151 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3152     {
3153 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3154     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3155    
3156     /* the above almost always errs on the low side */
3157     while (at <= ev_rt_now)
3158     {
3159     ev_tstamp nat = at + w->interval;
3160    
3161     /* when resolution fails us, we use ev_rt_now */
3162     if (expect_false (nat == at))
3163     {
3164     at = ev_rt_now;
3165     break;
3166     }
3167    
3168     at = nat;
3169     }
3170    
3171     ev_at (w) = at;
3172 root 1.370 }
3173    
3174 root 1.288 /* make periodics pending */
3175 root 1.284 inline_size void
3176 root 1.51 periodics_reify (EV_P)
3177 root 1.12 {
3178 root 1.248 EV_FREQUENT_CHECK;
3179 root 1.250
3180 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3181 root 1.12 {
3182 root 1.284 do
3183     {
3184     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3185 root 1.1
3186 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3187 root 1.61
3188 root 1.284 /* first reschedule or stop timer */
3189     if (w->reschedule_cb)
3190     {
3191     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3192 root 1.243
3193 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3194 root 1.243
3195 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3196     downheap (periodics, periodiccnt, HEAP0);
3197     }
3198     else if (w->interval)
3199 root 1.246 {
3200 root 1.370 periodic_recalc (EV_A_ w);
3201 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3202     downheap (periodics, periodiccnt, HEAP0);
3203 root 1.246 }
3204 root 1.284 else
3205     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3206 root 1.243
3207 root 1.284 EV_FREQUENT_CHECK;
3208     feed_reverse (EV_A_ (W)w);
3209 root 1.1 }
3210 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3211 root 1.12
3212 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3213 root 1.12 }
3214     }
3215    
3216 root 1.288 /* simply recalculate all periodics */
3217 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3218 root 1.379 static void noinline ecb_cold
3219 root 1.54 periodics_reschedule (EV_P)
3220 root 1.12 {
3221     int i;
3222    
3223 root 1.13 /* adjust periodics after time jump */
3224 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3225 root 1.12 {
3226 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3227 root 1.12
3228 root 1.77 if (w->reschedule_cb)
3229 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3230 root 1.77 else if (w->interval)
3231 root 1.370 periodic_recalc (EV_A_ w);
3232 root 1.242
3233 root 1.248 ANHE_at_cache (periodics [i]);
3234 root 1.77 }
3235 root 1.12
3236 root 1.248 reheap (periodics, periodiccnt);
3237 root 1.1 }
3238 root 1.93 #endif
3239 root 1.1
3240 root 1.288 /* adjust all timers by a given offset */
3241 root 1.379 static void noinline ecb_cold
3242 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3243     {
3244     int i;
3245    
3246     for (i = 0; i < timercnt; ++i)
3247     {
3248     ANHE *he = timers + i + HEAP0;
3249     ANHE_w (*he)->at += adjust;
3250     ANHE_at_cache (*he);
3251     }
3252     }
3253    
3254 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3255 root 1.324 /* also detect if there was a timejump, and act accordingly */
3256 root 1.284 inline_speed void
3257 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3258 root 1.4 {
3259 root 1.40 #if EV_USE_MONOTONIC
3260     if (expect_true (have_monotonic))
3261     {
3262 root 1.289 int i;
3263 root 1.178 ev_tstamp odiff = rtmn_diff;
3264    
3265     mn_now = get_clock ();
3266    
3267     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3268     /* interpolate in the meantime */
3269     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3270 root 1.40 {
3271 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3272     return;
3273     }
3274    
3275     now_floor = mn_now;
3276     ev_rt_now = ev_time ();
3277 root 1.4
3278 root 1.178 /* loop a few times, before making important decisions.
3279     * on the choice of "4": one iteration isn't enough,
3280     * in case we get preempted during the calls to
3281     * ev_time and get_clock. a second call is almost guaranteed
3282     * to succeed in that case, though. and looping a few more times
3283     * doesn't hurt either as we only do this on time-jumps or
3284     * in the unlikely event of having been preempted here.
3285     */
3286     for (i = 4; --i; )
3287     {
3288 root 1.373 ev_tstamp diff;
3289 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3290 root 1.4
3291 root 1.373 diff = odiff - rtmn_diff;
3292    
3293     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3294 root 1.178 return; /* all is well */
3295 root 1.4
3296 root 1.178 ev_rt_now = ev_time ();
3297     mn_now = get_clock ();
3298     now_floor = mn_now;
3299     }
3300 root 1.4
3301 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3302     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3303 root 1.140 # if EV_PERIODIC_ENABLE
3304 root 1.178 periodics_reschedule (EV_A);
3305 root 1.93 # endif
3306 root 1.4 }
3307     else
3308 root 1.40 #endif
3309 root 1.4 {
3310 root 1.85 ev_rt_now = ev_time ();
3311 root 1.40
3312 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3313 root 1.13 {
3314 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3315     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3316 root 1.140 #if EV_PERIODIC_ENABLE
3317 root 1.54 periodics_reschedule (EV_A);
3318 root 1.93 #endif
3319 root 1.13 }
3320 root 1.4
3321 root 1.85 mn_now = ev_rt_now;
3322 root 1.4 }
3323     }
3324    
3325 root 1.418 int
3326 root 1.353 ev_run (EV_P_ int flags)
3327 root 1.1 {
3328 root 1.338 #if EV_FEATURE_API
3329 root 1.294 ++loop_depth;
3330 root 1.297 #endif
3331 root 1.294
3332 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3333 root 1.298
3334 root 1.353 loop_done = EVBREAK_CANCEL;
3335 root 1.1
3336 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3337 root 1.158
3338 root 1.161 do
3339 root 1.9 {
3340 root 1.250 #if EV_VERIFY >= 2
3341 root 1.340 ev_verify (EV_A);
3342 root 1.250 #endif
3343    
3344 root 1.158 #ifndef _WIN32
3345     if (expect_false (curpid)) /* penalise the forking check even more */
3346     if (expect_false (getpid () != curpid))
3347     {
3348     curpid = getpid ();
3349     postfork = 1;
3350     }
3351     #endif
3352    
3353 root 1.157 #if EV_FORK_ENABLE
3354     /* we might have forked, so queue fork handlers */
3355     if (expect_false (postfork))
3356     if (forkcnt)
3357     {
3358     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3359 root 1.297 EV_INVOKE_PENDING;
3360 root 1.157 }
3361     #endif
3362 root 1.147
3363 root 1.337 #if EV_PREPARE_ENABLE
3364 root 1.170 /* queue prepare watchers (and execute them) */
3365 root 1.40 if (expect_false (preparecnt))
3366 root 1.20 {
3367 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3368 root 1.297 EV_INVOKE_PENDING;
3369 root 1.20 }
3370 root 1.337 #endif
3371 root 1.9
3372 root 1.298 if (expect_false (loop_done))
3373     break;
3374    
3375 root 1.70 /* we might have forked, so reify kernel state if necessary */
3376     if (expect_false (postfork))
3377     loop_fork (EV_A);
3378    
3379 root 1.1 /* update fd-related kernel structures */
3380 root 1.51 fd_reify (EV_A);
3381 root 1.1
3382     /* calculate blocking time */
3383 root 1.135 {
3384 root 1.193 ev_tstamp waittime = 0.;
3385     ev_tstamp sleeptime = 0.;
3386 root 1.12
3387 root 1.353 /* remember old timestamp for io_blocktime calculation */
3388     ev_tstamp prev_mn_now = mn_now;
3389 root 1.293
3390 root 1.353 /* update time to cancel out callback processing overhead */
3391     time_update (EV_A_ 1e100);
3392 root 1.135
3393 root 1.378 /* from now on, we want a pipe-wake-up */
3394     pipe_write_wanted = 1;
3395    
3396 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3397 root 1.383
3398 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3399 root 1.353 {
3400 root 1.287 waittime = MAX_BLOCKTIME;
3401    
3402 root 1.135 if (timercnt)
3403     {
3404 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3405 root 1.193 if (waittime > to) waittime = to;
3406 root 1.135 }
3407 root 1.4
3408 root 1.140 #if EV_PERIODIC_ENABLE
3409 root 1.135 if (periodiccnt)
3410     {
3411 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3412 root 1.193 if (waittime > to) waittime = to;
3413 root 1.135 }
3414 root 1.93 #endif
3415 root 1.4
3416 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3417 root 1.193 if (expect_false (waittime < timeout_blocktime))
3418     waittime = timeout_blocktime;
3419    
3420 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3421     /* to pass a minimum nonzero value to the backend */
3422     if (expect_false (waittime < backend_mintime))
3423     waittime = backend_mintime;
3424    
3425 root 1.293 /* extra check because io_blocktime is commonly 0 */
3426     if (expect_false (io_blocktime))
3427     {
3428     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3429 root 1.193
3430 root 1.376 if (sleeptime > waittime - backend_mintime)
3431     sleeptime = waittime - backend_mintime;
3432 root 1.193
3433 root 1.293 if (expect_true (sleeptime > 0.))
3434     {
3435     ev_sleep (sleeptime);
3436     waittime -= sleeptime;
3437     }
3438 root 1.193 }
3439 root 1.135 }
3440 root 1.1
3441 root 1.338 #if EV_FEATURE_API
3442 root 1.162 ++loop_count;
3443 root 1.297 #endif
3444 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3445 root 1.193 backend_poll (EV_A_ waittime);
3446 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3447 root 1.178
3448 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3449 root 1.378
3450 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3451 root 1.378 if (pipe_write_skipped)
3452     {
3453     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3454     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3455     }
3456    
3457    
3458 root 1.178 /* update ev_rt_now, do magic */
3459 root 1.193 time_update (EV_A_ waittime + sleeptime);
3460 root 1.135 }
3461 root 1.1
3462 root 1.9 /* queue pending timers and reschedule them */
3463 root 1.51 timers_reify (EV_A); /* relative timers called last */
3464 root 1.140 #if EV_PERIODIC_ENABLE
3465 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3466 root 1.93 #endif
3467 root 1.1
3468 root 1.164 #if EV_IDLE_ENABLE
3469 root 1.137 /* queue idle watchers unless other events are pending */
3470 root 1.164 idle_reify (EV_A);
3471     #endif
3472 root 1.9
3473 root 1.337 #if EV_CHECK_ENABLE
3474 root 1.20 /* queue check watchers, to be executed first */
3475 root 1.123 if (expect_false (checkcnt))
3476 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3477 root 1.337 #endif
3478 root 1.9
3479 root 1.297 EV_INVOKE_PENDING;
3480 root 1.1 }
3481 root 1.219 while (expect_true (
3482     activecnt
3483     && !loop_done
3484 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3485 root 1.219 ));
3486 root 1.13
3487 root 1.353 if (loop_done == EVBREAK_ONE)
3488     loop_done = EVBREAK_CANCEL;
3489 root 1.294
3490 root 1.338 #if EV_FEATURE_API
3491 root 1.294 --loop_depth;
3492 root 1.297 #endif
3493 root 1.418
3494     return activecnt;
3495 root 1.51 }
3496    
3497     void
3498 root 1.420 ev_break (EV_P_ int how) EV_THROW
3499 root 1.51 {
3500     loop_done = how;
3501 root 1.1 }
3502    
3503 root 1.285 void
3504 root 1.420 ev_ref (EV_P) EV_THROW
3505 root 1.285 {
3506     ++activecnt;
3507     }
3508    
3509     void
3510 root 1.420 ev_unref (EV_P) EV_THROW
3511 root 1.285 {
3512     --activecnt;
3513     }
3514    
3515     void
3516 root 1.420 ev_now_update (EV_P) EV_THROW
3517 root 1.285 {
3518     time_update (EV_A_ 1e100);
3519     }
3520    
3521     void
3522 root 1.420 ev_suspend (EV_P) EV_THROW
3523 root 1.285 {
3524     ev_now_update (EV_A);
3525     }
3526    
3527     void
3528 root 1.420 ev_resume (EV_P) EV_THROW
3529 root 1.285 {
3530     ev_tstamp mn_prev = mn_now;
3531    
3532     ev_now_update (EV_A);
3533     timers_reschedule (EV_A_ mn_now - mn_prev);
3534 root 1.286 #if EV_PERIODIC_ENABLE
3535 root 1.288 /* TODO: really do this? */
3536 root 1.285 periodics_reschedule (EV_A);
3537 root 1.286 #endif
3538 root 1.285 }
3539    
3540 root 1.8 /*****************************************************************************/
3541 root 1.288 /* singly-linked list management, used when the expected list length is short */
3542 root 1.8
3543 root 1.284 inline_size void
3544 root 1.10 wlist_add (WL *head, WL elem)
3545 root 1.1 {
3546     elem->next = *head;
3547     *head = elem;
3548     }
3549    
3550 root 1.284 inline_size void
3551 root 1.10 wlist_del (WL *head, WL elem)
3552 root 1.1 {
3553     while (*head)
3554     {
3555 root 1.307 if (expect_true (*head == elem))
3556 root 1.1 {
3557     *head = elem->next;
3558 root 1.307 break;
3559 root 1.1 }
3560    
3561     head = &(*head)->next;
3562     }
3563     }
3564    
3565 root 1.288 /* internal, faster, version of ev_clear_pending */
3566 root 1.284 inline_speed void
3567 root 1.166 clear_pending (EV_P_ W w)
3568 root 1.16 {
3569     if (w->pending)
3570     {
3571 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3572 root 1.16 w->pending = 0;
3573     }
3574     }
3575    
3576 root 1.167 int
3577 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3578 root 1.166 {
3579     W w_ = (W)w;
3580     int pending = w_->pending;
3581    
3582 root 1.172 if (expect_true (pending))
3583     {
3584     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3585 root 1.288 p->w = (W)&pending_w;
3586 root 1.172 w_->pending = 0;
3587     return p->events;
3588     }
3589     else
3590 root 1.167 return 0;
3591 root 1.166 }
3592    
3593 root 1.284 inline_size void
3594 root 1.164 pri_adjust (EV_P_ W w)
3595     {
3596 root 1.295 int pri = ev_priority (w);
3597 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3598     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3599 root 1.295 ev_set_priority (w, pri);
3600 root 1.164 }
3601    
3602 root 1.284 inline_speed void
3603 root 1.51 ev_start (EV_P_ W w, int active)
3604 root 1.1 {
3605 root 1.164 pri_adjust (EV_A_ w);
3606 root 1.1 w->active = active;
3607 root 1.51 ev_ref (EV_A);
3608 root 1.1 }
3609    
3610 root 1.284 inline_size void
3611 root 1.51 ev_stop (EV_P_ W w)
3612 root 1.1 {
3613 root 1.51 ev_unref (EV_A);
3614 root 1.1 w->active = 0;
3615     }
3616    
3617 root 1.8 /*****************************************************************************/
3618    
3619 root 1.171 void noinline
3620 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3621 root 1.1 {
3622 root 1.37 int fd = w->fd;
3623    
3624 root 1.123 if (expect_false (ev_is_active (w)))
3625 root 1.1 return;
3626    
3627 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3628 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3629 root 1.33
3630 root 1.248 EV_FREQUENT_CHECK;
3631    
3632 root 1.51 ev_start (EV_A_ (W)w, 1);
3633 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3634 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3635 root 1.1
3636 root 1.426 /* common bug, apparently */
3637     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3638    
3639 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3640 root 1.281 w->events &= ~EV__IOFDSET;
3641 root 1.248
3642     EV_FREQUENT_CHECK;
3643 root 1.1 }
3644    
3645 root 1.171 void noinline
3646 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3647 root 1.1 {
3648 root 1.166 clear_pending (EV_A_ (W)w);
3649 root 1.123 if (expect_false (!ev_is_active (w)))
3650 root 1.1 return;
3651    
3652 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3653 root 1.89
3654 root 1.248 EV_FREQUENT_CHECK;
3655    
3656 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3657 root 1.51 ev_stop (EV_A_ (W)w);
3658 root 1.1
3659 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3660 root 1.248
3661     EV_FREQUENT_CHECK;
3662 root 1.1 }
3663    
3664 root 1.171 void noinline
3665 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3666 root 1.1 {
3667 root 1.123 if (expect_false (ev_is_active (w)))
3668 root 1.1 return;
3669    
3670 root 1.228 ev_at (w) += mn_now;
3671 root 1.12
3672 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3673 root 1.13
3674 root 1.248 EV_FREQUENT_CHECK;
3675    
3676     ++timercnt;
3677     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3678 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3679     ANHE_w (timers [ev_active (w)]) = (WT)w;
3680 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3681 root 1.235 upheap (timers, ev_active (w));
3682 root 1.62
3683 root 1.248 EV_FREQUENT_CHECK;
3684    
3685 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3686 root 1.12 }
3687    
3688 root 1.171 void noinline
3689 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3690 root 1.12 {
3691 root 1.166 clear_pending (EV_A_ (W)w);
3692 root 1.123 if (expect_false (!ev_is_active (w)))
3693 root 1.12 return;
3694    
3695 root 1.248 EV_FREQUENT_CHECK;
3696    
3697 root 1.230 {
3698     int active = ev_active (w);
3699 root 1.62
3700 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3701 root 1.151
3702 root 1.248 --timercnt;
3703    
3704     if (expect_true (active < timercnt + HEAP0))
3705 root 1.151 {
3706 root 1.248 timers [active] = timers [timercnt + HEAP0];
3707 root 1.181 adjustheap (timers, timercnt, active);
3708 root 1.151 }
3709 root 1.248 }
3710 root 1.228
3711     ev_at (w) -= mn_now;
3712 root 1.14
3713 root 1.51 ev_stop (EV_A_ (W)w);
3714 root 1.328
3715     EV_FREQUENT_CHECK;
3716 root 1.12 }
3717 root 1.4
3718 root 1.171 void noinline
3719 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3720 root 1.14 {
3721 root 1.248 EV_FREQUENT_CHECK;
3722    
3723 root 1.407 clear_pending (EV_A_ (W)w);
3724 root 1.406
3725 root 1.14 if (ev_is_active (w))
3726     {
3727     if (w->repeat)
3728 root 1.99 {
3729 root 1.228 ev_at (w) = mn_now + w->repeat;
3730 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3731 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3732 root 1.99 }
3733 root 1.14 else
3734 root 1.51 ev_timer_stop (EV_A_ w);
3735 root 1.14 }
3736     else if (w->repeat)
3737 root 1.112 {
3738 root 1.229 ev_at (w) = w->repeat;
3739 root 1.112 ev_timer_start (EV_A_ w);
3740     }
3741 root 1.248
3742     EV_FREQUENT_CHECK;
3743 root 1.14 }
3744    
3745 root 1.301 ev_tstamp
3746 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3747 root 1.301 {
3748     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3749     }
3750    
3751 root 1.140 #if EV_PERIODIC_ENABLE
3752 root 1.171 void noinline
3753 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3754 root 1.12 {
3755 root 1.123 if (expect_false (ev_is_active (w)))
3756 root 1.12 return;
3757 root 1.1
3758 root 1.77 if (w->reschedule_cb)
3759 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3760 root 1.77 else if (w->interval)
3761     {
3762 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3763 root 1.370 periodic_recalc (EV_A_ w);
3764 root 1.77 }
3765 root 1.173 else
3766 root 1.228 ev_at (w) = w->offset;
3767 root 1.12
3768 root 1.248 EV_FREQUENT_CHECK;
3769    
3770     ++periodiccnt;
3771     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3772 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3773     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3774 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3775 root 1.235 upheap (periodics, ev_active (w));
3776 root 1.62
3777 root 1.248 EV_FREQUENT_CHECK;
3778    
3779 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3780 root 1.1 }
3781    
3782 root 1.171 void noinline
3783 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3784 root 1.1 {
3785 root 1.166 clear_pending (EV_A_ (W)w);
3786 root 1.123 if (expect_false (!ev_is_active (w)))
3787 root 1.1 return;
3788    
3789 root 1.248 EV_FREQUENT_CHECK;
3790    
3791 root 1.230 {
3792     int active = ev_active (w);
3793 root 1.62
3794 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3795 root 1.151
3796 root 1.248 --periodiccnt;
3797    
3798     if (expect_true (active < periodiccnt + HEAP0))
3799 root 1.151 {
3800 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3801 root 1.181 adjustheap (periodics, periodiccnt, active);
3802 root 1.151 }
3803 root 1.248 }
3804 root 1.228
3805 root 1.328 ev_stop (EV_A_ (W)w);
3806    
3807 root 1.248 EV_FREQUENT_CHECK;
3808 root 1.1 }
3809    
3810 root 1.171 void noinline
3811 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3812 root 1.77 {
3813 root 1.84 /* TODO: use adjustheap and recalculation */
3814 root 1.77 ev_periodic_stop (EV_A_ w);
3815     ev_periodic_start (EV_A_ w);
3816     }
3817 root 1.93 #endif
3818 root 1.77
3819 root 1.56 #ifndef SA_RESTART
3820     # define SA_RESTART 0
3821     #endif
3822    
3823 root 1.336 #if EV_SIGNAL_ENABLE
3824    
3825 root 1.171 void noinline
3826 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3827 root 1.56 {
3828 root 1.123 if (expect_false (ev_is_active (w)))
3829 root 1.56 return;
3830    
3831 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3832    
3833     #if EV_MULTIPLICITY
3834 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3835 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3836    
3837     signals [w->signum - 1].loop = EV_A;
3838 root 1.449 ECB_MEMORY_FENCE_RELEASE;
3839 root 1.306 #endif
3840 root 1.56
3841 root 1.303 EV_FREQUENT_CHECK;
3842    
3843     #if EV_USE_SIGNALFD
3844     if (sigfd == -2)
3845     {
3846     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3847     if (sigfd < 0 && errno == EINVAL)
3848     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3849    
3850     if (sigfd >= 0)
3851     {
3852     fd_intern (sigfd); /* doing it twice will not hurt */
3853    
3854     sigemptyset (&sigfd_set);
3855    
3856     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3857     ev_set_priority (&sigfd_w, EV_MAXPRI);
3858     ev_io_start (EV_A_ &sigfd_w);
3859     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3860     }
3861     }
3862    
3863     if (sigfd >= 0)
3864     {
3865     /* TODO: check .head */
3866     sigaddset (&sigfd_set, w->signum);
3867     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3868 root 1.207
3869 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3870     }
3871 root 1.180 #endif
3872    
3873 root 1.56 ev_start (EV_A_ (W)w, 1);
3874 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3875 root 1.56
3876 root 1.63 if (!((WL)w)->next)
3877 root 1.304 # if EV_USE_SIGNALFD
3878 root 1.306 if (sigfd < 0) /*TODO*/
3879 root 1.304 # endif
3880 root 1.306 {
3881 root 1.322 # ifdef _WIN32
3882 root 1.317 evpipe_init (EV_A);
3883    
3884 root 1.306 signal (w->signum, ev_sighandler);
3885     # else
3886     struct sigaction sa;
3887    
3888     evpipe_init (EV_A);
3889    
3890     sa.sa_handler = ev_sighandler;
3891     sigfillset (&sa.sa_mask);
3892     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3893     sigaction (w->signum, &sa, 0);
3894    
3895 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3896     {
3897     sigemptyset (&sa.sa_mask);
3898     sigaddset (&sa.sa_mask, w->signum);
3899     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3900     }
3901 root 1.67 #endif
3902 root 1.306 }
3903 root 1.248
3904     EV_FREQUENT_CHECK;
3905 root 1.56 }
3906    
3907 root 1.171 void noinline
3908 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3909 root 1.56 {
3910 root 1.166 clear_pending (EV_A_ (W)w);
3911 root 1.123 if (expect_false (!ev_is_active (w)))
3912 root 1.56 return;
3913    
3914 root 1.248 EV_FREQUENT_CHECK;
3915    
3916 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3917 root 1.56 ev_stop (EV_A_ (W)w);
3918    
3919     if (!signals [w->signum - 1].head)
3920 root 1.306 {
3921 root 1.307 #if EV_MULTIPLICITY
3922 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3923 root 1.307 #endif
3924     #if EV_USE_SIGNALFD
3925 root 1.306 if (sigfd >= 0)
3926     {
3927 root 1.321 sigset_t ss;
3928    
3929     sigemptyset (&ss);
3930     sigaddset (&ss, w->signum);
3931 root 1.306 sigdelset (&sigfd_set, w->signum);
3932 root 1.321
3933 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3934 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3935 root 1.306 }
3936     else
3937 root 1.307 #endif
3938 root 1.306 signal (w->signum, SIG_DFL);
3939     }
3940 root 1.248
3941     EV_FREQUENT_CHECK;
3942 root 1.56 }
3943    
3944 root 1.336 #endif
3945    
3946     #if EV_CHILD_ENABLE
3947    
3948 root 1.28 void
3949 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3950 root 1.22 {
3951 root 1.56 #if EV_MULTIPLICITY
3952 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3953 root 1.56 #endif
3954 root 1.123 if (expect_false (ev_is_active (w)))
3955 root 1.22 return;
3956    
3957 root 1.248 EV_FREQUENT_CHECK;
3958    
3959 root 1.51 ev_start (EV_A_ (W)w, 1);
3960 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3961 root 1.248
3962     EV_FREQUENT_CHECK;
3963 root 1.22 }
3964    
3965 root 1.28 void
3966 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3967 root 1.22 {
3968 root 1.166 clear_pending (EV_A_ (W)w);
3969 root 1.123 if (expect_false (!ev_is_active (w)))
3970 root 1.22 return;
3971    
3972 root 1.248 EV_FREQUENT_CHECK;
3973    
3974 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3975 root 1.51 ev_stop (EV_A_ (W)w);
3976 root 1.248
3977     EV_FREQUENT_CHECK;
3978 root 1.22 }
3979    
3980 root 1.336 #endif
3981    
3982 root 1.140 #if EV_STAT_ENABLE
3983    
3984     # ifdef _WIN32
3985 root 1.146 # undef lstat
3986     # define lstat(a,b) _stati64 (a,b)
3987 root 1.140 # endif
3988    
3989 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3990     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3991     #define MIN_STAT_INTERVAL 0.1074891
3992 root 1.143
3993 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3994 root 1.152
3995     #if EV_USE_INOTIFY
3996 root 1.326
3997     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3998     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3999 root 1.152
4000     static void noinline
4001     infy_add (EV_P_ ev_stat *w)
4002     {
4003 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4004     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4005     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4006     | IN_DONT_FOLLOW | IN_MASK_ADD);
4007 root 1.152
4008 root 1.318 if (w->wd >= 0)
4009 root 1.152 {
4010 root 1.318 struct statfs sfs;
4011    
4012     /* now local changes will be tracked by inotify, but remote changes won't */
4013     /* unless the filesystem is known to be local, we therefore still poll */
4014     /* also do poll on <2.6.25, but with normal frequency */
4015    
4016     if (!fs_2625)
4017     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4018     else if (!statfs (w->path, &sfs)
4019     && (sfs.f_type == 0x1373 /* devfs */
4020 root 1.451 || sfs.f_type == 0x4006 /* fat */
4021     || sfs.f_type == 0x4d44 /* msdos */
4022 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4023 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4024     || sfs.f_type == 0x858458f6 /* ramfs */
4025     || sfs.f_type == 0x5346544e /* ntfs */
4026 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4027 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4028 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4029 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4030 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4031     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4032     else
4033     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4034     }
4035     else
4036     {
4037     /* can't use inotify, continue to stat */
4038 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4039 root 1.152
4040 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4041 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4042 root 1.233 /* but an efficiency issue only */
4043 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4044 root 1.152 {
4045 root 1.153 char path [4096];
4046 root 1.152 strcpy (path, w->path);
4047    
4048     do
4049     {
4050     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4051     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4052    
4053     char *pend = strrchr (path, '/');
4054    
4055 root 1.275 if (!pend || pend == path)
4056     break;
4057 root 1.152
4058     *pend = 0;
4059 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4060 root 1.372 }
4061 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4062     }
4063     }
4064 root 1.275
4065     if (w->wd >= 0)
4066 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4067 root 1.152
4068 root 1.318 /* now re-arm timer, if required */
4069     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4070     ev_timer_again (EV_A_ &w->timer);
4071     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4072 root 1.152 }
4073    
4074     static void noinline
4075     infy_del (EV_P_ ev_stat *w)
4076     {
4077     int slot;
4078     int wd = w->wd;
4079    
4080     if (wd < 0)
4081     return;
4082    
4083     w->wd = -2;
4084 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4085 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4086    
4087     /* remove this watcher, if others are watching it, they will rearm */
4088     inotify_rm_watch (fs_fd, wd);
4089     }
4090    
4091     static void noinline
4092     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4093     {
4094     if (slot < 0)
4095 root 1.264 /* overflow, need to check for all hash slots */
4096 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4097 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4098     else
4099     {
4100     WL w_;
4101    
4102 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4103 root 1.152 {
4104     ev_stat *w = (ev_stat *)w_;
4105     w_ = w_->next; /* lets us remove this watcher and all before it */
4106    
4107     if (w->wd == wd || wd == -1)
4108     {
4109     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4110     {
4111 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4112 root 1.152 w->wd = -1;
4113     infy_add (EV_A_ w); /* re-add, no matter what */
4114     }
4115    
4116 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4117 root 1.152 }
4118     }
4119     }
4120     }
4121    
4122     static void
4123     infy_cb (EV_P_ ev_io *w, int revents)
4124     {
4125     char buf [EV_INOTIFY_BUFSIZE];
4126     int ofs;
4127     int len = read (fs_fd, buf, sizeof (buf));
4128    
4129 root 1.326 for (ofs = 0; ofs < len; )
4130     {
4131     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4132     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4133     ofs += sizeof (struct inotify_event) + ev->len;
4134     }
4135 root 1.152 }
4136    
4137 root 1.379 inline_size void ecb_cold
4138 root 1.330 ev_check_2625 (EV_P)
4139     {
4140     /* kernels < 2.6.25 are borked
4141     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4142     */
4143     if (ev_linux_version () < 0x020619)
4144 root 1.273 return;
4145 root 1.264
4146 root 1.273 fs_2625 = 1;
4147     }
4148 root 1.264
4149 root 1.315 inline_size int
4150     infy_newfd (void)
4151     {
4152 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4153 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4154     if (fd >= 0)
4155     return fd;
4156     #endif
4157     return inotify_init ();
4158     }
4159    
4160 root 1.284 inline_size void
4161 root 1.273 infy_init (EV_P)
4162     {
4163     if (fs_fd != -2)
4164     return;
4165 root 1.264
4166 root 1.273 fs_fd = -1;
4167 root 1.264
4168 root 1.330 ev_check_2625 (EV_A);
4169 root 1.264
4170 root 1.315 fs_fd = infy_newfd ();
4171 root 1.152
4172     if (fs_fd >= 0)
4173     {
4174 root 1.315 fd_intern (fs_fd);
4175 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4176     ev_set_priority (&fs_w, EV_MAXPRI);
4177     ev_io_start (EV_A_ &fs_w);
4178 root 1.317 ev_unref (EV_A);
4179 root 1.152 }
4180     }
4181    
4182 root 1.284 inline_size void
4183 root 1.154 infy_fork (EV_P)
4184     {
4185     int slot;
4186    
4187     if (fs_fd < 0)
4188     return;
4189    
4190 root 1.317 ev_ref (EV_A);
4191 root 1.315 ev_io_stop (EV_A_ &fs_w);
4192 root 1.154 close (fs_fd);
4193 root 1.315 fs_fd = infy_newfd ();
4194    
4195     if (fs_fd >= 0)
4196     {
4197     fd_intern (fs_fd);
4198     ev_io_set (&fs_w, fs_fd, EV_READ);
4199     ev_io_start (EV_A_ &fs_w);
4200 root 1.317 ev_unref (EV_A);
4201 root 1.315 }
4202 root 1.154
4203 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4204 root 1.154 {
4205     WL w_ = fs_hash [slot].head;
4206     fs_hash [slot].head = 0;
4207    
4208     while (w_)
4209     {
4210     ev_stat *w = (ev_stat *)w_;
4211     w_ = w_->next; /* lets us add this watcher */
4212    
4213     w->wd = -1;
4214    
4215     if (fs_fd >= 0)
4216     infy_add (EV_A_ w); /* re-add, no matter what */
4217     else
4218 root 1.318 {
4219     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4220     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4221     ev_timer_again (EV_A_ &w->timer);
4222     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4223     }
4224 root 1.154 }
4225     }
4226     }
4227    
4228 root 1.152 #endif
4229    
4230 root 1.255 #ifdef _WIN32
4231     # define EV_LSTAT(p,b) _stati64 (p, b)
4232     #else
4233     # define EV_LSTAT(p,b) lstat (p, b)
4234     #endif
4235    
4236 root 1.140 void
4237 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4238 root 1.140 {
4239     if (lstat (w->path, &w->attr) < 0)
4240     w->attr.st_nlink = 0;
4241     else if (!w->attr.st_nlink)
4242     w->attr.st_nlink = 1;
4243     }
4244    
4245 root 1.157 static void noinline
4246 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4247     {
4248     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4249    
4250 root 1.320 ev_statdata prev = w->attr;
4251 root 1.140 ev_stat_stat (EV_A_ w);
4252    
4253 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4254     if (
4255 root 1.320 prev.st_dev != w->attr.st_dev
4256     || prev.st_ino != w->attr.st_ino
4257     || prev.st_mode != w->attr.st_mode
4258     || prev.st_nlink != w->attr.st_nlink
4259     || prev.st_uid != w->attr.st_uid
4260     || prev.st_gid != w->attr.st_gid
4261     || prev.st_rdev != w->attr.st_rdev
4262     || prev.st_size != w->attr.st_size
4263     || prev.st_atime != w->attr.st_atime
4264     || prev.st_mtime != w->attr.st_mtime
4265     || prev.st_ctime != w->attr.st_ctime
4266 root 1.156 ) {
4267 root 1.320 /* we only update w->prev on actual differences */
4268     /* in case we test more often than invoke the callback, */
4269     /* to ensure that prev is always different to attr */
4270     w->prev = prev;
4271    
4272 root 1.152 #if EV_USE_INOTIFY
4273 root 1.264 if (fs_fd >= 0)
4274     {
4275     infy_del (EV_A_ w);
4276     infy_add (EV_A_ w);
4277     ev_stat_stat (EV_A_ w); /* avoid race... */
4278     }
4279 root 1.152 #endif
4280    
4281     ev_feed_event (EV_A_ w, EV_STAT);
4282     }
4283 root 1.140 }
4284    
4285     void
4286 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4287 root 1.140 {
4288     if (expect_false (ev_is_active (w)))
4289     return;
4290    
4291     ev_stat_stat (EV_A_ w);
4292    
4293 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4294     w->interval = MIN_STAT_INTERVAL;
4295 root 1.143
4296 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4297 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4298 root 1.152
4299     #if EV_USE_INOTIFY
4300     infy_init (EV_A);
4301    
4302     if (fs_fd >= 0)
4303     infy_add (EV_A_ w);
4304     else
4305     #endif
4306 root 1.318 {
4307     ev_timer_again (EV_A_ &w->timer);
4308     ev_unref (EV_A);
4309     }
4310 root 1.140
4311     ev_start (EV_A_ (W)w, 1);
4312 root 1.248
4313     EV_FREQUENT_CHECK;
4314 root 1.140 }
4315    
4316     void
4317 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4318 root 1.140 {
4319 root 1.166 clear_pending (EV_A_ (W)w);
4320 root 1.140 if (expect_false (!ev_is_active (w)))
4321     return;
4322    
4323 root 1.248 EV_FREQUENT_CHECK;
4324    
4325 root 1.152 #if EV_USE_INOTIFY
4326     infy_del (EV_A_ w);
4327     #endif
4328 root 1.318
4329     if (ev_is_active (&w->timer))
4330     {
4331     ev_ref (EV_A);
4332     ev_timer_stop (EV_A_ &w->timer);
4333     }
4334 root 1.140
4335 root 1.134 ev_stop (EV_A_ (W)w);
4336 root 1.248
4337     EV_FREQUENT_CHECK;
4338 root 1.134 }
4339     #endif
4340    
4341 root 1.164 #if EV_IDLE_ENABLE
4342 root 1.144 void
4343 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4344 root 1.144 {
4345     if (expect_false (ev_is_active (w)))
4346     return;
4347    
4348 root 1.164 pri_adjust (EV_A_ (W)w);
4349    
4350 root 1.248 EV_FREQUENT_CHECK;
4351    
4352 root 1.164 {
4353     int active = ++idlecnt [ABSPRI (w)];
4354    
4355     ++idleall;
4356     ev_start (EV_A_ (W)w, active);
4357    
4358     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4359     idles [ABSPRI (w)][active - 1] = w;
4360     }
4361 root 1.248
4362     EV_FREQUENT_CHECK;
4363 root 1.144 }
4364    
4365     void
4366 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4367 root 1.144 {
4368 root 1.166 clear_pending (EV_A_ (W)w);
4369 root 1.144 if (expect_false (!ev_is_active (w)))
4370     return;
4371    
4372 root 1.248 EV_FREQUENT_CHECK;
4373    
4374 root 1.144 {
4375 root 1.230 int active = ev_active (w);
4376 root 1.164
4377     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4378 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4379 root 1.164
4380     ev_stop (EV_A_ (W)w);
4381     --idleall;
4382 root 1.144 }
4383 root 1.248
4384     EV_FREQUENT_CHECK;
4385 root 1.144 }
4386 root 1.164 #endif
4387 root 1.144
4388 root 1.337 #if EV_PREPARE_ENABLE
4389 root 1.144 void
4390 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4391 root 1.144 {
4392     if (expect_false (ev_is_active (w)))
4393     return;
4394    
4395 root 1.248 EV_FREQUENT_CHECK;
4396    
4397 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4398     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4399     prepares [preparecnt - 1] = w;
4400 root 1.248
4401     EV_FREQUENT_CHECK;
4402 root 1.144 }
4403    
4404     void
4405 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4406 root 1.144 {
4407 root 1.166 clear_pending (EV_A_ (W)w);
4408 root 1.144 if (expect_false (!ev_is_active (w)))
4409     return;
4410    
4411 root 1.248 EV_FREQUENT_CHECK;
4412    
4413 root 1.144 {
4414 root 1.230 int active = ev_active (w);
4415    
4416 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4417 root 1.230 ev_active (prepares [active - 1]) = active;
4418 root 1.144 }
4419    
4420     ev_stop (EV_A_ (W)w);
4421 root 1.248
4422     EV_FREQUENT_CHECK;
4423 root 1.144 }
4424 root 1.337 #endif
4425 root 1.144
4426 root 1.337 #if EV_CHECK_ENABLE
4427 root 1.144 void
4428 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4429 root 1.144 {
4430     if (expect_false (ev_is_active (w)))
4431     return;
4432    
4433 root 1.248 EV_FREQUENT_CHECK;
4434    
4435 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4436     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4437     checks [checkcnt - 1] = w;
4438 root 1.248
4439     EV_FREQUENT_CHECK;
4440 root 1.144 }
4441    
4442     void
4443 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4444 root 1.144 {
4445 root 1.166 clear_pending (EV_A_ (W)w);
4446 root 1.144 if (expect_false (!ev_is_active (w)))
4447     return;
4448    
4449 root 1.248 EV_FREQUENT_CHECK;
4450    
4451 root 1.144 {
4452 root 1.230 int active = ev_active (w);
4453    
4454 root 1.144 checks [active - 1] = checks [--checkcnt];
4455 root 1.230 ev_active (checks [active - 1]) = active;
4456 root 1.144 }
4457    
4458     ev_stop (EV_A_ (W)w);
4459 root 1.248
4460     EV_FREQUENT_CHECK;
4461 root 1.144 }
4462 root 1.337 #endif
4463 root 1.144
4464     #if EV_EMBED_ENABLE
4465     void noinline
4466 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4467 root 1.144 {
4468 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4469 root 1.144 }
4470    
4471     static void
4472 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4473 root 1.144 {
4474     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4475    
4476     if (ev_cb (w))
4477     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4478     else
4479 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4480 root 1.144 }
4481    
4482 root 1.189 static void
4483     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4484     {
4485     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4486    
4487 root 1.195 {
4488 root 1.306 EV_P = w->other;
4489 root 1.195
4490     while (fdchangecnt)
4491     {
4492     fd_reify (EV_A);
4493 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4494 root 1.195 }
4495     }
4496     }
4497    
4498 root 1.261 static void
4499     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4500     {
4501     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4502    
4503 root 1.277 ev_embed_stop (EV_A_ w);
4504    
4505 root 1.261 {
4506 root 1.306 EV_P = w->other;
4507 root 1.261
4508     ev_loop_fork (EV_A);
4509 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4510 root 1.261 }
4511 root 1.277
4512     ev_embed_start (EV_A_ w);
4513 root 1.261 }
4514    
4515 root 1.195 #if 0
4516     static void
4517     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4518     {
4519     ev_idle_stop (EV_A_ idle);
4520 root 1.189 }
4521 root 1.195 #endif
4522 root 1.189
4523 root 1.144 void
4524 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4525 root 1.144 {
4526     if (expect_false (ev_is_active (w)))
4527     return;
4528    
4529     {
4530 root 1.306 EV_P = w->other;
4531 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4532 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4533 root 1.144 }
4534    
4535 root 1.248 EV_FREQUENT_CHECK;
4536    
4537 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4538     ev_io_start (EV_A_ &w->io);
4539    
4540 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4541     ev_set_priority (&w->prepare, EV_MINPRI);
4542     ev_prepare_start (EV_A_ &w->prepare);
4543    
4544 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4545     ev_fork_start (EV_A_ &w->fork);
4546    
4547 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4548    
4549 root 1.144 ev_start (EV_A_ (W)w, 1);
4550 root 1.248
4551     EV_FREQUENT_CHECK;
4552 root 1.144 }
4553    
4554     void
4555 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4556 root 1.144 {
4557 root 1.166 clear_pending (EV_A_ (W)w);
4558 root 1.144 if (expect_false (!ev_is_active (w)))
4559     return;
4560    
4561 root 1.248 EV_FREQUENT_CHECK;
4562    
4563 root 1.261 ev_io_stop (EV_A_ &w->io);
4564 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4565 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4566 root 1.248
4567 root 1.328 ev_stop (EV_A_ (W)w);
4568    
4569 root 1.248 EV_FREQUENT_CHECK;
4570 root 1.144 }
4571     #endif
4572    
4573 root 1.147 #if EV_FORK_ENABLE
4574     void
4575 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4576 root 1.147 {
4577     if (expect_false (ev_is_active (w)))
4578     return;
4579    
4580 root 1.248 EV_FREQUENT_CHECK;
4581    
4582 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4583     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4584     forks [forkcnt - 1] = w;
4585 root 1.248
4586     EV_FREQUENT_CHECK;
4587 root 1.147 }
4588    
4589     void
4590 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4591 root 1.147 {
4592 root 1.166 clear_pending (EV_A_ (W)w);
4593 root 1.147 if (expect_false (!ev_is_active (w)))
4594     return;
4595    
4596 root 1.248 EV_FREQUENT_CHECK;
4597    
4598 root 1.147 {
4599 root 1.230 int active = ev_active (w);
4600    
4601 root 1.147 forks [active - 1] = forks [--forkcnt];
4602 root 1.230 ev_active (forks [active - 1]) = active;
4603 root 1.147 }
4604    
4605     ev_stop (EV_A_ (W)w);
4606 root 1.248
4607     EV_FREQUENT_CHECK;
4608 root 1.147 }
4609     #endif
4610    
4611 root 1.360 #if EV_CLEANUP_ENABLE
4612     void
4613 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4614 root 1.360 {
4615     if (expect_false (ev_is_active (w)))
4616     return;
4617    
4618     EV_FREQUENT_CHECK;
4619    
4620     ev_start (EV_A_ (W)w, ++cleanupcnt);
4621     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4622     cleanups [cleanupcnt - 1] = w;
4623    
4624 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4625     ev_unref (EV_A);
4626 root 1.360 EV_FREQUENT_CHECK;
4627     }
4628    
4629     void
4630 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4631 root 1.360 {
4632     clear_pending (EV_A_ (W)w);
4633     if (expect_false (!ev_is_active (w)))
4634     return;
4635    
4636     EV_FREQUENT_CHECK;
4637 root 1.362 ev_ref (EV_A);
4638 root 1.360
4639     {
4640     int active = ev_active (w);
4641    
4642     cleanups [active - 1] = cleanups [--cleanupcnt];
4643     ev_active (cleanups [active - 1]) = active;
4644     }
4645    
4646     ev_stop (EV_A_ (W)w);
4647    
4648     EV_FREQUENT_CHECK;
4649     }
4650     #endif
4651    
4652 root 1.207 #if EV_ASYNC_ENABLE
4653     void
4654 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4655 root 1.207 {
4656     if (expect_false (ev_is_active (w)))
4657     return;
4658    
4659 root 1.352 w->sent = 0;
4660    
4661 root 1.207 evpipe_init (EV_A);
4662    
4663 root 1.248 EV_FREQUENT_CHECK;
4664    
4665 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4666     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4667     asyncs [asynccnt - 1] = w;
4668 root 1.248
4669     EV_FREQUENT_CHECK;
4670 root 1.207 }
4671    
4672     void
4673 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4674 root 1.207 {
4675     clear_pending (EV_A_ (W)w);
4676     if (expect_false (!ev_is_active (w)))
4677     return;
4678    
4679 root 1.248 EV_FREQUENT_CHECK;
4680    
4681 root 1.207 {
4682 root 1.230 int active = ev_active (w);
4683    
4684 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4685 root 1.230 ev_active (asyncs [active - 1]) = active;
4686 root 1.207 }
4687    
4688     ev_stop (EV_A_ (W)w);
4689 root 1.248
4690     EV_FREQUENT_CHECK;
4691 root 1.207 }
4692    
4693     void
4694 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4695 root 1.207 {
4696     w->sent = 1;
4697 root 1.307 evpipe_write (EV_A_ &async_pending);
4698 root 1.207 }
4699     #endif
4700    
4701 root 1.1 /*****************************************************************************/
4702 root 1.10
4703 root 1.16 struct ev_once
4704     {
4705 root 1.136 ev_io io;
4706     ev_timer to;
4707 root 1.16 void (*cb)(int revents, void *arg);
4708     void *arg;
4709     };
4710    
4711     static void
4712 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4713 root 1.16 {
4714     void (*cb)(int revents, void *arg) = once->cb;
4715     void *arg = once->arg;
4716    
4717 root 1.259 ev_io_stop (EV_A_ &once->io);
4718 root 1.51 ev_timer_stop (EV_A_ &once->to);
4719 root 1.69 ev_free (once);
4720 root 1.16
4721     cb (revents, arg);
4722     }
4723    
4724     static void
4725 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4726 root 1.16 {
4727 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4728    
4729     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4730 root 1.16 }
4731    
4732     static void
4733 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4734 root 1.16 {
4735 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4736    
4737     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4738 root 1.16 }
4739    
4740     void
4741 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4742 root 1.16 {
4743 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4744 root 1.16
4745 root 1.123 if (expect_false (!once))
4746 root 1.16 {
4747 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4748 root 1.123 return;
4749     }
4750    
4751     once->cb = cb;
4752     once->arg = arg;
4753 root 1.16
4754 root 1.123 ev_init (&once->io, once_cb_io);
4755     if (fd >= 0)
4756     {
4757     ev_io_set (&once->io, fd, events);
4758     ev_io_start (EV_A_ &once->io);
4759     }
4760 root 1.16
4761 root 1.123 ev_init (&once->to, once_cb_to);
4762     if (timeout >= 0.)
4763     {
4764     ev_timer_set (&once->to, timeout, 0.);
4765     ev_timer_start (EV_A_ &once->to);
4766 root 1.16 }
4767     }
4768    
4769 root 1.282 /*****************************************************************************/
4770    
4771 root 1.288 #if EV_WALK_ENABLE
4772 root 1.379 void ecb_cold
4773 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4774 root 1.282 {
4775     int i, j;
4776     ev_watcher_list *wl, *wn;
4777    
4778     if (types & (EV_IO | EV_EMBED))
4779     for (i = 0; i < anfdmax; ++i)
4780     for (wl = anfds [i].head; wl; )
4781     {
4782     wn = wl->next;
4783    
4784     #if EV_EMBED_ENABLE
4785     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4786     {
4787     if (types & EV_EMBED)
4788     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4789     }
4790     else
4791     #endif
4792     #if EV_USE_INOTIFY
4793     if (ev_cb ((ev_io *)wl) == infy_cb)
4794     ;
4795     else
4796     #endif
4797 root 1.288 if ((ev_io *)wl != &pipe_w)
4798 root 1.282 if (types & EV_IO)
4799     cb (EV_A_ EV_IO, wl);
4800    
4801     wl = wn;
4802     }
4803    
4804     if (types & (EV_TIMER | EV_STAT))
4805     for (i = timercnt + HEAP0; i-- > HEAP0; )
4806     #if EV_STAT_ENABLE
4807     /*TODO: timer is not always active*/
4808     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4809     {
4810     if (types & EV_STAT)
4811     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4812     }
4813     else
4814     #endif
4815     if (types & EV_TIMER)
4816     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4817    
4818     #if EV_PERIODIC_ENABLE
4819     if (types & EV_PERIODIC)
4820     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4821     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4822     #endif
4823    
4824     #if EV_IDLE_ENABLE
4825     if (types & EV_IDLE)
4826 root 1.390 for (j = NUMPRI; j--; )
4827 root 1.282 for (i = idlecnt [j]; i--; )
4828     cb (EV_A_ EV_IDLE, idles [j][i]);
4829     #endif
4830    
4831     #if EV_FORK_ENABLE
4832     if (types & EV_FORK)
4833     for (i = forkcnt; i--; )
4834     if (ev_cb (forks [i]) != embed_fork_cb)
4835     cb (EV_A_ EV_FORK, forks [i]);
4836     #endif
4837    
4838     #if EV_ASYNC_ENABLE
4839     if (types & EV_ASYNC)
4840     for (i = asynccnt; i--; )
4841     cb (EV_A_ EV_ASYNC, asyncs [i]);
4842     #endif
4843    
4844 root 1.337 #if EV_PREPARE_ENABLE
4845 root 1.282 if (types & EV_PREPARE)
4846     for (i = preparecnt; i--; )
4847 root 1.337 # if EV_EMBED_ENABLE
4848 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4849 root 1.337 # endif
4850     cb (EV_A_ EV_PREPARE, prepares [i]);
4851 root 1.282 #endif
4852    
4853 root 1.337 #if EV_CHECK_ENABLE
4854 root 1.282 if (types & EV_CHECK)
4855     for (i = checkcnt; i--; )
4856     cb (EV_A_ EV_CHECK, checks [i]);
4857 root 1.337 #endif
4858 root 1.282
4859 root 1.337 #if EV_SIGNAL_ENABLE
4860 root 1.282 if (types & EV_SIGNAL)
4861 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4862 root 1.282 for (wl = signals [i].head; wl; )
4863     {
4864     wn = wl->next;
4865     cb (EV_A_ EV_SIGNAL, wl);
4866     wl = wn;
4867     }
4868 root 1.337 #endif
4869 root 1.282
4870 root 1.337 #if EV_CHILD_ENABLE
4871 root 1.282 if (types & EV_CHILD)
4872 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4873 root 1.282 for (wl = childs [i]; wl; )
4874     {
4875     wn = wl->next;
4876     cb (EV_A_ EV_CHILD, wl);
4877     wl = wn;
4878     }
4879 root 1.337 #endif
4880 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4881     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4882     }
4883     #endif
4884    
4885 root 1.188 #if EV_MULTIPLICITY
4886     #include "ev_wrap.h"
4887     #endif
4888