ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.47
Committed: Sat Nov 3 11:44:44 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.46: +32 -10 lines
Log Message:
rework signal and child handling

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.29 #if EV_USE_CONFIG_H
32     # include "config.h"
33     #endif
34 root 1.17
35 root 1.1 #include <math.h>
36     #include <stdlib.h>
37 root 1.7 #include <unistd.h>
38     #include <fcntl.h>
39     #include <signal.h>
40 root 1.16 #include <stddef.h>
41 root 1.1
42     #include <stdio.h>
43    
44 root 1.4 #include <assert.h>
45 root 1.1 #include <errno.h>
46 root 1.22 #include <sys/types.h>
47 root 1.45 #ifndef WIN32
48     # include <sys/wait.h>
49     #endif
50 root 1.1 #include <sys/time.h>
51     #include <time.h>
52    
53 root 1.40 /**/
54    
55 root 1.29 #ifndef EV_USE_MONOTONIC
56 root 1.37 # define EV_USE_MONOTONIC 1
57     #endif
58    
59 root 1.29 #ifndef EV_USE_SELECT
60     # define EV_USE_SELECT 1
61 root 1.10 #endif
62    
63 root 1.41 #ifndef EV_USE_POLL
64     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65     #endif
66    
67 root 1.29 #ifndef EV_USE_EPOLL
68     # define EV_USE_EPOLL 0
69 root 1.10 #endif
70    
71 root 1.44 #ifndef EV_USE_KQUEUE
72     # define EV_USE_KQUEUE 0
73     #endif
74    
75 root 1.40 #ifndef EV_USE_REALTIME
76     # define EV_USE_REALTIME 1
77     #endif
78    
79     /**/
80    
81     #ifndef CLOCK_MONOTONIC
82     # undef EV_USE_MONOTONIC
83     # define EV_USE_MONOTONIC 0
84     #endif
85    
86 root 1.31 #ifndef CLOCK_REALTIME
87 root 1.40 # undef EV_USE_REALTIME
88 root 1.31 # define EV_USE_REALTIME 0
89     #endif
90 root 1.40
91     /**/
92 root 1.1
93 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 root 1.1
98     #include "ev.h"
99    
100 root 1.40 #if __GNUC__ >= 3
101     # define expect(expr,value) __builtin_expect ((expr),(value))
102     # define inline inline
103     #else
104     # define expect(expr,value) (expr)
105     # define inline static
106     #endif
107    
108     #define expect_false(expr) expect ((expr) != 0, 0)
109     #define expect_true(expr) expect ((expr) != 0, 1)
110    
111 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
113    
114 root 1.10 typedef struct ev_watcher *W;
115     typedef struct ev_watcher_list *WL;
116 root 1.12 typedef struct ev_watcher_time *WT;
117 root 1.10
118 root 1.40 static ev_tstamp now_floor, now, diff; /* monotonic clock */
119 root 1.1 ev_tstamp ev_now;
120     int ev_method;
121    
122     static int have_monotonic; /* runtime */
123    
124     static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125 root 1.5 static void (*method_modify)(int fd, int oev, int nev);
126 root 1.1 static void (*method_poll)(ev_tstamp timeout);
127    
128 root 1.8 /*****************************************************************************/
129    
130 root 1.1 ev_tstamp
131     ev_time (void)
132     {
133 root 1.29 #if EV_USE_REALTIME
134 root 1.1 struct timespec ts;
135     clock_gettime (CLOCK_REALTIME, &ts);
136     return ts.tv_sec + ts.tv_nsec * 1e-9;
137     #else
138     struct timeval tv;
139     gettimeofday (&tv, 0);
140     return tv.tv_sec + tv.tv_usec * 1e-6;
141     #endif
142     }
143    
144     static ev_tstamp
145     get_clock (void)
146     {
147 root 1.29 #if EV_USE_MONOTONIC
148 root 1.40 if (expect_true (have_monotonic))
149 root 1.1 {
150     struct timespec ts;
151     clock_gettime (CLOCK_MONOTONIC, &ts);
152     return ts.tv_sec + ts.tv_nsec * 1e-9;
153     }
154     #endif
155    
156     return ev_time ();
157     }
158    
159 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
160 root 1.29
161 root 1.1 #define array_needsize(base,cur,cnt,init) \
162 root 1.40 if (expect_false ((cnt) > cur)) \
163 root 1.1 { \
164 root 1.23 int newcnt = cur; \
165     do \
166     { \
167 root 1.30 newcnt = array_roundsize (base, newcnt << 1); \
168 root 1.23 } \
169     while ((cnt) > newcnt); \
170     \
171 root 1.1 base = realloc (base, sizeof (*base) * (newcnt)); \
172     init (base + cur, newcnt - cur); \
173     cur = newcnt; \
174     }
175    
176 root 1.8 /*****************************************************************************/
177    
178 root 1.1 typedef struct
179     {
180     struct ev_io *head;
181 root 1.33 unsigned char events;
182     unsigned char reify;
183 root 1.1 } ANFD;
184    
185     static ANFD *anfds;
186     static int anfdmax;
187    
188     static void
189     anfds_init (ANFD *base, int count)
190     {
191     while (count--)
192     {
193 root 1.27 base->head = 0;
194     base->events = EV_NONE;
195 root 1.33 base->reify = 0;
196    
197 root 1.1 ++base;
198     }
199     }
200    
201     typedef struct
202     {
203 root 1.10 W w;
204 root 1.1 int events;
205     } ANPENDING;
206    
207 root 1.42 static ANPENDING *pendings [NUMPRI];
208     static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209 root 1.1
210     static void
211 root 1.10 event (W w, int events)
212 root 1.1 {
213 root 1.32 if (w->pending)
214     {
215 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 root 1.32 return;
217     }
218    
219 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
220     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
221     pendings [ABSPRI (w)][w->pending - 1].w = w;
222     pendings [ABSPRI (w)][w->pending - 1].events = events;
223 root 1.1 }
224    
225     static void
226 root 1.27 queue_events (W *events, int eventcnt, int type)
227     {
228     int i;
229    
230     for (i = 0; i < eventcnt; ++i)
231     event (events [i], type);
232     }
233    
234     static void
235 root 1.1 fd_event (int fd, int events)
236     {
237     ANFD *anfd = anfds + fd;
238     struct ev_io *w;
239    
240     for (w = anfd->head; w; w = w->next)
241     {
242     int ev = w->events & events;
243    
244     if (ev)
245 root 1.10 event ((W)w, ev);
246 root 1.1 }
247     }
248    
249 root 1.27 /*****************************************************************************/
250    
251     static int *fdchanges;
252     static int fdchangemax, fdchangecnt;
253    
254 root 1.9 static void
255 root 1.27 fd_reify (void)
256 root 1.9 {
257     int i;
258    
259 root 1.27 for (i = 0; i < fdchangecnt; ++i)
260     {
261     int fd = fdchanges [i];
262     ANFD *anfd = anfds + fd;
263     struct ev_io *w;
264    
265     int events = 0;
266    
267     for (w = anfd->head; w; w = w->next)
268     events |= w->events;
269    
270 root 1.33 anfd->reify = 0;
271 root 1.27
272     if (anfd->events != events)
273     {
274     method_modify (fd, anfd->events, events);
275     anfd->events = events;
276     }
277     }
278    
279     fdchangecnt = 0;
280     }
281    
282     static void
283     fd_change (int fd)
284     {
285 root 1.33 if (anfds [fd].reify || fdchangecnt < 0)
286 root 1.27 return;
287    
288 root 1.33 anfds [fd].reify = 1;
289 root 1.27
290     ++fdchangecnt;
291     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292     fdchanges [fdchangecnt - 1] = fd;
293 root 1.9 }
294    
295 root 1.41 static void
296     fd_kill (int fd)
297     {
298     struct ev_io *w;
299    
300     printf ("killing fd %d\n", fd);//D
301     while ((w = anfds [fd].head))
302     {
303     ev_io_stop (w);
304     event ((W)w, EV_ERROR | EV_READ | EV_WRITE);
305     }
306     }
307    
308 root 1.19 /* called on EBADF to verify fds */
309     static void
310 root 1.41 fd_ebadf (void)
311 root 1.19 {
312     int fd;
313    
314     for (fd = 0; fd < anfdmax; ++fd)
315 root 1.27 if (anfds [fd].events)
316 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 root 1.41 fd_kill (fd);
318     }
319    
320     /* called on ENOMEM in select/poll to kill some fds and retry */
321     static void
322     fd_enomem (void)
323     {
324     int fd = anfdmax;
325    
326     while (fd--)
327     if (anfds [fd].events)
328     {
329     close (fd);
330     fd_kill (fd);
331     return;
332     }
333 root 1.19 }
334    
335 root 1.8 /*****************************************************************************/
336    
337 root 1.12 static struct ev_timer **timers;
338     static int timermax, timercnt;
339 root 1.4
340 root 1.12 static struct ev_periodic **periodics;
341     static int periodicmax, periodiccnt;
342 root 1.1
343     static void
344 root 1.12 upheap (WT *timers, int k)
345 root 1.1 {
346 root 1.12 WT w = timers [k];
347 root 1.1
348     while (k && timers [k >> 1]->at > w->at)
349     {
350     timers [k] = timers [k >> 1];
351     timers [k]->active = k + 1;
352     k >>= 1;
353     }
354    
355     timers [k] = w;
356     timers [k]->active = k + 1;
357    
358     }
359    
360     static void
361 root 1.12 downheap (WT *timers, int N, int k)
362 root 1.1 {
363 root 1.12 WT w = timers [k];
364 root 1.1
365 root 1.4 while (k < (N >> 1))
366 root 1.1 {
367     int j = k << 1;
368    
369 root 1.4 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
370 root 1.1 ++j;
371    
372     if (w->at <= timers [j]->at)
373     break;
374    
375     timers [k] = timers [j];
376 root 1.2 timers [k]->active = k + 1;
377 root 1.1 k = j;
378     }
379    
380     timers [k] = w;
381     timers [k]->active = k + 1;
382     }
383    
384 root 1.8 /*****************************************************************************/
385    
386 root 1.7 typedef struct
387     {
388     struct ev_signal *head;
389 root 1.34 sig_atomic_t volatile gotsig;
390 root 1.7 } ANSIG;
391    
392     static ANSIG *signals;
393 root 1.4 static int signalmax;
394 root 1.1
395 root 1.7 static int sigpipe [2];
396 root 1.34 static sig_atomic_t volatile gotsig;
397 root 1.7 static struct ev_io sigev;
398    
399 root 1.1 static void
400 root 1.7 signals_init (ANSIG *base, int count)
401 root 1.1 {
402     while (count--)
403 root 1.7 {
404     base->head = 0;
405     base->gotsig = 0;
406 root 1.33
407 root 1.7 ++base;
408     }
409     }
410    
411     static void
412     sighandler (int signum)
413     {
414     signals [signum - 1].gotsig = 1;
415    
416     if (!gotsig)
417     {
418     gotsig = 1;
419 root 1.34 write (sigpipe [1], &signum, 1);
420 root 1.7 }
421     }
422    
423     static void
424     sigcb (struct ev_io *iow, int revents)
425     {
426     struct ev_signal *w;
427 root 1.38 int signum;
428 root 1.7
429 root 1.34 read (sigpipe [0], &revents, 1);
430 root 1.7 gotsig = 0;
431    
432 root 1.38 for (signum = signalmax; signum--; )
433     if (signals [signum].gotsig)
434 root 1.7 {
435 root 1.38 signals [signum].gotsig = 0;
436 root 1.7
437 root 1.38 for (w = signals [signum].head; w; w = w->next)
438 root 1.10 event ((W)w, EV_SIGNAL);
439 root 1.7 }
440     }
441    
442     static void
443     siginit (void)
444     {
445 root 1.45 #ifndef WIN32
446 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
447     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
448    
449     /* rather than sort out wether we really need nb, set it */
450     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
451     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
452 root 1.45 #endif
453 root 1.7
454 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
455     ev_io_start (&sigev);
456 root 1.1 }
457    
458 root 1.8 /*****************************************************************************/
459    
460 root 1.9 static struct ev_idle **idles;
461     static int idlemax, idlecnt;
462    
463 root 1.20 static struct ev_prepare **prepares;
464     static int preparemax, preparecnt;
465    
466 root 1.9 static struct ev_check **checks;
467     static int checkmax, checkcnt;
468    
469     /*****************************************************************************/
470    
471 root 1.22 static struct ev_child *childs [PID_HASHSIZE];
472     static struct ev_signal childev;
473    
474 root 1.45 #ifndef WIN32
475    
476 root 1.22 #ifndef WCONTINUED
477     # define WCONTINUED 0
478     #endif
479    
480     static void
481 root 1.47 child_reap (struct ev_signal *sw, int chain, int pid, int status)
482     {
483     struct ev_child *w;
484    
485     for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next)
486     if (w->pid == pid || !w->pid)
487     {
488     w->priority = sw->priority; /* need to do it *now* */
489     w->rpid = pid;
490     w->rstatus = status;
491     printf ("rpid %p %d %d\n", w, pid, w->pid);//D
492     event ((W)w, EV_CHILD);
493     }
494     }
495    
496     static void
497 root 1.22 childcb (struct ev_signal *sw, int revents)
498     {
499     int pid, status;
500    
501 root 1.47 printf ("chld %x\n", revents);//D
502     if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
503     {
504     /* make sure we are called again until all childs have been reaped */
505     event ((W)sw, EV_SIGNAL);
506    
507     child_reap (sw, pid, pid, status);
508     child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
509     }
510 root 1.22 }
511    
512 root 1.45 #endif
513    
514 root 1.22 /*****************************************************************************/
515    
516 root 1.44 #if EV_USE_KQUEUE
517     # include "ev_kqueue.c"
518     #endif
519 root 1.29 #if EV_USE_EPOLL
520 root 1.1 # include "ev_epoll.c"
521     #endif
522 root 1.41 #if EV_USE_POLL
523     # include "ev_poll.c"
524     #endif
525 root 1.29 #if EV_USE_SELECT
526 root 1.1 # include "ev_select.c"
527     #endif
528    
529 root 1.24 int
530     ev_version_major (void)
531     {
532     return EV_VERSION_MAJOR;
533     }
534    
535     int
536     ev_version_minor (void)
537     {
538     return EV_VERSION_MINOR;
539     }
540    
541 root 1.41 /* return true if we are running with elevated privileges and ignore env variables */
542     static int
543     enable_secure ()
544     {
545     return getuid () != geteuid ()
546     || getgid () != getegid ();
547     }
548    
549     int ev_init (int methods)
550 root 1.1 {
551 root 1.23 if (!ev_method)
552     {
553 root 1.29 #if EV_USE_MONOTONIC
554 root 1.23 {
555     struct timespec ts;
556     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
557     have_monotonic = 1;
558     }
559 root 1.1 #endif
560    
561 root 1.40 ev_now = ev_time ();
562     now = get_clock ();
563     now_floor = now;
564     diff = ev_now - now;
565 root 1.1
566 root 1.23 if (pipe (sigpipe))
567     return 0;
568 root 1.7
569 root 1.41 if (methods == EVMETHOD_AUTO)
570     if (!enable_secure () && getenv ("LIBEV_METHODS"))
571     methods = atoi (getenv ("LIBEV_METHODS"));
572     else
573     methods = EVMETHOD_ANY;
574    
575     ev_method = 0;
576 root 1.44 #if EV_USE_KQUEUE
577     if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods);
578     #endif
579 root 1.29 #if EV_USE_EPOLL
580 root 1.41 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods);
581     #endif
582     #if EV_USE_POLL
583     if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods);
584 root 1.1 #endif
585 root 1.29 #if EV_USE_SELECT
586 root 1.41 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods);
587 root 1.1 #endif
588    
589 root 1.23 if (ev_method)
590     {
591 root 1.28 ev_watcher_init (&sigev, sigcb);
592 root 1.47 ev_set_priority (&sigev, EV_MAXPRI);
593 root 1.23 siginit ();
594 root 1.22
595 root 1.45 #ifndef WIN32
596 root 1.28 ev_signal_init (&childev, childcb, SIGCHLD);
597 root 1.47 ev_set_priority (&childev, EV_MAXPRI);
598 root 1.28 ev_signal_start (&childev);
599 root 1.45 #endif
600 root 1.23 }
601 root 1.7 }
602    
603 root 1.1 return ev_method;
604     }
605    
606 root 1.8 /*****************************************************************************/
607    
608 root 1.24 void
609 root 1.35 ev_fork_prepare (void)
610 root 1.1 {
611 root 1.11 /* nop */
612 root 1.1 }
613    
614 root 1.24 void
615 root 1.35 ev_fork_parent (void)
616 root 1.1 {
617 root 1.11 /* nop */
618 root 1.1 }
619    
620 root 1.24 void
621 root 1.35 ev_fork_child (void)
622 root 1.1 {
623 root 1.29 #if EV_USE_EPOLL
624 root 1.5 if (ev_method == EVMETHOD_EPOLL)
625     epoll_postfork_child ();
626 root 1.1 #endif
627 root 1.7
628 root 1.28 ev_io_stop (&sigev);
629 root 1.7 close (sigpipe [0]);
630     close (sigpipe [1]);
631     pipe (sigpipe);
632     siginit ();
633 root 1.1 }
634    
635 root 1.8 /*****************************************************************************/
636    
637 root 1.1 static void
638 root 1.24 call_pending (void)
639 root 1.1 {
640 root 1.42 int pri;
641    
642     for (pri = NUMPRI; pri--; )
643     while (pendingcnt [pri])
644     {
645     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
646 root 1.1
647 root 1.42 if (p->w)
648     {
649     p->w->pending = 0;
650     p->w->cb (p->w, p->events);
651     }
652     }
653 root 1.1 }
654    
655     static void
656 root 1.24 timers_reify (void)
657 root 1.1 {
658 root 1.4 while (timercnt && timers [0]->at <= now)
659 root 1.1 {
660     struct ev_timer *w = timers [0];
661    
662 root 1.4 /* first reschedule or stop timer */
663 root 1.1 if (w->repeat)
664     {
665 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
666 root 1.12 w->at = now + w->repeat;
667     downheap ((WT *)timers, timercnt, 0);
668     }
669     else
670 root 1.28 ev_timer_stop (w); /* nonrepeating: stop timer */
671 root 1.30
672     event ((W)w, EV_TIMEOUT);
673 root 1.12 }
674     }
675 root 1.4
676 root 1.12 static void
677 root 1.24 periodics_reify (void)
678 root 1.12 {
679     while (periodiccnt && periodics [0]->at <= ev_now)
680     {
681     struct ev_periodic *w = periodics [0];
682 root 1.1
683 root 1.12 /* first reschedule or stop timer */
684     if (w->interval)
685     {
686     w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval;
687 root 1.33 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now));
688 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
689 root 1.1 }
690     else
691 root 1.28 ev_periodic_stop (w); /* nonrepeating: stop timer */
692 root 1.12
693 root 1.33 event ((W)w, EV_PERIODIC);
694 root 1.12 }
695     }
696    
697     static void
698 root 1.13 periodics_reschedule (ev_tstamp diff)
699 root 1.12 {
700     int i;
701    
702 root 1.13 /* adjust periodics after time jump */
703 root 1.12 for (i = 0; i < periodiccnt; ++i)
704     {
705     struct ev_periodic *w = periodics [i];
706    
707     if (w->interval)
708 root 1.4 {
709 root 1.12 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval;
710    
711     if (fabs (diff) >= 1e-4)
712     {
713 root 1.28 ev_periodic_stop (w);
714     ev_periodic_start (w);
715 root 1.12
716     i = 0; /* restart loop, inefficient, but time jumps should be rare */
717     }
718 root 1.4 }
719 root 1.12 }
720 root 1.1 }
721    
722 root 1.40 static int
723     time_update_monotonic (void)
724     {
725     now = get_clock ();
726    
727     if (expect_true (now - now_floor < MIN_TIMEJUMP * .5))
728     {
729     ev_now = now + diff;
730     return 0;
731     }
732     else
733     {
734     now_floor = now;
735     ev_now = ev_time ();
736     return 1;
737     }
738     }
739    
740 root 1.4 static void
741 root 1.24 time_update (void)
742 root 1.4 {
743     int i;
744 root 1.12
745 root 1.40 #if EV_USE_MONOTONIC
746     if (expect_true (have_monotonic))
747     {
748     if (time_update_monotonic ())
749     {
750     ev_tstamp odiff = diff;
751 root 1.4
752 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
753     {
754     diff = ev_now - now;
755 root 1.4
756 root 1.40 if (fabs (odiff - diff) < MIN_TIMEJUMP)
757     return; /* all is well */
758 root 1.4
759 root 1.40 ev_now = ev_time ();
760     now = get_clock ();
761     now_floor = now;
762     }
763 root 1.4
764 root 1.40 periodics_reschedule (diff - odiff);
765     /* no timer adjustment, as the monotonic clock doesn't jump */
766 root 1.4 }
767     }
768     else
769 root 1.40 #endif
770 root 1.4 {
771 root 1.40 ev_now = ev_time ();
772    
773     if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
774 root 1.13 {
775     periodics_reschedule (ev_now - now);
776    
777     /* adjust timers. this is easy, as the offset is the same for all */
778     for (i = 0; i < timercnt; ++i)
779     timers [i]->at += diff;
780     }
781 root 1.4
782     now = ev_now;
783     }
784     }
785    
786 root 1.1 int ev_loop_done;
787    
788 root 1.4 void ev_loop (int flags)
789 root 1.1 {
790     double block;
791 root 1.26 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
792 root 1.1
793 root 1.20 do
794 root 1.9 {
795 root 1.20 /* queue check watchers (and execute them) */
796 root 1.40 if (expect_false (preparecnt))
797 root 1.20 {
798     queue_events ((W *)prepares, preparecnt, EV_PREPARE);
799     call_pending ();
800     }
801 root 1.9
802 root 1.1 /* update fd-related kernel structures */
803 root 1.5 fd_reify ();
804 root 1.1
805     /* calculate blocking time */
806 root 1.12
807 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
808     always have timers, we just calculate it always */
809 root 1.40 #if EV_USE_MONOTONIC
810     if (expect_true (have_monotonic))
811     time_update_monotonic ();
812     else
813     #endif
814     {
815     ev_now = ev_time ();
816     now = ev_now;
817     }
818 root 1.12
819 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
820 root 1.1 block = 0.;
821     else
822     {
823 root 1.4 block = MAX_BLOCKTIME;
824    
825 root 1.12 if (timercnt)
826 root 1.4 {
827 root 1.40 ev_tstamp to = timers [0]->at - now + method_fudge;
828 root 1.4 if (block > to) block = to;
829     }
830    
831 root 1.12 if (periodiccnt)
832 root 1.4 {
833 root 1.12 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
834 root 1.4 if (block > to) block = to;
835     }
836    
837 root 1.1 if (block < 0.) block = 0.;
838     }
839    
840     method_poll (block);
841    
842 root 1.4 /* update ev_now, do magic */
843     time_update ();
844    
845 root 1.9 /* queue pending timers and reschedule them */
846 root 1.20 timers_reify (); /* relative timers called last */
847     periodics_reify (); /* absolute timers called first */
848 root 1.1
849 root 1.9 /* queue idle watchers unless io or timers are pending */
850     if (!pendingcnt)
851 root 1.10 queue_events ((W *)idles, idlecnt, EV_IDLE);
852 root 1.9
853 root 1.20 /* queue check watchers, to be executed first */
854     if (checkcnt)
855     queue_events ((W *)checks, checkcnt, EV_CHECK);
856 root 1.9
857 root 1.1 call_pending ();
858     }
859     while (!ev_loop_done);
860 root 1.13
861     if (ev_loop_done != 2)
862     ev_loop_done = 0;
863 root 1.1 }
864    
865 root 1.8 /*****************************************************************************/
866    
867 root 1.1 static void
868 root 1.10 wlist_add (WL *head, WL elem)
869 root 1.1 {
870     elem->next = *head;
871     *head = elem;
872     }
873    
874     static void
875 root 1.10 wlist_del (WL *head, WL elem)
876 root 1.1 {
877     while (*head)
878     {
879     if (*head == elem)
880     {
881     *head = elem->next;
882     return;
883     }
884    
885     head = &(*head)->next;
886     }
887     }
888    
889     static void
890 root 1.33 ev_clear_pending (W w)
891 root 1.16 {
892     if (w->pending)
893     {
894 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
895 root 1.16 w->pending = 0;
896     }
897     }
898    
899     static void
900 root 1.10 ev_start (W w, int active)
901 root 1.1 {
902 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
903     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
904    
905 root 1.1 w->active = active;
906     }
907    
908     static void
909 root 1.10 ev_stop (W w)
910 root 1.1 {
911     w->active = 0;
912     }
913    
914 root 1.8 /*****************************************************************************/
915    
916 root 1.1 void
917 root 1.28 ev_io_start (struct ev_io *w)
918 root 1.1 {
919 root 1.37 int fd = w->fd;
920    
921 root 1.1 if (ev_is_active (w))
922     return;
923    
924 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
925    
926 root 1.10 ev_start ((W)w, 1);
927 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
928 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
929 root 1.1
930 root 1.27 fd_change (fd);
931 root 1.1 }
932    
933     void
934 root 1.28 ev_io_stop (struct ev_io *w)
935 root 1.1 {
936 root 1.33 ev_clear_pending ((W)w);
937 root 1.1 if (!ev_is_active (w))
938     return;
939    
940 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
941     ev_stop ((W)w);
942 root 1.1
943 root 1.27 fd_change (w->fd);
944 root 1.1 }
945    
946     void
947 root 1.28 ev_timer_start (struct ev_timer *w)
948 root 1.1 {
949     if (ev_is_active (w))
950     return;
951    
952 root 1.12 w->at += now;
953    
954 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
955 root 1.13
956 root 1.12 ev_start ((W)w, ++timercnt);
957     array_needsize (timers, timermax, timercnt, );
958     timers [timercnt - 1] = w;
959     upheap ((WT *)timers, timercnt - 1);
960     }
961    
962     void
963 root 1.28 ev_timer_stop (struct ev_timer *w)
964 root 1.12 {
965 root 1.33 ev_clear_pending ((W)w);
966 root 1.12 if (!ev_is_active (w))
967     return;
968    
969     if (w->active < timercnt--)
970 root 1.1 {
971 root 1.12 timers [w->active - 1] = timers [timercnt];
972     downheap ((WT *)timers, timercnt, w->active - 1);
973     }
974 root 1.4
975 root 1.14 w->at = w->repeat;
976    
977 root 1.12 ev_stop ((W)w);
978     }
979 root 1.4
980 root 1.12 void
981 root 1.28 ev_timer_again (struct ev_timer *w)
982 root 1.14 {
983     if (ev_is_active (w))
984     {
985     if (w->repeat)
986     {
987     w->at = now + w->repeat;
988     downheap ((WT *)timers, timercnt, w->active - 1);
989     }
990     else
991 root 1.28 ev_timer_stop (w);
992 root 1.14 }
993     else if (w->repeat)
994 root 1.28 ev_timer_start (w);
995 root 1.14 }
996    
997     void
998 root 1.28 ev_periodic_start (struct ev_periodic *w)
999 root 1.12 {
1000     if (ev_is_active (w))
1001     return;
1002 root 1.1
1003 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1004 root 1.13
1005 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1006     if (w->interval)
1007     w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
1008    
1009     ev_start ((W)w, ++periodiccnt);
1010     array_needsize (periodics, periodicmax, periodiccnt, );
1011     periodics [periodiccnt - 1] = w;
1012     upheap ((WT *)periodics, periodiccnt - 1);
1013 root 1.1 }
1014    
1015     void
1016 root 1.28 ev_periodic_stop (struct ev_periodic *w)
1017 root 1.1 {
1018 root 1.33 ev_clear_pending ((W)w);
1019 root 1.1 if (!ev_is_active (w))
1020     return;
1021    
1022 root 1.12 if (w->active < periodiccnt--)
1023 root 1.2 {
1024 root 1.12 periodics [w->active - 1] = periodics [periodiccnt];
1025     downheap ((WT *)periodics, periodiccnt, w->active - 1);
1026 root 1.2 }
1027    
1028 root 1.10 ev_stop ((W)w);
1029 root 1.1 }
1030    
1031 root 1.47 #ifndef SA_RESTART
1032     # define SA_RESTART 0
1033     #endif
1034    
1035 root 1.1 void
1036 root 1.28 ev_signal_start (struct ev_signal *w)
1037 root 1.1 {
1038     if (ev_is_active (w))
1039     return;
1040    
1041 root 1.33 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1042    
1043 root 1.10 ev_start ((W)w, 1);
1044 root 1.1 array_needsize (signals, signalmax, w->signum, signals_init);
1045 root 1.10 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1046 root 1.7
1047     if (!w->next)
1048     {
1049     struct sigaction sa;
1050     sa.sa_handler = sighandler;
1051     sigfillset (&sa.sa_mask);
1052 root 1.47 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1053 root 1.7 sigaction (w->signum, &sa, 0);
1054     }
1055 root 1.1 }
1056    
1057     void
1058 root 1.28 ev_signal_stop (struct ev_signal *w)
1059 root 1.1 {
1060 root 1.33 ev_clear_pending ((W)w);
1061 root 1.1 if (!ev_is_active (w))
1062     return;
1063    
1064 root 1.10 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1065     ev_stop ((W)w);
1066 root 1.7
1067     if (!signals [w->signum - 1].head)
1068     signal (w->signum, SIG_DFL);
1069 root 1.1 }
1070    
1071 root 1.28 void
1072     ev_idle_start (struct ev_idle *w)
1073 root 1.9 {
1074     if (ev_is_active (w))
1075     return;
1076    
1077 root 1.10 ev_start ((W)w, ++idlecnt);
1078 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1079     idles [idlecnt - 1] = w;
1080     }
1081    
1082 root 1.28 void
1083     ev_idle_stop (struct ev_idle *w)
1084 root 1.9 {
1085 root 1.33 ev_clear_pending ((W)w);
1086 root 1.16 if (ev_is_active (w))
1087     return;
1088    
1089 root 1.9 idles [w->active - 1] = idles [--idlecnt];
1090 root 1.10 ev_stop ((W)w);
1091 root 1.9 }
1092    
1093 root 1.28 void
1094     ev_prepare_start (struct ev_prepare *w)
1095 root 1.20 {
1096     if (ev_is_active (w))
1097     return;
1098    
1099     ev_start ((W)w, ++preparecnt);
1100     array_needsize (prepares, preparemax, preparecnt, );
1101     prepares [preparecnt - 1] = w;
1102     }
1103    
1104 root 1.28 void
1105     ev_prepare_stop (struct ev_prepare *w)
1106 root 1.20 {
1107 root 1.33 ev_clear_pending ((W)w);
1108 root 1.20 if (ev_is_active (w))
1109     return;
1110    
1111     prepares [w->active - 1] = prepares [--preparecnt];
1112     ev_stop ((W)w);
1113     }
1114    
1115 root 1.28 void
1116     ev_check_start (struct ev_check *w)
1117 root 1.9 {
1118     if (ev_is_active (w))
1119     return;
1120    
1121 root 1.10 ev_start ((W)w, ++checkcnt);
1122 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1123     checks [checkcnt - 1] = w;
1124     }
1125    
1126 root 1.28 void
1127     ev_check_stop (struct ev_check *w)
1128 root 1.9 {
1129 root 1.33 ev_clear_pending ((W)w);
1130 root 1.16 if (ev_is_active (w))
1131     return;
1132    
1133 root 1.9 checks [w->active - 1] = checks [--checkcnt];
1134 root 1.10 ev_stop ((W)w);
1135 root 1.9 }
1136    
1137 root 1.28 void
1138     ev_child_start (struct ev_child *w)
1139 root 1.22 {
1140     if (ev_is_active (w))
1141     return;
1142    
1143     ev_start ((W)w, 1);
1144     wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1145     }
1146    
1147 root 1.28 void
1148     ev_child_stop (struct ev_child *w)
1149 root 1.22 {
1150 root 1.33 ev_clear_pending ((W)w);
1151 root 1.22 if (ev_is_active (w))
1152     return;
1153    
1154     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1155     ev_stop ((W)w);
1156     }
1157    
1158 root 1.1 /*****************************************************************************/
1159 root 1.10
1160 root 1.16 struct ev_once
1161     {
1162     struct ev_io io;
1163     struct ev_timer to;
1164     void (*cb)(int revents, void *arg);
1165     void *arg;
1166     };
1167    
1168     static void
1169     once_cb (struct ev_once *once, int revents)
1170     {
1171     void (*cb)(int revents, void *arg) = once->cb;
1172     void *arg = once->arg;
1173    
1174 root 1.28 ev_io_stop (&once->io);
1175     ev_timer_stop (&once->to);
1176 root 1.16 free (once);
1177    
1178     cb (revents, arg);
1179     }
1180    
1181     static void
1182     once_cb_io (struct ev_io *w, int revents)
1183     {
1184     once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1185     }
1186    
1187     static void
1188     once_cb_to (struct ev_timer *w, int revents)
1189     {
1190     once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1191     }
1192    
1193     void
1194     ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1195     {
1196     struct ev_once *once = malloc (sizeof (struct ev_once));
1197    
1198     if (!once)
1199 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1200 root 1.16 else
1201     {
1202     once->cb = cb;
1203     once->arg = arg;
1204    
1205 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1206 root 1.16 if (fd >= 0)
1207     {
1208 root 1.28 ev_io_set (&once->io, fd, events);
1209     ev_io_start (&once->io);
1210 root 1.16 }
1211    
1212 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1213 root 1.16 if (timeout >= 0.)
1214     {
1215 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1216     ev_timer_start (&once->to);
1217 root 1.16 }
1218     }
1219     }
1220    
1221     /*****************************************************************************/
1222    
1223 root 1.13 #if 0
1224 root 1.12
1225     struct ev_io wio;
1226 root 1.1
1227     static void
1228     sin_cb (struct ev_io *w, int revents)
1229     {
1230     fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1231     }
1232    
1233     static void
1234     ocb (struct ev_timer *w, int revents)
1235     {
1236 root 1.4 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1237 root 1.28 ev_timer_stop (w);
1238     ev_timer_start (w);
1239 root 1.1 }
1240    
1241 root 1.7 static void
1242     scb (struct ev_signal *w, int revents)
1243     {
1244     fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1245 root 1.28 ev_io_stop (&wio);
1246     ev_io_start (&wio);
1247 root 1.7 }
1248    
1249 root 1.9 static void
1250     gcb (struct ev_signal *w, int revents)
1251     {
1252     fprintf (stderr, "generic %x\n", revents);
1253 root 1.12
1254 root 1.9 }
1255    
1256 root 1.1 int main (void)
1257     {
1258     ev_init (0);
1259    
1260 root 1.28 ev_io_init (&wio, sin_cb, 0, EV_READ);
1261     ev_io_start (&wio);
1262 root 1.1
1263 root 1.4 struct ev_timer t[10000];
1264 root 1.2
1265 root 1.9 #if 0
1266 root 1.2 int i;
1267 root 1.4 for (i = 0; i < 10000; ++i)
1268 root 1.2 {
1269     struct ev_timer *w = t + i;
1270 root 1.28 ev_watcher_init (w, ocb, i);
1271     ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1272     ev_timer_start (w);
1273 root 1.2 if (drand48 () < 0.5)
1274 root 1.28 ev_timer_stop (w);
1275 root 1.2 }
1276 root 1.4 #endif
1277    
1278     struct ev_timer t1;
1279 root 1.28 ev_timer_init (&t1, ocb, 5, 10);
1280     ev_timer_start (&t1);
1281 root 1.1
1282 root 1.7 struct ev_signal sig;
1283 root 1.28 ev_signal_init (&sig, scb, SIGQUIT);
1284     ev_signal_start (&sig);
1285 root 1.7
1286 root 1.9 struct ev_check cw;
1287 root 1.28 ev_check_init (&cw, gcb);
1288     ev_check_start (&cw);
1289 root 1.9
1290     struct ev_idle iw;
1291 root 1.28 ev_idle_init (&iw, gcb);
1292     ev_idle_start (&iw);
1293 root 1.9
1294 root 1.1 ev_loop (0);
1295    
1296     return 0;
1297     }
1298    
1299     #endif
1300    
1301    
1302    
1303