ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.473
Committed: Tue Sep 9 21:51:35 2014 UTC (9 years, 8 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-4_19
Changes since 1.472: +1 -1 lines
Log Message:
c++ should die

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.463 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 root 1.305 #endif
248    
249 root 1.373 #ifndef EV_USE_FLOOR
250     # define EV_USE_FLOOR 0
251     #endif
252    
253 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
254 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 root 1.274 # else
257     # define EV_USE_CLOCK_SYSCALL 0
258     # endif
259     #endif
260    
261 root 1.470 #if !(_POSIX_TIMERS > 0)
262     # ifndef EV_USE_MONOTONIC
263     # define EV_USE_MONOTONIC 0
264     # endif
265     # ifndef EV_USE_REALTIME
266     # define EV_USE_REALTIME 0
267     # endif
268     #endif
269    
270 root 1.29 #ifndef EV_USE_MONOTONIC
271 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
273 root 1.253 # else
274     # define EV_USE_MONOTONIC 0
275     # endif
276 root 1.37 #endif
277    
278 root 1.118 #ifndef EV_USE_REALTIME
279 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280 root 1.118 #endif
281    
282 root 1.193 #ifndef EV_USE_NANOSLEEP
283 root 1.253 # if _POSIX_C_SOURCE >= 199309L
284 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
285 root 1.253 # else
286     # define EV_USE_NANOSLEEP 0
287     # endif
288 root 1.193 #endif
289    
290 root 1.29 #ifndef EV_USE_SELECT
291 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
292 root 1.10 #endif
293    
294 root 1.59 #ifndef EV_USE_POLL
295 root 1.104 # ifdef _WIN32
296     # define EV_USE_POLL 0
297     # else
298 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
299 root 1.104 # endif
300 root 1.41 #endif
301    
302 root 1.29 #ifndef EV_USE_EPOLL
303 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
305 root 1.220 # else
306     # define EV_USE_EPOLL 0
307     # endif
308 root 1.10 #endif
309    
310 root 1.44 #ifndef EV_USE_KQUEUE
311     # define EV_USE_KQUEUE 0
312     #endif
313    
314 root 1.118 #ifndef EV_USE_PORT
315     # define EV_USE_PORT 0
316 root 1.40 #endif
317    
318 root 1.152 #ifndef EV_USE_INOTIFY
319 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
321 root 1.220 # else
322     # define EV_USE_INOTIFY 0
323     # endif
324 root 1.152 #endif
325    
326 root 1.149 #ifndef EV_PID_HASHSIZE
327 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328 root 1.149 #endif
329    
330 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
331 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332 root 1.152 #endif
333    
334 root 1.220 #ifndef EV_USE_EVENTFD
335     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
337 root 1.220 # else
338     # define EV_USE_EVENTFD 0
339     # endif
340     #endif
341    
342 root 1.303 #ifndef EV_USE_SIGNALFD
343 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
345 root 1.303 # else
346     # define EV_USE_SIGNALFD 0
347     # endif
348     #endif
349    
350 root 1.249 #if 0 /* debugging */
351 root 1.250 # define EV_VERIFY 3
352 root 1.249 # define EV_USE_4HEAP 1
353     # define EV_HEAP_CACHE_AT 1
354     #endif
355    
356 root 1.250 #ifndef EV_VERIFY
357 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358 root 1.250 #endif
359    
360 root 1.243 #ifndef EV_USE_4HEAP
361 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
362 root 1.243 #endif
363    
364     #ifndef EV_HEAP_CACHE_AT
365 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366 root 1.243 #endif
367    
368 root 1.452 #ifdef ANDROID
369     /* supposedly, android doesn't typedef fd_mask */
370     # undef EV_USE_SELECT
371     # define EV_USE_SELECT 0
372     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373     # undef EV_USE_CLOCK_SYSCALL
374     # define EV_USE_CLOCK_SYSCALL 0
375     #endif
376    
377     /* aix's poll.h seems to cause lots of trouble */
378     #ifdef _AIX
379     /* AIX has a completely broken poll.h header */
380     # undef EV_USE_POLL
381     # define EV_USE_POLL 0
382     #endif
383    
384 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385     /* which makes programs even slower. might work on other unices, too. */
386     #if EV_USE_CLOCK_SYSCALL
387 root 1.423 # include <sys/syscall.h>
388 root 1.291 # ifdef SYS_clock_gettime
389     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390     # undef EV_USE_MONOTONIC
391     # define EV_USE_MONOTONIC 1
392     # else
393     # undef EV_USE_CLOCK_SYSCALL
394     # define EV_USE_CLOCK_SYSCALL 0
395     # endif
396     #endif
397    
398 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
399 root 1.40
400     #ifndef CLOCK_MONOTONIC
401     # undef EV_USE_MONOTONIC
402     # define EV_USE_MONOTONIC 0
403     #endif
404    
405 root 1.31 #ifndef CLOCK_REALTIME
406 root 1.40 # undef EV_USE_REALTIME
407 root 1.31 # define EV_USE_REALTIME 0
408     #endif
409 root 1.40
410 root 1.152 #if !EV_STAT_ENABLE
411 root 1.185 # undef EV_USE_INOTIFY
412 root 1.152 # define EV_USE_INOTIFY 0
413     #endif
414    
415 root 1.193 #if !EV_USE_NANOSLEEP
416 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
417 root 1.416 # if !defined _WIN32 && !defined __hpux
418 root 1.193 # include <sys/select.h>
419     # endif
420     #endif
421    
422 root 1.152 #if EV_USE_INOTIFY
423 root 1.273 # include <sys/statfs.h>
424 root 1.152 # include <sys/inotify.h>
425 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426     # ifndef IN_DONT_FOLLOW
427     # undef EV_USE_INOTIFY
428     # define EV_USE_INOTIFY 0
429     # endif
430 root 1.152 #endif
431    
432 root 1.220 #if EV_USE_EVENTFD
433     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 root 1.221 # include <stdint.h>
435 root 1.303 # ifndef EFD_NONBLOCK
436     # define EFD_NONBLOCK O_NONBLOCK
437     # endif
438     # ifndef EFD_CLOEXEC
439 root 1.311 # ifdef O_CLOEXEC
440     # define EFD_CLOEXEC O_CLOEXEC
441     # else
442     # define EFD_CLOEXEC 02000000
443     # endif
444 root 1.303 # endif
445 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446 root 1.220 #endif
447    
448 root 1.303 #if EV_USE_SIGNALFD
449 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450     # include <stdint.h>
451     # ifndef SFD_NONBLOCK
452     # define SFD_NONBLOCK O_NONBLOCK
453     # endif
454     # ifndef SFD_CLOEXEC
455     # ifdef O_CLOEXEC
456     # define SFD_CLOEXEC O_CLOEXEC
457     # else
458     # define SFD_CLOEXEC 02000000
459     # endif
460     # endif
461 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462 root 1.314
463     struct signalfd_siginfo
464     {
465     uint32_t ssi_signo;
466     char pad[128 - sizeof (uint32_t)];
467     };
468 root 1.303 #endif
469    
470 root 1.40 /**/
471 root 1.1
472 root 1.250 #if EV_VERIFY >= 3
473 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
474 root 1.248 #else
475     # define EV_FREQUENT_CHECK do { } while (0)
476     #endif
477    
478 root 1.176 /*
479 root 1.373 * This is used to work around floating point rounding problems.
480 root 1.177 * This value is good at least till the year 4000.
481 root 1.176 */
482 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
484 root 1.176
485 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
486 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
487 root 1.1
488 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490 root 1.347
491 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492     /* ECB.H BEGIN */
493     /*
494     * libecb - http://software.schmorp.de/pkg/libecb
495     *
496 root 1.464 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
497 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
498     * All rights reserved.
499     *
500     * Redistribution and use in source and binary forms, with or without modifica-
501     * tion, are permitted provided that the following conditions are met:
502     *
503     * 1. Redistributions of source code must retain the above copyright notice,
504     * this list of conditions and the following disclaimer.
505     *
506     * 2. Redistributions in binary form must reproduce the above copyright
507     * notice, this list of conditions and the following disclaimer in the
508     * documentation and/or other materials provided with the distribution.
509     *
510     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519     * OF THE POSSIBILITY OF SUCH DAMAGE.
520 root 1.467 *
521     * Alternatively, the contents of this file may be used under the terms of
522     * the GNU General Public License ("GPL") version 2 or any later version,
523     * in which case the provisions of the GPL are applicable instead of
524     * the above. If you wish to allow the use of your version of this file
525     * only under the terms of the GPL and not to allow others to use your
526     * version of this file under the BSD license, indicate your decision
527     * by deleting the provisions above and replace them with the notice
528     * and other provisions required by the GPL. If you do not delete the
529     * provisions above, a recipient may use your version of this file under
530     * either the BSD or the GPL.
531 root 1.391 */
532    
533     #ifndef ECB_H
534     #define ECB_H
535    
536 root 1.437 /* 16 bits major, 16 bits minor */
537 root 1.454 #define ECB_VERSION 0x00010003
538 root 1.437
539 root 1.391 #ifdef _WIN32
540     typedef signed char int8_t;
541     typedef unsigned char uint8_t;
542     typedef signed short int16_t;
543     typedef unsigned short uint16_t;
544     typedef signed int int32_t;
545     typedef unsigned int uint32_t;
546     #if __GNUC__
547     typedef signed long long int64_t;
548     typedef unsigned long long uint64_t;
549     #else /* _MSC_VER || __BORLANDC__ */
550     typedef signed __int64 int64_t;
551     typedef unsigned __int64 uint64_t;
552     #endif
553 root 1.437 #ifdef _WIN64
554     #define ECB_PTRSIZE 8
555     typedef uint64_t uintptr_t;
556     typedef int64_t intptr_t;
557     #else
558     #define ECB_PTRSIZE 4
559     typedef uint32_t uintptr_t;
560     typedef int32_t intptr_t;
561     #endif
562 root 1.391 #else
563     #include <inttypes.h>
564 root 1.437 #if UINTMAX_MAX > 0xffffffffU
565     #define ECB_PTRSIZE 8
566     #else
567     #define ECB_PTRSIZE 4
568     #endif
569 root 1.391 #endif
570 root 1.379
571 root 1.454 /* work around x32 idiocy by defining proper macros */
572 root 1.462 #if __amd64 || __x86_64 || _M_AMD64 || _M_X64
573 root 1.458 #if _ILP32
574 root 1.454 #define ECB_AMD64_X32 1
575     #else
576     #define ECB_AMD64 1
577     #endif
578     #endif
579    
580 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
581     * what their idiot authors think are the "more important" extensions,
582 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
583 root 1.379 * or so.
584     * we try to detect these and simply assume they are not gcc - if they have
585     * an issue with that they should have done it right in the first place.
586     */
587     #ifndef ECB_GCC_VERSION
588 root 1.417 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
589 root 1.379 #define ECB_GCC_VERSION(major,minor) 0
590     #else
591     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
592     #endif
593     #endif
594    
595 root 1.437 #define ECB_CPP (__cplusplus+0)
596     #define ECB_CPP11 (__cplusplus >= 201103L)
597    
598 root 1.450 #if ECB_CPP
599 root 1.464 #define ECB_C 0
600     #define ECB_STDC_VERSION 0
601     #else
602     #define ECB_C 1
603     #define ECB_STDC_VERSION __STDC_VERSION__
604     #endif
605    
606     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
607     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
608    
609     #if ECB_CPP
610 root 1.450 #define ECB_EXTERN_C extern "C"
611     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
612     #define ECB_EXTERN_C_END }
613     #else
614     #define ECB_EXTERN_C extern
615     #define ECB_EXTERN_C_BEG
616     #define ECB_EXTERN_C_END
617     #endif
618    
619 root 1.391 /*****************************************************************************/
620    
621     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
622     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
623    
624 root 1.410 #if ECB_NO_THREADS
625 root 1.439 #define ECB_NO_SMP 1
626 root 1.410 #endif
627    
628 root 1.437 #if ECB_NO_SMP
629 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
630 root 1.40 #endif
631    
632 root 1.383 #ifndef ECB_MEMORY_FENCE
633 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 root 1.404 #if __i386 || __i386__
635 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
636 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
637     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
638 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
639 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
640     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
641     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
642 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
643 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
644 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
645     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
646 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
647 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
648 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
649     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
650 root 1.464 #elif __aarch64__
651     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
652 root 1.462 #elif (__sparc || __sparc__) && !__sparcv8
653 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
654     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
655     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
656 root 1.417 #elif defined __s390__ || defined __s390x__
657 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
658 root 1.417 #elif defined __mips__
659 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
660 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
661     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
662 root 1.419 #elif defined __alpha__
663 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
664     #elif defined __hppa__
665     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
667     #elif defined __ia64__
668     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
669 root 1.457 #elif defined __m68k__
670     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
671     #elif defined __m88k__
672     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
673     #elif defined __sh__
674     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
675 root 1.383 #endif
676     #endif
677     #endif
678    
679     #ifndef ECB_MEMORY_FENCE
680 root 1.437 #if ECB_GCC_VERSION(4,7)
681 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
682 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
683 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
684     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
685 root 1.450
686     /* The __has_feature syntax from clang is so misdesigned that we cannot use it
687     * without risking compile time errors with other compilers. We *could*
688     * define our own ecb_clang_has_feature, but I just can't be bothered to work
689     * around this shit time and again.
690     * #elif defined __clang && __has_feature (cxx_atomic)
691     * // see comment below (stdatomic.h) about the C11 memory model.
692     * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
693 root 1.464 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
694     * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
695 root 1.450 */
696    
697 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
698 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
699 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
700     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
701     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
702     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
703     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
704     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
705 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
706     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
707     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
708     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
709     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
710 root 1.417 #elif defined _WIN32
711 root 1.388 #include <WinNT.h>
712 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
713 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
714     #include <mbarrier.h>
715     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
716     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
717     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
718 root 1.413 #elif __xlC__
719 root 1.414 #define ECB_MEMORY_FENCE __sync ()
720 root 1.383 #endif
721     #endif
722    
723     #ifndef ECB_MEMORY_FENCE
724 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
725     /* we assume that these memory fences work on all variables/all memory accesses, */
726     /* not just C11 atomics and atomic accesses */
727     #include <stdatomic.h>
728 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
729     /* any fence other than seq_cst, which isn't very efficient for us. */
730     /* Why that is, we don't know - either the C11 memory model is quite useless */
731     /* for most usages, or gcc and clang have a bug */
732     /* I *currently* lean towards the latter, and inefficiently implement */
733     /* all three of ecb's fences as a seq_cst fence */
734 root 1.464 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
735     /* for all __atomic_thread_fence's except seq_cst */
736 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
737     #endif
738     #endif
739    
740     #ifndef ECB_MEMORY_FENCE
741 root 1.392 #if !ECB_AVOID_PTHREADS
742     /*
743     * if you get undefined symbol references to pthread_mutex_lock,
744     * or failure to find pthread.h, then you should implement
745     * the ECB_MEMORY_FENCE operations for your cpu/compiler
746     * OR provide pthread.h and link against the posix thread library
747     * of your system.
748     */
749     #include <pthread.h>
750     #define ECB_NEEDS_PTHREADS 1
751     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
752    
753     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
754     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
755     #endif
756     #endif
757 root 1.383
758 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
759 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
760 root 1.392 #endif
761    
762 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
763 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
764     #endif
765    
766 root 1.391 /*****************************************************************************/
767    
768     #if __cplusplus
769     #define ecb_inline static inline
770     #elif ECB_GCC_VERSION(2,5)
771     #define ecb_inline static __inline__
772     #elif ECB_C99
773     #define ecb_inline static inline
774     #else
775     #define ecb_inline static
776     #endif
777    
778     #if ECB_GCC_VERSION(3,3)
779     #define ecb_restrict __restrict__
780     #elif ECB_C99
781     #define ecb_restrict restrict
782     #else
783     #define ecb_restrict
784     #endif
785    
786     typedef int ecb_bool;
787    
788     #define ECB_CONCAT_(a, b) a ## b
789     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
790     #define ECB_STRINGIFY_(a) # a
791     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
792    
793     #define ecb_function_ ecb_inline
794    
795 root 1.379 #if ECB_GCC_VERSION(3,1)
796     #define ecb_attribute(attrlist) __attribute__(attrlist)
797     #define ecb_is_constant(expr) __builtin_constant_p (expr)
798     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
799     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
800     #else
801     #define ecb_attribute(attrlist)
802 root 1.464
803     /* possible C11 impl for integral types
804     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
805     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
806    
807 root 1.379 #define ecb_is_constant(expr) 0
808     #define ecb_expect(expr,value) (expr)
809     #define ecb_prefetch(addr,rw,locality)
810     #endif
811    
812 root 1.391 /* no emulation for ecb_decltype */
813     #if ECB_GCC_VERSION(4,5)
814     #define ecb_decltype(x) __decltype(x)
815     #elif ECB_GCC_VERSION(3,0)
816     #define ecb_decltype(x) __typeof(x)
817     #endif
818    
819 root 1.468 #if _MSC_VER >= 1300
820     #define ecb_deprecated __declspec(deprecated)
821     #else
822     #define ecb_deprecated ecb_attribute ((__deprecated__))
823     #endif
824    
825 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
826     #define ecb_unused ecb_attribute ((__unused__))
827     #define ecb_const ecb_attribute ((__const__))
828     #define ecb_pure ecb_attribute ((__pure__))
829    
830 root 1.468 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
831 root 1.437 #if ECB_C11
832     #define ecb_noreturn _Noreturn
833     #else
834     #define ecb_noreturn ecb_attribute ((__noreturn__))
835     #endif
836    
837 root 1.379 #if ECB_GCC_VERSION(4,3)
838     #define ecb_artificial ecb_attribute ((__artificial__))
839     #define ecb_hot ecb_attribute ((__hot__))
840     #define ecb_cold ecb_attribute ((__cold__))
841     #else
842     #define ecb_artificial
843     #define ecb_hot
844     #define ecb_cold
845     #endif
846    
847     /* put around conditional expressions if you are very sure that the */
848     /* expression is mostly true or mostly false. note that these return */
849     /* booleans, not the expression. */
850     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
851     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
852 root 1.391 /* for compatibility to the rest of the world */
853     #define ecb_likely(expr) ecb_expect_true (expr)
854     #define ecb_unlikely(expr) ecb_expect_false (expr)
855    
856     /* count trailing zero bits and count # of one bits */
857     #if ECB_GCC_VERSION(3,4)
858     /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
859     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
860     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
861     #define ecb_ctz32(x) __builtin_ctz (x)
862     #define ecb_ctz64(x) __builtin_ctzll (x)
863     #define ecb_popcount32(x) __builtin_popcount (x)
864     /* no popcountll */
865     #else
866     ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
867     ecb_function_ int
868     ecb_ctz32 (uint32_t x)
869     {
870     int r = 0;
871    
872     x &= ~x + 1; /* this isolates the lowest bit */
873    
874     #if ECB_branchless_on_i386
875     r += !!(x & 0xaaaaaaaa) << 0;
876     r += !!(x & 0xcccccccc) << 1;
877     r += !!(x & 0xf0f0f0f0) << 2;
878     r += !!(x & 0xff00ff00) << 3;
879     r += !!(x & 0xffff0000) << 4;
880     #else
881     if (x & 0xaaaaaaaa) r += 1;
882     if (x & 0xcccccccc) r += 2;
883     if (x & 0xf0f0f0f0) r += 4;
884     if (x & 0xff00ff00) r += 8;
885     if (x & 0xffff0000) r += 16;
886     #endif
887    
888     return r;
889     }
890    
891     ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
892     ecb_function_ int
893     ecb_ctz64 (uint64_t x)
894     {
895     int shift = x & 0xffffffffU ? 0 : 32;
896     return ecb_ctz32 (x >> shift) + shift;
897     }
898    
899     ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
900     ecb_function_ int
901     ecb_popcount32 (uint32_t x)
902     {
903     x -= (x >> 1) & 0x55555555;
904     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
905     x = ((x >> 4) + x) & 0x0f0f0f0f;
906     x *= 0x01010101;
907    
908     return x >> 24;
909     }
910    
911     ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
912     ecb_function_ int ecb_ld32 (uint32_t x)
913     {
914     int r = 0;
915    
916     if (x >> 16) { x >>= 16; r += 16; }
917     if (x >> 8) { x >>= 8; r += 8; }
918     if (x >> 4) { x >>= 4; r += 4; }
919     if (x >> 2) { x >>= 2; r += 2; }
920     if (x >> 1) { r += 1; }
921    
922     return r;
923     }
924    
925     ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
926     ecb_function_ int ecb_ld64 (uint64_t x)
927     {
928     int r = 0;
929    
930     if (x >> 32) { x >>= 32; r += 32; }
931    
932     return r + ecb_ld32 (x);
933     }
934     #endif
935    
936 root 1.437 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
937     ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
938     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
939     ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
940    
941 root 1.403 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
942     ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
943     {
944     return ( (x * 0x0802U & 0x22110U)
945     | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
946     }
947    
948     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
949     ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
950     {
951     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
952     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
953     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
954     x = ( x >> 8 ) | ( x << 8);
955    
956     return x;
957     }
958    
959     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
960     ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
961     {
962     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
963     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
964     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
965     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
966     x = ( x >> 16 ) | ( x << 16);
967    
968     return x;
969     }
970    
971 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
972     /* so for this version we are lazy */
973     ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
974     ecb_function_ int
975     ecb_popcount64 (uint64_t x)
976     {
977     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
978     }
979    
980     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
981     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
982     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
983     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
984     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
985     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
986     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
987     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
988    
989     ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
990     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
991     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
992     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
993     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
994     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
995     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
996     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
997    
998     #if ECB_GCC_VERSION(4,3)
999     #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1000     #define ecb_bswap32(x) __builtin_bswap32 (x)
1001     #define ecb_bswap64(x) __builtin_bswap64 (x)
1002     #else
1003     ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
1004     ecb_function_ uint16_t
1005     ecb_bswap16 (uint16_t x)
1006     {
1007     return ecb_rotl16 (x, 8);
1008     }
1009    
1010     ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
1011     ecb_function_ uint32_t
1012     ecb_bswap32 (uint32_t x)
1013     {
1014     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1015     }
1016    
1017     ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1018     ecb_function_ uint64_t
1019     ecb_bswap64 (uint64_t x)
1020     {
1021     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1022     }
1023     #endif
1024    
1025     #if ECB_GCC_VERSION(4,5)
1026     #define ecb_unreachable() __builtin_unreachable ()
1027     #else
1028     /* this seems to work fine, but gcc always emits a warning for it :/ */
1029 root 1.408 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1030     ecb_inline void ecb_unreachable (void) { }
1031 root 1.391 #endif
1032    
1033     /* try to tell the compiler that some condition is definitely true */
1034 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1035 root 1.391
1036 root 1.408 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1037     ecb_inline unsigned char
1038 root 1.391 ecb_byteorder_helper (void)
1039     {
1040 root 1.450 /* the union code still generates code under pressure in gcc, */
1041     /* but less than using pointers, and always seems to */
1042     /* successfully return a constant. */
1043     /* the reason why we have this horrible preprocessor mess */
1044     /* is to avoid it in all cases, at least on common architectures */
1045     /* or when using a recent enough gcc version (>= 4.6) */
1046     #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1047     return 0x44;
1048     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1049     return 0x44;
1050     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1051     return 0x11;
1052     #else
1053     union
1054     {
1055     uint32_t i;
1056     uint8_t c;
1057     } u = { 0x11223344 };
1058     return u.c;
1059     #endif
1060 root 1.391 }
1061    
1062 root 1.408 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1063     ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1064     ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1065     ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1066 root 1.391
1067     #if ECB_GCC_VERSION(3,0) || ECB_C99
1068     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1069     #else
1070     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1071     #endif
1072    
1073 root 1.398 #if __cplusplus
1074     template<typename T>
1075     static inline T ecb_div_rd (T val, T div)
1076     {
1077     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1078     }
1079     template<typename T>
1080     static inline T ecb_div_ru (T val, T div)
1081     {
1082     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1083     }
1084     #else
1085     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1086     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1087     #endif
1088    
1089 root 1.391 #if ecb_cplusplus_does_not_suck
1090     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1091     template<typename T, int N>
1092     static inline int ecb_array_length (const T (&arr)[N])
1093     {
1094     return N;
1095     }
1096     #else
1097     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1098     #endif
1099    
1100 root 1.450 /*******************************************************************************/
1101     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1102    
1103     /* basically, everything uses "ieee pure-endian" floating point numbers */
1104     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1105     #if 0 \
1106     || __i386 || __i386__ \
1107     || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1108     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1109     || defined __s390__ || defined __s390x__ \
1110     || defined __mips__ \
1111     || defined __alpha__ \
1112     || defined __hppa__ \
1113     || defined __ia64__ \
1114 root 1.457 || defined __m68k__ \
1115     || defined __m88k__ \
1116     || defined __sh__ \
1117 root 1.464 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1118 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1119 root 1.466 || defined __aarch64__
1120 root 1.450 #define ECB_STDFP 1
1121     #include <string.h> /* for memcpy */
1122     #else
1123     #define ECB_STDFP 0
1124     #endif
1125    
1126     #ifndef ECB_NO_LIBM
1127    
1128 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1129    
1130 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1131     #ifdef INFINITY
1132     #define ECB_INFINITY INFINITY
1133     #else
1134     #define ECB_INFINITY HUGE_VAL
1135     #endif
1136    
1137     #ifdef NAN
1138 root 1.458 #define ECB_NAN NAN
1139     #else
1140 root 1.462 #define ECB_NAN ECB_INFINITY
1141 root 1.458 #endif
1142    
1143     /* converts an ieee half/binary16 to a float */
1144     ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1145     ecb_function_ float
1146     ecb_binary16_to_float (uint16_t x)
1147     {
1148     int e = (x >> 10) & 0x1f;
1149     int m = x & 0x3ff;
1150     float r;
1151    
1152     if (!e ) r = ldexpf (m , -24);
1153     else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1154     else if (m ) r = ECB_NAN;
1155 root 1.462 else r = ECB_INFINITY;
1156 root 1.458
1157     return x & 0x8000 ? -r : r;
1158     }
1159    
1160 root 1.450 /* convert a float to ieee single/binary32 */
1161     ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1162     ecb_function_ uint32_t
1163     ecb_float_to_binary32 (float x)
1164     {
1165     uint32_t r;
1166    
1167     #if ECB_STDFP
1168     memcpy (&r, &x, 4);
1169     #else
1170     /* slow emulation, works for anything but -0 */
1171     uint32_t m;
1172     int e;
1173    
1174     if (x == 0e0f ) return 0x00000000U;
1175     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1176     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1177     if (x != x ) return 0x7fbfffffU;
1178    
1179     m = frexpf (x, &e) * 0x1000000U;
1180    
1181     r = m & 0x80000000U;
1182    
1183     if (r)
1184     m = -m;
1185    
1186     if (e <= -126)
1187     {
1188     m &= 0xffffffU;
1189     m >>= (-125 - e);
1190     e = -126;
1191     }
1192    
1193     r |= (e + 126) << 23;
1194     r |= m & 0x7fffffU;
1195     #endif
1196    
1197     return r;
1198     }
1199    
1200     /* converts an ieee single/binary32 to a float */
1201     ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1202     ecb_function_ float
1203     ecb_binary32_to_float (uint32_t x)
1204     {
1205     float r;
1206    
1207     #if ECB_STDFP
1208     memcpy (&r, &x, 4);
1209     #else
1210     /* emulation, only works for normals and subnormals and +0 */
1211     int neg = x >> 31;
1212     int e = (x >> 23) & 0xffU;
1213    
1214     x &= 0x7fffffU;
1215    
1216     if (e)
1217     x |= 0x800000U;
1218     else
1219     e = 1;
1220    
1221     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1222     r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1223    
1224     r = neg ? -r : r;
1225     #endif
1226    
1227     return r;
1228     }
1229    
1230     /* convert a double to ieee double/binary64 */
1231     ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1232     ecb_function_ uint64_t
1233     ecb_double_to_binary64 (double x)
1234     {
1235     uint64_t r;
1236    
1237     #if ECB_STDFP
1238     memcpy (&r, &x, 8);
1239     #else
1240     /* slow emulation, works for anything but -0 */
1241     uint64_t m;
1242     int e;
1243    
1244     if (x == 0e0 ) return 0x0000000000000000U;
1245     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1246     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1247     if (x != x ) return 0X7ff7ffffffffffffU;
1248    
1249     m = frexp (x, &e) * 0x20000000000000U;
1250    
1251     r = m & 0x8000000000000000;;
1252    
1253     if (r)
1254     m = -m;
1255    
1256     if (e <= -1022)
1257     {
1258     m &= 0x1fffffffffffffU;
1259     m >>= (-1021 - e);
1260     e = -1022;
1261     }
1262    
1263     r |= ((uint64_t)(e + 1022)) << 52;
1264     r |= m & 0xfffffffffffffU;
1265     #endif
1266    
1267     return r;
1268     }
1269    
1270     /* converts an ieee double/binary64 to a double */
1271     ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1272     ecb_function_ double
1273     ecb_binary64_to_double (uint64_t x)
1274     {
1275     double r;
1276    
1277     #if ECB_STDFP
1278     memcpy (&r, &x, 8);
1279     #else
1280     /* emulation, only works for normals and subnormals and +0 */
1281     int neg = x >> 63;
1282     int e = (x >> 52) & 0x7ffU;
1283    
1284     x &= 0xfffffffffffffU;
1285    
1286     if (e)
1287     x |= 0x10000000000000U;
1288     else
1289     e = 1;
1290    
1291     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1292     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1293    
1294     r = neg ? -r : r;
1295     #endif
1296    
1297     return r;
1298     }
1299    
1300     #endif
1301    
1302 root 1.391 #endif
1303    
1304     /* ECB.H END */
1305 root 1.379
1306 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1307 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1308 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1309     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1310 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1311 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1312     * which will then provide the memory fences.
1313     */
1314     # error "memory fences not defined for your architecture, please report"
1315     #endif
1316    
1317     #ifndef ECB_MEMORY_FENCE
1318     # define ECB_MEMORY_FENCE do { } while (0)
1319     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1320     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1321 root 1.392 #endif
1322    
1323 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1324     #define expect_true(cond) ecb_expect_true (cond)
1325     #define noinline ecb_noinline
1326    
1327     #define inline_size ecb_inline
1328 root 1.169
1329 root 1.338 #if EV_FEATURE_CODE
1330 root 1.379 # define inline_speed ecb_inline
1331 root 1.338 #else
1332 root 1.169 # define inline_speed static noinline
1333     #endif
1334 root 1.40
1335 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1336    
1337     #if EV_MINPRI == EV_MAXPRI
1338     # define ABSPRI(w) (((W)w), 0)
1339     #else
1340     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1341     #endif
1342 root 1.42
1343 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1344 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1345 root 1.103
1346 root 1.136 typedef ev_watcher *W;
1347     typedef ev_watcher_list *WL;
1348     typedef ev_watcher_time *WT;
1349 root 1.10
1350 root 1.229 #define ev_active(w) ((W)(w))->active
1351 root 1.228 #define ev_at(w) ((WT)(w))->at
1352    
1353 root 1.279 #if EV_USE_REALTIME
1354 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1355 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1356 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1357     #endif
1358    
1359     #if EV_USE_MONOTONIC
1360 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1361 root 1.198 #endif
1362 root 1.54
1363 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1364     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1365     #endif
1366     #ifndef EV_WIN32_HANDLE_TO_FD
1367 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1368 root 1.313 #endif
1369     #ifndef EV_WIN32_CLOSE_FD
1370     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1371     #endif
1372    
1373 root 1.103 #ifdef _WIN32
1374 root 1.98 # include "ev_win32.c"
1375     #endif
1376 root 1.67
1377 root 1.53 /*****************************************************************************/
1378 root 1.1
1379 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1380    
1381     #if EV_USE_FLOOR
1382     # include <math.h>
1383     # define ev_floor(v) floor (v)
1384     #else
1385    
1386     #include <float.h>
1387    
1388     /* a floor() replacement function, should be independent of ev_tstamp type */
1389     static ev_tstamp noinline
1390     ev_floor (ev_tstamp v)
1391     {
1392     /* the choice of shift factor is not terribly important */
1393     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1394     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1395     #else
1396     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1397     #endif
1398    
1399     /* argument too large for an unsigned long? */
1400     if (expect_false (v >= shift))
1401     {
1402     ev_tstamp f;
1403    
1404     if (v == v - 1.)
1405     return v; /* very large number */
1406    
1407     f = shift * ev_floor (v * (1. / shift));
1408     return f + ev_floor (v - f);
1409     }
1410    
1411     /* special treatment for negative args? */
1412     if (expect_false (v < 0.))
1413     {
1414     ev_tstamp f = -ev_floor (-v);
1415    
1416     return f - (f == v ? 0 : 1);
1417     }
1418    
1419     /* fits into an unsigned long */
1420     return (unsigned long)v;
1421     }
1422    
1423     #endif
1424    
1425     /*****************************************************************************/
1426    
1427 root 1.356 #ifdef __linux
1428     # include <sys/utsname.h>
1429     #endif
1430    
1431 root 1.379 static unsigned int noinline ecb_cold
1432 root 1.355 ev_linux_version (void)
1433     {
1434     #ifdef __linux
1435 root 1.359 unsigned int v = 0;
1436 root 1.355 struct utsname buf;
1437     int i;
1438     char *p = buf.release;
1439    
1440     if (uname (&buf))
1441     return 0;
1442    
1443     for (i = 3+1; --i; )
1444     {
1445     unsigned int c = 0;
1446    
1447     for (;;)
1448     {
1449     if (*p >= '0' && *p <= '9')
1450     c = c * 10 + *p++ - '0';
1451     else
1452     {
1453     p += *p == '.';
1454     break;
1455     }
1456     }
1457    
1458     v = (v << 8) | c;
1459     }
1460    
1461     return v;
1462     #else
1463     return 0;
1464     #endif
1465     }
1466    
1467     /*****************************************************************************/
1468    
1469 root 1.331 #if EV_AVOID_STDIO
1470 root 1.379 static void noinline ecb_cold
1471 root 1.331 ev_printerr (const char *msg)
1472     {
1473     write (STDERR_FILENO, msg, strlen (msg));
1474     }
1475     #endif
1476    
1477 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1478 root 1.69
1479 root 1.379 void ecb_cold
1480 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1481 root 1.69 {
1482     syserr_cb = cb;
1483     }
1484    
1485 root 1.379 static void noinline ecb_cold
1486 root 1.269 ev_syserr (const char *msg)
1487 root 1.69 {
1488 root 1.70 if (!msg)
1489     msg = "(libev) system error";
1490    
1491 root 1.69 if (syserr_cb)
1492 root 1.70 syserr_cb (msg);
1493 root 1.69 else
1494     {
1495 root 1.330 #if EV_AVOID_STDIO
1496 root 1.331 ev_printerr (msg);
1497     ev_printerr (": ");
1498 root 1.365 ev_printerr (strerror (errno));
1499 root 1.331 ev_printerr ("\n");
1500 root 1.330 #else
1501 root 1.70 perror (msg);
1502 root 1.330 #endif
1503 root 1.69 abort ();
1504     }
1505     }
1506    
1507 root 1.224 static void *
1508 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1509 root 1.224 {
1510     /* some systems, notably openbsd and darwin, fail to properly
1511 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1512 root 1.224 * the single unix specification, so work around them here.
1513 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1514     * despite documenting it otherwise.
1515 root 1.224 */
1516 root 1.333
1517 root 1.224 if (size)
1518     return realloc (ptr, size);
1519    
1520     free (ptr);
1521     return 0;
1522     }
1523    
1524 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1525 root 1.69
1526 root 1.379 void ecb_cold
1527 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1528 root 1.69 {
1529     alloc = cb;
1530     }
1531    
1532 root 1.150 inline_speed void *
1533 root 1.155 ev_realloc (void *ptr, long size)
1534 root 1.69 {
1535 root 1.224 ptr = alloc (ptr, size);
1536 root 1.69
1537     if (!ptr && size)
1538     {
1539 root 1.330 #if EV_AVOID_STDIO
1540 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1541 root 1.330 #else
1542 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1543 root 1.330 #endif
1544 root 1.69 abort ();
1545     }
1546    
1547     return ptr;
1548     }
1549    
1550     #define ev_malloc(size) ev_realloc (0, (size))
1551     #define ev_free(ptr) ev_realloc ((ptr), 0)
1552    
1553     /*****************************************************************************/
1554    
1555 root 1.298 /* set in reify when reification needed */
1556     #define EV_ANFD_REIFY 1
1557    
1558 root 1.288 /* file descriptor info structure */
1559 root 1.53 typedef struct
1560     {
1561 root 1.68 WL head;
1562 root 1.288 unsigned char events; /* the events watched for */
1563 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1564 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1565 root 1.269 unsigned char unused;
1566     #if EV_USE_EPOLL
1567 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1568 root 1.269 #endif
1569 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1570 root 1.103 SOCKET handle;
1571     #endif
1572 root 1.357 #if EV_USE_IOCP
1573     OVERLAPPED or, ow;
1574     #endif
1575 root 1.53 } ANFD;
1576 root 1.1
1577 root 1.288 /* stores the pending event set for a given watcher */
1578 root 1.53 typedef struct
1579     {
1580     W w;
1581 root 1.288 int events; /* the pending event set for the given watcher */
1582 root 1.53 } ANPENDING;
1583 root 1.51
1584 root 1.155 #if EV_USE_INOTIFY
1585 root 1.241 /* hash table entry per inotify-id */
1586 root 1.152 typedef struct
1587     {
1588     WL head;
1589 root 1.155 } ANFS;
1590 root 1.152 #endif
1591    
1592 root 1.241 /* Heap Entry */
1593     #if EV_HEAP_CACHE_AT
1594 root 1.288 /* a heap element */
1595 root 1.241 typedef struct {
1596 root 1.243 ev_tstamp at;
1597 root 1.241 WT w;
1598     } ANHE;
1599    
1600 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1601     #define ANHE_at(he) (he).at /* access cached at, read-only */
1602     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1603 root 1.241 #else
1604 root 1.288 /* a heap element */
1605 root 1.241 typedef WT ANHE;
1606    
1607 root 1.248 #define ANHE_w(he) (he)
1608     #define ANHE_at(he) (he)->at
1609     #define ANHE_at_cache(he)
1610 root 1.241 #endif
1611    
1612 root 1.55 #if EV_MULTIPLICITY
1613 root 1.54
1614 root 1.80 struct ev_loop
1615     {
1616 root 1.86 ev_tstamp ev_rt_now;
1617 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1618 root 1.80 #define VAR(name,decl) decl;
1619     #include "ev_vars.h"
1620     #undef VAR
1621     };
1622     #include "ev_wrap.h"
1623    
1624 root 1.116 static struct ev_loop default_loop_struct;
1625 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1626 root 1.54
1627 root 1.53 #else
1628 root 1.54
1629 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1630 root 1.80 #define VAR(name,decl) static decl;
1631     #include "ev_vars.h"
1632     #undef VAR
1633    
1634 root 1.116 static int ev_default_loop_ptr;
1635 root 1.54
1636 root 1.51 #endif
1637 root 1.1
1638 root 1.338 #if EV_FEATURE_API
1639 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1640     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1641 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1642     #else
1643 root 1.298 # define EV_RELEASE_CB (void)0
1644     # define EV_ACQUIRE_CB (void)0
1645 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1646     #endif
1647    
1648 root 1.353 #define EVBREAK_RECURSE 0x80
1649 root 1.298
1650 root 1.8 /*****************************************************************************/
1651    
1652 root 1.292 #ifndef EV_HAVE_EV_TIME
1653 root 1.141 ev_tstamp
1654 root 1.420 ev_time (void) EV_THROW
1655 root 1.1 {
1656 root 1.29 #if EV_USE_REALTIME
1657 root 1.279 if (expect_true (have_realtime))
1658     {
1659     struct timespec ts;
1660     clock_gettime (CLOCK_REALTIME, &ts);
1661     return ts.tv_sec + ts.tv_nsec * 1e-9;
1662     }
1663     #endif
1664    
1665 root 1.1 struct timeval tv;
1666     gettimeofday (&tv, 0);
1667     return tv.tv_sec + tv.tv_usec * 1e-6;
1668     }
1669 root 1.292 #endif
1670 root 1.1
1671 root 1.284 inline_size ev_tstamp
1672 root 1.1 get_clock (void)
1673     {
1674 root 1.29 #if EV_USE_MONOTONIC
1675 root 1.40 if (expect_true (have_monotonic))
1676 root 1.1 {
1677     struct timespec ts;
1678     clock_gettime (CLOCK_MONOTONIC, &ts);
1679     return ts.tv_sec + ts.tv_nsec * 1e-9;
1680     }
1681     #endif
1682    
1683     return ev_time ();
1684     }
1685    
1686 root 1.85 #if EV_MULTIPLICITY
1687 root 1.51 ev_tstamp
1688 root 1.420 ev_now (EV_P) EV_THROW
1689 root 1.51 {
1690 root 1.85 return ev_rt_now;
1691 root 1.51 }
1692 root 1.85 #endif
1693 root 1.51
1694 root 1.193 void
1695 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1696 root 1.193 {
1697     if (delay > 0.)
1698     {
1699     #if EV_USE_NANOSLEEP
1700     struct timespec ts;
1701    
1702 root 1.348 EV_TS_SET (ts, delay);
1703 root 1.193 nanosleep (&ts, 0);
1704 root 1.416 #elif defined _WIN32
1705 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1706 root 1.193 #else
1707     struct timeval tv;
1708    
1709 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1710 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1711 root 1.257 /* by older ones */
1712 sf-exg 1.349 EV_TV_SET (tv, delay);
1713 root 1.193 select (0, 0, 0, 0, &tv);
1714     #endif
1715     }
1716     }
1717    
1718     /*****************************************************************************/
1719    
1720 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1721 root 1.232
1722 root 1.288 /* find a suitable new size for the given array, */
1723 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1724 root 1.284 inline_size int
1725 root 1.163 array_nextsize (int elem, int cur, int cnt)
1726     {
1727     int ncur = cur + 1;
1728    
1729     do
1730     ncur <<= 1;
1731     while (cnt > ncur);
1732    
1733 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1734 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1735 root 1.163 {
1736     ncur *= elem;
1737 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1738 root 1.163 ncur = ncur - sizeof (void *) * 4;
1739     ncur /= elem;
1740     }
1741    
1742     return ncur;
1743     }
1744    
1745 root 1.379 static void * noinline ecb_cold
1746 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1747     {
1748     *cur = array_nextsize (elem, *cur, cnt);
1749     return ev_realloc (base, elem * *cur);
1750     }
1751 root 1.29
1752 root 1.265 #define array_init_zero(base,count) \
1753     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1754    
1755 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1756 root 1.163 if (expect_false ((cnt) > (cur))) \
1757 root 1.69 { \
1758 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1759 root 1.163 (base) = (type *)array_realloc \
1760     (sizeof (type), (base), &(cur), (cnt)); \
1761     init ((base) + (ocur_), (cur) - ocur_); \
1762 root 1.1 }
1763    
1764 root 1.163 #if 0
1765 root 1.74 #define array_slim(type,stem) \
1766 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1767     { \
1768     stem ## max = array_roundsize (stem ## cnt >> 1); \
1769 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1770 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1771     }
1772 root 1.163 #endif
1773 root 1.67
1774 root 1.65 #define array_free(stem, idx) \
1775 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1776 root 1.65
1777 root 1.8 /*****************************************************************************/
1778    
1779 root 1.288 /* dummy callback for pending events */
1780     static void noinline
1781     pendingcb (EV_P_ ev_prepare *w, int revents)
1782     {
1783     }
1784    
1785 root 1.140 void noinline
1786 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1787 root 1.1 {
1788 root 1.78 W w_ = (W)w;
1789 root 1.171 int pri = ABSPRI (w_);
1790 root 1.78
1791 root 1.123 if (expect_false (w_->pending))
1792 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1793     else
1794 root 1.32 {
1795 root 1.171 w_->pending = ++pendingcnt [pri];
1796     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1797     pendings [pri][w_->pending - 1].w = w_;
1798     pendings [pri][w_->pending - 1].events = revents;
1799 root 1.32 }
1800 root 1.425
1801     pendingpri = NUMPRI - 1;
1802 root 1.1 }
1803    
1804 root 1.284 inline_speed void
1805     feed_reverse (EV_P_ W w)
1806     {
1807     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1808     rfeeds [rfeedcnt++] = w;
1809     }
1810    
1811     inline_size void
1812     feed_reverse_done (EV_P_ int revents)
1813     {
1814     do
1815     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1816     while (rfeedcnt);
1817     }
1818    
1819     inline_speed void
1820 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1821 root 1.27 {
1822     int i;
1823    
1824     for (i = 0; i < eventcnt; ++i)
1825 root 1.78 ev_feed_event (EV_A_ events [i], type);
1826 root 1.27 }
1827    
1828 root 1.141 /*****************************************************************************/
1829    
1830 root 1.284 inline_speed void
1831 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1832 root 1.1 {
1833     ANFD *anfd = anfds + fd;
1834 root 1.136 ev_io *w;
1835 root 1.1
1836 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1837 root 1.1 {
1838 root 1.79 int ev = w->events & revents;
1839 root 1.1
1840     if (ev)
1841 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1842 root 1.1 }
1843     }
1844    
1845 root 1.298 /* do not submit kernel events for fds that have reify set */
1846     /* because that means they changed while we were polling for new events */
1847     inline_speed void
1848     fd_event (EV_P_ int fd, int revents)
1849     {
1850     ANFD *anfd = anfds + fd;
1851    
1852     if (expect_true (!anfd->reify))
1853 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1854 root 1.298 }
1855    
1856 root 1.79 void
1857 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1858 root 1.79 {
1859 root 1.168 if (fd >= 0 && fd < anfdmax)
1860 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1861 root 1.79 }
1862    
1863 root 1.288 /* make sure the external fd watch events are in-sync */
1864     /* with the kernel/libev internal state */
1865 root 1.284 inline_size void
1866 root 1.51 fd_reify (EV_P)
1867 root 1.9 {
1868     int i;
1869    
1870 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1871     for (i = 0; i < fdchangecnt; ++i)
1872     {
1873     int fd = fdchanges [i];
1874     ANFD *anfd = anfds + fd;
1875    
1876 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1877 root 1.371 {
1878     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1879    
1880     if (handle != anfd->handle)
1881     {
1882     unsigned long arg;
1883    
1884     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1885    
1886     /* handle changed, but fd didn't - we need to do it in two steps */
1887     backend_modify (EV_A_ fd, anfd->events, 0);
1888     anfd->events = 0;
1889     anfd->handle = handle;
1890     }
1891     }
1892     }
1893     #endif
1894    
1895 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1896     {
1897     int fd = fdchanges [i];
1898     ANFD *anfd = anfds + fd;
1899 root 1.136 ev_io *w;
1900 root 1.27
1901 root 1.350 unsigned char o_events = anfd->events;
1902     unsigned char o_reify = anfd->reify;
1903 root 1.27
1904 root 1.350 anfd->reify = 0;
1905 root 1.27
1906 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1907     {
1908     anfd->events = 0;
1909 root 1.184
1910 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1911     anfd->events |= (unsigned char)w->events;
1912 root 1.27
1913 root 1.351 if (o_events != anfd->events)
1914 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1915     }
1916    
1917     if (o_reify & EV__IOFDSET)
1918     backend_modify (EV_A_ fd, o_events, anfd->events);
1919 root 1.27 }
1920    
1921     fdchangecnt = 0;
1922     }
1923    
1924 root 1.288 /* something about the given fd changed */
1925 root 1.284 inline_size void
1926 root 1.183 fd_change (EV_P_ int fd, int flags)
1927 root 1.27 {
1928 root 1.183 unsigned char reify = anfds [fd].reify;
1929 root 1.184 anfds [fd].reify |= flags;
1930 root 1.27
1931 root 1.183 if (expect_true (!reify))
1932     {
1933     ++fdchangecnt;
1934     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1935     fdchanges [fdchangecnt - 1] = fd;
1936     }
1937 root 1.9 }
1938    
1939 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1940 root 1.379 inline_speed void ecb_cold
1941 root 1.51 fd_kill (EV_P_ int fd)
1942 root 1.41 {
1943 root 1.136 ev_io *w;
1944 root 1.41
1945 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1946 root 1.41 {
1947 root 1.51 ev_io_stop (EV_A_ w);
1948 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1949 root 1.41 }
1950     }
1951    
1952 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1953 root 1.379 inline_size int ecb_cold
1954 root 1.71 fd_valid (int fd)
1955     {
1956 root 1.103 #ifdef _WIN32
1957 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1958 root 1.71 #else
1959     return fcntl (fd, F_GETFD) != -1;
1960     #endif
1961     }
1962    
1963 root 1.19 /* called on EBADF to verify fds */
1964 root 1.379 static void noinline ecb_cold
1965 root 1.51 fd_ebadf (EV_P)
1966 root 1.19 {
1967     int fd;
1968    
1969     for (fd = 0; fd < anfdmax; ++fd)
1970 root 1.27 if (anfds [fd].events)
1971 root 1.254 if (!fd_valid (fd) && errno == EBADF)
1972 root 1.51 fd_kill (EV_A_ fd);
1973 root 1.41 }
1974    
1975     /* called on ENOMEM in select/poll to kill some fds and retry */
1976 root 1.379 static void noinline ecb_cold
1977 root 1.51 fd_enomem (EV_P)
1978 root 1.41 {
1979 root 1.62 int fd;
1980 root 1.41
1981 root 1.62 for (fd = anfdmax; fd--; )
1982 root 1.41 if (anfds [fd].events)
1983     {
1984 root 1.51 fd_kill (EV_A_ fd);
1985 root 1.307 break;
1986 root 1.41 }
1987 root 1.19 }
1988    
1989 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
1990 root 1.140 static void noinline
1991 root 1.56 fd_rearm_all (EV_P)
1992     {
1993     int fd;
1994    
1995     for (fd = 0; fd < anfdmax; ++fd)
1996     if (anfds [fd].events)
1997     {
1998     anfds [fd].events = 0;
1999 root 1.268 anfds [fd].emask = 0;
2000 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2001 root 1.56 }
2002     }
2003    
2004 root 1.336 /* used to prepare libev internal fd's */
2005     /* this is not fork-safe */
2006     inline_speed void
2007     fd_intern (int fd)
2008     {
2009     #ifdef _WIN32
2010     unsigned long arg = 1;
2011     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2012     #else
2013     fcntl (fd, F_SETFD, FD_CLOEXEC);
2014     fcntl (fd, F_SETFL, O_NONBLOCK);
2015     #endif
2016     }
2017    
2018 root 1.8 /*****************************************************************************/
2019    
2020 root 1.235 /*
2021 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2022 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2023     * the branching factor of the d-tree.
2024     */
2025    
2026     /*
2027 root 1.235 * at the moment we allow libev the luxury of two heaps,
2028     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2029     * which is more cache-efficient.
2030     * the difference is about 5% with 50000+ watchers.
2031     */
2032 root 1.241 #if EV_USE_4HEAP
2033 root 1.235
2034 root 1.237 #define DHEAP 4
2035     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2036 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2037 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2038 root 1.235
2039     /* away from the root */
2040 root 1.284 inline_speed void
2041 root 1.241 downheap (ANHE *heap, int N, int k)
2042 root 1.235 {
2043 root 1.241 ANHE he = heap [k];
2044     ANHE *E = heap + N + HEAP0;
2045 root 1.235
2046     for (;;)
2047     {
2048     ev_tstamp minat;
2049 root 1.241 ANHE *minpos;
2050 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2051 root 1.235
2052 root 1.248 /* find minimum child */
2053 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
2054 root 1.235 {
2055 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2056     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2057     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2058     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2059 root 1.235 }
2060 root 1.240 else if (pos < E)
2061 root 1.235 {
2062 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2063     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2064     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2065     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2066 root 1.235 }
2067 root 1.240 else
2068     break;
2069 root 1.235
2070 root 1.241 if (ANHE_at (he) <= minat)
2071 root 1.235 break;
2072    
2073 root 1.247 heap [k] = *minpos;
2074 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2075 root 1.235
2076     k = minpos - heap;
2077     }
2078    
2079 root 1.247 heap [k] = he;
2080 root 1.241 ev_active (ANHE_w (he)) = k;
2081 root 1.235 }
2082    
2083 root 1.248 #else /* 4HEAP */
2084 root 1.235
2085     #define HEAP0 1
2086 root 1.247 #define HPARENT(k) ((k) >> 1)
2087 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2088 root 1.235
2089 root 1.248 /* away from the root */
2090 root 1.284 inline_speed void
2091 root 1.248 downheap (ANHE *heap, int N, int k)
2092 root 1.1 {
2093 root 1.241 ANHE he = heap [k];
2094 root 1.1
2095 root 1.228 for (;;)
2096 root 1.1 {
2097 root 1.248 int c = k << 1;
2098 root 1.179
2099 root 1.309 if (c >= N + HEAP0)
2100 root 1.179 break;
2101    
2102 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2103     ? 1 : 0;
2104    
2105     if (ANHE_at (he) <= ANHE_at (heap [c]))
2106     break;
2107    
2108     heap [k] = heap [c];
2109 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2110 root 1.248
2111     k = c;
2112 root 1.1 }
2113    
2114 root 1.243 heap [k] = he;
2115 root 1.248 ev_active (ANHE_w (he)) = k;
2116 root 1.1 }
2117 root 1.248 #endif
2118 root 1.1
2119 root 1.248 /* towards the root */
2120 root 1.284 inline_speed void
2121 root 1.248 upheap (ANHE *heap, int k)
2122 root 1.1 {
2123 root 1.241 ANHE he = heap [k];
2124 root 1.1
2125 root 1.179 for (;;)
2126 root 1.1 {
2127 root 1.248 int p = HPARENT (k);
2128 root 1.179
2129 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2130 root 1.179 break;
2131 root 1.1
2132 root 1.248 heap [k] = heap [p];
2133 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2134 root 1.248 k = p;
2135 root 1.1 }
2136    
2137 root 1.241 heap [k] = he;
2138     ev_active (ANHE_w (he)) = k;
2139 root 1.1 }
2140    
2141 root 1.288 /* move an element suitably so it is in a correct place */
2142 root 1.284 inline_size void
2143 root 1.241 adjustheap (ANHE *heap, int N, int k)
2144 root 1.84 {
2145 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2146 root 1.247 upheap (heap, k);
2147     else
2148     downheap (heap, N, k);
2149 root 1.84 }
2150    
2151 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2152 root 1.284 inline_size void
2153 root 1.248 reheap (ANHE *heap, int N)
2154     {
2155     int i;
2156 root 1.251
2157 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2158     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2159     for (i = 0; i < N; ++i)
2160     upheap (heap, i + HEAP0);
2161     }
2162    
2163 root 1.8 /*****************************************************************************/
2164    
2165 root 1.288 /* associate signal watchers to a signal signal */
2166 root 1.7 typedef struct
2167     {
2168 root 1.307 EV_ATOMIC_T pending;
2169 root 1.306 #if EV_MULTIPLICITY
2170     EV_P;
2171     #endif
2172 root 1.68 WL head;
2173 root 1.7 } ANSIG;
2174    
2175 root 1.306 static ANSIG signals [EV_NSIG - 1];
2176 root 1.7
2177 root 1.207 /*****************************************************************************/
2178    
2179 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2180 root 1.207
2181 root 1.379 static void noinline ecb_cold
2182 root 1.207 evpipe_init (EV_P)
2183     {
2184 root 1.288 if (!ev_is_active (&pipe_w))
2185 root 1.207 {
2186 root 1.448 int fds [2];
2187    
2188 root 1.336 # if EV_USE_EVENTFD
2189 root 1.448 fds [0] = -1;
2190     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2191     if (fds [1] < 0 && errno == EINVAL)
2192     fds [1] = eventfd (0, 0);
2193    
2194     if (fds [1] < 0)
2195     # endif
2196     {
2197     while (pipe (fds))
2198     ev_syserr ("(libev) error creating signal/async pipe");
2199    
2200     fd_intern (fds [0]);
2201 root 1.220 }
2202 root 1.448
2203     evpipe [0] = fds [0];
2204    
2205     if (evpipe [1] < 0)
2206     evpipe [1] = fds [1]; /* first call, set write fd */
2207 root 1.220 else
2208     {
2209 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2210     /* so that evpipe_write can always rely on its value. */
2211     /* this branch does not do anything sensible on windows, */
2212     /* so must not be executed on windows */
2213 root 1.207
2214 root 1.448 dup2 (fds [1], evpipe [1]);
2215     close (fds [1]);
2216 root 1.220 }
2217 root 1.207
2218 root 1.455 fd_intern (evpipe [1]);
2219    
2220 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2221 root 1.288 ev_io_start (EV_A_ &pipe_w);
2222 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2223 root 1.207 }
2224     }
2225    
2226 root 1.380 inline_speed void
2227 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2228 root 1.207 {
2229 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2230    
2231 root 1.383 if (expect_true (*flag))
2232 root 1.387 return;
2233 root 1.383
2234     *flag = 1;
2235 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2236 root 1.383
2237     pipe_write_skipped = 1;
2238 root 1.378
2239 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2240 root 1.214
2241 root 1.383 if (pipe_write_wanted)
2242     {
2243     int old_errno;
2244 root 1.378
2245 root 1.436 pipe_write_skipped = 0;
2246     ECB_MEMORY_FENCE_RELEASE;
2247 root 1.220
2248 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2249 root 1.380
2250 root 1.220 #if EV_USE_EVENTFD
2251 root 1.448 if (evpipe [0] < 0)
2252 root 1.383 {
2253     uint64_t counter = 1;
2254 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2255 root 1.383 }
2256     else
2257 root 1.220 #endif
2258 root 1.383 {
2259 root 1.427 #ifdef _WIN32
2260     WSABUF buf;
2261     DWORD sent;
2262     buf.buf = &buf;
2263     buf.len = 1;
2264     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2265     #else
2266 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2267 root 1.427 #endif
2268 root 1.383 }
2269 root 1.214
2270 root 1.383 errno = old_errno;
2271 root 1.207 }
2272     }
2273    
2274 root 1.288 /* called whenever the libev signal pipe */
2275     /* got some events (signal, async) */
2276 root 1.207 static void
2277     pipecb (EV_P_ ev_io *iow, int revents)
2278     {
2279 root 1.307 int i;
2280    
2281 root 1.378 if (revents & EV_READ)
2282     {
2283 root 1.220 #if EV_USE_EVENTFD
2284 root 1.448 if (evpipe [0] < 0)
2285 root 1.378 {
2286     uint64_t counter;
2287 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2288 root 1.378 }
2289     else
2290 root 1.220 #endif
2291 root 1.378 {
2292 root 1.427 char dummy[4];
2293     #ifdef _WIN32
2294     WSABUF buf;
2295     DWORD recvd;
2296 root 1.432 DWORD flags = 0;
2297 root 1.427 buf.buf = dummy;
2298     buf.len = sizeof (dummy);
2299 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2300 root 1.427 #else
2301     read (evpipe [0], &dummy, sizeof (dummy));
2302     #endif
2303 root 1.378 }
2304 root 1.220 }
2305 root 1.207
2306 root 1.378 pipe_write_skipped = 0;
2307    
2308 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2309    
2310 root 1.369 #if EV_SIGNAL_ENABLE
2311 root 1.307 if (sig_pending)
2312 root 1.372 {
2313 root 1.307 sig_pending = 0;
2314 root 1.207
2315 root 1.436 ECB_MEMORY_FENCE;
2316 root 1.424
2317 root 1.307 for (i = EV_NSIG - 1; i--; )
2318     if (expect_false (signals [i].pending))
2319     ev_feed_signal_event (EV_A_ i + 1);
2320 root 1.207 }
2321 root 1.369 #endif
2322 root 1.207
2323 root 1.209 #if EV_ASYNC_ENABLE
2324 root 1.307 if (async_pending)
2325 root 1.207 {
2326 root 1.307 async_pending = 0;
2327 root 1.207
2328 root 1.436 ECB_MEMORY_FENCE;
2329 root 1.424
2330 root 1.207 for (i = asynccnt; i--; )
2331     if (asyncs [i]->sent)
2332     {
2333     asyncs [i]->sent = 0;
2334 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2335 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2336     }
2337     }
2338 root 1.209 #endif
2339 root 1.207 }
2340    
2341     /*****************************************************************************/
2342    
2343 root 1.366 void
2344 root 1.420 ev_feed_signal (int signum) EV_THROW
2345 root 1.7 {
2346 root 1.207 #if EV_MULTIPLICITY
2347 root 1.453 EV_P;
2348 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2349 root 1.453 EV_A = signals [signum - 1].loop;
2350 root 1.366
2351     if (!EV_A)
2352     return;
2353 root 1.207 #endif
2354    
2355 root 1.366 signals [signum - 1].pending = 1;
2356     evpipe_write (EV_A_ &sig_pending);
2357     }
2358    
2359     static void
2360     ev_sighandler (int signum)
2361     {
2362 root 1.322 #ifdef _WIN32
2363 root 1.218 signal (signum, ev_sighandler);
2364 root 1.67 #endif
2365    
2366 root 1.366 ev_feed_signal (signum);
2367 root 1.7 }
2368    
2369 root 1.140 void noinline
2370 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2371 root 1.79 {
2372 root 1.80 WL w;
2373    
2374 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2375 root 1.307 return;
2376    
2377     --signum;
2378    
2379 root 1.79 #if EV_MULTIPLICITY
2380 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2381     /* or, likely more useful, feeding a signal nobody is waiting for */
2382 root 1.79
2383 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2384 root 1.306 return;
2385 root 1.307 #endif
2386 root 1.306
2387 root 1.307 signals [signum].pending = 0;
2388 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2389 root 1.79
2390     for (w = signals [signum].head; w; w = w->next)
2391     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2392     }
2393    
2394 root 1.303 #if EV_USE_SIGNALFD
2395     static void
2396     sigfdcb (EV_P_ ev_io *iow, int revents)
2397     {
2398 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2399 root 1.303
2400     for (;;)
2401     {
2402     ssize_t res = read (sigfd, si, sizeof (si));
2403    
2404     /* not ISO-C, as res might be -1, but works with SuS */
2405     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2406     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2407    
2408     if (res < (ssize_t)sizeof (si))
2409     break;
2410     }
2411     }
2412     #endif
2413    
2414 root 1.336 #endif
2415    
2416 root 1.8 /*****************************************************************************/
2417    
2418 root 1.336 #if EV_CHILD_ENABLE
2419 root 1.182 static WL childs [EV_PID_HASHSIZE];
2420 root 1.71
2421 root 1.136 static ev_signal childev;
2422 root 1.59
2423 root 1.206 #ifndef WIFCONTINUED
2424     # define WIFCONTINUED(status) 0
2425     #endif
2426    
2427 root 1.288 /* handle a single child status event */
2428 root 1.284 inline_speed void
2429 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2430 root 1.47 {
2431 root 1.136 ev_child *w;
2432 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2433 root 1.47
2434 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2435 root 1.206 {
2436     if ((w->pid == pid || !w->pid)
2437     && (!traced || (w->flags & 1)))
2438     {
2439 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2440 root 1.206 w->rpid = pid;
2441     w->rstatus = status;
2442     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2443     }
2444     }
2445 root 1.47 }
2446    
2447 root 1.142 #ifndef WCONTINUED
2448     # define WCONTINUED 0
2449     #endif
2450    
2451 root 1.288 /* called on sigchld etc., calls waitpid */
2452 root 1.47 static void
2453 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2454 root 1.22 {
2455     int pid, status;
2456    
2457 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2458     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2459     if (!WCONTINUED
2460     || errno != EINVAL
2461     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2462     return;
2463    
2464 root 1.216 /* make sure we are called again until all children have been reaped */
2465 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2466     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2467 root 1.47
2468 root 1.216 child_reap (EV_A_ pid, pid, status);
2469 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2470 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2471 root 1.22 }
2472    
2473 root 1.45 #endif
2474    
2475 root 1.22 /*****************************************************************************/
2476    
2477 root 1.357 #if EV_USE_IOCP
2478     # include "ev_iocp.c"
2479     #endif
2480 root 1.118 #if EV_USE_PORT
2481     # include "ev_port.c"
2482     #endif
2483 root 1.44 #if EV_USE_KQUEUE
2484     # include "ev_kqueue.c"
2485     #endif
2486 root 1.29 #if EV_USE_EPOLL
2487 root 1.1 # include "ev_epoll.c"
2488     #endif
2489 root 1.59 #if EV_USE_POLL
2490 root 1.41 # include "ev_poll.c"
2491     #endif
2492 root 1.29 #if EV_USE_SELECT
2493 root 1.1 # include "ev_select.c"
2494     #endif
2495    
2496 root 1.379 int ecb_cold
2497 root 1.420 ev_version_major (void) EV_THROW
2498 root 1.24 {
2499     return EV_VERSION_MAJOR;
2500     }
2501    
2502 root 1.379 int ecb_cold
2503 root 1.420 ev_version_minor (void) EV_THROW
2504 root 1.24 {
2505     return EV_VERSION_MINOR;
2506     }
2507    
2508 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2509 root 1.379 int inline_size ecb_cold
2510 root 1.51 enable_secure (void)
2511 root 1.41 {
2512 root 1.103 #ifdef _WIN32
2513 root 1.49 return 0;
2514     #else
2515 root 1.41 return getuid () != geteuid ()
2516     || getgid () != getegid ();
2517 root 1.49 #endif
2518 root 1.41 }
2519    
2520 root 1.379 unsigned int ecb_cold
2521 root 1.420 ev_supported_backends (void) EV_THROW
2522 root 1.129 {
2523 root 1.130 unsigned int flags = 0;
2524 root 1.129
2525     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2526     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2527     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2528     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2529     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2530    
2531     return flags;
2532     }
2533    
2534 root 1.379 unsigned int ecb_cold
2535 root 1.420 ev_recommended_backends (void) EV_THROW
2536 root 1.1 {
2537 root 1.131 unsigned int flags = ev_supported_backends ();
2538 root 1.129
2539     #ifndef __NetBSD__
2540     /* kqueue is borked on everything but netbsd apparently */
2541     /* it usually doesn't work correctly on anything but sockets and pipes */
2542     flags &= ~EVBACKEND_KQUEUE;
2543     #endif
2544     #ifdef __APPLE__
2545 root 1.278 /* only select works correctly on that "unix-certified" platform */
2546     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2547     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2548 root 1.129 #endif
2549 root 1.342 #ifdef __FreeBSD__
2550     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2551     #endif
2552 root 1.129
2553     return flags;
2554 root 1.51 }
2555    
2556 root 1.379 unsigned int ecb_cold
2557 root 1.420 ev_embeddable_backends (void) EV_THROW
2558 root 1.134 {
2559 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2560    
2561 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2562 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2563     flags &= ~EVBACKEND_EPOLL;
2564 root 1.196
2565     return flags;
2566 root 1.134 }
2567    
2568     unsigned int
2569 root 1.420 ev_backend (EV_P) EV_THROW
2570 root 1.130 {
2571     return backend;
2572     }
2573    
2574 root 1.338 #if EV_FEATURE_API
2575 root 1.162 unsigned int
2576 root 1.420 ev_iteration (EV_P) EV_THROW
2577 root 1.162 {
2578     return loop_count;
2579     }
2580    
2581 root 1.294 unsigned int
2582 root 1.420 ev_depth (EV_P) EV_THROW
2583 root 1.294 {
2584     return loop_depth;
2585     }
2586    
2587 root 1.193 void
2588 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2589 root 1.193 {
2590     io_blocktime = interval;
2591     }
2592    
2593     void
2594 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2595 root 1.193 {
2596     timeout_blocktime = interval;
2597     }
2598    
2599 root 1.297 void
2600 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2601 root 1.297 {
2602     userdata = data;
2603     }
2604    
2605     void *
2606 root 1.420 ev_userdata (EV_P) EV_THROW
2607 root 1.297 {
2608     return userdata;
2609     }
2610    
2611 root 1.379 void
2612 root 1.461 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2613 root 1.297 {
2614     invoke_cb = invoke_pending_cb;
2615     }
2616    
2617 root 1.379 void
2618 root 1.473 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2619 root 1.297 {
2620 root 1.298 release_cb = release;
2621     acquire_cb = acquire;
2622 root 1.297 }
2623     #endif
2624    
2625 root 1.288 /* initialise a loop structure, must be zero-initialised */
2626 root 1.379 static void noinline ecb_cold
2627 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2628 root 1.51 {
2629 root 1.130 if (!backend)
2630 root 1.23 {
2631 root 1.366 origflags = flags;
2632    
2633 root 1.279 #if EV_USE_REALTIME
2634     if (!have_realtime)
2635     {
2636     struct timespec ts;
2637    
2638     if (!clock_gettime (CLOCK_REALTIME, &ts))
2639     have_realtime = 1;
2640     }
2641     #endif
2642    
2643 root 1.29 #if EV_USE_MONOTONIC
2644 root 1.279 if (!have_monotonic)
2645     {
2646     struct timespec ts;
2647    
2648     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2649     have_monotonic = 1;
2650     }
2651 root 1.1 #endif
2652    
2653 root 1.306 /* pid check not overridable via env */
2654     #ifndef _WIN32
2655     if (flags & EVFLAG_FORKCHECK)
2656     curpid = getpid ();
2657     #endif
2658    
2659     if (!(flags & EVFLAG_NOENV)
2660     && !enable_secure ()
2661     && getenv ("LIBEV_FLAGS"))
2662     flags = atoi (getenv ("LIBEV_FLAGS"));
2663    
2664 root 1.378 ev_rt_now = ev_time ();
2665     mn_now = get_clock ();
2666     now_floor = mn_now;
2667     rtmn_diff = ev_rt_now - mn_now;
2668 root 1.338 #if EV_FEATURE_API
2669 root 1.378 invoke_cb = ev_invoke_pending;
2670 root 1.297 #endif
2671 root 1.1
2672 root 1.378 io_blocktime = 0.;
2673     timeout_blocktime = 0.;
2674     backend = 0;
2675     backend_fd = -1;
2676     sig_pending = 0;
2677 root 1.307 #if EV_ASYNC_ENABLE
2678 root 1.378 async_pending = 0;
2679 root 1.307 #endif
2680 root 1.378 pipe_write_skipped = 0;
2681     pipe_write_wanted = 0;
2682 root 1.448 evpipe [0] = -1;
2683     evpipe [1] = -1;
2684 root 1.209 #if EV_USE_INOTIFY
2685 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2686 root 1.209 #endif
2687 root 1.303 #if EV_USE_SIGNALFD
2688 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2689 root 1.303 #endif
2690 root 1.193
2691 root 1.366 if (!(flags & EVBACKEND_MASK))
2692 root 1.129 flags |= ev_recommended_backends ();
2693 root 1.41
2694 root 1.357 #if EV_USE_IOCP
2695     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2696     #endif
2697 root 1.118 #if EV_USE_PORT
2698 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2699 root 1.118 #endif
2700 root 1.44 #if EV_USE_KQUEUE
2701 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2702 root 1.44 #endif
2703 root 1.29 #if EV_USE_EPOLL
2704 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2705 root 1.41 #endif
2706 root 1.59 #if EV_USE_POLL
2707 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2708 root 1.1 #endif
2709 root 1.29 #if EV_USE_SELECT
2710 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2711 root 1.1 #endif
2712 root 1.70
2713 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2714    
2715 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2716 root 1.288 ev_init (&pipe_w, pipecb);
2717     ev_set_priority (&pipe_w, EV_MAXPRI);
2718 root 1.336 #endif
2719 root 1.56 }
2720     }
2721    
2722 root 1.288 /* free up a loop structure */
2723 root 1.379 void ecb_cold
2724 root 1.422 ev_loop_destroy (EV_P)
2725 root 1.56 {
2726 root 1.65 int i;
2727    
2728 root 1.364 #if EV_MULTIPLICITY
2729 root 1.363 /* mimic free (0) */
2730     if (!EV_A)
2731     return;
2732 root 1.364 #endif
2733 root 1.363
2734 root 1.361 #if EV_CLEANUP_ENABLE
2735     /* queue cleanup watchers (and execute them) */
2736     if (expect_false (cleanupcnt))
2737     {
2738     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2739     EV_INVOKE_PENDING;
2740     }
2741     #endif
2742    
2743 root 1.359 #if EV_CHILD_ENABLE
2744 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2745 root 1.359 {
2746     ev_ref (EV_A); /* child watcher */
2747     ev_signal_stop (EV_A_ &childev);
2748     }
2749     #endif
2750    
2751 root 1.288 if (ev_is_active (&pipe_w))
2752 root 1.207 {
2753 root 1.303 /*ev_ref (EV_A);*/
2754     /*ev_io_stop (EV_A_ &pipe_w);*/
2755 root 1.207
2756 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2757     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2758 root 1.207 }
2759    
2760 root 1.303 #if EV_USE_SIGNALFD
2761     if (ev_is_active (&sigfd_w))
2762 root 1.317 close (sigfd);
2763 root 1.303 #endif
2764    
2765 root 1.152 #if EV_USE_INOTIFY
2766     if (fs_fd >= 0)
2767     close (fs_fd);
2768     #endif
2769    
2770     if (backend_fd >= 0)
2771     close (backend_fd);
2772    
2773 root 1.357 #if EV_USE_IOCP
2774     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2775     #endif
2776 root 1.118 #if EV_USE_PORT
2777 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2778 root 1.118 #endif
2779 root 1.56 #if EV_USE_KQUEUE
2780 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2781 root 1.56 #endif
2782     #if EV_USE_EPOLL
2783 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2784 root 1.56 #endif
2785 root 1.59 #if EV_USE_POLL
2786 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2787 root 1.56 #endif
2788     #if EV_USE_SELECT
2789 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2790 root 1.56 #endif
2791 root 1.1
2792 root 1.65 for (i = NUMPRI; i--; )
2793 root 1.164 {
2794     array_free (pending, [i]);
2795     #if EV_IDLE_ENABLE
2796     array_free (idle, [i]);
2797     #endif
2798     }
2799 root 1.65
2800 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2801 root 1.186
2802 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2803 root 1.284 array_free (rfeed, EMPTY);
2804 root 1.164 array_free (fdchange, EMPTY);
2805     array_free (timer, EMPTY);
2806 root 1.140 #if EV_PERIODIC_ENABLE
2807 root 1.164 array_free (periodic, EMPTY);
2808 root 1.93 #endif
2809 root 1.187 #if EV_FORK_ENABLE
2810     array_free (fork, EMPTY);
2811     #endif
2812 root 1.360 #if EV_CLEANUP_ENABLE
2813     array_free (cleanup, EMPTY);
2814     #endif
2815 root 1.164 array_free (prepare, EMPTY);
2816     array_free (check, EMPTY);
2817 root 1.209 #if EV_ASYNC_ENABLE
2818     array_free (async, EMPTY);
2819     #endif
2820 root 1.65
2821 root 1.130 backend = 0;
2822 root 1.359
2823     #if EV_MULTIPLICITY
2824     if (ev_is_default_loop (EV_A))
2825     #endif
2826     ev_default_loop_ptr = 0;
2827     #if EV_MULTIPLICITY
2828     else
2829     ev_free (EV_A);
2830     #endif
2831 root 1.56 }
2832 root 1.22
2833 root 1.226 #if EV_USE_INOTIFY
2834 root 1.284 inline_size void infy_fork (EV_P);
2835 root 1.226 #endif
2836 root 1.154
2837 root 1.284 inline_size void
2838 root 1.56 loop_fork (EV_P)
2839     {
2840 root 1.118 #if EV_USE_PORT
2841 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2842 root 1.56 #endif
2843     #if EV_USE_KQUEUE
2844 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2845 root 1.45 #endif
2846 root 1.118 #if EV_USE_EPOLL
2847 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2848 root 1.118 #endif
2849 root 1.154 #if EV_USE_INOTIFY
2850     infy_fork (EV_A);
2851     #endif
2852 root 1.70
2853 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2854 root 1.288 if (ev_is_active (&pipe_w))
2855 root 1.70 {
2856 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2857 root 1.70
2858     ev_ref (EV_A);
2859 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2860 root 1.220
2861     if (evpipe [0] >= 0)
2862 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
2863 root 1.207
2864     evpipe_init (EV_A);
2865 root 1.443 /* iterate over everything, in case we missed something before */
2866     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2867 root 1.448 }
2868 root 1.337 #endif
2869 root 1.70
2870     postfork = 0;
2871 root 1.1 }
2872    
2873 root 1.55 #if EV_MULTIPLICITY
2874 root 1.250
2875 root 1.379 struct ev_loop * ecb_cold
2876 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2877 root 1.54 {
2878 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2879 root 1.69
2880 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2881 root 1.108 loop_init (EV_A_ flags);
2882 root 1.56
2883 root 1.130 if (ev_backend (EV_A))
2884 root 1.306 return EV_A;
2885 root 1.54
2886 root 1.359 ev_free (EV_A);
2887 root 1.55 return 0;
2888 root 1.54 }
2889    
2890 root 1.297 #endif /* multiplicity */
2891 root 1.248
2892     #if EV_VERIFY
2893 root 1.379 static void noinline ecb_cold
2894 root 1.251 verify_watcher (EV_P_ W w)
2895     {
2896 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2897 root 1.251
2898     if (w->pending)
2899 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2900 root 1.251 }
2901    
2902 root 1.379 static void noinline ecb_cold
2903 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2904     {
2905     int i;
2906    
2907     for (i = HEAP0; i < N + HEAP0; ++i)
2908     {
2909 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2910     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2911     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2912 root 1.251
2913     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2914     }
2915     }
2916    
2917 root 1.379 static void noinline ecb_cold
2918 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2919 root 1.248 {
2920     while (cnt--)
2921 root 1.251 {
2922 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2923 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2924     }
2925 root 1.248 }
2926 root 1.250 #endif
2927 root 1.248
2928 root 1.338 #if EV_FEATURE_API
2929 root 1.379 void ecb_cold
2930 root 1.420 ev_verify (EV_P) EV_THROW
2931 root 1.248 {
2932 root 1.250 #if EV_VERIFY
2933 root 1.429 int i;
2934 root 1.426 WL w, w2;
2935 root 1.251
2936     assert (activecnt >= -1);
2937    
2938     assert (fdchangemax >= fdchangecnt);
2939     for (i = 0; i < fdchangecnt; ++i)
2940 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2941 root 1.251
2942     assert (anfdmax >= 0);
2943 root 1.429 for (i = 0; i < anfdmax; ++i)
2944     {
2945     int j = 0;
2946    
2947     for (w = w2 = anfds [i].head; w; w = w->next)
2948     {
2949     verify_watcher (EV_A_ (W)w);
2950 root 1.426
2951 root 1.429 if (j++ & 1)
2952     {
2953     assert (("libev: io watcher list contains a loop", w != w2));
2954     w2 = w2->next;
2955     }
2956 root 1.426
2957 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2958     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2959     }
2960     }
2961 root 1.251
2962     assert (timermax >= timercnt);
2963     verify_heap (EV_A_ timers, timercnt);
2964 root 1.248
2965     #if EV_PERIODIC_ENABLE
2966 root 1.251 assert (periodicmax >= periodiccnt);
2967     verify_heap (EV_A_ periodics, periodiccnt);
2968 root 1.248 #endif
2969    
2970 root 1.251 for (i = NUMPRI; i--; )
2971     {
2972     assert (pendingmax [i] >= pendingcnt [i]);
2973 root 1.248 #if EV_IDLE_ENABLE
2974 root 1.252 assert (idleall >= 0);
2975 root 1.251 assert (idlemax [i] >= idlecnt [i]);
2976     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2977 root 1.248 #endif
2978 root 1.251 }
2979    
2980 root 1.248 #if EV_FORK_ENABLE
2981 root 1.251 assert (forkmax >= forkcnt);
2982     array_verify (EV_A_ (W *)forks, forkcnt);
2983 root 1.248 #endif
2984 root 1.251
2985 root 1.360 #if EV_CLEANUP_ENABLE
2986     assert (cleanupmax >= cleanupcnt);
2987     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2988     #endif
2989    
2990 root 1.250 #if EV_ASYNC_ENABLE
2991 root 1.251 assert (asyncmax >= asynccnt);
2992     array_verify (EV_A_ (W *)asyncs, asynccnt);
2993 root 1.250 #endif
2994 root 1.251
2995 root 1.337 #if EV_PREPARE_ENABLE
2996 root 1.251 assert (preparemax >= preparecnt);
2997     array_verify (EV_A_ (W *)prepares, preparecnt);
2998 root 1.337 #endif
2999 root 1.251
3000 root 1.337 #if EV_CHECK_ENABLE
3001 root 1.251 assert (checkmax >= checkcnt);
3002     array_verify (EV_A_ (W *)checks, checkcnt);
3003 root 1.337 #endif
3004 root 1.251
3005     # if 0
3006 root 1.336 #if EV_CHILD_ENABLE
3007 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3008 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3009 root 1.336 #endif
3010 root 1.251 # endif
3011 root 1.248 #endif
3012     }
3013 root 1.297 #endif
3014 root 1.56
3015     #if EV_MULTIPLICITY
3016 root 1.379 struct ev_loop * ecb_cold
3017 root 1.54 #else
3018     int
3019 root 1.358 #endif
3020 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
3021 root 1.54 {
3022 root 1.116 if (!ev_default_loop_ptr)
3023 root 1.56 {
3024     #if EV_MULTIPLICITY
3025 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3026 root 1.56 #else
3027 ayin 1.117 ev_default_loop_ptr = 1;
3028 root 1.54 #endif
3029    
3030 root 1.110 loop_init (EV_A_ flags);
3031 root 1.56
3032 root 1.130 if (ev_backend (EV_A))
3033 root 1.56 {
3034 root 1.336 #if EV_CHILD_ENABLE
3035 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3036     ev_set_priority (&childev, EV_MAXPRI);
3037     ev_signal_start (EV_A_ &childev);
3038     ev_unref (EV_A); /* child watcher should not keep loop alive */
3039     #endif
3040     }
3041     else
3042 root 1.116 ev_default_loop_ptr = 0;
3043 root 1.56 }
3044 root 1.8
3045 root 1.116 return ev_default_loop_ptr;
3046 root 1.1 }
3047    
3048 root 1.24 void
3049 root 1.420 ev_loop_fork (EV_P) EV_THROW
3050 root 1.1 {
3051 root 1.440 postfork = 1;
3052 root 1.1 }
3053    
3054 root 1.8 /*****************************************************************************/
3055    
3056 root 1.168 void
3057     ev_invoke (EV_P_ void *w, int revents)
3058     {
3059     EV_CB_INVOKE ((W)w, revents);
3060     }
3061    
3062 root 1.300 unsigned int
3063 root 1.420 ev_pending_count (EV_P) EV_THROW
3064 root 1.300 {
3065     int pri;
3066     unsigned int count = 0;
3067    
3068     for (pri = NUMPRI; pri--; )
3069     count += pendingcnt [pri];
3070    
3071     return count;
3072     }
3073    
3074 root 1.297 void noinline
3075 root 1.296 ev_invoke_pending (EV_P)
3076 root 1.1 {
3077 root 1.445 pendingpri = NUMPRI;
3078    
3079     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3080     {
3081     --pendingpri;
3082    
3083     while (pendingcnt [pendingpri])
3084     {
3085     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3086 root 1.1
3087 root 1.445 p->w->pending = 0;
3088     EV_CB_INVOKE (p->w, p->events);
3089     EV_FREQUENT_CHECK;
3090     }
3091     }
3092 root 1.1 }
3093    
3094 root 1.234 #if EV_IDLE_ENABLE
3095 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3096     /* only when higher priorities are idle" logic */
3097 root 1.284 inline_size void
3098 root 1.234 idle_reify (EV_P)
3099     {
3100     if (expect_false (idleall))
3101     {
3102     int pri;
3103    
3104     for (pri = NUMPRI; pri--; )
3105     {
3106     if (pendingcnt [pri])
3107     break;
3108    
3109     if (idlecnt [pri])
3110     {
3111     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3112     break;
3113     }
3114     }
3115     }
3116     }
3117     #endif
3118    
3119 root 1.288 /* make timers pending */
3120 root 1.284 inline_size void
3121 root 1.51 timers_reify (EV_P)
3122 root 1.1 {
3123 root 1.248 EV_FREQUENT_CHECK;
3124    
3125 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3126 root 1.1 {
3127 root 1.284 do
3128     {
3129     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3130 root 1.1
3131 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3132    
3133     /* first reschedule or stop timer */
3134     if (w->repeat)
3135     {
3136     ev_at (w) += w->repeat;
3137     if (ev_at (w) < mn_now)
3138     ev_at (w) = mn_now;
3139 root 1.61
3140 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3141 root 1.90
3142 root 1.284 ANHE_at_cache (timers [HEAP0]);
3143     downheap (timers, timercnt, HEAP0);
3144     }
3145     else
3146     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3147 root 1.243
3148 root 1.284 EV_FREQUENT_CHECK;
3149     feed_reverse (EV_A_ (W)w);
3150 root 1.12 }
3151 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3152 root 1.30
3153 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3154 root 1.12 }
3155     }
3156 root 1.4
3157 root 1.140 #if EV_PERIODIC_ENABLE
3158 root 1.370
3159 root 1.373 static void noinline
3160 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3161     {
3162 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3163     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3164    
3165     /* the above almost always errs on the low side */
3166     while (at <= ev_rt_now)
3167     {
3168     ev_tstamp nat = at + w->interval;
3169    
3170     /* when resolution fails us, we use ev_rt_now */
3171     if (expect_false (nat == at))
3172     {
3173     at = ev_rt_now;
3174     break;
3175     }
3176    
3177     at = nat;
3178     }
3179    
3180     ev_at (w) = at;
3181 root 1.370 }
3182    
3183 root 1.288 /* make periodics pending */
3184 root 1.284 inline_size void
3185 root 1.51 periodics_reify (EV_P)
3186 root 1.12 {
3187 root 1.248 EV_FREQUENT_CHECK;
3188 root 1.250
3189 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3190 root 1.12 {
3191 root 1.284 do
3192     {
3193     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3194 root 1.1
3195 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3196 root 1.61
3197 root 1.284 /* first reschedule or stop timer */
3198     if (w->reschedule_cb)
3199     {
3200     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3201 root 1.243
3202 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3203 root 1.243
3204 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3205     downheap (periodics, periodiccnt, HEAP0);
3206     }
3207     else if (w->interval)
3208 root 1.246 {
3209 root 1.370 periodic_recalc (EV_A_ w);
3210 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3211     downheap (periodics, periodiccnt, HEAP0);
3212 root 1.246 }
3213 root 1.284 else
3214     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3215 root 1.243
3216 root 1.284 EV_FREQUENT_CHECK;
3217     feed_reverse (EV_A_ (W)w);
3218 root 1.1 }
3219 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3220 root 1.12
3221 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3222 root 1.12 }
3223     }
3224    
3225 root 1.288 /* simply recalculate all periodics */
3226 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3227 root 1.379 static void noinline ecb_cold
3228 root 1.54 periodics_reschedule (EV_P)
3229 root 1.12 {
3230     int i;
3231    
3232 root 1.13 /* adjust periodics after time jump */
3233 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3234 root 1.12 {
3235 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3236 root 1.12
3237 root 1.77 if (w->reschedule_cb)
3238 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3239 root 1.77 else if (w->interval)
3240 root 1.370 periodic_recalc (EV_A_ w);
3241 root 1.242
3242 root 1.248 ANHE_at_cache (periodics [i]);
3243 root 1.77 }
3244 root 1.12
3245 root 1.248 reheap (periodics, periodiccnt);
3246 root 1.1 }
3247 root 1.93 #endif
3248 root 1.1
3249 root 1.288 /* adjust all timers by a given offset */
3250 root 1.379 static void noinline ecb_cold
3251 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3252     {
3253     int i;
3254    
3255     for (i = 0; i < timercnt; ++i)
3256     {
3257     ANHE *he = timers + i + HEAP0;
3258     ANHE_w (*he)->at += adjust;
3259     ANHE_at_cache (*he);
3260     }
3261     }
3262    
3263 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3264 root 1.324 /* also detect if there was a timejump, and act accordingly */
3265 root 1.284 inline_speed void
3266 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3267 root 1.4 {
3268 root 1.40 #if EV_USE_MONOTONIC
3269     if (expect_true (have_monotonic))
3270     {
3271 root 1.289 int i;
3272 root 1.178 ev_tstamp odiff = rtmn_diff;
3273    
3274     mn_now = get_clock ();
3275    
3276     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3277     /* interpolate in the meantime */
3278     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3279 root 1.40 {
3280 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3281     return;
3282     }
3283    
3284     now_floor = mn_now;
3285     ev_rt_now = ev_time ();
3286 root 1.4
3287 root 1.178 /* loop a few times, before making important decisions.
3288     * on the choice of "4": one iteration isn't enough,
3289     * in case we get preempted during the calls to
3290     * ev_time and get_clock. a second call is almost guaranteed
3291     * to succeed in that case, though. and looping a few more times
3292     * doesn't hurt either as we only do this on time-jumps or
3293     * in the unlikely event of having been preempted here.
3294     */
3295     for (i = 4; --i; )
3296     {
3297 root 1.373 ev_tstamp diff;
3298 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3299 root 1.4
3300 root 1.373 diff = odiff - rtmn_diff;
3301    
3302     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3303 root 1.178 return; /* all is well */
3304 root 1.4
3305 root 1.178 ev_rt_now = ev_time ();
3306     mn_now = get_clock ();
3307     now_floor = mn_now;
3308     }
3309 root 1.4
3310 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3311     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3312 root 1.140 # if EV_PERIODIC_ENABLE
3313 root 1.178 periodics_reschedule (EV_A);
3314 root 1.93 # endif
3315 root 1.4 }
3316     else
3317 root 1.40 #endif
3318 root 1.4 {
3319 root 1.85 ev_rt_now = ev_time ();
3320 root 1.40
3321 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3322 root 1.13 {
3323 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3324     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3325 root 1.140 #if EV_PERIODIC_ENABLE
3326 root 1.54 periodics_reschedule (EV_A);
3327 root 1.93 #endif
3328 root 1.13 }
3329 root 1.4
3330 root 1.85 mn_now = ev_rt_now;
3331 root 1.4 }
3332     }
3333    
3334 root 1.418 int
3335 root 1.353 ev_run (EV_P_ int flags)
3336 root 1.1 {
3337 root 1.338 #if EV_FEATURE_API
3338 root 1.294 ++loop_depth;
3339 root 1.297 #endif
3340 root 1.294
3341 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3342 root 1.298
3343 root 1.353 loop_done = EVBREAK_CANCEL;
3344 root 1.1
3345 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3346 root 1.158
3347 root 1.161 do
3348 root 1.9 {
3349 root 1.250 #if EV_VERIFY >= 2
3350 root 1.340 ev_verify (EV_A);
3351 root 1.250 #endif
3352    
3353 root 1.158 #ifndef _WIN32
3354     if (expect_false (curpid)) /* penalise the forking check even more */
3355     if (expect_false (getpid () != curpid))
3356     {
3357     curpid = getpid ();
3358     postfork = 1;
3359     }
3360     #endif
3361    
3362 root 1.157 #if EV_FORK_ENABLE
3363     /* we might have forked, so queue fork handlers */
3364     if (expect_false (postfork))
3365     if (forkcnt)
3366     {
3367     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3368 root 1.297 EV_INVOKE_PENDING;
3369 root 1.157 }
3370     #endif
3371 root 1.147
3372 root 1.337 #if EV_PREPARE_ENABLE
3373 root 1.170 /* queue prepare watchers (and execute them) */
3374 root 1.40 if (expect_false (preparecnt))
3375 root 1.20 {
3376 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3377 root 1.297 EV_INVOKE_PENDING;
3378 root 1.20 }
3379 root 1.337 #endif
3380 root 1.9
3381 root 1.298 if (expect_false (loop_done))
3382     break;
3383    
3384 root 1.70 /* we might have forked, so reify kernel state if necessary */
3385     if (expect_false (postfork))
3386     loop_fork (EV_A);
3387    
3388 root 1.1 /* update fd-related kernel structures */
3389 root 1.51 fd_reify (EV_A);
3390 root 1.1
3391     /* calculate blocking time */
3392 root 1.135 {
3393 root 1.193 ev_tstamp waittime = 0.;
3394     ev_tstamp sleeptime = 0.;
3395 root 1.12
3396 root 1.353 /* remember old timestamp for io_blocktime calculation */
3397     ev_tstamp prev_mn_now = mn_now;
3398 root 1.293
3399 root 1.353 /* update time to cancel out callback processing overhead */
3400     time_update (EV_A_ 1e100);
3401 root 1.135
3402 root 1.378 /* from now on, we want a pipe-wake-up */
3403     pipe_write_wanted = 1;
3404    
3405 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3406 root 1.383
3407 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3408 root 1.353 {
3409 root 1.287 waittime = MAX_BLOCKTIME;
3410    
3411 root 1.135 if (timercnt)
3412     {
3413 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3414 root 1.193 if (waittime > to) waittime = to;
3415 root 1.135 }
3416 root 1.4
3417 root 1.140 #if EV_PERIODIC_ENABLE
3418 root 1.135 if (periodiccnt)
3419     {
3420 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3421 root 1.193 if (waittime > to) waittime = to;
3422 root 1.135 }
3423 root 1.93 #endif
3424 root 1.4
3425 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3426 root 1.193 if (expect_false (waittime < timeout_blocktime))
3427     waittime = timeout_blocktime;
3428    
3429 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3430     /* to pass a minimum nonzero value to the backend */
3431     if (expect_false (waittime < backend_mintime))
3432     waittime = backend_mintime;
3433    
3434 root 1.293 /* extra check because io_blocktime is commonly 0 */
3435     if (expect_false (io_blocktime))
3436     {
3437     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3438 root 1.193
3439 root 1.376 if (sleeptime > waittime - backend_mintime)
3440     sleeptime = waittime - backend_mintime;
3441 root 1.193
3442 root 1.293 if (expect_true (sleeptime > 0.))
3443     {
3444     ev_sleep (sleeptime);
3445     waittime -= sleeptime;
3446     }
3447 root 1.193 }
3448 root 1.135 }
3449 root 1.1
3450 root 1.338 #if EV_FEATURE_API
3451 root 1.162 ++loop_count;
3452 root 1.297 #endif
3453 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3454 root 1.193 backend_poll (EV_A_ waittime);
3455 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3456 root 1.178
3457 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3458 root 1.378
3459 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3460 root 1.378 if (pipe_write_skipped)
3461     {
3462     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3463     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3464     }
3465    
3466    
3467 root 1.178 /* update ev_rt_now, do magic */
3468 root 1.193 time_update (EV_A_ waittime + sleeptime);
3469 root 1.135 }
3470 root 1.1
3471 root 1.9 /* queue pending timers and reschedule them */
3472 root 1.51 timers_reify (EV_A); /* relative timers called last */
3473 root 1.140 #if EV_PERIODIC_ENABLE
3474 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3475 root 1.93 #endif
3476 root 1.1
3477 root 1.164 #if EV_IDLE_ENABLE
3478 root 1.137 /* queue idle watchers unless other events are pending */
3479 root 1.164 idle_reify (EV_A);
3480     #endif
3481 root 1.9
3482 root 1.337 #if EV_CHECK_ENABLE
3483 root 1.20 /* queue check watchers, to be executed first */
3484 root 1.123 if (expect_false (checkcnt))
3485 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3486 root 1.337 #endif
3487 root 1.9
3488 root 1.297 EV_INVOKE_PENDING;
3489 root 1.1 }
3490 root 1.219 while (expect_true (
3491     activecnt
3492     && !loop_done
3493 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3494 root 1.219 ));
3495 root 1.13
3496 root 1.353 if (loop_done == EVBREAK_ONE)
3497     loop_done = EVBREAK_CANCEL;
3498 root 1.294
3499 root 1.338 #if EV_FEATURE_API
3500 root 1.294 --loop_depth;
3501 root 1.297 #endif
3502 root 1.418
3503     return activecnt;
3504 root 1.51 }
3505    
3506     void
3507 root 1.420 ev_break (EV_P_ int how) EV_THROW
3508 root 1.51 {
3509     loop_done = how;
3510 root 1.1 }
3511    
3512 root 1.285 void
3513 root 1.420 ev_ref (EV_P) EV_THROW
3514 root 1.285 {
3515     ++activecnt;
3516     }
3517    
3518     void
3519 root 1.420 ev_unref (EV_P) EV_THROW
3520 root 1.285 {
3521     --activecnt;
3522     }
3523    
3524     void
3525 root 1.420 ev_now_update (EV_P) EV_THROW
3526 root 1.285 {
3527     time_update (EV_A_ 1e100);
3528     }
3529    
3530     void
3531 root 1.420 ev_suspend (EV_P) EV_THROW
3532 root 1.285 {
3533     ev_now_update (EV_A);
3534     }
3535    
3536     void
3537 root 1.420 ev_resume (EV_P) EV_THROW
3538 root 1.285 {
3539     ev_tstamp mn_prev = mn_now;
3540    
3541     ev_now_update (EV_A);
3542     timers_reschedule (EV_A_ mn_now - mn_prev);
3543 root 1.286 #if EV_PERIODIC_ENABLE
3544 root 1.288 /* TODO: really do this? */
3545 root 1.285 periodics_reschedule (EV_A);
3546 root 1.286 #endif
3547 root 1.285 }
3548    
3549 root 1.8 /*****************************************************************************/
3550 root 1.288 /* singly-linked list management, used when the expected list length is short */
3551 root 1.8
3552 root 1.284 inline_size void
3553 root 1.10 wlist_add (WL *head, WL elem)
3554 root 1.1 {
3555     elem->next = *head;
3556     *head = elem;
3557     }
3558    
3559 root 1.284 inline_size void
3560 root 1.10 wlist_del (WL *head, WL elem)
3561 root 1.1 {
3562     while (*head)
3563     {
3564 root 1.307 if (expect_true (*head == elem))
3565 root 1.1 {
3566     *head = elem->next;
3567 root 1.307 break;
3568 root 1.1 }
3569    
3570     head = &(*head)->next;
3571     }
3572     }
3573    
3574 root 1.288 /* internal, faster, version of ev_clear_pending */
3575 root 1.284 inline_speed void
3576 root 1.166 clear_pending (EV_P_ W w)
3577 root 1.16 {
3578     if (w->pending)
3579     {
3580 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3581 root 1.16 w->pending = 0;
3582     }
3583     }
3584    
3585 root 1.167 int
3586 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3587 root 1.166 {
3588     W w_ = (W)w;
3589     int pending = w_->pending;
3590    
3591 root 1.172 if (expect_true (pending))
3592     {
3593     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3594 root 1.288 p->w = (W)&pending_w;
3595 root 1.172 w_->pending = 0;
3596     return p->events;
3597     }
3598     else
3599 root 1.167 return 0;
3600 root 1.166 }
3601    
3602 root 1.284 inline_size void
3603 root 1.164 pri_adjust (EV_P_ W w)
3604     {
3605 root 1.295 int pri = ev_priority (w);
3606 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3607     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3608 root 1.295 ev_set_priority (w, pri);
3609 root 1.164 }
3610    
3611 root 1.284 inline_speed void
3612 root 1.51 ev_start (EV_P_ W w, int active)
3613 root 1.1 {
3614 root 1.164 pri_adjust (EV_A_ w);
3615 root 1.1 w->active = active;
3616 root 1.51 ev_ref (EV_A);
3617 root 1.1 }
3618    
3619 root 1.284 inline_size void
3620 root 1.51 ev_stop (EV_P_ W w)
3621 root 1.1 {
3622 root 1.51 ev_unref (EV_A);
3623 root 1.1 w->active = 0;
3624     }
3625    
3626 root 1.8 /*****************************************************************************/
3627    
3628 root 1.171 void noinline
3629 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3630 root 1.1 {
3631 root 1.37 int fd = w->fd;
3632    
3633 root 1.123 if (expect_false (ev_is_active (w)))
3634 root 1.1 return;
3635    
3636 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3637 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3638 root 1.33
3639 root 1.248 EV_FREQUENT_CHECK;
3640    
3641 root 1.51 ev_start (EV_A_ (W)w, 1);
3642 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3643 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3644 root 1.1
3645 root 1.426 /* common bug, apparently */
3646     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3647    
3648 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3649 root 1.281 w->events &= ~EV__IOFDSET;
3650 root 1.248
3651     EV_FREQUENT_CHECK;
3652 root 1.1 }
3653    
3654 root 1.171 void noinline
3655 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3656 root 1.1 {
3657 root 1.166 clear_pending (EV_A_ (W)w);
3658 root 1.123 if (expect_false (!ev_is_active (w)))
3659 root 1.1 return;
3660    
3661 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3662 root 1.89
3663 root 1.248 EV_FREQUENT_CHECK;
3664    
3665 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3666 root 1.51 ev_stop (EV_A_ (W)w);
3667 root 1.1
3668 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3669 root 1.248
3670     EV_FREQUENT_CHECK;
3671 root 1.1 }
3672    
3673 root 1.171 void noinline
3674 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3675 root 1.1 {
3676 root 1.123 if (expect_false (ev_is_active (w)))
3677 root 1.1 return;
3678    
3679 root 1.228 ev_at (w) += mn_now;
3680 root 1.12
3681 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3682 root 1.13
3683 root 1.248 EV_FREQUENT_CHECK;
3684    
3685     ++timercnt;
3686     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3687 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3688     ANHE_w (timers [ev_active (w)]) = (WT)w;
3689 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3690 root 1.235 upheap (timers, ev_active (w));
3691 root 1.62
3692 root 1.248 EV_FREQUENT_CHECK;
3693    
3694 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3695 root 1.12 }
3696    
3697 root 1.171 void noinline
3698 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3699 root 1.12 {
3700 root 1.166 clear_pending (EV_A_ (W)w);
3701 root 1.123 if (expect_false (!ev_is_active (w)))
3702 root 1.12 return;
3703    
3704 root 1.248 EV_FREQUENT_CHECK;
3705    
3706 root 1.230 {
3707     int active = ev_active (w);
3708 root 1.62
3709 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3710 root 1.151
3711 root 1.248 --timercnt;
3712    
3713     if (expect_true (active < timercnt + HEAP0))
3714 root 1.151 {
3715 root 1.248 timers [active] = timers [timercnt + HEAP0];
3716 root 1.181 adjustheap (timers, timercnt, active);
3717 root 1.151 }
3718 root 1.248 }
3719 root 1.228
3720     ev_at (w) -= mn_now;
3721 root 1.14
3722 root 1.51 ev_stop (EV_A_ (W)w);
3723 root 1.328
3724     EV_FREQUENT_CHECK;
3725 root 1.12 }
3726 root 1.4
3727 root 1.171 void noinline
3728 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3729 root 1.14 {
3730 root 1.248 EV_FREQUENT_CHECK;
3731    
3732 root 1.407 clear_pending (EV_A_ (W)w);
3733 root 1.406
3734 root 1.14 if (ev_is_active (w))
3735     {
3736     if (w->repeat)
3737 root 1.99 {
3738 root 1.228 ev_at (w) = mn_now + w->repeat;
3739 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3740 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3741 root 1.99 }
3742 root 1.14 else
3743 root 1.51 ev_timer_stop (EV_A_ w);
3744 root 1.14 }
3745     else if (w->repeat)
3746 root 1.112 {
3747 root 1.229 ev_at (w) = w->repeat;
3748 root 1.112 ev_timer_start (EV_A_ w);
3749     }
3750 root 1.248
3751     EV_FREQUENT_CHECK;
3752 root 1.14 }
3753    
3754 root 1.301 ev_tstamp
3755 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3756 root 1.301 {
3757     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3758     }
3759    
3760 root 1.140 #if EV_PERIODIC_ENABLE
3761 root 1.171 void noinline
3762 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3763 root 1.12 {
3764 root 1.123 if (expect_false (ev_is_active (w)))
3765 root 1.12 return;
3766 root 1.1
3767 root 1.77 if (w->reschedule_cb)
3768 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3769 root 1.77 else if (w->interval)
3770     {
3771 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3772 root 1.370 periodic_recalc (EV_A_ w);
3773 root 1.77 }
3774 root 1.173 else
3775 root 1.228 ev_at (w) = w->offset;
3776 root 1.12
3777 root 1.248 EV_FREQUENT_CHECK;
3778    
3779     ++periodiccnt;
3780     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3781 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3782     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3783 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3784 root 1.235 upheap (periodics, ev_active (w));
3785 root 1.62
3786 root 1.248 EV_FREQUENT_CHECK;
3787    
3788 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3789 root 1.1 }
3790    
3791 root 1.171 void noinline
3792 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3793 root 1.1 {
3794 root 1.166 clear_pending (EV_A_ (W)w);
3795 root 1.123 if (expect_false (!ev_is_active (w)))
3796 root 1.1 return;
3797    
3798 root 1.248 EV_FREQUENT_CHECK;
3799    
3800 root 1.230 {
3801     int active = ev_active (w);
3802 root 1.62
3803 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3804 root 1.151
3805 root 1.248 --periodiccnt;
3806    
3807     if (expect_true (active < periodiccnt + HEAP0))
3808 root 1.151 {
3809 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3810 root 1.181 adjustheap (periodics, periodiccnt, active);
3811 root 1.151 }
3812 root 1.248 }
3813 root 1.228
3814 root 1.328 ev_stop (EV_A_ (W)w);
3815    
3816 root 1.248 EV_FREQUENT_CHECK;
3817 root 1.1 }
3818    
3819 root 1.171 void noinline
3820 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3821 root 1.77 {
3822 root 1.84 /* TODO: use adjustheap and recalculation */
3823 root 1.77 ev_periodic_stop (EV_A_ w);
3824     ev_periodic_start (EV_A_ w);
3825     }
3826 root 1.93 #endif
3827 root 1.77
3828 root 1.56 #ifndef SA_RESTART
3829     # define SA_RESTART 0
3830     #endif
3831    
3832 root 1.336 #if EV_SIGNAL_ENABLE
3833    
3834 root 1.171 void noinline
3835 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3836 root 1.56 {
3837 root 1.123 if (expect_false (ev_is_active (w)))
3838 root 1.56 return;
3839    
3840 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3841    
3842     #if EV_MULTIPLICITY
3843 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3844 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3845    
3846     signals [w->signum - 1].loop = EV_A;
3847 root 1.449 ECB_MEMORY_FENCE_RELEASE;
3848 root 1.306 #endif
3849 root 1.56
3850 root 1.303 EV_FREQUENT_CHECK;
3851    
3852     #if EV_USE_SIGNALFD
3853     if (sigfd == -2)
3854     {
3855     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3856     if (sigfd < 0 && errno == EINVAL)
3857     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3858    
3859     if (sigfd >= 0)
3860     {
3861     fd_intern (sigfd); /* doing it twice will not hurt */
3862    
3863     sigemptyset (&sigfd_set);
3864    
3865     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3866     ev_set_priority (&sigfd_w, EV_MAXPRI);
3867     ev_io_start (EV_A_ &sigfd_w);
3868     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3869     }
3870     }
3871    
3872     if (sigfd >= 0)
3873     {
3874     /* TODO: check .head */
3875     sigaddset (&sigfd_set, w->signum);
3876     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3877 root 1.207
3878 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3879     }
3880 root 1.180 #endif
3881    
3882 root 1.56 ev_start (EV_A_ (W)w, 1);
3883 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3884 root 1.56
3885 root 1.63 if (!((WL)w)->next)
3886 root 1.304 # if EV_USE_SIGNALFD
3887 root 1.306 if (sigfd < 0) /*TODO*/
3888 root 1.304 # endif
3889 root 1.306 {
3890 root 1.322 # ifdef _WIN32
3891 root 1.317 evpipe_init (EV_A);
3892    
3893 root 1.306 signal (w->signum, ev_sighandler);
3894     # else
3895     struct sigaction sa;
3896    
3897     evpipe_init (EV_A);
3898    
3899     sa.sa_handler = ev_sighandler;
3900     sigfillset (&sa.sa_mask);
3901     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3902     sigaction (w->signum, &sa, 0);
3903    
3904 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3905     {
3906     sigemptyset (&sa.sa_mask);
3907     sigaddset (&sa.sa_mask, w->signum);
3908     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3909     }
3910 root 1.67 #endif
3911 root 1.306 }
3912 root 1.248
3913     EV_FREQUENT_CHECK;
3914 root 1.56 }
3915    
3916 root 1.171 void noinline
3917 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3918 root 1.56 {
3919 root 1.166 clear_pending (EV_A_ (W)w);
3920 root 1.123 if (expect_false (!ev_is_active (w)))
3921 root 1.56 return;
3922    
3923 root 1.248 EV_FREQUENT_CHECK;
3924    
3925 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3926 root 1.56 ev_stop (EV_A_ (W)w);
3927    
3928     if (!signals [w->signum - 1].head)
3929 root 1.306 {
3930 root 1.307 #if EV_MULTIPLICITY
3931 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3932 root 1.307 #endif
3933     #if EV_USE_SIGNALFD
3934 root 1.306 if (sigfd >= 0)
3935     {
3936 root 1.321 sigset_t ss;
3937    
3938     sigemptyset (&ss);
3939     sigaddset (&ss, w->signum);
3940 root 1.306 sigdelset (&sigfd_set, w->signum);
3941 root 1.321
3942 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3943 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3944 root 1.306 }
3945     else
3946 root 1.307 #endif
3947 root 1.306 signal (w->signum, SIG_DFL);
3948     }
3949 root 1.248
3950     EV_FREQUENT_CHECK;
3951 root 1.56 }
3952    
3953 root 1.336 #endif
3954    
3955     #if EV_CHILD_ENABLE
3956    
3957 root 1.28 void
3958 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3959 root 1.22 {
3960 root 1.56 #if EV_MULTIPLICITY
3961 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3962 root 1.56 #endif
3963 root 1.123 if (expect_false (ev_is_active (w)))
3964 root 1.22 return;
3965    
3966 root 1.248 EV_FREQUENT_CHECK;
3967    
3968 root 1.51 ev_start (EV_A_ (W)w, 1);
3969 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3970 root 1.248
3971     EV_FREQUENT_CHECK;
3972 root 1.22 }
3973    
3974 root 1.28 void
3975 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3976 root 1.22 {
3977 root 1.166 clear_pending (EV_A_ (W)w);
3978 root 1.123 if (expect_false (!ev_is_active (w)))
3979 root 1.22 return;
3980    
3981 root 1.248 EV_FREQUENT_CHECK;
3982    
3983 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3984 root 1.51 ev_stop (EV_A_ (W)w);
3985 root 1.248
3986     EV_FREQUENT_CHECK;
3987 root 1.22 }
3988    
3989 root 1.336 #endif
3990    
3991 root 1.140 #if EV_STAT_ENABLE
3992    
3993     # ifdef _WIN32
3994 root 1.146 # undef lstat
3995     # define lstat(a,b) _stati64 (a,b)
3996 root 1.140 # endif
3997    
3998 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
3999     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4000     #define MIN_STAT_INTERVAL 0.1074891
4001 root 1.143
4002 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4003 root 1.152
4004     #if EV_USE_INOTIFY
4005 root 1.326
4006     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4007     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4008 root 1.152
4009     static void noinline
4010     infy_add (EV_P_ ev_stat *w)
4011     {
4012 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4013     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4014     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4015     | IN_DONT_FOLLOW | IN_MASK_ADD);
4016 root 1.152
4017 root 1.318 if (w->wd >= 0)
4018 root 1.152 {
4019 root 1.318 struct statfs sfs;
4020    
4021     /* now local changes will be tracked by inotify, but remote changes won't */
4022     /* unless the filesystem is known to be local, we therefore still poll */
4023     /* also do poll on <2.6.25, but with normal frequency */
4024    
4025     if (!fs_2625)
4026     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4027     else if (!statfs (w->path, &sfs)
4028     && (sfs.f_type == 0x1373 /* devfs */
4029 root 1.451 || sfs.f_type == 0x4006 /* fat */
4030     || sfs.f_type == 0x4d44 /* msdos */
4031 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4032 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4033     || sfs.f_type == 0x858458f6 /* ramfs */
4034     || sfs.f_type == 0x5346544e /* ntfs */
4035 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4036 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4037 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4038 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4039 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4040     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4041     else
4042     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4043     }
4044     else
4045     {
4046     /* can't use inotify, continue to stat */
4047 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4048 root 1.152
4049 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4050 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4051 root 1.233 /* but an efficiency issue only */
4052 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4053 root 1.152 {
4054 root 1.153 char path [4096];
4055 root 1.152 strcpy (path, w->path);
4056    
4057     do
4058     {
4059     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4060     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4061    
4062     char *pend = strrchr (path, '/');
4063    
4064 root 1.275 if (!pend || pend == path)
4065     break;
4066 root 1.152
4067     *pend = 0;
4068 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4069 root 1.372 }
4070 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4071     }
4072     }
4073 root 1.275
4074     if (w->wd >= 0)
4075 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4076 root 1.152
4077 root 1.318 /* now re-arm timer, if required */
4078     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4079     ev_timer_again (EV_A_ &w->timer);
4080     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4081 root 1.152 }
4082    
4083     static void noinline
4084     infy_del (EV_P_ ev_stat *w)
4085     {
4086     int slot;
4087     int wd = w->wd;
4088    
4089     if (wd < 0)
4090     return;
4091    
4092     w->wd = -2;
4093 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4094 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4095    
4096     /* remove this watcher, if others are watching it, they will rearm */
4097     inotify_rm_watch (fs_fd, wd);
4098     }
4099    
4100     static void noinline
4101     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4102     {
4103     if (slot < 0)
4104 root 1.264 /* overflow, need to check for all hash slots */
4105 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4106 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4107     else
4108     {
4109     WL w_;
4110    
4111 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4112 root 1.152 {
4113     ev_stat *w = (ev_stat *)w_;
4114     w_ = w_->next; /* lets us remove this watcher and all before it */
4115    
4116     if (w->wd == wd || wd == -1)
4117     {
4118     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4119     {
4120 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4121 root 1.152 w->wd = -1;
4122     infy_add (EV_A_ w); /* re-add, no matter what */
4123     }
4124    
4125 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4126 root 1.152 }
4127     }
4128     }
4129     }
4130    
4131     static void
4132     infy_cb (EV_P_ ev_io *w, int revents)
4133     {
4134     char buf [EV_INOTIFY_BUFSIZE];
4135     int ofs;
4136     int len = read (fs_fd, buf, sizeof (buf));
4137    
4138 root 1.326 for (ofs = 0; ofs < len; )
4139     {
4140     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4141     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4142     ofs += sizeof (struct inotify_event) + ev->len;
4143     }
4144 root 1.152 }
4145    
4146 root 1.379 inline_size void ecb_cold
4147 root 1.330 ev_check_2625 (EV_P)
4148     {
4149     /* kernels < 2.6.25 are borked
4150     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4151     */
4152     if (ev_linux_version () < 0x020619)
4153 root 1.273 return;
4154 root 1.264
4155 root 1.273 fs_2625 = 1;
4156     }
4157 root 1.264
4158 root 1.315 inline_size int
4159     infy_newfd (void)
4160     {
4161 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4162 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4163     if (fd >= 0)
4164     return fd;
4165     #endif
4166     return inotify_init ();
4167     }
4168    
4169 root 1.284 inline_size void
4170 root 1.273 infy_init (EV_P)
4171     {
4172     if (fs_fd != -2)
4173     return;
4174 root 1.264
4175 root 1.273 fs_fd = -1;
4176 root 1.264
4177 root 1.330 ev_check_2625 (EV_A);
4178 root 1.264
4179 root 1.315 fs_fd = infy_newfd ();
4180 root 1.152
4181     if (fs_fd >= 0)
4182     {
4183 root 1.315 fd_intern (fs_fd);
4184 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4185     ev_set_priority (&fs_w, EV_MAXPRI);
4186     ev_io_start (EV_A_ &fs_w);
4187 root 1.317 ev_unref (EV_A);
4188 root 1.152 }
4189     }
4190    
4191 root 1.284 inline_size void
4192 root 1.154 infy_fork (EV_P)
4193     {
4194     int slot;
4195    
4196     if (fs_fd < 0)
4197     return;
4198    
4199 root 1.317 ev_ref (EV_A);
4200 root 1.315 ev_io_stop (EV_A_ &fs_w);
4201 root 1.154 close (fs_fd);
4202 root 1.315 fs_fd = infy_newfd ();
4203    
4204     if (fs_fd >= 0)
4205     {
4206     fd_intern (fs_fd);
4207     ev_io_set (&fs_w, fs_fd, EV_READ);
4208     ev_io_start (EV_A_ &fs_w);
4209 root 1.317 ev_unref (EV_A);
4210 root 1.315 }
4211 root 1.154
4212 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4213 root 1.154 {
4214     WL w_ = fs_hash [slot].head;
4215     fs_hash [slot].head = 0;
4216    
4217     while (w_)
4218     {
4219     ev_stat *w = (ev_stat *)w_;
4220     w_ = w_->next; /* lets us add this watcher */
4221    
4222     w->wd = -1;
4223    
4224     if (fs_fd >= 0)
4225     infy_add (EV_A_ w); /* re-add, no matter what */
4226     else
4227 root 1.318 {
4228     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4229     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4230     ev_timer_again (EV_A_ &w->timer);
4231     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4232     }
4233 root 1.154 }
4234     }
4235     }
4236    
4237 root 1.152 #endif
4238    
4239 root 1.255 #ifdef _WIN32
4240     # define EV_LSTAT(p,b) _stati64 (p, b)
4241     #else
4242     # define EV_LSTAT(p,b) lstat (p, b)
4243     #endif
4244    
4245 root 1.140 void
4246 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4247 root 1.140 {
4248     if (lstat (w->path, &w->attr) < 0)
4249     w->attr.st_nlink = 0;
4250     else if (!w->attr.st_nlink)
4251     w->attr.st_nlink = 1;
4252     }
4253    
4254 root 1.157 static void noinline
4255 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4256     {
4257     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4258    
4259 root 1.320 ev_statdata prev = w->attr;
4260 root 1.140 ev_stat_stat (EV_A_ w);
4261    
4262 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4263     if (
4264 root 1.320 prev.st_dev != w->attr.st_dev
4265     || prev.st_ino != w->attr.st_ino
4266     || prev.st_mode != w->attr.st_mode
4267     || prev.st_nlink != w->attr.st_nlink
4268     || prev.st_uid != w->attr.st_uid
4269     || prev.st_gid != w->attr.st_gid
4270     || prev.st_rdev != w->attr.st_rdev
4271     || prev.st_size != w->attr.st_size
4272     || prev.st_atime != w->attr.st_atime
4273     || prev.st_mtime != w->attr.st_mtime
4274     || prev.st_ctime != w->attr.st_ctime
4275 root 1.156 ) {
4276 root 1.320 /* we only update w->prev on actual differences */
4277     /* in case we test more often than invoke the callback, */
4278     /* to ensure that prev is always different to attr */
4279     w->prev = prev;
4280    
4281 root 1.152 #if EV_USE_INOTIFY
4282 root 1.264 if (fs_fd >= 0)
4283     {
4284     infy_del (EV_A_ w);
4285     infy_add (EV_A_ w);
4286     ev_stat_stat (EV_A_ w); /* avoid race... */
4287     }
4288 root 1.152 #endif
4289    
4290     ev_feed_event (EV_A_ w, EV_STAT);
4291     }
4292 root 1.140 }
4293    
4294     void
4295 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4296 root 1.140 {
4297     if (expect_false (ev_is_active (w)))
4298     return;
4299    
4300     ev_stat_stat (EV_A_ w);
4301    
4302 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4303     w->interval = MIN_STAT_INTERVAL;
4304 root 1.143
4305 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4306 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4307 root 1.152
4308     #if EV_USE_INOTIFY
4309     infy_init (EV_A);
4310    
4311     if (fs_fd >= 0)
4312     infy_add (EV_A_ w);
4313     else
4314     #endif
4315 root 1.318 {
4316     ev_timer_again (EV_A_ &w->timer);
4317     ev_unref (EV_A);
4318     }
4319 root 1.140
4320     ev_start (EV_A_ (W)w, 1);
4321 root 1.248
4322     EV_FREQUENT_CHECK;
4323 root 1.140 }
4324    
4325     void
4326 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4327 root 1.140 {
4328 root 1.166 clear_pending (EV_A_ (W)w);
4329 root 1.140 if (expect_false (!ev_is_active (w)))
4330     return;
4331    
4332 root 1.248 EV_FREQUENT_CHECK;
4333    
4334 root 1.152 #if EV_USE_INOTIFY
4335     infy_del (EV_A_ w);
4336     #endif
4337 root 1.318
4338     if (ev_is_active (&w->timer))
4339     {
4340     ev_ref (EV_A);
4341     ev_timer_stop (EV_A_ &w->timer);
4342     }
4343 root 1.140
4344 root 1.134 ev_stop (EV_A_ (W)w);
4345 root 1.248
4346     EV_FREQUENT_CHECK;
4347 root 1.134 }
4348     #endif
4349    
4350 root 1.164 #if EV_IDLE_ENABLE
4351 root 1.144 void
4352 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4353 root 1.144 {
4354     if (expect_false (ev_is_active (w)))
4355     return;
4356    
4357 root 1.164 pri_adjust (EV_A_ (W)w);
4358    
4359 root 1.248 EV_FREQUENT_CHECK;
4360    
4361 root 1.164 {
4362     int active = ++idlecnt [ABSPRI (w)];
4363    
4364     ++idleall;
4365     ev_start (EV_A_ (W)w, active);
4366    
4367     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4368     idles [ABSPRI (w)][active - 1] = w;
4369     }
4370 root 1.248
4371     EV_FREQUENT_CHECK;
4372 root 1.144 }
4373    
4374     void
4375 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4376 root 1.144 {
4377 root 1.166 clear_pending (EV_A_ (W)w);
4378 root 1.144 if (expect_false (!ev_is_active (w)))
4379     return;
4380    
4381 root 1.248 EV_FREQUENT_CHECK;
4382    
4383 root 1.144 {
4384 root 1.230 int active = ev_active (w);
4385 root 1.164
4386     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4387 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4388 root 1.164
4389     ev_stop (EV_A_ (W)w);
4390     --idleall;
4391 root 1.144 }
4392 root 1.248
4393     EV_FREQUENT_CHECK;
4394 root 1.144 }
4395 root 1.164 #endif
4396 root 1.144
4397 root 1.337 #if EV_PREPARE_ENABLE
4398 root 1.144 void
4399 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4400 root 1.144 {
4401     if (expect_false (ev_is_active (w)))
4402     return;
4403    
4404 root 1.248 EV_FREQUENT_CHECK;
4405    
4406 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4407     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4408     prepares [preparecnt - 1] = w;
4409 root 1.248
4410     EV_FREQUENT_CHECK;
4411 root 1.144 }
4412    
4413     void
4414 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4415 root 1.144 {
4416 root 1.166 clear_pending (EV_A_ (W)w);
4417 root 1.144 if (expect_false (!ev_is_active (w)))
4418     return;
4419    
4420 root 1.248 EV_FREQUENT_CHECK;
4421    
4422 root 1.144 {
4423 root 1.230 int active = ev_active (w);
4424    
4425 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4426 root 1.230 ev_active (prepares [active - 1]) = active;
4427 root 1.144 }
4428    
4429     ev_stop (EV_A_ (W)w);
4430 root 1.248
4431     EV_FREQUENT_CHECK;
4432 root 1.144 }
4433 root 1.337 #endif
4434 root 1.144
4435 root 1.337 #if EV_CHECK_ENABLE
4436 root 1.144 void
4437 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4438 root 1.144 {
4439     if (expect_false (ev_is_active (w)))
4440     return;
4441    
4442 root 1.248 EV_FREQUENT_CHECK;
4443    
4444 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4445     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4446     checks [checkcnt - 1] = w;
4447 root 1.248
4448     EV_FREQUENT_CHECK;
4449 root 1.144 }
4450    
4451     void
4452 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4453 root 1.144 {
4454 root 1.166 clear_pending (EV_A_ (W)w);
4455 root 1.144 if (expect_false (!ev_is_active (w)))
4456     return;
4457    
4458 root 1.248 EV_FREQUENT_CHECK;
4459    
4460 root 1.144 {
4461 root 1.230 int active = ev_active (w);
4462    
4463 root 1.144 checks [active - 1] = checks [--checkcnt];
4464 root 1.230 ev_active (checks [active - 1]) = active;
4465 root 1.144 }
4466    
4467     ev_stop (EV_A_ (W)w);
4468 root 1.248
4469     EV_FREQUENT_CHECK;
4470 root 1.144 }
4471 root 1.337 #endif
4472 root 1.144
4473     #if EV_EMBED_ENABLE
4474     void noinline
4475 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4476 root 1.144 {
4477 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4478 root 1.144 }
4479    
4480     static void
4481 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4482 root 1.144 {
4483     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4484    
4485     if (ev_cb (w))
4486     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4487     else
4488 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4489 root 1.144 }
4490    
4491 root 1.189 static void
4492     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4493     {
4494     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4495    
4496 root 1.195 {
4497 root 1.306 EV_P = w->other;
4498 root 1.195
4499     while (fdchangecnt)
4500     {
4501     fd_reify (EV_A);
4502 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4503 root 1.195 }
4504     }
4505     }
4506    
4507 root 1.261 static void
4508     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4509     {
4510     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4511    
4512 root 1.277 ev_embed_stop (EV_A_ w);
4513    
4514 root 1.261 {
4515 root 1.306 EV_P = w->other;
4516 root 1.261
4517     ev_loop_fork (EV_A);
4518 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4519 root 1.261 }
4520 root 1.277
4521     ev_embed_start (EV_A_ w);
4522 root 1.261 }
4523    
4524 root 1.195 #if 0
4525     static void
4526     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4527     {
4528     ev_idle_stop (EV_A_ idle);
4529 root 1.189 }
4530 root 1.195 #endif
4531 root 1.189
4532 root 1.144 void
4533 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4534 root 1.144 {
4535     if (expect_false (ev_is_active (w)))
4536     return;
4537    
4538     {
4539 root 1.306 EV_P = w->other;
4540 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4541 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4542 root 1.144 }
4543    
4544 root 1.248 EV_FREQUENT_CHECK;
4545    
4546 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4547     ev_io_start (EV_A_ &w->io);
4548    
4549 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4550     ev_set_priority (&w->prepare, EV_MINPRI);
4551     ev_prepare_start (EV_A_ &w->prepare);
4552    
4553 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4554     ev_fork_start (EV_A_ &w->fork);
4555    
4556 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4557    
4558 root 1.144 ev_start (EV_A_ (W)w, 1);
4559 root 1.248
4560     EV_FREQUENT_CHECK;
4561 root 1.144 }
4562    
4563     void
4564 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4565 root 1.144 {
4566 root 1.166 clear_pending (EV_A_ (W)w);
4567 root 1.144 if (expect_false (!ev_is_active (w)))
4568     return;
4569    
4570 root 1.248 EV_FREQUENT_CHECK;
4571    
4572 root 1.261 ev_io_stop (EV_A_ &w->io);
4573 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4574 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4575 root 1.248
4576 root 1.328 ev_stop (EV_A_ (W)w);
4577    
4578 root 1.248 EV_FREQUENT_CHECK;
4579 root 1.144 }
4580     #endif
4581    
4582 root 1.147 #if EV_FORK_ENABLE
4583     void
4584 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4585 root 1.147 {
4586     if (expect_false (ev_is_active (w)))
4587     return;
4588    
4589 root 1.248 EV_FREQUENT_CHECK;
4590    
4591 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4592     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4593     forks [forkcnt - 1] = w;
4594 root 1.248
4595     EV_FREQUENT_CHECK;
4596 root 1.147 }
4597    
4598     void
4599 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4600 root 1.147 {
4601 root 1.166 clear_pending (EV_A_ (W)w);
4602 root 1.147 if (expect_false (!ev_is_active (w)))
4603     return;
4604    
4605 root 1.248 EV_FREQUENT_CHECK;
4606    
4607 root 1.147 {
4608 root 1.230 int active = ev_active (w);
4609    
4610 root 1.147 forks [active - 1] = forks [--forkcnt];
4611 root 1.230 ev_active (forks [active - 1]) = active;
4612 root 1.147 }
4613    
4614     ev_stop (EV_A_ (W)w);
4615 root 1.248
4616     EV_FREQUENT_CHECK;
4617 root 1.147 }
4618     #endif
4619    
4620 root 1.360 #if EV_CLEANUP_ENABLE
4621     void
4622 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4623 root 1.360 {
4624     if (expect_false (ev_is_active (w)))
4625     return;
4626    
4627     EV_FREQUENT_CHECK;
4628    
4629     ev_start (EV_A_ (W)w, ++cleanupcnt);
4630     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4631     cleanups [cleanupcnt - 1] = w;
4632    
4633 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4634     ev_unref (EV_A);
4635 root 1.360 EV_FREQUENT_CHECK;
4636     }
4637    
4638     void
4639 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4640 root 1.360 {
4641     clear_pending (EV_A_ (W)w);
4642     if (expect_false (!ev_is_active (w)))
4643     return;
4644    
4645     EV_FREQUENT_CHECK;
4646 root 1.362 ev_ref (EV_A);
4647 root 1.360
4648     {
4649     int active = ev_active (w);
4650    
4651     cleanups [active - 1] = cleanups [--cleanupcnt];
4652     ev_active (cleanups [active - 1]) = active;
4653     }
4654    
4655     ev_stop (EV_A_ (W)w);
4656    
4657     EV_FREQUENT_CHECK;
4658     }
4659     #endif
4660    
4661 root 1.207 #if EV_ASYNC_ENABLE
4662     void
4663 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4664 root 1.207 {
4665     if (expect_false (ev_is_active (w)))
4666     return;
4667    
4668 root 1.352 w->sent = 0;
4669    
4670 root 1.207 evpipe_init (EV_A);
4671    
4672 root 1.248 EV_FREQUENT_CHECK;
4673    
4674 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4675     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4676     asyncs [asynccnt - 1] = w;
4677 root 1.248
4678     EV_FREQUENT_CHECK;
4679 root 1.207 }
4680    
4681     void
4682 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4683 root 1.207 {
4684     clear_pending (EV_A_ (W)w);
4685     if (expect_false (!ev_is_active (w)))
4686     return;
4687    
4688 root 1.248 EV_FREQUENT_CHECK;
4689    
4690 root 1.207 {
4691 root 1.230 int active = ev_active (w);
4692    
4693 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4694 root 1.230 ev_active (asyncs [active - 1]) = active;
4695 root 1.207 }
4696    
4697     ev_stop (EV_A_ (W)w);
4698 root 1.248
4699     EV_FREQUENT_CHECK;
4700 root 1.207 }
4701    
4702     void
4703 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4704 root 1.207 {
4705     w->sent = 1;
4706 root 1.307 evpipe_write (EV_A_ &async_pending);
4707 root 1.207 }
4708     #endif
4709    
4710 root 1.1 /*****************************************************************************/
4711 root 1.10
4712 root 1.16 struct ev_once
4713     {
4714 root 1.136 ev_io io;
4715     ev_timer to;
4716 root 1.16 void (*cb)(int revents, void *arg);
4717     void *arg;
4718     };
4719    
4720     static void
4721 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4722 root 1.16 {
4723     void (*cb)(int revents, void *arg) = once->cb;
4724     void *arg = once->arg;
4725    
4726 root 1.259 ev_io_stop (EV_A_ &once->io);
4727 root 1.51 ev_timer_stop (EV_A_ &once->to);
4728 root 1.69 ev_free (once);
4729 root 1.16
4730     cb (revents, arg);
4731     }
4732    
4733     static void
4734 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4735 root 1.16 {
4736 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4737    
4738     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4739 root 1.16 }
4740    
4741     static void
4742 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4743 root 1.16 {
4744 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4745    
4746     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4747 root 1.16 }
4748    
4749     void
4750 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4751 root 1.16 {
4752 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4753 root 1.16
4754 root 1.123 if (expect_false (!once))
4755 root 1.16 {
4756 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4757 root 1.123 return;
4758     }
4759    
4760     once->cb = cb;
4761     once->arg = arg;
4762 root 1.16
4763 root 1.123 ev_init (&once->io, once_cb_io);
4764     if (fd >= 0)
4765     {
4766     ev_io_set (&once->io, fd, events);
4767     ev_io_start (EV_A_ &once->io);
4768     }
4769 root 1.16
4770 root 1.123 ev_init (&once->to, once_cb_to);
4771     if (timeout >= 0.)
4772     {
4773     ev_timer_set (&once->to, timeout, 0.);
4774     ev_timer_start (EV_A_ &once->to);
4775 root 1.16 }
4776     }
4777    
4778 root 1.282 /*****************************************************************************/
4779    
4780 root 1.288 #if EV_WALK_ENABLE
4781 root 1.379 void ecb_cold
4782 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4783 root 1.282 {
4784     int i, j;
4785     ev_watcher_list *wl, *wn;
4786    
4787     if (types & (EV_IO | EV_EMBED))
4788     for (i = 0; i < anfdmax; ++i)
4789     for (wl = anfds [i].head; wl; )
4790     {
4791     wn = wl->next;
4792    
4793     #if EV_EMBED_ENABLE
4794     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4795     {
4796     if (types & EV_EMBED)
4797     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4798     }
4799     else
4800     #endif
4801     #if EV_USE_INOTIFY
4802     if (ev_cb ((ev_io *)wl) == infy_cb)
4803     ;
4804     else
4805     #endif
4806 root 1.288 if ((ev_io *)wl != &pipe_w)
4807 root 1.282 if (types & EV_IO)
4808     cb (EV_A_ EV_IO, wl);
4809    
4810     wl = wn;
4811     }
4812    
4813     if (types & (EV_TIMER | EV_STAT))
4814     for (i = timercnt + HEAP0; i-- > HEAP0; )
4815     #if EV_STAT_ENABLE
4816     /*TODO: timer is not always active*/
4817     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4818     {
4819     if (types & EV_STAT)
4820     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4821     }
4822     else
4823     #endif
4824     if (types & EV_TIMER)
4825     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4826    
4827     #if EV_PERIODIC_ENABLE
4828     if (types & EV_PERIODIC)
4829     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4830     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4831     #endif
4832    
4833     #if EV_IDLE_ENABLE
4834     if (types & EV_IDLE)
4835 root 1.390 for (j = NUMPRI; j--; )
4836 root 1.282 for (i = idlecnt [j]; i--; )
4837     cb (EV_A_ EV_IDLE, idles [j][i]);
4838     #endif
4839    
4840     #if EV_FORK_ENABLE
4841     if (types & EV_FORK)
4842     for (i = forkcnt; i--; )
4843     if (ev_cb (forks [i]) != embed_fork_cb)
4844     cb (EV_A_ EV_FORK, forks [i]);
4845     #endif
4846    
4847     #if EV_ASYNC_ENABLE
4848     if (types & EV_ASYNC)
4849     for (i = asynccnt; i--; )
4850     cb (EV_A_ EV_ASYNC, asyncs [i]);
4851     #endif
4852    
4853 root 1.337 #if EV_PREPARE_ENABLE
4854 root 1.282 if (types & EV_PREPARE)
4855     for (i = preparecnt; i--; )
4856 root 1.337 # if EV_EMBED_ENABLE
4857 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4858 root 1.337 # endif
4859     cb (EV_A_ EV_PREPARE, prepares [i]);
4860 root 1.282 #endif
4861    
4862 root 1.337 #if EV_CHECK_ENABLE
4863 root 1.282 if (types & EV_CHECK)
4864     for (i = checkcnt; i--; )
4865     cb (EV_A_ EV_CHECK, checks [i]);
4866 root 1.337 #endif
4867 root 1.282
4868 root 1.337 #if EV_SIGNAL_ENABLE
4869 root 1.282 if (types & EV_SIGNAL)
4870 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4871 root 1.282 for (wl = signals [i].head; wl; )
4872     {
4873     wn = wl->next;
4874     cb (EV_A_ EV_SIGNAL, wl);
4875     wl = wn;
4876     }
4877 root 1.337 #endif
4878 root 1.282
4879 root 1.337 #if EV_CHILD_ENABLE
4880 root 1.282 if (types & EV_CHILD)
4881 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4882 root 1.282 for (wl = childs [i]; wl; )
4883     {
4884     wn = wl->next;
4885     cb (EV_A_ EV_CHILD, wl);
4886     wl = wn;
4887     }
4888 root 1.337 #endif
4889 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4890     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4891     }
4892     #endif
4893    
4894 root 1.188 #if EV_MULTIPLICITY
4895     #include "ev_wrap.h"
4896     #endif
4897