ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.474
Committed: Wed Feb 11 19:20:21 2015 UTC (9 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.473: +132 -102 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.463 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 root 1.305 #endif
248    
249 root 1.373 #ifndef EV_USE_FLOOR
250     # define EV_USE_FLOOR 0
251     #endif
252    
253 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
254 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 root 1.274 # else
257     # define EV_USE_CLOCK_SYSCALL 0
258     # endif
259     #endif
260    
261 root 1.470 #if !(_POSIX_TIMERS > 0)
262     # ifndef EV_USE_MONOTONIC
263     # define EV_USE_MONOTONIC 0
264     # endif
265     # ifndef EV_USE_REALTIME
266     # define EV_USE_REALTIME 0
267     # endif
268     #endif
269    
270 root 1.29 #ifndef EV_USE_MONOTONIC
271 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
273 root 1.253 # else
274     # define EV_USE_MONOTONIC 0
275     # endif
276 root 1.37 #endif
277    
278 root 1.118 #ifndef EV_USE_REALTIME
279 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280 root 1.118 #endif
281    
282 root 1.193 #ifndef EV_USE_NANOSLEEP
283 root 1.253 # if _POSIX_C_SOURCE >= 199309L
284 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
285 root 1.253 # else
286     # define EV_USE_NANOSLEEP 0
287     # endif
288 root 1.193 #endif
289    
290 root 1.29 #ifndef EV_USE_SELECT
291 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
292 root 1.10 #endif
293    
294 root 1.59 #ifndef EV_USE_POLL
295 root 1.104 # ifdef _WIN32
296     # define EV_USE_POLL 0
297     # else
298 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
299 root 1.104 # endif
300 root 1.41 #endif
301    
302 root 1.29 #ifndef EV_USE_EPOLL
303 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
305 root 1.220 # else
306     # define EV_USE_EPOLL 0
307     # endif
308 root 1.10 #endif
309    
310 root 1.44 #ifndef EV_USE_KQUEUE
311     # define EV_USE_KQUEUE 0
312     #endif
313    
314 root 1.118 #ifndef EV_USE_PORT
315     # define EV_USE_PORT 0
316 root 1.40 #endif
317    
318 root 1.152 #ifndef EV_USE_INOTIFY
319 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
321 root 1.220 # else
322     # define EV_USE_INOTIFY 0
323     # endif
324 root 1.152 #endif
325    
326 root 1.149 #ifndef EV_PID_HASHSIZE
327 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328 root 1.149 #endif
329    
330 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
331 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332 root 1.152 #endif
333    
334 root 1.220 #ifndef EV_USE_EVENTFD
335     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
337 root 1.220 # else
338     # define EV_USE_EVENTFD 0
339     # endif
340     #endif
341    
342 root 1.303 #ifndef EV_USE_SIGNALFD
343 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
345 root 1.303 # else
346     # define EV_USE_SIGNALFD 0
347     # endif
348     #endif
349    
350 root 1.249 #if 0 /* debugging */
351 root 1.250 # define EV_VERIFY 3
352 root 1.249 # define EV_USE_4HEAP 1
353     # define EV_HEAP_CACHE_AT 1
354     #endif
355    
356 root 1.250 #ifndef EV_VERIFY
357 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358 root 1.250 #endif
359    
360 root 1.243 #ifndef EV_USE_4HEAP
361 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
362 root 1.243 #endif
363    
364     #ifndef EV_HEAP_CACHE_AT
365 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366 root 1.243 #endif
367    
368 root 1.452 #ifdef ANDROID
369     /* supposedly, android doesn't typedef fd_mask */
370     # undef EV_USE_SELECT
371     # define EV_USE_SELECT 0
372     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373     # undef EV_USE_CLOCK_SYSCALL
374     # define EV_USE_CLOCK_SYSCALL 0
375     #endif
376    
377     /* aix's poll.h seems to cause lots of trouble */
378     #ifdef _AIX
379     /* AIX has a completely broken poll.h header */
380     # undef EV_USE_POLL
381     # define EV_USE_POLL 0
382     #endif
383    
384 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385     /* which makes programs even slower. might work on other unices, too. */
386     #if EV_USE_CLOCK_SYSCALL
387 root 1.423 # include <sys/syscall.h>
388 root 1.291 # ifdef SYS_clock_gettime
389     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390     # undef EV_USE_MONOTONIC
391     # define EV_USE_MONOTONIC 1
392     # else
393     # undef EV_USE_CLOCK_SYSCALL
394     # define EV_USE_CLOCK_SYSCALL 0
395     # endif
396     #endif
397    
398 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
399 root 1.40
400     #ifndef CLOCK_MONOTONIC
401     # undef EV_USE_MONOTONIC
402     # define EV_USE_MONOTONIC 0
403     #endif
404    
405 root 1.31 #ifndef CLOCK_REALTIME
406 root 1.40 # undef EV_USE_REALTIME
407 root 1.31 # define EV_USE_REALTIME 0
408     #endif
409 root 1.40
410 root 1.152 #if !EV_STAT_ENABLE
411 root 1.185 # undef EV_USE_INOTIFY
412 root 1.152 # define EV_USE_INOTIFY 0
413     #endif
414    
415 root 1.193 #if !EV_USE_NANOSLEEP
416 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
417 root 1.416 # if !defined _WIN32 && !defined __hpux
418 root 1.193 # include <sys/select.h>
419     # endif
420     #endif
421    
422 root 1.152 #if EV_USE_INOTIFY
423 root 1.273 # include <sys/statfs.h>
424 root 1.152 # include <sys/inotify.h>
425 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426     # ifndef IN_DONT_FOLLOW
427     # undef EV_USE_INOTIFY
428     # define EV_USE_INOTIFY 0
429     # endif
430 root 1.152 #endif
431    
432 root 1.220 #if EV_USE_EVENTFD
433     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 root 1.221 # include <stdint.h>
435 root 1.303 # ifndef EFD_NONBLOCK
436     # define EFD_NONBLOCK O_NONBLOCK
437     # endif
438     # ifndef EFD_CLOEXEC
439 root 1.311 # ifdef O_CLOEXEC
440     # define EFD_CLOEXEC O_CLOEXEC
441     # else
442     # define EFD_CLOEXEC 02000000
443     # endif
444 root 1.303 # endif
445 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446 root 1.220 #endif
447    
448 root 1.303 #if EV_USE_SIGNALFD
449 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450     # include <stdint.h>
451     # ifndef SFD_NONBLOCK
452     # define SFD_NONBLOCK O_NONBLOCK
453     # endif
454     # ifndef SFD_CLOEXEC
455     # ifdef O_CLOEXEC
456     # define SFD_CLOEXEC O_CLOEXEC
457     # else
458     # define SFD_CLOEXEC 02000000
459     # endif
460     # endif
461 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462 root 1.314
463     struct signalfd_siginfo
464     {
465     uint32_t ssi_signo;
466     char pad[128 - sizeof (uint32_t)];
467     };
468 root 1.303 #endif
469    
470 root 1.40 /**/
471 root 1.1
472 root 1.250 #if EV_VERIFY >= 3
473 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
474 root 1.248 #else
475     # define EV_FREQUENT_CHECK do { } while (0)
476     #endif
477    
478 root 1.176 /*
479 root 1.373 * This is used to work around floating point rounding problems.
480 root 1.177 * This value is good at least till the year 4000.
481 root 1.176 */
482 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
484 root 1.176
485 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
486 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
487 root 1.1
488 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490 root 1.347
491 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492     /* ECB.H BEGIN */
493     /*
494     * libecb - http://software.schmorp.de/pkg/libecb
495     *
496 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
498     * All rights reserved.
499     *
500     * Redistribution and use in source and binary forms, with or without modifica-
501     * tion, are permitted provided that the following conditions are met:
502     *
503     * 1. Redistributions of source code must retain the above copyright notice,
504     * this list of conditions and the following disclaimer.
505     *
506     * 2. Redistributions in binary form must reproduce the above copyright
507     * notice, this list of conditions and the following disclaimer in the
508     * documentation and/or other materials provided with the distribution.
509     *
510     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519     * OF THE POSSIBILITY OF SUCH DAMAGE.
520 root 1.467 *
521     * Alternatively, the contents of this file may be used under the terms of
522     * the GNU General Public License ("GPL") version 2 or any later version,
523     * in which case the provisions of the GPL are applicable instead of
524     * the above. If you wish to allow the use of your version of this file
525     * only under the terms of the GPL and not to allow others to use your
526     * version of this file under the BSD license, indicate your decision
527     * by deleting the provisions above and replace them with the notice
528     * and other provisions required by the GPL. If you do not delete the
529     * provisions above, a recipient may use your version of this file under
530     * either the BSD or the GPL.
531 root 1.391 */
532    
533     #ifndef ECB_H
534     #define ECB_H
535    
536 root 1.437 /* 16 bits major, 16 bits minor */
537 root 1.474 #define ECB_VERSION 0x00010004
538 root 1.437
539 root 1.391 #ifdef _WIN32
540     typedef signed char int8_t;
541     typedef unsigned char uint8_t;
542     typedef signed short int16_t;
543     typedef unsigned short uint16_t;
544     typedef signed int int32_t;
545     typedef unsigned int uint32_t;
546     #if __GNUC__
547     typedef signed long long int64_t;
548     typedef unsigned long long uint64_t;
549     #else /* _MSC_VER || __BORLANDC__ */
550     typedef signed __int64 int64_t;
551     typedef unsigned __int64 uint64_t;
552     #endif
553 root 1.437 #ifdef _WIN64
554     #define ECB_PTRSIZE 8
555     typedef uint64_t uintptr_t;
556     typedef int64_t intptr_t;
557     #else
558     #define ECB_PTRSIZE 4
559     typedef uint32_t uintptr_t;
560     typedef int32_t intptr_t;
561     #endif
562 root 1.391 #else
563     #include <inttypes.h>
564 root 1.437 #if UINTMAX_MAX > 0xffffffffU
565     #define ECB_PTRSIZE 8
566     #else
567     #define ECB_PTRSIZE 4
568     #endif
569 root 1.391 #endif
570 root 1.379
571 root 1.454 /* work around x32 idiocy by defining proper macros */
572 root 1.462 #if __amd64 || __x86_64 || _M_AMD64 || _M_X64
573 root 1.458 #if _ILP32
574 root 1.454 #define ECB_AMD64_X32 1
575     #else
576     #define ECB_AMD64 1
577     #endif
578     #endif
579    
580 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
581     * what their idiot authors think are the "more important" extensions,
582 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
583 root 1.379 * or so.
584     * we try to detect these and simply assume they are not gcc - if they have
585     * an issue with that they should have done it right in the first place.
586     */
587 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
588     #define ECB_GCC_VERSION(major,minor) 0
589     #else
590     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
591     #endif
592    
593     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
594    
595     #if __clang__ && defined __has_builtin
596     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
597     #else
598     #define ECB_CLANG_BUILTIN(x) 0
599     #endif
600    
601     #if __clang__ && defined __has_extension
602     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
603     #else
604     #define ECB_CLANG_EXTENSION(x) 0
605 root 1.379 #endif
606    
607 root 1.437 #define ECB_CPP (__cplusplus+0)
608     #define ECB_CPP11 (__cplusplus >= 201103L)
609    
610 root 1.450 #if ECB_CPP
611 root 1.464 #define ECB_C 0
612     #define ECB_STDC_VERSION 0
613     #else
614     #define ECB_C 1
615     #define ECB_STDC_VERSION __STDC_VERSION__
616     #endif
617    
618     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
619     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
620    
621     #if ECB_CPP
622 root 1.450 #define ECB_EXTERN_C extern "C"
623     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
624     #define ECB_EXTERN_C_END }
625     #else
626     #define ECB_EXTERN_C extern
627     #define ECB_EXTERN_C_BEG
628     #define ECB_EXTERN_C_END
629     #endif
630    
631 root 1.391 /*****************************************************************************/
632    
633     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
634     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
635    
636 root 1.410 #if ECB_NO_THREADS
637 root 1.439 #define ECB_NO_SMP 1
638 root 1.410 #endif
639    
640 root 1.437 #if ECB_NO_SMP
641 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
642 root 1.40 #endif
643    
644 root 1.383 #ifndef ECB_MEMORY_FENCE
645 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
646 root 1.404 #if __i386 || __i386__
647 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
648 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
649     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
650 root 1.404 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
651 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
652     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
653     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
654 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
655 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
656 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
657     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
658 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
659 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
660 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
661     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
662 root 1.464 #elif __aarch64__
663     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
664 root 1.462 #elif (__sparc || __sparc__) && !__sparcv8
665 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
666     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
667     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
668 root 1.417 #elif defined __s390__ || defined __s390x__
669 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
670 root 1.417 #elif defined __mips__
671 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
672 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
673     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
674 root 1.419 #elif defined __alpha__
675 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
676     #elif defined __hppa__
677     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
678     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
679     #elif defined __ia64__
680     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
681 root 1.457 #elif defined __m68k__
682     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
683     #elif defined __m88k__
684     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
685     #elif defined __sh__
686     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
687 root 1.383 #endif
688     #endif
689     #endif
690    
691     #ifndef ECB_MEMORY_FENCE
692 root 1.437 #if ECB_GCC_VERSION(4,7)
693 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
694 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
695 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
696     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
697 root 1.450
698 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
699     /* see comment below (stdatomic.h) about the C11 memory model. */
700     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
701     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
702     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
703 root 1.450
704 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
705 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
706 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
707     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
708     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
709     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
710     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
711     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
712 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
713     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
714     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
715     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
716     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
717 root 1.417 #elif defined _WIN32
718 root 1.388 #include <WinNT.h>
719 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
720 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
721     #include <mbarrier.h>
722     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
723     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
724     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
725 root 1.413 #elif __xlC__
726 root 1.414 #define ECB_MEMORY_FENCE __sync ()
727 root 1.383 #endif
728     #endif
729    
730     #ifndef ECB_MEMORY_FENCE
731 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
732     /* we assume that these memory fences work on all variables/all memory accesses, */
733     /* not just C11 atomics and atomic accesses */
734     #include <stdatomic.h>
735 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
736     /* any fence other than seq_cst, which isn't very efficient for us. */
737     /* Why that is, we don't know - either the C11 memory model is quite useless */
738     /* for most usages, or gcc and clang have a bug */
739     /* I *currently* lean towards the latter, and inefficiently implement */
740     /* all three of ecb's fences as a seq_cst fence */
741 root 1.464 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
742     /* for all __atomic_thread_fence's except seq_cst */
743 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
744     #endif
745     #endif
746    
747     #ifndef ECB_MEMORY_FENCE
748 root 1.392 #if !ECB_AVOID_PTHREADS
749     /*
750     * if you get undefined symbol references to pthread_mutex_lock,
751     * or failure to find pthread.h, then you should implement
752     * the ECB_MEMORY_FENCE operations for your cpu/compiler
753     * OR provide pthread.h and link against the posix thread library
754     * of your system.
755     */
756     #include <pthread.h>
757     #define ECB_NEEDS_PTHREADS 1
758     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
759    
760     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
761     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
762     #endif
763     #endif
764 root 1.383
765 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
766 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
767 root 1.392 #endif
768    
769 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
770 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
771     #endif
772    
773 root 1.391 /*****************************************************************************/
774    
775 root 1.474 #if ECB_CPP
776 root 1.391 #define ecb_inline static inline
777     #elif ECB_GCC_VERSION(2,5)
778     #define ecb_inline static __inline__
779     #elif ECB_C99
780     #define ecb_inline static inline
781     #else
782     #define ecb_inline static
783     #endif
784    
785     #if ECB_GCC_VERSION(3,3)
786     #define ecb_restrict __restrict__
787     #elif ECB_C99
788     #define ecb_restrict restrict
789     #else
790     #define ecb_restrict
791     #endif
792    
793     typedef int ecb_bool;
794    
795     #define ECB_CONCAT_(a, b) a ## b
796     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
797     #define ECB_STRINGIFY_(a) # a
798     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
799    
800     #define ecb_function_ ecb_inline
801    
802 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
803     #define ecb_attribute(attrlist) __attribute__ (attrlist)
804 root 1.379 #else
805     #define ecb_attribute(attrlist)
806 root 1.474 #endif
807 root 1.464
808 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
809     #define ecb_is_constant(expr) __builtin_constant_p (expr)
810     #else
811 root 1.464 /* possible C11 impl for integral types
812     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
813     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
814    
815 root 1.379 #define ecb_is_constant(expr) 0
816 root 1.474 #endif
817    
818     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
819     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
820     #else
821 root 1.379 #define ecb_expect(expr,value) (expr)
822 root 1.474 #endif
823    
824     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
825     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
826     #else
827 root 1.379 #define ecb_prefetch(addr,rw,locality)
828     #endif
829    
830 root 1.391 /* no emulation for ecb_decltype */
831 root 1.474 #if ECB_CPP11
832     // older implementations might have problems with decltype(x)::type, work around it
833     template<class T> struct ecb_decltype_t { typedef T type; };
834     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
835     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
836     #define ecb_decltype(x) __typeof__ (x)
837 root 1.391 #endif
838    
839 root 1.468 #if _MSC_VER >= 1300
840 root 1.474 #define ecb_deprecated __declspec (deprecated)
841 root 1.468 #else
842     #define ecb_deprecated ecb_attribute ((__deprecated__))
843     #endif
844    
845 root 1.379 #define ecb_noinline ecb_attribute ((__noinline__))
846     #define ecb_unused ecb_attribute ((__unused__))
847     #define ecb_const ecb_attribute ((__const__))
848     #define ecb_pure ecb_attribute ((__pure__))
849    
850 root 1.474 /* TODO http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
851     #if ECB_C11 || __IBMC_NORETURN
852     /* http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.xlcpp121.bg.doc/language_ref/noreturn.html */
853 root 1.437 #define ecb_noreturn _Noreturn
854     #else
855     #define ecb_noreturn ecb_attribute ((__noreturn__))
856     #endif
857    
858 root 1.379 #if ECB_GCC_VERSION(4,3)
859     #define ecb_artificial ecb_attribute ((__artificial__))
860     #define ecb_hot ecb_attribute ((__hot__))
861     #define ecb_cold ecb_attribute ((__cold__))
862     #else
863     #define ecb_artificial
864     #define ecb_hot
865     #define ecb_cold
866     #endif
867    
868     /* put around conditional expressions if you are very sure that the */
869     /* expression is mostly true or mostly false. note that these return */
870     /* booleans, not the expression. */
871     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
872     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
873 root 1.391 /* for compatibility to the rest of the world */
874     #define ecb_likely(expr) ecb_expect_true (expr)
875     #define ecb_unlikely(expr) ecb_expect_false (expr)
876    
877     /* count trailing zero bits and count # of one bits */
878 root 1.474 #if ECB_GCC_VERSION(3,4) \
879     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
880     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
881     && ECB_CLANG_BUILTIN(__builtin_popcount))
882 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
883     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
884     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
885     #define ecb_ctz32(x) __builtin_ctz (x)
886     #define ecb_ctz64(x) __builtin_ctzll (x)
887     #define ecb_popcount32(x) __builtin_popcount (x)
888     /* no popcountll */
889     #else
890 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
891     ecb_function_ ecb_const int
892 root 1.391 ecb_ctz32 (uint32_t x)
893     {
894     int r = 0;
895    
896     x &= ~x + 1; /* this isolates the lowest bit */
897    
898     #if ECB_branchless_on_i386
899     r += !!(x & 0xaaaaaaaa) << 0;
900     r += !!(x & 0xcccccccc) << 1;
901     r += !!(x & 0xf0f0f0f0) << 2;
902     r += !!(x & 0xff00ff00) << 3;
903     r += !!(x & 0xffff0000) << 4;
904     #else
905     if (x & 0xaaaaaaaa) r += 1;
906     if (x & 0xcccccccc) r += 2;
907     if (x & 0xf0f0f0f0) r += 4;
908     if (x & 0xff00ff00) r += 8;
909     if (x & 0xffff0000) r += 16;
910     #endif
911    
912     return r;
913     }
914    
915 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
916     ecb_function_ ecb_const int
917 root 1.391 ecb_ctz64 (uint64_t x)
918     {
919     int shift = x & 0xffffffffU ? 0 : 32;
920     return ecb_ctz32 (x >> shift) + shift;
921     }
922    
923 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
924     ecb_function_ ecb_const int
925 root 1.391 ecb_popcount32 (uint32_t x)
926     {
927     x -= (x >> 1) & 0x55555555;
928     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
929     x = ((x >> 4) + x) & 0x0f0f0f0f;
930     x *= 0x01010101;
931    
932     return x >> 24;
933     }
934    
935 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
936     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
937 root 1.391 {
938     int r = 0;
939    
940     if (x >> 16) { x >>= 16; r += 16; }
941     if (x >> 8) { x >>= 8; r += 8; }
942     if (x >> 4) { x >>= 4; r += 4; }
943     if (x >> 2) { x >>= 2; r += 2; }
944     if (x >> 1) { r += 1; }
945    
946     return r;
947     }
948    
949 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
950     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
951 root 1.391 {
952     int r = 0;
953    
954     if (x >> 32) { x >>= 32; r += 32; }
955    
956     return r + ecb_ld32 (x);
957     }
958     #endif
959    
960 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
961     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
962     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
963     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
964 root 1.437
965 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
966     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
967 root 1.403 {
968     return ( (x * 0x0802U & 0x22110U)
969 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
970 root 1.403 }
971    
972 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
973     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
974 root 1.403 {
975     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
976     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
977     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
978     x = ( x >> 8 ) | ( x << 8);
979    
980     return x;
981     }
982    
983 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
984     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
985 root 1.403 {
986     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
987     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
988     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
989     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
990     x = ( x >> 16 ) | ( x << 16);
991    
992     return x;
993     }
994    
995 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
996     /* so for this version we are lazy */
997 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
998     ecb_function_ ecb_const int
999 root 1.391 ecb_popcount64 (uint64_t x)
1000     {
1001     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1002     }
1003    
1004 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1005     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1006     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1007     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1008     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1009     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1010     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1011     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1012    
1013     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1014     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1015     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1016     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1017     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1018     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1019     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1020     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1021 root 1.391
1022 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1023 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1024     #define ecb_bswap32(x) __builtin_bswap32 (x)
1025     #define ecb_bswap64(x) __builtin_bswap64 (x)
1026     #else
1027 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1028     ecb_function_ ecb_const uint16_t
1029 root 1.391 ecb_bswap16 (uint16_t x)
1030     {
1031     return ecb_rotl16 (x, 8);
1032     }
1033    
1034 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1035     ecb_function_ ecb_const uint32_t
1036 root 1.391 ecb_bswap32 (uint32_t x)
1037     {
1038     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1039     }
1040    
1041 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1042     ecb_function_ ecb_const uint64_t
1043 root 1.391 ecb_bswap64 (uint64_t x)
1044     {
1045     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1046     }
1047     #endif
1048    
1049 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1050 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1051     #else
1052     /* this seems to work fine, but gcc always emits a warning for it :/ */
1053 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1054     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1055 root 1.391 #endif
1056    
1057     /* try to tell the compiler that some condition is definitely true */
1058 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1059 root 1.391
1060 root 1.474 ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1061     ecb_inline ecb_const unsigned char
1062 root 1.391 ecb_byteorder_helper (void)
1063     {
1064 root 1.450 /* the union code still generates code under pressure in gcc, */
1065     /* but less than using pointers, and always seems to */
1066     /* successfully return a constant. */
1067     /* the reason why we have this horrible preprocessor mess */
1068     /* is to avoid it in all cases, at least on common architectures */
1069     /* or when using a recent enough gcc version (>= 4.6) */
1070     #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1071     return 0x44;
1072     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1073     return 0x44;
1074     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1075     return 0x11;
1076     #else
1077     union
1078     {
1079     uint32_t i;
1080     uint8_t c;
1081     } u = { 0x11223344 };
1082     return u.c;
1083     #endif
1084 root 1.391 }
1085    
1086 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1087     ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1088     ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1089     ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1090 root 1.391
1091     #if ECB_GCC_VERSION(3,0) || ECB_C99
1092     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1093     #else
1094     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1095     #endif
1096    
1097 root 1.474 #if ECB_CPP
1098 root 1.398 template<typename T>
1099     static inline T ecb_div_rd (T val, T div)
1100     {
1101     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1102     }
1103     template<typename T>
1104     static inline T ecb_div_ru (T val, T div)
1105     {
1106     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1107     }
1108     #else
1109     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1110     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1111     #endif
1112    
1113 root 1.391 #if ecb_cplusplus_does_not_suck
1114     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1115     template<typename T, int N>
1116     static inline int ecb_array_length (const T (&arr)[N])
1117     {
1118     return N;
1119     }
1120     #else
1121     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1122     #endif
1123    
1124 root 1.450 /*******************************************************************************/
1125     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1126    
1127     /* basically, everything uses "ieee pure-endian" floating point numbers */
1128     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1129     #if 0 \
1130     || __i386 || __i386__ \
1131     || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1132     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1133     || defined __s390__ || defined __s390x__ \
1134     || defined __mips__ \
1135     || defined __alpha__ \
1136     || defined __hppa__ \
1137     || defined __ia64__ \
1138 root 1.457 || defined __m68k__ \
1139     || defined __m88k__ \
1140     || defined __sh__ \
1141 root 1.464 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1142 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1143 root 1.466 || defined __aarch64__
1144 root 1.450 #define ECB_STDFP 1
1145     #include <string.h> /* for memcpy */
1146     #else
1147     #define ECB_STDFP 0
1148     #endif
1149    
1150     #ifndef ECB_NO_LIBM
1151    
1152 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1153    
1154 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1155     #ifdef INFINITY
1156     #define ECB_INFINITY INFINITY
1157     #else
1158     #define ECB_INFINITY HUGE_VAL
1159     #endif
1160    
1161     #ifdef NAN
1162 root 1.458 #define ECB_NAN NAN
1163     #else
1164 root 1.462 #define ECB_NAN ECB_INFINITY
1165 root 1.458 #endif
1166    
1167 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1168     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1169     #else
1170     #define ecb_ldexpf(x,e) (float) ldexp ((x), (e))
1171     #endif
1172    
1173 root 1.458 /* converts an ieee half/binary16 to a float */
1174 root 1.474 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1175     ecb_function_ ecb_const float
1176 root 1.458 ecb_binary16_to_float (uint16_t x)
1177     {
1178     int e = (x >> 10) & 0x1f;
1179     int m = x & 0x3ff;
1180     float r;
1181    
1182 root 1.474 if (!e ) r = ecb_ldexpf (m , -24);
1183     else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1184 root 1.458 else if (m ) r = ECB_NAN;
1185 root 1.462 else r = ECB_INFINITY;
1186 root 1.458
1187     return x & 0x8000 ? -r : r;
1188     }
1189    
1190 root 1.450 /* convert a float to ieee single/binary32 */
1191 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1192     ecb_function_ ecb_const uint32_t
1193 root 1.450 ecb_float_to_binary32 (float x)
1194     {
1195     uint32_t r;
1196    
1197     #if ECB_STDFP
1198     memcpy (&r, &x, 4);
1199     #else
1200     /* slow emulation, works for anything but -0 */
1201     uint32_t m;
1202     int e;
1203    
1204     if (x == 0e0f ) return 0x00000000U;
1205     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1206     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1207     if (x != x ) return 0x7fbfffffU;
1208    
1209     m = frexpf (x, &e) * 0x1000000U;
1210    
1211     r = m & 0x80000000U;
1212    
1213     if (r)
1214     m = -m;
1215    
1216     if (e <= -126)
1217     {
1218     m &= 0xffffffU;
1219     m >>= (-125 - e);
1220     e = -126;
1221     }
1222    
1223     r |= (e + 126) << 23;
1224     r |= m & 0x7fffffU;
1225     #endif
1226    
1227     return r;
1228     }
1229    
1230     /* converts an ieee single/binary32 to a float */
1231 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1232     ecb_function_ ecb_const float
1233 root 1.450 ecb_binary32_to_float (uint32_t x)
1234     {
1235     float r;
1236    
1237     #if ECB_STDFP
1238     memcpy (&r, &x, 4);
1239     #else
1240     /* emulation, only works for normals and subnormals and +0 */
1241     int neg = x >> 31;
1242     int e = (x >> 23) & 0xffU;
1243    
1244     x &= 0x7fffffU;
1245    
1246     if (e)
1247     x |= 0x800000U;
1248     else
1249     e = 1;
1250    
1251     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1252 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1253 root 1.450
1254     r = neg ? -r : r;
1255     #endif
1256    
1257     return r;
1258     }
1259    
1260     /* convert a double to ieee double/binary64 */
1261 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1262     ecb_function_ ecb_const uint64_t
1263 root 1.450 ecb_double_to_binary64 (double x)
1264     {
1265     uint64_t r;
1266    
1267     #if ECB_STDFP
1268     memcpy (&r, &x, 8);
1269     #else
1270     /* slow emulation, works for anything but -0 */
1271     uint64_t m;
1272     int e;
1273    
1274     if (x == 0e0 ) return 0x0000000000000000U;
1275     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1276     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1277     if (x != x ) return 0X7ff7ffffffffffffU;
1278    
1279     m = frexp (x, &e) * 0x20000000000000U;
1280    
1281     r = m & 0x8000000000000000;;
1282    
1283     if (r)
1284     m = -m;
1285    
1286     if (e <= -1022)
1287     {
1288     m &= 0x1fffffffffffffU;
1289     m >>= (-1021 - e);
1290     e = -1022;
1291     }
1292    
1293     r |= ((uint64_t)(e + 1022)) << 52;
1294     r |= m & 0xfffffffffffffU;
1295     #endif
1296    
1297     return r;
1298     }
1299    
1300     /* converts an ieee double/binary64 to a double */
1301 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1302     ecb_function_ ecb_const double
1303 root 1.450 ecb_binary64_to_double (uint64_t x)
1304     {
1305     double r;
1306    
1307     #if ECB_STDFP
1308     memcpy (&r, &x, 8);
1309     #else
1310     /* emulation, only works for normals and subnormals and +0 */
1311     int neg = x >> 63;
1312     int e = (x >> 52) & 0x7ffU;
1313    
1314     x &= 0xfffffffffffffU;
1315    
1316     if (e)
1317     x |= 0x10000000000000U;
1318     else
1319     e = 1;
1320    
1321     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1322     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1323    
1324     r = neg ? -r : r;
1325     #endif
1326    
1327     return r;
1328     }
1329    
1330     #endif
1331    
1332 root 1.391 #endif
1333    
1334     /* ECB.H END */
1335 root 1.379
1336 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1337 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1338 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1339     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1340 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1341 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1342     * which will then provide the memory fences.
1343     */
1344     # error "memory fences not defined for your architecture, please report"
1345     #endif
1346    
1347     #ifndef ECB_MEMORY_FENCE
1348     # define ECB_MEMORY_FENCE do { } while (0)
1349     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1350     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1351 root 1.392 #endif
1352    
1353 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1354     #define expect_true(cond) ecb_expect_true (cond)
1355     #define noinline ecb_noinline
1356    
1357     #define inline_size ecb_inline
1358 root 1.169
1359 root 1.338 #if EV_FEATURE_CODE
1360 root 1.379 # define inline_speed ecb_inline
1361 root 1.338 #else
1362 root 1.169 # define inline_speed static noinline
1363     #endif
1364 root 1.40
1365 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1366    
1367     #if EV_MINPRI == EV_MAXPRI
1368     # define ABSPRI(w) (((W)w), 0)
1369     #else
1370     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1371     #endif
1372 root 1.42
1373 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1374 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1375 root 1.103
1376 root 1.136 typedef ev_watcher *W;
1377     typedef ev_watcher_list *WL;
1378     typedef ev_watcher_time *WT;
1379 root 1.10
1380 root 1.229 #define ev_active(w) ((W)(w))->active
1381 root 1.228 #define ev_at(w) ((WT)(w))->at
1382    
1383 root 1.279 #if EV_USE_REALTIME
1384 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1385 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1386 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1387     #endif
1388    
1389     #if EV_USE_MONOTONIC
1390 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1391 root 1.198 #endif
1392 root 1.54
1393 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1394     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1395     #endif
1396     #ifndef EV_WIN32_HANDLE_TO_FD
1397 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1398 root 1.313 #endif
1399     #ifndef EV_WIN32_CLOSE_FD
1400     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1401     #endif
1402    
1403 root 1.103 #ifdef _WIN32
1404 root 1.98 # include "ev_win32.c"
1405     #endif
1406 root 1.67
1407 root 1.53 /*****************************************************************************/
1408 root 1.1
1409 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1410    
1411     #if EV_USE_FLOOR
1412     # include <math.h>
1413     # define ev_floor(v) floor (v)
1414     #else
1415    
1416     #include <float.h>
1417    
1418     /* a floor() replacement function, should be independent of ev_tstamp type */
1419     static ev_tstamp noinline
1420     ev_floor (ev_tstamp v)
1421     {
1422     /* the choice of shift factor is not terribly important */
1423     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1424     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1425     #else
1426     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1427     #endif
1428    
1429     /* argument too large for an unsigned long? */
1430     if (expect_false (v >= shift))
1431     {
1432     ev_tstamp f;
1433    
1434     if (v == v - 1.)
1435     return v; /* very large number */
1436    
1437     f = shift * ev_floor (v * (1. / shift));
1438     return f + ev_floor (v - f);
1439     }
1440    
1441     /* special treatment for negative args? */
1442     if (expect_false (v < 0.))
1443     {
1444     ev_tstamp f = -ev_floor (-v);
1445    
1446     return f - (f == v ? 0 : 1);
1447     }
1448    
1449     /* fits into an unsigned long */
1450     return (unsigned long)v;
1451     }
1452    
1453     #endif
1454    
1455     /*****************************************************************************/
1456    
1457 root 1.356 #ifdef __linux
1458     # include <sys/utsname.h>
1459     #endif
1460    
1461 root 1.379 static unsigned int noinline ecb_cold
1462 root 1.355 ev_linux_version (void)
1463     {
1464     #ifdef __linux
1465 root 1.359 unsigned int v = 0;
1466 root 1.355 struct utsname buf;
1467     int i;
1468     char *p = buf.release;
1469    
1470     if (uname (&buf))
1471     return 0;
1472    
1473     for (i = 3+1; --i; )
1474     {
1475     unsigned int c = 0;
1476    
1477     for (;;)
1478     {
1479     if (*p >= '0' && *p <= '9')
1480     c = c * 10 + *p++ - '0';
1481     else
1482     {
1483     p += *p == '.';
1484     break;
1485     }
1486     }
1487    
1488     v = (v << 8) | c;
1489     }
1490    
1491     return v;
1492     #else
1493     return 0;
1494     #endif
1495     }
1496    
1497     /*****************************************************************************/
1498    
1499 root 1.331 #if EV_AVOID_STDIO
1500 root 1.379 static void noinline ecb_cold
1501 root 1.331 ev_printerr (const char *msg)
1502     {
1503     write (STDERR_FILENO, msg, strlen (msg));
1504     }
1505     #endif
1506    
1507 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1508 root 1.69
1509 root 1.379 void ecb_cold
1510 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1511 root 1.69 {
1512     syserr_cb = cb;
1513     }
1514    
1515 root 1.379 static void noinline ecb_cold
1516 root 1.269 ev_syserr (const char *msg)
1517 root 1.69 {
1518 root 1.70 if (!msg)
1519     msg = "(libev) system error";
1520    
1521 root 1.69 if (syserr_cb)
1522 root 1.70 syserr_cb (msg);
1523 root 1.69 else
1524     {
1525 root 1.330 #if EV_AVOID_STDIO
1526 root 1.331 ev_printerr (msg);
1527     ev_printerr (": ");
1528 root 1.365 ev_printerr (strerror (errno));
1529 root 1.331 ev_printerr ("\n");
1530 root 1.330 #else
1531 root 1.70 perror (msg);
1532 root 1.330 #endif
1533 root 1.69 abort ();
1534     }
1535     }
1536    
1537 root 1.224 static void *
1538 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1539 root 1.224 {
1540     /* some systems, notably openbsd and darwin, fail to properly
1541 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1542 root 1.224 * the single unix specification, so work around them here.
1543 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1544     * despite documenting it otherwise.
1545 root 1.224 */
1546 root 1.333
1547 root 1.224 if (size)
1548     return realloc (ptr, size);
1549    
1550     free (ptr);
1551     return 0;
1552     }
1553    
1554 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1555 root 1.69
1556 root 1.379 void ecb_cold
1557 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1558 root 1.69 {
1559     alloc = cb;
1560     }
1561    
1562 root 1.150 inline_speed void *
1563 root 1.155 ev_realloc (void *ptr, long size)
1564 root 1.69 {
1565 root 1.224 ptr = alloc (ptr, size);
1566 root 1.69
1567     if (!ptr && size)
1568     {
1569 root 1.330 #if EV_AVOID_STDIO
1570 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1571 root 1.330 #else
1572 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1573 root 1.330 #endif
1574 root 1.69 abort ();
1575     }
1576    
1577     return ptr;
1578     }
1579    
1580     #define ev_malloc(size) ev_realloc (0, (size))
1581     #define ev_free(ptr) ev_realloc ((ptr), 0)
1582    
1583     /*****************************************************************************/
1584    
1585 root 1.298 /* set in reify when reification needed */
1586     #define EV_ANFD_REIFY 1
1587    
1588 root 1.288 /* file descriptor info structure */
1589 root 1.53 typedef struct
1590     {
1591 root 1.68 WL head;
1592 root 1.288 unsigned char events; /* the events watched for */
1593 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1594 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1595 root 1.269 unsigned char unused;
1596     #if EV_USE_EPOLL
1597 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1598 root 1.269 #endif
1599 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1600 root 1.103 SOCKET handle;
1601     #endif
1602 root 1.357 #if EV_USE_IOCP
1603     OVERLAPPED or, ow;
1604     #endif
1605 root 1.53 } ANFD;
1606 root 1.1
1607 root 1.288 /* stores the pending event set for a given watcher */
1608 root 1.53 typedef struct
1609     {
1610     W w;
1611 root 1.288 int events; /* the pending event set for the given watcher */
1612 root 1.53 } ANPENDING;
1613 root 1.51
1614 root 1.155 #if EV_USE_INOTIFY
1615 root 1.241 /* hash table entry per inotify-id */
1616 root 1.152 typedef struct
1617     {
1618     WL head;
1619 root 1.155 } ANFS;
1620 root 1.152 #endif
1621    
1622 root 1.241 /* Heap Entry */
1623     #if EV_HEAP_CACHE_AT
1624 root 1.288 /* a heap element */
1625 root 1.241 typedef struct {
1626 root 1.243 ev_tstamp at;
1627 root 1.241 WT w;
1628     } ANHE;
1629    
1630 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1631     #define ANHE_at(he) (he).at /* access cached at, read-only */
1632     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1633 root 1.241 #else
1634 root 1.288 /* a heap element */
1635 root 1.241 typedef WT ANHE;
1636    
1637 root 1.248 #define ANHE_w(he) (he)
1638     #define ANHE_at(he) (he)->at
1639     #define ANHE_at_cache(he)
1640 root 1.241 #endif
1641    
1642 root 1.55 #if EV_MULTIPLICITY
1643 root 1.54
1644 root 1.80 struct ev_loop
1645     {
1646 root 1.86 ev_tstamp ev_rt_now;
1647 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1648 root 1.80 #define VAR(name,decl) decl;
1649     #include "ev_vars.h"
1650     #undef VAR
1651     };
1652     #include "ev_wrap.h"
1653    
1654 root 1.116 static struct ev_loop default_loop_struct;
1655 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1656 root 1.54
1657 root 1.53 #else
1658 root 1.54
1659 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1660 root 1.80 #define VAR(name,decl) static decl;
1661     #include "ev_vars.h"
1662     #undef VAR
1663    
1664 root 1.116 static int ev_default_loop_ptr;
1665 root 1.54
1666 root 1.51 #endif
1667 root 1.1
1668 root 1.338 #if EV_FEATURE_API
1669 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1670     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1671 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1672     #else
1673 root 1.298 # define EV_RELEASE_CB (void)0
1674     # define EV_ACQUIRE_CB (void)0
1675 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1676     #endif
1677    
1678 root 1.353 #define EVBREAK_RECURSE 0x80
1679 root 1.298
1680 root 1.8 /*****************************************************************************/
1681    
1682 root 1.292 #ifndef EV_HAVE_EV_TIME
1683 root 1.141 ev_tstamp
1684 root 1.420 ev_time (void) EV_THROW
1685 root 1.1 {
1686 root 1.29 #if EV_USE_REALTIME
1687 root 1.279 if (expect_true (have_realtime))
1688     {
1689     struct timespec ts;
1690     clock_gettime (CLOCK_REALTIME, &ts);
1691     return ts.tv_sec + ts.tv_nsec * 1e-9;
1692     }
1693     #endif
1694    
1695 root 1.1 struct timeval tv;
1696     gettimeofday (&tv, 0);
1697     return tv.tv_sec + tv.tv_usec * 1e-6;
1698     }
1699 root 1.292 #endif
1700 root 1.1
1701 root 1.284 inline_size ev_tstamp
1702 root 1.1 get_clock (void)
1703     {
1704 root 1.29 #if EV_USE_MONOTONIC
1705 root 1.40 if (expect_true (have_monotonic))
1706 root 1.1 {
1707     struct timespec ts;
1708     clock_gettime (CLOCK_MONOTONIC, &ts);
1709     return ts.tv_sec + ts.tv_nsec * 1e-9;
1710     }
1711     #endif
1712    
1713     return ev_time ();
1714     }
1715    
1716 root 1.85 #if EV_MULTIPLICITY
1717 root 1.51 ev_tstamp
1718 root 1.420 ev_now (EV_P) EV_THROW
1719 root 1.51 {
1720 root 1.85 return ev_rt_now;
1721 root 1.51 }
1722 root 1.85 #endif
1723 root 1.51
1724 root 1.193 void
1725 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1726 root 1.193 {
1727     if (delay > 0.)
1728     {
1729     #if EV_USE_NANOSLEEP
1730     struct timespec ts;
1731    
1732 root 1.348 EV_TS_SET (ts, delay);
1733 root 1.193 nanosleep (&ts, 0);
1734 root 1.416 #elif defined _WIN32
1735 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1736 root 1.193 #else
1737     struct timeval tv;
1738    
1739 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1740 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1741 root 1.257 /* by older ones */
1742 sf-exg 1.349 EV_TV_SET (tv, delay);
1743 root 1.193 select (0, 0, 0, 0, &tv);
1744     #endif
1745     }
1746     }
1747    
1748     /*****************************************************************************/
1749    
1750 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1751 root 1.232
1752 root 1.288 /* find a suitable new size for the given array, */
1753 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1754 root 1.284 inline_size int
1755 root 1.163 array_nextsize (int elem, int cur, int cnt)
1756     {
1757     int ncur = cur + 1;
1758    
1759     do
1760     ncur <<= 1;
1761     while (cnt > ncur);
1762    
1763 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1764 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1765 root 1.163 {
1766     ncur *= elem;
1767 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1768 root 1.163 ncur = ncur - sizeof (void *) * 4;
1769     ncur /= elem;
1770     }
1771    
1772     return ncur;
1773     }
1774    
1775 root 1.379 static void * noinline ecb_cold
1776 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1777     {
1778     *cur = array_nextsize (elem, *cur, cnt);
1779     return ev_realloc (base, elem * *cur);
1780     }
1781 root 1.29
1782 root 1.265 #define array_init_zero(base,count) \
1783     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1784    
1785 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1786 root 1.163 if (expect_false ((cnt) > (cur))) \
1787 root 1.69 { \
1788 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1789 root 1.163 (base) = (type *)array_realloc \
1790     (sizeof (type), (base), &(cur), (cnt)); \
1791     init ((base) + (ocur_), (cur) - ocur_); \
1792 root 1.1 }
1793    
1794 root 1.163 #if 0
1795 root 1.74 #define array_slim(type,stem) \
1796 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1797     { \
1798     stem ## max = array_roundsize (stem ## cnt >> 1); \
1799 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1800 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1801     }
1802 root 1.163 #endif
1803 root 1.67
1804 root 1.65 #define array_free(stem, idx) \
1805 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1806 root 1.65
1807 root 1.8 /*****************************************************************************/
1808    
1809 root 1.288 /* dummy callback for pending events */
1810     static void noinline
1811     pendingcb (EV_P_ ev_prepare *w, int revents)
1812     {
1813     }
1814    
1815 root 1.140 void noinline
1816 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1817 root 1.1 {
1818 root 1.78 W w_ = (W)w;
1819 root 1.171 int pri = ABSPRI (w_);
1820 root 1.78
1821 root 1.123 if (expect_false (w_->pending))
1822 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1823     else
1824 root 1.32 {
1825 root 1.171 w_->pending = ++pendingcnt [pri];
1826     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1827     pendings [pri][w_->pending - 1].w = w_;
1828     pendings [pri][w_->pending - 1].events = revents;
1829 root 1.32 }
1830 root 1.425
1831     pendingpri = NUMPRI - 1;
1832 root 1.1 }
1833    
1834 root 1.284 inline_speed void
1835     feed_reverse (EV_P_ W w)
1836     {
1837     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1838     rfeeds [rfeedcnt++] = w;
1839     }
1840    
1841     inline_size void
1842     feed_reverse_done (EV_P_ int revents)
1843     {
1844     do
1845     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1846     while (rfeedcnt);
1847     }
1848    
1849     inline_speed void
1850 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1851 root 1.27 {
1852     int i;
1853    
1854     for (i = 0; i < eventcnt; ++i)
1855 root 1.78 ev_feed_event (EV_A_ events [i], type);
1856 root 1.27 }
1857    
1858 root 1.141 /*****************************************************************************/
1859    
1860 root 1.284 inline_speed void
1861 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1862 root 1.1 {
1863     ANFD *anfd = anfds + fd;
1864 root 1.136 ev_io *w;
1865 root 1.1
1866 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1867 root 1.1 {
1868 root 1.79 int ev = w->events & revents;
1869 root 1.1
1870     if (ev)
1871 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1872 root 1.1 }
1873     }
1874    
1875 root 1.298 /* do not submit kernel events for fds that have reify set */
1876     /* because that means they changed while we were polling for new events */
1877     inline_speed void
1878     fd_event (EV_P_ int fd, int revents)
1879     {
1880     ANFD *anfd = anfds + fd;
1881    
1882     if (expect_true (!anfd->reify))
1883 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1884 root 1.298 }
1885    
1886 root 1.79 void
1887 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1888 root 1.79 {
1889 root 1.168 if (fd >= 0 && fd < anfdmax)
1890 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1891 root 1.79 }
1892    
1893 root 1.288 /* make sure the external fd watch events are in-sync */
1894     /* with the kernel/libev internal state */
1895 root 1.284 inline_size void
1896 root 1.51 fd_reify (EV_P)
1897 root 1.9 {
1898     int i;
1899    
1900 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1901     for (i = 0; i < fdchangecnt; ++i)
1902     {
1903     int fd = fdchanges [i];
1904     ANFD *anfd = anfds + fd;
1905    
1906 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1907 root 1.371 {
1908     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1909    
1910     if (handle != anfd->handle)
1911     {
1912     unsigned long arg;
1913    
1914     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1915    
1916     /* handle changed, but fd didn't - we need to do it in two steps */
1917     backend_modify (EV_A_ fd, anfd->events, 0);
1918     anfd->events = 0;
1919     anfd->handle = handle;
1920     }
1921     }
1922     }
1923     #endif
1924    
1925 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1926     {
1927     int fd = fdchanges [i];
1928     ANFD *anfd = anfds + fd;
1929 root 1.136 ev_io *w;
1930 root 1.27
1931 root 1.350 unsigned char o_events = anfd->events;
1932     unsigned char o_reify = anfd->reify;
1933 root 1.27
1934 root 1.350 anfd->reify = 0;
1935 root 1.27
1936 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1937     {
1938     anfd->events = 0;
1939 root 1.184
1940 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1941     anfd->events |= (unsigned char)w->events;
1942 root 1.27
1943 root 1.351 if (o_events != anfd->events)
1944 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1945     }
1946    
1947     if (o_reify & EV__IOFDSET)
1948     backend_modify (EV_A_ fd, o_events, anfd->events);
1949 root 1.27 }
1950    
1951     fdchangecnt = 0;
1952     }
1953    
1954 root 1.288 /* something about the given fd changed */
1955 root 1.284 inline_size void
1956 root 1.183 fd_change (EV_P_ int fd, int flags)
1957 root 1.27 {
1958 root 1.183 unsigned char reify = anfds [fd].reify;
1959 root 1.184 anfds [fd].reify |= flags;
1960 root 1.27
1961 root 1.183 if (expect_true (!reify))
1962     {
1963     ++fdchangecnt;
1964     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1965     fdchanges [fdchangecnt - 1] = fd;
1966     }
1967 root 1.9 }
1968    
1969 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1970 root 1.379 inline_speed void ecb_cold
1971 root 1.51 fd_kill (EV_P_ int fd)
1972 root 1.41 {
1973 root 1.136 ev_io *w;
1974 root 1.41
1975 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1976 root 1.41 {
1977 root 1.51 ev_io_stop (EV_A_ w);
1978 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1979 root 1.41 }
1980     }
1981    
1982 root 1.336 /* check whether the given fd is actually valid, for error recovery */
1983 root 1.379 inline_size int ecb_cold
1984 root 1.71 fd_valid (int fd)
1985     {
1986 root 1.103 #ifdef _WIN32
1987 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1988 root 1.71 #else
1989     return fcntl (fd, F_GETFD) != -1;
1990     #endif
1991     }
1992    
1993 root 1.19 /* called on EBADF to verify fds */
1994 root 1.379 static void noinline ecb_cold
1995 root 1.51 fd_ebadf (EV_P)
1996 root 1.19 {
1997     int fd;
1998    
1999     for (fd = 0; fd < anfdmax; ++fd)
2000 root 1.27 if (anfds [fd].events)
2001 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2002 root 1.51 fd_kill (EV_A_ fd);
2003 root 1.41 }
2004    
2005     /* called on ENOMEM in select/poll to kill some fds and retry */
2006 root 1.379 static void noinline ecb_cold
2007 root 1.51 fd_enomem (EV_P)
2008 root 1.41 {
2009 root 1.62 int fd;
2010 root 1.41
2011 root 1.62 for (fd = anfdmax; fd--; )
2012 root 1.41 if (anfds [fd].events)
2013     {
2014 root 1.51 fd_kill (EV_A_ fd);
2015 root 1.307 break;
2016 root 1.41 }
2017 root 1.19 }
2018    
2019 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2020 root 1.140 static void noinline
2021 root 1.56 fd_rearm_all (EV_P)
2022     {
2023     int fd;
2024    
2025     for (fd = 0; fd < anfdmax; ++fd)
2026     if (anfds [fd].events)
2027     {
2028     anfds [fd].events = 0;
2029 root 1.268 anfds [fd].emask = 0;
2030 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2031 root 1.56 }
2032     }
2033    
2034 root 1.336 /* used to prepare libev internal fd's */
2035     /* this is not fork-safe */
2036     inline_speed void
2037     fd_intern (int fd)
2038     {
2039     #ifdef _WIN32
2040     unsigned long arg = 1;
2041     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2042     #else
2043     fcntl (fd, F_SETFD, FD_CLOEXEC);
2044     fcntl (fd, F_SETFL, O_NONBLOCK);
2045     #endif
2046     }
2047    
2048 root 1.8 /*****************************************************************************/
2049    
2050 root 1.235 /*
2051 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2052 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2053     * the branching factor of the d-tree.
2054     */
2055    
2056     /*
2057 root 1.235 * at the moment we allow libev the luxury of two heaps,
2058     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2059     * which is more cache-efficient.
2060     * the difference is about 5% with 50000+ watchers.
2061     */
2062 root 1.241 #if EV_USE_4HEAP
2063 root 1.235
2064 root 1.237 #define DHEAP 4
2065     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2066 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2067 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2068 root 1.235
2069     /* away from the root */
2070 root 1.284 inline_speed void
2071 root 1.241 downheap (ANHE *heap, int N, int k)
2072 root 1.235 {
2073 root 1.241 ANHE he = heap [k];
2074     ANHE *E = heap + N + HEAP0;
2075 root 1.235
2076     for (;;)
2077     {
2078     ev_tstamp minat;
2079 root 1.241 ANHE *minpos;
2080 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2081 root 1.235
2082 root 1.248 /* find minimum child */
2083 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
2084 root 1.235 {
2085 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2086     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2087     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2088     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2089 root 1.235 }
2090 root 1.240 else if (pos < E)
2091 root 1.235 {
2092 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2093     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2094     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2095     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2096 root 1.235 }
2097 root 1.240 else
2098     break;
2099 root 1.235
2100 root 1.241 if (ANHE_at (he) <= minat)
2101 root 1.235 break;
2102    
2103 root 1.247 heap [k] = *minpos;
2104 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2105 root 1.235
2106     k = minpos - heap;
2107     }
2108    
2109 root 1.247 heap [k] = he;
2110 root 1.241 ev_active (ANHE_w (he)) = k;
2111 root 1.235 }
2112    
2113 root 1.248 #else /* 4HEAP */
2114 root 1.235
2115     #define HEAP0 1
2116 root 1.247 #define HPARENT(k) ((k) >> 1)
2117 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2118 root 1.235
2119 root 1.248 /* away from the root */
2120 root 1.284 inline_speed void
2121 root 1.248 downheap (ANHE *heap, int N, int k)
2122 root 1.1 {
2123 root 1.241 ANHE he = heap [k];
2124 root 1.1
2125 root 1.228 for (;;)
2126 root 1.1 {
2127 root 1.248 int c = k << 1;
2128 root 1.179
2129 root 1.309 if (c >= N + HEAP0)
2130 root 1.179 break;
2131    
2132 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2133     ? 1 : 0;
2134    
2135     if (ANHE_at (he) <= ANHE_at (heap [c]))
2136     break;
2137    
2138     heap [k] = heap [c];
2139 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2140 root 1.248
2141     k = c;
2142 root 1.1 }
2143    
2144 root 1.243 heap [k] = he;
2145 root 1.248 ev_active (ANHE_w (he)) = k;
2146 root 1.1 }
2147 root 1.248 #endif
2148 root 1.1
2149 root 1.248 /* towards the root */
2150 root 1.284 inline_speed void
2151 root 1.248 upheap (ANHE *heap, int k)
2152 root 1.1 {
2153 root 1.241 ANHE he = heap [k];
2154 root 1.1
2155 root 1.179 for (;;)
2156 root 1.1 {
2157 root 1.248 int p = HPARENT (k);
2158 root 1.179
2159 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2160 root 1.179 break;
2161 root 1.1
2162 root 1.248 heap [k] = heap [p];
2163 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2164 root 1.248 k = p;
2165 root 1.1 }
2166    
2167 root 1.241 heap [k] = he;
2168     ev_active (ANHE_w (he)) = k;
2169 root 1.1 }
2170    
2171 root 1.288 /* move an element suitably so it is in a correct place */
2172 root 1.284 inline_size void
2173 root 1.241 adjustheap (ANHE *heap, int N, int k)
2174 root 1.84 {
2175 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2176 root 1.247 upheap (heap, k);
2177     else
2178     downheap (heap, N, k);
2179 root 1.84 }
2180    
2181 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2182 root 1.284 inline_size void
2183 root 1.248 reheap (ANHE *heap, int N)
2184     {
2185     int i;
2186 root 1.251
2187 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2188     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2189     for (i = 0; i < N; ++i)
2190     upheap (heap, i + HEAP0);
2191     }
2192    
2193 root 1.8 /*****************************************************************************/
2194    
2195 root 1.288 /* associate signal watchers to a signal signal */
2196 root 1.7 typedef struct
2197     {
2198 root 1.307 EV_ATOMIC_T pending;
2199 root 1.306 #if EV_MULTIPLICITY
2200     EV_P;
2201     #endif
2202 root 1.68 WL head;
2203 root 1.7 } ANSIG;
2204    
2205 root 1.306 static ANSIG signals [EV_NSIG - 1];
2206 root 1.7
2207 root 1.207 /*****************************************************************************/
2208    
2209 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2210 root 1.207
2211 root 1.379 static void noinline ecb_cold
2212 root 1.207 evpipe_init (EV_P)
2213     {
2214 root 1.288 if (!ev_is_active (&pipe_w))
2215 root 1.207 {
2216 root 1.448 int fds [2];
2217    
2218 root 1.336 # if EV_USE_EVENTFD
2219 root 1.448 fds [0] = -1;
2220     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2221     if (fds [1] < 0 && errno == EINVAL)
2222     fds [1] = eventfd (0, 0);
2223    
2224     if (fds [1] < 0)
2225     # endif
2226     {
2227     while (pipe (fds))
2228     ev_syserr ("(libev) error creating signal/async pipe");
2229    
2230     fd_intern (fds [0]);
2231 root 1.220 }
2232 root 1.448
2233     evpipe [0] = fds [0];
2234    
2235     if (evpipe [1] < 0)
2236     evpipe [1] = fds [1]; /* first call, set write fd */
2237 root 1.220 else
2238     {
2239 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2240     /* so that evpipe_write can always rely on its value. */
2241     /* this branch does not do anything sensible on windows, */
2242     /* so must not be executed on windows */
2243 root 1.207
2244 root 1.448 dup2 (fds [1], evpipe [1]);
2245     close (fds [1]);
2246 root 1.220 }
2247 root 1.207
2248 root 1.455 fd_intern (evpipe [1]);
2249    
2250 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2251 root 1.288 ev_io_start (EV_A_ &pipe_w);
2252 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2253 root 1.207 }
2254     }
2255    
2256 root 1.380 inline_speed void
2257 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2258 root 1.207 {
2259 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2260    
2261 root 1.383 if (expect_true (*flag))
2262 root 1.387 return;
2263 root 1.383
2264     *flag = 1;
2265 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2266 root 1.383
2267     pipe_write_skipped = 1;
2268 root 1.378
2269 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2270 root 1.214
2271 root 1.383 if (pipe_write_wanted)
2272     {
2273     int old_errno;
2274 root 1.378
2275 root 1.436 pipe_write_skipped = 0;
2276     ECB_MEMORY_FENCE_RELEASE;
2277 root 1.220
2278 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2279 root 1.380
2280 root 1.220 #if EV_USE_EVENTFD
2281 root 1.448 if (evpipe [0] < 0)
2282 root 1.383 {
2283     uint64_t counter = 1;
2284 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2285 root 1.383 }
2286     else
2287 root 1.220 #endif
2288 root 1.383 {
2289 root 1.427 #ifdef _WIN32
2290     WSABUF buf;
2291     DWORD sent;
2292     buf.buf = &buf;
2293     buf.len = 1;
2294     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2295     #else
2296 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2297 root 1.427 #endif
2298 root 1.383 }
2299 root 1.214
2300 root 1.383 errno = old_errno;
2301 root 1.207 }
2302     }
2303    
2304 root 1.288 /* called whenever the libev signal pipe */
2305     /* got some events (signal, async) */
2306 root 1.207 static void
2307     pipecb (EV_P_ ev_io *iow, int revents)
2308     {
2309 root 1.307 int i;
2310    
2311 root 1.378 if (revents & EV_READ)
2312     {
2313 root 1.220 #if EV_USE_EVENTFD
2314 root 1.448 if (evpipe [0] < 0)
2315 root 1.378 {
2316     uint64_t counter;
2317 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2318 root 1.378 }
2319     else
2320 root 1.220 #endif
2321 root 1.378 {
2322 root 1.427 char dummy[4];
2323     #ifdef _WIN32
2324     WSABUF buf;
2325     DWORD recvd;
2326 root 1.432 DWORD flags = 0;
2327 root 1.427 buf.buf = dummy;
2328     buf.len = sizeof (dummy);
2329 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2330 root 1.427 #else
2331     read (evpipe [0], &dummy, sizeof (dummy));
2332     #endif
2333 root 1.378 }
2334 root 1.220 }
2335 root 1.207
2336 root 1.378 pipe_write_skipped = 0;
2337    
2338 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2339    
2340 root 1.369 #if EV_SIGNAL_ENABLE
2341 root 1.307 if (sig_pending)
2342 root 1.372 {
2343 root 1.307 sig_pending = 0;
2344 root 1.207
2345 root 1.436 ECB_MEMORY_FENCE;
2346 root 1.424
2347 root 1.307 for (i = EV_NSIG - 1; i--; )
2348     if (expect_false (signals [i].pending))
2349     ev_feed_signal_event (EV_A_ i + 1);
2350 root 1.207 }
2351 root 1.369 #endif
2352 root 1.207
2353 root 1.209 #if EV_ASYNC_ENABLE
2354 root 1.307 if (async_pending)
2355 root 1.207 {
2356 root 1.307 async_pending = 0;
2357 root 1.207
2358 root 1.436 ECB_MEMORY_FENCE;
2359 root 1.424
2360 root 1.207 for (i = asynccnt; i--; )
2361     if (asyncs [i]->sent)
2362     {
2363     asyncs [i]->sent = 0;
2364 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2365 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2366     }
2367     }
2368 root 1.209 #endif
2369 root 1.207 }
2370    
2371     /*****************************************************************************/
2372    
2373 root 1.366 void
2374 root 1.420 ev_feed_signal (int signum) EV_THROW
2375 root 1.7 {
2376 root 1.207 #if EV_MULTIPLICITY
2377 root 1.453 EV_P;
2378 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2379 root 1.453 EV_A = signals [signum - 1].loop;
2380 root 1.366
2381     if (!EV_A)
2382     return;
2383 root 1.207 #endif
2384    
2385 root 1.366 signals [signum - 1].pending = 1;
2386     evpipe_write (EV_A_ &sig_pending);
2387     }
2388    
2389     static void
2390     ev_sighandler (int signum)
2391     {
2392 root 1.322 #ifdef _WIN32
2393 root 1.218 signal (signum, ev_sighandler);
2394 root 1.67 #endif
2395    
2396 root 1.366 ev_feed_signal (signum);
2397 root 1.7 }
2398    
2399 root 1.140 void noinline
2400 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2401 root 1.79 {
2402 root 1.80 WL w;
2403    
2404 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2405 root 1.307 return;
2406    
2407     --signum;
2408    
2409 root 1.79 #if EV_MULTIPLICITY
2410 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2411     /* or, likely more useful, feeding a signal nobody is waiting for */
2412 root 1.79
2413 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2414 root 1.306 return;
2415 root 1.307 #endif
2416 root 1.306
2417 root 1.307 signals [signum].pending = 0;
2418 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2419 root 1.79
2420     for (w = signals [signum].head; w; w = w->next)
2421     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2422     }
2423    
2424 root 1.303 #if EV_USE_SIGNALFD
2425     static void
2426     sigfdcb (EV_P_ ev_io *iow, int revents)
2427     {
2428 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2429 root 1.303
2430     for (;;)
2431     {
2432     ssize_t res = read (sigfd, si, sizeof (si));
2433    
2434     /* not ISO-C, as res might be -1, but works with SuS */
2435     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2436     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2437    
2438     if (res < (ssize_t)sizeof (si))
2439     break;
2440     }
2441     }
2442     #endif
2443    
2444 root 1.336 #endif
2445    
2446 root 1.8 /*****************************************************************************/
2447    
2448 root 1.336 #if EV_CHILD_ENABLE
2449 root 1.182 static WL childs [EV_PID_HASHSIZE];
2450 root 1.71
2451 root 1.136 static ev_signal childev;
2452 root 1.59
2453 root 1.206 #ifndef WIFCONTINUED
2454     # define WIFCONTINUED(status) 0
2455     #endif
2456    
2457 root 1.288 /* handle a single child status event */
2458 root 1.284 inline_speed void
2459 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2460 root 1.47 {
2461 root 1.136 ev_child *w;
2462 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2463 root 1.47
2464 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2465 root 1.206 {
2466     if ((w->pid == pid || !w->pid)
2467     && (!traced || (w->flags & 1)))
2468     {
2469 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2470 root 1.206 w->rpid = pid;
2471     w->rstatus = status;
2472     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2473     }
2474     }
2475 root 1.47 }
2476    
2477 root 1.142 #ifndef WCONTINUED
2478     # define WCONTINUED 0
2479     #endif
2480    
2481 root 1.288 /* called on sigchld etc., calls waitpid */
2482 root 1.47 static void
2483 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2484 root 1.22 {
2485     int pid, status;
2486    
2487 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2488     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2489     if (!WCONTINUED
2490     || errno != EINVAL
2491     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2492     return;
2493    
2494 root 1.216 /* make sure we are called again until all children have been reaped */
2495 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2496     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2497 root 1.47
2498 root 1.216 child_reap (EV_A_ pid, pid, status);
2499 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2500 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2501 root 1.22 }
2502    
2503 root 1.45 #endif
2504    
2505 root 1.22 /*****************************************************************************/
2506    
2507 root 1.357 #if EV_USE_IOCP
2508     # include "ev_iocp.c"
2509     #endif
2510 root 1.118 #if EV_USE_PORT
2511     # include "ev_port.c"
2512     #endif
2513 root 1.44 #if EV_USE_KQUEUE
2514     # include "ev_kqueue.c"
2515     #endif
2516 root 1.29 #if EV_USE_EPOLL
2517 root 1.1 # include "ev_epoll.c"
2518     #endif
2519 root 1.59 #if EV_USE_POLL
2520 root 1.41 # include "ev_poll.c"
2521     #endif
2522 root 1.29 #if EV_USE_SELECT
2523 root 1.1 # include "ev_select.c"
2524     #endif
2525    
2526 root 1.379 int ecb_cold
2527 root 1.420 ev_version_major (void) EV_THROW
2528 root 1.24 {
2529     return EV_VERSION_MAJOR;
2530     }
2531    
2532 root 1.379 int ecb_cold
2533 root 1.420 ev_version_minor (void) EV_THROW
2534 root 1.24 {
2535     return EV_VERSION_MINOR;
2536     }
2537    
2538 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2539 root 1.379 int inline_size ecb_cold
2540 root 1.51 enable_secure (void)
2541 root 1.41 {
2542 root 1.103 #ifdef _WIN32
2543 root 1.49 return 0;
2544     #else
2545 root 1.41 return getuid () != geteuid ()
2546     || getgid () != getegid ();
2547 root 1.49 #endif
2548 root 1.41 }
2549    
2550 root 1.379 unsigned int ecb_cold
2551 root 1.420 ev_supported_backends (void) EV_THROW
2552 root 1.129 {
2553 root 1.130 unsigned int flags = 0;
2554 root 1.129
2555     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2556     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2557     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2558     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2559     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2560    
2561     return flags;
2562     }
2563    
2564 root 1.379 unsigned int ecb_cold
2565 root 1.420 ev_recommended_backends (void) EV_THROW
2566 root 1.1 {
2567 root 1.131 unsigned int flags = ev_supported_backends ();
2568 root 1.129
2569     #ifndef __NetBSD__
2570     /* kqueue is borked on everything but netbsd apparently */
2571     /* it usually doesn't work correctly on anything but sockets and pipes */
2572     flags &= ~EVBACKEND_KQUEUE;
2573     #endif
2574     #ifdef __APPLE__
2575 root 1.278 /* only select works correctly on that "unix-certified" platform */
2576     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2577     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2578 root 1.129 #endif
2579 root 1.342 #ifdef __FreeBSD__
2580     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2581     #endif
2582 root 1.129
2583     return flags;
2584 root 1.51 }
2585    
2586 root 1.379 unsigned int ecb_cold
2587 root 1.420 ev_embeddable_backends (void) EV_THROW
2588 root 1.134 {
2589 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2590    
2591 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2592 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2593     flags &= ~EVBACKEND_EPOLL;
2594 root 1.196
2595     return flags;
2596 root 1.134 }
2597    
2598     unsigned int
2599 root 1.420 ev_backend (EV_P) EV_THROW
2600 root 1.130 {
2601     return backend;
2602     }
2603    
2604 root 1.338 #if EV_FEATURE_API
2605 root 1.162 unsigned int
2606 root 1.420 ev_iteration (EV_P) EV_THROW
2607 root 1.162 {
2608     return loop_count;
2609     }
2610    
2611 root 1.294 unsigned int
2612 root 1.420 ev_depth (EV_P) EV_THROW
2613 root 1.294 {
2614     return loop_depth;
2615     }
2616    
2617 root 1.193 void
2618 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2619 root 1.193 {
2620     io_blocktime = interval;
2621     }
2622    
2623     void
2624 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2625 root 1.193 {
2626     timeout_blocktime = interval;
2627     }
2628    
2629 root 1.297 void
2630 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2631 root 1.297 {
2632     userdata = data;
2633     }
2634    
2635     void *
2636 root 1.420 ev_userdata (EV_P) EV_THROW
2637 root 1.297 {
2638     return userdata;
2639     }
2640    
2641 root 1.379 void
2642 root 1.461 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2643 root 1.297 {
2644     invoke_cb = invoke_pending_cb;
2645     }
2646    
2647 root 1.379 void
2648 root 1.473 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2649 root 1.297 {
2650 root 1.298 release_cb = release;
2651     acquire_cb = acquire;
2652 root 1.297 }
2653     #endif
2654    
2655 root 1.288 /* initialise a loop structure, must be zero-initialised */
2656 root 1.379 static void noinline ecb_cold
2657 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2658 root 1.51 {
2659 root 1.130 if (!backend)
2660 root 1.23 {
2661 root 1.366 origflags = flags;
2662    
2663 root 1.279 #if EV_USE_REALTIME
2664     if (!have_realtime)
2665     {
2666     struct timespec ts;
2667    
2668     if (!clock_gettime (CLOCK_REALTIME, &ts))
2669     have_realtime = 1;
2670     }
2671     #endif
2672    
2673 root 1.29 #if EV_USE_MONOTONIC
2674 root 1.279 if (!have_monotonic)
2675     {
2676     struct timespec ts;
2677    
2678     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2679     have_monotonic = 1;
2680     }
2681 root 1.1 #endif
2682    
2683 root 1.306 /* pid check not overridable via env */
2684     #ifndef _WIN32
2685     if (flags & EVFLAG_FORKCHECK)
2686     curpid = getpid ();
2687     #endif
2688    
2689     if (!(flags & EVFLAG_NOENV)
2690     && !enable_secure ()
2691     && getenv ("LIBEV_FLAGS"))
2692     flags = atoi (getenv ("LIBEV_FLAGS"));
2693    
2694 root 1.378 ev_rt_now = ev_time ();
2695     mn_now = get_clock ();
2696     now_floor = mn_now;
2697     rtmn_diff = ev_rt_now - mn_now;
2698 root 1.338 #if EV_FEATURE_API
2699 root 1.378 invoke_cb = ev_invoke_pending;
2700 root 1.297 #endif
2701 root 1.1
2702 root 1.378 io_blocktime = 0.;
2703     timeout_blocktime = 0.;
2704     backend = 0;
2705     backend_fd = -1;
2706     sig_pending = 0;
2707 root 1.307 #if EV_ASYNC_ENABLE
2708 root 1.378 async_pending = 0;
2709 root 1.307 #endif
2710 root 1.378 pipe_write_skipped = 0;
2711     pipe_write_wanted = 0;
2712 root 1.448 evpipe [0] = -1;
2713     evpipe [1] = -1;
2714 root 1.209 #if EV_USE_INOTIFY
2715 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2716 root 1.209 #endif
2717 root 1.303 #if EV_USE_SIGNALFD
2718 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2719 root 1.303 #endif
2720 root 1.193
2721 root 1.366 if (!(flags & EVBACKEND_MASK))
2722 root 1.129 flags |= ev_recommended_backends ();
2723 root 1.41
2724 root 1.357 #if EV_USE_IOCP
2725     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2726     #endif
2727 root 1.118 #if EV_USE_PORT
2728 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2729 root 1.118 #endif
2730 root 1.44 #if EV_USE_KQUEUE
2731 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2732 root 1.44 #endif
2733 root 1.29 #if EV_USE_EPOLL
2734 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2735 root 1.41 #endif
2736 root 1.59 #if EV_USE_POLL
2737 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2738 root 1.1 #endif
2739 root 1.29 #if EV_USE_SELECT
2740 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2741 root 1.1 #endif
2742 root 1.70
2743 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2744    
2745 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2746 root 1.288 ev_init (&pipe_w, pipecb);
2747     ev_set_priority (&pipe_w, EV_MAXPRI);
2748 root 1.336 #endif
2749 root 1.56 }
2750     }
2751    
2752 root 1.288 /* free up a loop structure */
2753 root 1.379 void ecb_cold
2754 root 1.422 ev_loop_destroy (EV_P)
2755 root 1.56 {
2756 root 1.65 int i;
2757    
2758 root 1.364 #if EV_MULTIPLICITY
2759 root 1.363 /* mimic free (0) */
2760     if (!EV_A)
2761     return;
2762 root 1.364 #endif
2763 root 1.363
2764 root 1.361 #if EV_CLEANUP_ENABLE
2765     /* queue cleanup watchers (and execute them) */
2766     if (expect_false (cleanupcnt))
2767     {
2768     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2769     EV_INVOKE_PENDING;
2770     }
2771     #endif
2772    
2773 root 1.359 #if EV_CHILD_ENABLE
2774 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2775 root 1.359 {
2776     ev_ref (EV_A); /* child watcher */
2777     ev_signal_stop (EV_A_ &childev);
2778     }
2779     #endif
2780    
2781 root 1.288 if (ev_is_active (&pipe_w))
2782 root 1.207 {
2783 root 1.303 /*ev_ref (EV_A);*/
2784     /*ev_io_stop (EV_A_ &pipe_w);*/
2785 root 1.207
2786 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2787     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2788 root 1.207 }
2789    
2790 root 1.303 #if EV_USE_SIGNALFD
2791     if (ev_is_active (&sigfd_w))
2792 root 1.317 close (sigfd);
2793 root 1.303 #endif
2794    
2795 root 1.152 #if EV_USE_INOTIFY
2796     if (fs_fd >= 0)
2797     close (fs_fd);
2798     #endif
2799    
2800     if (backend_fd >= 0)
2801     close (backend_fd);
2802    
2803 root 1.357 #if EV_USE_IOCP
2804     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2805     #endif
2806 root 1.118 #if EV_USE_PORT
2807 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2808 root 1.118 #endif
2809 root 1.56 #if EV_USE_KQUEUE
2810 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2811 root 1.56 #endif
2812     #if EV_USE_EPOLL
2813 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2814 root 1.56 #endif
2815 root 1.59 #if EV_USE_POLL
2816 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2817 root 1.56 #endif
2818     #if EV_USE_SELECT
2819 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2820 root 1.56 #endif
2821 root 1.1
2822 root 1.65 for (i = NUMPRI; i--; )
2823 root 1.164 {
2824     array_free (pending, [i]);
2825     #if EV_IDLE_ENABLE
2826     array_free (idle, [i]);
2827     #endif
2828     }
2829 root 1.65
2830 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2831 root 1.186
2832 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2833 root 1.284 array_free (rfeed, EMPTY);
2834 root 1.164 array_free (fdchange, EMPTY);
2835     array_free (timer, EMPTY);
2836 root 1.140 #if EV_PERIODIC_ENABLE
2837 root 1.164 array_free (periodic, EMPTY);
2838 root 1.93 #endif
2839 root 1.187 #if EV_FORK_ENABLE
2840     array_free (fork, EMPTY);
2841     #endif
2842 root 1.360 #if EV_CLEANUP_ENABLE
2843     array_free (cleanup, EMPTY);
2844     #endif
2845 root 1.164 array_free (prepare, EMPTY);
2846     array_free (check, EMPTY);
2847 root 1.209 #if EV_ASYNC_ENABLE
2848     array_free (async, EMPTY);
2849     #endif
2850 root 1.65
2851 root 1.130 backend = 0;
2852 root 1.359
2853     #if EV_MULTIPLICITY
2854     if (ev_is_default_loop (EV_A))
2855     #endif
2856     ev_default_loop_ptr = 0;
2857     #if EV_MULTIPLICITY
2858     else
2859     ev_free (EV_A);
2860     #endif
2861 root 1.56 }
2862 root 1.22
2863 root 1.226 #if EV_USE_INOTIFY
2864 root 1.284 inline_size void infy_fork (EV_P);
2865 root 1.226 #endif
2866 root 1.154
2867 root 1.284 inline_size void
2868 root 1.56 loop_fork (EV_P)
2869     {
2870 root 1.118 #if EV_USE_PORT
2871 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2872 root 1.56 #endif
2873     #if EV_USE_KQUEUE
2874 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2875 root 1.45 #endif
2876 root 1.118 #if EV_USE_EPOLL
2877 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2878 root 1.118 #endif
2879 root 1.154 #if EV_USE_INOTIFY
2880     infy_fork (EV_A);
2881     #endif
2882 root 1.70
2883 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2884 root 1.288 if (ev_is_active (&pipe_w))
2885 root 1.70 {
2886 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2887 root 1.70
2888     ev_ref (EV_A);
2889 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2890 root 1.220
2891     if (evpipe [0] >= 0)
2892 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
2893 root 1.207
2894     evpipe_init (EV_A);
2895 root 1.443 /* iterate over everything, in case we missed something before */
2896     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2897 root 1.448 }
2898 root 1.337 #endif
2899 root 1.70
2900     postfork = 0;
2901 root 1.1 }
2902    
2903 root 1.55 #if EV_MULTIPLICITY
2904 root 1.250
2905 root 1.379 struct ev_loop * ecb_cold
2906 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2907 root 1.54 {
2908 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2909 root 1.69
2910 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2911 root 1.108 loop_init (EV_A_ flags);
2912 root 1.56
2913 root 1.130 if (ev_backend (EV_A))
2914 root 1.306 return EV_A;
2915 root 1.54
2916 root 1.359 ev_free (EV_A);
2917 root 1.55 return 0;
2918 root 1.54 }
2919    
2920 root 1.297 #endif /* multiplicity */
2921 root 1.248
2922     #if EV_VERIFY
2923 root 1.379 static void noinline ecb_cold
2924 root 1.251 verify_watcher (EV_P_ W w)
2925     {
2926 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2927 root 1.251
2928     if (w->pending)
2929 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2930 root 1.251 }
2931    
2932 root 1.379 static void noinline ecb_cold
2933 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2934     {
2935     int i;
2936    
2937     for (i = HEAP0; i < N + HEAP0; ++i)
2938     {
2939 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2940     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2941     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2942 root 1.251
2943     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2944     }
2945     }
2946    
2947 root 1.379 static void noinline ecb_cold
2948 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2949 root 1.248 {
2950     while (cnt--)
2951 root 1.251 {
2952 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2953 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2954     }
2955 root 1.248 }
2956 root 1.250 #endif
2957 root 1.248
2958 root 1.338 #if EV_FEATURE_API
2959 root 1.379 void ecb_cold
2960 root 1.420 ev_verify (EV_P) EV_THROW
2961 root 1.248 {
2962 root 1.250 #if EV_VERIFY
2963 root 1.429 int i;
2964 root 1.426 WL w, w2;
2965 root 1.251
2966     assert (activecnt >= -1);
2967    
2968     assert (fdchangemax >= fdchangecnt);
2969     for (i = 0; i < fdchangecnt; ++i)
2970 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2971 root 1.251
2972     assert (anfdmax >= 0);
2973 root 1.429 for (i = 0; i < anfdmax; ++i)
2974     {
2975     int j = 0;
2976    
2977     for (w = w2 = anfds [i].head; w; w = w->next)
2978     {
2979     verify_watcher (EV_A_ (W)w);
2980 root 1.426
2981 root 1.429 if (j++ & 1)
2982     {
2983     assert (("libev: io watcher list contains a loop", w != w2));
2984     w2 = w2->next;
2985     }
2986 root 1.426
2987 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2988     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2989     }
2990     }
2991 root 1.251
2992     assert (timermax >= timercnt);
2993     verify_heap (EV_A_ timers, timercnt);
2994 root 1.248
2995     #if EV_PERIODIC_ENABLE
2996 root 1.251 assert (periodicmax >= periodiccnt);
2997     verify_heap (EV_A_ periodics, periodiccnt);
2998 root 1.248 #endif
2999    
3000 root 1.251 for (i = NUMPRI; i--; )
3001     {
3002     assert (pendingmax [i] >= pendingcnt [i]);
3003 root 1.248 #if EV_IDLE_ENABLE
3004 root 1.252 assert (idleall >= 0);
3005 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3006     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3007 root 1.248 #endif
3008 root 1.251 }
3009    
3010 root 1.248 #if EV_FORK_ENABLE
3011 root 1.251 assert (forkmax >= forkcnt);
3012     array_verify (EV_A_ (W *)forks, forkcnt);
3013 root 1.248 #endif
3014 root 1.251
3015 root 1.360 #if EV_CLEANUP_ENABLE
3016     assert (cleanupmax >= cleanupcnt);
3017     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3018     #endif
3019    
3020 root 1.250 #if EV_ASYNC_ENABLE
3021 root 1.251 assert (asyncmax >= asynccnt);
3022     array_verify (EV_A_ (W *)asyncs, asynccnt);
3023 root 1.250 #endif
3024 root 1.251
3025 root 1.337 #if EV_PREPARE_ENABLE
3026 root 1.251 assert (preparemax >= preparecnt);
3027     array_verify (EV_A_ (W *)prepares, preparecnt);
3028 root 1.337 #endif
3029 root 1.251
3030 root 1.337 #if EV_CHECK_ENABLE
3031 root 1.251 assert (checkmax >= checkcnt);
3032     array_verify (EV_A_ (W *)checks, checkcnt);
3033 root 1.337 #endif
3034 root 1.251
3035     # if 0
3036 root 1.336 #if EV_CHILD_ENABLE
3037 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3038 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3039 root 1.336 #endif
3040 root 1.251 # endif
3041 root 1.248 #endif
3042     }
3043 root 1.297 #endif
3044 root 1.56
3045     #if EV_MULTIPLICITY
3046 root 1.379 struct ev_loop * ecb_cold
3047 root 1.54 #else
3048     int
3049 root 1.358 #endif
3050 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
3051 root 1.54 {
3052 root 1.116 if (!ev_default_loop_ptr)
3053 root 1.56 {
3054     #if EV_MULTIPLICITY
3055 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3056 root 1.56 #else
3057 ayin 1.117 ev_default_loop_ptr = 1;
3058 root 1.54 #endif
3059    
3060 root 1.110 loop_init (EV_A_ flags);
3061 root 1.56
3062 root 1.130 if (ev_backend (EV_A))
3063 root 1.56 {
3064 root 1.336 #if EV_CHILD_ENABLE
3065 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3066     ev_set_priority (&childev, EV_MAXPRI);
3067     ev_signal_start (EV_A_ &childev);
3068     ev_unref (EV_A); /* child watcher should not keep loop alive */
3069     #endif
3070     }
3071     else
3072 root 1.116 ev_default_loop_ptr = 0;
3073 root 1.56 }
3074 root 1.8
3075 root 1.116 return ev_default_loop_ptr;
3076 root 1.1 }
3077    
3078 root 1.24 void
3079 root 1.420 ev_loop_fork (EV_P) EV_THROW
3080 root 1.1 {
3081 root 1.440 postfork = 1;
3082 root 1.1 }
3083    
3084 root 1.8 /*****************************************************************************/
3085    
3086 root 1.168 void
3087     ev_invoke (EV_P_ void *w, int revents)
3088     {
3089     EV_CB_INVOKE ((W)w, revents);
3090     }
3091    
3092 root 1.300 unsigned int
3093 root 1.420 ev_pending_count (EV_P) EV_THROW
3094 root 1.300 {
3095     int pri;
3096     unsigned int count = 0;
3097    
3098     for (pri = NUMPRI; pri--; )
3099     count += pendingcnt [pri];
3100    
3101     return count;
3102     }
3103    
3104 root 1.297 void noinline
3105 root 1.296 ev_invoke_pending (EV_P)
3106 root 1.1 {
3107 root 1.445 pendingpri = NUMPRI;
3108    
3109     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3110     {
3111     --pendingpri;
3112    
3113     while (pendingcnt [pendingpri])
3114     {
3115     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3116 root 1.1
3117 root 1.445 p->w->pending = 0;
3118     EV_CB_INVOKE (p->w, p->events);
3119     EV_FREQUENT_CHECK;
3120     }
3121     }
3122 root 1.1 }
3123    
3124 root 1.234 #if EV_IDLE_ENABLE
3125 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3126     /* only when higher priorities are idle" logic */
3127 root 1.284 inline_size void
3128 root 1.234 idle_reify (EV_P)
3129     {
3130     if (expect_false (idleall))
3131     {
3132     int pri;
3133    
3134     for (pri = NUMPRI; pri--; )
3135     {
3136     if (pendingcnt [pri])
3137     break;
3138    
3139     if (idlecnt [pri])
3140     {
3141     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3142     break;
3143     }
3144     }
3145     }
3146     }
3147     #endif
3148    
3149 root 1.288 /* make timers pending */
3150 root 1.284 inline_size void
3151 root 1.51 timers_reify (EV_P)
3152 root 1.1 {
3153 root 1.248 EV_FREQUENT_CHECK;
3154    
3155 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3156 root 1.1 {
3157 root 1.284 do
3158     {
3159     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3160 root 1.1
3161 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3162    
3163     /* first reschedule or stop timer */
3164     if (w->repeat)
3165     {
3166     ev_at (w) += w->repeat;
3167     if (ev_at (w) < mn_now)
3168     ev_at (w) = mn_now;
3169 root 1.61
3170 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3171 root 1.90
3172 root 1.284 ANHE_at_cache (timers [HEAP0]);
3173     downheap (timers, timercnt, HEAP0);
3174     }
3175     else
3176     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3177 root 1.243
3178 root 1.284 EV_FREQUENT_CHECK;
3179     feed_reverse (EV_A_ (W)w);
3180 root 1.12 }
3181 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3182 root 1.30
3183 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3184 root 1.12 }
3185     }
3186 root 1.4
3187 root 1.140 #if EV_PERIODIC_ENABLE
3188 root 1.370
3189 root 1.373 static void noinline
3190 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3191     {
3192 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3193     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3194    
3195     /* the above almost always errs on the low side */
3196     while (at <= ev_rt_now)
3197     {
3198     ev_tstamp nat = at + w->interval;
3199    
3200     /* when resolution fails us, we use ev_rt_now */
3201     if (expect_false (nat == at))
3202     {
3203     at = ev_rt_now;
3204     break;
3205     }
3206    
3207     at = nat;
3208     }
3209    
3210     ev_at (w) = at;
3211 root 1.370 }
3212    
3213 root 1.288 /* make periodics pending */
3214 root 1.284 inline_size void
3215 root 1.51 periodics_reify (EV_P)
3216 root 1.12 {
3217 root 1.248 EV_FREQUENT_CHECK;
3218 root 1.250
3219 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3220 root 1.12 {
3221 root 1.284 do
3222     {
3223     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3224 root 1.1
3225 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3226 root 1.61
3227 root 1.284 /* first reschedule or stop timer */
3228     if (w->reschedule_cb)
3229     {
3230     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3231 root 1.243
3232 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3233 root 1.243
3234 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3235     downheap (periodics, periodiccnt, HEAP0);
3236     }
3237     else if (w->interval)
3238 root 1.246 {
3239 root 1.370 periodic_recalc (EV_A_ w);
3240 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3241     downheap (periodics, periodiccnt, HEAP0);
3242 root 1.246 }
3243 root 1.284 else
3244     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3245 root 1.243
3246 root 1.284 EV_FREQUENT_CHECK;
3247     feed_reverse (EV_A_ (W)w);
3248 root 1.1 }
3249 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3250 root 1.12
3251 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3252 root 1.12 }
3253     }
3254    
3255 root 1.288 /* simply recalculate all periodics */
3256 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3257 root 1.379 static void noinline ecb_cold
3258 root 1.54 periodics_reschedule (EV_P)
3259 root 1.12 {
3260     int i;
3261    
3262 root 1.13 /* adjust periodics after time jump */
3263 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3264 root 1.12 {
3265 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3266 root 1.12
3267 root 1.77 if (w->reschedule_cb)
3268 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3269 root 1.77 else if (w->interval)
3270 root 1.370 periodic_recalc (EV_A_ w);
3271 root 1.242
3272 root 1.248 ANHE_at_cache (periodics [i]);
3273 root 1.77 }
3274 root 1.12
3275 root 1.248 reheap (periodics, periodiccnt);
3276 root 1.1 }
3277 root 1.93 #endif
3278 root 1.1
3279 root 1.288 /* adjust all timers by a given offset */
3280 root 1.379 static void noinline ecb_cold
3281 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3282     {
3283     int i;
3284    
3285     for (i = 0; i < timercnt; ++i)
3286     {
3287     ANHE *he = timers + i + HEAP0;
3288     ANHE_w (*he)->at += adjust;
3289     ANHE_at_cache (*he);
3290     }
3291     }
3292    
3293 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3294 root 1.324 /* also detect if there was a timejump, and act accordingly */
3295 root 1.284 inline_speed void
3296 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3297 root 1.4 {
3298 root 1.40 #if EV_USE_MONOTONIC
3299     if (expect_true (have_monotonic))
3300     {
3301 root 1.289 int i;
3302 root 1.178 ev_tstamp odiff = rtmn_diff;
3303    
3304     mn_now = get_clock ();
3305    
3306     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3307     /* interpolate in the meantime */
3308     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3309 root 1.40 {
3310 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3311     return;
3312     }
3313    
3314     now_floor = mn_now;
3315     ev_rt_now = ev_time ();
3316 root 1.4
3317 root 1.178 /* loop a few times, before making important decisions.
3318     * on the choice of "4": one iteration isn't enough,
3319     * in case we get preempted during the calls to
3320     * ev_time and get_clock. a second call is almost guaranteed
3321     * to succeed in that case, though. and looping a few more times
3322     * doesn't hurt either as we only do this on time-jumps or
3323     * in the unlikely event of having been preempted here.
3324     */
3325     for (i = 4; --i; )
3326     {
3327 root 1.373 ev_tstamp diff;
3328 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3329 root 1.4
3330 root 1.373 diff = odiff - rtmn_diff;
3331    
3332     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3333 root 1.178 return; /* all is well */
3334 root 1.4
3335 root 1.178 ev_rt_now = ev_time ();
3336     mn_now = get_clock ();
3337     now_floor = mn_now;
3338     }
3339 root 1.4
3340 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3341     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3342 root 1.140 # if EV_PERIODIC_ENABLE
3343 root 1.178 periodics_reschedule (EV_A);
3344 root 1.93 # endif
3345 root 1.4 }
3346     else
3347 root 1.40 #endif
3348 root 1.4 {
3349 root 1.85 ev_rt_now = ev_time ();
3350 root 1.40
3351 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3352 root 1.13 {
3353 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3354     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3355 root 1.140 #if EV_PERIODIC_ENABLE
3356 root 1.54 periodics_reschedule (EV_A);
3357 root 1.93 #endif
3358 root 1.13 }
3359 root 1.4
3360 root 1.85 mn_now = ev_rt_now;
3361 root 1.4 }
3362     }
3363    
3364 root 1.418 int
3365 root 1.353 ev_run (EV_P_ int flags)
3366 root 1.1 {
3367 root 1.338 #if EV_FEATURE_API
3368 root 1.294 ++loop_depth;
3369 root 1.297 #endif
3370 root 1.294
3371 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3372 root 1.298
3373 root 1.353 loop_done = EVBREAK_CANCEL;
3374 root 1.1
3375 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3376 root 1.158
3377 root 1.161 do
3378 root 1.9 {
3379 root 1.250 #if EV_VERIFY >= 2
3380 root 1.340 ev_verify (EV_A);
3381 root 1.250 #endif
3382    
3383 root 1.158 #ifndef _WIN32
3384     if (expect_false (curpid)) /* penalise the forking check even more */
3385     if (expect_false (getpid () != curpid))
3386     {
3387     curpid = getpid ();
3388     postfork = 1;
3389     }
3390     #endif
3391    
3392 root 1.157 #if EV_FORK_ENABLE
3393     /* we might have forked, so queue fork handlers */
3394     if (expect_false (postfork))
3395     if (forkcnt)
3396     {
3397     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3398 root 1.297 EV_INVOKE_PENDING;
3399 root 1.157 }
3400     #endif
3401 root 1.147
3402 root 1.337 #if EV_PREPARE_ENABLE
3403 root 1.170 /* queue prepare watchers (and execute them) */
3404 root 1.40 if (expect_false (preparecnt))
3405 root 1.20 {
3406 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3407 root 1.297 EV_INVOKE_PENDING;
3408 root 1.20 }
3409 root 1.337 #endif
3410 root 1.9
3411 root 1.298 if (expect_false (loop_done))
3412     break;
3413    
3414 root 1.70 /* we might have forked, so reify kernel state if necessary */
3415     if (expect_false (postfork))
3416     loop_fork (EV_A);
3417    
3418 root 1.1 /* update fd-related kernel structures */
3419 root 1.51 fd_reify (EV_A);
3420 root 1.1
3421     /* calculate blocking time */
3422 root 1.135 {
3423 root 1.193 ev_tstamp waittime = 0.;
3424     ev_tstamp sleeptime = 0.;
3425 root 1.12
3426 root 1.353 /* remember old timestamp for io_blocktime calculation */
3427     ev_tstamp prev_mn_now = mn_now;
3428 root 1.293
3429 root 1.353 /* update time to cancel out callback processing overhead */
3430     time_update (EV_A_ 1e100);
3431 root 1.135
3432 root 1.378 /* from now on, we want a pipe-wake-up */
3433     pipe_write_wanted = 1;
3434    
3435 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3436 root 1.383
3437 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3438 root 1.353 {
3439 root 1.287 waittime = MAX_BLOCKTIME;
3440    
3441 root 1.135 if (timercnt)
3442     {
3443 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3444 root 1.193 if (waittime > to) waittime = to;
3445 root 1.135 }
3446 root 1.4
3447 root 1.140 #if EV_PERIODIC_ENABLE
3448 root 1.135 if (periodiccnt)
3449     {
3450 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3451 root 1.193 if (waittime > to) waittime = to;
3452 root 1.135 }
3453 root 1.93 #endif
3454 root 1.4
3455 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3456 root 1.193 if (expect_false (waittime < timeout_blocktime))
3457     waittime = timeout_blocktime;
3458    
3459 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3460     /* to pass a minimum nonzero value to the backend */
3461     if (expect_false (waittime < backend_mintime))
3462     waittime = backend_mintime;
3463    
3464 root 1.293 /* extra check because io_blocktime is commonly 0 */
3465     if (expect_false (io_blocktime))
3466     {
3467     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3468 root 1.193
3469 root 1.376 if (sleeptime > waittime - backend_mintime)
3470     sleeptime = waittime - backend_mintime;
3471 root 1.193
3472 root 1.293 if (expect_true (sleeptime > 0.))
3473     {
3474     ev_sleep (sleeptime);
3475     waittime -= sleeptime;
3476     }
3477 root 1.193 }
3478 root 1.135 }
3479 root 1.1
3480 root 1.338 #if EV_FEATURE_API
3481 root 1.162 ++loop_count;
3482 root 1.297 #endif
3483 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3484 root 1.193 backend_poll (EV_A_ waittime);
3485 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3486 root 1.178
3487 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3488 root 1.378
3489 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3490 root 1.378 if (pipe_write_skipped)
3491     {
3492     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3493     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3494     }
3495    
3496    
3497 root 1.178 /* update ev_rt_now, do magic */
3498 root 1.193 time_update (EV_A_ waittime + sleeptime);
3499 root 1.135 }
3500 root 1.1
3501 root 1.9 /* queue pending timers and reschedule them */
3502 root 1.51 timers_reify (EV_A); /* relative timers called last */
3503 root 1.140 #if EV_PERIODIC_ENABLE
3504 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3505 root 1.93 #endif
3506 root 1.1
3507 root 1.164 #if EV_IDLE_ENABLE
3508 root 1.137 /* queue idle watchers unless other events are pending */
3509 root 1.164 idle_reify (EV_A);
3510     #endif
3511 root 1.9
3512 root 1.337 #if EV_CHECK_ENABLE
3513 root 1.20 /* queue check watchers, to be executed first */
3514 root 1.123 if (expect_false (checkcnt))
3515 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3516 root 1.337 #endif
3517 root 1.9
3518 root 1.297 EV_INVOKE_PENDING;
3519 root 1.1 }
3520 root 1.219 while (expect_true (
3521     activecnt
3522     && !loop_done
3523 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3524 root 1.219 ));
3525 root 1.13
3526 root 1.353 if (loop_done == EVBREAK_ONE)
3527     loop_done = EVBREAK_CANCEL;
3528 root 1.294
3529 root 1.338 #if EV_FEATURE_API
3530 root 1.294 --loop_depth;
3531 root 1.297 #endif
3532 root 1.418
3533     return activecnt;
3534 root 1.51 }
3535    
3536     void
3537 root 1.420 ev_break (EV_P_ int how) EV_THROW
3538 root 1.51 {
3539     loop_done = how;
3540 root 1.1 }
3541    
3542 root 1.285 void
3543 root 1.420 ev_ref (EV_P) EV_THROW
3544 root 1.285 {
3545     ++activecnt;
3546     }
3547    
3548     void
3549 root 1.420 ev_unref (EV_P) EV_THROW
3550 root 1.285 {
3551     --activecnt;
3552     }
3553    
3554     void
3555 root 1.420 ev_now_update (EV_P) EV_THROW
3556 root 1.285 {
3557     time_update (EV_A_ 1e100);
3558     }
3559    
3560     void
3561 root 1.420 ev_suspend (EV_P) EV_THROW
3562 root 1.285 {
3563     ev_now_update (EV_A);
3564     }
3565    
3566     void
3567 root 1.420 ev_resume (EV_P) EV_THROW
3568 root 1.285 {
3569     ev_tstamp mn_prev = mn_now;
3570    
3571     ev_now_update (EV_A);
3572     timers_reschedule (EV_A_ mn_now - mn_prev);
3573 root 1.286 #if EV_PERIODIC_ENABLE
3574 root 1.288 /* TODO: really do this? */
3575 root 1.285 periodics_reschedule (EV_A);
3576 root 1.286 #endif
3577 root 1.285 }
3578    
3579 root 1.8 /*****************************************************************************/
3580 root 1.288 /* singly-linked list management, used when the expected list length is short */
3581 root 1.8
3582 root 1.284 inline_size void
3583 root 1.10 wlist_add (WL *head, WL elem)
3584 root 1.1 {
3585     elem->next = *head;
3586     *head = elem;
3587     }
3588    
3589 root 1.284 inline_size void
3590 root 1.10 wlist_del (WL *head, WL elem)
3591 root 1.1 {
3592     while (*head)
3593     {
3594 root 1.307 if (expect_true (*head == elem))
3595 root 1.1 {
3596     *head = elem->next;
3597 root 1.307 break;
3598 root 1.1 }
3599    
3600     head = &(*head)->next;
3601     }
3602     }
3603    
3604 root 1.288 /* internal, faster, version of ev_clear_pending */
3605 root 1.284 inline_speed void
3606 root 1.166 clear_pending (EV_P_ W w)
3607 root 1.16 {
3608     if (w->pending)
3609     {
3610 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3611 root 1.16 w->pending = 0;
3612     }
3613     }
3614    
3615 root 1.167 int
3616 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3617 root 1.166 {
3618     W w_ = (W)w;
3619     int pending = w_->pending;
3620    
3621 root 1.172 if (expect_true (pending))
3622     {
3623     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3624 root 1.288 p->w = (W)&pending_w;
3625 root 1.172 w_->pending = 0;
3626     return p->events;
3627     }
3628     else
3629 root 1.167 return 0;
3630 root 1.166 }
3631    
3632 root 1.284 inline_size void
3633 root 1.164 pri_adjust (EV_P_ W w)
3634     {
3635 root 1.295 int pri = ev_priority (w);
3636 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3637     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3638 root 1.295 ev_set_priority (w, pri);
3639 root 1.164 }
3640    
3641 root 1.284 inline_speed void
3642 root 1.51 ev_start (EV_P_ W w, int active)
3643 root 1.1 {
3644 root 1.164 pri_adjust (EV_A_ w);
3645 root 1.1 w->active = active;
3646 root 1.51 ev_ref (EV_A);
3647 root 1.1 }
3648    
3649 root 1.284 inline_size void
3650 root 1.51 ev_stop (EV_P_ W w)
3651 root 1.1 {
3652 root 1.51 ev_unref (EV_A);
3653 root 1.1 w->active = 0;
3654     }
3655    
3656 root 1.8 /*****************************************************************************/
3657    
3658 root 1.171 void noinline
3659 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3660 root 1.1 {
3661 root 1.37 int fd = w->fd;
3662    
3663 root 1.123 if (expect_false (ev_is_active (w)))
3664 root 1.1 return;
3665    
3666 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3667 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3668 root 1.33
3669 root 1.248 EV_FREQUENT_CHECK;
3670    
3671 root 1.51 ev_start (EV_A_ (W)w, 1);
3672 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3673 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3674 root 1.1
3675 root 1.426 /* common bug, apparently */
3676     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3677    
3678 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3679 root 1.281 w->events &= ~EV__IOFDSET;
3680 root 1.248
3681     EV_FREQUENT_CHECK;
3682 root 1.1 }
3683    
3684 root 1.171 void noinline
3685 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3686 root 1.1 {
3687 root 1.166 clear_pending (EV_A_ (W)w);
3688 root 1.123 if (expect_false (!ev_is_active (w)))
3689 root 1.1 return;
3690    
3691 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3692 root 1.89
3693 root 1.248 EV_FREQUENT_CHECK;
3694    
3695 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3696 root 1.51 ev_stop (EV_A_ (W)w);
3697 root 1.1
3698 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3699 root 1.248
3700     EV_FREQUENT_CHECK;
3701 root 1.1 }
3702    
3703 root 1.171 void noinline
3704 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3705 root 1.1 {
3706 root 1.123 if (expect_false (ev_is_active (w)))
3707 root 1.1 return;
3708    
3709 root 1.228 ev_at (w) += mn_now;
3710 root 1.12
3711 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3712 root 1.13
3713 root 1.248 EV_FREQUENT_CHECK;
3714    
3715     ++timercnt;
3716     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3717 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3718     ANHE_w (timers [ev_active (w)]) = (WT)w;
3719 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3720 root 1.235 upheap (timers, ev_active (w));
3721 root 1.62
3722 root 1.248 EV_FREQUENT_CHECK;
3723    
3724 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3725 root 1.12 }
3726    
3727 root 1.171 void noinline
3728 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3729 root 1.12 {
3730 root 1.166 clear_pending (EV_A_ (W)w);
3731 root 1.123 if (expect_false (!ev_is_active (w)))
3732 root 1.12 return;
3733    
3734 root 1.248 EV_FREQUENT_CHECK;
3735    
3736 root 1.230 {
3737     int active = ev_active (w);
3738 root 1.62
3739 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3740 root 1.151
3741 root 1.248 --timercnt;
3742    
3743     if (expect_true (active < timercnt + HEAP0))
3744 root 1.151 {
3745 root 1.248 timers [active] = timers [timercnt + HEAP0];
3746 root 1.181 adjustheap (timers, timercnt, active);
3747 root 1.151 }
3748 root 1.248 }
3749 root 1.228
3750     ev_at (w) -= mn_now;
3751 root 1.14
3752 root 1.51 ev_stop (EV_A_ (W)w);
3753 root 1.328
3754     EV_FREQUENT_CHECK;
3755 root 1.12 }
3756 root 1.4
3757 root 1.171 void noinline
3758 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3759 root 1.14 {
3760 root 1.248 EV_FREQUENT_CHECK;
3761    
3762 root 1.407 clear_pending (EV_A_ (W)w);
3763 root 1.406
3764 root 1.14 if (ev_is_active (w))
3765     {
3766     if (w->repeat)
3767 root 1.99 {
3768 root 1.228 ev_at (w) = mn_now + w->repeat;
3769 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3770 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3771 root 1.99 }
3772 root 1.14 else
3773 root 1.51 ev_timer_stop (EV_A_ w);
3774 root 1.14 }
3775     else if (w->repeat)
3776 root 1.112 {
3777 root 1.229 ev_at (w) = w->repeat;
3778 root 1.112 ev_timer_start (EV_A_ w);
3779     }
3780 root 1.248
3781     EV_FREQUENT_CHECK;
3782 root 1.14 }
3783    
3784 root 1.301 ev_tstamp
3785 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3786 root 1.301 {
3787     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3788     }
3789    
3790 root 1.140 #if EV_PERIODIC_ENABLE
3791 root 1.171 void noinline
3792 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3793 root 1.12 {
3794 root 1.123 if (expect_false (ev_is_active (w)))
3795 root 1.12 return;
3796 root 1.1
3797 root 1.77 if (w->reschedule_cb)
3798 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3799 root 1.77 else if (w->interval)
3800     {
3801 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3802 root 1.370 periodic_recalc (EV_A_ w);
3803 root 1.77 }
3804 root 1.173 else
3805 root 1.228 ev_at (w) = w->offset;
3806 root 1.12
3807 root 1.248 EV_FREQUENT_CHECK;
3808    
3809     ++periodiccnt;
3810     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3811 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3812     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3813 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3814 root 1.235 upheap (periodics, ev_active (w));
3815 root 1.62
3816 root 1.248 EV_FREQUENT_CHECK;
3817    
3818 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3819 root 1.1 }
3820    
3821 root 1.171 void noinline
3822 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3823 root 1.1 {
3824 root 1.166 clear_pending (EV_A_ (W)w);
3825 root 1.123 if (expect_false (!ev_is_active (w)))
3826 root 1.1 return;
3827    
3828 root 1.248 EV_FREQUENT_CHECK;
3829    
3830 root 1.230 {
3831     int active = ev_active (w);
3832 root 1.62
3833 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3834 root 1.151
3835 root 1.248 --periodiccnt;
3836    
3837     if (expect_true (active < periodiccnt + HEAP0))
3838 root 1.151 {
3839 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3840 root 1.181 adjustheap (periodics, periodiccnt, active);
3841 root 1.151 }
3842 root 1.248 }
3843 root 1.228
3844 root 1.328 ev_stop (EV_A_ (W)w);
3845    
3846 root 1.248 EV_FREQUENT_CHECK;
3847 root 1.1 }
3848    
3849 root 1.171 void noinline
3850 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3851 root 1.77 {
3852 root 1.84 /* TODO: use adjustheap and recalculation */
3853 root 1.77 ev_periodic_stop (EV_A_ w);
3854     ev_periodic_start (EV_A_ w);
3855     }
3856 root 1.93 #endif
3857 root 1.77
3858 root 1.56 #ifndef SA_RESTART
3859     # define SA_RESTART 0
3860     #endif
3861    
3862 root 1.336 #if EV_SIGNAL_ENABLE
3863    
3864 root 1.171 void noinline
3865 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3866 root 1.56 {
3867 root 1.123 if (expect_false (ev_is_active (w)))
3868 root 1.56 return;
3869    
3870 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3871    
3872     #if EV_MULTIPLICITY
3873 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3874 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3875    
3876     signals [w->signum - 1].loop = EV_A;
3877 root 1.449 ECB_MEMORY_FENCE_RELEASE;
3878 root 1.306 #endif
3879 root 1.56
3880 root 1.303 EV_FREQUENT_CHECK;
3881    
3882     #if EV_USE_SIGNALFD
3883     if (sigfd == -2)
3884     {
3885     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3886     if (sigfd < 0 && errno == EINVAL)
3887     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3888    
3889     if (sigfd >= 0)
3890     {
3891     fd_intern (sigfd); /* doing it twice will not hurt */
3892    
3893     sigemptyset (&sigfd_set);
3894    
3895     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3896     ev_set_priority (&sigfd_w, EV_MAXPRI);
3897     ev_io_start (EV_A_ &sigfd_w);
3898     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3899     }
3900     }
3901    
3902     if (sigfd >= 0)
3903     {
3904     /* TODO: check .head */
3905     sigaddset (&sigfd_set, w->signum);
3906     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3907 root 1.207
3908 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3909     }
3910 root 1.180 #endif
3911    
3912 root 1.56 ev_start (EV_A_ (W)w, 1);
3913 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3914 root 1.56
3915 root 1.63 if (!((WL)w)->next)
3916 root 1.304 # if EV_USE_SIGNALFD
3917 root 1.306 if (sigfd < 0) /*TODO*/
3918 root 1.304 # endif
3919 root 1.306 {
3920 root 1.322 # ifdef _WIN32
3921 root 1.317 evpipe_init (EV_A);
3922    
3923 root 1.306 signal (w->signum, ev_sighandler);
3924     # else
3925     struct sigaction sa;
3926    
3927     evpipe_init (EV_A);
3928    
3929     sa.sa_handler = ev_sighandler;
3930     sigfillset (&sa.sa_mask);
3931     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3932     sigaction (w->signum, &sa, 0);
3933    
3934 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3935     {
3936     sigemptyset (&sa.sa_mask);
3937     sigaddset (&sa.sa_mask, w->signum);
3938     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3939     }
3940 root 1.67 #endif
3941 root 1.306 }
3942 root 1.248
3943     EV_FREQUENT_CHECK;
3944 root 1.56 }
3945    
3946 root 1.171 void noinline
3947 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3948 root 1.56 {
3949 root 1.166 clear_pending (EV_A_ (W)w);
3950 root 1.123 if (expect_false (!ev_is_active (w)))
3951 root 1.56 return;
3952    
3953 root 1.248 EV_FREQUENT_CHECK;
3954    
3955 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3956 root 1.56 ev_stop (EV_A_ (W)w);
3957    
3958     if (!signals [w->signum - 1].head)
3959 root 1.306 {
3960 root 1.307 #if EV_MULTIPLICITY
3961 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3962 root 1.307 #endif
3963     #if EV_USE_SIGNALFD
3964 root 1.306 if (sigfd >= 0)
3965     {
3966 root 1.321 sigset_t ss;
3967    
3968     sigemptyset (&ss);
3969     sigaddset (&ss, w->signum);
3970 root 1.306 sigdelset (&sigfd_set, w->signum);
3971 root 1.321
3972 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3973 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3974 root 1.306 }
3975     else
3976 root 1.307 #endif
3977 root 1.306 signal (w->signum, SIG_DFL);
3978     }
3979 root 1.248
3980     EV_FREQUENT_CHECK;
3981 root 1.56 }
3982    
3983 root 1.336 #endif
3984    
3985     #if EV_CHILD_ENABLE
3986    
3987 root 1.28 void
3988 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
3989 root 1.22 {
3990 root 1.56 #if EV_MULTIPLICITY
3991 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3992 root 1.56 #endif
3993 root 1.123 if (expect_false (ev_is_active (w)))
3994 root 1.22 return;
3995    
3996 root 1.248 EV_FREQUENT_CHECK;
3997    
3998 root 1.51 ev_start (EV_A_ (W)w, 1);
3999 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4000 root 1.248
4001     EV_FREQUENT_CHECK;
4002 root 1.22 }
4003    
4004 root 1.28 void
4005 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
4006 root 1.22 {
4007 root 1.166 clear_pending (EV_A_ (W)w);
4008 root 1.123 if (expect_false (!ev_is_active (w)))
4009 root 1.22 return;
4010    
4011 root 1.248 EV_FREQUENT_CHECK;
4012    
4013 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4014 root 1.51 ev_stop (EV_A_ (W)w);
4015 root 1.248
4016     EV_FREQUENT_CHECK;
4017 root 1.22 }
4018    
4019 root 1.336 #endif
4020    
4021 root 1.140 #if EV_STAT_ENABLE
4022    
4023     # ifdef _WIN32
4024 root 1.146 # undef lstat
4025     # define lstat(a,b) _stati64 (a,b)
4026 root 1.140 # endif
4027    
4028 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4029     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4030     #define MIN_STAT_INTERVAL 0.1074891
4031 root 1.143
4032 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4033 root 1.152
4034     #if EV_USE_INOTIFY
4035 root 1.326
4036     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4037     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4038 root 1.152
4039     static void noinline
4040     infy_add (EV_P_ ev_stat *w)
4041     {
4042 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4043     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4044     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4045     | IN_DONT_FOLLOW | IN_MASK_ADD);
4046 root 1.152
4047 root 1.318 if (w->wd >= 0)
4048 root 1.152 {
4049 root 1.318 struct statfs sfs;
4050    
4051     /* now local changes will be tracked by inotify, but remote changes won't */
4052     /* unless the filesystem is known to be local, we therefore still poll */
4053     /* also do poll on <2.6.25, but with normal frequency */
4054    
4055     if (!fs_2625)
4056     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4057     else if (!statfs (w->path, &sfs)
4058     && (sfs.f_type == 0x1373 /* devfs */
4059 root 1.451 || sfs.f_type == 0x4006 /* fat */
4060     || sfs.f_type == 0x4d44 /* msdos */
4061 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4062 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4063     || sfs.f_type == 0x858458f6 /* ramfs */
4064     || sfs.f_type == 0x5346544e /* ntfs */
4065 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4066 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4067 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4068 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4069 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4070     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4071     else
4072     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4073     }
4074     else
4075     {
4076     /* can't use inotify, continue to stat */
4077 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4078 root 1.152
4079 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4080 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4081 root 1.233 /* but an efficiency issue only */
4082 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4083 root 1.152 {
4084 root 1.153 char path [4096];
4085 root 1.152 strcpy (path, w->path);
4086    
4087     do
4088     {
4089     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4090     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4091    
4092     char *pend = strrchr (path, '/');
4093    
4094 root 1.275 if (!pend || pend == path)
4095     break;
4096 root 1.152
4097     *pend = 0;
4098 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4099 root 1.372 }
4100 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4101     }
4102     }
4103 root 1.275
4104     if (w->wd >= 0)
4105 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4106 root 1.152
4107 root 1.318 /* now re-arm timer, if required */
4108     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4109     ev_timer_again (EV_A_ &w->timer);
4110     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4111 root 1.152 }
4112    
4113     static void noinline
4114     infy_del (EV_P_ ev_stat *w)
4115     {
4116     int slot;
4117     int wd = w->wd;
4118    
4119     if (wd < 0)
4120     return;
4121    
4122     w->wd = -2;
4123 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4124 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4125    
4126     /* remove this watcher, if others are watching it, they will rearm */
4127     inotify_rm_watch (fs_fd, wd);
4128     }
4129    
4130     static void noinline
4131     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4132     {
4133     if (slot < 0)
4134 root 1.264 /* overflow, need to check for all hash slots */
4135 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4136 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4137     else
4138     {
4139     WL w_;
4140    
4141 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4142 root 1.152 {
4143     ev_stat *w = (ev_stat *)w_;
4144     w_ = w_->next; /* lets us remove this watcher and all before it */
4145    
4146     if (w->wd == wd || wd == -1)
4147     {
4148     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4149     {
4150 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4151 root 1.152 w->wd = -1;
4152     infy_add (EV_A_ w); /* re-add, no matter what */
4153     }
4154    
4155 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4156 root 1.152 }
4157     }
4158     }
4159     }
4160    
4161     static void
4162     infy_cb (EV_P_ ev_io *w, int revents)
4163     {
4164     char buf [EV_INOTIFY_BUFSIZE];
4165     int ofs;
4166     int len = read (fs_fd, buf, sizeof (buf));
4167    
4168 root 1.326 for (ofs = 0; ofs < len; )
4169     {
4170     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4171     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4172     ofs += sizeof (struct inotify_event) + ev->len;
4173     }
4174 root 1.152 }
4175    
4176 root 1.379 inline_size void ecb_cold
4177 root 1.330 ev_check_2625 (EV_P)
4178     {
4179     /* kernels < 2.6.25 are borked
4180     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4181     */
4182     if (ev_linux_version () < 0x020619)
4183 root 1.273 return;
4184 root 1.264
4185 root 1.273 fs_2625 = 1;
4186     }
4187 root 1.264
4188 root 1.315 inline_size int
4189     infy_newfd (void)
4190     {
4191 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4192 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4193     if (fd >= 0)
4194     return fd;
4195     #endif
4196     return inotify_init ();
4197     }
4198    
4199 root 1.284 inline_size void
4200 root 1.273 infy_init (EV_P)
4201     {
4202     if (fs_fd != -2)
4203     return;
4204 root 1.264
4205 root 1.273 fs_fd = -1;
4206 root 1.264
4207 root 1.330 ev_check_2625 (EV_A);
4208 root 1.264
4209 root 1.315 fs_fd = infy_newfd ();
4210 root 1.152
4211     if (fs_fd >= 0)
4212     {
4213 root 1.315 fd_intern (fs_fd);
4214 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4215     ev_set_priority (&fs_w, EV_MAXPRI);
4216     ev_io_start (EV_A_ &fs_w);
4217 root 1.317 ev_unref (EV_A);
4218 root 1.152 }
4219     }
4220    
4221 root 1.284 inline_size void
4222 root 1.154 infy_fork (EV_P)
4223     {
4224     int slot;
4225    
4226     if (fs_fd < 0)
4227     return;
4228    
4229 root 1.317 ev_ref (EV_A);
4230 root 1.315 ev_io_stop (EV_A_ &fs_w);
4231 root 1.154 close (fs_fd);
4232 root 1.315 fs_fd = infy_newfd ();
4233    
4234     if (fs_fd >= 0)
4235     {
4236     fd_intern (fs_fd);
4237     ev_io_set (&fs_w, fs_fd, EV_READ);
4238     ev_io_start (EV_A_ &fs_w);
4239 root 1.317 ev_unref (EV_A);
4240 root 1.315 }
4241 root 1.154
4242 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4243 root 1.154 {
4244     WL w_ = fs_hash [slot].head;
4245     fs_hash [slot].head = 0;
4246    
4247     while (w_)
4248     {
4249     ev_stat *w = (ev_stat *)w_;
4250     w_ = w_->next; /* lets us add this watcher */
4251    
4252     w->wd = -1;
4253    
4254     if (fs_fd >= 0)
4255     infy_add (EV_A_ w); /* re-add, no matter what */
4256     else
4257 root 1.318 {
4258     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4259     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4260     ev_timer_again (EV_A_ &w->timer);
4261     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4262     }
4263 root 1.154 }
4264     }
4265     }
4266    
4267 root 1.152 #endif
4268    
4269 root 1.255 #ifdef _WIN32
4270     # define EV_LSTAT(p,b) _stati64 (p, b)
4271     #else
4272     # define EV_LSTAT(p,b) lstat (p, b)
4273     #endif
4274    
4275 root 1.140 void
4276 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4277 root 1.140 {
4278     if (lstat (w->path, &w->attr) < 0)
4279     w->attr.st_nlink = 0;
4280     else if (!w->attr.st_nlink)
4281     w->attr.st_nlink = 1;
4282     }
4283    
4284 root 1.157 static void noinline
4285 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4286     {
4287     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4288    
4289 root 1.320 ev_statdata prev = w->attr;
4290 root 1.140 ev_stat_stat (EV_A_ w);
4291    
4292 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4293     if (
4294 root 1.320 prev.st_dev != w->attr.st_dev
4295     || prev.st_ino != w->attr.st_ino
4296     || prev.st_mode != w->attr.st_mode
4297     || prev.st_nlink != w->attr.st_nlink
4298     || prev.st_uid != w->attr.st_uid
4299     || prev.st_gid != w->attr.st_gid
4300     || prev.st_rdev != w->attr.st_rdev
4301     || prev.st_size != w->attr.st_size
4302     || prev.st_atime != w->attr.st_atime
4303     || prev.st_mtime != w->attr.st_mtime
4304     || prev.st_ctime != w->attr.st_ctime
4305 root 1.156 ) {
4306 root 1.320 /* we only update w->prev on actual differences */
4307     /* in case we test more often than invoke the callback, */
4308     /* to ensure that prev is always different to attr */
4309     w->prev = prev;
4310    
4311 root 1.152 #if EV_USE_INOTIFY
4312 root 1.264 if (fs_fd >= 0)
4313     {
4314     infy_del (EV_A_ w);
4315     infy_add (EV_A_ w);
4316     ev_stat_stat (EV_A_ w); /* avoid race... */
4317     }
4318 root 1.152 #endif
4319    
4320     ev_feed_event (EV_A_ w, EV_STAT);
4321     }
4322 root 1.140 }
4323    
4324     void
4325 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4326 root 1.140 {
4327     if (expect_false (ev_is_active (w)))
4328     return;
4329    
4330     ev_stat_stat (EV_A_ w);
4331    
4332 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4333     w->interval = MIN_STAT_INTERVAL;
4334 root 1.143
4335 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4336 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4337 root 1.152
4338     #if EV_USE_INOTIFY
4339     infy_init (EV_A);
4340    
4341     if (fs_fd >= 0)
4342     infy_add (EV_A_ w);
4343     else
4344     #endif
4345 root 1.318 {
4346     ev_timer_again (EV_A_ &w->timer);
4347     ev_unref (EV_A);
4348     }
4349 root 1.140
4350     ev_start (EV_A_ (W)w, 1);
4351 root 1.248
4352     EV_FREQUENT_CHECK;
4353 root 1.140 }
4354    
4355     void
4356 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4357 root 1.140 {
4358 root 1.166 clear_pending (EV_A_ (W)w);
4359 root 1.140 if (expect_false (!ev_is_active (w)))
4360     return;
4361    
4362 root 1.248 EV_FREQUENT_CHECK;
4363    
4364 root 1.152 #if EV_USE_INOTIFY
4365     infy_del (EV_A_ w);
4366     #endif
4367 root 1.318
4368     if (ev_is_active (&w->timer))
4369     {
4370     ev_ref (EV_A);
4371     ev_timer_stop (EV_A_ &w->timer);
4372     }
4373 root 1.140
4374 root 1.134 ev_stop (EV_A_ (W)w);
4375 root 1.248
4376     EV_FREQUENT_CHECK;
4377 root 1.134 }
4378     #endif
4379    
4380 root 1.164 #if EV_IDLE_ENABLE
4381 root 1.144 void
4382 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4383 root 1.144 {
4384     if (expect_false (ev_is_active (w)))
4385     return;
4386    
4387 root 1.164 pri_adjust (EV_A_ (W)w);
4388    
4389 root 1.248 EV_FREQUENT_CHECK;
4390    
4391 root 1.164 {
4392     int active = ++idlecnt [ABSPRI (w)];
4393    
4394     ++idleall;
4395     ev_start (EV_A_ (W)w, active);
4396    
4397     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4398     idles [ABSPRI (w)][active - 1] = w;
4399     }
4400 root 1.248
4401     EV_FREQUENT_CHECK;
4402 root 1.144 }
4403    
4404     void
4405 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4406 root 1.144 {
4407 root 1.166 clear_pending (EV_A_ (W)w);
4408 root 1.144 if (expect_false (!ev_is_active (w)))
4409     return;
4410    
4411 root 1.248 EV_FREQUENT_CHECK;
4412    
4413 root 1.144 {
4414 root 1.230 int active = ev_active (w);
4415 root 1.164
4416     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4417 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4418 root 1.164
4419     ev_stop (EV_A_ (W)w);
4420     --idleall;
4421 root 1.144 }
4422 root 1.248
4423     EV_FREQUENT_CHECK;
4424 root 1.144 }
4425 root 1.164 #endif
4426 root 1.144
4427 root 1.337 #if EV_PREPARE_ENABLE
4428 root 1.144 void
4429 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4430 root 1.144 {
4431     if (expect_false (ev_is_active (w)))
4432     return;
4433    
4434 root 1.248 EV_FREQUENT_CHECK;
4435    
4436 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4437     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4438     prepares [preparecnt - 1] = w;
4439 root 1.248
4440     EV_FREQUENT_CHECK;
4441 root 1.144 }
4442    
4443     void
4444 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4445 root 1.144 {
4446 root 1.166 clear_pending (EV_A_ (W)w);
4447 root 1.144 if (expect_false (!ev_is_active (w)))
4448     return;
4449    
4450 root 1.248 EV_FREQUENT_CHECK;
4451    
4452 root 1.144 {
4453 root 1.230 int active = ev_active (w);
4454    
4455 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4456 root 1.230 ev_active (prepares [active - 1]) = active;
4457 root 1.144 }
4458    
4459     ev_stop (EV_A_ (W)w);
4460 root 1.248
4461     EV_FREQUENT_CHECK;
4462 root 1.144 }
4463 root 1.337 #endif
4464 root 1.144
4465 root 1.337 #if EV_CHECK_ENABLE
4466 root 1.144 void
4467 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4468 root 1.144 {
4469     if (expect_false (ev_is_active (w)))
4470     return;
4471    
4472 root 1.248 EV_FREQUENT_CHECK;
4473    
4474 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4475     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4476     checks [checkcnt - 1] = w;
4477 root 1.248
4478     EV_FREQUENT_CHECK;
4479 root 1.144 }
4480    
4481     void
4482 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4483 root 1.144 {
4484 root 1.166 clear_pending (EV_A_ (W)w);
4485 root 1.144 if (expect_false (!ev_is_active (w)))
4486     return;
4487    
4488 root 1.248 EV_FREQUENT_CHECK;
4489    
4490 root 1.144 {
4491 root 1.230 int active = ev_active (w);
4492    
4493 root 1.144 checks [active - 1] = checks [--checkcnt];
4494 root 1.230 ev_active (checks [active - 1]) = active;
4495 root 1.144 }
4496    
4497     ev_stop (EV_A_ (W)w);
4498 root 1.248
4499     EV_FREQUENT_CHECK;
4500 root 1.144 }
4501 root 1.337 #endif
4502 root 1.144
4503     #if EV_EMBED_ENABLE
4504     void noinline
4505 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4506 root 1.144 {
4507 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4508 root 1.144 }
4509    
4510     static void
4511 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4512 root 1.144 {
4513     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4514    
4515     if (ev_cb (w))
4516     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4517     else
4518 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4519 root 1.144 }
4520    
4521 root 1.189 static void
4522     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4523     {
4524     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4525    
4526 root 1.195 {
4527 root 1.306 EV_P = w->other;
4528 root 1.195
4529     while (fdchangecnt)
4530     {
4531     fd_reify (EV_A);
4532 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4533 root 1.195 }
4534     }
4535     }
4536    
4537 root 1.261 static void
4538     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4539     {
4540     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4541    
4542 root 1.277 ev_embed_stop (EV_A_ w);
4543    
4544 root 1.261 {
4545 root 1.306 EV_P = w->other;
4546 root 1.261
4547     ev_loop_fork (EV_A);
4548 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4549 root 1.261 }
4550 root 1.277
4551     ev_embed_start (EV_A_ w);
4552 root 1.261 }
4553    
4554 root 1.195 #if 0
4555     static void
4556     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4557     {
4558     ev_idle_stop (EV_A_ idle);
4559 root 1.189 }
4560 root 1.195 #endif
4561 root 1.189
4562 root 1.144 void
4563 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4564 root 1.144 {
4565     if (expect_false (ev_is_active (w)))
4566     return;
4567    
4568     {
4569 root 1.306 EV_P = w->other;
4570 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4571 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4572 root 1.144 }
4573    
4574 root 1.248 EV_FREQUENT_CHECK;
4575    
4576 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4577     ev_io_start (EV_A_ &w->io);
4578    
4579 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4580     ev_set_priority (&w->prepare, EV_MINPRI);
4581     ev_prepare_start (EV_A_ &w->prepare);
4582    
4583 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4584     ev_fork_start (EV_A_ &w->fork);
4585    
4586 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4587    
4588 root 1.144 ev_start (EV_A_ (W)w, 1);
4589 root 1.248
4590     EV_FREQUENT_CHECK;
4591 root 1.144 }
4592    
4593     void
4594 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4595 root 1.144 {
4596 root 1.166 clear_pending (EV_A_ (W)w);
4597 root 1.144 if (expect_false (!ev_is_active (w)))
4598     return;
4599    
4600 root 1.248 EV_FREQUENT_CHECK;
4601    
4602 root 1.261 ev_io_stop (EV_A_ &w->io);
4603 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4604 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4605 root 1.248
4606 root 1.328 ev_stop (EV_A_ (W)w);
4607    
4608 root 1.248 EV_FREQUENT_CHECK;
4609 root 1.144 }
4610     #endif
4611    
4612 root 1.147 #if EV_FORK_ENABLE
4613     void
4614 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4615 root 1.147 {
4616     if (expect_false (ev_is_active (w)))
4617     return;
4618    
4619 root 1.248 EV_FREQUENT_CHECK;
4620    
4621 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4622     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4623     forks [forkcnt - 1] = w;
4624 root 1.248
4625     EV_FREQUENT_CHECK;
4626 root 1.147 }
4627    
4628     void
4629 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4630 root 1.147 {
4631 root 1.166 clear_pending (EV_A_ (W)w);
4632 root 1.147 if (expect_false (!ev_is_active (w)))
4633     return;
4634    
4635 root 1.248 EV_FREQUENT_CHECK;
4636    
4637 root 1.147 {
4638 root 1.230 int active = ev_active (w);
4639    
4640 root 1.147 forks [active - 1] = forks [--forkcnt];
4641 root 1.230 ev_active (forks [active - 1]) = active;
4642 root 1.147 }
4643    
4644     ev_stop (EV_A_ (W)w);
4645 root 1.248
4646     EV_FREQUENT_CHECK;
4647 root 1.147 }
4648     #endif
4649    
4650 root 1.360 #if EV_CLEANUP_ENABLE
4651     void
4652 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4653 root 1.360 {
4654     if (expect_false (ev_is_active (w)))
4655     return;
4656    
4657     EV_FREQUENT_CHECK;
4658    
4659     ev_start (EV_A_ (W)w, ++cleanupcnt);
4660     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4661     cleanups [cleanupcnt - 1] = w;
4662    
4663 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4664     ev_unref (EV_A);
4665 root 1.360 EV_FREQUENT_CHECK;
4666     }
4667    
4668     void
4669 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4670 root 1.360 {
4671     clear_pending (EV_A_ (W)w);
4672     if (expect_false (!ev_is_active (w)))
4673     return;
4674    
4675     EV_FREQUENT_CHECK;
4676 root 1.362 ev_ref (EV_A);
4677 root 1.360
4678     {
4679     int active = ev_active (w);
4680    
4681     cleanups [active - 1] = cleanups [--cleanupcnt];
4682     ev_active (cleanups [active - 1]) = active;
4683     }
4684    
4685     ev_stop (EV_A_ (W)w);
4686    
4687     EV_FREQUENT_CHECK;
4688     }
4689     #endif
4690    
4691 root 1.207 #if EV_ASYNC_ENABLE
4692     void
4693 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4694 root 1.207 {
4695     if (expect_false (ev_is_active (w)))
4696     return;
4697    
4698 root 1.352 w->sent = 0;
4699    
4700 root 1.207 evpipe_init (EV_A);
4701    
4702 root 1.248 EV_FREQUENT_CHECK;
4703    
4704 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4705     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4706     asyncs [asynccnt - 1] = w;
4707 root 1.248
4708     EV_FREQUENT_CHECK;
4709 root 1.207 }
4710    
4711     void
4712 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4713 root 1.207 {
4714     clear_pending (EV_A_ (W)w);
4715     if (expect_false (!ev_is_active (w)))
4716     return;
4717    
4718 root 1.248 EV_FREQUENT_CHECK;
4719    
4720 root 1.207 {
4721 root 1.230 int active = ev_active (w);
4722    
4723 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4724 root 1.230 ev_active (asyncs [active - 1]) = active;
4725 root 1.207 }
4726    
4727     ev_stop (EV_A_ (W)w);
4728 root 1.248
4729     EV_FREQUENT_CHECK;
4730 root 1.207 }
4731    
4732     void
4733 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4734 root 1.207 {
4735     w->sent = 1;
4736 root 1.307 evpipe_write (EV_A_ &async_pending);
4737 root 1.207 }
4738     #endif
4739    
4740 root 1.1 /*****************************************************************************/
4741 root 1.10
4742 root 1.16 struct ev_once
4743     {
4744 root 1.136 ev_io io;
4745     ev_timer to;
4746 root 1.16 void (*cb)(int revents, void *arg);
4747     void *arg;
4748     };
4749    
4750     static void
4751 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4752 root 1.16 {
4753     void (*cb)(int revents, void *arg) = once->cb;
4754     void *arg = once->arg;
4755    
4756 root 1.259 ev_io_stop (EV_A_ &once->io);
4757 root 1.51 ev_timer_stop (EV_A_ &once->to);
4758 root 1.69 ev_free (once);
4759 root 1.16
4760     cb (revents, arg);
4761     }
4762    
4763     static void
4764 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4765 root 1.16 {
4766 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4767    
4768     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4769 root 1.16 }
4770    
4771     static void
4772 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4773 root 1.16 {
4774 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4775    
4776     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4777 root 1.16 }
4778    
4779     void
4780 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4781 root 1.16 {
4782 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4783 root 1.16
4784 root 1.123 if (expect_false (!once))
4785 root 1.16 {
4786 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4787 root 1.123 return;
4788     }
4789    
4790     once->cb = cb;
4791     once->arg = arg;
4792 root 1.16
4793 root 1.123 ev_init (&once->io, once_cb_io);
4794     if (fd >= 0)
4795     {
4796     ev_io_set (&once->io, fd, events);
4797     ev_io_start (EV_A_ &once->io);
4798     }
4799 root 1.16
4800 root 1.123 ev_init (&once->to, once_cb_to);
4801     if (timeout >= 0.)
4802     {
4803     ev_timer_set (&once->to, timeout, 0.);
4804     ev_timer_start (EV_A_ &once->to);
4805 root 1.16 }
4806     }
4807    
4808 root 1.282 /*****************************************************************************/
4809    
4810 root 1.288 #if EV_WALK_ENABLE
4811 root 1.379 void ecb_cold
4812 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4813 root 1.282 {
4814     int i, j;
4815     ev_watcher_list *wl, *wn;
4816    
4817     if (types & (EV_IO | EV_EMBED))
4818     for (i = 0; i < anfdmax; ++i)
4819     for (wl = anfds [i].head; wl; )
4820     {
4821     wn = wl->next;
4822    
4823     #if EV_EMBED_ENABLE
4824     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4825     {
4826     if (types & EV_EMBED)
4827     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4828     }
4829     else
4830     #endif
4831     #if EV_USE_INOTIFY
4832     if (ev_cb ((ev_io *)wl) == infy_cb)
4833     ;
4834     else
4835     #endif
4836 root 1.288 if ((ev_io *)wl != &pipe_w)
4837 root 1.282 if (types & EV_IO)
4838     cb (EV_A_ EV_IO, wl);
4839    
4840     wl = wn;
4841     }
4842    
4843     if (types & (EV_TIMER | EV_STAT))
4844     for (i = timercnt + HEAP0; i-- > HEAP0; )
4845     #if EV_STAT_ENABLE
4846     /*TODO: timer is not always active*/
4847     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4848     {
4849     if (types & EV_STAT)
4850     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4851     }
4852     else
4853     #endif
4854     if (types & EV_TIMER)
4855     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4856    
4857     #if EV_PERIODIC_ENABLE
4858     if (types & EV_PERIODIC)
4859     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4860     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4861     #endif
4862    
4863     #if EV_IDLE_ENABLE
4864     if (types & EV_IDLE)
4865 root 1.390 for (j = NUMPRI; j--; )
4866 root 1.282 for (i = idlecnt [j]; i--; )
4867     cb (EV_A_ EV_IDLE, idles [j][i]);
4868     #endif
4869    
4870     #if EV_FORK_ENABLE
4871     if (types & EV_FORK)
4872     for (i = forkcnt; i--; )
4873     if (ev_cb (forks [i]) != embed_fork_cb)
4874     cb (EV_A_ EV_FORK, forks [i]);
4875     #endif
4876    
4877     #if EV_ASYNC_ENABLE
4878     if (types & EV_ASYNC)
4879     for (i = asynccnt; i--; )
4880     cb (EV_A_ EV_ASYNC, asyncs [i]);
4881     #endif
4882    
4883 root 1.337 #if EV_PREPARE_ENABLE
4884 root 1.282 if (types & EV_PREPARE)
4885     for (i = preparecnt; i--; )
4886 root 1.337 # if EV_EMBED_ENABLE
4887 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4888 root 1.337 # endif
4889     cb (EV_A_ EV_PREPARE, prepares [i]);
4890 root 1.282 #endif
4891    
4892 root 1.337 #if EV_CHECK_ENABLE
4893 root 1.282 if (types & EV_CHECK)
4894     for (i = checkcnt; i--; )
4895     cb (EV_A_ EV_CHECK, checks [i]);
4896 root 1.337 #endif
4897 root 1.282
4898 root 1.337 #if EV_SIGNAL_ENABLE
4899 root 1.282 if (types & EV_SIGNAL)
4900 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4901 root 1.282 for (wl = signals [i].head; wl; )
4902     {
4903     wn = wl->next;
4904     cb (EV_A_ EV_SIGNAL, wl);
4905     wl = wn;
4906     }
4907 root 1.337 #endif
4908 root 1.282
4909 root 1.337 #if EV_CHILD_ENABLE
4910 root 1.282 if (types & EV_CHILD)
4911 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4912 root 1.282 for (wl = childs [i]; wl; )
4913     {
4914     wn = wl->next;
4915     cb (EV_A_ EV_CHILD, wl);
4916     wl = wn;
4917     }
4918 root 1.337 #endif
4919 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4920     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4921     }
4922     #endif
4923    
4924 root 1.188 #if EV_MULTIPLICITY
4925     #include "ev_wrap.h"
4926     #endif
4927