ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.475
Committed: Wed Apr 1 06:57:41 2015 UTC (9 years, 1 month ago) by sf-exg
Content type: text/plain
Branch: MAIN
Changes since 1.474: +29 -8 lines
Log Message:
ecb upgrade.

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.463 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 root 1.305 #endif
248    
249 root 1.373 #ifndef EV_USE_FLOOR
250     # define EV_USE_FLOOR 0
251     #endif
252    
253 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
254 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 root 1.274 # else
257     # define EV_USE_CLOCK_SYSCALL 0
258     # endif
259     #endif
260    
261 root 1.470 #if !(_POSIX_TIMERS > 0)
262     # ifndef EV_USE_MONOTONIC
263     # define EV_USE_MONOTONIC 0
264     # endif
265     # ifndef EV_USE_REALTIME
266     # define EV_USE_REALTIME 0
267     # endif
268     #endif
269    
270 root 1.29 #ifndef EV_USE_MONOTONIC
271 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
273 root 1.253 # else
274     # define EV_USE_MONOTONIC 0
275     # endif
276 root 1.37 #endif
277    
278 root 1.118 #ifndef EV_USE_REALTIME
279 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280 root 1.118 #endif
281    
282 root 1.193 #ifndef EV_USE_NANOSLEEP
283 root 1.253 # if _POSIX_C_SOURCE >= 199309L
284 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
285 root 1.253 # else
286     # define EV_USE_NANOSLEEP 0
287     # endif
288 root 1.193 #endif
289    
290 root 1.29 #ifndef EV_USE_SELECT
291 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
292 root 1.10 #endif
293    
294 root 1.59 #ifndef EV_USE_POLL
295 root 1.104 # ifdef _WIN32
296     # define EV_USE_POLL 0
297     # else
298 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
299 root 1.104 # endif
300 root 1.41 #endif
301    
302 root 1.29 #ifndef EV_USE_EPOLL
303 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
305 root 1.220 # else
306     # define EV_USE_EPOLL 0
307     # endif
308 root 1.10 #endif
309    
310 root 1.44 #ifndef EV_USE_KQUEUE
311     # define EV_USE_KQUEUE 0
312     #endif
313    
314 root 1.118 #ifndef EV_USE_PORT
315     # define EV_USE_PORT 0
316 root 1.40 #endif
317    
318 root 1.152 #ifndef EV_USE_INOTIFY
319 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
321 root 1.220 # else
322     # define EV_USE_INOTIFY 0
323     # endif
324 root 1.152 #endif
325    
326 root 1.149 #ifndef EV_PID_HASHSIZE
327 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328 root 1.149 #endif
329    
330 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
331 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332 root 1.152 #endif
333    
334 root 1.220 #ifndef EV_USE_EVENTFD
335     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
337 root 1.220 # else
338     # define EV_USE_EVENTFD 0
339     # endif
340     #endif
341    
342 root 1.303 #ifndef EV_USE_SIGNALFD
343 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
345 root 1.303 # else
346     # define EV_USE_SIGNALFD 0
347     # endif
348     #endif
349    
350 root 1.249 #if 0 /* debugging */
351 root 1.250 # define EV_VERIFY 3
352 root 1.249 # define EV_USE_4HEAP 1
353     # define EV_HEAP_CACHE_AT 1
354     #endif
355    
356 root 1.250 #ifndef EV_VERIFY
357 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358 root 1.250 #endif
359    
360 root 1.243 #ifndef EV_USE_4HEAP
361 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
362 root 1.243 #endif
363    
364     #ifndef EV_HEAP_CACHE_AT
365 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366 root 1.243 #endif
367    
368 root 1.452 #ifdef ANDROID
369     /* supposedly, android doesn't typedef fd_mask */
370     # undef EV_USE_SELECT
371     # define EV_USE_SELECT 0
372     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373     # undef EV_USE_CLOCK_SYSCALL
374     # define EV_USE_CLOCK_SYSCALL 0
375     #endif
376    
377     /* aix's poll.h seems to cause lots of trouble */
378     #ifdef _AIX
379     /* AIX has a completely broken poll.h header */
380     # undef EV_USE_POLL
381     # define EV_USE_POLL 0
382     #endif
383    
384 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385     /* which makes programs even slower. might work on other unices, too. */
386     #if EV_USE_CLOCK_SYSCALL
387 root 1.423 # include <sys/syscall.h>
388 root 1.291 # ifdef SYS_clock_gettime
389     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390     # undef EV_USE_MONOTONIC
391     # define EV_USE_MONOTONIC 1
392     # else
393     # undef EV_USE_CLOCK_SYSCALL
394     # define EV_USE_CLOCK_SYSCALL 0
395     # endif
396     #endif
397    
398 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
399 root 1.40
400     #ifndef CLOCK_MONOTONIC
401     # undef EV_USE_MONOTONIC
402     # define EV_USE_MONOTONIC 0
403     #endif
404    
405 root 1.31 #ifndef CLOCK_REALTIME
406 root 1.40 # undef EV_USE_REALTIME
407 root 1.31 # define EV_USE_REALTIME 0
408     #endif
409 root 1.40
410 root 1.152 #if !EV_STAT_ENABLE
411 root 1.185 # undef EV_USE_INOTIFY
412 root 1.152 # define EV_USE_INOTIFY 0
413     #endif
414    
415 root 1.193 #if !EV_USE_NANOSLEEP
416 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
417 root 1.416 # if !defined _WIN32 && !defined __hpux
418 root 1.193 # include <sys/select.h>
419     # endif
420     #endif
421    
422 root 1.152 #if EV_USE_INOTIFY
423 root 1.273 # include <sys/statfs.h>
424 root 1.152 # include <sys/inotify.h>
425 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426     # ifndef IN_DONT_FOLLOW
427     # undef EV_USE_INOTIFY
428     # define EV_USE_INOTIFY 0
429     # endif
430 root 1.152 #endif
431    
432 root 1.220 #if EV_USE_EVENTFD
433     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 root 1.221 # include <stdint.h>
435 root 1.303 # ifndef EFD_NONBLOCK
436     # define EFD_NONBLOCK O_NONBLOCK
437     # endif
438     # ifndef EFD_CLOEXEC
439 root 1.311 # ifdef O_CLOEXEC
440     # define EFD_CLOEXEC O_CLOEXEC
441     # else
442     # define EFD_CLOEXEC 02000000
443     # endif
444 root 1.303 # endif
445 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446 root 1.220 #endif
447    
448 root 1.303 #if EV_USE_SIGNALFD
449 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450     # include <stdint.h>
451     # ifndef SFD_NONBLOCK
452     # define SFD_NONBLOCK O_NONBLOCK
453     # endif
454     # ifndef SFD_CLOEXEC
455     # ifdef O_CLOEXEC
456     # define SFD_CLOEXEC O_CLOEXEC
457     # else
458     # define SFD_CLOEXEC 02000000
459     # endif
460     # endif
461 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462 root 1.314
463     struct signalfd_siginfo
464     {
465     uint32_t ssi_signo;
466     char pad[128 - sizeof (uint32_t)];
467     };
468 root 1.303 #endif
469    
470 root 1.40 /**/
471 root 1.1
472 root 1.250 #if EV_VERIFY >= 3
473 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
474 root 1.248 #else
475     # define EV_FREQUENT_CHECK do { } while (0)
476     #endif
477    
478 root 1.176 /*
479 root 1.373 * This is used to work around floating point rounding problems.
480 root 1.177 * This value is good at least till the year 4000.
481 root 1.176 */
482 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
484 root 1.176
485 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
486 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
487 root 1.1
488 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490 root 1.347
491 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492     /* ECB.H BEGIN */
493     /*
494     * libecb - http://software.schmorp.de/pkg/libecb
495     *
496 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
498     * All rights reserved.
499     *
500     * Redistribution and use in source and binary forms, with or without modifica-
501     * tion, are permitted provided that the following conditions are met:
502     *
503     * 1. Redistributions of source code must retain the above copyright notice,
504     * this list of conditions and the following disclaimer.
505     *
506     * 2. Redistributions in binary form must reproduce the above copyright
507     * notice, this list of conditions and the following disclaimer in the
508     * documentation and/or other materials provided with the distribution.
509     *
510     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519     * OF THE POSSIBILITY OF SUCH DAMAGE.
520 root 1.467 *
521     * Alternatively, the contents of this file may be used under the terms of
522     * the GNU General Public License ("GPL") version 2 or any later version,
523     * in which case the provisions of the GPL are applicable instead of
524     * the above. If you wish to allow the use of your version of this file
525     * only under the terms of the GPL and not to allow others to use your
526     * version of this file under the BSD license, indicate your decision
527     * by deleting the provisions above and replace them with the notice
528     * and other provisions required by the GPL. If you do not delete the
529     * provisions above, a recipient may use your version of this file under
530     * either the BSD or the GPL.
531 root 1.391 */
532    
533     #ifndef ECB_H
534     #define ECB_H
535    
536 root 1.437 /* 16 bits major, 16 bits minor */
537 root 1.474 #define ECB_VERSION 0x00010004
538 root 1.437
539 root 1.391 #ifdef _WIN32
540     typedef signed char int8_t;
541     typedef unsigned char uint8_t;
542     typedef signed short int16_t;
543     typedef unsigned short uint16_t;
544     typedef signed int int32_t;
545     typedef unsigned int uint32_t;
546     #if __GNUC__
547     typedef signed long long int64_t;
548     typedef unsigned long long uint64_t;
549     #else /* _MSC_VER || __BORLANDC__ */
550     typedef signed __int64 int64_t;
551     typedef unsigned __int64 uint64_t;
552     #endif
553 root 1.437 #ifdef _WIN64
554     #define ECB_PTRSIZE 8
555     typedef uint64_t uintptr_t;
556     typedef int64_t intptr_t;
557     #else
558     #define ECB_PTRSIZE 4
559     typedef uint32_t uintptr_t;
560     typedef int32_t intptr_t;
561     #endif
562 root 1.391 #else
563     #include <inttypes.h>
564 root 1.437 #if UINTMAX_MAX > 0xffffffffU
565     #define ECB_PTRSIZE 8
566     #else
567     #define ECB_PTRSIZE 4
568     #endif
569 root 1.391 #endif
570 root 1.379
571 sf-exg 1.475 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573    
574 root 1.454 /* work around x32 idiocy by defining proper macros */
575 sf-exg 1.475 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 root 1.458 #if _ILP32
577 root 1.454 #define ECB_AMD64_X32 1
578     #else
579     #define ECB_AMD64 1
580     #endif
581     #endif
582    
583 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
584     * what their idiot authors think are the "more important" extensions,
585 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
586 root 1.379 * or so.
587     * we try to detect these and simply assume they are not gcc - if they have
588     * an issue with that they should have done it right in the first place.
589     */
590 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591     #define ECB_GCC_VERSION(major,minor) 0
592     #else
593     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594     #endif
595    
596     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597    
598     #if __clang__ && defined __has_builtin
599     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600     #else
601     #define ECB_CLANG_BUILTIN(x) 0
602     #endif
603    
604     #if __clang__ && defined __has_extension
605     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606     #else
607     #define ECB_CLANG_EXTENSION(x) 0
608 root 1.379 #endif
609    
610 root 1.437 #define ECB_CPP (__cplusplus+0)
611     #define ECB_CPP11 (__cplusplus >= 201103L)
612    
613 root 1.450 #if ECB_CPP
614 root 1.464 #define ECB_C 0
615     #define ECB_STDC_VERSION 0
616     #else
617     #define ECB_C 1
618     #define ECB_STDC_VERSION __STDC_VERSION__
619     #endif
620    
621     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623    
624     #if ECB_CPP
625 root 1.450 #define ECB_EXTERN_C extern "C"
626     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627     #define ECB_EXTERN_C_END }
628     #else
629     #define ECB_EXTERN_C extern
630     #define ECB_EXTERN_C_BEG
631     #define ECB_EXTERN_C_END
632     #endif
633    
634 root 1.391 /*****************************************************************************/
635    
636     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638    
639 root 1.410 #if ECB_NO_THREADS
640 root 1.439 #define ECB_NO_SMP 1
641 root 1.410 #endif
642    
643 root 1.437 #if ECB_NO_SMP
644 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
645 root 1.40 #endif
646    
647 root 1.383 #ifndef ECB_MEMORY_FENCE
648 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
649 root 1.404 #if __i386 || __i386__
650 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
651 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
652     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
653 sf-exg 1.475 #elif ECB_GCC_AMD64
654 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
655     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
656     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
657 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
658 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
659 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
660     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
661 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
662 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
663 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
664     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
665 root 1.464 #elif __aarch64__
666     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
667 root 1.462 #elif (__sparc || __sparc__) && !__sparcv8
668 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
669     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
670     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
671 root 1.417 #elif defined __s390__ || defined __s390x__
672 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
673 root 1.417 #elif defined __mips__
674 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
675 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
676     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
677 root 1.419 #elif defined __alpha__
678 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
679     #elif defined __hppa__
680     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
681     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
682     #elif defined __ia64__
683     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
684 root 1.457 #elif defined __m68k__
685     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
686     #elif defined __m88k__
687     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
688     #elif defined __sh__
689     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
690 root 1.383 #endif
691     #endif
692     #endif
693    
694     #ifndef ECB_MEMORY_FENCE
695 root 1.437 #if ECB_GCC_VERSION(4,7)
696 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
697 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
698 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
699     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
700 root 1.450
701 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
702     /* see comment below (stdatomic.h) about the C11 memory model. */
703     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
704     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
705     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
706 root 1.450
707 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
708 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
709 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
710     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
711     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
712     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
713     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
714     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
715 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
716     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
717     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
718     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
719     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
720 root 1.417 #elif defined _WIN32
721 root 1.388 #include <WinNT.h>
722 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
723 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
724     #include <mbarrier.h>
725     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
726     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
727     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
728 root 1.413 #elif __xlC__
729 root 1.414 #define ECB_MEMORY_FENCE __sync ()
730 root 1.383 #endif
731     #endif
732    
733     #ifndef ECB_MEMORY_FENCE
734 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
735     /* we assume that these memory fences work on all variables/all memory accesses, */
736     /* not just C11 atomics and atomic accesses */
737     #include <stdatomic.h>
738 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
739     /* any fence other than seq_cst, which isn't very efficient for us. */
740     /* Why that is, we don't know - either the C11 memory model is quite useless */
741     /* for most usages, or gcc and clang have a bug */
742     /* I *currently* lean towards the latter, and inefficiently implement */
743     /* all three of ecb's fences as a seq_cst fence */
744 root 1.464 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
745     /* for all __atomic_thread_fence's except seq_cst */
746 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
747     #endif
748     #endif
749    
750     #ifndef ECB_MEMORY_FENCE
751 root 1.392 #if !ECB_AVOID_PTHREADS
752     /*
753     * if you get undefined symbol references to pthread_mutex_lock,
754     * or failure to find pthread.h, then you should implement
755     * the ECB_MEMORY_FENCE operations for your cpu/compiler
756     * OR provide pthread.h and link against the posix thread library
757     * of your system.
758     */
759     #include <pthread.h>
760     #define ECB_NEEDS_PTHREADS 1
761     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
762    
763     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
764     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
765     #endif
766     #endif
767 root 1.383
768 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
769 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
770 root 1.392 #endif
771    
772 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
773 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
774     #endif
775    
776 root 1.391 /*****************************************************************************/
777    
778 root 1.474 #if ECB_CPP
779 root 1.391 #define ecb_inline static inline
780     #elif ECB_GCC_VERSION(2,5)
781     #define ecb_inline static __inline__
782     #elif ECB_C99
783     #define ecb_inline static inline
784     #else
785     #define ecb_inline static
786     #endif
787    
788     #if ECB_GCC_VERSION(3,3)
789     #define ecb_restrict __restrict__
790     #elif ECB_C99
791     #define ecb_restrict restrict
792     #else
793     #define ecb_restrict
794     #endif
795    
796     typedef int ecb_bool;
797    
798     #define ECB_CONCAT_(a, b) a ## b
799     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
800     #define ECB_STRINGIFY_(a) # a
801     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
802 sf-exg 1.475 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
803 root 1.391
804     #define ecb_function_ ecb_inline
805    
806 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
807     #define ecb_attribute(attrlist) __attribute__ (attrlist)
808 root 1.379 #else
809     #define ecb_attribute(attrlist)
810 root 1.474 #endif
811 root 1.464
812 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
813     #define ecb_is_constant(expr) __builtin_constant_p (expr)
814     #else
815 root 1.464 /* possible C11 impl for integral types
816     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
817     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
818    
819 root 1.379 #define ecb_is_constant(expr) 0
820 root 1.474 #endif
821    
822     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
823     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
824     #else
825 root 1.379 #define ecb_expect(expr,value) (expr)
826 root 1.474 #endif
827    
828     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
829     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
830     #else
831 root 1.379 #define ecb_prefetch(addr,rw,locality)
832     #endif
833    
834 root 1.391 /* no emulation for ecb_decltype */
835 root 1.474 #if ECB_CPP11
836     // older implementations might have problems with decltype(x)::type, work around it
837     template<class T> struct ecb_decltype_t { typedef T type; };
838     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
839     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
840     #define ecb_decltype(x) __typeof__ (x)
841 root 1.391 #endif
842    
843 root 1.468 #if _MSC_VER >= 1300
844 root 1.474 #define ecb_deprecated __declspec (deprecated)
845 root 1.468 #else
846     #define ecb_deprecated ecb_attribute ((__deprecated__))
847     #endif
848    
849 sf-exg 1.475 #if __MSC_VER >= 1500
850     #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
851     #elif ECB_GCC_VERSION(4,5)
852     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
853     #else
854     #define ecb_deprecated_message(msg) ecb_deprecated
855     #endif
856    
857     #if _MSC_VER >= 1400
858     #define ecb_noinline __declspec (noinline)
859     #else
860     #define ecb_noinline ecb_attribute ((__noinline__))
861     #endif
862    
863 root 1.379 #define ecb_unused ecb_attribute ((__unused__))
864     #define ecb_const ecb_attribute ((__const__))
865     #define ecb_pure ecb_attribute ((__pure__))
866    
867 root 1.474 #if ECB_C11 || __IBMC_NORETURN
868     /* http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.xlcpp121.bg.doc/language_ref/noreturn.html */
869 root 1.437 #define ecb_noreturn _Noreturn
870 sf-exg 1.475 #elif ECB_CPP11
871     #define ecb_noreturn [[noreturn]]
872     #elif _MSC_VER >= 1200
873     /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
874     #define ecb_noreturn __declspec (noreturn)
875 root 1.437 #else
876     #define ecb_noreturn ecb_attribute ((__noreturn__))
877     #endif
878    
879 root 1.379 #if ECB_GCC_VERSION(4,3)
880     #define ecb_artificial ecb_attribute ((__artificial__))
881     #define ecb_hot ecb_attribute ((__hot__))
882     #define ecb_cold ecb_attribute ((__cold__))
883     #else
884     #define ecb_artificial
885     #define ecb_hot
886     #define ecb_cold
887     #endif
888    
889     /* put around conditional expressions if you are very sure that the */
890     /* expression is mostly true or mostly false. note that these return */
891     /* booleans, not the expression. */
892     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
893     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
894 root 1.391 /* for compatibility to the rest of the world */
895     #define ecb_likely(expr) ecb_expect_true (expr)
896     #define ecb_unlikely(expr) ecb_expect_false (expr)
897    
898     /* count trailing zero bits and count # of one bits */
899 root 1.474 #if ECB_GCC_VERSION(3,4) \
900     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
901     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
902     && ECB_CLANG_BUILTIN(__builtin_popcount))
903 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
904     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
905     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
906     #define ecb_ctz32(x) __builtin_ctz (x)
907     #define ecb_ctz64(x) __builtin_ctzll (x)
908     #define ecb_popcount32(x) __builtin_popcount (x)
909     /* no popcountll */
910     #else
911 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
912     ecb_function_ ecb_const int
913 root 1.391 ecb_ctz32 (uint32_t x)
914     {
915     int r = 0;
916    
917     x &= ~x + 1; /* this isolates the lowest bit */
918    
919     #if ECB_branchless_on_i386
920     r += !!(x & 0xaaaaaaaa) << 0;
921     r += !!(x & 0xcccccccc) << 1;
922     r += !!(x & 0xf0f0f0f0) << 2;
923     r += !!(x & 0xff00ff00) << 3;
924     r += !!(x & 0xffff0000) << 4;
925     #else
926     if (x & 0xaaaaaaaa) r += 1;
927     if (x & 0xcccccccc) r += 2;
928     if (x & 0xf0f0f0f0) r += 4;
929     if (x & 0xff00ff00) r += 8;
930     if (x & 0xffff0000) r += 16;
931     #endif
932    
933     return r;
934     }
935    
936 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
937     ecb_function_ ecb_const int
938 root 1.391 ecb_ctz64 (uint64_t x)
939     {
940     int shift = x & 0xffffffffU ? 0 : 32;
941     return ecb_ctz32 (x >> shift) + shift;
942     }
943    
944 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
945     ecb_function_ ecb_const int
946 root 1.391 ecb_popcount32 (uint32_t x)
947     {
948     x -= (x >> 1) & 0x55555555;
949     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
950     x = ((x >> 4) + x) & 0x0f0f0f0f;
951     x *= 0x01010101;
952    
953     return x >> 24;
954     }
955    
956 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
957     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
958 root 1.391 {
959     int r = 0;
960    
961     if (x >> 16) { x >>= 16; r += 16; }
962     if (x >> 8) { x >>= 8; r += 8; }
963     if (x >> 4) { x >>= 4; r += 4; }
964     if (x >> 2) { x >>= 2; r += 2; }
965     if (x >> 1) { r += 1; }
966    
967     return r;
968     }
969    
970 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
971     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
972 root 1.391 {
973     int r = 0;
974    
975     if (x >> 32) { x >>= 32; r += 32; }
976    
977     return r + ecb_ld32 (x);
978     }
979     #endif
980    
981 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
982     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
983     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
984     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
985 root 1.437
986 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
987     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
988 root 1.403 {
989     return ( (x * 0x0802U & 0x22110U)
990 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
991 root 1.403 }
992    
993 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
994     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
995 root 1.403 {
996     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
997     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
998     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
999     x = ( x >> 8 ) | ( x << 8);
1000    
1001     return x;
1002     }
1003    
1004 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1005     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1006 root 1.403 {
1007     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1008     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1009     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1010     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1011     x = ( x >> 16 ) | ( x << 16);
1012    
1013     return x;
1014     }
1015    
1016 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1017     /* so for this version we are lazy */
1018 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1019     ecb_function_ ecb_const int
1020 root 1.391 ecb_popcount64 (uint64_t x)
1021     {
1022     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1023     }
1024    
1025 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1026     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1027     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1028     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1029     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1030     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1031     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1032     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1033    
1034     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1035     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1036     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1037     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1038     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1039     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1040     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1041     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1042 root 1.391
1043 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1044 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1045     #define ecb_bswap32(x) __builtin_bswap32 (x)
1046     #define ecb_bswap64(x) __builtin_bswap64 (x)
1047     #else
1048 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1049     ecb_function_ ecb_const uint16_t
1050 root 1.391 ecb_bswap16 (uint16_t x)
1051     {
1052     return ecb_rotl16 (x, 8);
1053     }
1054    
1055 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1056     ecb_function_ ecb_const uint32_t
1057 root 1.391 ecb_bswap32 (uint32_t x)
1058     {
1059     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1060     }
1061    
1062 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1063     ecb_function_ ecb_const uint64_t
1064 root 1.391 ecb_bswap64 (uint64_t x)
1065     {
1066     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1067     }
1068     #endif
1069    
1070 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1071 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1072     #else
1073     /* this seems to work fine, but gcc always emits a warning for it :/ */
1074 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1075     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1076 root 1.391 #endif
1077    
1078     /* try to tell the compiler that some condition is definitely true */
1079 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1080 root 1.391
1081 root 1.474 ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1082     ecb_inline ecb_const unsigned char
1083 root 1.391 ecb_byteorder_helper (void)
1084     {
1085 root 1.450 /* the union code still generates code under pressure in gcc, */
1086     /* but less than using pointers, and always seems to */
1087     /* successfully return a constant. */
1088     /* the reason why we have this horrible preprocessor mess */
1089     /* is to avoid it in all cases, at least on common architectures */
1090     /* or when using a recent enough gcc version (>= 4.6) */
1091 sf-exg 1.475 #if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
1092 root 1.450 return 0x44;
1093     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1094     return 0x44;
1095     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1096     return 0x11;
1097     #else
1098     union
1099     {
1100     uint32_t i;
1101     uint8_t c;
1102     } u = { 0x11223344 };
1103     return u.c;
1104     #endif
1105 root 1.391 }
1106    
1107 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1108     ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1109     ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1110     ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1111 root 1.391
1112     #if ECB_GCC_VERSION(3,0) || ECB_C99
1113     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1114     #else
1115     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1116     #endif
1117    
1118 root 1.474 #if ECB_CPP
1119 root 1.398 template<typename T>
1120     static inline T ecb_div_rd (T val, T div)
1121     {
1122     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1123     }
1124     template<typename T>
1125     static inline T ecb_div_ru (T val, T div)
1126     {
1127     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1128     }
1129     #else
1130     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1131     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1132     #endif
1133    
1134 root 1.391 #if ecb_cplusplus_does_not_suck
1135     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1136     template<typename T, int N>
1137     static inline int ecb_array_length (const T (&arr)[N])
1138     {
1139     return N;
1140     }
1141     #else
1142     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1143     #endif
1144    
1145 root 1.450 /*******************************************************************************/
1146     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1147    
1148     /* basically, everything uses "ieee pure-endian" floating point numbers */
1149     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1150     #if 0 \
1151     || __i386 || __i386__ \
1152 sf-exg 1.475 || ECB_GCC_AMD64 \
1153 root 1.450 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1154     || defined __s390__ || defined __s390x__ \
1155     || defined __mips__ \
1156     || defined __alpha__ \
1157     || defined __hppa__ \
1158     || defined __ia64__ \
1159 root 1.457 || defined __m68k__ \
1160     || defined __m88k__ \
1161     || defined __sh__ \
1162 sf-exg 1.475 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1163 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1164 root 1.466 || defined __aarch64__
1165 root 1.450 #define ECB_STDFP 1
1166     #include <string.h> /* for memcpy */
1167     #else
1168     #define ECB_STDFP 0
1169     #endif
1170    
1171     #ifndef ECB_NO_LIBM
1172    
1173 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1174    
1175 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1176     #ifdef INFINITY
1177     #define ECB_INFINITY INFINITY
1178     #else
1179     #define ECB_INFINITY HUGE_VAL
1180     #endif
1181    
1182     #ifdef NAN
1183 root 1.458 #define ECB_NAN NAN
1184     #else
1185 root 1.462 #define ECB_NAN ECB_INFINITY
1186 root 1.458 #endif
1187    
1188 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1189     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1190     #else
1191 sf-exg 1.475 #define ecb_ldexpf(x,e) (float) ldexp ((float) (x), (e))
1192 root 1.474 #endif
1193    
1194 root 1.458 /* converts an ieee half/binary16 to a float */
1195 root 1.474 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1196     ecb_function_ ecb_const float
1197 root 1.458 ecb_binary16_to_float (uint16_t x)
1198     {
1199     int e = (x >> 10) & 0x1f;
1200     int m = x & 0x3ff;
1201     float r;
1202    
1203 root 1.474 if (!e ) r = ecb_ldexpf (m , -24);
1204     else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1205 root 1.458 else if (m ) r = ECB_NAN;
1206 root 1.462 else r = ECB_INFINITY;
1207 root 1.458
1208     return x & 0x8000 ? -r : r;
1209     }
1210    
1211 root 1.450 /* convert a float to ieee single/binary32 */
1212 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1213     ecb_function_ ecb_const uint32_t
1214 root 1.450 ecb_float_to_binary32 (float x)
1215     {
1216     uint32_t r;
1217    
1218     #if ECB_STDFP
1219     memcpy (&r, &x, 4);
1220     #else
1221     /* slow emulation, works for anything but -0 */
1222     uint32_t m;
1223     int e;
1224    
1225     if (x == 0e0f ) return 0x00000000U;
1226     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1227     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1228     if (x != x ) return 0x7fbfffffU;
1229    
1230     m = frexpf (x, &e) * 0x1000000U;
1231    
1232     r = m & 0x80000000U;
1233    
1234     if (r)
1235     m = -m;
1236    
1237     if (e <= -126)
1238     {
1239     m &= 0xffffffU;
1240     m >>= (-125 - e);
1241     e = -126;
1242     }
1243    
1244     r |= (e + 126) << 23;
1245     r |= m & 0x7fffffU;
1246     #endif
1247    
1248     return r;
1249     }
1250    
1251     /* converts an ieee single/binary32 to a float */
1252 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1253     ecb_function_ ecb_const float
1254 root 1.450 ecb_binary32_to_float (uint32_t x)
1255     {
1256     float r;
1257    
1258     #if ECB_STDFP
1259     memcpy (&r, &x, 4);
1260     #else
1261     /* emulation, only works for normals and subnormals and +0 */
1262     int neg = x >> 31;
1263     int e = (x >> 23) & 0xffU;
1264    
1265     x &= 0x7fffffU;
1266    
1267     if (e)
1268     x |= 0x800000U;
1269     else
1270     e = 1;
1271    
1272     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1273 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1274 root 1.450
1275     r = neg ? -r : r;
1276     #endif
1277    
1278     return r;
1279     }
1280    
1281     /* convert a double to ieee double/binary64 */
1282 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1283     ecb_function_ ecb_const uint64_t
1284 root 1.450 ecb_double_to_binary64 (double x)
1285     {
1286     uint64_t r;
1287    
1288     #if ECB_STDFP
1289     memcpy (&r, &x, 8);
1290     #else
1291     /* slow emulation, works for anything but -0 */
1292     uint64_t m;
1293     int e;
1294    
1295     if (x == 0e0 ) return 0x0000000000000000U;
1296     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1297     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1298     if (x != x ) return 0X7ff7ffffffffffffU;
1299    
1300     m = frexp (x, &e) * 0x20000000000000U;
1301    
1302     r = m & 0x8000000000000000;;
1303    
1304     if (r)
1305     m = -m;
1306    
1307     if (e <= -1022)
1308     {
1309     m &= 0x1fffffffffffffU;
1310     m >>= (-1021 - e);
1311     e = -1022;
1312     }
1313    
1314     r |= ((uint64_t)(e + 1022)) << 52;
1315     r |= m & 0xfffffffffffffU;
1316     #endif
1317    
1318     return r;
1319     }
1320    
1321     /* converts an ieee double/binary64 to a double */
1322 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1323     ecb_function_ ecb_const double
1324 root 1.450 ecb_binary64_to_double (uint64_t x)
1325     {
1326     double r;
1327    
1328     #if ECB_STDFP
1329     memcpy (&r, &x, 8);
1330     #else
1331     /* emulation, only works for normals and subnormals and +0 */
1332     int neg = x >> 63;
1333     int e = (x >> 52) & 0x7ffU;
1334    
1335     x &= 0xfffffffffffffU;
1336    
1337     if (e)
1338     x |= 0x10000000000000U;
1339     else
1340     e = 1;
1341    
1342     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1343     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1344    
1345     r = neg ? -r : r;
1346     #endif
1347    
1348     return r;
1349     }
1350    
1351     #endif
1352    
1353 root 1.391 #endif
1354    
1355     /* ECB.H END */
1356 root 1.379
1357 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1358 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1359 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1360     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1361 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1362 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1363     * which will then provide the memory fences.
1364     */
1365     # error "memory fences not defined for your architecture, please report"
1366     #endif
1367    
1368     #ifndef ECB_MEMORY_FENCE
1369     # define ECB_MEMORY_FENCE do { } while (0)
1370     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1371     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1372 root 1.392 #endif
1373    
1374 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1375     #define expect_true(cond) ecb_expect_true (cond)
1376     #define noinline ecb_noinline
1377    
1378     #define inline_size ecb_inline
1379 root 1.169
1380 root 1.338 #if EV_FEATURE_CODE
1381 root 1.379 # define inline_speed ecb_inline
1382 root 1.338 #else
1383 root 1.169 # define inline_speed static noinline
1384     #endif
1385 root 1.40
1386 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1387    
1388     #if EV_MINPRI == EV_MAXPRI
1389     # define ABSPRI(w) (((W)w), 0)
1390     #else
1391     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1392     #endif
1393 root 1.42
1394 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1395 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1396 root 1.103
1397 root 1.136 typedef ev_watcher *W;
1398     typedef ev_watcher_list *WL;
1399     typedef ev_watcher_time *WT;
1400 root 1.10
1401 root 1.229 #define ev_active(w) ((W)(w))->active
1402 root 1.228 #define ev_at(w) ((WT)(w))->at
1403    
1404 root 1.279 #if EV_USE_REALTIME
1405 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1406 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1407 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1408     #endif
1409    
1410     #if EV_USE_MONOTONIC
1411 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1412 root 1.198 #endif
1413 root 1.54
1414 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1415     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1416     #endif
1417     #ifndef EV_WIN32_HANDLE_TO_FD
1418 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1419 root 1.313 #endif
1420     #ifndef EV_WIN32_CLOSE_FD
1421     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1422     #endif
1423    
1424 root 1.103 #ifdef _WIN32
1425 root 1.98 # include "ev_win32.c"
1426     #endif
1427 root 1.67
1428 root 1.53 /*****************************************************************************/
1429 root 1.1
1430 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1431    
1432     #if EV_USE_FLOOR
1433     # include <math.h>
1434     # define ev_floor(v) floor (v)
1435     #else
1436    
1437     #include <float.h>
1438    
1439     /* a floor() replacement function, should be independent of ev_tstamp type */
1440     static ev_tstamp noinline
1441     ev_floor (ev_tstamp v)
1442     {
1443     /* the choice of shift factor is not terribly important */
1444     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1445     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1446     #else
1447     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1448     #endif
1449    
1450     /* argument too large for an unsigned long? */
1451     if (expect_false (v >= shift))
1452     {
1453     ev_tstamp f;
1454    
1455     if (v == v - 1.)
1456     return v; /* very large number */
1457    
1458     f = shift * ev_floor (v * (1. / shift));
1459     return f + ev_floor (v - f);
1460     }
1461    
1462     /* special treatment for negative args? */
1463     if (expect_false (v < 0.))
1464     {
1465     ev_tstamp f = -ev_floor (-v);
1466    
1467     return f - (f == v ? 0 : 1);
1468     }
1469    
1470     /* fits into an unsigned long */
1471     return (unsigned long)v;
1472     }
1473    
1474     #endif
1475    
1476     /*****************************************************************************/
1477    
1478 root 1.356 #ifdef __linux
1479     # include <sys/utsname.h>
1480     #endif
1481    
1482 root 1.379 static unsigned int noinline ecb_cold
1483 root 1.355 ev_linux_version (void)
1484     {
1485     #ifdef __linux
1486 root 1.359 unsigned int v = 0;
1487 root 1.355 struct utsname buf;
1488     int i;
1489     char *p = buf.release;
1490    
1491     if (uname (&buf))
1492     return 0;
1493    
1494     for (i = 3+1; --i; )
1495     {
1496     unsigned int c = 0;
1497    
1498     for (;;)
1499     {
1500     if (*p >= '0' && *p <= '9')
1501     c = c * 10 + *p++ - '0';
1502     else
1503     {
1504     p += *p == '.';
1505     break;
1506     }
1507     }
1508    
1509     v = (v << 8) | c;
1510     }
1511    
1512     return v;
1513     #else
1514     return 0;
1515     #endif
1516     }
1517    
1518     /*****************************************************************************/
1519    
1520 root 1.331 #if EV_AVOID_STDIO
1521 root 1.379 static void noinline ecb_cold
1522 root 1.331 ev_printerr (const char *msg)
1523     {
1524     write (STDERR_FILENO, msg, strlen (msg));
1525     }
1526     #endif
1527    
1528 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1529 root 1.69
1530 root 1.379 void ecb_cold
1531 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1532 root 1.69 {
1533     syserr_cb = cb;
1534     }
1535    
1536 root 1.379 static void noinline ecb_cold
1537 root 1.269 ev_syserr (const char *msg)
1538 root 1.69 {
1539 root 1.70 if (!msg)
1540     msg = "(libev) system error";
1541    
1542 root 1.69 if (syserr_cb)
1543 root 1.70 syserr_cb (msg);
1544 root 1.69 else
1545     {
1546 root 1.330 #if EV_AVOID_STDIO
1547 root 1.331 ev_printerr (msg);
1548     ev_printerr (": ");
1549 root 1.365 ev_printerr (strerror (errno));
1550 root 1.331 ev_printerr ("\n");
1551 root 1.330 #else
1552 root 1.70 perror (msg);
1553 root 1.330 #endif
1554 root 1.69 abort ();
1555     }
1556     }
1557    
1558 root 1.224 static void *
1559 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1560 root 1.224 {
1561     /* some systems, notably openbsd and darwin, fail to properly
1562 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1563 root 1.224 * the single unix specification, so work around them here.
1564 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1565     * despite documenting it otherwise.
1566 root 1.224 */
1567 root 1.333
1568 root 1.224 if (size)
1569     return realloc (ptr, size);
1570    
1571     free (ptr);
1572     return 0;
1573     }
1574    
1575 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1576 root 1.69
1577 root 1.379 void ecb_cold
1578 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1579 root 1.69 {
1580     alloc = cb;
1581     }
1582    
1583 root 1.150 inline_speed void *
1584 root 1.155 ev_realloc (void *ptr, long size)
1585 root 1.69 {
1586 root 1.224 ptr = alloc (ptr, size);
1587 root 1.69
1588     if (!ptr && size)
1589     {
1590 root 1.330 #if EV_AVOID_STDIO
1591 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1592 root 1.330 #else
1593 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1594 root 1.330 #endif
1595 root 1.69 abort ();
1596     }
1597    
1598     return ptr;
1599     }
1600    
1601     #define ev_malloc(size) ev_realloc (0, (size))
1602     #define ev_free(ptr) ev_realloc ((ptr), 0)
1603    
1604     /*****************************************************************************/
1605    
1606 root 1.298 /* set in reify when reification needed */
1607     #define EV_ANFD_REIFY 1
1608    
1609 root 1.288 /* file descriptor info structure */
1610 root 1.53 typedef struct
1611     {
1612 root 1.68 WL head;
1613 root 1.288 unsigned char events; /* the events watched for */
1614 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1615 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1616 root 1.269 unsigned char unused;
1617     #if EV_USE_EPOLL
1618 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1619 root 1.269 #endif
1620 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1621 root 1.103 SOCKET handle;
1622     #endif
1623 root 1.357 #if EV_USE_IOCP
1624     OVERLAPPED or, ow;
1625     #endif
1626 root 1.53 } ANFD;
1627 root 1.1
1628 root 1.288 /* stores the pending event set for a given watcher */
1629 root 1.53 typedef struct
1630     {
1631     W w;
1632 root 1.288 int events; /* the pending event set for the given watcher */
1633 root 1.53 } ANPENDING;
1634 root 1.51
1635 root 1.155 #if EV_USE_INOTIFY
1636 root 1.241 /* hash table entry per inotify-id */
1637 root 1.152 typedef struct
1638     {
1639     WL head;
1640 root 1.155 } ANFS;
1641 root 1.152 #endif
1642    
1643 root 1.241 /* Heap Entry */
1644     #if EV_HEAP_CACHE_AT
1645 root 1.288 /* a heap element */
1646 root 1.241 typedef struct {
1647 root 1.243 ev_tstamp at;
1648 root 1.241 WT w;
1649     } ANHE;
1650    
1651 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1652     #define ANHE_at(he) (he).at /* access cached at, read-only */
1653     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1654 root 1.241 #else
1655 root 1.288 /* a heap element */
1656 root 1.241 typedef WT ANHE;
1657    
1658 root 1.248 #define ANHE_w(he) (he)
1659     #define ANHE_at(he) (he)->at
1660     #define ANHE_at_cache(he)
1661 root 1.241 #endif
1662    
1663 root 1.55 #if EV_MULTIPLICITY
1664 root 1.54
1665 root 1.80 struct ev_loop
1666     {
1667 root 1.86 ev_tstamp ev_rt_now;
1668 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1669 root 1.80 #define VAR(name,decl) decl;
1670     #include "ev_vars.h"
1671     #undef VAR
1672     };
1673     #include "ev_wrap.h"
1674    
1675 root 1.116 static struct ev_loop default_loop_struct;
1676 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1677 root 1.54
1678 root 1.53 #else
1679 root 1.54
1680 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1681 root 1.80 #define VAR(name,decl) static decl;
1682     #include "ev_vars.h"
1683     #undef VAR
1684    
1685 root 1.116 static int ev_default_loop_ptr;
1686 root 1.54
1687 root 1.51 #endif
1688 root 1.1
1689 root 1.338 #if EV_FEATURE_API
1690 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1691     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1692 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1693     #else
1694 root 1.298 # define EV_RELEASE_CB (void)0
1695     # define EV_ACQUIRE_CB (void)0
1696 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1697     #endif
1698    
1699 root 1.353 #define EVBREAK_RECURSE 0x80
1700 root 1.298
1701 root 1.8 /*****************************************************************************/
1702    
1703 root 1.292 #ifndef EV_HAVE_EV_TIME
1704 root 1.141 ev_tstamp
1705 root 1.420 ev_time (void) EV_THROW
1706 root 1.1 {
1707 root 1.29 #if EV_USE_REALTIME
1708 root 1.279 if (expect_true (have_realtime))
1709     {
1710     struct timespec ts;
1711     clock_gettime (CLOCK_REALTIME, &ts);
1712     return ts.tv_sec + ts.tv_nsec * 1e-9;
1713     }
1714     #endif
1715    
1716 root 1.1 struct timeval tv;
1717     gettimeofday (&tv, 0);
1718     return tv.tv_sec + tv.tv_usec * 1e-6;
1719     }
1720 root 1.292 #endif
1721 root 1.1
1722 root 1.284 inline_size ev_tstamp
1723 root 1.1 get_clock (void)
1724     {
1725 root 1.29 #if EV_USE_MONOTONIC
1726 root 1.40 if (expect_true (have_monotonic))
1727 root 1.1 {
1728     struct timespec ts;
1729     clock_gettime (CLOCK_MONOTONIC, &ts);
1730     return ts.tv_sec + ts.tv_nsec * 1e-9;
1731     }
1732     #endif
1733    
1734     return ev_time ();
1735     }
1736    
1737 root 1.85 #if EV_MULTIPLICITY
1738 root 1.51 ev_tstamp
1739 root 1.420 ev_now (EV_P) EV_THROW
1740 root 1.51 {
1741 root 1.85 return ev_rt_now;
1742 root 1.51 }
1743 root 1.85 #endif
1744 root 1.51
1745 root 1.193 void
1746 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1747 root 1.193 {
1748     if (delay > 0.)
1749     {
1750     #if EV_USE_NANOSLEEP
1751     struct timespec ts;
1752    
1753 root 1.348 EV_TS_SET (ts, delay);
1754 root 1.193 nanosleep (&ts, 0);
1755 root 1.416 #elif defined _WIN32
1756 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1757 root 1.193 #else
1758     struct timeval tv;
1759    
1760 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1761 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1762 root 1.257 /* by older ones */
1763 sf-exg 1.349 EV_TV_SET (tv, delay);
1764 root 1.193 select (0, 0, 0, 0, &tv);
1765     #endif
1766     }
1767     }
1768    
1769     /*****************************************************************************/
1770    
1771 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1772 root 1.232
1773 root 1.288 /* find a suitable new size for the given array, */
1774 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1775 root 1.284 inline_size int
1776 root 1.163 array_nextsize (int elem, int cur, int cnt)
1777     {
1778     int ncur = cur + 1;
1779    
1780     do
1781     ncur <<= 1;
1782     while (cnt > ncur);
1783    
1784 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1785 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1786 root 1.163 {
1787     ncur *= elem;
1788 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1789 root 1.163 ncur = ncur - sizeof (void *) * 4;
1790     ncur /= elem;
1791     }
1792    
1793     return ncur;
1794     }
1795    
1796 root 1.379 static void * noinline ecb_cold
1797 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1798     {
1799     *cur = array_nextsize (elem, *cur, cnt);
1800     return ev_realloc (base, elem * *cur);
1801     }
1802 root 1.29
1803 root 1.265 #define array_init_zero(base,count) \
1804     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1805    
1806 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1807 root 1.163 if (expect_false ((cnt) > (cur))) \
1808 root 1.69 { \
1809 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1810 root 1.163 (base) = (type *)array_realloc \
1811     (sizeof (type), (base), &(cur), (cnt)); \
1812     init ((base) + (ocur_), (cur) - ocur_); \
1813 root 1.1 }
1814    
1815 root 1.163 #if 0
1816 root 1.74 #define array_slim(type,stem) \
1817 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1818     { \
1819     stem ## max = array_roundsize (stem ## cnt >> 1); \
1820 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1821 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1822     }
1823 root 1.163 #endif
1824 root 1.67
1825 root 1.65 #define array_free(stem, idx) \
1826 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1827 root 1.65
1828 root 1.8 /*****************************************************************************/
1829    
1830 root 1.288 /* dummy callback for pending events */
1831     static void noinline
1832     pendingcb (EV_P_ ev_prepare *w, int revents)
1833     {
1834     }
1835    
1836 root 1.140 void noinline
1837 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1838 root 1.1 {
1839 root 1.78 W w_ = (W)w;
1840 root 1.171 int pri = ABSPRI (w_);
1841 root 1.78
1842 root 1.123 if (expect_false (w_->pending))
1843 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1844     else
1845 root 1.32 {
1846 root 1.171 w_->pending = ++pendingcnt [pri];
1847     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1848     pendings [pri][w_->pending - 1].w = w_;
1849     pendings [pri][w_->pending - 1].events = revents;
1850 root 1.32 }
1851 root 1.425
1852     pendingpri = NUMPRI - 1;
1853 root 1.1 }
1854    
1855 root 1.284 inline_speed void
1856     feed_reverse (EV_P_ W w)
1857     {
1858     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1859     rfeeds [rfeedcnt++] = w;
1860     }
1861    
1862     inline_size void
1863     feed_reverse_done (EV_P_ int revents)
1864     {
1865     do
1866     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1867     while (rfeedcnt);
1868     }
1869    
1870     inline_speed void
1871 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1872 root 1.27 {
1873     int i;
1874    
1875     for (i = 0; i < eventcnt; ++i)
1876 root 1.78 ev_feed_event (EV_A_ events [i], type);
1877 root 1.27 }
1878    
1879 root 1.141 /*****************************************************************************/
1880    
1881 root 1.284 inline_speed void
1882 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1883 root 1.1 {
1884     ANFD *anfd = anfds + fd;
1885 root 1.136 ev_io *w;
1886 root 1.1
1887 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1888 root 1.1 {
1889 root 1.79 int ev = w->events & revents;
1890 root 1.1
1891     if (ev)
1892 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1893 root 1.1 }
1894     }
1895    
1896 root 1.298 /* do not submit kernel events for fds that have reify set */
1897     /* because that means they changed while we were polling for new events */
1898     inline_speed void
1899     fd_event (EV_P_ int fd, int revents)
1900     {
1901     ANFD *anfd = anfds + fd;
1902    
1903     if (expect_true (!anfd->reify))
1904 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1905 root 1.298 }
1906    
1907 root 1.79 void
1908 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1909 root 1.79 {
1910 root 1.168 if (fd >= 0 && fd < anfdmax)
1911 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1912 root 1.79 }
1913    
1914 root 1.288 /* make sure the external fd watch events are in-sync */
1915     /* with the kernel/libev internal state */
1916 root 1.284 inline_size void
1917 root 1.51 fd_reify (EV_P)
1918 root 1.9 {
1919     int i;
1920    
1921 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1922     for (i = 0; i < fdchangecnt; ++i)
1923     {
1924     int fd = fdchanges [i];
1925     ANFD *anfd = anfds + fd;
1926    
1927 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1928 root 1.371 {
1929     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1930    
1931     if (handle != anfd->handle)
1932     {
1933     unsigned long arg;
1934    
1935     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1936    
1937     /* handle changed, but fd didn't - we need to do it in two steps */
1938     backend_modify (EV_A_ fd, anfd->events, 0);
1939     anfd->events = 0;
1940     anfd->handle = handle;
1941     }
1942     }
1943     }
1944     #endif
1945    
1946 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1947     {
1948     int fd = fdchanges [i];
1949     ANFD *anfd = anfds + fd;
1950 root 1.136 ev_io *w;
1951 root 1.27
1952 root 1.350 unsigned char o_events = anfd->events;
1953     unsigned char o_reify = anfd->reify;
1954 root 1.27
1955 root 1.350 anfd->reify = 0;
1956 root 1.27
1957 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1958     {
1959     anfd->events = 0;
1960 root 1.184
1961 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1962     anfd->events |= (unsigned char)w->events;
1963 root 1.27
1964 root 1.351 if (o_events != anfd->events)
1965 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1966     }
1967    
1968     if (o_reify & EV__IOFDSET)
1969     backend_modify (EV_A_ fd, o_events, anfd->events);
1970 root 1.27 }
1971    
1972     fdchangecnt = 0;
1973     }
1974    
1975 root 1.288 /* something about the given fd changed */
1976 root 1.284 inline_size void
1977 root 1.183 fd_change (EV_P_ int fd, int flags)
1978 root 1.27 {
1979 root 1.183 unsigned char reify = anfds [fd].reify;
1980 root 1.184 anfds [fd].reify |= flags;
1981 root 1.27
1982 root 1.183 if (expect_true (!reify))
1983     {
1984     ++fdchangecnt;
1985     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1986     fdchanges [fdchangecnt - 1] = fd;
1987     }
1988 root 1.9 }
1989    
1990 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1991 root 1.379 inline_speed void ecb_cold
1992 root 1.51 fd_kill (EV_P_ int fd)
1993 root 1.41 {
1994 root 1.136 ev_io *w;
1995 root 1.41
1996 root 1.136 while ((w = (ev_io *)anfds [fd].head))
1997 root 1.41 {
1998 root 1.51 ev_io_stop (EV_A_ w);
1999 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2000 root 1.41 }
2001     }
2002    
2003 root 1.336 /* check whether the given fd is actually valid, for error recovery */
2004 root 1.379 inline_size int ecb_cold
2005 root 1.71 fd_valid (int fd)
2006     {
2007 root 1.103 #ifdef _WIN32
2008 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2009 root 1.71 #else
2010     return fcntl (fd, F_GETFD) != -1;
2011     #endif
2012     }
2013    
2014 root 1.19 /* called on EBADF to verify fds */
2015 root 1.379 static void noinline ecb_cold
2016 root 1.51 fd_ebadf (EV_P)
2017 root 1.19 {
2018     int fd;
2019    
2020     for (fd = 0; fd < anfdmax; ++fd)
2021 root 1.27 if (anfds [fd].events)
2022 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2023 root 1.51 fd_kill (EV_A_ fd);
2024 root 1.41 }
2025    
2026     /* called on ENOMEM in select/poll to kill some fds and retry */
2027 root 1.379 static void noinline ecb_cold
2028 root 1.51 fd_enomem (EV_P)
2029 root 1.41 {
2030 root 1.62 int fd;
2031 root 1.41
2032 root 1.62 for (fd = anfdmax; fd--; )
2033 root 1.41 if (anfds [fd].events)
2034     {
2035 root 1.51 fd_kill (EV_A_ fd);
2036 root 1.307 break;
2037 root 1.41 }
2038 root 1.19 }
2039    
2040 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2041 root 1.140 static void noinline
2042 root 1.56 fd_rearm_all (EV_P)
2043     {
2044     int fd;
2045    
2046     for (fd = 0; fd < anfdmax; ++fd)
2047     if (anfds [fd].events)
2048     {
2049     anfds [fd].events = 0;
2050 root 1.268 anfds [fd].emask = 0;
2051 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2052 root 1.56 }
2053     }
2054    
2055 root 1.336 /* used to prepare libev internal fd's */
2056     /* this is not fork-safe */
2057     inline_speed void
2058     fd_intern (int fd)
2059     {
2060     #ifdef _WIN32
2061     unsigned long arg = 1;
2062     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2063     #else
2064     fcntl (fd, F_SETFD, FD_CLOEXEC);
2065     fcntl (fd, F_SETFL, O_NONBLOCK);
2066     #endif
2067     }
2068    
2069 root 1.8 /*****************************************************************************/
2070    
2071 root 1.235 /*
2072 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2073 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2074     * the branching factor of the d-tree.
2075     */
2076    
2077     /*
2078 root 1.235 * at the moment we allow libev the luxury of two heaps,
2079     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2080     * which is more cache-efficient.
2081     * the difference is about 5% with 50000+ watchers.
2082     */
2083 root 1.241 #if EV_USE_4HEAP
2084 root 1.235
2085 root 1.237 #define DHEAP 4
2086     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2087 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2088 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2089 root 1.235
2090     /* away from the root */
2091 root 1.284 inline_speed void
2092 root 1.241 downheap (ANHE *heap, int N, int k)
2093 root 1.235 {
2094 root 1.241 ANHE he = heap [k];
2095     ANHE *E = heap + N + HEAP0;
2096 root 1.235
2097     for (;;)
2098     {
2099     ev_tstamp minat;
2100 root 1.241 ANHE *minpos;
2101 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2102 root 1.235
2103 root 1.248 /* find minimum child */
2104 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
2105 root 1.235 {
2106 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2107     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2108     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2109     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2110 root 1.235 }
2111 root 1.240 else if (pos < E)
2112 root 1.235 {
2113 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2114     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2115     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2116     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2117 root 1.235 }
2118 root 1.240 else
2119     break;
2120 root 1.235
2121 root 1.241 if (ANHE_at (he) <= minat)
2122 root 1.235 break;
2123    
2124 root 1.247 heap [k] = *minpos;
2125 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2126 root 1.235
2127     k = minpos - heap;
2128     }
2129    
2130 root 1.247 heap [k] = he;
2131 root 1.241 ev_active (ANHE_w (he)) = k;
2132 root 1.235 }
2133    
2134 root 1.248 #else /* 4HEAP */
2135 root 1.235
2136     #define HEAP0 1
2137 root 1.247 #define HPARENT(k) ((k) >> 1)
2138 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2139 root 1.235
2140 root 1.248 /* away from the root */
2141 root 1.284 inline_speed void
2142 root 1.248 downheap (ANHE *heap, int N, int k)
2143 root 1.1 {
2144 root 1.241 ANHE he = heap [k];
2145 root 1.1
2146 root 1.228 for (;;)
2147 root 1.1 {
2148 root 1.248 int c = k << 1;
2149 root 1.179
2150 root 1.309 if (c >= N + HEAP0)
2151 root 1.179 break;
2152    
2153 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2154     ? 1 : 0;
2155    
2156     if (ANHE_at (he) <= ANHE_at (heap [c]))
2157     break;
2158    
2159     heap [k] = heap [c];
2160 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2161 root 1.248
2162     k = c;
2163 root 1.1 }
2164    
2165 root 1.243 heap [k] = he;
2166 root 1.248 ev_active (ANHE_w (he)) = k;
2167 root 1.1 }
2168 root 1.248 #endif
2169 root 1.1
2170 root 1.248 /* towards the root */
2171 root 1.284 inline_speed void
2172 root 1.248 upheap (ANHE *heap, int k)
2173 root 1.1 {
2174 root 1.241 ANHE he = heap [k];
2175 root 1.1
2176 root 1.179 for (;;)
2177 root 1.1 {
2178 root 1.248 int p = HPARENT (k);
2179 root 1.179
2180 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2181 root 1.179 break;
2182 root 1.1
2183 root 1.248 heap [k] = heap [p];
2184 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2185 root 1.248 k = p;
2186 root 1.1 }
2187    
2188 root 1.241 heap [k] = he;
2189     ev_active (ANHE_w (he)) = k;
2190 root 1.1 }
2191    
2192 root 1.288 /* move an element suitably so it is in a correct place */
2193 root 1.284 inline_size void
2194 root 1.241 adjustheap (ANHE *heap, int N, int k)
2195 root 1.84 {
2196 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2197 root 1.247 upheap (heap, k);
2198     else
2199     downheap (heap, N, k);
2200 root 1.84 }
2201    
2202 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2203 root 1.284 inline_size void
2204 root 1.248 reheap (ANHE *heap, int N)
2205     {
2206     int i;
2207 root 1.251
2208 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2209     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2210     for (i = 0; i < N; ++i)
2211     upheap (heap, i + HEAP0);
2212     }
2213    
2214 root 1.8 /*****************************************************************************/
2215    
2216 root 1.288 /* associate signal watchers to a signal signal */
2217 root 1.7 typedef struct
2218     {
2219 root 1.307 EV_ATOMIC_T pending;
2220 root 1.306 #if EV_MULTIPLICITY
2221     EV_P;
2222     #endif
2223 root 1.68 WL head;
2224 root 1.7 } ANSIG;
2225    
2226 root 1.306 static ANSIG signals [EV_NSIG - 1];
2227 root 1.7
2228 root 1.207 /*****************************************************************************/
2229    
2230 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2231 root 1.207
2232 root 1.379 static void noinline ecb_cold
2233 root 1.207 evpipe_init (EV_P)
2234     {
2235 root 1.288 if (!ev_is_active (&pipe_w))
2236 root 1.207 {
2237 root 1.448 int fds [2];
2238    
2239 root 1.336 # if EV_USE_EVENTFD
2240 root 1.448 fds [0] = -1;
2241     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2242     if (fds [1] < 0 && errno == EINVAL)
2243     fds [1] = eventfd (0, 0);
2244    
2245     if (fds [1] < 0)
2246     # endif
2247     {
2248     while (pipe (fds))
2249     ev_syserr ("(libev) error creating signal/async pipe");
2250    
2251     fd_intern (fds [0]);
2252 root 1.220 }
2253 root 1.448
2254     evpipe [0] = fds [0];
2255    
2256     if (evpipe [1] < 0)
2257     evpipe [1] = fds [1]; /* first call, set write fd */
2258 root 1.220 else
2259     {
2260 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2261     /* so that evpipe_write can always rely on its value. */
2262     /* this branch does not do anything sensible on windows, */
2263     /* so must not be executed on windows */
2264 root 1.207
2265 root 1.448 dup2 (fds [1], evpipe [1]);
2266     close (fds [1]);
2267 root 1.220 }
2268 root 1.207
2269 root 1.455 fd_intern (evpipe [1]);
2270    
2271 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2272 root 1.288 ev_io_start (EV_A_ &pipe_w);
2273 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2274 root 1.207 }
2275     }
2276    
2277 root 1.380 inline_speed void
2278 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2279 root 1.207 {
2280 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2281    
2282 root 1.383 if (expect_true (*flag))
2283 root 1.387 return;
2284 root 1.383
2285     *flag = 1;
2286 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2287 root 1.383
2288     pipe_write_skipped = 1;
2289 root 1.378
2290 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2291 root 1.214
2292 root 1.383 if (pipe_write_wanted)
2293     {
2294     int old_errno;
2295 root 1.378
2296 root 1.436 pipe_write_skipped = 0;
2297     ECB_MEMORY_FENCE_RELEASE;
2298 root 1.220
2299 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2300 root 1.380
2301 root 1.220 #if EV_USE_EVENTFD
2302 root 1.448 if (evpipe [0] < 0)
2303 root 1.383 {
2304     uint64_t counter = 1;
2305 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2306 root 1.383 }
2307     else
2308 root 1.220 #endif
2309 root 1.383 {
2310 root 1.427 #ifdef _WIN32
2311     WSABUF buf;
2312     DWORD sent;
2313     buf.buf = &buf;
2314     buf.len = 1;
2315     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2316     #else
2317 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2318 root 1.427 #endif
2319 root 1.383 }
2320 root 1.214
2321 root 1.383 errno = old_errno;
2322 root 1.207 }
2323     }
2324    
2325 root 1.288 /* called whenever the libev signal pipe */
2326     /* got some events (signal, async) */
2327 root 1.207 static void
2328     pipecb (EV_P_ ev_io *iow, int revents)
2329     {
2330 root 1.307 int i;
2331    
2332 root 1.378 if (revents & EV_READ)
2333     {
2334 root 1.220 #if EV_USE_EVENTFD
2335 root 1.448 if (evpipe [0] < 0)
2336 root 1.378 {
2337     uint64_t counter;
2338 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2339 root 1.378 }
2340     else
2341 root 1.220 #endif
2342 root 1.378 {
2343 root 1.427 char dummy[4];
2344     #ifdef _WIN32
2345     WSABUF buf;
2346     DWORD recvd;
2347 root 1.432 DWORD flags = 0;
2348 root 1.427 buf.buf = dummy;
2349     buf.len = sizeof (dummy);
2350 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2351 root 1.427 #else
2352     read (evpipe [0], &dummy, sizeof (dummy));
2353     #endif
2354 root 1.378 }
2355 root 1.220 }
2356 root 1.207
2357 root 1.378 pipe_write_skipped = 0;
2358    
2359 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2360    
2361 root 1.369 #if EV_SIGNAL_ENABLE
2362 root 1.307 if (sig_pending)
2363 root 1.372 {
2364 root 1.307 sig_pending = 0;
2365 root 1.207
2366 root 1.436 ECB_MEMORY_FENCE;
2367 root 1.424
2368 root 1.307 for (i = EV_NSIG - 1; i--; )
2369     if (expect_false (signals [i].pending))
2370     ev_feed_signal_event (EV_A_ i + 1);
2371 root 1.207 }
2372 root 1.369 #endif
2373 root 1.207
2374 root 1.209 #if EV_ASYNC_ENABLE
2375 root 1.307 if (async_pending)
2376 root 1.207 {
2377 root 1.307 async_pending = 0;
2378 root 1.207
2379 root 1.436 ECB_MEMORY_FENCE;
2380 root 1.424
2381 root 1.207 for (i = asynccnt; i--; )
2382     if (asyncs [i]->sent)
2383     {
2384     asyncs [i]->sent = 0;
2385 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2386 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2387     }
2388     }
2389 root 1.209 #endif
2390 root 1.207 }
2391    
2392     /*****************************************************************************/
2393    
2394 root 1.366 void
2395 root 1.420 ev_feed_signal (int signum) EV_THROW
2396 root 1.7 {
2397 root 1.207 #if EV_MULTIPLICITY
2398 root 1.453 EV_P;
2399 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2400 root 1.453 EV_A = signals [signum - 1].loop;
2401 root 1.366
2402     if (!EV_A)
2403     return;
2404 root 1.207 #endif
2405    
2406 root 1.366 signals [signum - 1].pending = 1;
2407     evpipe_write (EV_A_ &sig_pending);
2408     }
2409    
2410     static void
2411     ev_sighandler (int signum)
2412     {
2413 root 1.322 #ifdef _WIN32
2414 root 1.218 signal (signum, ev_sighandler);
2415 root 1.67 #endif
2416    
2417 root 1.366 ev_feed_signal (signum);
2418 root 1.7 }
2419    
2420 root 1.140 void noinline
2421 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2422 root 1.79 {
2423 root 1.80 WL w;
2424    
2425 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2426 root 1.307 return;
2427    
2428     --signum;
2429    
2430 root 1.79 #if EV_MULTIPLICITY
2431 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2432     /* or, likely more useful, feeding a signal nobody is waiting for */
2433 root 1.79
2434 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2435 root 1.306 return;
2436 root 1.307 #endif
2437 root 1.306
2438 root 1.307 signals [signum].pending = 0;
2439 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2440 root 1.79
2441     for (w = signals [signum].head; w; w = w->next)
2442     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2443     }
2444    
2445 root 1.303 #if EV_USE_SIGNALFD
2446     static void
2447     sigfdcb (EV_P_ ev_io *iow, int revents)
2448     {
2449 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2450 root 1.303
2451     for (;;)
2452     {
2453     ssize_t res = read (sigfd, si, sizeof (si));
2454    
2455     /* not ISO-C, as res might be -1, but works with SuS */
2456     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2457     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2458    
2459     if (res < (ssize_t)sizeof (si))
2460     break;
2461     }
2462     }
2463     #endif
2464    
2465 root 1.336 #endif
2466    
2467 root 1.8 /*****************************************************************************/
2468    
2469 root 1.336 #if EV_CHILD_ENABLE
2470 root 1.182 static WL childs [EV_PID_HASHSIZE];
2471 root 1.71
2472 root 1.136 static ev_signal childev;
2473 root 1.59
2474 root 1.206 #ifndef WIFCONTINUED
2475     # define WIFCONTINUED(status) 0
2476     #endif
2477    
2478 root 1.288 /* handle a single child status event */
2479 root 1.284 inline_speed void
2480 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2481 root 1.47 {
2482 root 1.136 ev_child *w;
2483 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2484 root 1.47
2485 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2486 root 1.206 {
2487     if ((w->pid == pid || !w->pid)
2488     && (!traced || (w->flags & 1)))
2489     {
2490 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2491 root 1.206 w->rpid = pid;
2492     w->rstatus = status;
2493     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2494     }
2495     }
2496 root 1.47 }
2497    
2498 root 1.142 #ifndef WCONTINUED
2499     # define WCONTINUED 0
2500     #endif
2501    
2502 root 1.288 /* called on sigchld etc., calls waitpid */
2503 root 1.47 static void
2504 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2505 root 1.22 {
2506     int pid, status;
2507    
2508 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2509     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2510     if (!WCONTINUED
2511     || errno != EINVAL
2512     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2513     return;
2514    
2515 root 1.216 /* make sure we are called again until all children have been reaped */
2516 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2517     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2518 root 1.47
2519 root 1.216 child_reap (EV_A_ pid, pid, status);
2520 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2521 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2522 root 1.22 }
2523    
2524 root 1.45 #endif
2525    
2526 root 1.22 /*****************************************************************************/
2527    
2528 root 1.357 #if EV_USE_IOCP
2529     # include "ev_iocp.c"
2530     #endif
2531 root 1.118 #if EV_USE_PORT
2532     # include "ev_port.c"
2533     #endif
2534 root 1.44 #if EV_USE_KQUEUE
2535     # include "ev_kqueue.c"
2536     #endif
2537 root 1.29 #if EV_USE_EPOLL
2538 root 1.1 # include "ev_epoll.c"
2539     #endif
2540 root 1.59 #if EV_USE_POLL
2541 root 1.41 # include "ev_poll.c"
2542     #endif
2543 root 1.29 #if EV_USE_SELECT
2544 root 1.1 # include "ev_select.c"
2545     #endif
2546    
2547 root 1.379 int ecb_cold
2548 root 1.420 ev_version_major (void) EV_THROW
2549 root 1.24 {
2550     return EV_VERSION_MAJOR;
2551     }
2552    
2553 root 1.379 int ecb_cold
2554 root 1.420 ev_version_minor (void) EV_THROW
2555 root 1.24 {
2556     return EV_VERSION_MINOR;
2557     }
2558    
2559 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2560 root 1.379 int inline_size ecb_cold
2561 root 1.51 enable_secure (void)
2562 root 1.41 {
2563 root 1.103 #ifdef _WIN32
2564 root 1.49 return 0;
2565     #else
2566 root 1.41 return getuid () != geteuid ()
2567     || getgid () != getegid ();
2568 root 1.49 #endif
2569 root 1.41 }
2570    
2571 root 1.379 unsigned int ecb_cold
2572 root 1.420 ev_supported_backends (void) EV_THROW
2573 root 1.129 {
2574 root 1.130 unsigned int flags = 0;
2575 root 1.129
2576     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2577     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2578     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2579     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2580     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2581    
2582     return flags;
2583     }
2584    
2585 root 1.379 unsigned int ecb_cold
2586 root 1.420 ev_recommended_backends (void) EV_THROW
2587 root 1.1 {
2588 root 1.131 unsigned int flags = ev_supported_backends ();
2589 root 1.129
2590     #ifndef __NetBSD__
2591     /* kqueue is borked on everything but netbsd apparently */
2592     /* it usually doesn't work correctly on anything but sockets and pipes */
2593     flags &= ~EVBACKEND_KQUEUE;
2594     #endif
2595     #ifdef __APPLE__
2596 root 1.278 /* only select works correctly on that "unix-certified" platform */
2597     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2598     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2599 root 1.129 #endif
2600 root 1.342 #ifdef __FreeBSD__
2601     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2602     #endif
2603 root 1.129
2604     return flags;
2605 root 1.51 }
2606    
2607 root 1.379 unsigned int ecb_cold
2608 root 1.420 ev_embeddable_backends (void) EV_THROW
2609 root 1.134 {
2610 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2611    
2612 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2613 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2614     flags &= ~EVBACKEND_EPOLL;
2615 root 1.196
2616     return flags;
2617 root 1.134 }
2618    
2619     unsigned int
2620 root 1.420 ev_backend (EV_P) EV_THROW
2621 root 1.130 {
2622     return backend;
2623     }
2624    
2625 root 1.338 #if EV_FEATURE_API
2626 root 1.162 unsigned int
2627 root 1.420 ev_iteration (EV_P) EV_THROW
2628 root 1.162 {
2629     return loop_count;
2630     }
2631    
2632 root 1.294 unsigned int
2633 root 1.420 ev_depth (EV_P) EV_THROW
2634 root 1.294 {
2635     return loop_depth;
2636     }
2637    
2638 root 1.193 void
2639 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2640 root 1.193 {
2641     io_blocktime = interval;
2642     }
2643    
2644     void
2645 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2646 root 1.193 {
2647     timeout_blocktime = interval;
2648     }
2649    
2650 root 1.297 void
2651 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2652 root 1.297 {
2653     userdata = data;
2654     }
2655    
2656     void *
2657 root 1.420 ev_userdata (EV_P) EV_THROW
2658 root 1.297 {
2659     return userdata;
2660     }
2661    
2662 root 1.379 void
2663 root 1.461 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2664 root 1.297 {
2665     invoke_cb = invoke_pending_cb;
2666     }
2667    
2668 root 1.379 void
2669 root 1.473 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2670 root 1.297 {
2671 root 1.298 release_cb = release;
2672     acquire_cb = acquire;
2673 root 1.297 }
2674     #endif
2675    
2676 root 1.288 /* initialise a loop structure, must be zero-initialised */
2677 root 1.379 static void noinline ecb_cold
2678 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2679 root 1.51 {
2680 root 1.130 if (!backend)
2681 root 1.23 {
2682 root 1.366 origflags = flags;
2683    
2684 root 1.279 #if EV_USE_REALTIME
2685     if (!have_realtime)
2686     {
2687     struct timespec ts;
2688    
2689     if (!clock_gettime (CLOCK_REALTIME, &ts))
2690     have_realtime = 1;
2691     }
2692     #endif
2693    
2694 root 1.29 #if EV_USE_MONOTONIC
2695 root 1.279 if (!have_monotonic)
2696     {
2697     struct timespec ts;
2698    
2699     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2700     have_monotonic = 1;
2701     }
2702 root 1.1 #endif
2703    
2704 root 1.306 /* pid check not overridable via env */
2705     #ifndef _WIN32
2706     if (flags & EVFLAG_FORKCHECK)
2707     curpid = getpid ();
2708     #endif
2709    
2710     if (!(flags & EVFLAG_NOENV)
2711     && !enable_secure ()
2712     && getenv ("LIBEV_FLAGS"))
2713     flags = atoi (getenv ("LIBEV_FLAGS"));
2714    
2715 root 1.378 ev_rt_now = ev_time ();
2716     mn_now = get_clock ();
2717     now_floor = mn_now;
2718     rtmn_diff = ev_rt_now - mn_now;
2719 root 1.338 #if EV_FEATURE_API
2720 root 1.378 invoke_cb = ev_invoke_pending;
2721 root 1.297 #endif
2722 root 1.1
2723 root 1.378 io_blocktime = 0.;
2724     timeout_blocktime = 0.;
2725     backend = 0;
2726     backend_fd = -1;
2727     sig_pending = 0;
2728 root 1.307 #if EV_ASYNC_ENABLE
2729 root 1.378 async_pending = 0;
2730 root 1.307 #endif
2731 root 1.378 pipe_write_skipped = 0;
2732     pipe_write_wanted = 0;
2733 root 1.448 evpipe [0] = -1;
2734     evpipe [1] = -1;
2735 root 1.209 #if EV_USE_INOTIFY
2736 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2737 root 1.209 #endif
2738 root 1.303 #if EV_USE_SIGNALFD
2739 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2740 root 1.303 #endif
2741 root 1.193
2742 root 1.366 if (!(flags & EVBACKEND_MASK))
2743 root 1.129 flags |= ev_recommended_backends ();
2744 root 1.41
2745 root 1.357 #if EV_USE_IOCP
2746     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2747     #endif
2748 root 1.118 #if EV_USE_PORT
2749 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2750 root 1.118 #endif
2751 root 1.44 #if EV_USE_KQUEUE
2752 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2753 root 1.44 #endif
2754 root 1.29 #if EV_USE_EPOLL
2755 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2756 root 1.41 #endif
2757 root 1.59 #if EV_USE_POLL
2758 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2759 root 1.1 #endif
2760 root 1.29 #if EV_USE_SELECT
2761 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2762 root 1.1 #endif
2763 root 1.70
2764 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2765    
2766 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2767 root 1.288 ev_init (&pipe_w, pipecb);
2768     ev_set_priority (&pipe_w, EV_MAXPRI);
2769 root 1.336 #endif
2770 root 1.56 }
2771     }
2772    
2773 root 1.288 /* free up a loop structure */
2774 root 1.379 void ecb_cold
2775 root 1.422 ev_loop_destroy (EV_P)
2776 root 1.56 {
2777 root 1.65 int i;
2778    
2779 root 1.364 #if EV_MULTIPLICITY
2780 root 1.363 /* mimic free (0) */
2781     if (!EV_A)
2782     return;
2783 root 1.364 #endif
2784 root 1.363
2785 root 1.361 #if EV_CLEANUP_ENABLE
2786     /* queue cleanup watchers (and execute them) */
2787     if (expect_false (cleanupcnt))
2788     {
2789     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2790     EV_INVOKE_PENDING;
2791     }
2792     #endif
2793    
2794 root 1.359 #if EV_CHILD_ENABLE
2795 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2796 root 1.359 {
2797     ev_ref (EV_A); /* child watcher */
2798     ev_signal_stop (EV_A_ &childev);
2799     }
2800     #endif
2801    
2802 root 1.288 if (ev_is_active (&pipe_w))
2803 root 1.207 {
2804 root 1.303 /*ev_ref (EV_A);*/
2805     /*ev_io_stop (EV_A_ &pipe_w);*/
2806 root 1.207
2807 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2808     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2809 root 1.207 }
2810    
2811 root 1.303 #if EV_USE_SIGNALFD
2812     if (ev_is_active (&sigfd_w))
2813 root 1.317 close (sigfd);
2814 root 1.303 #endif
2815    
2816 root 1.152 #if EV_USE_INOTIFY
2817     if (fs_fd >= 0)
2818     close (fs_fd);
2819     #endif
2820    
2821     if (backend_fd >= 0)
2822     close (backend_fd);
2823    
2824 root 1.357 #if EV_USE_IOCP
2825     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2826     #endif
2827 root 1.118 #if EV_USE_PORT
2828 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2829 root 1.118 #endif
2830 root 1.56 #if EV_USE_KQUEUE
2831 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2832 root 1.56 #endif
2833     #if EV_USE_EPOLL
2834 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2835 root 1.56 #endif
2836 root 1.59 #if EV_USE_POLL
2837 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2838 root 1.56 #endif
2839     #if EV_USE_SELECT
2840 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2841 root 1.56 #endif
2842 root 1.1
2843 root 1.65 for (i = NUMPRI; i--; )
2844 root 1.164 {
2845     array_free (pending, [i]);
2846     #if EV_IDLE_ENABLE
2847     array_free (idle, [i]);
2848     #endif
2849     }
2850 root 1.65
2851 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2852 root 1.186
2853 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2854 root 1.284 array_free (rfeed, EMPTY);
2855 root 1.164 array_free (fdchange, EMPTY);
2856     array_free (timer, EMPTY);
2857 root 1.140 #if EV_PERIODIC_ENABLE
2858 root 1.164 array_free (periodic, EMPTY);
2859 root 1.93 #endif
2860 root 1.187 #if EV_FORK_ENABLE
2861     array_free (fork, EMPTY);
2862     #endif
2863 root 1.360 #if EV_CLEANUP_ENABLE
2864     array_free (cleanup, EMPTY);
2865     #endif
2866 root 1.164 array_free (prepare, EMPTY);
2867     array_free (check, EMPTY);
2868 root 1.209 #if EV_ASYNC_ENABLE
2869     array_free (async, EMPTY);
2870     #endif
2871 root 1.65
2872 root 1.130 backend = 0;
2873 root 1.359
2874     #if EV_MULTIPLICITY
2875     if (ev_is_default_loop (EV_A))
2876     #endif
2877     ev_default_loop_ptr = 0;
2878     #if EV_MULTIPLICITY
2879     else
2880     ev_free (EV_A);
2881     #endif
2882 root 1.56 }
2883 root 1.22
2884 root 1.226 #if EV_USE_INOTIFY
2885 root 1.284 inline_size void infy_fork (EV_P);
2886 root 1.226 #endif
2887 root 1.154
2888 root 1.284 inline_size void
2889 root 1.56 loop_fork (EV_P)
2890     {
2891 root 1.118 #if EV_USE_PORT
2892 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2893 root 1.56 #endif
2894     #if EV_USE_KQUEUE
2895 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2896 root 1.45 #endif
2897 root 1.118 #if EV_USE_EPOLL
2898 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2899 root 1.118 #endif
2900 root 1.154 #if EV_USE_INOTIFY
2901     infy_fork (EV_A);
2902     #endif
2903 root 1.70
2904 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2905 root 1.288 if (ev_is_active (&pipe_w))
2906 root 1.70 {
2907 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2908 root 1.70
2909     ev_ref (EV_A);
2910 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2911 root 1.220
2912     if (evpipe [0] >= 0)
2913 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
2914 root 1.207
2915     evpipe_init (EV_A);
2916 root 1.443 /* iterate over everything, in case we missed something before */
2917     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2918 root 1.448 }
2919 root 1.337 #endif
2920 root 1.70
2921     postfork = 0;
2922 root 1.1 }
2923    
2924 root 1.55 #if EV_MULTIPLICITY
2925 root 1.250
2926 root 1.379 struct ev_loop * ecb_cold
2927 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2928 root 1.54 {
2929 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2930 root 1.69
2931 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2932 root 1.108 loop_init (EV_A_ flags);
2933 root 1.56
2934 root 1.130 if (ev_backend (EV_A))
2935 root 1.306 return EV_A;
2936 root 1.54
2937 root 1.359 ev_free (EV_A);
2938 root 1.55 return 0;
2939 root 1.54 }
2940    
2941 root 1.297 #endif /* multiplicity */
2942 root 1.248
2943     #if EV_VERIFY
2944 root 1.379 static void noinline ecb_cold
2945 root 1.251 verify_watcher (EV_P_ W w)
2946     {
2947 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2948 root 1.251
2949     if (w->pending)
2950 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2951 root 1.251 }
2952    
2953 root 1.379 static void noinline ecb_cold
2954 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2955     {
2956     int i;
2957    
2958     for (i = HEAP0; i < N + HEAP0; ++i)
2959     {
2960 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2961     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2962     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2963 root 1.251
2964     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2965     }
2966     }
2967    
2968 root 1.379 static void noinline ecb_cold
2969 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2970 root 1.248 {
2971     while (cnt--)
2972 root 1.251 {
2973 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2974 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2975     }
2976 root 1.248 }
2977 root 1.250 #endif
2978 root 1.248
2979 root 1.338 #if EV_FEATURE_API
2980 root 1.379 void ecb_cold
2981 root 1.420 ev_verify (EV_P) EV_THROW
2982 root 1.248 {
2983 root 1.250 #if EV_VERIFY
2984 root 1.429 int i;
2985 root 1.426 WL w, w2;
2986 root 1.251
2987     assert (activecnt >= -1);
2988    
2989     assert (fdchangemax >= fdchangecnt);
2990     for (i = 0; i < fdchangecnt; ++i)
2991 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2992 root 1.251
2993     assert (anfdmax >= 0);
2994 root 1.429 for (i = 0; i < anfdmax; ++i)
2995     {
2996     int j = 0;
2997    
2998     for (w = w2 = anfds [i].head; w; w = w->next)
2999     {
3000     verify_watcher (EV_A_ (W)w);
3001 root 1.426
3002 root 1.429 if (j++ & 1)
3003     {
3004     assert (("libev: io watcher list contains a loop", w != w2));
3005     w2 = w2->next;
3006     }
3007 root 1.426
3008 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3009     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3010     }
3011     }
3012 root 1.251
3013     assert (timermax >= timercnt);
3014     verify_heap (EV_A_ timers, timercnt);
3015 root 1.248
3016     #if EV_PERIODIC_ENABLE
3017 root 1.251 assert (periodicmax >= periodiccnt);
3018     verify_heap (EV_A_ periodics, periodiccnt);
3019 root 1.248 #endif
3020    
3021 root 1.251 for (i = NUMPRI; i--; )
3022     {
3023     assert (pendingmax [i] >= pendingcnt [i]);
3024 root 1.248 #if EV_IDLE_ENABLE
3025 root 1.252 assert (idleall >= 0);
3026 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3027     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3028 root 1.248 #endif
3029 root 1.251 }
3030    
3031 root 1.248 #if EV_FORK_ENABLE
3032 root 1.251 assert (forkmax >= forkcnt);
3033     array_verify (EV_A_ (W *)forks, forkcnt);
3034 root 1.248 #endif
3035 root 1.251
3036 root 1.360 #if EV_CLEANUP_ENABLE
3037     assert (cleanupmax >= cleanupcnt);
3038     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3039     #endif
3040    
3041 root 1.250 #if EV_ASYNC_ENABLE
3042 root 1.251 assert (asyncmax >= asynccnt);
3043     array_verify (EV_A_ (W *)asyncs, asynccnt);
3044 root 1.250 #endif
3045 root 1.251
3046 root 1.337 #if EV_PREPARE_ENABLE
3047 root 1.251 assert (preparemax >= preparecnt);
3048     array_verify (EV_A_ (W *)prepares, preparecnt);
3049 root 1.337 #endif
3050 root 1.251
3051 root 1.337 #if EV_CHECK_ENABLE
3052 root 1.251 assert (checkmax >= checkcnt);
3053     array_verify (EV_A_ (W *)checks, checkcnt);
3054 root 1.337 #endif
3055 root 1.251
3056     # if 0
3057 root 1.336 #if EV_CHILD_ENABLE
3058 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3059 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3060 root 1.336 #endif
3061 root 1.251 # endif
3062 root 1.248 #endif
3063     }
3064 root 1.297 #endif
3065 root 1.56
3066     #if EV_MULTIPLICITY
3067 root 1.379 struct ev_loop * ecb_cold
3068 root 1.54 #else
3069     int
3070 root 1.358 #endif
3071 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
3072 root 1.54 {
3073 root 1.116 if (!ev_default_loop_ptr)
3074 root 1.56 {
3075     #if EV_MULTIPLICITY
3076 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3077 root 1.56 #else
3078 ayin 1.117 ev_default_loop_ptr = 1;
3079 root 1.54 #endif
3080    
3081 root 1.110 loop_init (EV_A_ flags);
3082 root 1.56
3083 root 1.130 if (ev_backend (EV_A))
3084 root 1.56 {
3085 root 1.336 #if EV_CHILD_ENABLE
3086 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3087     ev_set_priority (&childev, EV_MAXPRI);
3088     ev_signal_start (EV_A_ &childev);
3089     ev_unref (EV_A); /* child watcher should not keep loop alive */
3090     #endif
3091     }
3092     else
3093 root 1.116 ev_default_loop_ptr = 0;
3094 root 1.56 }
3095 root 1.8
3096 root 1.116 return ev_default_loop_ptr;
3097 root 1.1 }
3098    
3099 root 1.24 void
3100 root 1.420 ev_loop_fork (EV_P) EV_THROW
3101 root 1.1 {
3102 root 1.440 postfork = 1;
3103 root 1.1 }
3104    
3105 root 1.8 /*****************************************************************************/
3106    
3107 root 1.168 void
3108     ev_invoke (EV_P_ void *w, int revents)
3109     {
3110     EV_CB_INVOKE ((W)w, revents);
3111     }
3112    
3113 root 1.300 unsigned int
3114 root 1.420 ev_pending_count (EV_P) EV_THROW
3115 root 1.300 {
3116     int pri;
3117     unsigned int count = 0;
3118    
3119     for (pri = NUMPRI; pri--; )
3120     count += pendingcnt [pri];
3121    
3122     return count;
3123     }
3124    
3125 root 1.297 void noinline
3126 root 1.296 ev_invoke_pending (EV_P)
3127 root 1.1 {
3128 root 1.445 pendingpri = NUMPRI;
3129    
3130     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3131     {
3132     --pendingpri;
3133    
3134     while (pendingcnt [pendingpri])
3135     {
3136     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3137 root 1.1
3138 root 1.445 p->w->pending = 0;
3139     EV_CB_INVOKE (p->w, p->events);
3140     EV_FREQUENT_CHECK;
3141     }
3142     }
3143 root 1.1 }
3144    
3145 root 1.234 #if EV_IDLE_ENABLE
3146 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3147     /* only when higher priorities are idle" logic */
3148 root 1.284 inline_size void
3149 root 1.234 idle_reify (EV_P)
3150     {
3151     if (expect_false (idleall))
3152     {
3153     int pri;
3154    
3155     for (pri = NUMPRI; pri--; )
3156     {
3157     if (pendingcnt [pri])
3158     break;
3159    
3160     if (idlecnt [pri])
3161     {
3162     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3163     break;
3164     }
3165     }
3166     }
3167     }
3168     #endif
3169    
3170 root 1.288 /* make timers pending */
3171 root 1.284 inline_size void
3172 root 1.51 timers_reify (EV_P)
3173 root 1.1 {
3174 root 1.248 EV_FREQUENT_CHECK;
3175    
3176 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3177 root 1.1 {
3178 root 1.284 do
3179     {
3180     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3181 root 1.1
3182 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3183    
3184     /* first reschedule or stop timer */
3185     if (w->repeat)
3186     {
3187     ev_at (w) += w->repeat;
3188     if (ev_at (w) < mn_now)
3189     ev_at (w) = mn_now;
3190 root 1.61
3191 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3192 root 1.90
3193 root 1.284 ANHE_at_cache (timers [HEAP0]);
3194     downheap (timers, timercnt, HEAP0);
3195     }
3196     else
3197     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3198 root 1.243
3199 root 1.284 EV_FREQUENT_CHECK;
3200     feed_reverse (EV_A_ (W)w);
3201 root 1.12 }
3202 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3203 root 1.30
3204 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3205 root 1.12 }
3206     }
3207 root 1.4
3208 root 1.140 #if EV_PERIODIC_ENABLE
3209 root 1.370
3210 root 1.373 static void noinline
3211 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3212     {
3213 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3214     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3215    
3216     /* the above almost always errs on the low side */
3217     while (at <= ev_rt_now)
3218     {
3219     ev_tstamp nat = at + w->interval;
3220    
3221     /* when resolution fails us, we use ev_rt_now */
3222     if (expect_false (nat == at))
3223     {
3224     at = ev_rt_now;
3225     break;
3226     }
3227    
3228     at = nat;
3229     }
3230    
3231     ev_at (w) = at;
3232 root 1.370 }
3233    
3234 root 1.288 /* make periodics pending */
3235 root 1.284 inline_size void
3236 root 1.51 periodics_reify (EV_P)
3237 root 1.12 {
3238 root 1.248 EV_FREQUENT_CHECK;
3239 root 1.250
3240 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3241 root 1.12 {
3242 root 1.284 do
3243     {
3244     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3245 root 1.1
3246 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3247 root 1.61
3248 root 1.284 /* first reschedule or stop timer */
3249     if (w->reschedule_cb)
3250     {
3251     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3252 root 1.243
3253 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3254 root 1.243
3255 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3256     downheap (periodics, periodiccnt, HEAP0);
3257     }
3258     else if (w->interval)
3259 root 1.246 {
3260 root 1.370 periodic_recalc (EV_A_ w);
3261 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3262     downheap (periodics, periodiccnt, HEAP0);
3263 root 1.246 }
3264 root 1.284 else
3265     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3266 root 1.243
3267 root 1.284 EV_FREQUENT_CHECK;
3268     feed_reverse (EV_A_ (W)w);
3269 root 1.1 }
3270 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3271 root 1.12
3272 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3273 root 1.12 }
3274     }
3275    
3276 root 1.288 /* simply recalculate all periodics */
3277 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3278 root 1.379 static void noinline ecb_cold
3279 root 1.54 periodics_reschedule (EV_P)
3280 root 1.12 {
3281     int i;
3282    
3283 root 1.13 /* adjust periodics after time jump */
3284 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3285 root 1.12 {
3286 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3287 root 1.12
3288 root 1.77 if (w->reschedule_cb)
3289 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3290 root 1.77 else if (w->interval)
3291 root 1.370 periodic_recalc (EV_A_ w);
3292 root 1.242
3293 root 1.248 ANHE_at_cache (periodics [i]);
3294 root 1.77 }
3295 root 1.12
3296 root 1.248 reheap (periodics, periodiccnt);
3297 root 1.1 }
3298 root 1.93 #endif
3299 root 1.1
3300 root 1.288 /* adjust all timers by a given offset */
3301 root 1.379 static void noinline ecb_cold
3302 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3303     {
3304     int i;
3305    
3306     for (i = 0; i < timercnt; ++i)
3307     {
3308     ANHE *he = timers + i + HEAP0;
3309     ANHE_w (*he)->at += adjust;
3310     ANHE_at_cache (*he);
3311     }
3312     }
3313    
3314 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3315 root 1.324 /* also detect if there was a timejump, and act accordingly */
3316 root 1.284 inline_speed void
3317 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3318 root 1.4 {
3319 root 1.40 #if EV_USE_MONOTONIC
3320     if (expect_true (have_monotonic))
3321     {
3322 root 1.289 int i;
3323 root 1.178 ev_tstamp odiff = rtmn_diff;
3324    
3325     mn_now = get_clock ();
3326    
3327     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3328     /* interpolate in the meantime */
3329     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3330 root 1.40 {
3331 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3332     return;
3333     }
3334    
3335     now_floor = mn_now;
3336     ev_rt_now = ev_time ();
3337 root 1.4
3338 root 1.178 /* loop a few times, before making important decisions.
3339     * on the choice of "4": one iteration isn't enough,
3340     * in case we get preempted during the calls to
3341     * ev_time and get_clock. a second call is almost guaranteed
3342     * to succeed in that case, though. and looping a few more times
3343     * doesn't hurt either as we only do this on time-jumps or
3344     * in the unlikely event of having been preempted here.
3345     */
3346     for (i = 4; --i; )
3347     {
3348 root 1.373 ev_tstamp diff;
3349 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3350 root 1.4
3351 root 1.373 diff = odiff - rtmn_diff;
3352    
3353     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3354 root 1.178 return; /* all is well */
3355 root 1.4
3356 root 1.178 ev_rt_now = ev_time ();
3357     mn_now = get_clock ();
3358     now_floor = mn_now;
3359     }
3360 root 1.4
3361 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3362     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3363 root 1.140 # if EV_PERIODIC_ENABLE
3364 root 1.178 periodics_reschedule (EV_A);
3365 root 1.93 # endif
3366 root 1.4 }
3367     else
3368 root 1.40 #endif
3369 root 1.4 {
3370 root 1.85 ev_rt_now = ev_time ();
3371 root 1.40
3372 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3373 root 1.13 {
3374 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3375     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3376 root 1.140 #if EV_PERIODIC_ENABLE
3377 root 1.54 periodics_reschedule (EV_A);
3378 root 1.93 #endif
3379 root 1.13 }
3380 root 1.4
3381 root 1.85 mn_now = ev_rt_now;
3382 root 1.4 }
3383     }
3384    
3385 root 1.418 int
3386 root 1.353 ev_run (EV_P_ int flags)
3387 root 1.1 {
3388 root 1.338 #if EV_FEATURE_API
3389 root 1.294 ++loop_depth;
3390 root 1.297 #endif
3391 root 1.294
3392 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3393 root 1.298
3394 root 1.353 loop_done = EVBREAK_CANCEL;
3395 root 1.1
3396 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3397 root 1.158
3398 root 1.161 do
3399 root 1.9 {
3400 root 1.250 #if EV_VERIFY >= 2
3401 root 1.340 ev_verify (EV_A);
3402 root 1.250 #endif
3403    
3404 root 1.158 #ifndef _WIN32
3405     if (expect_false (curpid)) /* penalise the forking check even more */
3406     if (expect_false (getpid () != curpid))
3407     {
3408     curpid = getpid ();
3409     postfork = 1;
3410     }
3411     #endif
3412    
3413 root 1.157 #if EV_FORK_ENABLE
3414     /* we might have forked, so queue fork handlers */
3415     if (expect_false (postfork))
3416     if (forkcnt)
3417     {
3418     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3419 root 1.297 EV_INVOKE_PENDING;
3420 root 1.157 }
3421     #endif
3422 root 1.147
3423 root 1.337 #if EV_PREPARE_ENABLE
3424 root 1.170 /* queue prepare watchers (and execute them) */
3425 root 1.40 if (expect_false (preparecnt))
3426 root 1.20 {
3427 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3428 root 1.297 EV_INVOKE_PENDING;
3429 root 1.20 }
3430 root 1.337 #endif
3431 root 1.9
3432 root 1.298 if (expect_false (loop_done))
3433     break;
3434    
3435 root 1.70 /* we might have forked, so reify kernel state if necessary */
3436     if (expect_false (postfork))
3437     loop_fork (EV_A);
3438    
3439 root 1.1 /* update fd-related kernel structures */
3440 root 1.51 fd_reify (EV_A);
3441 root 1.1
3442     /* calculate blocking time */
3443 root 1.135 {
3444 root 1.193 ev_tstamp waittime = 0.;
3445     ev_tstamp sleeptime = 0.;
3446 root 1.12
3447 root 1.353 /* remember old timestamp for io_blocktime calculation */
3448     ev_tstamp prev_mn_now = mn_now;
3449 root 1.293
3450 root 1.353 /* update time to cancel out callback processing overhead */
3451     time_update (EV_A_ 1e100);
3452 root 1.135
3453 root 1.378 /* from now on, we want a pipe-wake-up */
3454     pipe_write_wanted = 1;
3455    
3456 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3457 root 1.383
3458 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3459 root 1.353 {
3460 root 1.287 waittime = MAX_BLOCKTIME;
3461    
3462 root 1.135 if (timercnt)
3463     {
3464 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3465 root 1.193 if (waittime > to) waittime = to;
3466 root 1.135 }
3467 root 1.4
3468 root 1.140 #if EV_PERIODIC_ENABLE
3469 root 1.135 if (periodiccnt)
3470     {
3471 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3472 root 1.193 if (waittime > to) waittime = to;
3473 root 1.135 }
3474 root 1.93 #endif
3475 root 1.4
3476 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3477 root 1.193 if (expect_false (waittime < timeout_blocktime))
3478     waittime = timeout_blocktime;
3479    
3480 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3481     /* to pass a minimum nonzero value to the backend */
3482     if (expect_false (waittime < backend_mintime))
3483     waittime = backend_mintime;
3484    
3485 root 1.293 /* extra check because io_blocktime is commonly 0 */
3486     if (expect_false (io_blocktime))
3487     {
3488     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3489 root 1.193
3490 root 1.376 if (sleeptime > waittime - backend_mintime)
3491     sleeptime = waittime - backend_mintime;
3492 root 1.193
3493 root 1.293 if (expect_true (sleeptime > 0.))
3494     {
3495     ev_sleep (sleeptime);
3496     waittime -= sleeptime;
3497     }
3498 root 1.193 }
3499 root 1.135 }
3500 root 1.1
3501 root 1.338 #if EV_FEATURE_API
3502 root 1.162 ++loop_count;
3503 root 1.297 #endif
3504 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3505 root 1.193 backend_poll (EV_A_ waittime);
3506 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3507 root 1.178
3508 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3509 root 1.378
3510 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3511 root 1.378 if (pipe_write_skipped)
3512     {
3513     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3514     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3515     }
3516    
3517    
3518 root 1.178 /* update ev_rt_now, do magic */
3519 root 1.193 time_update (EV_A_ waittime + sleeptime);
3520 root 1.135 }
3521 root 1.1
3522 root 1.9 /* queue pending timers and reschedule them */
3523 root 1.51 timers_reify (EV_A); /* relative timers called last */
3524 root 1.140 #if EV_PERIODIC_ENABLE
3525 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3526 root 1.93 #endif
3527 root 1.1
3528 root 1.164 #if EV_IDLE_ENABLE
3529 root 1.137 /* queue idle watchers unless other events are pending */
3530 root 1.164 idle_reify (EV_A);
3531     #endif
3532 root 1.9
3533 root 1.337 #if EV_CHECK_ENABLE
3534 root 1.20 /* queue check watchers, to be executed first */
3535 root 1.123 if (expect_false (checkcnt))
3536 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3537 root 1.337 #endif
3538 root 1.9
3539 root 1.297 EV_INVOKE_PENDING;
3540 root 1.1 }
3541 root 1.219 while (expect_true (
3542     activecnt
3543     && !loop_done
3544 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3545 root 1.219 ));
3546 root 1.13
3547 root 1.353 if (loop_done == EVBREAK_ONE)
3548     loop_done = EVBREAK_CANCEL;
3549 root 1.294
3550 root 1.338 #if EV_FEATURE_API
3551 root 1.294 --loop_depth;
3552 root 1.297 #endif
3553 root 1.418
3554     return activecnt;
3555 root 1.51 }
3556    
3557     void
3558 root 1.420 ev_break (EV_P_ int how) EV_THROW
3559 root 1.51 {
3560     loop_done = how;
3561 root 1.1 }
3562    
3563 root 1.285 void
3564 root 1.420 ev_ref (EV_P) EV_THROW
3565 root 1.285 {
3566     ++activecnt;
3567     }
3568    
3569     void
3570 root 1.420 ev_unref (EV_P) EV_THROW
3571 root 1.285 {
3572     --activecnt;
3573     }
3574    
3575     void
3576 root 1.420 ev_now_update (EV_P) EV_THROW
3577 root 1.285 {
3578     time_update (EV_A_ 1e100);
3579     }
3580    
3581     void
3582 root 1.420 ev_suspend (EV_P) EV_THROW
3583 root 1.285 {
3584     ev_now_update (EV_A);
3585     }
3586    
3587     void
3588 root 1.420 ev_resume (EV_P) EV_THROW
3589 root 1.285 {
3590     ev_tstamp mn_prev = mn_now;
3591    
3592     ev_now_update (EV_A);
3593     timers_reschedule (EV_A_ mn_now - mn_prev);
3594 root 1.286 #if EV_PERIODIC_ENABLE
3595 root 1.288 /* TODO: really do this? */
3596 root 1.285 periodics_reschedule (EV_A);
3597 root 1.286 #endif
3598 root 1.285 }
3599    
3600 root 1.8 /*****************************************************************************/
3601 root 1.288 /* singly-linked list management, used when the expected list length is short */
3602 root 1.8
3603 root 1.284 inline_size void
3604 root 1.10 wlist_add (WL *head, WL elem)
3605 root 1.1 {
3606     elem->next = *head;
3607     *head = elem;
3608     }
3609    
3610 root 1.284 inline_size void
3611 root 1.10 wlist_del (WL *head, WL elem)
3612 root 1.1 {
3613     while (*head)
3614     {
3615 root 1.307 if (expect_true (*head == elem))
3616 root 1.1 {
3617     *head = elem->next;
3618 root 1.307 break;
3619 root 1.1 }
3620    
3621     head = &(*head)->next;
3622     }
3623     }
3624    
3625 root 1.288 /* internal, faster, version of ev_clear_pending */
3626 root 1.284 inline_speed void
3627 root 1.166 clear_pending (EV_P_ W w)
3628 root 1.16 {
3629     if (w->pending)
3630     {
3631 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3632 root 1.16 w->pending = 0;
3633     }
3634     }
3635    
3636 root 1.167 int
3637 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3638 root 1.166 {
3639     W w_ = (W)w;
3640     int pending = w_->pending;
3641    
3642 root 1.172 if (expect_true (pending))
3643     {
3644     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3645 root 1.288 p->w = (W)&pending_w;
3646 root 1.172 w_->pending = 0;
3647     return p->events;
3648     }
3649     else
3650 root 1.167 return 0;
3651 root 1.166 }
3652    
3653 root 1.284 inline_size void
3654 root 1.164 pri_adjust (EV_P_ W w)
3655     {
3656 root 1.295 int pri = ev_priority (w);
3657 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3658     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3659 root 1.295 ev_set_priority (w, pri);
3660 root 1.164 }
3661    
3662 root 1.284 inline_speed void
3663 root 1.51 ev_start (EV_P_ W w, int active)
3664 root 1.1 {
3665 root 1.164 pri_adjust (EV_A_ w);
3666 root 1.1 w->active = active;
3667 root 1.51 ev_ref (EV_A);
3668 root 1.1 }
3669    
3670 root 1.284 inline_size void
3671 root 1.51 ev_stop (EV_P_ W w)
3672 root 1.1 {
3673 root 1.51 ev_unref (EV_A);
3674 root 1.1 w->active = 0;
3675     }
3676    
3677 root 1.8 /*****************************************************************************/
3678    
3679 root 1.171 void noinline
3680 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3681 root 1.1 {
3682 root 1.37 int fd = w->fd;
3683    
3684 root 1.123 if (expect_false (ev_is_active (w)))
3685 root 1.1 return;
3686    
3687 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3688 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3689 root 1.33
3690 root 1.248 EV_FREQUENT_CHECK;
3691    
3692 root 1.51 ev_start (EV_A_ (W)w, 1);
3693 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3694 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3695 root 1.1
3696 root 1.426 /* common bug, apparently */
3697     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3698    
3699 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3700 root 1.281 w->events &= ~EV__IOFDSET;
3701 root 1.248
3702     EV_FREQUENT_CHECK;
3703 root 1.1 }
3704    
3705 root 1.171 void noinline
3706 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3707 root 1.1 {
3708 root 1.166 clear_pending (EV_A_ (W)w);
3709 root 1.123 if (expect_false (!ev_is_active (w)))
3710 root 1.1 return;
3711    
3712 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3713 root 1.89
3714 root 1.248 EV_FREQUENT_CHECK;
3715    
3716 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3717 root 1.51 ev_stop (EV_A_ (W)w);
3718 root 1.1
3719 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3720 root 1.248
3721     EV_FREQUENT_CHECK;
3722 root 1.1 }
3723    
3724 root 1.171 void noinline
3725 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3726 root 1.1 {
3727 root 1.123 if (expect_false (ev_is_active (w)))
3728 root 1.1 return;
3729    
3730 root 1.228 ev_at (w) += mn_now;
3731 root 1.12
3732 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3733 root 1.13
3734 root 1.248 EV_FREQUENT_CHECK;
3735    
3736     ++timercnt;
3737     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3738 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3739     ANHE_w (timers [ev_active (w)]) = (WT)w;
3740 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3741 root 1.235 upheap (timers, ev_active (w));
3742 root 1.62
3743 root 1.248 EV_FREQUENT_CHECK;
3744    
3745 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3746 root 1.12 }
3747    
3748 root 1.171 void noinline
3749 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3750 root 1.12 {
3751 root 1.166 clear_pending (EV_A_ (W)w);
3752 root 1.123 if (expect_false (!ev_is_active (w)))
3753 root 1.12 return;
3754    
3755 root 1.248 EV_FREQUENT_CHECK;
3756    
3757 root 1.230 {
3758     int active = ev_active (w);
3759 root 1.62
3760 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3761 root 1.151
3762 root 1.248 --timercnt;
3763    
3764     if (expect_true (active < timercnt + HEAP0))
3765 root 1.151 {
3766 root 1.248 timers [active] = timers [timercnt + HEAP0];
3767 root 1.181 adjustheap (timers, timercnt, active);
3768 root 1.151 }
3769 root 1.248 }
3770 root 1.228
3771     ev_at (w) -= mn_now;
3772 root 1.14
3773 root 1.51 ev_stop (EV_A_ (W)w);
3774 root 1.328
3775     EV_FREQUENT_CHECK;
3776 root 1.12 }
3777 root 1.4
3778 root 1.171 void noinline
3779 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3780 root 1.14 {
3781 root 1.248 EV_FREQUENT_CHECK;
3782    
3783 root 1.407 clear_pending (EV_A_ (W)w);
3784 root 1.406
3785 root 1.14 if (ev_is_active (w))
3786     {
3787     if (w->repeat)
3788 root 1.99 {
3789 root 1.228 ev_at (w) = mn_now + w->repeat;
3790 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3791 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3792 root 1.99 }
3793 root 1.14 else
3794 root 1.51 ev_timer_stop (EV_A_ w);
3795 root 1.14 }
3796     else if (w->repeat)
3797 root 1.112 {
3798 root 1.229 ev_at (w) = w->repeat;
3799 root 1.112 ev_timer_start (EV_A_ w);
3800     }
3801 root 1.248
3802     EV_FREQUENT_CHECK;
3803 root 1.14 }
3804    
3805 root 1.301 ev_tstamp
3806 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3807 root 1.301 {
3808     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3809     }
3810    
3811 root 1.140 #if EV_PERIODIC_ENABLE
3812 root 1.171 void noinline
3813 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3814 root 1.12 {
3815 root 1.123 if (expect_false (ev_is_active (w)))
3816 root 1.12 return;
3817 root 1.1
3818 root 1.77 if (w->reschedule_cb)
3819 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3820 root 1.77 else if (w->interval)
3821     {
3822 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3823 root 1.370 periodic_recalc (EV_A_ w);
3824 root 1.77 }
3825 root 1.173 else
3826 root 1.228 ev_at (w) = w->offset;
3827 root 1.12
3828 root 1.248 EV_FREQUENT_CHECK;
3829    
3830     ++periodiccnt;
3831     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3832 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3833     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3834 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3835 root 1.235 upheap (periodics, ev_active (w));
3836 root 1.62
3837 root 1.248 EV_FREQUENT_CHECK;
3838    
3839 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3840 root 1.1 }
3841    
3842 root 1.171 void noinline
3843 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3844 root 1.1 {
3845 root 1.166 clear_pending (EV_A_ (W)w);
3846 root 1.123 if (expect_false (!ev_is_active (w)))
3847 root 1.1 return;
3848    
3849 root 1.248 EV_FREQUENT_CHECK;
3850    
3851 root 1.230 {
3852     int active = ev_active (w);
3853 root 1.62
3854 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3855 root 1.151
3856 root 1.248 --periodiccnt;
3857    
3858     if (expect_true (active < periodiccnt + HEAP0))
3859 root 1.151 {
3860 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3861 root 1.181 adjustheap (periodics, periodiccnt, active);
3862 root 1.151 }
3863 root 1.248 }
3864 root 1.228
3865 root 1.328 ev_stop (EV_A_ (W)w);
3866    
3867 root 1.248 EV_FREQUENT_CHECK;
3868 root 1.1 }
3869    
3870 root 1.171 void noinline
3871 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3872 root 1.77 {
3873 root 1.84 /* TODO: use adjustheap and recalculation */
3874 root 1.77 ev_periodic_stop (EV_A_ w);
3875     ev_periodic_start (EV_A_ w);
3876     }
3877 root 1.93 #endif
3878 root 1.77
3879 root 1.56 #ifndef SA_RESTART
3880     # define SA_RESTART 0
3881     #endif
3882    
3883 root 1.336 #if EV_SIGNAL_ENABLE
3884    
3885 root 1.171 void noinline
3886 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3887 root 1.56 {
3888 root 1.123 if (expect_false (ev_is_active (w)))
3889 root 1.56 return;
3890    
3891 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3892    
3893     #if EV_MULTIPLICITY
3894 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3895 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3896    
3897     signals [w->signum - 1].loop = EV_A;
3898 root 1.449 ECB_MEMORY_FENCE_RELEASE;
3899 root 1.306 #endif
3900 root 1.56
3901 root 1.303 EV_FREQUENT_CHECK;
3902    
3903     #if EV_USE_SIGNALFD
3904     if (sigfd == -2)
3905     {
3906     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3907     if (sigfd < 0 && errno == EINVAL)
3908     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3909    
3910     if (sigfd >= 0)
3911     {
3912     fd_intern (sigfd); /* doing it twice will not hurt */
3913    
3914     sigemptyset (&sigfd_set);
3915    
3916     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3917     ev_set_priority (&sigfd_w, EV_MAXPRI);
3918     ev_io_start (EV_A_ &sigfd_w);
3919     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3920     }
3921     }
3922    
3923     if (sigfd >= 0)
3924     {
3925     /* TODO: check .head */
3926     sigaddset (&sigfd_set, w->signum);
3927     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3928 root 1.207
3929 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3930     }
3931 root 1.180 #endif
3932    
3933 root 1.56 ev_start (EV_A_ (W)w, 1);
3934 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3935 root 1.56
3936 root 1.63 if (!((WL)w)->next)
3937 root 1.304 # if EV_USE_SIGNALFD
3938 root 1.306 if (sigfd < 0) /*TODO*/
3939 root 1.304 # endif
3940 root 1.306 {
3941 root 1.322 # ifdef _WIN32
3942 root 1.317 evpipe_init (EV_A);
3943    
3944 root 1.306 signal (w->signum, ev_sighandler);
3945     # else
3946     struct sigaction sa;
3947    
3948     evpipe_init (EV_A);
3949    
3950     sa.sa_handler = ev_sighandler;
3951     sigfillset (&sa.sa_mask);
3952     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3953     sigaction (w->signum, &sa, 0);
3954    
3955 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3956     {
3957     sigemptyset (&sa.sa_mask);
3958     sigaddset (&sa.sa_mask, w->signum);
3959     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3960     }
3961 root 1.67 #endif
3962 root 1.306 }
3963 root 1.248
3964     EV_FREQUENT_CHECK;
3965 root 1.56 }
3966    
3967 root 1.171 void noinline
3968 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3969 root 1.56 {
3970 root 1.166 clear_pending (EV_A_ (W)w);
3971 root 1.123 if (expect_false (!ev_is_active (w)))
3972 root 1.56 return;
3973    
3974 root 1.248 EV_FREQUENT_CHECK;
3975    
3976 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3977 root 1.56 ev_stop (EV_A_ (W)w);
3978    
3979     if (!signals [w->signum - 1].head)
3980 root 1.306 {
3981 root 1.307 #if EV_MULTIPLICITY
3982 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3983 root 1.307 #endif
3984     #if EV_USE_SIGNALFD
3985 root 1.306 if (sigfd >= 0)
3986     {
3987 root 1.321 sigset_t ss;
3988    
3989     sigemptyset (&ss);
3990     sigaddset (&ss, w->signum);
3991 root 1.306 sigdelset (&sigfd_set, w->signum);
3992 root 1.321
3993 root 1.306 signalfd (sigfd, &sigfd_set, 0);
3994 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
3995 root 1.306 }
3996     else
3997 root 1.307 #endif
3998 root 1.306 signal (w->signum, SIG_DFL);
3999     }
4000 root 1.248
4001     EV_FREQUENT_CHECK;
4002 root 1.56 }
4003    
4004 root 1.336 #endif
4005    
4006     #if EV_CHILD_ENABLE
4007    
4008 root 1.28 void
4009 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
4010 root 1.22 {
4011 root 1.56 #if EV_MULTIPLICITY
4012 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4013 root 1.56 #endif
4014 root 1.123 if (expect_false (ev_is_active (w)))
4015 root 1.22 return;
4016    
4017 root 1.248 EV_FREQUENT_CHECK;
4018    
4019 root 1.51 ev_start (EV_A_ (W)w, 1);
4020 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4021 root 1.248
4022     EV_FREQUENT_CHECK;
4023 root 1.22 }
4024    
4025 root 1.28 void
4026 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
4027 root 1.22 {
4028 root 1.166 clear_pending (EV_A_ (W)w);
4029 root 1.123 if (expect_false (!ev_is_active (w)))
4030 root 1.22 return;
4031    
4032 root 1.248 EV_FREQUENT_CHECK;
4033    
4034 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4035 root 1.51 ev_stop (EV_A_ (W)w);
4036 root 1.248
4037     EV_FREQUENT_CHECK;
4038 root 1.22 }
4039    
4040 root 1.336 #endif
4041    
4042 root 1.140 #if EV_STAT_ENABLE
4043    
4044     # ifdef _WIN32
4045 root 1.146 # undef lstat
4046     # define lstat(a,b) _stati64 (a,b)
4047 root 1.140 # endif
4048    
4049 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4050     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4051     #define MIN_STAT_INTERVAL 0.1074891
4052 root 1.143
4053 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4054 root 1.152
4055     #if EV_USE_INOTIFY
4056 root 1.326
4057     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4058     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4059 root 1.152
4060     static void noinline
4061     infy_add (EV_P_ ev_stat *w)
4062     {
4063 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4064     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4065     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4066     | IN_DONT_FOLLOW | IN_MASK_ADD);
4067 root 1.152
4068 root 1.318 if (w->wd >= 0)
4069 root 1.152 {
4070 root 1.318 struct statfs sfs;
4071    
4072     /* now local changes will be tracked by inotify, but remote changes won't */
4073     /* unless the filesystem is known to be local, we therefore still poll */
4074     /* also do poll on <2.6.25, but with normal frequency */
4075    
4076     if (!fs_2625)
4077     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4078     else if (!statfs (w->path, &sfs)
4079     && (sfs.f_type == 0x1373 /* devfs */
4080 root 1.451 || sfs.f_type == 0x4006 /* fat */
4081     || sfs.f_type == 0x4d44 /* msdos */
4082 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4083 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4084     || sfs.f_type == 0x858458f6 /* ramfs */
4085     || sfs.f_type == 0x5346544e /* ntfs */
4086 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4087 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4088 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4089 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4090 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4091     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4092     else
4093     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4094     }
4095     else
4096     {
4097     /* can't use inotify, continue to stat */
4098 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4099 root 1.152
4100 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4101 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4102 root 1.233 /* but an efficiency issue only */
4103 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4104 root 1.152 {
4105 root 1.153 char path [4096];
4106 root 1.152 strcpy (path, w->path);
4107    
4108     do
4109     {
4110     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4111     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4112    
4113     char *pend = strrchr (path, '/');
4114    
4115 root 1.275 if (!pend || pend == path)
4116     break;
4117 root 1.152
4118     *pend = 0;
4119 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4120 root 1.372 }
4121 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4122     }
4123     }
4124 root 1.275
4125     if (w->wd >= 0)
4126 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4127 root 1.152
4128 root 1.318 /* now re-arm timer, if required */
4129     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4130     ev_timer_again (EV_A_ &w->timer);
4131     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4132 root 1.152 }
4133    
4134     static void noinline
4135     infy_del (EV_P_ ev_stat *w)
4136     {
4137     int slot;
4138     int wd = w->wd;
4139    
4140     if (wd < 0)
4141     return;
4142    
4143     w->wd = -2;
4144 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4145 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4146    
4147     /* remove this watcher, if others are watching it, they will rearm */
4148     inotify_rm_watch (fs_fd, wd);
4149     }
4150    
4151     static void noinline
4152     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4153     {
4154     if (slot < 0)
4155 root 1.264 /* overflow, need to check for all hash slots */
4156 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4157 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4158     else
4159     {
4160     WL w_;
4161    
4162 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4163 root 1.152 {
4164     ev_stat *w = (ev_stat *)w_;
4165     w_ = w_->next; /* lets us remove this watcher and all before it */
4166    
4167     if (w->wd == wd || wd == -1)
4168     {
4169     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4170     {
4171 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4172 root 1.152 w->wd = -1;
4173     infy_add (EV_A_ w); /* re-add, no matter what */
4174     }
4175    
4176 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4177 root 1.152 }
4178     }
4179     }
4180     }
4181    
4182     static void
4183     infy_cb (EV_P_ ev_io *w, int revents)
4184     {
4185     char buf [EV_INOTIFY_BUFSIZE];
4186     int ofs;
4187     int len = read (fs_fd, buf, sizeof (buf));
4188    
4189 root 1.326 for (ofs = 0; ofs < len; )
4190     {
4191     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4192     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4193     ofs += sizeof (struct inotify_event) + ev->len;
4194     }
4195 root 1.152 }
4196    
4197 root 1.379 inline_size void ecb_cold
4198 root 1.330 ev_check_2625 (EV_P)
4199     {
4200     /* kernels < 2.6.25 are borked
4201     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4202     */
4203     if (ev_linux_version () < 0x020619)
4204 root 1.273 return;
4205 root 1.264
4206 root 1.273 fs_2625 = 1;
4207     }
4208 root 1.264
4209 root 1.315 inline_size int
4210     infy_newfd (void)
4211     {
4212 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4213 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4214     if (fd >= 0)
4215     return fd;
4216     #endif
4217     return inotify_init ();
4218     }
4219    
4220 root 1.284 inline_size void
4221 root 1.273 infy_init (EV_P)
4222     {
4223     if (fs_fd != -2)
4224     return;
4225 root 1.264
4226 root 1.273 fs_fd = -1;
4227 root 1.264
4228 root 1.330 ev_check_2625 (EV_A);
4229 root 1.264
4230 root 1.315 fs_fd = infy_newfd ();
4231 root 1.152
4232     if (fs_fd >= 0)
4233     {
4234 root 1.315 fd_intern (fs_fd);
4235 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4236     ev_set_priority (&fs_w, EV_MAXPRI);
4237     ev_io_start (EV_A_ &fs_w);
4238 root 1.317 ev_unref (EV_A);
4239 root 1.152 }
4240     }
4241    
4242 root 1.284 inline_size void
4243 root 1.154 infy_fork (EV_P)
4244     {
4245     int slot;
4246    
4247     if (fs_fd < 0)
4248     return;
4249    
4250 root 1.317 ev_ref (EV_A);
4251 root 1.315 ev_io_stop (EV_A_ &fs_w);
4252 root 1.154 close (fs_fd);
4253 root 1.315 fs_fd = infy_newfd ();
4254    
4255     if (fs_fd >= 0)
4256     {
4257     fd_intern (fs_fd);
4258     ev_io_set (&fs_w, fs_fd, EV_READ);
4259     ev_io_start (EV_A_ &fs_w);
4260 root 1.317 ev_unref (EV_A);
4261 root 1.315 }
4262 root 1.154
4263 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4264 root 1.154 {
4265     WL w_ = fs_hash [slot].head;
4266     fs_hash [slot].head = 0;
4267    
4268     while (w_)
4269     {
4270     ev_stat *w = (ev_stat *)w_;
4271     w_ = w_->next; /* lets us add this watcher */
4272    
4273     w->wd = -1;
4274    
4275     if (fs_fd >= 0)
4276     infy_add (EV_A_ w); /* re-add, no matter what */
4277     else
4278 root 1.318 {
4279     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4280     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4281     ev_timer_again (EV_A_ &w->timer);
4282     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4283     }
4284 root 1.154 }
4285     }
4286     }
4287    
4288 root 1.152 #endif
4289    
4290 root 1.255 #ifdef _WIN32
4291     # define EV_LSTAT(p,b) _stati64 (p, b)
4292     #else
4293     # define EV_LSTAT(p,b) lstat (p, b)
4294     #endif
4295    
4296 root 1.140 void
4297 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4298 root 1.140 {
4299     if (lstat (w->path, &w->attr) < 0)
4300     w->attr.st_nlink = 0;
4301     else if (!w->attr.st_nlink)
4302     w->attr.st_nlink = 1;
4303     }
4304    
4305 root 1.157 static void noinline
4306 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4307     {
4308     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4309    
4310 root 1.320 ev_statdata prev = w->attr;
4311 root 1.140 ev_stat_stat (EV_A_ w);
4312    
4313 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4314     if (
4315 root 1.320 prev.st_dev != w->attr.st_dev
4316     || prev.st_ino != w->attr.st_ino
4317     || prev.st_mode != w->attr.st_mode
4318     || prev.st_nlink != w->attr.st_nlink
4319     || prev.st_uid != w->attr.st_uid
4320     || prev.st_gid != w->attr.st_gid
4321     || prev.st_rdev != w->attr.st_rdev
4322     || prev.st_size != w->attr.st_size
4323     || prev.st_atime != w->attr.st_atime
4324     || prev.st_mtime != w->attr.st_mtime
4325     || prev.st_ctime != w->attr.st_ctime
4326 root 1.156 ) {
4327 root 1.320 /* we only update w->prev on actual differences */
4328     /* in case we test more often than invoke the callback, */
4329     /* to ensure that prev is always different to attr */
4330     w->prev = prev;
4331    
4332 root 1.152 #if EV_USE_INOTIFY
4333 root 1.264 if (fs_fd >= 0)
4334     {
4335     infy_del (EV_A_ w);
4336     infy_add (EV_A_ w);
4337     ev_stat_stat (EV_A_ w); /* avoid race... */
4338     }
4339 root 1.152 #endif
4340    
4341     ev_feed_event (EV_A_ w, EV_STAT);
4342     }
4343 root 1.140 }
4344    
4345     void
4346 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4347 root 1.140 {
4348     if (expect_false (ev_is_active (w)))
4349     return;
4350    
4351     ev_stat_stat (EV_A_ w);
4352    
4353 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4354     w->interval = MIN_STAT_INTERVAL;
4355 root 1.143
4356 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4357 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4358 root 1.152
4359     #if EV_USE_INOTIFY
4360     infy_init (EV_A);
4361    
4362     if (fs_fd >= 0)
4363     infy_add (EV_A_ w);
4364     else
4365     #endif
4366 root 1.318 {
4367     ev_timer_again (EV_A_ &w->timer);
4368     ev_unref (EV_A);
4369     }
4370 root 1.140
4371     ev_start (EV_A_ (W)w, 1);
4372 root 1.248
4373     EV_FREQUENT_CHECK;
4374 root 1.140 }
4375    
4376     void
4377 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4378 root 1.140 {
4379 root 1.166 clear_pending (EV_A_ (W)w);
4380 root 1.140 if (expect_false (!ev_is_active (w)))
4381     return;
4382    
4383 root 1.248 EV_FREQUENT_CHECK;
4384    
4385 root 1.152 #if EV_USE_INOTIFY
4386     infy_del (EV_A_ w);
4387     #endif
4388 root 1.318
4389     if (ev_is_active (&w->timer))
4390     {
4391     ev_ref (EV_A);
4392     ev_timer_stop (EV_A_ &w->timer);
4393     }
4394 root 1.140
4395 root 1.134 ev_stop (EV_A_ (W)w);
4396 root 1.248
4397     EV_FREQUENT_CHECK;
4398 root 1.134 }
4399     #endif
4400    
4401 root 1.164 #if EV_IDLE_ENABLE
4402 root 1.144 void
4403 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4404 root 1.144 {
4405     if (expect_false (ev_is_active (w)))
4406     return;
4407    
4408 root 1.164 pri_adjust (EV_A_ (W)w);
4409    
4410 root 1.248 EV_FREQUENT_CHECK;
4411    
4412 root 1.164 {
4413     int active = ++idlecnt [ABSPRI (w)];
4414    
4415     ++idleall;
4416     ev_start (EV_A_ (W)w, active);
4417    
4418     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4419     idles [ABSPRI (w)][active - 1] = w;
4420     }
4421 root 1.248
4422     EV_FREQUENT_CHECK;
4423 root 1.144 }
4424    
4425     void
4426 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4427 root 1.144 {
4428 root 1.166 clear_pending (EV_A_ (W)w);
4429 root 1.144 if (expect_false (!ev_is_active (w)))
4430     return;
4431    
4432 root 1.248 EV_FREQUENT_CHECK;
4433    
4434 root 1.144 {
4435 root 1.230 int active = ev_active (w);
4436 root 1.164
4437     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4438 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4439 root 1.164
4440     ev_stop (EV_A_ (W)w);
4441     --idleall;
4442 root 1.144 }
4443 root 1.248
4444     EV_FREQUENT_CHECK;
4445 root 1.144 }
4446 root 1.164 #endif
4447 root 1.144
4448 root 1.337 #if EV_PREPARE_ENABLE
4449 root 1.144 void
4450 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4451 root 1.144 {
4452     if (expect_false (ev_is_active (w)))
4453     return;
4454    
4455 root 1.248 EV_FREQUENT_CHECK;
4456    
4457 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4458     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4459     prepares [preparecnt - 1] = w;
4460 root 1.248
4461     EV_FREQUENT_CHECK;
4462 root 1.144 }
4463    
4464     void
4465 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4466 root 1.144 {
4467 root 1.166 clear_pending (EV_A_ (W)w);
4468 root 1.144 if (expect_false (!ev_is_active (w)))
4469     return;
4470    
4471 root 1.248 EV_FREQUENT_CHECK;
4472    
4473 root 1.144 {
4474 root 1.230 int active = ev_active (w);
4475    
4476 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4477 root 1.230 ev_active (prepares [active - 1]) = active;
4478 root 1.144 }
4479    
4480     ev_stop (EV_A_ (W)w);
4481 root 1.248
4482     EV_FREQUENT_CHECK;
4483 root 1.144 }
4484 root 1.337 #endif
4485 root 1.144
4486 root 1.337 #if EV_CHECK_ENABLE
4487 root 1.144 void
4488 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4489 root 1.144 {
4490     if (expect_false (ev_is_active (w)))
4491     return;
4492    
4493 root 1.248 EV_FREQUENT_CHECK;
4494    
4495 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4496     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4497     checks [checkcnt - 1] = w;
4498 root 1.248
4499     EV_FREQUENT_CHECK;
4500 root 1.144 }
4501    
4502     void
4503 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4504 root 1.144 {
4505 root 1.166 clear_pending (EV_A_ (W)w);
4506 root 1.144 if (expect_false (!ev_is_active (w)))
4507     return;
4508    
4509 root 1.248 EV_FREQUENT_CHECK;
4510    
4511 root 1.144 {
4512 root 1.230 int active = ev_active (w);
4513    
4514 root 1.144 checks [active - 1] = checks [--checkcnt];
4515 root 1.230 ev_active (checks [active - 1]) = active;
4516 root 1.144 }
4517    
4518     ev_stop (EV_A_ (W)w);
4519 root 1.248
4520     EV_FREQUENT_CHECK;
4521 root 1.144 }
4522 root 1.337 #endif
4523 root 1.144
4524     #if EV_EMBED_ENABLE
4525     void noinline
4526 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4527 root 1.144 {
4528 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4529 root 1.144 }
4530    
4531     static void
4532 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4533 root 1.144 {
4534     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4535    
4536     if (ev_cb (w))
4537     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4538     else
4539 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4540 root 1.144 }
4541    
4542 root 1.189 static void
4543     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4544     {
4545     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4546    
4547 root 1.195 {
4548 root 1.306 EV_P = w->other;
4549 root 1.195
4550     while (fdchangecnt)
4551     {
4552     fd_reify (EV_A);
4553 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4554 root 1.195 }
4555     }
4556     }
4557    
4558 root 1.261 static void
4559     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4560     {
4561     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4562    
4563 root 1.277 ev_embed_stop (EV_A_ w);
4564    
4565 root 1.261 {
4566 root 1.306 EV_P = w->other;
4567 root 1.261
4568     ev_loop_fork (EV_A);
4569 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4570 root 1.261 }
4571 root 1.277
4572     ev_embed_start (EV_A_ w);
4573 root 1.261 }
4574    
4575 root 1.195 #if 0
4576     static void
4577     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4578     {
4579     ev_idle_stop (EV_A_ idle);
4580 root 1.189 }
4581 root 1.195 #endif
4582 root 1.189
4583 root 1.144 void
4584 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4585 root 1.144 {
4586     if (expect_false (ev_is_active (w)))
4587     return;
4588    
4589     {
4590 root 1.306 EV_P = w->other;
4591 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4592 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4593 root 1.144 }
4594    
4595 root 1.248 EV_FREQUENT_CHECK;
4596    
4597 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4598     ev_io_start (EV_A_ &w->io);
4599    
4600 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4601     ev_set_priority (&w->prepare, EV_MINPRI);
4602     ev_prepare_start (EV_A_ &w->prepare);
4603    
4604 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4605     ev_fork_start (EV_A_ &w->fork);
4606    
4607 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4608    
4609 root 1.144 ev_start (EV_A_ (W)w, 1);
4610 root 1.248
4611     EV_FREQUENT_CHECK;
4612 root 1.144 }
4613    
4614     void
4615 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4616 root 1.144 {
4617 root 1.166 clear_pending (EV_A_ (W)w);
4618 root 1.144 if (expect_false (!ev_is_active (w)))
4619     return;
4620    
4621 root 1.248 EV_FREQUENT_CHECK;
4622    
4623 root 1.261 ev_io_stop (EV_A_ &w->io);
4624 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4625 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4626 root 1.248
4627 root 1.328 ev_stop (EV_A_ (W)w);
4628    
4629 root 1.248 EV_FREQUENT_CHECK;
4630 root 1.144 }
4631     #endif
4632    
4633 root 1.147 #if EV_FORK_ENABLE
4634     void
4635 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4636 root 1.147 {
4637     if (expect_false (ev_is_active (w)))
4638     return;
4639    
4640 root 1.248 EV_FREQUENT_CHECK;
4641    
4642 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4643     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4644     forks [forkcnt - 1] = w;
4645 root 1.248
4646     EV_FREQUENT_CHECK;
4647 root 1.147 }
4648    
4649     void
4650 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4651 root 1.147 {
4652 root 1.166 clear_pending (EV_A_ (W)w);
4653 root 1.147 if (expect_false (!ev_is_active (w)))
4654     return;
4655    
4656 root 1.248 EV_FREQUENT_CHECK;
4657    
4658 root 1.147 {
4659 root 1.230 int active = ev_active (w);
4660    
4661 root 1.147 forks [active - 1] = forks [--forkcnt];
4662 root 1.230 ev_active (forks [active - 1]) = active;
4663 root 1.147 }
4664    
4665     ev_stop (EV_A_ (W)w);
4666 root 1.248
4667     EV_FREQUENT_CHECK;
4668 root 1.147 }
4669     #endif
4670    
4671 root 1.360 #if EV_CLEANUP_ENABLE
4672     void
4673 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4674 root 1.360 {
4675     if (expect_false (ev_is_active (w)))
4676     return;
4677    
4678     EV_FREQUENT_CHECK;
4679    
4680     ev_start (EV_A_ (W)w, ++cleanupcnt);
4681     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4682     cleanups [cleanupcnt - 1] = w;
4683    
4684 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4685     ev_unref (EV_A);
4686 root 1.360 EV_FREQUENT_CHECK;
4687     }
4688    
4689     void
4690 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4691 root 1.360 {
4692     clear_pending (EV_A_ (W)w);
4693     if (expect_false (!ev_is_active (w)))
4694     return;
4695    
4696     EV_FREQUENT_CHECK;
4697 root 1.362 ev_ref (EV_A);
4698 root 1.360
4699     {
4700     int active = ev_active (w);
4701    
4702     cleanups [active - 1] = cleanups [--cleanupcnt];
4703     ev_active (cleanups [active - 1]) = active;
4704     }
4705    
4706     ev_stop (EV_A_ (W)w);
4707    
4708     EV_FREQUENT_CHECK;
4709     }
4710     #endif
4711    
4712 root 1.207 #if EV_ASYNC_ENABLE
4713     void
4714 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4715 root 1.207 {
4716     if (expect_false (ev_is_active (w)))
4717     return;
4718    
4719 root 1.352 w->sent = 0;
4720    
4721 root 1.207 evpipe_init (EV_A);
4722    
4723 root 1.248 EV_FREQUENT_CHECK;
4724    
4725 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4726     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4727     asyncs [asynccnt - 1] = w;
4728 root 1.248
4729     EV_FREQUENT_CHECK;
4730 root 1.207 }
4731    
4732     void
4733 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4734 root 1.207 {
4735     clear_pending (EV_A_ (W)w);
4736     if (expect_false (!ev_is_active (w)))
4737     return;
4738    
4739 root 1.248 EV_FREQUENT_CHECK;
4740    
4741 root 1.207 {
4742 root 1.230 int active = ev_active (w);
4743    
4744 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4745 root 1.230 ev_active (asyncs [active - 1]) = active;
4746 root 1.207 }
4747    
4748     ev_stop (EV_A_ (W)w);
4749 root 1.248
4750     EV_FREQUENT_CHECK;
4751 root 1.207 }
4752    
4753     void
4754 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4755 root 1.207 {
4756     w->sent = 1;
4757 root 1.307 evpipe_write (EV_A_ &async_pending);
4758 root 1.207 }
4759     #endif
4760    
4761 root 1.1 /*****************************************************************************/
4762 root 1.10
4763 root 1.16 struct ev_once
4764     {
4765 root 1.136 ev_io io;
4766     ev_timer to;
4767 root 1.16 void (*cb)(int revents, void *arg);
4768     void *arg;
4769     };
4770    
4771     static void
4772 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4773 root 1.16 {
4774     void (*cb)(int revents, void *arg) = once->cb;
4775     void *arg = once->arg;
4776    
4777 root 1.259 ev_io_stop (EV_A_ &once->io);
4778 root 1.51 ev_timer_stop (EV_A_ &once->to);
4779 root 1.69 ev_free (once);
4780 root 1.16
4781     cb (revents, arg);
4782     }
4783    
4784     static void
4785 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4786 root 1.16 {
4787 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4788    
4789     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4790 root 1.16 }
4791    
4792     static void
4793 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4794 root 1.16 {
4795 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4796    
4797     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4798 root 1.16 }
4799    
4800     void
4801 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4802 root 1.16 {
4803 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4804 root 1.16
4805 root 1.123 if (expect_false (!once))
4806 root 1.16 {
4807 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4808 root 1.123 return;
4809     }
4810    
4811     once->cb = cb;
4812     once->arg = arg;
4813 root 1.16
4814 root 1.123 ev_init (&once->io, once_cb_io);
4815     if (fd >= 0)
4816     {
4817     ev_io_set (&once->io, fd, events);
4818     ev_io_start (EV_A_ &once->io);
4819     }
4820 root 1.16
4821 root 1.123 ev_init (&once->to, once_cb_to);
4822     if (timeout >= 0.)
4823     {
4824     ev_timer_set (&once->to, timeout, 0.);
4825     ev_timer_start (EV_A_ &once->to);
4826 root 1.16 }
4827     }
4828    
4829 root 1.282 /*****************************************************************************/
4830    
4831 root 1.288 #if EV_WALK_ENABLE
4832 root 1.379 void ecb_cold
4833 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4834 root 1.282 {
4835     int i, j;
4836     ev_watcher_list *wl, *wn;
4837    
4838     if (types & (EV_IO | EV_EMBED))
4839     for (i = 0; i < anfdmax; ++i)
4840     for (wl = anfds [i].head; wl; )
4841     {
4842     wn = wl->next;
4843    
4844     #if EV_EMBED_ENABLE
4845     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4846     {
4847     if (types & EV_EMBED)
4848     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4849     }
4850     else
4851     #endif
4852     #if EV_USE_INOTIFY
4853     if (ev_cb ((ev_io *)wl) == infy_cb)
4854     ;
4855     else
4856     #endif
4857 root 1.288 if ((ev_io *)wl != &pipe_w)
4858 root 1.282 if (types & EV_IO)
4859     cb (EV_A_ EV_IO, wl);
4860    
4861     wl = wn;
4862     }
4863    
4864     if (types & (EV_TIMER | EV_STAT))
4865     for (i = timercnt + HEAP0; i-- > HEAP0; )
4866     #if EV_STAT_ENABLE
4867     /*TODO: timer is not always active*/
4868     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4869     {
4870     if (types & EV_STAT)
4871     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4872     }
4873     else
4874     #endif
4875     if (types & EV_TIMER)
4876     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4877    
4878     #if EV_PERIODIC_ENABLE
4879     if (types & EV_PERIODIC)
4880     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4881     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4882     #endif
4883    
4884     #if EV_IDLE_ENABLE
4885     if (types & EV_IDLE)
4886 root 1.390 for (j = NUMPRI; j--; )
4887 root 1.282 for (i = idlecnt [j]; i--; )
4888     cb (EV_A_ EV_IDLE, idles [j][i]);
4889     #endif
4890    
4891     #if EV_FORK_ENABLE
4892     if (types & EV_FORK)
4893     for (i = forkcnt; i--; )
4894     if (ev_cb (forks [i]) != embed_fork_cb)
4895     cb (EV_A_ EV_FORK, forks [i]);
4896     #endif
4897    
4898     #if EV_ASYNC_ENABLE
4899     if (types & EV_ASYNC)
4900     for (i = asynccnt; i--; )
4901     cb (EV_A_ EV_ASYNC, asyncs [i]);
4902     #endif
4903    
4904 root 1.337 #if EV_PREPARE_ENABLE
4905 root 1.282 if (types & EV_PREPARE)
4906     for (i = preparecnt; i--; )
4907 root 1.337 # if EV_EMBED_ENABLE
4908 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4909 root 1.337 # endif
4910     cb (EV_A_ EV_PREPARE, prepares [i]);
4911 root 1.282 #endif
4912    
4913 root 1.337 #if EV_CHECK_ENABLE
4914 root 1.282 if (types & EV_CHECK)
4915     for (i = checkcnt; i--; )
4916     cb (EV_A_ EV_CHECK, checks [i]);
4917 root 1.337 #endif
4918 root 1.282
4919 root 1.337 #if EV_SIGNAL_ENABLE
4920 root 1.282 if (types & EV_SIGNAL)
4921 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4922 root 1.282 for (wl = signals [i].head; wl; )
4923     {
4924     wn = wl->next;
4925     cb (EV_A_ EV_SIGNAL, wl);
4926     wl = wn;
4927     }
4928 root 1.337 #endif
4929 root 1.282
4930 root 1.337 #if EV_CHILD_ENABLE
4931 root 1.282 if (types & EV_CHILD)
4932 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4933 root 1.282 for (wl = childs [i]; wl; )
4934     {
4935     wn = wl->next;
4936     cb (EV_A_ EV_CHILD, wl);
4937     wl = wn;
4938     }
4939 root 1.337 #endif
4940 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4941     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4942     }
4943     #endif
4944    
4945 root 1.188 #if EV_MULTIPLICITY
4946     #include "ev_wrap.h"
4947     #endif
4948