ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.477
Committed: Sun Aug 9 00:13:28 2015 UTC (8 years, 9 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.476: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.463 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 root 1.305 #endif
248    
249 root 1.373 #ifndef EV_USE_FLOOR
250     # define EV_USE_FLOOR 0
251     #endif
252    
253 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
254 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 root 1.274 # else
257     # define EV_USE_CLOCK_SYSCALL 0
258     # endif
259     #endif
260    
261 root 1.470 #if !(_POSIX_TIMERS > 0)
262     # ifndef EV_USE_MONOTONIC
263     # define EV_USE_MONOTONIC 0
264     # endif
265     # ifndef EV_USE_REALTIME
266     # define EV_USE_REALTIME 0
267     # endif
268     #endif
269    
270 root 1.29 #ifndef EV_USE_MONOTONIC
271 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
273 root 1.253 # else
274     # define EV_USE_MONOTONIC 0
275     # endif
276 root 1.37 #endif
277    
278 root 1.118 #ifndef EV_USE_REALTIME
279 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280 root 1.118 #endif
281    
282 root 1.193 #ifndef EV_USE_NANOSLEEP
283 root 1.253 # if _POSIX_C_SOURCE >= 199309L
284 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
285 root 1.253 # else
286     # define EV_USE_NANOSLEEP 0
287     # endif
288 root 1.193 #endif
289    
290 root 1.29 #ifndef EV_USE_SELECT
291 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
292 root 1.10 #endif
293    
294 root 1.59 #ifndef EV_USE_POLL
295 root 1.104 # ifdef _WIN32
296     # define EV_USE_POLL 0
297     # else
298 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
299 root 1.104 # endif
300 root 1.41 #endif
301    
302 root 1.29 #ifndef EV_USE_EPOLL
303 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
305 root 1.220 # else
306     # define EV_USE_EPOLL 0
307     # endif
308 root 1.10 #endif
309    
310 root 1.44 #ifndef EV_USE_KQUEUE
311     # define EV_USE_KQUEUE 0
312     #endif
313    
314 root 1.118 #ifndef EV_USE_PORT
315     # define EV_USE_PORT 0
316 root 1.40 #endif
317    
318 root 1.152 #ifndef EV_USE_INOTIFY
319 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
321 root 1.220 # else
322     # define EV_USE_INOTIFY 0
323     # endif
324 root 1.152 #endif
325    
326 root 1.149 #ifndef EV_PID_HASHSIZE
327 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328 root 1.149 #endif
329    
330 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
331 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332 root 1.152 #endif
333    
334 root 1.220 #ifndef EV_USE_EVENTFD
335     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
337 root 1.220 # else
338     # define EV_USE_EVENTFD 0
339     # endif
340     #endif
341    
342 root 1.303 #ifndef EV_USE_SIGNALFD
343 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
345 root 1.303 # else
346     # define EV_USE_SIGNALFD 0
347     # endif
348     #endif
349    
350 root 1.249 #if 0 /* debugging */
351 root 1.250 # define EV_VERIFY 3
352 root 1.249 # define EV_USE_4HEAP 1
353     # define EV_HEAP_CACHE_AT 1
354     #endif
355    
356 root 1.250 #ifndef EV_VERIFY
357 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358 root 1.250 #endif
359    
360 root 1.243 #ifndef EV_USE_4HEAP
361 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
362 root 1.243 #endif
363    
364     #ifndef EV_HEAP_CACHE_AT
365 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366 root 1.243 #endif
367    
368 root 1.452 #ifdef ANDROID
369     /* supposedly, android doesn't typedef fd_mask */
370     # undef EV_USE_SELECT
371     # define EV_USE_SELECT 0
372     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373     # undef EV_USE_CLOCK_SYSCALL
374     # define EV_USE_CLOCK_SYSCALL 0
375     #endif
376    
377     /* aix's poll.h seems to cause lots of trouble */
378     #ifdef _AIX
379     /* AIX has a completely broken poll.h header */
380     # undef EV_USE_POLL
381     # define EV_USE_POLL 0
382     #endif
383    
384 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385     /* which makes programs even slower. might work on other unices, too. */
386     #if EV_USE_CLOCK_SYSCALL
387 root 1.423 # include <sys/syscall.h>
388 root 1.291 # ifdef SYS_clock_gettime
389     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390     # undef EV_USE_MONOTONIC
391     # define EV_USE_MONOTONIC 1
392     # else
393     # undef EV_USE_CLOCK_SYSCALL
394     # define EV_USE_CLOCK_SYSCALL 0
395     # endif
396     #endif
397    
398 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
399 root 1.40
400     #ifndef CLOCK_MONOTONIC
401     # undef EV_USE_MONOTONIC
402     # define EV_USE_MONOTONIC 0
403     #endif
404    
405 root 1.31 #ifndef CLOCK_REALTIME
406 root 1.40 # undef EV_USE_REALTIME
407 root 1.31 # define EV_USE_REALTIME 0
408     #endif
409 root 1.40
410 root 1.152 #if !EV_STAT_ENABLE
411 root 1.185 # undef EV_USE_INOTIFY
412 root 1.152 # define EV_USE_INOTIFY 0
413     #endif
414    
415 root 1.193 #if !EV_USE_NANOSLEEP
416 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
417 root 1.416 # if !defined _WIN32 && !defined __hpux
418 root 1.193 # include <sys/select.h>
419     # endif
420     #endif
421    
422 root 1.152 #if EV_USE_INOTIFY
423 root 1.273 # include <sys/statfs.h>
424 root 1.152 # include <sys/inotify.h>
425 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426     # ifndef IN_DONT_FOLLOW
427     # undef EV_USE_INOTIFY
428     # define EV_USE_INOTIFY 0
429     # endif
430 root 1.152 #endif
431    
432 root 1.220 #if EV_USE_EVENTFD
433     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 root 1.221 # include <stdint.h>
435 root 1.303 # ifndef EFD_NONBLOCK
436     # define EFD_NONBLOCK O_NONBLOCK
437     # endif
438     # ifndef EFD_CLOEXEC
439 root 1.311 # ifdef O_CLOEXEC
440     # define EFD_CLOEXEC O_CLOEXEC
441     # else
442     # define EFD_CLOEXEC 02000000
443     # endif
444 root 1.303 # endif
445 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446 root 1.220 #endif
447    
448 root 1.303 #if EV_USE_SIGNALFD
449 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450     # include <stdint.h>
451     # ifndef SFD_NONBLOCK
452     # define SFD_NONBLOCK O_NONBLOCK
453     # endif
454     # ifndef SFD_CLOEXEC
455     # ifdef O_CLOEXEC
456     # define SFD_CLOEXEC O_CLOEXEC
457     # else
458     # define SFD_CLOEXEC 02000000
459     # endif
460     # endif
461 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462 root 1.314
463     struct signalfd_siginfo
464     {
465     uint32_t ssi_signo;
466     char pad[128 - sizeof (uint32_t)];
467     };
468 root 1.303 #endif
469    
470 root 1.40 /**/
471 root 1.1
472 root 1.250 #if EV_VERIFY >= 3
473 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
474 root 1.248 #else
475     # define EV_FREQUENT_CHECK do { } while (0)
476     #endif
477    
478 root 1.176 /*
479 root 1.373 * This is used to work around floating point rounding problems.
480 root 1.177 * This value is good at least till the year 4000.
481 root 1.176 */
482 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
484 root 1.176
485 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
486 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
487 root 1.1
488 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490 root 1.347
491 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492     /* ECB.H BEGIN */
493     /*
494     * libecb - http://software.schmorp.de/pkg/libecb
495     *
496 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
498     * All rights reserved.
499     *
500     * Redistribution and use in source and binary forms, with or without modifica-
501     * tion, are permitted provided that the following conditions are met:
502     *
503     * 1. Redistributions of source code must retain the above copyright notice,
504     * this list of conditions and the following disclaimer.
505     *
506     * 2. Redistributions in binary form must reproduce the above copyright
507     * notice, this list of conditions and the following disclaimer in the
508     * documentation and/or other materials provided with the distribution.
509     *
510     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519     * OF THE POSSIBILITY OF SUCH DAMAGE.
520 root 1.467 *
521     * Alternatively, the contents of this file may be used under the terms of
522     * the GNU General Public License ("GPL") version 2 or any later version,
523     * in which case the provisions of the GPL are applicable instead of
524     * the above. If you wish to allow the use of your version of this file
525     * only under the terms of the GPL and not to allow others to use your
526     * version of this file under the BSD license, indicate your decision
527     * by deleting the provisions above and replace them with the notice
528     * and other provisions required by the GPL. If you do not delete the
529     * provisions above, a recipient may use your version of this file under
530     * either the BSD or the GPL.
531 root 1.391 */
532    
533     #ifndef ECB_H
534     #define ECB_H
535    
536 root 1.437 /* 16 bits major, 16 bits minor */
537 root 1.474 #define ECB_VERSION 0x00010004
538 root 1.437
539 root 1.391 #ifdef _WIN32
540     typedef signed char int8_t;
541     typedef unsigned char uint8_t;
542     typedef signed short int16_t;
543     typedef unsigned short uint16_t;
544     typedef signed int int32_t;
545     typedef unsigned int uint32_t;
546     #if __GNUC__
547     typedef signed long long int64_t;
548     typedef unsigned long long uint64_t;
549     #else /* _MSC_VER || __BORLANDC__ */
550     typedef signed __int64 int64_t;
551     typedef unsigned __int64 uint64_t;
552     #endif
553 root 1.437 #ifdef _WIN64
554     #define ECB_PTRSIZE 8
555     typedef uint64_t uintptr_t;
556     typedef int64_t intptr_t;
557     #else
558     #define ECB_PTRSIZE 4
559     typedef uint32_t uintptr_t;
560     typedef int32_t intptr_t;
561     #endif
562 root 1.391 #else
563     #include <inttypes.h>
564 root 1.437 #if UINTMAX_MAX > 0xffffffffU
565     #define ECB_PTRSIZE 8
566     #else
567     #define ECB_PTRSIZE 4
568     #endif
569 root 1.391 #endif
570 root 1.379
571 sf-exg 1.475 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573    
574 root 1.454 /* work around x32 idiocy by defining proper macros */
575 sf-exg 1.475 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 root 1.458 #if _ILP32
577 root 1.454 #define ECB_AMD64_X32 1
578     #else
579     #define ECB_AMD64 1
580     #endif
581     #endif
582    
583 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
584     * what their idiot authors think are the "more important" extensions,
585 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
586 root 1.379 * or so.
587     * we try to detect these and simply assume they are not gcc - if they have
588     * an issue with that they should have done it right in the first place.
589     */
590 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591     #define ECB_GCC_VERSION(major,minor) 0
592     #else
593     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594     #endif
595    
596     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597    
598     #if __clang__ && defined __has_builtin
599     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600     #else
601     #define ECB_CLANG_BUILTIN(x) 0
602     #endif
603    
604     #if __clang__ && defined __has_extension
605     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606     #else
607     #define ECB_CLANG_EXTENSION(x) 0
608 root 1.379 #endif
609    
610 root 1.437 #define ECB_CPP (__cplusplus+0)
611     #define ECB_CPP11 (__cplusplus >= 201103L)
612    
613 root 1.450 #if ECB_CPP
614 root 1.464 #define ECB_C 0
615     #define ECB_STDC_VERSION 0
616     #else
617     #define ECB_C 1
618     #define ECB_STDC_VERSION __STDC_VERSION__
619     #endif
620    
621     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623    
624     #if ECB_CPP
625 root 1.450 #define ECB_EXTERN_C extern "C"
626     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627     #define ECB_EXTERN_C_END }
628     #else
629     #define ECB_EXTERN_C extern
630     #define ECB_EXTERN_C_BEG
631     #define ECB_EXTERN_C_END
632     #endif
633    
634 root 1.391 /*****************************************************************************/
635    
636     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638    
639 root 1.410 #if ECB_NO_THREADS
640 root 1.439 #define ECB_NO_SMP 1
641 root 1.410 #endif
642    
643 root 1.437 #if ECB_NO_SMP
644 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
645 root 1.40 #endif
646    
647 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648     #if __xlC__ && ECB_CPP
649     #include <builtins.h>
650     #endif
651    
652 root 1.383 #ifndef ECB_MEMORY_FENCE
653 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
654 root 1.404 #if __i386 || __i386__
655 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
656 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
657     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 sf-exg 1.475 #elif ECB_GCC_AMD64
659 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
660     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
663 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
664 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
665     || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
666 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
667 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
668 root 1.437 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
669     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
670 root 1.464 #elif __aarch64__
671     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
672 root 1.477 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
673 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
674     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
675     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
676 root 1.417 #elif defined __s390__ || defined __s390x__
677 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
678 root 1.417 #elif defined __mips__
679 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
680 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
681     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
682 root 1.419 #elif defined __alpha__
683 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
684     #elif defined __hppa__
685     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
686     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
687     #elif defined __ia64__
688     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
689 root 1.457 #elif defined __m68k__
690     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
691     #elif defined __m88k__
692     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
693     #elif defined __sh__
694     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
695 root 1.383 #endif
696     #endif
697     #endif
698    
699     #ifndef ECB_MEMORY_FENCE
700 root 1.437 #if ECB_GCC_VERSION(4,7)
701 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
702 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
703 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
704     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
705 root 1.450
706 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
707     /* see comment below (stdatomic.h) about the C11 memory model. */
708     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
709     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
710     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
711 root 1.450
712 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
713 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
714 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
715     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
716     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
717     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
718     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
719     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
720 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
721     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
722     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
723     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
724     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
725 root 1.417 #elif defined _WIN32
726 root 1.388 #include <WinNT.h>
727 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
728 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
729     #include <mbarrier.h>
730     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
731     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
732     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
733 root 1.413 #elif __xlC__
734 root 1.414 #define ECB_MEMORY_FENCE __sync ()
735 root 1.383 #endif
736     #endif
737    
738     #ifndef ECB_MEMORY_FENCE
739 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
740     /* we assume that these memory fences work on all variables/all memory accesses, */
741     /* not just C11 atomics and atomic accesses */
742     #include <stdatomic.h>
743 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
744     /* any fence other than seq_cst, which isn't very efficient for us. */
745     /* Why that is, we don't know - either the C11 memory model is quite useless */
746     /* for most usages, or gcc and clang have a bug */
747     /* I *currently* lean towards the latter, and inefficiently implement */
748     /* all three of ecb's fences as a seq_cst fence */
749 root 1.464 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
750     /* for all __atomic_thread_fence's except seq_cst */
751 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
752     #endif
753     #endif
754    
755     #ifndef ECB_MEMORY_FENCE
756 root 1.392 #if !ECB_AVOID_PTHREADS
757     /*
758     * if you get undefined symbol references to pthread_mutex_lock,
759     * or failure to find pthread.h, then you should implement
760     * the ECB_MEMORY_FENCE operations for your cpu/compiler
761     * OR provide pthread.h and link against the posix thread library
762     * of your system.
763     */
764     #include <pthread.h>
765     #define ECB_NEEDS_PTHREADS 1
766     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
767    
768     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
769     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
770     #endif
771     #endif
772 root 1.383
773 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
774 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
775 root 1.392 #endif
776    
777 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
778 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
779     #endif
780    
781 root 1.391 /*****************************************************************************/
782    
783 root 1.474 #if ECB_CPP
784 root 1.391 #define ecb_inline static inline
785     #elif ECB_GCC_VERSION(2,5)
786     #define ecb_inline static __inline__
787     #elif ECB_C99
788     #define ecb_inline static inline
789     #else
790     #define ecb_inline static
791     #endif
792    
793     #if ECB_GCC_VERSION(3,3)
794     #define ecb_restrict __restrict__
795     #elif ECB_C99
796     #define ecb_restrict restrict
797     #else
798     #define ecb_restrict
799     #endif
800    
801     typedef int ecb_bool;
802    
803     #define ECB_CONCAT_(a, b) a ## b
804     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
805     #define ECB_STRINGIFY_(a) # a
806     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
807 sf-exg 1.475 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
808 root 1.391
809     #define ecb_function_ ecb_inline
810    
811 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
812     #define ecb_attribute(attrlist) __attribute__ (attrlist)
813 root 1.379 #else
814     #define ecb_attribute(attrlist)
815 root 1.474 #endif
816 root 1.464
817 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
818     #define ecb_is_constant(expr) __builtin_constant_p (expr)
819     #else
820 root 1.464 /* possible C11 impl for integral types
821     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
822     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
823    
824 root 1.379 #define ecb_is_constant(expr) 0
825 root 1.474 #endif
826    
827     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
828     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
829     #else
830 root 1.379 #define ecb_expect(expr,value) (expr)
831 root 1.474 #endif
832    
833     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
834     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
835     #else
836 root 1.379 #define ecb_prefetch(addr,rw,locality)
837     #endif
838    
839 root 1.391 /* no emulation for ecb_decltype */
840 root 1.474 #if ECB_CPP11
841     // older implementations might have problems with decltype(x)::type, work around it
842     template<class T> struct ecb_decltype_t { typedef T type; };
843     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
844     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
845     #define ecb_decltype(x) __typeof__ (x)
846 root 1.391 #endif
847    
848 root 1.468 #if _MSC_VER >= 1300
849 root 1.474 #define ecb_deprecated __declspec (deprecated)
850 root 1.468 #else
851     #define ecb_deprecated ecb_attribute ((__deprecated__))
852     #endif
853    
854 root 1.476 #if _MSC_VER >= 1500
855 sf-exg 1.475 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
856     #elif ECB_GCC_VERSION(4,5)
857     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
858     #else
859     #define ecb_deprecated_message(msg) ecb_deprecated
860     #endif
861    
862     #if _MSC_VER >= 1400
863     #define ecb_noinline __declspec (noinline)
864     #else
865     #define ecb_noinline ecb_attribute ((__noinline__))
866     #endif
867    
868 root 1.379 #define ecb_unused ecb_attribute ((__unused__))
869     #define ecb_const ecb_attribute ((__const__))
870     #define ecb_pure ecb_attribute ((__pure__))
871    
872 root 1.474 #if ECB_C11 || __IBMC_NORETURN
873 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
874 root 1.437 #define ecb_noreturn _Noreturn
875 sf-exg 1.475 #elif ECB_CPP11
876     #define ecb_noreturn [[noreturn]]
877     #elif _MSC_VER >= 1200
878     /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
879     #define ecb_noreturn __declspec (noreturn)
880 root 1.437 #else
881     #define ecb_noreturn ecb_attribute ((__noreturn__))
882     #endif
883    
884 root 1.379 #if ECB_GCC_VERSION(4,3)
885     #define ecb_artificial ecb_attribute ((__artificial__))
886     #define ecb_hot ecb_attribute ((__hot__))
887     #define ecb_cold ecb_attribute ((__cold__))
888     #else
889     #define ecb_artificial
890     #define ecb_hot
891     #define ecb_cold
892     #endif
893    
894     /* put around conditional expressions if you are very sure that the */
895     /* expression is mostly true or mostly false. note that these return */
896     /* booleans, not the expression. */
897     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
898     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
899 root 1.391 /* for compatibility to the rest of the world */
900     #define ecb_likely(expr) ecb_expect_true (expr)
901     #define ecb_unlikely(expr) ecb_expect_false (expr)
902    
903     /* count trailing zero bits and count # of one bits */
904 root 1.474 #if ECB_GCC_VERSION(3,4) \
905     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
906     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
907     && ECB_CLANG_BUILTIN(__builtin_popcount))
908 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
909     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
910     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
911     #define ecb_ctz32(x) __builtin_ctz (x)
912     #define ecb_ctz64(x) __builtin_ctzll (x)
913     #define ecb_popcount32(x) __builtin_popcount (x)
914     /* no popcountll */
915     #else
916 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
917     ecb_function_ ecb_const int
918 root 1.391 ecb_ctz32 (uint32_t x)
919     {
920     int r = 0;
921    
922     x &= ~x + 1; /* this isolates the lowest bit */
923    
924     #if ECB_branchless_on_i386
925     r += !!(x & 0xaaaaaaaa) << 0;
926     r += !!(x & 0xcccccccc) << 1;
927     r += !!(x & 0xf0f0f0f0) << 2;
928     r += !!(x & 0xff00ff00) << 3;
929     r += !!(x & 0xffff0000) << 4;
930     #else
931     if (x & 0xaaaaaaaa) r += 1;
932     if (x & 0xcccccccc) r += 2;
933     if (x & 0xf0f0f0f0) r += 4;
934     if (x & 0xff00ff00) r += 8;
935     if (x & 0xffff0000) r += 16;
936     #endif
937    
938     return r;
939     }
940    
941 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
942     ecb_function_ ecb_const int
943 root 1.391 ecb_ctz64 (uint64_t x)
944     {
945     int shift = x & 0xffffffffU ? 0 : 32;
946     return ecb_ctz32 (x >> shift) + shift;
947     }
948    
949 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
950     ecb_function_ ecb_const int
951 root 1.391 ecb_popcount32 (uint32_t x)
952     {
953     x -= (x >> 1) & 0x55555555;
954     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
955     x = ((x >> 4) + x) & 0x0f0f0f0f;
956     x *= 0x01010101;
957    
958     return x >> 24;
959     }
960    
961 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
962     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
963 root 1.391 {
964     int r = 0;
965    
966     if (x >> 16) { x >>= 16; r += 16; }
967     if (x >> 8) { x >>= 8; r += 8; }
968     if (x >> 4) { x >>= 4; r += 4; }
969     if (x >> 2) { x >>= 2; r += 2; }
970     if (x >> 1) { r += 1; }
971    
972     return r;
973     }
974    
975 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
976     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
977 root 1.391 {
978     int r = 0;
979    
980     if (x >> 32) { x >>= 32; r += 32; }
981    
982     return r + ecb_ld32 (x);
983     }
984     #endif
985    
986 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
987     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
988     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
989     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
990 root 1.437
991 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
992     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
993 root 1.403 {
994     return ( (x * 0x0802U & 0x22110U)
995 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
996 root 1.403 }
997    
998 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
999     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1000 root 1.403 {
1001     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1002     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1003     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1004     x = ( x >> 8 ) | ( x << 8);
1005    
1006     return x;
1007     }
1008    
1009 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1010     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1011 root 1.403 {
1012     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1013     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1014     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1015     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1016     x = ( x >> 16 ) | ( x << 16);
1017    
1018     return x;
1019     }
1020    
1021 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1022     /* so for this version we are lazy */
1023 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1024     ecb_function_ ecb_const int
1025 root 1.391 ecb_popcount64 (uint64_t x)
1026     {
1027     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1028     }
1029    
1030 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1031     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1032     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1033     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1034     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1035     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1036     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1037     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1038    
1039     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1040     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1041     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1042     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1043     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1044     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1045     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1046     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1047 root 1.391
1048 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1049 root 1.476 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1050     #define ecb_bswap16(x) __builtin_bswap16 (x)
1051     #else
1052 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1053 root 1.476 #endif
1054 root 1.391 #define ecb_bswap32(x) __builtin_bswap32 (x)
1055     #define ecb_bswap64(x) __builtin_bswap64 (x)
1056 root 1.476 #elif _MSC_VER
1057     #include <stdlib.h>
1058     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1059     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1060     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1061 root 1.391 #else
1062 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1063     ecb_function_ ecb_const uint16_t
1064 root 1.391 ecb_bswap16 (uint16_t x)
1065     {
1066     return ecb_rotl16 (x, 8);
1067     }
1068    
1069 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1070     ecb_function_ ecb_const uint32_t
1071 root 1.391 ecb_bswap32 (uint32_t x)
1072     {
1073     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1074     }
1075    
1076 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1077     ecb_function_ ecb_const uint64_t
1078 root 1.391 ecb_bswap64 (uint64_t x)
1079     {
1080     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1081     }
1082     #endif
1083    
1084 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1085 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1086     #else
1087     /* this seems to work fine, but gcc always emits a warning for it :/ */
1088 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1089     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1090 root 1.391 #endif
1091    
1092     /* try to tell the compiler that some condition is definitely true */
1093 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1094 root 1.391
1095 root 1.474 ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1096     ecb_inline ecb_const unsigned char
1097 root 1.391 ecb_byteorder_helper (void)
1098     {
1099 root 1.450 /* the union code still generates code under pressure in gcc, */
1100     /* but less than using pointers, and always seems to */
1101     /* successfully return a constant. */
1102     /* the reason why we have this horrible preprocessor mess */
1103     /* is to avoid it in all cases, at least on common architectures */
1104     /* or when using a recent enough gcc version (>= 4.6) */
1105 sf-exg 1.475 #if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
1106 root 1.450 return 0x44;
1107     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1108     return 0x44;
1109     #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1110     return 0x11;
1111     #else
1112     union
1113     {
1114     uint32_t i;
1115     uint8_t c;
1116     } u = { 0x11223344 };
1117     return u.c;
1118     #endif
1119 root 1.391 }
1120    
1121 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1122     ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1123     ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1124     ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1125 root 1.391
1126     #if ECB_GCC_VERSION(3,0) || ECB_C99
1127     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1128     #else
1129     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1130     #endif
1131    
1132 root 1.474 #if ECB_CPP
1133 root 1.398 template<typename T>
1134     static inline T ecb_div_rd (T val, T div)
1135     {
1136     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1137     }
1138     template<typename T>
1139     static inline T ecb_div_ru (T val, T div)
1140     {
1141     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1142     }
1143     #else
1144     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1145     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1146     #endif
1147    
1148 root 1.391 #if ecb_cplusplus_does_not_suck
1149     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1150     template<typename T, int N>
1151     static inline int ecb_array_length (const T (&arr)[N])
1152     {
1153     return N;
1154     }
1155     #else
1156     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1157     #endif
1158    
1159 root 1.450 /*******************************************************************************/
1160     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1161    
1162     /* basically, everything uses "ieee pure-endian" floating point numbers */
1163     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1164     #if 0 \
1165     || __i386 || __i386__ \
1166 sf-exg 1.475 || ECB_GCC_AMD64 \
1167 root 1.450 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1168     || defined __s390__ || defined __s390x__ \
1169     || defined __mips__ \
1170     || defined __alpha__ \
1171     || defined __hppa__ \
1172     || defined __ia64__ \
1173 root 1.457 || defined __m68k__ \
1174     || defined __m88k__ \
1175     || defined __sh__ \
1176 sf-exg 1.475 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1177 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1178 root 1.466 || defined __aarch64__
1179 root 1.450 #define ECB_STDFP 1
1180     #include <string.h> /* for memcpy */
1181     #else
1182     #define ECB_STDFP 0
1183     #endif
1184    
1185     #ifndef ECB_NO_LIBM
1186    
1187 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1188    
1189 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1190     #ifdef INFINITY
1191     #define ECB_INFINITY INFINITY
1192     #else
1193     #define ECB_INFINITY HUGE_VAL
1194     #endif
1195    
1196     #ifdef NAN
1197 root 1.458 #define ECB_NAN NAN
1198     #else
1199 root 1.462 #define ECB_NAN ECB_INFINITY
1200 root 1.458 #endif
1201    
1202 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1203     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1204 root 1.476 #define ecb_frexpf(x,e) frexpf ((x), (e))
1205 root 1.474 #else
1206 root 1.476 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1207     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1208 root 1.474 #endif
1209    
1210 root 1.458 /* converts an ieee half/binary16 to a float */
1211 root 1.474 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1212     ecb_function_ ecb_const float
1213 root 1.458 ecb_binary16_to_float (uint16_t x)
1214     {
1215     int e = (x >> 10) & 0x1f;
1216     int m = x & 0x3ff;
1217     float r;
1218    
1219 root 1.474 if (!e ) r = ecb_ldexpf (m , -24);
1220     else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1221 root 1.458 else if (m ) r = ECB_NAN;
1222 root 1.462 else r = ECB_INFINITY;
1223 root 1.458
1224     return x & 0x8000 ? -r : r;
1225     }
1226    
1227 root 1.450 /* convert a float to ieee single/binary32 */
1228 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1229     ecb_function_ ecb_const uint32_t
1230 root 1.450 ecb_float_to_binary32 (float x)
1231     {
1232     uint32_t r;
1233    
1234     #if ECB_STDFP
1235     memcpy (&r, &x, 4);
1236     #else
1237     /* slow emulation, works for anything but -0 */
1238     uint32_t m;
1239     int e;
1240    
1241     if (x == 0e0f ) return 0x00000000U;
1242     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1243     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1244     if (x != x ) return 0x7fbfffffU;
1245    
1246 root 1.476 m = ecb_frexpf (x, &e) * 0x1000000U;
1247 root 1.450
1248     r = m & 0x80000000U;
1249    
1250     if (r)
1251     m = -m;
1252    
1253     if (e <= -126)
1254     {
1255     m &= 0xffffffU;
1256     m >>= (-125 - e);
1257     e = -126;
1258     }
1259    
1260     r |= (e + 126) << 23;
1261     r |= m & 0x7fffffU;
1262     #endif
1263    
1264     return r;
1265     }
1266    
1267     /* converts an ieee single/binary32 to a float */
1268 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1269     ecb_function_ ecb_const float
1270 root 1.450 ecb_binary32_to_float (uint32_t x)
1271     {
1272     float r;
1273    
1274     #if ECB_STDFP
1275     memcpy (&r, &x, 4);
1276     #else
1277     /* emulation, only works for normals and subnormals and +0 */
1278     int neg = x >> 31;
1279     int e = (x >> 23) & 0xffU;
1280    
1281     x &= 0x7fffffU;
1282    
1283     if (e)
1284     x |= 0x800000U;
1285     else
1286     e = 1;
1287    
1288     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1289 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1290 root 1.450
1291     r = neg ? -r : r;
1292     #endif
1293    
1294     return r;
1295     }
1296    
1297     /* convert a double to ieee double/binary64 */
1298 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1299     ecb_function_ ecb_const uint64_t
1300 root 1.450 ecb_double_to_binary64 (double x)
1301     {
1302     uint64_t r;
1303    
1304     #if ECB_STDFP
1305     memcpy (&r, &x, 8);
1306     #else
1307     /* slow emulation, works for anything but -0 */
1308     uint64_t m;
1309     int e;
1310    
1311     if (x == 0e0 ) return 0x0000000000000000U;
1312     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1313     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1314     if (x != x ) return 0X7ff7ffffffffffffU;
1315    
1316     m = frexp (x, &e) * 0x20000000000000U;
1317    
1318     r = m & 0x8000000000000000;;
1319    
1320     if (r)
1321     m = -m;
1322    
1323     if (e <= -1022)
1324     {
1325     m &= 0x1fffffffffffffU;
1326     m >>= (-1021 - e);
1327     e = -1022;
1328     }
1329    
1330     r |= ((uint64_t)(e + 1022)) << 52;
1331     r |= m & 0xfffffffffffffU;
1332     #endif
1333    
1334     return r;
1335     }
1336    
1337     /* converts an ieee double/binary64 to a double */
1338 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1339     ecb_function_ ecb_const double
1340 root 1.450 ecb_binary64_to_double (uint64_t x)
1341     {
1342     double r;
1343    
1344     #if ECB_STDFP
1345     memcpy (&r, &x, 8);
1346     #else
1347     /* emulation, only works for normals and subnormals and +0 */
1348     int neg = x >> 63;
1349     int e = (x >> 52) & 0x7ffU;
1350    
1351     x &= 0xfffffffffffffU;
1352    
1353     if (e)
1354     x |= 0x10000000000000U;
1355     else
1356     e = 1;
1357    
1358     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1359     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1360    
1361     r = neg ? -r : r;
1362     #endif
1363    
1364     return r;
1365     }
1366    
1367     #endif
1368    
1369 root 1.391 #endif
1370    
1371     /* ECB.H END */
1372 root 1.379
1373 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1374 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1375 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1376     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1377 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1378 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1379     * which will then provide the memory fences.
1380     */
1381     # error "memory fences not defined for your architecture, please report"
1382     #endif
1383    
1384     #ifndef ECB_MEMORY_FENCE
1385     # define ECB_MEMORY_FENCE do { } while (0)
1386     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1387     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1388 root 1.392 #endif
1389    
1390 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1391     #define expect_true(cond) ecb_expect_true (cond)
1392     #define noinline ecb_noinline
1393    
1394     #define inline_size ecb_inline
1395 root 1.169
1396 root 1.338 #if EV_FEATURE_CODE
1397 root 1.379 # define inline_speed ecb_inline
1398 root 1.338 #else
1399 root 1.169 # define inline_speed static noinline
1400     #endif
1401 root 1.40
1402 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1403    
1404     #if EV_MINPRI == EV_MAXPRI
1405     # define ABSPRI(w) (((W)w), 0)
1406     #else
1407     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1408     #endif
1409 root 1.42
1410 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1411 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1412 root 1.103
1413 root 1.136 typedef ev_watcher *W;
1414     typedef ev_watcher_list *WL;
1415     typedef ev_watcher_time *WT;
1416 root 1.10
1417 root 1.229 #define ev_active(w) ((W)(w))->active
1418 root 1.228 #define ev_at(w) ((WT)(w))->at
1419    
1420 root 1.279 #if EV_USE_REALTIME
1421 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1422 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1423 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1424     #endif
1425    
1426     #if EV_USE_MONOTONIC
1427 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1428 root 1.198 #endif
1429 root 1.54
1430 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1431     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1432     #endif
1433     #ifndef EV_WIN32_HANDLE_TO_FD
1434 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1435 root 1.313 #endif
1436     #ifndef EV_WIN32_CLOSE_FD
1437     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1438     #endif
1439    
1440 root 1.103 #ifdef _WIN32
1441 root 1.98 # include "ev_win32.c"
1442     #endif
1443 root 1.67
1444 root 1.53 /*****************************************************************************/
1445 root 1.1
1446 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1447    
1448     #if EV_USE_FLOOR
1449     # include <math.h>
1450     # define ev_floor(v) floor (v)
1451     #else
1452    
1453     #include <float.h>
1454    
1455     /* a floor() replacement function, should be independent of ev_tstamp type */
1456     static ev_tstamp noinline
1457     ev_floor (ev_tstamp v)
1458     {
1459     /* the choice of shift factor is not terribly important */
1460     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1461     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1462     #else
1463     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1464     #endif
1465    
1466     /* argument too large for an unsigned long? */
1467     if (expect_false (v >= shift))
1468     {
1469     ev_tstamp f;
1470    
1471     if (v == v - 1.)
1472     return v; /* very large number */
1473    
1474     f = shift * ev_floor (v * (1. / shift));
1475     return f + ev_floor (v - f);
1476     }
1477    
1478     /* special treatment for negative args? */
1479     if (expect_false (v < 0.))
1480     {
1481     ev_tstamp f = -ev_floor (-v);
1482    
1483     return f - (f == v ? 0 : 1);
1484     }
1485    
1486     /* fits into an unsigned long */
1487     return (unsigned long)v;
1488     }
1489    
1490     #endif
1491    
1492     /*****************************************************************************/
1493    
1494 root 1.356 #ifdef __linux
1495     # include <sys/utsname.h>
1496     #endif
1497    
1498 root 1.379 static unsigned int noinline ecb_cold
1499 root 1.355 ev_linux_version (void)
1500     {
1501     #ifdef __linux
1502 root 1.359 unsigned int v = 0;
1503 root 1.355 struct utsname buf;
1504     int i;
1505     char *p = buf.release;
1506    
1507     if (uname (&buf))
1508     return 0;
1509    
1510     for (i = 3+1; --i; )
1511     {
1512     unsigned int c = 0;
1513    
1514     for (;;)
1515     {
1516     if (*p >= '0' && *p <= '9')
1517     c = c * 10 + *p++ - '0';
1518     else
1519     {
1520     p += *p == '.';
1521     break;
1522     }
1523     }
1524    
1525     v = (v << 8) | c;
1526     }
1527    
1528     return v;
1529     #else
1530     return 0;
1531     #endif
1532     }
1533    
1534     /*****************************************************************************/
1535    
1536 root 1.331 #if EV_AVOID_STDIO
1537 root 1.379 static void noinline ecb_cold
1538 root 1.331 ev_printerr (const char *msg)
1539     {
1540     write (STDERR_FILENO, msg, strlen (msg));
1541     }
1542     #endif
1543    
1544 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1545 root 1.69
1546 root 1.379 void ecb_cold
1547 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1548 root 1.69 {
1549     syserr_cb = cb;
1550     }
1551    
1552 root 1.379 static void noinline ecb_cold
1553 root 1.269 ev_syserr (const char *msg)
1554 root 1.69 {
1555 root 1.70 if (!msg)
1556     msg = "(libev) system error";
1557    
1558 root 1.69 if (syserr_cb)
1559 root 1.70 syserr_cb (msg);
1560 root 1.69 else
1561     {
1562 root 1.330 #if EV_AVOID_STDIO
1563 root 1.331 ev_printerr (msg);
1564     ev_printerr (": ");
1565 root 1.365 ev_printerr (strerror (errno));
1566 root 1.331 ev_printerr ("\n");
1567 root 1.330 #else
1568 root 1.70 perror (msg);
1569 root 1.330 #endif
1570 root 1.69 abort ();
1571     }
1572     }
1573    
1574 root 1.224 static void *
1575 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1576 root 1.224 {
1577     /* some systems, notably openbsd and darwin, fail to properly
1578 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1579 root 1.224 * the single unix specification, so work around them here.
1580 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1581     * despite documenting it otherwise.
1582 root 1.224 */
1583 root 1.333
1584 root 1.224 if (size)
1585     return realloc (ptr, size);
1586    
1587     free (ptr);
1588     return 0;
1589     }
1590    
1591 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1592 root 1.69
1593 root 1.379 void ecb_cold
1594 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1595 root 1.69 {
1596     alloc = cb;
1597     }
1598    
1599 root 1.150 inline_speed void *
1600 root 1.155 ev_realloc (void *ptr, long size)
1601 root 1.69 {
1602 root 1.224 ptr = alloc (ptr, size);
1603 root 1.69
1604     if (!ptr && size)
1605     {
1606 root 1.330 #if EV_AVOID_STDIO
1607 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1608 root 1.330 #else
1609 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1610 root 1.330 #endif
1611 root 1.69 abort ();
1612     }
1613    
1614     return ptr;
1615     }
1616    
1617     #define ev_malloc(size) ev_realloc (0, (size))
1618     #define ev_free(ptr) ev_realloc ((ptr), 0)
1619    
1620     /*****************************************************************************/
1621    
1622 root 1.298 /* set in reify when reification needed */
1623     #define EV_ANFD_REIFY 1
1624    
1625 root 1.288 /* file descriptor info structure */
1626 root 1.53 typedef struct
1627     {
1628 root 1.68 WL head;
1629 root 1.288 unsigned char events; /* the events watched for */
1630 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1631 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1632 root 1.269 unsigned char unused;
1633     #if EV_USE_EPOLL
1634 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1635 root 1.269 #endif
1636 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1637 root 1.103 SOCKET handle;
1638     #endif
1639 root 1.357 #if EV_USE_IOCP
1640     OVERLAPPED or, ow;
1641     #endif
1642 root 1.53 } ANFD;
1643 root 1.1
1644 root 1.288 /* stores the pending event set for a given watcher */
1645 root 1.53 typedef struct
1646     {
1647     W w;
1648 root 1.288 int events; /* the pending event set for the given watcher */
1649 root 1.53 } ANPENDING;
1650 root 1.51
1651 root 1.155 #if EV_USE_INOTIFY
1652 root 1.241 /* hash table entry per inotify-id */
1653 root 1.152 typedef struct
1654     {
1655     WL head;
1656 root 1.155 } ANFS;
1657 root 1.152 #endif
1658    
1659 root 1.241 /* Heap Entry */
1660     #if EV_HEAP_CACHE_AT
1661 root 1.288 /* a heap element */
1662 root 1.241 typedef struct {
1663 root 1.243 ev_tstamp at;
1664 root 1.241 WT w;
1665     } ANHE;
1666    
1667 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1668     #define ANHE_at(he) (he).at /* access cached at, read-only */
1669     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1670 root 1.241 #else
1671 root 1.288 /* a heap element */
1672 root 1.241 typedef WT ANHE;
1673    
1674 root 1.248 #define ANHE_w(he) (he)
1675     #define ANHE_at(he) (he)->at
1676     #define ANHE_at_cache(he)
1677 root 1.241 #endif
1678    
1679 root 1.55 #if EV_MULTIPLICITY
1680 root 1.54
1681 root 1.80 struct ev_loop
1682     {
1683 root 1.86 ev_tstamp ev_rt_now;
1684 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1685 root 1.80 #define VAR(name,decl) decl;
1686     #include "ev_vars.h"
1687     #undef VAR
1688     };
1689     #include "ev_wrap.h"
1690    
1691 root 1.116 static struct ev_loop default_loop_struct;
1692 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1693 root 1.54
1694 root 1.53 #else
1695 root 1.54
1696 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1697 root 1.80 #define VAR(name,decl) static decl;
1698     #include "ev_vars.h"
1699     #undef VAR
1700    
1701 root 1.116 static int ev_default_loop_ptr;
1702 root 1.54
1703 root 1.51 #endif
1704 root 1.1
1705 root 1.338 #if EV_FEATURE_API
1706 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1707     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1708 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1709     #else
1710 root 1.298 # define EV_RELEASE_CB (void)0
1711     # define EV_ACQUIRE_CB (void)0
1712 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1713     #endif
1714    
1715 root 1.353 #define EVBREAK_RECURSE 0x80
1716 root 1.298
1717 root 1.8 /*****************************************************************************/
1718    
1719 root 1.292 #ifndef EV_HAVE_EV_TIME
1720 root 1.141 ev_tstamp
1721 root 1.420 ev_time (void) EV_THROW
1722 root 1.1 {
1723 root 1.29 #if EV_USE_REALTIME
1724 root 1.279 if (expect_true (have_realtime))
1725     {
1726     struct timespec ts;
1727     clock_gettime (CLOCK_REALTIME, &ts);
1728     return ts.tv_sec + ts.tv_nsec * 1e-9;
1729     }
1730     #endif
1731    
1732 root 1.1 struct timeval tv;
1733     gettimeofday (&tv, 0);
1734     return tv.tv_sec + tv.tv_usec * 1e-6;
1735     }
1736 root 1.292 #endif
1737 root 1.1
1738 root 1.284 inline_size ev_tstamp
1739 root 1.1 get_clock (void)
1740     {
1741 root 1.29 #if EV_USE_MONOTONIC
1742 root 1.40 if (expect_true (have_monotonic))
1743 root 1.1 {
1744     struct timespec ts;
1745     clock_gettime (CLOCK_MONOTONIC, &ts);
1746     return ts.tv_sec + ts.tv_nsec * 1e-9;
1747     }
1748     #endif
1749    
1750     return ev_time ();
1751     }
1752    
1753 root 1.85 #if EV_MULTIPLICITY
1754 root 1.51 ev_tstamp
1755 root 1.420 ev_now (EV_P) EV_THROW
1756 root 1.51 {
1757 root 1.85 return ev_rt_now;
1758 root 1.51 }
1759 root 1.85 #endif
1760 root 1.51
1761 root 1.193 void
1762 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1763 root 1.193 {
1764     if (delay > 0.)
1765     {
1766     #if EV_USE_NANOSLEEP
1767     struct timespec ts;
1768    
1769 root 1.348 EV_TS_SET (ts, delay);
1770 root 1.193 nanosleep (&ts, 0);
1771 root 1.416 #elif defined _WIN32
1772 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1773 root 1.193 #else
1774     struct timeval tv;
1775    
1776 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1777 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1778 root 1.257 /* by older ones */
1779 sf-exg 1.349 EV_TV_SET (tv, delay);
1780 root 1.193 select (0, 0, 0, 0, &tv);
1781     #endif
1782     }
1783     }
1784    
1785     /*****************************************************************************/
1786    
1787 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1788 root 1.232
1789 root 1.288 /* find a suitable new size for the given array, */
1790 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1791 root 1.284 inline_size int
1792 root 1.163 array_nextsize (int elem, int cur, int cnt)
1793     {
1794     int ncur = cur + 1;
1795    
1796     do
1797     ncur <<= 1;
1798     while (cnt > ncur);
1799    
1800 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1801 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1802 root 1.163 {
1803     ncur *= elem;
1804 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1805 root 1.163 ncur = ncur - sizeof (void *) * 4;
1806     ncur /= elem;
1807     }
1808    
1809     return ncur;
1810     }
1811    
1812 root 1.379 static void * noinline ecb_cold
1813 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1814     {
1815     *cur = array_nextsize (elem, *cur, cnt);
1816     return ev_realloc (base, elem * *cur);
1817     }
1818 root 1.29
1819 root 1.265 #define array_init_zero(base,count) \
1820     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1821    
1822 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1823 root 1.163 if (expect_false ((cnt) > (cur))) \
1824 root 1.69 { \
1825 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1826 root 1.163 (base) = (type *)array_realloc \
1827     (sizeof (type), (base), &(cur), (cnt)); \
1828     init ((base) + (ocur_), (cur) - ocur_); \
1829 root 1.1 }
1830    
1831 root 1.163 #if 0
1832 root 1.74 #define array_slim(type,stem) \
1833 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1834     { \
1835     stem ## max = array_roundsize (stem ## cnt >> 1); \
1836 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1837 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1838     }
1839 root 1.163 #endif
1840 root 1.67
1841 root 1.65 #define array_free(stem, idx) \
1842 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1843 root 1.65
1844 root 1.8 /*****************************************************************************/
1845    
1846 root 1.288 /* dummy callback for pending events */
1847     static void noinline
1848     pendingcb (EV_P_ ev_prepare *w, int revents)
1849     {
1850     }
1851    
1852 root 1.140 void noinline
1853 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1854 root 1.1 {
1855 root 1.78 W w_ = (W)w;
1856 root 1.171 int pri = ABSPRI (w_);
1857 root 1.78
1858 root 1.123 if (expect_false (w_->pending))
1859 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1860     else
1861 root 1.32 {
1862 root 1.171 w_->pending = ++pendingcnt [pri];
1863     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1864     pendings [pri][w_->pending - 1].w = w_;
1865     pendings [pri][w_->pending - 1].events = revents;
1866 root 1.32 }
1867 root 1.425
1868     pendingpri = NUMPRI - 1;
1869 root 1.1 }
1870    
1871 root 1.284 inline_speed void
1872     feed_reverse (EV_P_ W w)
1873     {
1874     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1875     rfeeds [rfeedcnt++] = w;
1876     }
1877    
1878     inline_size void
1879     feed_reverse_done (EV_P_ int revents)
1880     {
1881     do
1882     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1883     while (rfeedcnt);
1884     }
1885    
1886     inline_speed void
1887 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
1888 root 1.27 {
1889     int i;
1890    
1891     for (i = 0; i < eventcnt; ++i)
1892 root 1.78 ev_feed_event (EV_A_ events [i], type);
1893 root 1.27 }
1894    
1895 root 1.141 /*****************************************************************************/
1896    
1897 root 1.284 inline_speed void
1898 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
1899 root 1.1 {
1900     ANFD *anfd = anfds + fd;
1901 root 1.136 ev_io *w;
1902 root 1.1
1903 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1904 root 1.1 {
1905 root 1.79 int ev = w->events & revents;
1906 root 1.1
1907     if (ev)
1908 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
1909 root 1.1 }
1910     }
1911    
1912 root 1.298 /* do not submit kernel events for fds that have reify set */
1913     /* because that means they changed while we were polling for new events */
1914     inline_speed void
1915     fd_event (EV_P_ int fd, int revents)
1916     {
1917     ANFD *anfd = anfds + fd;
1918    
1919     if (expect_true (!anfd->reify))
1920 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1921 root 1.298 }
1922    
1923 root 1.79 void
1924 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1925 root 1.79 {
1926 root 1.168 if (fd >= 0 && fd < anfdmax)
1927 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
1928 root 1.79 }
1929    
1930 root 1.288 /* make sure the external fd watch events are in-sync */
1931     /* with the kernel/libev internal state */
1932 root 1.284 inline_size void
1933 root 1.51 fd_reify (EV_P)
1934 root 1.9 {
1935     int i;
1936    
1937 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1938     for (i = 0; i < fdchangecnt; ++i)
1939     {
1940     int fd = fdchanges [i];
1941     ANFD *anfd = anfds + fd;
1942    
1943 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
1944 root 1.371 {
1945     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1946    
1947     if (handle != anfd->handle)
1948     {
1949     unsigned long arg;
1950    
1951     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1952    
1953     /* handle changed, but fd didn't - we need to do it in two steps */
1954     backend_modify (EV_A_ fd, anfd->events, 0);
1955     anfd->events = 0;
1956     anfd->handle = handle;
1957     }
1958     }
1959     }
1960     #endif
1961    
1962 root 1.27 for (i = 0; i < fdchangecnt; ++i)
1963     {
1964     int fd = fdchanges [i];
1965     ANFD *anfd = anfds + fd;
1966 root 1.136 ev_io *w;
1967 root 1.27
1968 root 1.350 unsigned char o_events = anfd->events;
1969     unsigned char o_reify = anfd->reify;
1970 root 1.27
1971 root 1.350 anfd->reify = 0;
1972 root 1.27
1973 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1974     {
1975     anfd->events = 0;
1976 root 1.184
1977 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1978     anfd->events |= (unsigned char)w->events;
1979 root 1.27
1980 root 1.351 if (o_events != anfd->events)
1981 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
1982     }
1983    
1984     if (o_reify & EV__IOFDSET)
1985     backend_modify (EV_A_ fd, o_events, anfd->events);
1986 root 1.27 }
1987    
1988     fdchangecnt = 0;
1989     }
1990    
1991 root 1.288 /* something about the given fd changed */
1992 root 1.284 inline_size void
1993 root 1.183 fd_change (EV_P_ int fd, int flags)
1994 root 1.27 {
1995 root 1.183 unsigned char reify = anfds [fd].reify;
1996 root 1.184 anfds [fd].reify |= flags;
1997 root 1.27
1998 root 1.183 if (expect_true (!reify))
1999     {
2000     ++fdchangecnt;
2001     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
2002     fdchanges [fdchangecnt - 1] = fd;
2003     }
2004 root 1.9 }
2005    
2006 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2007 root 1.379 inline_speed void ecb_cold
2008 root 1.51 fd_kill (EV_P_ int fd)
2009 root 1.41 {
2010 root 1.136 ev_io *w;
2011 root 1.41
2012 root 1.136 while ((w = (ev_io *)anfds [fd].head))
2013 root 1.41 {
2014 root 1.51 ev_io_stop (EV_A_ w);
2015 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2016 root 1.41 }
2017     }
2018    
2019 root 1.336 /* check whether the given fd is actually valid, for error recovery */
2020 root 1.379 inline_size int ecb_cold
2021 root 1.71 fd_valid (int fd)
2022     {
2023 root 1.103 #ifdef _WIN32
2024 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2025 root 1.71 #else
2026     return fcntl (fd, F_GETFD) != -1;
2027     #endif
2028     }
2029    
2030 root 1.19 /* called on EBADF to verify fds */
2031 root 1.379 static void noinline ecb_cold
2032 root 1.51 fd_ebadf (EV_P)
2033 root 1.19 {
2034     int fd;
2035    
2036     for (fd = 0; fd < anfdmax; ++fd)
2037 root 1.27 if (anfds [fd].events)
2038 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2039 root 1.51 fd_kill (EV_A_ fd);
2040 root 1.41 }
2041    
2042     /* called on ENOMEM in select/poll to kill some fds and retry */
2043 root 1.379 static void noinline ecb_cold
2044 root 1.51 fd_enomem (EV_P)
2045 root 1.41 {
2046 root 1.62 int fd;
2047 root 1.41
2048 root 1.62 for (fd = anfdmax; fd--; )
2049 root 1.41 if (anfds [fd].events)
2050     {
2051 root 1.51 fd_kill (EV_A_ fd);
2052 root 1.307 break;
2053 root 1.41 }
2054 root 1.19 }
2055    
2056 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2057 root 1.140 static void noinline
2058 root 1.56 fd_rearm_all (EV_P)
2059     {
2060     int fd;
2061    
2062     for (fd = 0; fd < anfdmax; ++fd)
2063     if (anfds [fd].events)
2064     {
2065     anfds [fd].events = 0;
2066 root 1.268 anfds [fd].emask = 0;
2067 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2068 root 1.56 }
2069     }
2070    
2071 root 1.336 /* used to prepare libev internal fd's */
2072     /* this is not fork-safe */
2073     inline_speed void
2074     fd_intern (int fd)
2075     {
2076     #ifdef _WIN32
2077     unsigned long arg = 1;
2078     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2079     #else
2080     fcntl (fd, F_SETFD, FD_CLOEXEC);
2081     fcntl (fd, F_SETFL, O_NONBLOCK);
2082     #endif
2083     }
2084    
2085 root 1.8 /*****************************************************************************/
2086    
2087 root 1.235 /*
2088 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2089 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2090     * the branching factor of the d-tree.
2091     */
2092    
2093     /*
2094 root 1.235 * at the moment we allow libev the luxury of two heaps,
2095     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2096     * which is more cache-efficient.
2097     * the difference is about 5% with 50000+ watchers.
2098     */
2099 root 1.241 #if EV_USE_4HEAP
2100 root 1.235
2101 root 1.237 #define DHEAP 4
2102     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2103 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2104 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2105 root 1.235
2106     /* away from the root */
2107 root 1.284 inline_speed void
2108 root 1.241 downheap (ANHE *heap, int N, int k)
2109 root 1.235 {
2110 root 1.241 ANHE he = heap [k];
2111     ANHE *E = heap + N + HEAP0;
2112 root 1.235
2113     for (;;)
2114     {
2115     ev_tstamp minat;
2116 root 1.241 ANHE *minpos;
2117 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2118 root 1.235
2119 root 1.248 /* find minimum child */
2120 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
2121 root 1.235 {
2122 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2123     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2124     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2125     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2126 root 1.235 }
2127 root 1.240 else if (pos < E)
2128 root 1.235 {
2129 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2130     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2131     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2132     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2133 root 1.235 }
2134 root 1.240 else
2135     break;
2136 root 1.235
2137 root 1.241 if (ANHE_at (he) <= minat)
2138 root 1.235 break;
2139    
2140 root 1.247 heap [k] = *minpos;
2141 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2142 root 1.235
2143     k = minpos - heap;
2144     }
2145    
2146 root 1.247 heap [k] = he;
2147 root 1.241 ev_active (ANHE_w (he)) = k;
2148 root 1.235 }
2149    
2150 root 1.248 #else /* 4HEAP */
2151 root 1.235
2152     #define HEAP0 1
2153 root 1.247 #define HPARENT(k) ((k) >> 1)
2154 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2155 root 1.235
2156 root 1.248 /* away from the root */
2157 root 1.284 inline_speed void
2158 root 1.248 downheap (ANHE *heap, int N, int k)
2159 root 1.1 {
2160 root 1.241 ANHE he = heap [k];
2161 root 1.1
2162 root 1.228 for (;;)
2163 root 1.1 {
2164 root 1.248 int c = k << 1;
2165 root 1.179
2166 root 1.309 if (c >= N + HEAP0)
2167 root 1.179 break;
2168    
2169 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2170     ? 1 : 0;
2171    
2172     if (ANHE_at (he) <= ANHE_at (heap [c]))
2173     break;
2174    
2175     heap [k] = heap [c];
2176 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2177 root 1.248
2178     k = c;
2179 root 1.1 }
2180    
2181 root 1.243 heap [k] = he;
2182 root 1.248 ev_active (ANHE_w (he)) = k;
2183 root 1.1 }
2184 root 1.248 #endif
2185 root 1.1
2186 root 1.248 /* towards the root */
2187 root 1.284 inline_speed void
2188 root 1.248 upheap (ANHE *heap, int k)
2189 root 1.1 {
2190 root 1.241 ANHE he = heap [k];
2191 root 1.1
2192 root 1.179 for (;;)
2193 root 1.1 {
2194 root 1.248 int p = HPARENT (k);
2195 root 1.179
2196 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2197 root 1.179 break;
2198 root 1.1
2199 root 1.248 heap [k] = heap [p];
2200 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2201 root 1.248 k = p;
2202 root 1.1 }
2203    
2204 root 1.241 heap [k] = he;
2205     ev_active (ANHE_w (he)) = k;
2206 root 1.1 }
2207    
2208 root 1.288 /* move an element suitably so it is in a correct place */
2209 root 1.284 inline_size void
2210 root 1.241 adjustheap (ANHE *heap, int N, int k)
2211 root 1.84 {
2212 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2213 root 1.247 upheap (heap, k);
2214     else
2215     downheap (heap, N, k);
2216 root 1.84 }
2217    
2218 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2219 root 1.284 inline_size void
2220 root 1.248 reheap (ANHE *heap, int N)
2221     {
2222     int i;
2223 root 1.251
2224 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2225     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2226     for (i = 0; i < N; ++i)
2227     upheap (heap, i + HEAP0);
2228     }
2229    
2230 root 1.8 /*****************************************************************************/
2231    
2232 root 1.288 /* associate signal watchers to a signal signal */
2233 root 1.7 typedef struct
2234     {
2235 root 1.307 EV_ATOMIC_T pending;
2236 root 1.306 #if EV_MULTIPLICITY
2237     EV_P;
2238     #endif
2239 root 1.68 WL head;
2240 root 1.7 } ANSIG;
2241    
2242 root 1.306 static ANSIG signals [EV_NSIG - 1];
2243 root 1.7
2244 root 1.207 /*****************************************************************************/
2245    
2246 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2247 root 1.207
2248 root 1.379 static void noinline ecb_cold
2249 root 1.207 evpipe_init (EV_P)
2250     {
2251 root 1.288 if (!ev_is_active (&pipe_w))
2252 root 1.207 {
2253 root 1.448 int fds [2];
2254    
2255 root 1.336 # if EV_USE_EVENTFD
2256 root 1.448 fds [0] = -1;
2257     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2258     if (fds [1] < 0 && errno == EINVAL)
2259     fds [1] = eventfd (0, 0);
2260    
2261     if (fds [1] < 0)
2262     # endif
2263     {
2264     while (pipe (fds))
2265     ev_syserr ("(libev) error creating signal/async pipe");
2266    
2267     fd_intern (fds [0]);
2268 root 1.220 }
2269 root 1.448
2270     evpipe [0] = fds [0];
2271    
2272     if (evpipe [1] < 0)
2273     evpipe [1] = fds [1]; /* first call, set write fd */
2274 root 1.220 else
2275     {
2276 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2277     /* so that evpipe_write can always rely on its value. */
2278     /* this branch does not do anything sensible on windows, */
2279     /* so must not be executed on windows */
2280 root 1.207
2281 root 1.448 dup2 (fds [1], evpipe [1]);
2282     close (fds [1]);
2283 root 1.220 }
2284 root 1.207
2285 root 1.455 fd_intern (evpipe [1]);
2286    
2287 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2288 root 1.288 ev_io_start (EV_A_ &pipe_w);
2289 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2290 root 1.207 }
2291     }
2292    
2293 root 1.380 inline_speed void
2294 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2295 root 1.207 {
2296 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2297    
2298 root 1.383 if (expect_true (*flag))
2299 root 1.387 return;
2300 root 1.383
2301     *flag = 1;
2302 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2303 root 1.383
2304     pipe_write_skipped = 1;
2305 root 1.378
2306 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2307 root 1.214
2308 root 1.383 if (pipe_write_wanted)
2309     {
2310     int old_errno;
2311 root 1.378
2312 root 1.436 pipe_write_skipped = 0;
2313     ECB_MEMORY_FENCE_RELEASE;
2314 root 1.220
2315 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2316 root 1.380
2317 root 1.220 #if EV_USE_EVENTFD
2318 root 1.448 if (evpipe [0] < 0)
2319 root 1.383 {
2320     uint64_t counter = 1;
2321 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2322 root 1.383 }
2323     else
2324 root 1.220 #endif
2325 root 1.383 {
2326 root 1.427 #ifdef _WIN32
2327     WSABUF buf;
2328     DWORD sent;
2329     buf.buf = &buf;
2330     buf.len = 1;
2331     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2332     #else
2333 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2334 root 1.427 #endif
2335 root 1.383 }
2336 root 1.214
2337 root 1.383 errno = old_errno;
2338 root 1.207 }
2339     }
2340    
2341 root 1.288 /* called whenever the libev signal pipe */
2342     /* got some events (signal, async) */
2343 root 1.207 static void
2344     pipecb (EV_P_ ev_io *iow, int revents)
2345     {
2346 root 1.307 int i;
2347    
2348 root 1.378 if (revents & EV_READ)
2349     {
2350 root 1.220 #if EV_USE_EVENTFD
2351 root 1.448 if (evpipe [0] < 0)
2352 root 1.378 {
2353     uint64_t counter;
2354 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2355 root 1.378 }
2356     else
2357 root 1.220 #endif
2358 root 1.378 {
2359 root 1.427 char dummy[4];
2360     #ifdef _WIN32
2361     WSABUF buf;
2362     DWORD recvd;
2363 root 1.432 DWORD flags = 0;
2364 root 1.427 buf.buf = dummy;
2365     buf.len = sizeof (dummy);
2366 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2367 root 1.427 #else
2368     read (evpipe [0], &dummy, sizeof (dummy));
2369     #endif
2370 root 1.378 }
2371 root 1.220 }
2372 root 1.207
2373 root 1.378 pipe_write_skipped = 0;
2374    
2375 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2376    
2377 root 1.369 #if EV_SIGNAL_ENABLE
2378 root 1.307 if (sig_pending)
2379 root 1.372 {
2380 root 1.307 sig_pending = 0;
2381 root 1.207
2382 root 1.436 ECB_MEMORY_FENCE;
2383 root 1.424
2384 root 1.307 for (i = EV_NSIG - 1; i--; )
2385     if (expect_false (signals [i].pending))
2386     ev_feed_signal_event (EV_A_ i + 1);
2387 root 1.207 }
2388 root 1.369 #endif
2389 root 1.207
2390 root 1.209 #if EV_ASYNC_ENABLE
2391 root 1.307 if (async_pending)
2392 root 1.207 {
2393 root 1.307 async_pending = 0;
2394 root 1.207
2395 root 1.436 ECB_MEMORY_FENCE;
2396 root 1.424
2397 root 1.207 for (i = asynccnt; i--; )
2398     if (asyncs [i]->sent)
2399     {
2400     asyncs [i]->sent = 0;
2401 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2402 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2403     }
2404     }
2405 root 1.209 #endif
2406 root 1.207 }
2407    
2408     /*****************************************************************************/
2409    
2410 root 1.366 void
2411 root 1.420 ev_feed_signal (int signum) EV_THROW
2412 root 1.7 {
2413 root 1.207 #if EV_MULTIPLICITY
2414 root 1.453 EV_P;
2415 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2416 root 1.453 EV_A = signals [signum - 1].loop;
2417 root 1.366
2418     if (!EV_A)
2419     return;
2420 root 1.207 #endif
2421    
2422 root 1.366 signals [signum - 1].pending = 1;
2423     evpipe_write (EV_A_ &sig_pending);
2424     }
2425    
2426     static void
2427     ev_sighandler (int signum)
2428     {
2429 root 1.322 #ifdef _WIN32
2430 root 1.218 signal (signum, ev_sighandler);
2431 root 1.67 #endif
2432    
2433 root 1.366 ev_feed_signal (signum);
2434 root 1.7 }
2435    
2436 root 1.140 void noinline
2437 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2438 root 1.79 {
2439 root 1.80 WL w;
2440    
2441 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2442 root 1.307 return;
2443    
2444     --signum;
2445    
2446 root 1.79 #if EV_MULTIPLICITY
2447 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2448     /* or, likely more useful, feeding a signal nobody is waiting for */
2449 root 1.79
2450 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2451 root 1.306 return;
2452 root 1.307 #endif
2453 root 1.306
2454 root 1.307 signals [signum].pending = 0;
2455 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2456 root 1.79
2457     for (w = signals [signum].head; w; w = w->next)
2458     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2459     }
2460    
2461 root 1.303 #if EV_USE_SIGNALFD
2462     static void
2463     sigfdcb (EV_P_ ev_io *iow, int revents)
2464     {
2465 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2466 root 1.303
2467     for (;;)
2468     {
2469     ssize_t res = read (sigfd, si, sizeof (si));
2470    
2471     /* not ISO-C, as res might be -1, but works with SuS */
2472     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2473     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2474    
2475     if (res < (ssize_t)sizeof (si))
2476     break;
2477     }
2478     }
2479     #endif
2480    
2481 root 1.336 #endif
2482    
2483 root 1.8 /*****************************************************************************/
2484    
2485 root 1.336 #if EV_CHILD_ENABLE
2486 root 1.182 static WL childs [EV_PID_HASHSIZE];
2487 root 1.71
2488 root 1.136 static ev_signal childev;
2489 root 1.59
2490 root 1.206 #ifndef WIFCONTINUED
2491     # define WIFCONTINUED(status) 0
2492     #endif
2493    
2494 root 1.288 /* handle a single child status event */
2495 root 1.284 inline_speed void
2496 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2497 root 1.47 {
2498 root 1.136 ev_child *w;
2499 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2500 root 1.47
2501 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2502 root 1.206 {
2503     if ((w->pid == pid || !w->pid)
2504     && (!traced || (w->flags & 1)))
2505     {
2506 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2507 root 1.206 w->rpid = pid;
2508     w->rstatus = status;
2509     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2510     }
2511     }
2512 root 1.47 }
2513    
2514 root 1.142 #ifndef WCONTINUED
2515     # define WCONTINUED 0
2516     #endif
2517    
2518 root 1.288 /* called on sigchld etc., calls waitpid */
2519 root 1.47 static void
2520 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2521 root 1.22 {
2522     int pid, status;
2523    
2524 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2525     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2526     if (!WCONTINUED
2527     || errno != EINVAL
2528     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2529     return;
2530    
2531 root 1.216 /* make sure we are called again until all children have been reaped */
2532 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2533     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2534 root 1.47
2535 root 1.216 child_reap (EV_A_ pid, pid, status);
2536 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2537 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2538 root 1.22 }
2539    
2540 root 1.45 #endif
2541    
2542 root 1.22 /*****************************************************************************/
2543    
2544 root 1.357 #if EV_USE_IOCP
2545     # include "ev_iocp.c"
2546     #endif
2547 root 1.118 #if EV_USE_PORT
2548     # include "ev_port.c"
2549     #endif
2550 root 1.44 #if EV_USE_KQUEUE
2551     # include "ev_kqueue.c"
2552     #endif
2553 root 1.29 #if EV_USE_EPOLL
2554 root 1.1 # include "ev_epoll.c"
2555     #endif
2556 root 1.59 #if EV_USE_POLL
2557 root 1.41 # include "ev_poll.c"
2558     #endif
2559 root 1.29 #if EV_USE_SELECT
2560 root 1.1 # include "ev_select.c"
2561     #endif
2562    
2563 root 1.379 int ecb_cold
2564 root 1.420 ev_version_major (void) EV_THROW
2565 root 1.24 {
2566     return EV_VERSION_MAJOR;
2567     }
2568    
2569 root 1.379 int ecb_cold
2570 root 1.420 ev_version_minor (void) EV_THROW
2571 root 1.24 {
2572     return EV_VERSION_MINOR;
2573     }
2574    
2575 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2576 root 1.379 int inline_size ecb_cold
2577 root 1.51 enable_secure (void)
2578 root 1.41 {
2579 root 1.103 #ifdef _WIN32
2580 root 1.49 return 0;
2581     #else
2582 root 1.41 return getuid () != geteuid ()
2583     || getgid () != getegid ();
2584 root 1.49 #endif
2585 root 1.41 }
2586    
2587 root 1.379 unsigned int ecb_cold
2588 root 1.420 ev_supported_backends (void) EV_THROW
2589 root 1.129 {
2590 root 1.130 unsigned int flags = 0;
2591 root 1.129
2592     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2593     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2594     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2595     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2596     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2597    
2598     return flags;
2599     }
2600    
2601 root 1.379 unsigned int ecb_cold
2602 root 1.420 ev_recommended_backends (void) EV_THROW
2603 root 1.1 {
2604 root 1.131 unsigned int flags = ev_supported_backends ();
2605 root 1.129
2606     #ifndef __NetBSD__
2607     /* kqueue is borked on everything but netbsd apparently */
2608     /* it usually doesn't work correctly on anything but sockets and pipes */
2609     flags &= ~EVBACKEND_KQUEUE;
2610     #endif
2611     #ifdef __APPLE__
2612 root 1.278 /* only select works correctly on that "unix-certified" platform */
2613     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2614     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2615 root 1.129 #endif
2616 root 1.342 #ifdef __FreeBSD__
2617     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2618     #endif
2619 root 1.129
2620     return flags;
2621 root 1.51 }
2622    
2623 root 1.379 unsigned int ecb_cold
2624 root 1.420 ev_embeddable_backends (void) EV_THROW
2625 root 1.134 {
2626 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2627    
2628 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2629 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2630     flags &= ~EVBACKEND_EPOLL;
2631 root 1.196
2632     return flags;
2633 root 1.134 }
2634    
2635     unsigned int
2636 root 1.420 ev_backend (EV_P) EV_THROW
2637 root 1.130 {
2638     return backend;
2639     }
2640    
2641 root 1.338 #if EV_FEATURE_API
2642 root 1.162 unsigned int
2643 root 1.420 ev_iteration (EV_P) EV_THROW
2644 root 1.162 {
2645     return loop_count;
2646     }
2647    
2648 root 1.294 unsigned int
2649 root 1.420 ev_depth (EV_P) EV_THROW
2650 root 1.294 {
2651     return loop_depth;
2652     }
2653    
2654 root 1.193 void
2655 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2656 root 1.193 {
2657     io_blocktime = interval;
2658     }
2659    
2660     void
2661 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2662 root 1.193 {
2663     timeout_blocktime = interval;
2664     }
2665    
2666 root 1.297 void
2667 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2668 root 1.297 {
2669     userdata = data;
2670     }
2671    
2672     void *
2673 root 1.420 ev_userdata (EV_P) EV_THROW
2674 root 1.297 {
2675     return userdata;
2676     }
2677    
2678 root 1.379 void
2679 root 1.461 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2680 root 1.297 {
2681     invoke_cb = invoke_pending_cb;
2682     }
2683    
2684 root 1.379 void
2685 root 1.473 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2686 root 1.297 {
2687 root 1.298 release_cb = release;
2688     acquire_cb = acquire;
2689 root 1.297 }
2690     #endif
2691    
2692 root 1.288 /* initialise a loop structure, must be zero-initialised */
2693 root 1.379 static void noinline ecb_cold
2694 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2695 root 1.51 {
2696 root 1.130 if (!backend)
2697 root 1.23 {
2698 root 1.366 origflags = flags;
2699    
2700 root 1.279 #if EV_USE_REALTIME
2701     if (!have_realtime)
2702     {
2703     struct timespec ts;
2704    
2705     if (!clock_gettime (CLOCK_REALTIME, &ts))
2706     have_realtime = 1;
2707     }
2708     #endif
2709    
2710 root 1.29 #if EV_USE_MONOTONIC
2711 root 1.279 if (!have_monotonic)
2712     {
2713     struct timespec ts;
2714    
2715     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2716     have_monotonic = 1;
2717     }
2718 root 1.1 #endif
2719    
2720 root 1.306 /* pid check not overridable via env */
2721     #ifndef _WIN32
2722     if (flags & EVFLAG_FORKCHECK)
2723     curpid = getpid ();
2724     #endif
2725    
2726     if (!(flags & EVFLAG_NOENV)
2727     && !enable_secure ()
2728     && getenv ("LIBEV_FLAGS"))
2729     flags = atoi (getenv ("LIBEV_FLAGS"));
2730    
2731 root 1.378 ev_rt_now = ev_time ();
2732     mn_now = get_clock ();
2733     now_floor = mn_now;
2734     rtmn_diff = ev_rt_now - mn_now;
2735 root 1.338 #if EV_FEATURE_API
2736 root 1.378 invoke_cb = ev_invoke_pending;
2737 root 1.297 #endif
2738 root 1.1
2739 root 1.378 io_blocktime = 0.;
2740     timeout_blocktime = 0.;
2741     backend = 0;
2742     backend_fd = -1;
2743     sig_pending = 0;
2744 root 1.307 #if EV_ASYNC_ENABLE
2745 root 1.378 async_pending = 0;
2746 root 1.307 #endif
2747 root 1.378 pipe_write_skipped = 0;
2748     pipe_write_wanted = 0;
2749 root 1.448 evpipe [0] = -1;
2750     evpipe [1] = -1;
2751 root 1.209 #if EV_USE_INOTIFY
2752 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2753 root 1.209 #endif
2754 root 1.303 #if EV_USE_SIGNALFD
2755 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2756 root 1.303 #endif
2757 root 1.193
2758 root 1.366 if (!(flags & EVBACKEND_MASK))
2759 root 1.129 flags |= ev_recommended_backends ();
2760 root 1.41
2761 root 1.357 #if EV_USE_IOCP
2762     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2763     #endif
2764 root 1.118 #if EV_USE_PORT
2765 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2766 root 1.118 #endif
2767 root 1.44 #if EV_USE_KQUEUE
2768 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2769 root 1.44 #endif
2770 root 1.29 #if EV_USE_EPOLL
2771 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2772 root 1.41 #endif
2773 root 1.59 #if EV_USE_POLL
2774 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2775 root 1.1 #endif
2776 root 1.29 #if EV_USE_SELECT
2777 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2778 root 1.1 #endif
2779 root 1.70
2780 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2781    
2782 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2783 root 1.288 ev_init (&pipe_w, pipecb);
2784     ev_set_priority (&pipe_w, EV_MAXPRI);
2785 root 1.336 #endif
2786 root 1.56 }
2787     }
2788    
2789 root 1.288 /* free up a loop structure */
2790 root 1.379 void ecb_cold
2791 root 1.422 ev_loop_destroy (EV_P)
2792 root 1.56 {
2793 root 1.65 int i;
2794    
2795 root 1.364 #if EV_MULTIPLICITY
2796 root 1.363 /* mimic free (0) */
2797     if (!EV_A)
2798     return;
2799 root 1.364 #endif
2800 root 1.363
2801 root 1.361 #if EV_CLEANUP_ENABLE
2802     /* queue cleanup watchers (and execute them) */
2803     if (expect_false (cleanupcnt))
2804     {
2805     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2806     EV_INVOKE_PENDING;
2807     }
2808     #endif
2809    
2810 root 1.359 #if EV_CHILD_ENABLE
2811 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2812 root 1.359 {
2813     ev_ref (EV_A); /* child watcher */
2814     ev_signal_stop (EV_A_ &childev);
2815     }
2816     #endif
2817    
2818 root 1.288 if (ev_is_active (&pipe_w))
2819 root 1.207 {
2820 root 1.303 /*ev_ref (EV_A);*/
2821     /*ev_io_stop (EV_A_ &pipe_w);*/
2822 root 1.207
2823 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2824     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2825 root 1.207 }
2826    
2827 root 1.303 #if EV_USE_SIGNALFD
2828     if (ev_is_active (&sigfd_w))
2829 root 1.317 close (sigfd);
2830 root 1.303 #endif
2831    
2832 root 1.152 #if EV_USE_INOTIFY
2833     if (fs_fd >= 0)
2834     close (fs_fd);
2835     #endif
2836    
2837     if (backend_fd >= 0)
2838     close (backend_fd);
2839    
2840 root 1.357 #if EV_USE_IOCP
2841     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2842     #endif
2843 root 1.118 #if EV_USE_PORT
2844 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2845 root 1.118 #endif
2846 root 1.56 #if EV_USE_KQUEUE
2847 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2848 root 1.56 #endif
2849     #if EV_USE_EPOLL
2850 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2851 root 1.56 #endif
2852 root 1.59 #if EV_USE_POLL
2853 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2854 root 1.56 #endif
2855     #if EV_USE_SELECT
2856 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2857 root 1.56 #endif
2858 root 1.1
2859 root 1.65 for (i = NUMPRI; i--; )
2860 root 1.164 {
2861     array_free (pending, [i]);
2862     #if EV_IDLE_ENABLE
2863     array_free (idle, [i]);
2864     #endif
2865     }
2866 root 1.65
2867 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
2868 root 1.186
2869 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
2870 root 1.284 array_free (rfeed, EMPTY);
2871 root 1.164 array_free (fdchange, EMPTY);
2872     array_free (timer, EMPTY);
2873 root 1.140 #if EV_PERIODIC_ENABLE
2874 root 1.164 array_free (periodic, EMPTY);
2875 root 1.93 #endif
2876 root 1.187 #if EV_FORK_ENABLE
2877     array_free (fork, EMPTY);
2878     #endif
2879 root 1.360 #if EV_CLEANUP_ENABLE
2880     array_free (cleanup, EMPTY);
2881     #endif
2882 root 1.164 array_free (prepare, EMPTY);
2883     array_free (check, EMPTY);
2884 root 1.209 #if EV_ASYNC_ENABLE
2885     array_free (async, EMPTY);
2886     #endif
2887 root 1.65
2888 root 1.130 backend = 0;
2889 root 1.359
2890     #if EV_MULTIPLICITY
2891     if (ev_is_default_loop (EV_A))
2892     #endif
2893     ev_default_loop_ptr = 0;
2894     #if EV_MULTIPLICITY
2895     else
2896     ev_free (EV_A);
2897     #endif
2898 root 1.56 }
2899 root 1.22
2900 root 1.226 #if EV_USE_INOTIFY
2901 root 1.284 inline_size void infy_fork (EV_P);
2902 root 1.226 #endif
2903 root 1.154
2904 root 1.284 inline_size void
2905 root 1.56 loop_fork (EV_P)
2906     {
2907 root 1.118 #if EV_USE_PORT
2908 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2909 root 1.56 #endif
2910     #if EV_USE_KQUEUE
2911 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2912 root 1.45 #endif
2913 root 1.118 #if EV_USE_EPOLL
2914 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2915 root 1.118 #endif
2916 root 1.154 #if EV_USE_INOTIFY
2917     infy_fork (EV_A);
2918     #endif
2919 root 1.70
2920 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2921 root 1.288 if (ev_is_active (&pipe_w))
2922 root 1.70 {
2923 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2924 root 1.70
2925     ev_ref (EV_A);
2926 root 1.288 ev_io_stop (EV_A_ &pipe_w);
2927 root 1.220
2928     if (evpipe [0] >= 0)
2929 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
2930 root 1.207
2931     evpipe_init (EV_A);
2932 root 1.443 /* iterate over everything, in case we missed something before */
2933     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2934 root 1.448 }
2935 root 1.337 #endif
2936 root 1.70
2937     postfork = 0;
2938 root 1.1 }
2939    
2940 root 1.55 #if EV_MULTIPLICITY
2941 root 1.250
2942 root 1.379 struct ev_loop * ecb_cold
2943 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
2944 root 1.54 {
2945 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2946 root 1.69
2947 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
2948 root 1.108 loop_init (EV_A_ flags);
2949 root 1.56
2950 root 1.130 if (ev_backend (EV_A))
2951 root 1.306 return EV_A;
2952 root 1.54
2953 root 1.359 ev_free (EV_A);
2954 root 1.55 return 0;
2955 root 1.54 }
2956    
2957 root 1.297 #endif /* multiplicity */
2958 root 1.248
2959     #if EV_VERIFY
2960 root 1.379 static void noinline ecb_cold
2961 root 1.251 verify_watcher (EV_P_ W w)
2962     {
2963 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2964 root 1.251
2965     if (w->pending)
2966 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2967 root 1.251 }
2968    
2969 root 1.379 static void noinline ecb_cold
2970 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
2971     {
2972     int i;
2973    
2974     for (i = HEAP0; i < N + HEAP0; ++i)
2975     {
2976 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2977     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2978     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2979 root 1.251
2980     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2981     }
2982     }
2983    
2984 root 1.379 static void noinline ecb_cold
2985 root 1.251 array_verify (EV_P_ W *ws, int cnt)
2986 root 1.248 {
2987     while (cnt--)
2988 root 1.251 {
2989 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2990 root 1.251 verify_watcher (EV_A_ ws [cnt]);
2991     }
2992 root 1.248 }
2993 root 1.250 #endif
2994 root 1.248
2995 root 1.338 #if EV_FEATURE_API
2996 root 1.379 void ecb_cold
2997 root 1.420 ev_verify (EV_P) EV_THROW
2998 root 1.248 {
2999 root 1.250 #if EV_VERIFY
3000 root 1.429 int i;
3001 root 1.426 WL w, w2;
3002 root 1.251
3003     assert (activecnt >= -1);
3004    
3005     assert (fdchangemax >= fdchangecnt);
3006     for (i = 0; i < fdchangecnt; ++i)
3007 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3008 root 1.251
3009     assert (anfdmax >= 0);
3010 root 1.429 for (i = 0; i < anfdmax; ++i)
3011     {
3012     int j = 0;
3013    
3014     for (w = w2 = anfds [i].head; w; w = w->next)
3015     {
3016     verify_watcher (EV_A_ (W)w);
3017 root 1.426
3018 root 1.429 if (j++ & 1)
3019     {
3020     assert (("libev: io watcher list contains a loop", w != w2));
3021     w2 = w2->next;
3022     }
3023 root 1.426
3024 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3025     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3026     }
3027     }
3028 root 1.251
3029     assert (timermax >= timercnt);
3030     verify_heap (EV_A_ timers, timercnt);
3031 root 1.248
3032     #if EV_PERIODIC_ENABLE
3033 root 1.251 assert (periodicmax >= periodiccnt);
3034     verify_heap (EV_A_ periodics, periodiccnt);
3035 root 1.248 #endif
3036    
3037 root 1.251 for (i = NUMPRI; i--; )
3038     {
3039     assert (pendingmax [i] >= pendingcnt [i]);
3040 root 1.248 #if EV_IDLE_ENABLE
3041 root 1.252 assert (idleall >= 0);
3042 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3043     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3044 root 1.248 #endif
3045 root 1.251 }
3046    
3047 root 1.248 #if EV_FORK_ENABLE
3048 root 1.251 assert (forkmax >= forkcnt);
3049     array_verify (EV_A_ (W *)forks, forkcnt);
3050 root 1.248 #endif
3051 root 1.251
3052 root 1.360 #if EV_CLEANUP_ENABLE
3053     assert (cleanupmax >= cleanupcnt);
3054     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3055     #endif
3056    
3057 root 1.250 #if EV_ASYNC_ENABLE
3058 root 1.251 assert (asyncmax >= asynccnt);
3059     array_verify (EV_A_ (W *)asyncs, asynccnt);
3060 root 1.250 #endif
3061 root 1.251
3062 root 1.337 #if EV_PREPARE_ENABLE
3063 root 1.251 assert (preparemax >= preparecnt);
3064     array_verify (EV_A_ (W *)prepares, preparecnt);
3065 root 1.337 #endif
3066 root 1.251
3067 root 1.337 #if EV_CHECK_ENABLE
3068 root 1.251 assert (checkmax >= checkcnt);
3069     array_verify (EV_A_ (W *)checks, checkcnt);
3070 root 1.337 #endif
3071 root 1.251
3072     # if 0
3073 root 1.336 #if EV_CHILD_ENABLE
3074 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3075 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3076 root 1.336 #endif
3077 root 1.251 # endif
3078 root 1.248 #endif
3079     }
3080 root 1.297 #endif
3081 root 1.56
3082     #if EV_MULTIPLICITY
3083 root 1.379 struct ev_loop * ecb_cold
3084 root 1.54 #else
3085     int
3086 root 1.358 #endif
3087 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
3088 root 1.54 {
3089 root 1.116 if (!ev_default_loop_ptr)
3090 root 1.56 {
3091     #if EV_MULTIPLICITY
3092 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3093 root 1.56 #else
3094 ayin 1.117 ev_default_loop_ptr = 1;
3095 root 1.54 #endif
3096    
3097 root 1.110 loop_init (EV_A_ flags);
3098 root 1.56
3099 root 1.130 if (ev_backend (EV_A))
3100 root 1.56 {
3101 root 1.336 #if EV_CHILD_ENABLE
3102 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3103     ev_set_priority (&childev, EV_MAXPRI);
3104     ev_signal_start (EV_A_ &childev);
3105     ev_unref (EV_A); /* child watcher should not keep loop alive */
3106     #endif
3107     }
3108     else
3109 root 1.116 ev_default_loop_ptr = 0;
3110 root 1.56 }
3111 root 1.8
3112 root 1.116 return ev_default_loop_ptr;
3113 root 1.1 }
3114    
3115 root 1.24 void
3116 root 1.420 ev_loop_fork (EV_P) EV_THROW
3117 root 1.1 {
3118 root 1.440 postfork = 1;
3119 root 1.1 }
3120    
3121 root 1.8 /*****************************************************************************/
3122    
3123 root 1.168 void
3124     ev_invoke (EV_P_ void *w, int revents)
3125     {
3126     EV_CB_INVOKE ((W)w, revents);
3127     }
3128    
3129 root 1.300 unsigned int
3130 root 1.420 ev_pending_count (EV_P) EV_THROW
3131 root 1.300 {
3132     int pri;
3133     unsigned int count = 0;
3134    
3135     for (pri = NUMPRI; pri--; )
3136     count += pendingcnt [pri];
3137    
3138     return count;
3139     }
3140    
3141 root 1.297 void noinline
3142 root 1.296 ev_invoke_pending (EV_P)
3143 root 1.1 {
3144 root 1.445 pendingpri = NUMPRI;
3145    
3146     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3147     {
3148     --pendingpri;
3149    
3150     while (pendingcnt [pendingpri])
3151     {
3152     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3153 root 1.1
3154 root 1.445 p->w->pending = 0;
3155     EV_CB_INVOKE (p->w, p->events);
3156     EV_FREQUENT_CHECK;
3157     }
3158     }
3159 root 1.1 }
3160    
3161 root 1.234 #if EV_IDLE_ENABLE
3162 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3163     /* only when higher priorities are idle" logic */
3164 root 1.284 inline_size void
3165 root 1.234 idle_reify (EV_P)
3166     {
3167     if (expect_false (idleall))
3168     {
3169     int pri;
3170    
3171     for (pri = NUMPRI; pri--; )
3172     {
3173     if (pendingcnt [pri])
3174     break;
3175    
3176     if (idlecnt [pri])
3177     {
3178     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3179     break;
3180     }
3181     }
3182     }
3183     }
3184     #endif
3185    
3186 root 1.288 /* make timers pending */
3187 root 1.284 inline_size void
3188 root 1.51 timers_reify (EV_P)
3189 root 1.1 {
3190 root 1.248 EV_FREQUENT_CHECK;
3191    
3192 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3193 root 1.1 {
3194 root 1.284 do
3195     {
3196     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3197 root 1.1
3198 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3199    
3200     /* first reschedule or stop timer */
3201     if (w->repeat)
3202     {
3203     ev_at (w) += w->repeat;
3204     if (ev_at (w) < mn_now)
3205     ev_at (w) = mn_now;
3206 root 1.61
3207 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3208 root 1.90
3209 root 1.284 ANHE_at_cache (timers [HEAP0]);
3210     downheap (timers, timercnt, HEAP0);
3211     }
3212     else
3213     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3214 root 1.243
3215 root 1.284 EV_FREQUENT_CHECK;
3216     feed_reverse (EV_A_ (W)w);
3217 root 1.12 }
3218 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3219 root 1.30
3220 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3221 root 1.12 }
3222     }
3223 root 1.4
3224 root 1.140 #if EV_PERIODIC_ENABLE
3225 root 1.370
3226 root 1.373 static void noinline
3227 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3228     {
3229 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3230     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3231    
3232     /* the above almost always errs on the low side */
3233     while (at <= ev_rt_now)
3234     {
3235     ev_tstamp nat = at + w->interval;
3236    
3237     /* when resolution fails us, we use ev_rt_now */
3238     if (expect_false (nat == at))
3239     {
3240     at = ev_rt_now;
3241     break;
3242     }
3243    
3244     at = nat;
3245     }
3246    
3247     ev_at (w) = at;
3248 root 1.370 }
3249    
3250 root 1.288 /* make periodics pending */
3251 root 1.284 inline_size void
3252 root 1.51 periodics_reify (EV_P)
3253 root 1.12 {
3254 root 1.248 EV_FREQUENT_CHECK;
3255 root 1.250
3256 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3257 root 1.12 {
3258 root 1.284 do
3259     {
3260     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3261 root 1.1
3262 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3263 root 1.61
3264 root 1.284 /* first reschedule or stop timer */
3265     if (w->reschedule_cb)
3266     {
3267     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3268 root 1.243
3269 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3270 root 1.243
3271 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3272     downheap (periodics, periodiccnt, HEAP0);
3273     }
3274     else if (w->interval)
3275 root 1.246 {
3276 root 1.370 periodic_recalc (EV_A_ w);
3277 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3278     downheap (periodics, periodiccnt, HEAP0);
3279 root 1.246 }
3280 root 1.284 else
3281     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3282 root 1.243
3283 root 1.284 EV_FREQUENT_CHECK;
3284     feed_reverse (EV_A_ (W)w);
3285 root 1.1 }
3286 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3287 root 1.12
3288 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3289 root 1.12 }
3290     }
3291    
3292 root 1.288 /* simply recalculate all periodics */
3293 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3294 root 1.379 static void noinline ecb_cold
3295 root 1.54 periodics_reschedule (EV_P)
3296 root 1.12 {
3297     int i;
3298    
3299 root 1.13 /* adjust periodics after time jump */
3300 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3301 root 1.12 {
3302 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3303 root 1.12
3304 root 1.77 if (w->reschedule_cb)
3305 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3306 root 1.77 else if (w->interval)
3307 root 1.370 periodic_recalc (EV_A_ w);
3308 root 1.242
3309 root 1.248 ANHE_at_cache (periodics [i]);
3310 root 1.77 }
3311 root 1.12
3312 root 1.248 reheap (periodics, periodiccnt);
3313 root 1.1 }
3314 root 1.93 #endif
3315 root 1.1
3316 root 1.288 /* adjust all timers by a given offset */
3317 root 1.379 static void noinline ecb_cold
3318 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3319     {
3320     int i;
3321    
3322     for (i = 0; i < timercnt; ++i)
3323     {
3324     ANHE *he = timers + i + HEAP0;
3325     ANHE_w (*he)->at += adjust;
3326     ANHE_at_cache (*he);
3327     }
3328     }
3329    
3330 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3331 root 1.324 /* also detect if there was a timejump, and act accordingly */
3332 root 1.284 inline_speed void
3333 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3334 root 1.4 {
3335 root 1.40 #if EV_USE_MONOTONIC
3336     if (expect_true (have_monotonic))
3337     {
3338 root 1.289 int i;
3339 root 1.178 ev_tstamp odiff = rtmn_diff;
3340    
3341     mn_now = get_clock ();
3342    
3343     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3344     /* interpolate in the meantime */
3345     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3346 root 1.40 {
3347 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3348     return;
3349     }
3350    
3351     now_floor = mn_now;
3352     ev_rt_now = ev_time ();
3353 root 1.4
3354 root 1.178 /* loop a few times, before making important decisions.
3355     * on the choice of "4": one iteration isn't enough,
3356     * in case we get preempted during the calls to
3357     * ev_time and get_clock. a second call is almost guaranteed
3358     * to succeed in that case, though. and looping a few more times
3359     * doesn't hurt either as we only do this on time-jumps or
3360     * in the unlikely event of having been preempted here.
3361     */
3362     for (i = 4; --i; )
3363     {
3364 root 1.373 ev_tstamp diff;
3365 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3366 root 1.4
3367 root 1.373 diff = odiff - rtmn_diff;
3368    
3369     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3370 root 1.178 return; /* all is well */
3371 root 1.4
3372 root 1.178 ev_rt_now = ev_time ();
3373     mn_now = get_clock ();
3374     now_floor = mn_now;
3375     }
3376 root 1.4
3377 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3378     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3379 root 1.140 # if EV_PERIODIC_ENABLE
3380 root 1.178 periodics_reschedule (EV_A);
3381 root 1.93 # endif
3382 root 1.4 }
3383     else
3384 root 1.40 #endif
3385 root 1.4 {
3386 root 1.85 ev_rt_now = ev_time ();
3387 root 1.40
3388 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3389 root 1.13 {
3390 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3391     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3392 root 1.140 #if EV_PERIODIC_ENABLE
3393 root 1.54 periodics_reschedule (EV_A);
3394 root 1.93 #endif
3395 root 1.13 }
3396 root 1.4
3397 root 1.85 mn_now = ev_rt_now;
3398 root 1.4 }
3399     }
3400    
3401 root 1.418 int
3402 root 1.353 ev_run (EV_P_ int flags)
3403 root 1.1 {
3404 root 1.338 #if EV_FEATURE_API
3405 root 1.294 ++loop_depth;
3406 root 1.297 #endif
3407 root 1.294
3408 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3409 root 1.298
3410 root 1.353 loop_done = EVBREAK_CANCEL;
3411 root 1.1
3412 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3413 root 1.158
3414 root 1.161 do
3415 root 1.9 {
3416 root 1.250 #if EV_VERIFY >= 2
3417 root 1.340 ev_verify (EV_A);
3418 root 1.250 #endif
3419    
3420 root 1.158 #ifndef _WIN32
3421     if (expect_false (curpid)) /* penalise the forking check even more */
3422     if (expect_false (getpid () != curpid))
3423     {
3424     curpid = getpid ();
3425     postfork = 1;
3426     }
3427     #endif
3428    
3429 root 1.157 #if EV_FORK_ENABLE
3430     /* we might have forked, so queue fork handlers */
3431     if (expect_false (postfork))
3432     if (forkcnt)
3433     {
3434     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3435 root 1.297 EV_INVOKE_PENDING;
3436 root 1.157 }
3437     #endif
3438 root 1.147
3439 root 1.337 #if EV_PREPARE_ENABLE
3440 root 1.170 /* queue prepare watchers (and execute them) */
3441 root 1.40 if (expect_false (preparecnt))
3442 root 1.20 {
3443 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3444 root 1.297 EV_INVOKE_PENDING;
3445 root 1.20 }
3446 root 1.337 #endif
3447 root 1.9
3448 root 1.298 if (expect_false (loop_done))
3449     break;
3450    
3451 root 1.70 /* we might have forked, so reify kernel state if necessary */
3452     if (expect_false (postfork))
3453     loop_fork (EV_A);
3454    
3455 root 1.1 /* update fd-related kernel structures */
3456 root 1.51 fd_reify (EV_A);
3457 root 1.1
3458     /* calculate blocking time */
3459 root 1.135 {
3460 root 1.193 ev_tstamp waittime = 0.;
3461     ev_tstamp sleeptime = 0.;
3462 root 1.12
3463 root 1.353 /* remember old timestamp for io_blocktime calculation */
3464     ev_tstamp prev_mn_now = mn_now;
3465 root 1.293
3466 root 1.353 /* update time to cancel out callback processing overhead */
3467     time_update (EV_A_ 1e100);
3468 root 1.135
3469 root 1.378 /* from now on, we want a pipe-wake-up */
3470     pipe_write_wanted = 1;
3471    
3472 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3473 root 1.383
3474 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3475 root 1.353 {
3476 root 1.287 waittime = MAX_BLOCKTIME;
3477    
3478 root 1.135 if (timercnt)
3479     {
3480 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3481 root 1.193 if (waittime > to) waittime = to;
3482 root 1.135 }
3483 root 1.4
3484 root 1.140 #if EV_PERIODIC_ENABLE
3485 root 1.135 if (periodiccnt)
3486     {
3487 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3488 root 1.193 if (waittime > to) waittime = to;
3489 root 1.135 }
3490 root 1.93 #endif
3491 root 1.4
3492 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3493 root 1.193 if (expect_false (waittime < timeout_blocktime))
3494     waittime = timeout_blocktime;
3495    
3496 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3497     /* to pass a minimum nonzero value to the backend */
3498     if (expect_false (waittime < backend_mintime))
3499     waittime = backend_mintime;
3500    
3501 root 1.293 /* extra check because io_blocktime is commonly 0 */
3502     if (expect_false (io_blocktime))
3503     {
3504     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3505 root 1.193
3506 root 1.376 if (sleeptime > waittime - backend_mintime)
3507     sleeptime = waittime - backend_mintime;
3508 root 1.193
3509 root 1.293 if (expect_true (sleeptime > 0.))
3510     {
3511     ev_sleep (sleeptime);
3512     waittime -= sleeptime;
3513     }
3514 root 1.193 }
3515 root 1.135 }
3516 root 1.1
3517 root 1.338 #if EV_FEATURE_API
3518 root 1.162 ++loop_count;
3519 root 1.297 #endif
3520 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3521 root 1.193 backend_poll (EV_A_ waittime);
3522 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3523 root 1.178
3524 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3525 root 1.378
3526 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3527 root 1.378 if (pipe_write_skipped)
3528     {
3529     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3530     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3531     }
3532    
3533    
3534 root 1.178 /* update ev_rt_now, do magic */
3535 root 1.193 time_update (EV_A_ waittime + sleeptime);
3536 root 1.135 }
3537 root 1.1
3538 root 1.9 /* queue pending timers and reschedule them */
3539 root 1.51 timers_reify (EV_A); /* relative timers called last */
3540 root 1.140 #if EV_PERIODIC_ENABLE
3541 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3542 root 1.93 #endif
3543 root 1.1
3544 root 1.164 #if EV_IDLE_ENABLE
3545 root 1.137 /* queue idle watchers unless other events are pending */
3546 root 1.164 idle_reify (EV_A);
3547     #endif
3548 root 1.9
3549 root 1.337 #if EV_CHECK_ENABLE
3550 root 1.20 /* queue check watchers, to be executed first */
3551 root 1.123 if (expect_false (checkcnt))
3552 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3553 root 1.337 #endif
3554 root 1.9
3555 root 1.297 EV_INVOKE_PENDING;
3556 root 1.1 }
3557 root 1.219 while (expect_true (
3558     activecnt
3559     && !loop_done
3560 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3561 root 1.219 ));
3562 root 1.13
3563 root 1.353 if (loop_done == EVBREAK_ONE)
3564     loop_done = EVBREAK_CANCEL;
3565 root 1.294
3566 root 1.338 #if EV_FEATURE_API
3567 root 1.294 --loop_depth;
3568 root 1.297 #endif
3569 root 1.418
3570     return activecnt;
3571 root 1.51 }
3572    
3573     void
3574 root 1.420 ev_break (EV_P_ int how) EV_THROW
3575 root 1.51 {
3576     loop_done = how;
3577 root 1.1 }
3578    
3579 root 1.285 void
3580 root 1.420 ev_ref (EV_P) EV_THROW
3581 root 1.285 {
3582     ++activecnt;
3583     }
3584    
3585     void
3586 root 1.420 ev_unref (EV_P) EV_THROW
3587 root 1.285 {
3588     --activecnt;
3589     }
3590    
3591     void
3592 root 1.420 ev_now_update (EV_P) EV_THROW
3593 root 1.285 {
3594     time_update (EV_A_ 1e100);
3595     }
3596    
3597     void
3598 root 1.420 ev_suspend (EV_P) EV_THROW
3599 root 1.285 {
3600     ev_now_update (EV_A);
3601     }
3602    
3603     void
3604 root 1.420 ev_resume (EV_P) EV_THROW
3605 root 1.285 {
3606     ev_tstamp mn_prev = mn_now;
3607    
3608     ev_now_update (EV_A);
3609     timers_reschedule (EV_A_ mn_now - mn_prev);
3610 root 1.286 #if EV_PERIODIC_ENABLE
3611 root 1.288 /* TODO: really do this? */
3612 root 1.285 periodics_reschedule (EV_A);
3613 root 1.286 #endif
3614 root 1.285 }
3615    
3616 root 1.8 /*****************************************************************************/
3617 root 1.288 /* singly-linked list management, used when the expected list length is short */
3618 root 1.8
3619 root 1.284 inline_size void
3620 root 1.10 wlist_add (WL *head, WL elem)
3621 root 1.1 {
3622     elem->next = *head;
3623     *head = elem;
3624     }
3625    
3626 root 1.284 inline_size void
3627 root 1.10 wlist_del (WL *head, WL elem)
3628 root 1.1 {
3629     while (*head)
3630     {
3631 root 1.307 if (expect_true (*head == elem))
3632 root 1.1 {
3633     *head = elem->next;
3634 root 1.307 break;
3635 root 1.1 }
3636    
3637     head = &(*head)->next;
3638     }
3639     }
3640    
3641 root 1.288 /* internal, faster, version of ev_clear_pending */
3642 root 1.284 inline_speed void
3643 root 1.166 clear_pending (EV_P_ W w)
3644 root 1.16 {
3645     if (w->pending)
3646     {
3647 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3648 root 1.16 w->pending = 0;
3649     }
3650     }
3651    
3652 root 1.167 int
3653 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3654 root 1.166 {
3655     W w_ = (W)w;
3656     int pending = w_->pending;
3657    
3658 root 1.172 if (expect_true (pending))
3659     {
3660     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3661 root 1.288 p->w = (W)&pending_w;
3662 root 1.172 w_->pending = 0;
3663     return p->events;
3664     }
3665     else
3666 root 1.167 return 0;
3667 root 1.166 }
3668    
3669 root 1.284 inline_size void
3670 root 1.164 pri_adjust (EV_P_ W w)
3671     {
3672 root 1.295 int pri = ev_priority (w);
3673 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3674     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3675 root 1.295 ev_set_priority (w, pri);
3676 root 1.164 }
3677    
3678 root 1.284 inline_speed void
3679 root 1.51 ev_start (EV_P_ W w, int active)
3680 root 1.1 {
3681 root 1.164 pri_adjust (EV_A_ w);
3682 root 1.1 w->active = active;
3683 root 1.51 ev_ref (EV_A);
3684 root 1.1 }
3685    
3686 root 1.284 inline_size void
3687 root 1.51 ev_stop (EV_P_ W w)
3688 root 1.1 {
3689 root 1.51 ev_unref (EV_A);
3690 root 1.1 w->active = 0;
3691     }
3692    
3693 root 1.8 /*****************************************************************************/
3694    
3695 root 1.171 void noinline
3696 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3697 root 1.1 {
3698 root 1.37 int fd = w->fd;
3699    
3700 root 1.123 if (expect_false (ev_is_active (w)))
3701 root 1.1 return;
3702    
3703 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3704 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3705 root 1.33
3706 root 1.248 EV_FREQUENT_CHECK;
3707    
3708 root 1.51 ev_start (EV_A_ (W)w, 1);
3709 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3710 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3711 root 1.1
3712 root 1.426 /* common bug, apparently */
3713     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3714    
3715 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3716 root 1.281 w->events &= ~EV__IOFDSET;
3717 root 1.248
3718     EV_FREQUENT_CHECK;
3719 root 1.1 }
3720    
3721 root 1.171 void noinline
3722 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3723 root 1.1 {
3724 root 1.166 clear_pending (EV_A_ (W)w);
3725 root 1.123 if (expect_false (!ev_is_active (w)))
3726 root 1.1 return;
3727    
3728 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3729 root 1.89
3730 root 1.248 EV_FREQUENT_CHECK;
3731    
3732 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3733 root 1.51 ev_stop (EV_A_ (W)w);
3734 root 1.1
3735 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3736 root 1.248
3737     EV_FREQUENT_CHECK;
3738 root 1.1 }
3739    
3740 root 1.171 void noinline
3741 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3742 root 1.1 {
3743 root 1.123 if (expect_false (ev_is_active (w)))
3744 root 1.1 return;
3745    
3746 root 1.228 ev_at (w) += mn_now;
3747 root 1.12
3748 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3749 root 1.13
3750 root 1.248 EV_FREQUENT_CHECK;
3751    
3752     ++timercnt;
3753     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3754 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3755     ANHE_w (timers [ev_active (w)]) = (WT)w;
3756 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3757 root 1.235 upheap (timers, ev_active (w));
3758 root 1.62
3759 root 1.248 EV_FREQUENT_CHECK;
3760    
3761 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3762 root 1.12 }
3763    
3764 root 1.171 void noinline
3765 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3766 root 1.12 {
3767 root 1.166 clear_pending (EV_A_ (W)w);
3768 root 1.123 if (expect_false (!ev_is_active (w)))
3769 root 1.12 return;
3770    
3771 root 1.248 EV_FREQUENT_CHECK;
3772    
3773 root 1.230 {
3774     int active = ev_active (w);
3775 root 1.62
3776 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3777 root 1.151
3778 root 1.248 --timercnt;
3779    
3780     if (expect_true (active < timercnt + HEAP0))
3781 root 1.151 {
3782 root 1.248 timers [active] = timers [timercnt + HEAP0];
3783 root 1.181 adjustheap (timers, timercnt, active);
3784 root 1.151 }
3785 root 1.248 }
3786 root 1.228
3787     ev_at (w) -= mn_now;
3788 root 1.14
3789 root 1.51 ev_stop (EV_A_ (W)w);
3790 root 1.328
3791     EV_FREQUENT_CHECK;
3792 root 1.12 }
3793 root 1.4
3794 root 1.171 void noinline
3795 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3796 root 1.14 {
3797 root 1.248 EV_FREQUENT_CHECK;
3798    
3799 root 1.407 clear_pending (EV_A_ (W)w);
3800 root 1.406
3801 root 1.14 if (ev_is_active (w))
3802     {
3803     if (w->repeat)
3804 root 1.99 {
3805 root 1.228 ev_at (w) = mn_now + w->repeat;
3806 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3807 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3808 root 1.99 }
3809 root 1.14 else
3810 root 1.51 ev_timer_stop (EV_A_ w);
3811 root 1.14 }
3812     else if (w->repeat)
3813 root 1.112 {
3814 root 1.229 ev_at (w) = w->repeat;
3815 root 1.112 ev_timer_start (EV_A_ w);
3816     }
3817 root 1.248
3818     EV_FREQUENT_CHECK;
3819 root 1.14 }
3820    
3821 root 1.301 ev_tstamp
3822 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3823 root 1.301 {
3824     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3825     }
3826    
3827 root 1.140 #if EV_PERIODIC_ENABLE
3828 root 1.171 void noinline
3829 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3830 root 1.12 {
3831 root 1.123 if (expect_false (ev_is_active (w)))
3832 root 1.12 return;
3833 root 1.1
3834 root 1.77 if (w->reschedule_cb)
3835 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3836 root 1.77 else if (w->interval)
3837     {
3838 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3839 root 1.370 periodic_recalc (EV_A_ w);
3840 root 1.77 }
3841 root 1.173 else
3842 root 1.228 ev_at (w) = w->offset;
3843 root 1.12
3844 root 1.248 EV_FREQUENT_CHECK;
3845    
3846     ++periodiccnt;
3847     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3848 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3849     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3850 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3851 root 1.235 upheap (periodics, ev_active (w));
3852 root 1.62
3853 root 1.248 EV_FREQUENT_CHECK;
3854    
3855 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3856 root 1.1 }
3857    
3858 root 1.171 void noinline
3859 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3860 root 1.1 {
3861 root 1.166 clear_pending (EV_A_ (W)w);
3862 root 1.123 if (expect_false (!ev_is_active (w)))
3863 root 1.1 return;
3864    
3865 root 1.248 EV_FREQUENT_CHECK;
3866    
3867 root 1.230 {
3868     int active = ev_active (w);
3869 root 1.62
3870 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3871 root 1.151
3872 root 1.248 --periodiccnt;
3873    
3874     if (expect_true (active < periodiccnt + HEAP0))
3875 root 1.151 {
3876 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
3877 root 1.181 adjustheap (periodics, periodiccnt, active);
3878 root 1.151 }
3879 root 1.248 }
3880 root 1.228
3881 root 1.328 ev_stop (EV_A_ (W)w);
3882    
3883 root 1.248 EV_FREQUENT_CHECK;
3884 root 1.1 }
3885    
3886 root 1.171 void noinline
3887 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3888 root 1.77 {
3889 root 1.84 /* TODO: use adjustheap and recalculation */
3890 root 1.77 ev_periodic_stop (EV_A_ w);
3891     ev_periodic_start (EV_A_ w);
3892     }
3893 root 1.93 #endif
3894 root 1.77
3895 root 1.56 #ifndef SA_RESTART
3896     # define SA_RESTART 0
3897     #endif
3898    
3899 root 1.336 #if EV_SIGNAL_ENABLE
3900    
3901 root 1.171 void noinline
3902 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3903 root 1.56 {
3904 root 1.123 if (expect_false (ev_is_active (w)))
3905 root 1.56 return;
3906    
3907 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3908    
3909     #if EV_MULTIPLICITY
3910 root 1.308 assert (("libev: a signal must not be attached to two different loops",
3911 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3912    
3913     signals [w->signum - 1].loop = EV_A;
3914 root 1.449 ECB_MEMORY_FENCE_RELEASE;
3915 root 1.306 #endif
3916 root 1.56
3917 root 1.303 EV_FREQUENT_CHECK;
3918    
3919     #if EV_USE_SIGNALFD
3920     if (sigfd == -2)
3921     {
3922     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3923     if (sigfd < 0 && errno == EINVAL)
3924     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3925    
3926     if (sigfd >= 0)
3927     {
3928     fd_intern (sigfd); /* doing it twice will not hurt */
3929    
3930     sigemptyset (&sigfd_set);
3931    
3932     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3933     ev_set_priority (&sigfd_w, EV_MAXPRI);
3934     ev_io_start (EV_A_ &sigfd_w);
3935     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3936     }
3937     }
3938    
3939     if (sigfd >= 0)
3940     {
3941     /* TODO: check .head */
3942     sigaddset (&sigfd_set, w->signum);
3943     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3944 root 1.207
3945 root 1.303 signalfd (sigfd, &sigfd_set, 0);
3946     }
3947 root 1.180 #endif
3948    
3949 root 1.56 ev_start (EV_A_ (W)w, 1);
3950 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
3951 root 1.56
3952 root 1.63 if (!((WL)w)->next)
3953 root 1.304 # if EV_USE_SIGNALFD
3954 root 1.306 if (sigfd < 0) /*TODO*/
3955 root 1.304 # endif
3956 root 1.306 {
3957 root 1.322 # ifdef _WIN32
3958 root 1.317 evpipe_init (EV_A);
3959    
3960 root 1.306 signal (w->signum, ev_sighandler);
3961     # else
3962     struct sigaction sa;
3963    
3964     evpipe_init (EV_A);
3965    
3966     sa.sa_handler = ev_sighandler;
3967     sigfillset (&sa.sa_mask);
3968     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3969     sigaction (w->signum, &sa, 0);
3970    
3971 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
3972     {
3973     sigemptyset (&sa.sa_mask);
3974     sigaddset (&sa.sa_mask, w->signum);
3975     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3976     }
3977 root 1.67 #endif
3978 root 1.306 }
3979 root 1.248
3980     EV_FREQUENT_CHECK;
3981 root 1.56 }
3982    
3983 root 1.171 void noinline
3984 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3985 root 1.56 {
3986 root 1.166 clear_pending (EV_A_ (W)w);
3987 root 1.123 if (expect_false (!ev_is_active (w)))
3988 root 1.56 return;
3989    
3990 root 1.248 EV_FREQUENT_CHECK;
3991    
3992 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
3993 root 1.56 ev_stop (EV_A_ (W)w);
3994    
3995     if (!signals [w->signum - 1].head)
3996 root 1.306 {
3997 root 1.307 #if EV_MULTIPLICITY
3998 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
3999 root 1.307 #endif
4000     #if EV_USE_SIGNALFD
4001 root 1.306 if (sigfd >= 0)
4002     {
4003 root 1.321 sigset_t ss;
4004    
4005     sigemptyset (&ss);
4006     sigaddset (&ss, w->signum);
4007 root 1.306 sigdelset (&sigfd_set, w->signum);
4008 root 1.321
4009 root 1.306 signalfd (sigfd, &sigfd_set, 0);
4010 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
4011 root 1.306 }
4012     else
4013 root 1.307 #endif
4014 root 1.306 signal (w->signum, SIG_DFL);
4015     }
4016 root 1.248
4017     EV_FREQUENT_CHECK;
4018 root 1.56 }
4019    
4020 root 1.336 #endif
4021    
4022     #if EV_CHILD_ENABLE
4023    
4024 root 1.28 void
4025 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
4026 root 1.22 {
4027 root 1.56 #if EV_MULTIPLICITY
4028 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4029 root 1.56 #endif
4030 root 1.123 if (expect_false (ev_is_active (w)))
4031 root 1.22 return;
4032    
4033 root 1.248 EV_FREQUENT_CHECK;
4034    
4035 root 1.51 ev_start (EV_A_ (W)w, 1);
4036 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4037 root 1.248
4038     EV_FREQUENT_CHECK;
4039 root 1.22 }
4040    
4041 root 1.28 void
4042 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
4043 root 1.22 {
4044 root 1.166 clear_pending (EV_A_ (W)w);
4045 root 1.123 if (expect_false (!ev_is_active (w)))
4046 root 1.22 return;
4047    
4048 root 1.248 EV_FREQUENT_CHECK;
4049    
4050 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4051 root 1.51 ev_stop (EV_A_ (W)w);
4052 root 1.248
4053     EV_FREQUENT_CHECK;
4054 root 1.22 }
4055    
4056 root 1.336 #endif
4057    
4058 root 1.140 #if EV_STAT_ENABLE
4059    
4060     # ifdef _WIN32
4061 root 1.146 # undef lstat
4062     # define lstat(a,b) _stati64 (a,b)
4063 root 1.140 # endif
4064    
4065 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4066     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4067     #define MIN_STAT_INTERVAL 0.1074891
4068 root 1.143
4069 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4070 root 1.152
4071     #if EV_USE_INOTIFY
4072 root 1.326
4073     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4074     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4075 root 1.152
4076     static void noinline
4077     infy_add (EV_P_ ev_stat *w)
4078     {
4079 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4080     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4081     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4082     | IN_DONT_FOLLOW | IN_MASK_ADD);
4083 root 1.152
4084 root 1.318 if (w->wd >= 0)
4085 root 1.152 {
4086 root 1.318 struct statfs sfs;
4087    
4088     /* now local changes will be tracked by inotify, but remote changes won't */
4089     /* unless the filesystem is known to be local, we therefore still poll */
4090     /* also do poll on <2.6.25, but with normal frequency */
4091    
4092     if (!fs_2625)
4093     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4094     else if (!statfs (w->path, &sfs)
4095     && (sfs.f_type == 0x1373 /* devfs */
4096 root 1.451 || sfs.f_type == 0x4006 /* fat */
4097     || sfs.f_type == 0x4d44 /* msdos */
4098 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4099 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4100     || sfs.f_type == 0x858458f6 /* ramfs */
4101     || sfs.f_type == 0x5346544e /* ntfs */
4102 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4103 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4104 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4105 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4106 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4107     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4108     else
4109     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4110     }
4111     else
4112     {
4113     /* can't use inotify, continue to stat */
4114 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4115 root 1.152
4116 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4117 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4118 root 1.233 /* but an efficiency issue only */
4119 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4120 root 1.152 {
4121 root 1.153 char path [4096];
4122 root 1.152 strcpy (path, w->path);
4123    
4124     do
4125     {
4126     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4127     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4128    
4129     char *pend = strrchr (path, '/');
4130    
4131 root 1.275 if (!pend || pend == path)
4132     break;
4133 root 1.152
4134     *pend = 0;
4135 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4136 root 1.372 }
4137 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4138     }
4139     }
4140 root 1.275
4141     if (w->wd >= 0)
4142 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4143 root 1.152
4144 root 1.318 /* now re-arm timer, if required */
4145     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4146     ev_timer_again (EV_A_ &w->timer);
4147     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4148 root 1.152 }
4149    
4150     static void noinline
4151     infy_del (EV_P_ ev_stat *w)
4152     {
4153     int slot;
4154     int wd = w->wd;
4155    
4156     if (wd < 0)
4157     return;
4158    
4159     w->wd = -2;
4160 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4161 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4162    
4163     /* remove this watcher, if others are watching it, they will rearm */
4164     inotify_rm_watch (fs_fd, wd);
4165     }
4166    
4167     static void noinline
4168     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4169     {
4170     if (slot < 0)
4171 root 1.264 /* overflow, need to check for all hash slots */
4172 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4173 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4174     else
4175     {
4176     WL w_;
4177    
4178 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4179 root 1.152 {
4180     ev_stat *w = (ev_stat *)w_;
4181     w_ = w_->next; /* lets us remove this watcher and all before it */
4182    
4183     if (w->wd == wd || wd == -1)
4184     {
4185     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4186     {
4187 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4188 root 1.152 w->wd = -1;
4189     infy_add (EV_A_ w); /* re-add, no matter what */
4190     }
4191    
4192 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4193 root 1.152 }
4194     }
4195     }
4196     }
4197    
4198     static void
4199     infy_cb (EV_P_ ev_io *w, int revents)
4200     {
4201     char buf [EV_INOTIFY_BUFSIZE];
4202     int ofs;
4203     int len = read (fs_fd, buf, sizeof (buf));
4204    
4205 root 1.326 for (ofs = 0; ofs < len; )
4206     {
4207     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4208     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4209     ofs += sizeof (struct inotify_event) + ev->len;
4210     }
4211 root 1.152 }
4212    
4213 root 1.379 inline_size void ecb_cold
4214 root 1.330 ev_check_2625 (EV_P)
4215     {
4216     /* kernels < 2.6.25 are borked
4217     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4218     */
4219     if (ev_linux_version () < 0x020619)
4220 root 1.273 return;
4221 root 1.264
4222 root 1.273 fs_2625 = 1;
4223     }
4224 root 1.264
4225 root 1.315 inline_size int
4226     infy_newfd (void)
4227     {
4228 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4229 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4230     if (fd >= 0)
4231     return fd;
4232     #endif
4233     return inotify_init ();
4234     }
4235    
4236 root 1.284 inline_size void
4237 root 1.273 infy_init (EV_P)
4238     {
4239     if (fs_fd != -2)
4240     return;
4241 root 1.264
4242 root 1.273 fs_fd = -1;
4243 root 1.264
4244 root 1.330 ev_check_2625 (EV_A);
4245 root 1.264
4246 root 1.315 fs_fd = infy_newfd ();
4247 root 1.152
4248     if (fs_fd >= 0)
4249     {
4250 root 1.315 fd_intern (fs_fd);
4251 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4252     ev_set_priority (&fs_w, EV_MAXPRI);
4253     ev_io_start (EV_A_ &fs_w);
4254 root 1.317 ev_unref (EV_A);
4255 root 1.152 }
4256     }
4257    
4258 root 1.284 inline_size void
4259 root 1.154 infy_fork (EV_P)
4260     {
4261     int slot;
4262    
4263     if (fs_fd < 0)
4264     return;
4265    
4266 root 1.317 ev_ref (EV_A);
4267 root 1.315 ev_io_stop (EV_A_ &fs_w);
4268 root 1.154 close (fs_fd);
4269 root 1.315 fs_fd = infy_newfd ();
4270    
4271     if (fs_fd >= 0)
4272     {
4273     fd_intern (fs_fd);
4274     ev_io_set (&fs_w, fs_fd, EV_READ);
4275     ev_io_start (EV_A_ &fs_w);
4276 root 1.317 ev_unref (EV_A);
4277 root 1.315 }
4278 root 1.154
4279 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4280 root 1.154 {
4281     WL w_ = fs_hash [slot].head;
4282     fs_hash [slot].head = 0;
4283    
4284     while (w_)
4285     {
4286     ev_stat *w = (ev_stat *)w_;
4287     w_ = w_->next; /* lets us add this watcher */
4288    
4289     w->wd = -1;
4290    
4291     if (fs_fd >= 0)
4292     infy_add (EV_A_ w); /* re-add, no matter what */
4293     else
4294 root 1.318 {
4295     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4296     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4297     ev_timer_again (EV_A_ &w->timer);
4298     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4299     }
4300 root 1.154 }
4301     }
4302     }
4303    
4304 root 1.152 #endif
4305    
4306 root 1.255 #ifdef _WIN32
4307     # define EV_LSTAT(p,b) _stati64 (p, b)
4308     #else
4309     # define EV_LSTAT(p,b) lstat (p, b)
4310     #endif
4311    
4312 root 1.140 void
4313 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4314 root 1.140 {
4315     if (lstat (w->path, &w->attr) < 0)
4316     w->attr.st_nlink = 0;
4317     else if (!w->attr.st_nlink)
4318     w->attr.st_nlink = 1;
4319     }
4320    
4321 root 1.157 static void noinline
4322 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4323     {
4324     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4325    
4326 root 1.320 ev_statdata prev = w->attr;
4327 root 1.140 ev_stat_stat (EV_A_ w);
4328    
4329 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4330     if (
4331 root 1.320 prev.st_dev != w->attr.st_dev
4332     || prev.st_ino != w->attr.st_ino
4333     || prev.st_mode != w->attr.st_mode
4334     || prev.st_nlink != w->attr.st_nlink
4335     || prev.st_uid != w->attr.st_uid
4336     || prev.st_gid != w->attr.st_gid
4337     || prev.st_rdev != w->attr.st_rdev
4338     || prev.st_size != w->attr.st_size
4339     || prev.st_atime != w->attr.st_atime
4340     || prev.st_mtime != w->attr.st_mtime
4341     || prev.st_ctime != w->attr.st_ctime
4342 root 1.156 ) {
4343 root 1.320 /* we only update w->prev on actual differences */
4344     /* in case we test more often than invoke the callback, */
4345     /* to ensure that prev is always different to attr */
4346     w->prev = prev;
4347    
4348 root 1.152 #if EV_USE_INOTIFY
4349 root 1.264 if (fs_fd >= 0)
4350     {
4351     infy_del (EV_A_ w);
4352     infy_add (EV_A_ w);
4353     ev_stat_stat (EV_A_ w); /* avoid race... */
4354     }
4355 root 1.152 #endif
4356    
4357     ev_feed_event (EV_A_ w, EV_STAT);
4358     }
4359 root 1.140 }
4360    
4361     void
4362 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4363 root 1.140 {
4364     if (expect_false (ev_is_active (w)))
4365     return;
4366    
4367     ev_stat_stat (EV_A_ w);
4368    
4369 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4370     w->interval = MIN_STAT_INTERVAL;
4371 root 1.143
4372 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4373 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4374 root 1.152
4375     #if EV_USE_INOTIFY
4376     infy_init (EV_A);
4377    
4378     if (fs_fd >= 0)
4379     infy_add (EV_A_ w);
4380     else
4381     #endif
4382 root 1.318 {
4383     ev_timer_again (EV_A_ &w->timer);
4384     ev_unref (EV_A);
4385     }
4386 root 1.140
4387     ev_start (EV_A_ (W)w, 1);
4388 root 1.248
4389     EV_FREQUENT_CHECK;
4390 root 1.140 }
4391    
4392     void
4393 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4394 root 1.140 {
4395 root 1.166 clear_pending (EV_A_ (W)w);
4396 root 1.140 if (expect_false (!ev_is_active (w)))
4397     return;
4398    
4399 root 1.248 EV_FREQUENT_CHECK;
4400    
4401 root 1.152 #if EV_USE_INOTIFY
4402     infy_del (EV_A_ w);
4403     #endif
4404 root 1.318
4405     if (ev_is_active (&w->timer))
4406     {
4407     ev_ref (EV_A);
4408     ev_timer_stop (EV_A_ &w->timer);
4409     }
4410 root 1.140
4411 root 1.134 ev_stop (EV_A_ (W)w);
4412 root 1.248
4413     EV_FREQUENT_CHECK;
4414 root 1.134 }
4415     #endif
4416    
4417 root 1.164 #if EV_IDLE_ENABLE
4418 root 1.144 void
4419 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4420 root 1.144 {
4421     if (expect_false (ev_is_active (w)))
4422     return;
4423    
4424 root 1.164 pri_adjust (EV_A_ (W)w);
4425    
4426 root 1.248 EV_FREQUENT_CHECK;
4427    
4428 root 1.164 {
4429     int active = ++idlecnt [ABSPRI (w)];
4430    
4431     ++idleall;
4432     ev_start (EV_A_ (W)w, active);
4433    
4434     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4435     idles [ABSPRI (w)][active - 1] = w;
4436     }
4437 root 1.248
4438     EV_FREQUENT_CHECK;
4439 root 1.144 }
4440    
4441     void
4442 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4443 root 1.144 {
4444 root 1.166 clear_pending (EV_A_ (W)w);
4445 root 1.144 if (expect_false (!ev_is_active (w)))
4446     return;
4447    
4448 root 1.248 EV_FREQUENT_CHECK;
4449    
4450 root 1.144 {
4451 root 1.230 int active = ev_active (w);
4452 root 1.164
4453     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4454 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4455 root 1.164
4456     ev_stop (EV_A_ (W)w);
4457     --idleall;
4458 root 1.144 }
4459 root 1.248
4460     EV_FREQUENT_CHECK;
4461 root 1.144 }
4462 root 1.164 #endif
4463 root 1.144
4464 root 1.337 #if EV_PREPARE_ENABLE
4465 root 1.144 void
4466 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4467 root 1.144 {
4468     if (expect_false (ev_is_active (w)))
4469     return;
4470    
4471 root 1.248 EV_FREQUENT_CHECK;
4472    
4473 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4474     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4475     prepares [preparecnt - 1] = w;
4476 root 1.248
4477     EV_FREQUENT_CHECK;
4478 root 1.144 }
4479    
4480     void
4481 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4482 root 1.144 {
4483 root 1.166 clear_pending (EV_A_ (W)w);
4484 root 1.144 if (expect_false (!ev_is_active (w)))
4485     return;
4486    
4487 root 1.248 EV_FREQUENT_CHECK;
4488    
4489 root 1.144 {
4490 root 1.230 int active = ev_active (w);
4491    
4492 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4493 root 1.230 ev_active (prepares [active - 1]) = active;
4494 root 1.144 }
4495    
4496     ev_stop (EV_A_ (W)w);
4497 root 1.248
4498     EV_FREQUENT_CHECK;
4499 root 1.144 }
4500 root 1.337 #endif
4501 root 1.144
4502 root 1.337 #if EV_CHECK_ENABLE
4503 root 1.144 void
4504 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4505 root 1.144 {
4506     if (expect_false (ev_is_active (w)))
4507     return;
4508    
4509 root 1.248 EV_FREQUENT_CHECK;
4510    
4511 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4512     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4513     checks [checkcnt - 1] = w;
4514 root 1.248
4515     EV_FREQUENT_CHECK;
4516 root 1.144 }
4517    
4518     void
4519 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4520 root 1.144 {
4521 root 1.166 clear_pending (EV_A_ (W)w);
4522 root 1.144 if (expect_false (!ev_is_active (w)))
4523     return;
4524    
4525 root 1.248 EV_FREQUENT_CHECK;
4526    
4527 root 1.144 {
4528 root 1.230 int active = ev_active (w);
4529    
4530 root 1.144 checks [active - 1] = checks [--checkcnt];
4531 root 1.230 ev_active (checks [active - 1]) = active;
4532 root 1.144 }
4533    
4534     ev_stop (EV_A_ (W)w);
4535 root 1.248
4536     EV_FREQUENT_CHECK;
4537 root 1.144 }
4538 root 1.337 #endif
4539 root 1.144
4540     #if EV_EMBED_ENABLE
4541     void noinline
4542 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4543 root 1.144 {
4544 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4545 root 1.144 }
4546    
4547     static void
4548 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4549 root 1.144 {
4550     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4551    
4552     if (ev_cb (w))
4553     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4554     else
4555 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4556 root 1.144 }
4557    
4558 root 1.189 static void
4559     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4560     {
4561     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4562    
4563 root 1.195 {
4564 root 1.306 EV_P = w->other;
4565 root 1.195
4566     while (fdchangecnt)
4567     {
4568     fd_reify (EV_A);
4569 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4570 root 1.195 }
4571     }
4572     }
4573    
4574 root 1.261 static void
4575     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4576     {
4577     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4578    
4579 root 1.277 ev_embed_stop (EV_A_ w);
4580    
4581 root 1.261 {
4582 root 1.306 EV_P = w->other;
4583 root 1.261
4584     ev_loop_fork (EV_A);
4585 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4586 root 1.261 }
4587 root 1.277
4588     ev_embed_start (EV_A_ w);
4589 root 1.261 }
4590    
4591 root 1.195 #if 0
4592     static void
4593     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4594     {
4595     ev_idle_stop (EV_A_ idle);
4596 root 1.189 }
4597 root 1.195 #endif
4598 root 1.189
4599 root 1.144 void
4600 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4601 root 1.144 {
4602     if (expect_false (ev_is_active (w)))
4603     return;
4604    
4605     {
4606 root 1.306 EV_P = w->other;
4607 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4608 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4609 root 1.144 }
4610    
4611 root 1.248 EV_FREQUENT_CHECK;
4612    
4613 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4614     ev_io_start (EV_A_ &w->io);
4615    
4616 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4617     ev_set_priority (&w->prepare, EV_MINPRI);
4618     ev_prepare_start (EV_A_ &w->prepare);
4619    
4620 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4621     ev_fork_start (EV_A_ &w->fork);
4622    
4623 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4624    
4625 root 1.144 ev_start (EV_A_ (W)w, 1);
4626 root 1.248
4627     EV_FREQUENT_CHECK;
4628 root 1.144 }
4629    
4630     void
4631 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4632 root 1.144 {
4633 root 1.166 clear_pending (EV_A_ (W)w);
4634 root 1.144 if (expect_false (!ev_is_active (w)))
4635     return;
4636    
4637 root 1.248 EV_FREQUENT_CHECK;
4638    
4639 root 1.261 ev_io_stop (EV_A_ &w->io);
4640 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4641 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4642 root 1.248
4643 root 1.328 ev_stop (EV_A_ (W)w);
4644    
4645 root 1.248 EV_FREQUENT_CHECK;
4646 root 1.144 }
4647     #endif
4648    
4649 root 1.147 #if EV_FORK_ENABLE
4650     void
4651 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4652 root 1.147 {
4653     if (expect_false (ev_is_active (w)))
4654     return;
4655    
4656 root 1.248 EV_FREQUENT_CHECK;
4657    
4658 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4659     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4660     forks [forkcnt - 1] = w;
4661 root 1.248
4662     EV_FREQUENT_CHECK;
4663 root 1.147 }
4664    
4665     void
4666 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4667 root 1.147 {
4668 root 1.166 clear_pending (EV_A_ (W)w);
4669 root 1.147 if (expect_false (!ev_is_active (w)))
4670     return;
4671    
4672 root 1.248 EV_FREQUENT_CHECK;
4673    
4674 root 1.147 {
4675 root 1.230 int active = ev_active (w);
4676    
4677 root 1.147 forks [active - 1] = forks [--forkcnt];
4678 root 1.230 ev_active (forks [active - 1]) = active;
4679 root 1.147 }
4680    
4681     ev_stop (EV_A_ (W)w);
4682 root 1.248
4683     EV_FREQUENT_CHECK;
4684 root 1.147 }
4685     #endif
4686    
4687 root 1.360 #if EV_CLEANUP_ENABLE
4688     void
4689 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4690 root 1.360 {
4691     if (expect_false (ev_is_active (w)))
4692     return;
4693    
4694     EV_FREQUENT_CHECK;
4695    
4696     ev_start (EV_A_ (W)w, ++cleanupcnt);
4697     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4698     cleanups [cleanupcnt - 1] = w;
4699    
4700 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4701     ev_unref (EV_A);
4702 root 1.360 EV_FREQUENT_CHECK;
4703     }
4704    
4705     void
4706 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4707 root 1.360 {
4708     clear_pending (EV_A_ (W)w);
4709     if (expect_false (!ev_is_active (w)))
4710     return;
4711    
4712     EV_FREQUENT_CHECK;
4713 root 1.362 ev_ref (EV_A);
4714 root 1.360
4715     {
4716     int active = ev_active (w);
4717    
4718     cleanups [active - 1] = cleanups [--cleanupcnt];
4719     ev_active (cleanups [active - 1]) = active;
4720     }
4721    
4722     ev_stop (EV_A_ (W)w);
4723    
4724     EV_FREQUENT_CHECK;
4725     }
4726     #endif
4727    
4728 root 1.207 #if EV_ASYNC_ENABLE
4729     void
4730 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4731 root 1.207 {
4732     if (expect_false (ev_is_active (w)))
4733     return;
4734    
4735 root 1.352 w->sent = 0;
4736    
4737 root 1.207 evpipe_init (EV_A);
4738    
4739 root 1.248 EV_FREQUENT_CHECK;
4740    
4741 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4742     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4743     asyncs [asynccnt - 1] = w;
4744 root 1.248
4745     EV_FREQUENT_CHECK;
4746 root 1.207 }
4747    
4748     void
4749 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4750 root 1.207 {
4751     clear_pending (EV_A_ (W)w);
4752     if (expect_false (!ev_is_active (w)))
4753     return;
4754    
4755 root 1.248 EV_FREQUENT_CHECK;
4756    
4757 root 1.207 {
4758 root 1.230 int active = ev_active (w);
4759    
4760 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4761 root 1.230 ev_active (asyncs [active - 1]) = active;
4762 root 1.207 }
4763    
4764     ev_stop (EV_A_ (W)w);
4765 root 1.248
4766     EV_FREQUENT_CHECK;
4767 root 1.207 }
4768    
4769     void
4770 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4771 root 1.207 {
4772     w->sent = 1;
4773 root 1.307 evpipe_write (EV_A_ &async_pending);
4774 root 1.207 }
4775     #endif
4776    
4777 root 1.1 /*****************************************************************************/
4778 root 1.10
4779 root 1.16 struct ev_once
4780     {
4781 root 1.136 ev_io io;
4782     ev_timer to;
4783 root 1.16 void (*cb)(int revents, void *arg);
4784     void *arg;
4785     };
4786    
4787     static void
4788 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4789 root 1.16 {
4790     void (*cb)(int revents, void *arg) = once->cb;
4791     void *arg = once->arg;
4792    
4793 root 1.259 ev_io_stop (EV_A_ &once->io);
4794 root 1.51 ev_timer_stop (EV_A_ &once->to);
4795 root 1.69 ev_free (once);
4796 root 1.16
4797     cb (revents, arg);
4798     }
4799    
4800     static void
4801 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4802 root 1.16 {
4803 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4804    
4805     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4806 root 1.16 }
4807    
4808     static void
4809 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4810 root 1.16 {
4811 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4812    
4813     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4814 root 1.16 }
4815    
4816     void
4817 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4818 root 1.16 {
4819 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4820 root 1.16
4821 root 1.123 if (expect_false (!once))
4822 root 1.16 {
4823 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4824 root 1.123 return;
4825     }
4826    
4827     once->cb = cb;
4828     once->arg = arg;
4829 root 1.16
4830 root 1.123 ev_init (&once->io, once_cb_io);
4831     if (fd >= 0)
4832     {
4833     ev_io_set (&once->io, fd, events);
4834     ev_io_start (EV_A_ &once->io);
4835     }
4836 root 1.16
4837 root 1.123 ev_init (&once->to, once_cb_to);
4838     if (timeout >= 0.)
4839     {
4840     ev_timer_set (&once->to, timeout, 0.);
4841     ev_timer_start (EV_A_ &once->to);
4842 root 1.16 }
4843     }
4844    
4845 root 1.282 /*****************************************************************************/
4846    
4847 root 1.288 #if EV_WALK_ENABLE
4848 root 1.379 void ecb_cold
4849 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4850 root 1.282 {
4851     int i, j;
4852     ev_watcher_list *wl, *wn;
4853    
4854     if (types & (EV_IO | EV_EMBED))
4855     for (i = 0; i < anfdmax; ++i)
4856     for (wl = anfds [i].head; wl; )
4857     {
4858     wn = wl->next;
4859    
4860     #if EV_EMBED_ENABLE
4861     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4862     {
4863     if (types & EV_EMBED)
4864     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4865     }
4866     else
4867     #endif
4868     #if EV_USE_INOTIFY
4869     if (ev_cb ((ev_io *)wl) == infy_cb)
4870     ;
4871     else
4872     #endif
4873 root 1.288 if ((ev_io *)wl != &pipe_w)
4874 root 1.282 if (types & EV_IO)
4875     cb (EV_A_ EV_IO, wl);
4876    
4877     wl = wn;
4878     }
4879    
4880     if (types & (EV_TIMER | EV_STAT))
4881     for (i = timercnt + HEAP0; i-- > HEAP0; )
4882     #if EV_STAT_ENABLE
4883     /*TODO: timer is not always active*/
4884     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4885     {
4886     if (types & EV_STAT)
4887     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4888     }
4889     else
4890     #endif
4891     if (types & EV_TIMER)
4892     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4893    
4894     #if EV_PERIODIC_ENABLE
4895     if (types & EV_PERIODIC)
4896     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4897     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4898     #endif
4899    
4900     #if EV_IDLE_ENABLE
4901     if (types & EV_IDLE)
4902 root 1.390 for (j = NUMPRI; j--; )
4903 root 1.282 for (i = idlecnt [j]; i--; )
4904     cb (EV_A_ EV_IDLE, idles [j][i]);
4905     #endif
4906    
4907     #if EV_FORK_ENABLE
4908     if (types & EV_FORK)
4909     for (i = forkcnt; i--; )
4910     if (ev_cb (forks [i]) != embed_fork_cb)
4911     cb (EV_A_ EV_FORK, forks [i]);
4912     #endif
4913    
4914     #if EV_ASYNC_ENABLE
4915     if (types & EV_ASYNC)
4916     for (i = asynccnt; i--; )
4917     cb (EV_A_ EV_ASYNC, asyncs [i]);
4918     #endif
4919    
4920 root 1.337 #if EV_PREPARE_ENABLE
4921 root 1.282 if (types & EV_PREPARE)
4922     for (i = preparecnt; i--; )
4923 root 1.337 # if EV_EMBED_ENABLE
4924 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
4925 root 1.337 # endif
4926     cb (EV_A_ EV_PREPARE, prepares [i]);
4927 root 1.282 #endif
4928    
4929 root 1.337 #if EV_CHECK_ENABLE
4930 root 1.282 if (types & EV_CHECK)
4931     for (i = checkcnt; i--; )
4932     cb (EV_A_ EV_CHECK, checks [i]);
4933 root 1.337 #endif
4934 root 1.282
4935 root 1.337 #if EV_SIGNAL_ENABLE
4936 root 1.282 if (types & EV_SIGNAL)
4937 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
4938 root 1.282 for (wl = signals [i].head; wl; )
4939     {
4940     wn = wl->next;
4941     cb (EV_A_ EV_SIGNAL, wl);
4942     wl = wn;
4943     }
4944 root 1.337 #endif
4945 root 1.282
4946 root 1.337 #if EV_CHILD_ENABLE
4947 root 1.282 if (types & EV_CHILD)
4948 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
4949 root 1.282 for (wl = childs [i]; wl; )
4950     {
4951     wn = wl->next;
4952     cb (EV_A_ EV_CHILD, wl);
4953     wl = wn;
4954     }
4955 root 1.337 #endif
4956 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
4957     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4958     }
4959     #endif
4960    
4961 root 1.188 #if EV_MULTIPLICITY
4962     #include "ev_wrap.h"
4963     #endif
4964