ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.479
Committed: Sun Dec 20 01:31:17 2015 UTC (8 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: EV-rel-4_22, rel-4_22
Changes since 1.478: +169 -36 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.463 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 root 1.305 #endif
248    
249 root 1.373 #ifndef EV_USE_FLOOR
250     # define EV_USE_FLOOR 0
251     #endif
252    
253 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
254 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 root 1.274 # else
257     # define EV_USE_CLOCK_SYSCALL 0
258     # endif
259     #endif
260    
261 root 1.470 #if !(_POSIX_TIMERS > 0)
262     # ifndef EV_USE_MONOTONIC
263     # define EV_USE_MONOTONIC 0
264     # endif
265     # ifndef EV_USE_REALTIME
266     # define EV_USE_REALTIME 0
267     # endif
268     #endif
269    
270 root 1.29 #ifndef EV_USE_MONOTONIC
271 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
273 root 1.253 # else
274     # define EV_USE_MONOTONIC 0
275     # endif
276 root 1.37 #endif
277    
278 root 1.118 #ifndef EV_USE_REALTIME
279 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280 root 1.118 #endif
281    
282 root 1.193 #ifndef EV_USE_NANOSLEEP
283 root 1.253 # if _POSIX_C_SOURCE >= 199309L
284 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
285 root 1.253 # else
286     # define EV_USE_NANOSLEEP 0
287     # endif
288 root 1.193 #endif
289    
290 root 1.29 #ifndef EV_USE_SELECT
291 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
292 root 1.10 #endif
293    
294 root 1.59 #ifndef EV_USE_POLL
295 root 1.104 # ifdef _WIN32
296     # define EV_USE_POLL 0
297     # else
298 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
299 root 1.104 # endif
300 root 1.41 #endif
301    
302 root 1.29 #ifndef EV_USE_EPOLL
303 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
305 root 1.220 # else
306     # define EV_USE_EPOLL 0
307     # endif
308 root 1.10 #endif
309    
310 root 1.44 #ifndef EV_USE_KQUEUE
311     # define EV_USE_KQUEUE 0
312     #endif
313    
314 root 1.118 #ifndef EV_USE_PORT
315     # define EV_USE_PORT 0
316 root 1.40 #endif
317    
318 root 1.152 #ifndef EV_USE_INOTIFY
319 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
321 root 1.220 # else
322     # define EV_USE_INOTIFY 0
323     # endif
324 root 1.152 #endif
325    
326 root 1.149 #ifndef EV_PID_HASHSIZE
327 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328 root 1.149 #endif
329    
330 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
331 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332 root 1.152 #endif
333    
334 root 1.220 #ifndef EV_USE_EVENTFD
335     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
337 root 1.220 # else
338     # define EV_USE_EVENTFD 0
339     # endif
340     #endif
341    
342 root 1.303 #ifndef EV_USE_SIGNALFD
343 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
345 root 1.303 # else
346     # define EV_USE_SIGNALFD 0
347     # endif
348     #endif
349    
350 root 1.249 #if 0 /* debugging */
351 root 1.250 # define EV_VERIFY 3
352 root 1.249 # define EV_USE_4HEAP 1
353     # define EV_HEAP_CACHE_AT 1
354     #endif
355    
356 root 1.250 #ifndef EV_VERIFY
357 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358 root 1.250 #endif
359    
360 root 1.243 #ifndef EV_USE_4HEAP
361 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
362 root 1.243 #endif
363    
364     #ifndef EV_HEAP_CACHE_AT
365 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366 root 1.243 #endif
367    
368 root 1.452 #ifdef ANDROID
369     /* supposedly, android doesn't typedef fd_mask */
370     # undef EV_USE_SELECT
371     # define EV_USE_SELECT 0
372     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373     # undef EV_USE_CLOCK_SYSCALL
374     # define EV_USE_CLOCK_SYSCALL 0
375     #endif
376    
377     /* aix's poll.h seems to cause lots of trouble */
378     #ifdef _AIX
379     /* AIX has a completely broken poll.h header */
380     # undef EV_USE_POLL
381     # define EV_USE_POLL 0
382     #endif
383    
384 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385     /* which makes programs even slower. might work on other unices, too. */
386     #if EV_USE_CLOCK_SYSCALL
387 root 1.423 # include <sys/syscall.h>
388 root 1.291 # ifdef SYS_clock_gettime
389     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390     # undef EV_USE_MONOTONIC
391     # define EV_USE_MONOTONIC 1
392     # else
393     # undef EV_USE_CLOCK_SYSCALL
394     # define EV_USE_CLOCK_SYSCALL 0
395     # endif
396     #endif
397    
398 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
399 root 1.40
400     #ifndef CLOCK_MONOTONIC
401     # undef EV_USE_MONOTONIC
402     # define EV_USE_MONOTONIC 0
403     #endif
404    
405 root 1.31 #ifndef CLOCK_REALTIME
406 root 1.40 # undef EV_USE_REALTIME
407 root 1.31 # define EV_USE_REALTIME 0
408     #endif
409 root 1.40
410 root 1.152 #if !EV_STAT_ENABLE
411 root 1.185 # undef EV_USE_INOTIFY
412 root 1.152 # define EV_USE_INOTIFY 0
413     #endif
414    
415 root 1.193 #if !EV_USE_NANOSLEEP
416 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
417 root 1.416 # if !defined _WIN32 && !defined __hpux
418 root 1.193 # include <sys/select.h>
419     # endif
420     #endif
421    
422 root 1.152 #if EV_USE_INOTIFY
423 root 1.273 # include <sys/statfs.h>
424 root 1.152 # include <sys/inotify.h>
425 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426     # ifndef IN_DONT_FOLLOW
427     # undef EV_USE_INOTIFY
428     # define EV_USE_INOTIFY 0
429     # endif
430 root 1.152 #endif
431    
432 root 1.220 #if EV_USE_EVENTFD
433     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 root 1.221 # include <stdint.h>
435 root 1.303 # ifndef EFD_NONBLOCK
436     # define EFD_NONBLOCK O_NONBLOCK
437     # endif
438     # ifndef EFD_CLOEXEC
439 root 1.311 # ifdef O_CLOEXEC
440     # define EFD_CLOEXEC O_CLOEXEC
441     # else
442     # define EFD_CLOEXEC 02000000
443     # endif
444 root 1.303 # endif
445 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446 root 1.220 #endif
447    
448 root 1.303 #if EV_USE_SIGNALFD
449 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450     # include <stdint.h>
451     # ifndef SFD_NONBLOCK
452     # define SFD_NONBLOCK O_NONBLOCK
453     # endif
454     # ifndef SFD_CLOEXEC
455     # ifdef O_CLOEXEC
456     # define SFD_CLOEXEC O_CLOEXEC
457     # else
458     # define SFD_CLOEXEC 02000000
459     # endif
460     # endif
461 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462 root 1.314
463     struct signalfd_siginfo
464     {
465     uint32_t ssi_signo;
466     char pad[128 - sizeof (uint32_t)];
467     };
468 root 1.303 #endif
469    
470 root 1.40 /**/
471 root 1.1
472 root 1.250 #if EV_VERIFY >= 3
473 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
474 root 1.248 #else
475     # define EV_FREQUENT_CHECK do { } while (0)
476     #endif
477    
478 root 1.176 /*
479 root 1.373 * This is used to work around floating point rounding problems.
480 root 1.177 * This value is good at least till the year 4000.
481 root 1.176 */
482 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
484 root 1.176
485 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
486 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
487 root 1.1
488 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490 root 1.347
491 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492     /* ECB.H BEGIN */
493     /*
494     * libecb - http://software.schmorp.de/pkg/libecb
495     *
496 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
498     * All rights reserved.
499     *
500     * Redistribution and use in source and binary forms, with or without modifica-
501     * tion, are permitted provided that the following conditions are met:
502     *
503     * 1. Redistributions of source code must retain the above copyright notice,
504     * this list of conditions and the following disclaimer.
505     *
506     * 2. Redistributions in binary form must reproduce the above copyright
507     * notice, this list of conditions and the following disclaimer in the
508     * documentation and/or other materials provided with the distribution.
509     *
510     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519     * OF THE POSSIBILITY OF SUCH DAMAGE.
520 root 1.467 *
521     * Alternatively, the contents of this file may be used under the terms of
522     * the GNU General Public License ("GPL") version 2 or any later version,
523     * in which case the provisions of the GPL are applicable instead of
524     * the above. If you wish to allow the use of your version of this file
525     * only under the terms of the GPL and not to allow others to use your
526     * version of this file under the BSD license, indicate your decision
527     * by deleting the provisions above and replace them with the notice
528     * and other provisions required by the GPL. If you do not delete the
529     * provisions above, a recipient may use your version of this file under
530     * either the BSD or the GPL.
531 root 1.391 */
532    
533     #ifndef ECB_H
534     #define ECB_H
535    
536 root 1.437 /* 16 bits major, 16 bits minor */
537 root 1.479 #define ECB_VERSION 0x00010005
538 root 1.437
539 root 1.391 #ifdef _WIN32
540     typedef signed char int8_t;
541     typedef unsigned char uint8_t;
542     typedef signed short int16_t;
543     typedef unsigned short uint16_t;
544     typedef signed int int32_t;
545     typedef unsigned int uint32_t;
546     #if __GNUC__
547     typedef signed long long int64_t;
548     typedef unsigned long long uint64_t;
549     #else /* _MSC_VER || __BORLANDC__ */
550     typedef signed __int64 int64_t;
551     typedef unsigned __int64 uint64_t;
552     #endif
553 root 1.437 #ifdef _WIN64
554     #define ECB_PTRSIZE 8
555     typedef uint64_t uintptr_t;
556     typedef int64_t intptr_t;
557     #else
558     #define ECB_PTRSIZE 4
559     typedef uint32_t uintptr_t;
560     typedef int32_t intptr_t;
561     #endif
562 root 1.391 #else
563     #include <inttypes.h>
564 root 1.479 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565 root 1.437 #define ECB_PTRSIZE 8
566     #else
567     #define ECB_PTRSIZE 4
568     #endif
569 root 1.391 #endif
570 root 1.379
571 sf-exg 1.475 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573    
574 root 1.454 /* work around x32 idiocy by defining proper macros */
575 sf-exg 1.475 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 root 1.458 #if _ILP32
577 root 1.454 #define ECB_AMD64_X32 1
578     #else
579     #define ECB_AMD64 1
580     #endif
581     #endif
582    
583 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
584     * what their idiot authors think are the "more important" extensions,
585 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
586 root 1.379 * or so.
587     * we try to detect these and simply assume they are not gcc - if they have
588     * an issue with that they should have done it right in the first place.
589     */
590 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591     #define ECB_GCC_VERSION(major,minor) 0
592     #else
593     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594     #endif
595    
596     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597    
598     #if __clang__ && defined __has_builtin
599     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600     #else
601     #define ECB_CLANG_BUILTIN(x) 0
602     #endif
603    
604     #if __clang__ && defined __has_extension
605     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606     #else
607     #define ECB_CLANG_EXTENSION(x) 0
608 root 1.379 #endif
609    
610 root 1.437 #define ECB_CPP (__cplusplus+0)
611     #define ECB_CPP11 (__cplusplus >= 201103L)
612    
613 root 1.450 #if ECB_CPP
614 root 1.464 #define ECB_C 0
615     #define ECB_STDC_VERSION 0
616     #else
617     #define ECB_C 1
618     #define ECB_STDC_VERSION __STDC_VERSION__
619     #endif
620    
621     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623    
624     #if ECB_CPP
625 root 1.450 #define ECB_EXTERN_C extern "C"
626     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627     #define ECB_EXTERN_C_END }
628     #else
629     #define ECB_EXTERN_C extern
630     #define ECB_EXTERN_C_BEG
631     #define ECB_EXTERN_C_END
632     #endif
633    
634 root 1.391 /*****************************************************************************/
635    
636     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638    
639 root 1.410 #if ECB_NO_THREADS
640 root 1.439 #define ECB_NO_SMP 1
641 root 1.410 #endif
642    
643 root 1.437 #if ECB_NO_SMP
644 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
645 root 1.40 #endif
646    
647 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648     #if __xlC__ && ECB_CPP
649     #include <builtins.h>
650     #endif
651    
652 root 1.479 #if 1400 <= _MSC_VER
653     #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654     #endif
655    
656 root 1.383 #ifndef ECB_MEMORY_FENCE
657 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658 root 1.404 #if __i386 || __i386__
659 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 sf-exg 1.475 #elif ECB_GCC_AMD64
663 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
664     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
665     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
668 root 1.479 #elif defined __ARM_ARCH_2__ \
669     || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
670     || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
671     || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
672     || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673     || defined __ARM_ARCH_5TEJ__
674     /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
676 root 1.479 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677     || defined __ARM_ARCH_6T2__
678 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
680 root 1.479 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
682 root 1.464 #elif __aarch64__
683     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
684 root 1.477 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
687     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
688 root 1.417 #elif defined __s390__ || defined __s390x__
689 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690 root 1.417 #elif defined __mips__
691 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694 root 1.419 #elif defined __alpha__
695 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
696     #elif defined __hppa__
697     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
698     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699     #elif defined __ia64__
700     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
701 root 1.457 #elif defined __m68k__
702     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703     #elif defined __m88k__
704     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705     #elif defined __sh__
706     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
707 root 1.383 #endif
708     #endif
709     #endif
710    
711     #ifndef ECB_MEMORY_FENCE
712 root 1.437 #if ECB_GCC_VERSION(4,7)
713 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
714 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
715 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717 root 1.450
718 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
719     /* see comment below (stdatomic.h) about the C11 memory model. */
720     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723 root 1.450
724 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
726 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
727     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
730     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
733     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
735     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737 root 1.417 #elif defined _WIN32
738 root 1.388 #include <WinNT.h>
739 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
740 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741     #include <mbarrier.h>
742     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
743     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
744     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
745 root 1.413 #elif __xlC__
746 root 1.414 #define ECB_MEMORY_FENCE __sync ()
747 root 1.383 #endif
748     #endif
749    
750     #ifndef ECB_MEMORY_FENCE
751 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752     /* we assume that these memory fences work on all variables/all memory accesses, */
753     /* not just C11 atomics and atomic accesses */
754     #include <stdatomic.h>
755 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756     /* any fence other than seq_cst, which isn't very efficient for us. */
757     /* Why that is, we don't know - either the C11 memory model is quite useless */
758     /* for most usages, or gcc and clang have a bug */
759     /* I *currently* lean towards the latter, and inefficiently implement */
760     /* all three of ecb's fences as a seq_cst fence */
761 root 1.464 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762     /* for all __atomic_thread_fence's except seq_cst */
763 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
764     #endif
765     #endif
766    
767     #ifndef ECB_MEMORY_FENCE
768 root 1.392 #if !ECB_AVOID_PTHREADS
769     /*
770     * if you get undefined symbol references to pthread_mutex_lock,
771     * or failure to find pthread.h, then you should implement
772     * the ECB_MEMORY_FENCE operations for your cpu/compiler
773     * OR provide pthread.h and link against the posix thread library
774     * of your system.
775     */
776     #include <pthread.h>
777     #define ECB_NEEDS_PTHREADS 1
778     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779    
780     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782     #endif
783     #endif
784 root 1.383
785 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787 root 1.392 #endif
788    
789 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791     #endif
792    
793 root 1.391 /*****************************************************************************/
794    
795 root 1.474 #if ECB_CPP
796 root 1.391 #define ecb_inline static inline
797     #elif ECB_GCC_VERSION(2,5)
798     #define ecb_inline static __inline__
799     #elif ECB_C99
800     #define ecb_inline static inline
801     #else
802     #define ecb_inline static
803     #endif
804    
805     #if ECB_GCC_VERSION(3,3)
806     #define ecb_restrict __restrict__
807     #elif ECB_C99
808     #define ecb_restrict restrict
809     #else
810     #define ecb_restrict
811     #endif
812    
813     typedef int ecb_bool;
814    
815     #define ECB_CONCAT_(a, b) a ## b
816     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817     #define ECB_STRINGIFY_(a) # a
818     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819 sf-exg 1.475 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820 root 1.391
821     #define ecb_function_ ecb_inline
822    
823 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824     #define ecb_attribute(attrlist) __attribute__ (attrlist)
825 root 1.379 #else
826     #define ecb_attribute(attrlist)
827 root 1.474 #endif
828 root 1.464
829 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830     #define ecb_is_constant(expr) __builtin_constant_p (expr)
831     #else
832 root 1.464 /* possible C11 impl for integral types
833     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835    
836 root 1.379 #define ecb_is_constant(expr) 0
837 root 1.474 #endif
838    
839     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
840     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
841     #else
842 root 1.379 #define ecb_expect(expr,value) (expr)
843 root 1.474 #endif
844    
845     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847     #else
848 root 1.379 #define ecb_prefetch(addr,rw,locality)
849     #endif
850    
851 root 1.391 /* no emulation for ecb_decltype */
852 root 1.474 #if ECB_CPP11
853     // older implementations might have problems with decltype(x)::type, work around it
854     template<class T> struct ecb_decltype_t { typedef T type; };
855     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857     #define ecb_decltype(x) __typeof__ (x)
858 root 1.391 #endif
859    
860 root 1.468 #if _MSC_VER >= 1300
861 root 1.474 #define ecb_deprecated __declspec (deprecated)
862 root 1.468 #else
863     #define ecb_deprecated ecb_attribute ((__deprecated__))
864     #endif
865    
866 root 1.476 #if _MSC_VER >= 1500
867 sf-exg 1.475 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868     #elif ECB_GCC_VERSION(4,5)
869     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870     #else
871     #define ecb_deprecated_message(msg) ecb_deprecated
872     #endif
873    
874     #if _MSC_VER >= 1400
875     #define ecb_noinline __declspec (noinline)
876     #else
877     #define ecb_noinline ecb_attribute ((__noinline__))
878     #endif
879    
880 root 1.379 #define ecb_unused ecb_attribute ((__unused__))
881     #define ecb_const ecb_attribute ((__const__))
882     #define ecb_pure ecb_attribute ((__pure__))
883    
884 root 1.474 #if ECB_C11 || __IBMC_NORETURN
885 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886 root 1.437 #define ecb_noreturn _Noreturn
887 sf-exg 1.475 #elif ECB_CPP11
888     #define ecb_noreturn [[noreturn]]
889     #elif _MSC_VER >= 1200
890     /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891     #define ecb_noreturn __declspec (noreturn)
892 root 1.437 #else
893     #define ecb_noreturn ecb_attribute ((__noreturn__))
894     #endif
895    
896 root 1.379 #if ECB_GCC_VERSION(4,3)
897     #define ecb_artificial ecb_attribute ((__artificial__))
898     #define ecb_hot ecb_attribute ((__hot__))
899     #define ecb_cold ecb_attribute ((__cold__))
900     #else
901     #define ecb_artificial
902     #define ecb_hot
903     #define ecb_cold
904     #endif
905    
906     /* put around conditional expressions if you are very sure that the */
907     /* expression is mostly true or mostly false. note that these return */
908     /* booleans, not the expression. */
909     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
910     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
911 root 1.391 /* for compatibility to the rest of the world */
912     #define ecb_likely(expr) ecb_expect_true (expr)
913     #define ecb_unlikely(expr) ecb_expect_false (expr)
914    
915     /* count trailing zero bits and count # of one bits */
916 root 1.474 #if ECB_GCC_VERSION(3,4) \
917     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919     && ECB_CLANG_BUILTIN(__builtin_popcount))
920 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
922     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
923     #define ecb_ctz32(x) __builtin_ctz (x)
924     #define ecb_ctz64(x) __builtin_ctzll (x)
925     #define ecb_popcount32(x) __builtin_popcount (x)
926     /* no popcountll */
927     #else
928 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929     ecb_function_ ecb_const int
930 root 1.391 ecb_ctz32 (uint32_t x)
931     {
932 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933     unsigned long r;
934     _BitScanForward (&r, x);
935     return (int)r;
936     #else
937 root 1.391 int r = 0;
938    
939     x &= ~x + 1; /* this isolates the lowest bit */
940    
941     #if ECB_branchless_on_i386
942     r += !!(x & 0xaaaaaaaa) << 0;
943     r += !!(x & 0xcccccccc) << 1;
944     r += !!(x & 0xf0f0f0f0) << 2;
945     r += !!(x & 0xff00ff00) << 3;
946     r += !!(x & 0xffff0000) << 4;
947     #else
948     if (x & 0xaaaaaaaa) r += 1;
949     if (x & 0xcccccccc) r += 2;
950     if (x & 0xf0f0f0f0) r += 4;
951     if (x & 0xff00ff00) r += 8;
952     if (x & 0xffff0000) r += 16;
953     #endif
954    
955     return r;
956 root 1.479 #endif
957 root 1.391 }
958    
959 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960     ecb_function_ ecb_const int
961 root 1.391 ecb_ctz64 (uint64_t x)
962     {
963 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964     unsigned long r;
965     _BitScanForward64 (&r, x);
966     return (int)r;
967     #else
968     int shift = x & 0xffffffff ? 0 : 32;
969 root 1.391 return ecb_ctz32 (x >> shift) + shift;
970 root 1.479 #endif
971 root 1.391 }
972    
973 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974     ecb_function_ ecb_const int
975 root 1.391 ecb_popcount32 (uint32_t x)
976     {
977     x -= (x >> 1) & 0x55555555;
978     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979     x = ((x >> 4) + x) & 0x0f0f0f0f;
980     x *= 0x01010101;
981    
982     return x >> 24;
983     }
984    
985 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
986     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987 root 1.391 {
988 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989     unsigned long r;
990     _BitScanReverse (&r, x);
991     return (int)r;
992     #else
993 root 1.391 int r = 0;
994    
995     if (x >> 16) { x >>= 16; r += 16; }
996     if (x >> 8) { x >>= 8; r += 8; }
997     if (x >> 4) { x >>= 4; r += 4; }
998     if (x >> 2) { x >>= 2; r += 2; }
999     if (x >> 1) { r += 1; }
1000    
1001     return r;
1002 root 1.479 #endif
1003 root 1.391 }
1004    
1005 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1006     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007 root 1.391 {
1008 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009     unsigned long r;
1010     _BitScanReverse64 (&r, x);
1011     return (int)r;
1012     #else
1013 root 1.391 int r = 0;
1014    
1015     if (x >> 32) { x >>= 32; r += 32; }
1016    
1017     return r + ecb_ld32 (x);
1018 root 1.479 #endif
1019 root 1.391 }
1020     #endif
1021    
1022 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1023     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1025     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026 root 1.437
1027 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1028     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1029 root 1.403 {
1030     return ( (x * 0x0802U & 0x22110U)
1031 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032 root 1.403 }
1033    
1034 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1035     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036 root 1.403 {
1037     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1038     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1039     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1040     x = ( x >> 8 ) | ( x << 8);
1041    
1042     return x;
1043     }
1044    
1045 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1046     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047 root 1.403 {
1048     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1049     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1050     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1051     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1052     x = ( x >> 16 ) | ( x << 16);
1053    
1054     return x;
1055     }
1056    
1057 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1058     /* so for this version we are lazy */
1059 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060     ecb_function_ ecb_const int
1061 root 1.391 ecb_popcount64 (uint64_t x)
1062     {
1063     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064     }
1065    
1066 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1067     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1068     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074    
1075     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1076     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1077     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1078     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1079     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1080     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1081     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1082     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083 root 1.391
1084 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085 root 1.476 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086     #define ecb_bswap16(x) __builtin_bswap16 (x)
1087     #else
1088 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089 root 1.476 #endif
1090 root 1.391 #define ecb_bswap32(x) __builtin_bswap32 (x)
1091     #define ecb_bswap64(x) __builtin_bswap64 (x)
1092 root 1.476 #elif _MSC_VER
1093     #include <stdlib.h>
1094     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1096     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097 root 1.391 #else
1098 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099     ecb_function_ ecb_const uint16_t
1100 root 1.391 ecb_bswap16 (uint16_t x)
1101     {
1102     return ecb_rotl16 (x, 8);
1103     }
1104    
1105 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106     ecb_function_ ecb_const uint32_t
1107 root 1.391 ecb_bswap32 (uint32_t x)
1108     {
1109     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110     }
1111    
1112 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113     ecb_function_ ecb_const uint64_t
1114 root 1.391 ecb_bswap64 (uint64_t x)
1115     {
1116     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117     }
1118     #endif
1119    
1120 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1122     #else
1123     /* this seems to work fine, but gcc always emits a warning for it :/ */
1124 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1125     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126 root 1.391 #endif
1127    
1128     /* try to tell the compiler that some condition is definitely true */
1129 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130 root 1.391
1131 root 1.479 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132     ecb_inline ecb_const uint32_t
1133 root 1.391 ecb_byteorder_helper (void)
1134     {
1135 root 1.450 /* the union code still generates code under pressure in gcc, */
1136     /* but less than using pointers, and always seems to */
1137     /* successfully return a constant. */
1138     /* the reason why we have this horrible preprocessor mess */
1139     /* is to avoid it in all cases, at least on common architectures */
1140     /* or when using a recent enough gcc version (>= 4.6) */
1141 root 1.479 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143     #define ECB_LITTLE_ENDIAN 1
1144     return 0x44332211;
1145     #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146     || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147     #define ECB_BIG_ENDIAN 1
1148     return 0x11223344;
1149 root 1.450 #else
1150     union
1151     {
1152 root 1.479 uint8_t c[4];
1153     uint32_t u;
1154     } u = { 0x11, 0x22, 0x33, 0x44 };
1155     return u.u;
1156 root 1.450 #endif
1157 root 1.391 }
1158    
1159 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1160 root 1.479 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1161 root 1.474 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1162 root 1.479 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163 root 1.391
1164     #if ECB_GCC_VERSION(3,0) || ECB_C99
1165     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166     #else
1167     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168     #endif
1169    
1170 root 1.474 #if ECB_CPP
1171 root 1.398 template<typename T>
1172     static inline T ecb_div_rd (T val, T div)
1173     {
1174     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1175     }
1176     template<typename T>
1177     static inline T ecb_div_ru (T val, T div)
1178     {
1179     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1180     }
1181     #else
1182     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1183     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1184     #endif
1185    
1186 root 1.391 #if ecb_cplusplus_does_not_suck
1187     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188     template<typename T, int N>
1189     static inline int ecb_array_length (const T (&arr)[N])
1190     {
1191     return N;
1192     }
1193     #else
1194     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195     #endif
1196    
1197 root 1.479 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198     ecb_function_ ecb_const uint32_t
1199     ecb_binary16_to_binary32 (uint32_t x)
1200     {
1201     unsigned int s = (x & 0x8000) << (31 - 15);
1202     int e = (x >> 10) & 0x001f;
1203     unsigned int m = x & 0x03ff;
1204    
1205     if (ecb_expect_false (e == 31))
1206     /* infinity or NaN */
1207     e = 255 - (127 - 15);
1208     else if (ecb_expect_false (!e))
1209     {
1210     if (ecb_expect_true (!m))
1211     /* zero, handled by code below by forcing e to 0 */
1212     e = 0 - (127 - 15);
1213     else
1214     {
1215     /* subnormal, renormalise */
1216     unsigned int s = 10 - ecb_ld32 (m);
1217    
1218     m = (m << s) & 0x3ff; /* mask implicit bit */
1219     e -= s - 1;
1220     }
1221     }
1222    
1223     /* e and m now are normalised, or zero, (or inf or nan) */
1224     e += 127 - 15;
1225    
1226     return s | (e << 23) | (m << (23 - 10));
1227     }
1228    
1229     ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230     ecb_function_ ecb_const uint16_t
1231     ecb_binary32_to_binary16 (uint32_t x)
1232     {
1233     unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234     unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235     unsigned int m = x & 0x007fffff;
1236    
1237     x &= 0x7fffffff;
1238    
1239     /* if it's within range of binary16 normals, use fast path */
1240     if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241     {
1242     /* mantissa round-to-even */
1243     m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244    
1245     /* handle overflow */
1246     if (ecb_expect_false (m >= 0x00800000))
1247     {
1248     m >>= 1;
1249     e += 1;
1250     }
1251    
1252     return s | (e << 10) | (m >> (23 - 10));
1253     }
1254    
1255     /* handle large numbers and infinity */
1256     if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257     return s | 0x7c00;
1258    
1259     /* handle zero, subnormals and small numbers */
1260     if (ecb_expect_true (x < 0x38800000))
1261     {
1262     /* zero */
1263     if (ecb_expect_true (!x))
1264     return s;
1265    
1266     /* handle subnormals */
1267    
1268     /* too small, will be zero */
1269     if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270     return s;
1271    
1272     m |= 0x00800000; /* make implicit bit explicit */
1273    
1274     /* very tricky - we need to round to the nearest e (+10) bit value */
1275     {
1276     unsigned int bits = 14 - e;
1277     unsigned int half = (1 << (bits - 1)) - 1;
1278     unsigned int even = (m >> bits) & 1;
1279    
1280     /* if this overflows, we will end up with a normalised number */
1281     m = (m + half + even) >> bits;
1282     }
1283    
1284     return s | m;
1285     }
1286    
1287     /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288     m >>= 13;
1289    
1290     return s | 0x7c00 | m | !m;
1291     }
1292    
1293 root 1.450 /*******************************************************************************/
1294     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295    
1296     /* basically, everything uses "ieee pure-endian" floating point numbers */
1297     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298     #if 0 \
1299     || __i386 || __i386__ \
1300 sf-exg 1.475 || ECB_GCC_AMD64 \
1301 root 1.450 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302     || defined __s390__ || defined __s390x__ \
1303     || defined __mips__ \
1304     || defined __alpha__ \
1305     || defined __hppa__ \
1306     || defined __ia64__ \
1307 root 1.457 || defined __m68k__ \
1308     || defined __m88k__ \
1309     || defined __sh__ \
1310 sf-exg 1.475 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312 root 1.466 || defined __aarch64__
1313 root 1.450 #define ECB_STDFP 1
1314     #include <string.h> /* for memcpy */
1315     #else
1316     #define ECB_STDFP 0
1317     #endif
1318    
1319     #ifndef ECB_NO_LIBM
1320    
1321 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322    
1323 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1324     #ifdef INFINITY
1325     #define ECB_INFINITY INFINITY
1326     #else
1327     #define ECB_INFINITY HUGE_VAL
1328     #endif
1329    
1330     #ifdef NAN
1331 root 1.458 #define ECB_NAN NAN
1332     #else
1333 root 1.462 #define ECB_NAN ECB_INFINITY
1334 root 1.458 #endif
1335    
1336 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338 root 1.476 #define ecb_frexpf(x,e) frexpf ((x), (e))
1339 root 1.474 #else
1340 root 1.476 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342 root 1.474 #endif
1343    
1344 root 1.450 /* convert a float to ieee single/binary32 */
1345 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346     ecb_function_ ecb_const uint32_t
1347 root 1.450 ecb_float_to_binary32 (float x)
1348     {
1349     uint32_t r;
1350    
1351     #if ECB_STDFP
1352     memcpy (&r, &x, 4);
1353     #else
1354     /* slow emulation, works for anything but -0 */
1355     uint32_t m;
1356     int e;
1357    
1358     if (x == 0e0f ) return 0x00000000U;
1359     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361     if (x != x ) return 0x7fbfffffU;
1362    
1363 root 1.476 m = ecb_frexpf (x, &e) * 0x1000000U;
1364 root 1.450
1365     r = m & 0x80000000U;
1366    
1367     if (r)
1368     m = -m;
1369    
1370     if (e <= -126)
1371     {
1372     m &= 0xffffffU;
1373     m >>= (-125 - e);
1374     e = -126;
1375     }
1376    
1377     r |= (e + 126) << 23;
1378     r |= m & 0x7fffffU;
1379     #endif
1380    
1381     return r;
1382     }
1383    
1384     /* converts an ieee single/binary32 to a float */
1385 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386     ecb_function_ ecb_const float
1387 root 1.450 ecb_binary32_to_float (uint32_t x)
1388     {
1389     float r;
1390    
1391     #if ECB_STDFP
1392     memcpy (&r, &x, 4);
1393     #else
1394     /* emulation, only works for normals and subnormals and +0 */
1395     int neg = x >> 31;
1396     int e = (x >> 23) & 0xffU;
1397    
1398     x &= 0x7fffffU;
1399    
1400     if (e)
1401     x |= 0x800000U;
1402     else
1403     e = 1;
1404    
1405     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407 root 1.450
1408     r = neg ? -r : r;
1409     #endif
1410    
1411     return r;
1412     }
1413    
1414     /* convert a double to ieee double/binary64 */
1415 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416     ecb_function_ ecb_const uint64_t
1417 root 1.450 ecb_double_to_binary64 (double x)
1418     {
1419     uint64_t r;
1420    
1421     #if ECB_STDFP
1422     memcpy (&r, &x, 8);
1423     #else
1424     /* slow emulation, works for anything but -0 */
1425     uint64_t m;
1426     int e;
1427    
1428     if (x == 0e0 ) return 0x0000000000000000U;
1429     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431     if (x != x ) return 0X7ff7ffffffffffffU;
1432    
1433     m = frexp (x, &e) * 0x20000000000000U;
1434    
1435     r = m & 0x8000000000000000;;
1436    
1437     if (r)
1438     m = -m;
1439    
1440     if (e <= -1022)
1441     {
1442     m &= 0x1fffffffffffffU;
1443     m >>= (-1021 - e);
1444     e = -1022;
1445     }
1446    
1447     r |= ((uint64_t)(e + 1022)) << 52;
1448     r |= m & 0xfffffffffffffU;
1449     #endif
1450    
1451     return r;
1452     }
1453    
1454     /* converts an ieee double/binary64 to a double */
1455 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456     ecb_function_ ecb_const double
1457 root 1.450 ecb_binary64_to_double (uint64_t x)
1458     {
1459     double r;
1460    
1461     #if ECB_STDFP
1462     memcpy (&r, &x, 8);
1463     #else
1464     /* emulation, only works for normals and subnormals and +0 */
1465     int neg = x >> 63;
1466     int e = (x >> 52) & 0x7ffU;
1467    
1468     x &= 0xfffffffffffffU;
1469    
1470     if (e)
1471     x |= 0x10000000000000U;
1472     else
1473     e = 1;
1474    
1475     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477    
1478     r = neg ? -r : r;
1479     #endif
1480    
1481     return r;
1482     }
1483    
1484 root 1.479 /* convert a float to ieee half/binary16 */
1485     ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486     ecb_function_ ecb_const uint16_t
1487     ecb_float_to_binary16 (float x)
1488     {
1489     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490     }
1491    
1492     /* convert an ieee half/binary16 to float */
1493     ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494     ecb_function_ ecb_const float
1495     ecb_binary16_to_float (uint16_t x)
1496     {
1497     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498     }
1499    
1500 root 1.450 #endif
1501    
1502 root 1.391 #endif
1503    
1504     /* ECB.H END */
1505 root 1.379
1506 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1508 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1509     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1511 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1512     * which will then provide the memory fences.
1513     */
1514     # error "memory fences not defined for your architecture, please report"
1515     #endif
1516    
1517     #ifndef ECB_MEMORY_FENCE
1518     # define ECB_MEMORY_FENCE do { } while (0)
1519     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1520     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1521 root 1.392 #endif
1522    
1523 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1524     #define expect_true(cond) ecb_expect_true (cond)
1525     #define noinline ecb_noinline
1526    
1527     #define inline_size ecb_inline
1528 root 1.169
1529 root 1.338 #if EV_FEATURE_CODE
1530 root 1.379 # define inline_speed ecb_inline
1531 root 1.338 #else
1532 root 1.169 # define inline_speed static noinline
1533     #endif
1534 root 1.40
1535 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1536    
1537     #if EV_MINPRI == EV_MAXPRI
1538     # define ABSPRI(w) (((W)w), 0)
1539     #else
1540     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1541     #endif
1542 root 1.42
1543 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1544 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1545 root 1.103
1546 root 1.136 typedef ev_watcher *W;
1547     typedef ev_watcher_list *WL;
1548     typedef ev_watcher_time *WT;
1549 root 1.10
1550 root 1.229 #define ev_active(w) ((W)(w))->active
1551 root 1.228 #define ev_at(w) ((WT)(w))->at
1552    
1553 root 1.279 #if EV_USE_REALTIME
1554 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1555 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1556 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1557     #endif
1558    
1559     #if EV_USE_MONOTONIC
1560 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1561 root 1.198 #endif
1562 root 1.54
1563 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1564     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1565     #endif
1566     #ifndef EV_WIN32_HANDLE_TO_FD
1567 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1568 root 1.313 #endif
1569     #ifndef EV_WIN32_CLOSE_FD
1570     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1571     #endif
1572    
1573 root 1.103 #ifdef _WIN32
1574 root 1.98 # include "ev_win32.c"
1575     #endif
1576 root 1.67
1577 root 1.53 /*****************************************************************************/
1578 root 1.1
1579 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1580    
1581     #if EV_USE_FLOOR
1582     # include <math.h>
1583     # define ev_floor(v) floor (v)
1584     #else
1585    
1586     #include <float.h>
1587    
1588     /* a floor() replacement function, should be independent of ev_tstamp type */
1589     static ev_tstamp noinline
1590     ev_floor (ev_tstamp v)
1591     {
1592     /* the choice of shift factor is not terribly important */
1593     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1594     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1595     #else
1596     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1597     #endif
1598    
1599     /* argument too large for an unsigned long? */
1600     if (expect_false (v >= shift))
1601     {
1602     ev_tstamp f;
1603    
1604     if (v == v - 1.)
1605     return v; /* very large number */
1606    
1607     f = shift * ev_floor (v * (1. / shift));
1608     return f + ev_floor (v - f);
1609     }
1610    
1611     /* special treatment for negative args? */
1612     if (expect_false (v < 0.))
1613     {
1614     ev_tstamp f = -ev_floor (-v);
1615    
1616     return f - (f == v ? 0 : 1);
1617     }
1618    
1619     /* fits into an unsigned long */
1620     return (unsigned long)v;
1621     }
1622    
1623     #endif
1624    
1625     /*****************************************************************************/
1626    
1627 root 1.356 #ifdef __linux
1628     # include <sys/utsname.h>
1629     #endif
1630    
1631 root 1.379 static unsigned int noinline ecb_cold
1632 root 1.355 ev_linux_version (void)
1633     {
1634     #ifdef __linux
1635 root 1.359 unsigned int v = 0;
1636 root 1.355 struct utsname buf;
1637     int i;
1638     char *p = buf.release;
1639    
1640     if (uname (&buf))
1641     return 0;
1642    
1643     for (i = 3+1; --i; )
1644     {
1645     unsigned int c = 0;
1646    
1647     for (;;)
1648     {
1649     if (*p >= '0' && *p <= '9')
1650     c = c * 10 + *p++ - '0';
1651     else
1652     {
1653     p += *p == '.';
1654     break;
1655     }
1656     }
1657    
1658     v = (v << 8) | c;
1659     }
1660    
1661     return v;
1662     #else
1663     return 0;
1664     #endif
1665     }
1666    
1667     /*****************************************************************************/
1668    
1669 root 1.331 #if EV_AVOID_STDIO
1670 root 1.379 static void noinline ecb_cold
1671 root 1.331 ev_printerr (const char *msg)
1672     {
1673     write (STDERR_FILENO, msg, strlen (msg));
1674     }
1675     #endif
1676    
1677 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1678 root 1.69
1679 root 1.379 void ecb_cold
1680 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1681 root 1.69 {
1682     syserr_cb = cb;
1683     }
1684    
1685 root 1.379 static void noinline ecb_cold
1686 root 1.269 ev_syserr (const char *msg)
1687 root 1.69 {
1688 root 1.70 if (!msg)
1689     msg = "(libev) system error";
1690    
1691 root 1.69 if (syserr_cb)
1692 root 1.70 syserr_cb (msg);
1693 root 1.69 else
1694     {
1695 root 1.330 #if EV_AVOID_STDIO
1696 root 1.331 ev_printerr (msg);
1697     ev_printerr (": ");
1698 root 1.365 ev_printerr (strerror (errno));
1699 root 1.331 ev_printerr ("\n");
1700 root 1.330 #else
1701 root 1.70 perror (msg);
1702 root 1.330 #endif
1703 root 1.69 abort ();
1704     }
1705     }
1706    
1707 root 1.224 static void *
1708 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1709 root 1.224 {
1710     /* some systems, notably openbsd and darwin, fail to properly
1711 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1712 root 1.224 * the single unix specification, so work around them here.
1713 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1714     * despite documenting it otherwise.
1715 root 1.224 */
1716 root 1.333
1717 root 1.224 if (size)
1718     return realloc (ptr, size);
1719    
1720     free (ptr);
1721     return 0;
1722     }
1723    
1724 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1725 root 1.69
1726 root 1.379 void ecb_cold
1727 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1728 root 1.69 {
1729     alloc = cb;
1730     }
1731    
1732 root 1.150 inline_speed void *
1733 root 1.155 ev_realloc (void *ptr, long size)
1734 root 1.69 {
1735 root 1.224 ptr = alloc (ptr, size);
1736 root 1.69
1737     if (!ptr && size)
1738     {
1739 root 1.330 #if EV_AVOID_STDIO
1740 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1741 root 1.330 #else
1742 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1743 root 1.330 #endif
1744 root 1.69 abort ();
1745     }
1746    
1747     return ptr;
1748     }
1749    
1750     #define ev_malloc(size) ev_realloc (0, (size))
1751     #define ev_free(ptr) ev_realloc ((ptr), 0)
1752    
1753     /*****************************************************************************/
1754    
1755 root 1.298 /* set in reify when reification needed */
1756     #define EV_ANFD_REIFY 1
1757    
1758 root 1.288 /* file descriptor info structure */
1759 root 1.53 typedef struct
1760     {
1761 root 1.68 WL head;
1762 root 1.288 unsigned char events; /* the events watched for */
1763 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1764 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1765 root 1.269 unsigned char unused;
1766     #if EV_USE_EPOLL
1767 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1768 root 1.269 #endif
1769 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1770 root 1.103 SOCKET handle;
1771     #endif
1772 root 1.357 #if EV_USE_IOCP
1773     OVERLAPPED or, ow;
1774     #endif
1775 root 1.53 } ANFD;
1776 root 1.1
1777 root 1.288 /* stores the pending event set for a given watcher */
1778 root 1.53 typedef struct
1779     {
1780     W w;
1781 root 1.288 int events; /* the pending event set for the given watcher */
1782 root 1.53 } ANPENDING;
1783 root 1.51
1784 root 1.155 #if EV_USE_INOTIFY
1785 root 1.241 /* hash table entry per inotify-id */
1786 root 1.152 typedef struct
1787     {
1788     WL head;
1789 root 1.155 } ANFS;
1790 root 1.152 #endif
1791    
1792 root 1.241 /* Heap Entry */
1793     #if EV_HEAP_CACHE_AT
1794 root 1.288 /* a heap element */
1795 root 1.241 typedef struct {
1796 root 1.243 ev_tstamp at;
1797 root 1.241 WT w;
1798     } ANHE;
1799    
1800 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1801     #define ANHE_at(he) (he).at /* access cached at, read-only */
1802     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1803 root 1.241 #else
1804 root 1.288 /* a heap element */
1805 root 1.241 typedef WT ANHE;
1806    
1807 root 1.248 #define ANHE_w(he) (he)
1808     #define ANHE_at(he) (he)->at
1809     #define ANHE_at_cache(he)
1810 root 1.241 #endif
1811    
1812 root 1.55 #if EV_MULTIPLICITY
1813 root 1.54
1814 root 1.80 struct ev_loop
1815     {
1816 root 1.86 ev_tstamp ev_rt_now;
1817 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1818 root 1.80 #define VAR(name,decl) decl;
1819     #include "ev_vars.h"
1820     #undef VAR
1821     };
1822     #include "ev_wrap.h"
1823    
1824 root 1.116 static struct ev_loop default_loop_struct;
1825 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1826 root 1.54
1827 root 1.53 #else
1828 root 1.54
1829 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1830 root 1.80 #define VAR(name,decl) static decl;
1831     #include "ev_vars.h"
1832     #undef VAR
1833    
1834 root 1.116 static int ev_default_loop_ptr;
1835 root 1.54
1836 root 1.51 #endif
1837 root 1.1
1838 root 1.338 #if EV_FEATURE_API
1839 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1840     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1841 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1842     #else
1843 root 1.298 # define EV_RELEASE_CB (void)0
1844     # define EV_ACQUIRE_CB (void)0
1845 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1846     #endif
1847    
1848 root 1.353 #define EVBREAK_RECURSE 0x80
1849 root 1.298
1850 root 1.8 /*****************************************************************************/
1851    
1852 root 1.292 #ifndef EV_HAVE_EV_TIME
1853 root 1.141 ev_tstamp
1854 root 1.420 ev_time (void) EV_THROW
1855 root 1.1 {
1856 root 1.29 #if EV_USE_REALTIME
1857 root 1.279 if (expect_true (have_realtime))
1858     {
1859     struct timespec ts;
1860     clock_gettime (CLOCK_REALTIME, &ts);
1861     return ts.tv_sec + ts.tv_nsec * 1e-9;
1862     }
1863     #endif
1864    
1865 root 1.1 struct timeval tv;
1866     gettimeofday (&tv, 0);
1867     return tv.tv_sec + tv.tv_usec * 1e-6;
1868     }
1869 root 1.292 #endif
1870 root 1.1
1871 root 1.284 inline_size ev_tstamp
1872 root 1.1 get_clock (void)
1873     {
1874 root 1.29 #if EV_USE_MONOTONIC
1875 root 1.40 if (expect_true (have_monotonic))
1876 root 1.1 {
1877     struct timespec ts;
1878     clock_gettime (CLOCK_MONOTONIC, &ts);
1879     return ts.tv_sec + ts.tv_nsec * 1e-9;
1880     }
1881     #endif
1882    
1883     return ev_time ();
1884     }
1885    
1886 root 1.85 #if EV_MULTIPLICITY
1887 root 1.51 ev_tstamp
1888 root 1.420 ev_now (EV_P) EV_THROW
1889 root 1.51 {
1890 root 1.85 return ev_rt_now;
1891 root 1.51 }
1892 root 1.85 #endif
1893 root 1.51
1894 root 1.193 void
1895 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1896 root 1.193 {
1897     if (delay > 0.)
1898     {
1899     #if EV_USE_NANOSLEEP
1900     struct timespec ts;
1901    
1902 root 1.348 EV_TS_SET (ts, delay);
1903 root 1.193 nanosleep (&ts, 0);
1904 root 1.416 #elif defined _WIN32
1905 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1906 root 1.193 #else
1907     struct timeval tv;
1908    
1909 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1910 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1911 root 1.257 /* by older ones */
1912 sf-exg 1.349 EV_TV_SET (tv, delay);
1913 root 1.193 select (0, 0, 0, 0, &tv);
1914     #endif
1915     }
1916     }
1917    
1918     /*****************************************************************************/
1919    
1920 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1921 root 1.232
1922 root 1.288 /* find a suitable new size for the given array, */
1923 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1924 root 1.284 inline_size int
1925 root 1.163 array_nextsize (int elem, int cur, int cnt)
1926     {
1927     int ncur = cur + 1;
1928    
1929     do
1930     ncur <<= 1;
1931     while (cnt > ncur);
1932    
1933 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1934 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1935 root 1.163 {
1936     ncur *= elem;
1937 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1938 root 1.163 ncur = ncur - sizeof (void *) * 4;
1939     ncur /= elem;
1940     }
1941    
1942     return ncur;
1943     }
1944    
1945 root 1.379 static void * noinline ecb_cold
1946 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1947     {
1948     *cur = array_nextsize (elem, *cur, cnt);
1949     return ev_realloc (base, elem * *cur);
1950     }
1951 root 1.29
1952 root 1.265 #define array_init_zero(base,count) \
1953     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1954    
1955 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1956 root 1.163 if (expect_false ((cnt) > (cur))) \
1957 root 1.69 { \
1958 sf-exg 1.382 int ecb_unused ocur_ = (cur); \
1959 root 1.163 (base) = (type *)array_realloc \
1960     (sizeof (type), (base), &(cur), (cnt)); \
1961     init ((base) + (ocur_), (cur) - ocur_); \
1962 root 1.1 }
1963    
1964 root 1.163 #if 0
1965 root 1.74 #define array_slim(type,stem) \
1966 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1967     { \
1968     stem ## max = array_roundsize (stem ## cnt >> 1); \
1969 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1970 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1971     }
1972 root 1.163 #endif
1973 root 1.67
1974 root 1.65 #define array_free(stem, idx) \
1975 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1976 root 1.65
1977 root 1.8 /*****************************************************************************/
1978    
1979 root 1.288 /* dummy callback for pending events */
1980     static void noinline
1981     pendingcb (EV_P_ ev_prepare *w, int revents)
1982     {
1983     }
1984    
1985 root 1.140 void noinline
1986 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1987 root 1.1 {
1988 root 1.78 W w_ = (W)w;
1989 root 1.171 int pri = ABSPRI (w_);
1990 root 1.78
1991 root 1.123 if (expect_false (w_->pending))
1992 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
1993     else
1994 root 1.32 {
1995 root 1.171 w_->pending = ++pendingcnt [pri];
1996     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1997     pendings [pri][w_->pending - 1].w = w_;
1998     pendings [pri][w_->pending - 1].events = revents;
1999 root 1.32 }
2000 root 1.425
2001     pendingpri = NUMPRI - 1;
2002 root 1.1 }
2003    
2004 root 1.284 inline_speed void
2005     feed_reverse (EV_P_ W w)
2006     {
2007     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2008     rfeeds [rfeedcnt++] = w;
2009     }
2010    
2011     inline_size void
2012     feed_reverse_done (EV_P_ int revents)
2013     {
2014     do
2015     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2016     while (rfeedcnt);
2017     }
2018    
2019     inline_speed void
2020 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
2021 root 1.27 {
2022     int i;
2023    
2024     for (i = 0; i < eventcnt; ++i)
2025 root 1.78 ev_feed_event (EV_A_ events [i], type);
2026 root 1.27 }
2027    
2028 root 1.141 /*****************************************************************************/
2029    
2030 root 1.284 inline_speed void
2031 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
2032 root 1.1 {
2033     ANFD *anfd = anfds + fd;
2034 root 1.136 ev_io *w;
2035 root 1.1
2036 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2037 root 1.1 {
2038 root 1.79 int ev = w->events & revents;
2039 root 1.1
2040     if (ev)
2041 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
2042 root 1.1 }
2043     }
2044    
2045 root 1.298 /* do not submit kernel events for fds that have reify set */
2046     /* because that means they changed while we were polling for new events */
2047     inline_speed void
2048     fd_event (EV_P_ int fd, int revents)
2049     {
2050     ANFD *anfd = anfds + fd;
2051    
2052     if (expect_true (!anfd->reify))
2053 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2054 root 1.298 }
2055    
2056 root 1.79 void
2057 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
2058 root 1.79 {
2059 root 1.168 if (fd >= 0 && fd < anfdmax)
2060 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2061 root 1.79 }
2062    
2063 root 1.288 /* make sure the external fd watch events are in-sync */
2064     /* with the kernel/libev internal state */
2065 root 1.284 inline_size void
2066 root 1.51 fd_reify (EV_P)
2067 root 1.9 {
2068     int i;
2069    
2070 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2071     for (i = 0; i < fdchangecnt; ++i)
2072     {
2073     int fd = fdchanges [i];
2074     ANFD *anfd = anfds + fd;
2075    
2076 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
2077 root 1.371 {
2078     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2079    
2080     if (handle != anfd->handle)
2081     {
2082     unsigned long arg;
2083    
2084     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2085    
2086     /* handle changed, but fd didn't - we need to do it in two steps */
2087     backend_modify (EV_A_ fd, anfd->events, 0);
2088     anfd->events = 0;
2089     anfd->handle = handle;
2090     }
2091     }
2092     }
2093     #endif
2094    
2095 root 1.27 for (i = 0; i < fdchangecnt; ++i)
2096     {
2097     int fd = fdchanges [i];
2098     ANFD *anfd = anfds + fd;
2099 root 1.136 ev_io *w;
2100 root 1.27
2101 root 1.350 unsigned char o_events = anfd->events;
2102     unsigned char o_reify = anfd->reify;
2103 root 1.27
2104 root 1.350 anfd->reify = 0;
2105 root 1.27
2106 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2107     {
2108     anfd->events = 0;
2109 root 1.184
2110 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2111     anfd->events |= (unsigned char)w->events;
2112 root 1.27
2113 root 1.351 if (o_events != anfd->events)
2114 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
2115     }
2116    
2117     if (o_reify & EV__IOFDSET)
2118     backend_modify (EV_A_ fd, o_events, anfd->events);
2119 root 1.27 }
2120    
2121     fdchangecnt = 0;
2122     }
2123    
2124 root 1.288 /* something about the given fd changed */
2125 root 1.284 inline_size void
2126 root 1.183 fd_change (EV_P_ int fd, int flags)
2127 root 1.27 {
2128 root 1.183 unsigned char reify = anfds [fd].reify;
2129 root 1.184 anfds [fd].reify |= flags;
2130 root 1.27
2131 root 1.183 if (expect_true (!reify))
2132     {
2133     ++fdchangecnt;
2134     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
2135     fdchanges [fdchangecnt - 1] = fd;
2136     }
2137 root 1.9 }
2138    
2139 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2140 root 1.379 inline_speed void ecb_cold
2141 root 1.51 fd_kill (EV_P_ int fd)
2142 root 1.41 {
2143 root 1.136 ev_io *w;
2144 root 1.41
2145 root 1.136 while ((w = (ev_io *)anfds [fd].head))
2146 root 1.41 {
2147 root 1.51 ev_io_stop (EV_A_ w);
2148 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2149 root 1.41 }
2150     }
2151    
2152 root 1.336 /* check whether the given fd is actually valid, for error recovery */
2153 root 1.379 inline_size int ecb_cold
2154 root 1.71 fd_valid (int fd)
2155     {
2156 root 1.103 #ifdef _WIN32
2157 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2158 root 1.71 #else
2159     return fcntl (fd, F_GETFD) != -1;
2160     #endif
2161     }
2162    
2163 root 1.19 /* called on EBADF to verify fds */
2164 root 1.379 static void noinline ecb_cold
2165 root 1.51 fd_ebadf (EV_P)
2166 root 1.19 {
2167     int fd;
2168    
2169     for (fd = 0; fd < anfdmax; ++fd)
2170 root 1.27 if (anfds [fd].events)
2171 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2172 root 1.51 fd_kill (EV_A_ fd);
2173 root 1.41 }
2174    
2175     /* called on ENOMEM in select/poll to kill some fds and retry */
2176 root 1.379 static void noinline ecb_cold
2177 root 1.51 fd_enomem (EV_P)
2178 root 1.41 {
2179 root 1.62 int fd;
2180 root 1.41
2181 root 1.62 for (fd = anfdmax; fd--; )
2182 root 1.41 if (anfds [fd].events)
2183     {
2184 root 1.51 fd_kill (EV_A_ fd);
2185 root 1.307 break;
2186 root 1.41 }
2187 root 1.19 }
2188    
2189 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2190 root 1.140 static void noinline
2191 root 1.56 fd_rearm_all (EV_P)
2192     {
2193     int fd;
2194    
2195     for (fd = 0; fd < anfdmax; ++fd)
2196     if (anfds [fd].events)
2197     {
2198     anfds [fd].events = 0;
2199 root 1.268 anfds [fd].emask = 0;
2200 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2201 root 1.56 }
2202     }
2203    
2204 root 1.336 /* used to prepare libev internal fd's */
2205     /* this is not fork-safe */
2206     inline_speed void
2207     fd_intern (int fd)
2208     {
2209     #ifdef _WIN32
2210     unsigned long arg = 1;
2211     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2212     #else
2213     fcntl (fd, F_SETFD, FD_CLOEXEC);
2214     fcntl (fd, F_SETFL, O_NONBLOCK);
2215     #endif
2216     }
2217    
2218 root 1.8 /*****************************************************************************/
2219    
2220 root 1.235 /*
2221 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2222 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2223     * the branching factor of the d-tree.
2224     */
2225    
2226     /*
2227 root 1.235 * at the moment we allow libev the luxury of two heaps,
2228     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2229     * which is more cache-efficient.
2230     * the difference is about 5% with 50000+ watchers.
2231     */
2232 root 1.241 #if EV_USE_4HEAP
2233 root 1.235
2234 root 1.237 #define DHEAP 4
2235     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2236 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2237 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2238 root 1.235
2239     /* away from the root */
2240 root 1.284 inline_speed void
2241 root 1.241 downheap (ANHE *heap, int N, int k)
2242 root 1.235 {
2243 root 1.241 ANHE he = heap [k];
2244     ANHE *E = heap + N + HEAP0;
2245 root 1.235
2246     for (;;)
2247     {
2248     ev_tstamp minat;
2249 root 1.241 ANHE *minpos;
2250 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2251 root 1.235
2252 root 1.248 /* find minimum child */
2253 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
2254 root 1.235 {
2255 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2256     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2257     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2258     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2259 root 1.235 }
2260 root 1.240 else if (pos < E)
2261 root 1.235 {
2262 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2263     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2264     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2265     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2266 root 1.235 }
2267 root 1.240 else
2268     break;
2269 root 1.235
2270 root 1.241 if (ANHE_at (he) <= minat)
2271 root 1.235 break;
2272    
2273 root 1.247 heap [k] = *minpos;
2274 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2275 root 1.235
2276     k = minpos - heap;
2277     }
2278    
2279 root 1.247 heap [k] = he;
2280 root 1.241 ev_active (ANHE_w (he)) = k;
2281 root 1.235 }
2282    
2283 root 1.248 #else /* 4HEAP */
2284 root 1.235
2285     #define HEAP0 1
2286 root 1.247 #define HPARENT(k) ((k) >> 1)
2287 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2288 root 1.235
2289 root 1.248 /* away from the root */
2290 root 1.284 inline_speed void
2291 root 1.248 downheap (ANHE *heap, int N, int k)
2292 root 1.1 {
2293 root 1.241 ANHE he = heap [k];
2294 root 1.1
2295 root 1.228 for (;;)
2296 root 1.1 {
2297 root 1.248 int c = k << 1;
2298 root 1.179
2299 root 1.309 if (c >= N + HEAP0)
2300 root 1.179 break;
2301    
2302 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2303     ? 1 : 0;
2304    
2305     if (ANHE_at (he) <= ANHE_at (heap [c]))
2306     break;
2307    
2308     heap [k] = heap [c];
2309 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2310 root 1.248
2311     k = c;
2312 root 1.1 }
2313    
2314 root 1.243 heap [k] = he;
2315 root 1.248 ev_active (ANHE_w (he)) = k;
2316 root 1.1 }
2317 root 1.248 #endif
2318 root 1.1
2319 root 1.248 /* towards the root */
2320 root 1.284 inline_speed void
2321 root 1.248 upheap (ANHE *heap, int k)
2322 root 1.1 {
2323 root 1.241 ANHE he = heap [k];
2324 root 1.1
2325 root 1.179 for (;;)
2326 root 1.1 {
2327 root 1.248 int p = HPARENT (k);
2328 root 1.179
2329 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2330 root 1.179 break;
2331 root 1.1
2332 root 1.248 heap [k] = heap [p];
2333 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2334 root 1.248 k = p;
2335 root 1.1 }
2336    
2337 root 1.241 heap [k] = he;
2338     ev_active (ANHE_w (he)) = k;
2339 root 1.1 }
2340    
2341 root 1.288 /* move an element suitably so it is in a correct place */
2342 root 1.284 inline_size void
2343 root 1.241 adjustheap (ANHE *heap, int N, int k)
2344 root 1.84 {
2345 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2346 root 1.247 upheap (heap, k);
2347     else
2348     downheap (heap, N, k);
2349 root 1.84 }
2350    
2351 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2352 root 1.284 inline_size void
2353 root 1.248 reheap (ANHE *heap, int N)
2354     {
2355     int i;
2356 root 1.251
2357 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2358     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2359     for (i = 0; i < N; ++i)
2360     upheap (heap, i + HEAP0);
2361     }
2362    
2363 root 1.8 /*****************************************************************************/
2364    
2365 root 1.288 /* associate signal watchers to a signal signal */
2366 root 1.7 typedef struct
2367     {
2368 root 1.307 EV_ATOMIC_T pending;
2369 root 1.306 #if EV_MULTIPLICITY
2370     EV_P;
2371     #endif
2372 root 1.68 WL head;
2373 root 1.7 } ANSIG;
2374    
2375 root 1.306 static ANSIG signals [EV_NSIG - 1];
2376 root 1.7
2377 root 1.207 /*****************************************************************************/
2378    
2379 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2380 root 1.207
2381 root 1.379 static void noinline ecb_cold
2382 root 1.207 evpipe_init (EV_P)
2383     {
2384 root 1.288 if (!ev_is_active (&pipe_w))
2385 root 1.207 {
2386 root 1.448 int fds [2];
2387    
2388 root 1.336 # if EV_USE_EVENTFD
2389 root 1.448 fds [0] = -1;
2390     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2391     if (fds [1] < 0 && errno == EINVAL)
2392     fds [1] = eventfd (0, 0);
2393    
2394     if (fds [1] < 0)
2395     # endif
2396     {
2397     while (pipe (fds))
2398     ev_syserr ("(libev) error creating signal/async pipe");
2399    
2400     fd_intern (fds [0]);
2401 root 1.220 }
2402 root 1.448
2403     evpipe [0] = fds [0];
2404    
2405     if (evpipe [1] < 0)
2406     evpipe [1] = fds [1]; /* first call, set write fd */
2407 root 1.220 else
2408     {
2409 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2410     /* so that evpipe_write can always rely on its value. */
2411     /* this branch does not do anything sensible on windows, */
2412     /* so must not be executed on windows */
2413 root 1.207
2414 root 1.448 dup2 (fds [1], evpipe [1]);
2415     close (fds [1]);
2416 root 1.220 }
2417 root 1.207
2418 root 1.455 fd_intern (evpipe [1]);
2419    
2420 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2421 root 1.288 ev_io_start (EV_A_ &pipe_w);
2422 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2423 root 1.207 }
2424     }
2425    
2426 root 1.380 inline_speed void
2427 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2428 root 1.207 {
2429 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2430    
2431 root 1.383 if (expect_true (*flag))
2432 root 1.387 return;
2433 root 1.383
2434     *flag = 1;
2435 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2436 root 1.383
2437     pipe_write_skipped = 1;
2438 root 1.378
2439 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2440 root 1.214
2441 root 1.383 if (pipe_write_wanted)
2442     {
2443     int old_errno;
2444 root 1.378
2445 root 1.436 pipe_write_skipped = 0;
2446     ECB_MEMORY_FENCE_RELEASE;
2447 root 1.220
2448 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2449 root 1.380
2450 root 1.220 #if EV_USE_EVENTFD
2451 root 1.448 if (evpipe [0] < 0)
2452 root 1.383 {
2453     uint64_t counter = 1;
2454 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2455 root 1.383 }
2456     else
2457 root 1.220 #endif
2458 root 1.383 {
2459 root 1.427 #ifdef _WIN32
2460     WSABUF buf;
2461     DWORD sent;
2462     buf.buf = &buf;
2463     buf.len = 1;
2464     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2465     #else
2466 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2467 root 1.427 #endif
2468 root 1.383 }
2469 root 1.214
2470 root 1.383 errno = old_errno;
2471 root 1.207 }
2472     }
2473    
2474 root 1.288 /* called whenever the libev signal pipe */
2475     /* got some events (signal, async) */
2476 root 1.207 static void
2477     pipecb (EV_P_ ev_io *iow, int revents)
2478     {
2479 root 1.307 int i;
2480    
2481 root 1.378 if (revents & EV_READ)
2482     {
2483 root 1.220 #if EV_USE_EVENTFD
2484 root 1.448 if (evpipe [0] < 0)
2485 root 1.378 {
2486     uint64_t counter;
2487 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2488 root 1.378 }
2489     else
2490 root 1.220 #endif
2491 root 1.378 {
2492 root 1.427 char dummy[4];
2493     #ifdef _WIN32
2494     WSABUF buf;
2495     DWORD recvd;
2496 root 1.432 DWORD flags = 0;
2497 root 1.427 buf.buf = dummy;
2498     buf.len = sizeof (dummy);
2499 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2500 root 1.427 #else
2501     read (evpipe [0], &dummy, sizeof (dummy));
2502     #endif
2503 root 1.378 }
2504 root 1.220 }
2505 root 1.207
2506 root 1.378 pipe_write_skipped = 0;
2507    
2508 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2509    
2510 root 1.369 #if EV_SIGNAL_ENABLE
2511 root 1.307 if (sig_pending)
2512 root 1.372 {
2513 root 1.307 sig_pending = 0;
2514 root 1.207
2515 root 1.436 ECB_MEMORY_FENCE;
2516 root 1.424
2517 root 1.307 for (i = EV_NSIG - 1; i--; )
2518     if (expect_false (signals [i].pending))
2519     ev_feed_signal_event (EV_A_ i + 1);
2520 root 1.207 }
2521 root 1.369 #endif
2522 root 1.207
2523 root 1.209 #if EV_ASYNC_ENABLE
2524 root 1.307 if (async_pending)
2525 root 1.207 {
2526 root 1.307 async_pending = 0;
2527 root 1.207
2528 root 1.436 ECB_MEMORY_FENCE;
2529 root 1.424
2530 root 1.207 for (i = asynccnt; i--; )
2531     if (asyncs [i]->sent)
2532     {
2533     asyncs [i]->sent = 0;
2534 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2535 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2536     }
2537     }
2538 root 1.209 #endif
2539 root 1.207 }
2540    
2541     /*****************************************************************************/
2542    
2543 root 1.366 void
2544 root 1.420 ev_feed_signal (int signum) EV_THROW
2545 root 1.7 {
2546 root 1.207 #if EV_MULTIPLICITY
2547 root 1.453 EV_P;
2548 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2549 root 1.453 EV_A = signals [signum - 1].loop;
2550 root 1.366
2551     if (!EV_A)
2552     return;
2553 root 1.207 #endif
2554    
2555 root 1.366 signals [signum - 1].pending = 1;
2556     evpipe_write (EV_A_ &sig_pending);
2557     }
2558    
2559     static void
2560     ev_sighandler (int signum)
2561     {
2562 root 1.322 #ifdef _WIN32
2563 root 1.218 signal (signum, ev_sighandler);
2564 root 1.67 #endif
2565    
2566 root 1.366 ev_feed_signal (signum);
2567 root 1.7 }
2568    
2569 root 1.140 void noinline
2570 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2571 root 1.79 {
2572 root 1.80 WL w;
2573    
2574 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2575 root 1.307 return;
2576    
2577     --signum;
2578    
2579 root 1.79 #if EV_MULTIPLICITY
2580 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2581     /* or, likely more useful, feeding a signal nobody is waiting for */
2582 root 1.79
2583 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2584 root 1.306 return;
2585 root 1.307 #endif
2586 root 1.306
2587 root 1.307 signals [signum].pending = 0;
2588 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2589 root 1.79
2590     for (w = signals [signum].head; w; w = w->next)
2591     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2592     }
2593    
2594 root 1.303 #if EV_USE_SIGNALFD
2595     static void
2596     sigfdcb (EV_P_ ev_io *iow, int revents)
2597     {
2598 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2599 root 1.303
2600     for (;;)
2601     {
2602     ssize_t res = read (sigfd, si, sizeof (si));
2603    
2604     /* not ISO-C, as res might be -1, but works with SuS */
2605     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2606     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2607    
2608     if (res < (ssize_t)sizeof (si))
2609     break;
2610     }
2611     }
2612     #endif
2613    
2614 root 1.336 #endif
2615    
2616 root 1.8 /*****************************************************************************/
2617    
2618 root 1.336 #if EV_CHILD_ENABLE
2619 root 1.182 static WL childs [EV_PID_HASHSIZE];
2620 root 1.71
2621 root 1.136 static ev_signal childev;
2622 root 1.59
2623 root 1.206 #ifndef WIFCONTINUED
2624     # define WIFCONTINUED(status) 0
2625     #endif
2626    
2627 root 1.288 /* handle a single child status event */
2628 root 1.284 inline_speed void
2629 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2630 root 1.47 {
2631 root 1.136 ev_child *w;
2632 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2633 root 1.47
2634 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2635 root 1.206 {
2636     if ((w->pid == pid || !w->pid)
2637     && (!traced || (w->flags & 1)))
2638     {
2639 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2640 root 1.206 w->rpid = pid;
2641     w->rstatus = status;
2642     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2643     }
2644     }
2645 root 1.47 }
2646    
2647 root 1.142 #ifndef WCONTINUED
2648     # define WCONTINUED 0
2649     #endif
2650    
2651 root 1.288 /* called on sigchld etc., calls waitpid */
2652 root 1.47 static void
2653 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2654 root 1.22 {
2655     int pid, status;
2656    
2657 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2658     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2659     if (!WCONTINUED
2660     || errno != EINVAL
2661     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2662     return;
2663    
2664 root 1.216 /* make sure we are called again until all children have been reaped */
2665 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2666     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2667 root 1.47
2668 root 1.216 child_reap (EV_A_ pid, pid, status);
2669 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2670 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2671 root 1.22 }
2672    
2673 root 1.45 #endif
2674    
2675 root 1.22 /*****************************************************************************/
2676    
2677 root 1.357 #if EV_USE_IOCP
2678     # include "ev_iocp.c"
2679     #endif
2680 root 1.118 #if EV_USE_PORT
2681     # include "ev_port.c"
2682     #endif
2683 root 1.44 #if EV_USE_KQUEUE
2684     # include "ev_kqueue.c"
2685     #endif
2686 root 1.29 #if EV_USE_EPOLL
2687 root 1.1 # include "ev_epoll.c"
2688     #endif
2689 root 1.59 #if EV_USE_POLL
2690 root 1.41 # include "ev_poll.c"
2691     #endif
2692 root 1.29 #if EV_USE_SELECT
2693 root 1.1 # include "ev_select.c"
2694     #endif
2695    
2696 root 1.379 int ecb_cold
2697 root 1.420 ev_version_major (void) EV_THROW
2698 root 1.24 {
2699     return EV_VERSION_MAJOR;
2700     }
2701    
2702 root 1.379 int ecb_cold
2703 root 1.420 ev_version_minor (void) EV_THROW
2704 root 1.24 {
2705     return EV_VERSION_MINOR;
2706     }
2707    
2708 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2709 root 1.379 int inline_size ecb_cold
2710 root 1.51 enable_secure (void)
2711 root 1.41 {
2712 root 1.103 #ifdef _WIN32
2713 root 1.49 return 0;
2714     #else
2715 root 1.41 return getuid () != geteuid ()
2716     || getgid () != getegid ();
2717 root 1.49 #endif
2718 root 1.41 }
2719    
2720 root 1.379 unsigned int ecb_cold
2721 root 1.420 ev_supported_backends (void) EV_THROW
2722 root 1.129 {
2723 root 1.130 unsigned int flags = 0;
2724 root 1.129
2725     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2726     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2727     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2728     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2729     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2730    
2731     return flags;
2732     }
2733    
2734 root 1.379 unsigned int ecb_cold
2735 root 1.420 ev_recommended_backends (void) EV_THROW
2736 root 1.1 {
2737 root 1.131 unsigned int flags = ev_supported_backends ();
2738 root 1.129
2739     #ifndef __NetBSD__
2740     /* kqueue is borked on everything but netbsd apparently */
2741     /* it usually doesn't work correctly on anything but sockets and pipes */
2742     flags &= ~EVBACKEND_KQUEUE;
2743     #endif
2744     #ifdef __APPLE__
2745 root 1.278 /* only select works correctly on that "unix-certified" platform */
2746     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2747     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2748 root 1.129 #endif
2749 root 1.342 #ifdef __FreeBSD__
2750     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2751     #endif
2752 root 1.129
2753     return flags;
2754 root 1.51 }
2755    
2756 root 1.379 unsigned int ecb_cold
2757 root 1.420 ev_embeddable_backends (void) EV_THROW
2758 root 1.134 {
2759 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2760    
2761 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2762 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2763     flags &= ~EVBACKEND_EPOLL;
2764 root 1.196
2765     return flags;
2766 root 1.134 }
2767    
2768     unsigned int
2769 root 1.420 ev_backend (EV_P) EV_THROW
2770 root 1.130 {
2771     return backend;
2772     }
2773    
2774 root 1.338 #if EV_FEATURE_API
2775 root 1.162 unsigned int
2776 root 1.420 ev_iteration (EV_P) EV_THROW
2777 root 1.162 {
2778     return loop_count;
2779     }
2780    
2781 root 1.294 unsigned int
2782 root 1.420 ev_depth (EV_P) EV_THROW
2783 root 1.294 {
2784     return loop_depth;
2785     }
2786    
2787 root 1.193 void
2788 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2789 root 1.193 {
2790     io_blocktime = interval;
2791     }
2792    
2793     void
2794 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2795 root 1.193 {
2796     timeout_blocktime = interval;
2797     }
2798    
2799 root 1.297 void
2800 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2801 root 1.297 {
2802     userdata = data;
2803     }
2804    
2805     void *
2806 root 1.420 ev_userdata (EV_P) EV_THROW
2807 root 1.297 {
2808     return userdata;
2809     }
2810    
2811 root 1.379 void
2812 root 1.461 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2813 root 1.297 {
2814     invoke_cb = invoke_pending_cb;
2815     }
2816    
2817 root 1.379 void
2818 root 1.473 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2819 root 1.297 {
2820 root 1.298 release_cb = release;
2821     acquire_cb = acquire;
2822 root 1.297 }
2823     #endif
2824    
2825 root 1.288 /* initialise a loop structure, must be zero-initialised */
2826 root 1.379 static void noinline ecb_cold
2827 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2828 root 1.51 {
2829 root 1.130 if (!backend)
2830 root 1.23 {
2831 root 1.366 origflags = flags;
2832    
2833 root 1.279 #if EV_USE_REALTIME
2834     if (!have_realtime)
2835     {
2836     struct timespec ts;
2837    
2838     if (!clock_gettime (CLOCK_REALTIME, &ts))
2839     have_realtime = 1;
2840     }
2841     #endif
2842    
2843 root 1.29 #if EV_USE_MONOTONIC
2844 root 1.279 if (!have_monotonic)
2845     {
2846     struct timespec ts;
2847    
2848     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2849     have_monotonic = 1;
2850     }
2851 root 1.1 #endif
2852    
2853 root 1.306 /* pid check not overridable via env */
2854     #ifndef _WIN32
2855     if (flags & EVFLAG_FORKCHECK)
2856     curpid = getpid ();
2857     #endif
2858    
2859     if (!(flags & EVFLAG_NOENV)
2860     && !enable_secure ()
2861     && getenv ("LIBEV_FLAGS"))
2862     flags = atoi (getenv ("LIBEV_FLAGS"));
2863    
2864 root 1.378 ev_rt_now = ev_time ();
2865     mn_now = get_clock ();
2866     now_floor = mn_now;
2867     rtmn_diff = ev_rt_now - mn_now;
2868 root 1.338 #if EV_FEATURE_API
2869 root 1.378 invoke_cb = ev_invoke_pending;
2870 root 1.297 #endif
2871 root 1.1
2872 root 1.378 io_blocktime = 0.;
2873     timeout_blocktime = 0.;
2874     backend = 0;
2875     backend_fd = -1;
2876     sig_pending = 0;
2877 root 1.307 #if EV_ASYNC_ENABLE
2878 root 1.378 async_pending = 0;
2879 root 1.307 #endif
2880 root 1.378 pipe_write_skipped = 0;
2881     pipe_write_wanted = 0;
2882 root 1.448 evpipe [0] = -1;
2883     evpipe [1] = -1;
2884 root 1.209 #if EV_USE_INOTIFY
2885 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2886 root 1.209 #endif
2887 root 1.303 #if EV_USE_SIGNALFD
2888 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2889 root 1.303 #endif
2890 root 1.193
2891 root 1.366 if (!(flags & EVBACKEND_MASK))
2892 root 1.129 flags |= ev_recommended_backends ();
2893 root 1.41
2894 root 1.357 #if EV_USE_IOCP
2895     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2896     #endif
2897 root 1.118 #if EV_USE_PORT
2898 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2899 root 1.118 #endif
2900 root 1.44 #if EV_USE_KQUEUE
2901 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2902 root 1.44 #endif
2903 root 1.29 #if EV_USE_EPOLL
2904 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2905 root 1.41 #endif
2906 root 1.59 #if EV_USE_POLL
2907 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2908 root 1.1 #endif
2909 root 1.29 #if EV_USE_SELECT
2910 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2911 root 1.1 #endif
2912 root 1.70
2913 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2914    
2915 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2916 root 1.288 ev_init (&pipe_w, pipecb);
2917     ev_set_priority (&pipe_w, EV_MAXPRI);
2918 root 1.336 #endif
2919 root 1.56 }
2920     }
2921    
2922 root 1.288 /* free up a loop structure */
2923 root 1.379 void ecb_cold
2924 root 1.422 ev_loop_destroy (EV_P)
2925 root 1.56 {
2926 root 1.65 int i;
2927    
2928 root 1.364 #if EV_MULTIPLICITY
2929 root 1.363 /* mimic free (0) */
2930     if (!EV_A)
2931     return;
2932 root 1.364 #endif
2933 root 1.363
2934 root 1.361 #if EV_CLEANUP_ENABLE
2935     /* queue cleanup watchers (and execute them) */
2936     if (expect_false (cleanupcnt))
2937     {
2938     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2939     EV_INVOKE_PENDING;
2940     }
2941     #endif
2942    
2943 root 1.359 #if EV_CHILD_ENABLE
2944 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2945 root 1.359 {
2946     ev_ref (EV_A); /* child watcher */
2947     ev_signal_stop (EV_A_ &childev);
2948     }
2949     #endif
2950    
2951 root 1.288 if (ev_is_active (&pipe_w))
2952 root 1.207 {
2953 root 1.303 /*ev_ref (EV_A);*/
2954     /*ev_io_stop (EV_A_ &pipe_w);*/
2955 root 1.207
2956 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2957     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2958 root 1.207 }
2959    
2960 root 1.303 #if EV_USE_SIGNALFD
2961     if (ev_is_active (&sigfd_w))
2962 root 1.317 close (sigfd);
2963 root 1.303 #endif
2964    
2965 root 1.152 #if EV_USE_INOTIFY
2966     if (fs_fd >= 0)
2967     close (fs_fd);
2968     #endif
2969    
2970     if (backend_fd >= 0)
2971     close (backend_fd);
2972    
2973 root 1.357 #if EV_USE_IOCP
2974     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2975     #endif
2976 root 1.118 #if EV_USE_PORT
2977 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2978 root 1.118 #endif
2979 root 1.56 #if EV_USE_KQUEUE
2980 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2981 root 1.56 #endif
2982     #if EV_USE_EPOLL
2983 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2984 root 1.56 #endif
2985 root 1.59 #if EV_USE_POLL
2986 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2987 root 1.56 #endif
2988     #if EV_USE_SELECT
2989 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2990 root 1.56 #endif
2991 root 1.1
2992 root 1.65 for (i = NUMPRI; i--; )
2993 root 1.164 {
2994     array_free (pending, [i]);
2995     #if EV_IDLE_ENABLE
2996     array_free (idle, [i]);
2997     #endif
2998     }
2999 root 1.65
3000 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
3001 root 1.186
3002 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
3003 root 1.284 array_free (rfeed, EMPTY);
3004 root 1.164 array_free (fdchange, EMPTY);
3005     array_free (timer, EMPTY);
3006 root 1.140 #if EV_PERIODIC_ENABLE
3007 root 1.164 array_free (periodic, EMPTY);
3008 root 1.93 #endif
3009 root 1.187 #if EV_FORK_ENABLE
3010     array_free (fork, EMPTY);
3011     #endif
3012 root 1.360 #if EV_CLEANUP_ENABLE
3013     array_free (cleanup, EMPTY);
3014     #endif
3015 root 1.164 array_free (prepare, EMPTY);
3016     array_free (check, EMPTY);
3017 root 1.209 #if EV_ASYNC_ENABLE
3018     array_free (async, EMPTY);
3019     #endif
3020 root 1.65
3021 root 1.130 backend = 0;
3022 root 1.359
3023     #if EV_MULTIPLICITY
3024     if (ev_is_default_loop (EV_A))
3025     #endif
3026     ev_default_loop_ptr = 0;
3027     #if EV_MULTIPLICITY
3028     else
3029     ev_free (EV_A);
3030     #endif
3031 root 1.56 }
3032 root 1.22
3033 root 1.226 #if EV_USE_INOTIFY
3034 root 1.284 inline_size void infy_fork (EV_P);
3035 root 1.226 #endif
3036 root 1.154
3037 root 1.284 inline_size void
3038 root 1.56 loop_fork (EV_P)
3039     {
3040 root 1.118 #if EV_USE_PORT
3041 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3042 root 1.56 #endif
3043     #if EV_USE_KQUEUE
3044 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
3045 root 1.45 #endif
3046 root 1.118 #if EV_USE_EPOLL
3047 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3048 root 1.118 #endif
3049 root 1.154 #if EV_USE_INOTIFY
3050     infy_fork (EV_A);
3051     #endif
3052 root 1.70
3053 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3054 root 1.478 if (ev_is_active (&pipe_w) && postfork != 2)
3055 root 1.70 {
3056 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3057 root 1.70
3058     ev_ref (EV_A);
3059 root 1.288 ev_io_stop (EV_A_ &pipe_w);
3060 root 1.220
3061     if (evpipe [0] >= 0)
3062 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
3063 root 1.207
3064     evpipe_init (EV_A);
3065 root 1.443 /* iterate over everything, in case we missed something before */
3066     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3067 root 1.448 }
3068 root 1.337 #endif
3069 root 1.70
3070     postfork = 0;
3071 root 1.1 }
3072    
3073 root 1.55 #if EV_MULTIPLICITY
3074 root 1.250
3075 root 1.379 struct ev_loop * ecb_cold
3076 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
3077 root 1.54 {
3078 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3079 root 1.69
3080 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
3081 root 1.108 loop_init (EV_A_ flags);
3082 root 1.56
3083 root 1.130 if (ev_backend (EV_A))
3084 root 1.306 return EV_A;
3085 root 1.54
3086 root 1.359 ev_free (EV_A);
3087 root 1.55 return 0;
3088 root 1.54 }
3089    
3090 root 1.297 #endif /* multiplicity */
3091 root 1.248
3092     #if EV_VERIFY
3093 root 1.379 static void noinline ecb_cold
3094 root 1.251 verify_watcher (EV_P_ W w)
3095     {
3096 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3097 root 1.251
3098     if (w->pending)
3099 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3100 root 1.251 }
3101    
3102 root 1.379 static void noinline ecb_cold
3103 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
3104     {
3105     int i;
3106    
3107     for (i = HEAP0; i < N + HEAP0; ++i)
3108     {
3109 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3110     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3111     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3112 root 1.251
3113     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3114     }
3115     }
3116    
3117 root 1.379 static void noinline ecb_cold
3118 root 1.251 array_verify (EV_P_ W *ws, int cnt)
3119 root 1.248 {
3120     while (cnt--)
3121 root 1.251 {
3122 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3123 root 1.251 verify_watcher (EV_A_ ws [cnt]);
3124     }
3125 root 1.248 }
3126 root 1.250 #endif
3127 root 1.248
3128 root 1.338 #if EV_FEATURE_API
3129 root 1.379 void ecb_cold
3130 root 1.420 ev_verify (EV_P) EV_THROW
3131 root 1.248 {
3132 root 1.250 #if EV_VERIFY
3133 root 1.429 int i;
3134 root 1.426 WL w, w2;
3135 root 1.251
3136     assert (activecnt >= -1);
3137    
3138     assert (fdchangemax >= fdchangecnt);
3139     for (i = 0; i < fdchangecnt; ++i)
3140 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3141 root 1.251
3142     assert (anfdmax >= 0);
3143 root 1.429 for (i = 0; i < anfdmax; ++i)
3144     {
3145     int j = 0;
3146    
3147     for (w = w2 = anfds [i].head; w; w = w->next)
3148     {
3149     verify_watcher (EV_A_ (W)w);
3150 root 1.426
3151 root 1.429 if (j++ & 1)
3152     {
3153     assert (("libev: io watcher list contains a loop", w != w2));
3154     w2 = w2->next;
3155     }
3156 root 1.426
3157 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3158     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3159     }
3160     }
3161 root 1.251
3162     assert (timermax >= timercnt);
3163     verify_heap (EV_A_ timers, timercnt);
3164 root 1.248
3165     #if EV_PERIODIC_ENABLE
3166 root 1.251 assert (periodicmax >= periodiccnt);
3167     verify_heap (EV_A_ periodics, periodiccnt);
3168 root 1.248 #endif
3169    
3170 root 1.251 for (i = NUMPRI; i--; )
3171     {
3172     assert (pendingmax [i] >= pendingcnt [i]);
3173 root 1.248 #if EV_IDLE_ENABLE
3174 root 1.252 assert (idleall >= 0);
3175 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3176     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3177 root 1.248 #endif
3178 root 1.251 }
3179    
3180 root 1.248 #if EV_FORK_ENABLE
3181 root 1.251 assert (forkmax >= forkcnt);
3182     array_verify (EV_A_ (W *)forks, forkcnt);
3183 root 1.248 #endif
3184 root 1.251
3185 root 1.360 #if EV_CLEANUP_ENABLE
3186     assert (cleanupmax >= cleanupcnt);
3187     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3188     #endif
3189    
3190 root 1.250 #if EV_ASYNC_ENABLE
3191 root 1.251 assert (asyncmax >= asynccnt);
3192     array_verify (EV_A_ (W *)asyncs, asynccnt);
3193 root 1.250 #endif
3194 root 1.251
3195 root 1.337 #if EV_PREPARE_ENABLE
3196 root 1.251 assert (preparemax >= preparecnt);
3197     array_verify (EV_A_ (W *)prepares, preparecnt);
3198 root 1.337 #endif
3199 root 1.251
3200 root 1.337 #if EV_CHECK_ENABLE
3201 root 1.251 assert (checkmax >= checkcnt);
3202     array_verify (EV_A_ (W *)checks, checkcnt);
3203 root 1.337 #endif
3204 root 1.251
3205     # if 0
3206 root 1.336 #if EV_CHILD_ENABLE
3207 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3208 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3209 root 1.336 #endif
3210 root 1.251 # endif
3211 root 1.248 #endif
3212     }
3213 root 1.297 #endif
3214 root 1.56
3215     #if EV_MULTIPLICITY
3216 root 1.379 struct ev_loop * ecb_cold
3217 root 1.54 #else
3218     int
3219 root 1.358 #endif
3220 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
3221 root 1.54 {
3222 root 1.116 if (!ev_default_loop_ptr)
3223 root 1.56 {
3224     #if EV_MULTIPLICITY
3225 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3226 root 1.56 #else
3227 ayin 1.117 ev_default_loop_ptr = 1;
3228 root 1.54 #endif
3229    
3230 root 1.110 loop_init (EV_A_ flags);
3231 root 1.56
3232 root 1.130 if (ev_backend (EV_A))
3233 root 1.56 {
3234 root 1.336 #if EV_CHILD_ENABLE
3235 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3236     ev_set_priority (&childev, EV_MAXPRI);
3237     ev_signal_start (EV_A_ &childev);
3238     ev_unref (EV_A); /* child watcher should not keep loop alive */
3239     #endif
3240     }
3241     else
3242 root 1.116 ev_default_loop_ptr = 0;
3243 root 1.56 }
3244 root 1.8
3245 root 1.116 return ev_default_loop_ptr;
3246 root 1.1 }
3247    
3248 root 1.24 void
3249 root 1.420 ev_loop_fork (EV_P) EV_THROW
3250 root 1.1 {
3251 root 1.440 postfork = 1;
3252 root 1.1 }
3253    
3254 root 1.8 /*****************************************************************************/
3255    
3256 root 1.168 void
3257     ev_invoke (EV_P_ void *w, int revents)
3258     {
3259     EV_CB_INVOKE ((W)w, revents);
3260     }
3261    
3262 root 1.300 unsigned int
3263 root 1.420 ev_pending_count (EV_P) EV_THROW
3264 root 1.300 {
3265     int pri;
3266     unsigned int count = 0;
3267    
3268     for (pri = NUMPRI; pri--; )
3269     count += pendingcnt [pri];
3270    
3271     return count;
3272     }
3273    
3274 root 1.297 void noinline
3275 root 1.296 ev_invoke_pending (EV_P)
3276 root 1.1 {
3277 root 1.445 pendingpri = NUMPRI;
3278    
3279     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3280     {
3281     --pendingpri;
3282    
3283     while (pendingcnt [pendingpri])
3284     {
3285     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3286 root 1.1
3287 root 1.445 p->w->pending = 0;
3288     EV_CB_INVOKE (p->w, p->events);
3289     EV_FREQUENT_CHECK;
3290     }
3291     }
3292 root 1.1 }
3293    
3294 root 1.234 #if EV_IDLE_ENABLE
3295 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3296     /* only when higher priorities are idle" logic */
3297 root 1.284 inline_size void
3298 root 1.234 idle_reify (EV_P)
3299     {
3300     if (expect_false (idleall))
3301     {
3302     int pri;
3303    
3304     for (pri = NUMPRI; pri--; )
3305     {
3306     if (pendingcnt [pri])
3307     break;
3308    
3309     if (idlecnt [pri])
3310     {
3311     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3312     break;
3313     }
3314     }
3315     }
3316     }
3317     #endif
3318    
3319 root 1.288 /* make timers pending */
3320 root 1.284 inline_size void
3321 root 1.51 timers_reify (EV_P)
3322 root 1.1 {
3323 root 1.248 EV_FREQUENT_CHECK;
3324    
3325 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3326 root 1.1 {
3327 root 1.284 do
3328     {
3329     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3330 root 1.1
3331 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3332    
3333     /* first reschedule or stop timer */
3334     if (w->repeat)
3335     {
3336     ev_at (w) += w->repeat;
3337     if (ev_at (w) < mn_now)
3338     ev_at (w) = mn_now;
3339 root 1.61
3340 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3341 root 1.90
3342 root 1.284 ANHE_at_cache (timers [HEAP0]);
3343     downheap (timers, timercnt, HEAP0);
3344     }
3345     else
3346     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3347 root 1.243
3348 root 1.284 EV_FREQUENT_CHECK;
3349     feed_reverse (EV_A_ (W)w);
3350 root 1.12 }
3351 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3352 root 1.30
3353 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3354 root 1.12 }
3355     }
3356 root 1.4
3357 root 1.140 #if EV_PERIODIC_ENABLE
3358 root 1.370
3359 root 1.373 static void noinline
3360 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3361     {
3362 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3363     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3364    
3365     /* the above almost always errs on the low side */
3366     while (at <= ev_rt_now)
3367     {
3368     ev_tstamp nat = at + w->interval;
3369    
3370     /* when resolution fails us, we use ev_rt_now */
3371     if (expect_false (nat == at))
3372     {
3373     at = ev_rt_now;
3374     break;
3375     }
3376    
3377     at = nat;
3378     }
3379    
3380     ev_at (w) = at;
3381 root 1.370 }
3382    
3383 root 1.288 /* make periodics pending */
3384 root 1.284 inline_size void
3385 root 1.51 periodics_reify (EV_P)
3386 root 1.12 {
3387 root 1.248 EV_FREQUENT_CHECK;
3388 root 1.250
3389 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3390 root 1.12 {
3391 root 1.284 do
3392     {
3393     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3394 root 1.1
3395 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3396 root 1.61
3397 root 1.284 /* first reschedule or stop timer */
3398     if (w->reschedule_cb)
3399     {
3400     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3401 root 1.243
3402 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3403 root 1.243
3404 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3405     downheap (periodics, periodiccnt, HEAP0);
3406     }
3407     else if (w->interval)
3408 root 1.246 {
3409 root 1.370 periodic_recalc (EV_A_ w);
3410 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3411     downheap (periodics, periodiccnt, HEAP0);
3412 root 1.246 }
3413 root 1.284 else
3414     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3415 root 1.243
3416 root 1.284 EV_FREQUENT_CHECK;
3417     feed_reverse (EV_A_ (W)w);
3418 root 1.1 }
3419 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3420 root 1.12
3421 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3422 root 1.12 }
3423     }
3424    
3425 root 1.288 /* simply recalculate all periodics */
3426 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3427 root 1.379 static void noinline ecb_cold
3428 root 1.54 periodics_reschedule (EV_P)
3429 root 1.12 {
3430     int i;
3431    
3432 root 1.13 /* adjust periodics after time jump */
3433 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3434 root 1.12 {
3435 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3436 root 1.12
3437 root 1.77 if (w->reschedule_cb)
3438 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3439 root 1.77 else if (w->interval)
3440 root 1.370 periodic_recalc (EV_A_ w);
3441 root 1.242
3442 root 1.248 ANHE_at_cache (periodics [i]);
3443 root 1.77 }
3444 root 1.12
3445 root 1.248 reheap (periodics, periodiccnt);
3446 root 1.1 }
3447 root 1.93 #endif
3448 root 1.1
3449 root 1.288 /* adjust all timers by a given offset */
3450 root 1.379 static void noinline ecb_cold
3451 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3452     {
3453     int i;
3454    
3455     for (i = 0; i < timercnt; ++i)
3456     {
3457     ANHE *he = timers + i + HEAP0;
3458     ANHE_w (*he)->at += adjust;
3459     ANHE_at_cache (*he);
3460     }
3461     }
3462    
3463 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3464 root 1.324 /* also detect if there was a timejump, and act accordingly */
3465 root 1.284 inline_speed void
3466 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3467 root 1.4 {
3468 root 1.40 #if EV_USE_MONOTONIC
3469     if (expect_true (have_monotonic))
3470     {
3471 root 1.289 int i;
3472 root 1.178 ev_tstamp odiff = rtmn_diff;
3473    
3474     mn_now = get_clock ();
3475    
3476     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3477     /* interpolate in the meantime */
3478     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3479 root 1.40 {
3480 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3481     return;
3482     }
3483    
3484     now_floor = mn_now;
3485     ev_rt_now = ev_time ();
3486 root 1.4
3487 root 1.178 /* loop a few times, before making important decisions.
3488     * on the choice of "4": one iteration isn't enough,
3489     * in case we get preempted during the calls to
3490     * ev_time and get_clock. a second call is almost guaranteed
3491     * to succeed in that case, though. and looping a few more times
3492     * doesn't hurt either as we only do this on time-jumps or
3493     * in the unlikely event of having been preempted here.
3494     */
3495     for (i = 4; --i; )
3496     {
3497 root 1.373 ev_tstamp diff;
3498 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3499 root 1.4
3500 root 1.373 diff = odiff - rtmn_diff;
3501    
3502     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3503 root 1.178 return; /* all is well */
3504 root 1.4
3505 root 1.178 ev_rt_now = ev_time ();
3506     mn_now = get_clock ();
3507     now_floor = mn_now;
3508     }
3509 root 1.4
3510 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3511     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3512 root 1.140 # if EV_PERIODIC_ENABLE
3513 root 1.178 periodics_reschedule (EV_A);
3514 root 1.93 # endif
3515 root 1.4 }
3516     else
3517 root 1.40 #endif
3518 root 1.4 {
3519 root 1.85 ev_rt_now = ev_time ();
3520 root 1.40
3521 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3522 root 1.13 {
3523 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3524     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3525 root 1.140 #if EV_PERIODIC_ENABLE
3526 root 1.54 periodics_reschedule (EV_A);
3527 root 1.93 #endif
3528 root 1.13 }
3529 root 1.4
3530 root 1.85 mn_now = ev_rt_now;
3531 root 1.4 }
3532     }
3533    
3534 root 1.418 int
3535 root 1.353 ev_run (EV_P_ int flags)
3536 root 1.1 {
3537 root 1.338 #if EV_FEATURE_API
3538 root 1.294 ++loop_depth;
3539 root 1.297 #endif
3540 root 1.294
3541 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3542 root 1.298
3543 root 1.353 loop_done = EVBREAK_CANCEL;
3544 root 1.1
3545 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3546 root 1.158
3547 root 1.161 do
3548 root 1.9 {
3549 root 1.250 #if EV_VERIFY >= 2
3550 root 1.340 ev_verify (EV_A);
3551 root 1.250 #endif
3552    
3553 root 1.158 #ifndef _WIN32
3554     if (expect_false (curpid)) /* penalise the forking check even more */
3555     if (expect_false (getpid () != curpid))
3556     {
3557     curpid = getpid ();
3558     postfork = 1;
3559     }
3560     #endif
3561    
3562 root 1.157 #if EV_FORK_ENABLE
3563     /* we might have forked, so queue fork handlers */
3564     if (expect_false (postfork))
3565     if (forkcnt)
3566     {
3567     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3568 root 1.297 EV_INVOKE_PENDING;
3569 root 1.157 }
3570     #endif
3571 root 1.147
3572 root 1.337 #if EV_PREPARE_ENABLE
3573 root 1.170 /* queue prepare watchers (and execute them) */
3574 root 1.40 if (expect_false (preparecnt))
3575 root 1.20 {
3576 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3577 root 1.297 EV_INVOKE_PENDING;
3578 root 1.20 }
3579 root 1.337 #endif
3580 root 1.9
3581 root 1.298 if (expect_false (loop_done))
3582     break;
3583    
3584 root 1.70 /* we might have forked, so reify kernel state if necessary */
3585     if (expect_false (postfork))
3586     loop_fork (EV_A);
3587    
3588 root 1.1 /* update fd-related kernel structures */
3589 root 1.51 fd_reify (EV_A);
3590 root 1.1
3591     /* calculate blocking time */
3592 root 1.135 {
3593 root 1.193 ev_tstamp waittime = 0.;
3594     ev_tstamp sleeptime = 0.;
3595 root 1.12
3596 root 1.353 /* remember old timestamp for io_blocktime calculation */
3597     ev_tstamp prev_mn_now = mn_now;
3598 root 1.293
3599 root 1.353 /* update time to cancel out callback processing overhead */
3600     time_update (EV_A_ 1e100);
3601 root 1.135
3602 root 1.378 /* from now on, we want a pipe-wake-up */
3603     pipe_write_wanted = 1;
3604    
3605 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3606 root 1.383
3607 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3608 root 1.353 {
3609 root 1.287 waittime = MAX_BLOCKTIME;
3610    
3611 root 1.135 if (timercnt)
3612     {
3613 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3614 root 1.193 if (waittime > to) waittime = to;
3615 root 1.135 }
3616 root 1.4
3617 root 1.140 #if EV_PERIODIC_ENABLE
3618 root 1.135 if (periodiccnt)
3619     {
3620 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3621 root 1.193 if (waittime > to) waittime = to;
3622 root 1.135 }
3623 root 1.93 #endif
3624 root 1.4
3625 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3626 root 1.193 if (expect_false (waittime < timeout_blocktime))
3627     waittime = timeout_blocktime;
3628    
3629 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3630     /* to pass a minimum nonzero value to the backend */
3631     if (expect_false (waittime < backend_mintime))
3632     waittime = backend_mintime;
3633    
3634 root 1.293 /* extra check because io_blocktime is commonly 0 */
3635     if (expect_false (io_blocktime))
3636     {
3637     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3638 root 1.193
3639 root 1.376 if (sleeptime > waittime - backend_mintime)
3640     sleeptime = waittime - backend_mintime;
3641 root 1.193
3642 root 1.293 if (expect_true (sleeptime > 0.))
3643     {
3644     ev_sleep (sleeptime);
3645     waittime -= sleeptime;
3646     }
3647 root 1.193 }
3648 root 1.135 }
3649 root 1.1
3650 root 1.338 #if EV_FEATURE_API
3651 root 1.162 ++loop_count;
3652 root 1.297 #endif
3653 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3654 root 1.193 backend_poll (EV_A_ waittime);
3655 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3656 root 1.178
3657 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3658 root 1.378
3659 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3660 root 1.378 if (pipe_write_skipped)
3661     {
3662     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3663     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3664     }
3665    
3666    
3667 root 1.178 /* update ev_rt_now, do magic */
3668 root 1.193 time_update (EV_A_ waittime + sleeptime);
3669 root 1.135 }
3670 root 1.1
3671 root 1.9 /* queue pending timers and reschedule them */
3672 root 1.51 timers_reify (EV_A); /* relative timers called last */
3673 root 1.140 #if EV_PERIODIC_ENABLE
3674 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3675 root 1.93 #endif
3676 root 1.1
3677 root 1.164 #if EV_IDLE_ENABLE
3678 root 1.137 /* queue idle watchers unless other events are pending */
3679 root 1.164 idle_reify (EV_A);
3680     #endif
3681 root 1.9
3682 root 1.337 #if EV_CHECK_ENABLE
3683 root 1.20 /* queue check watchers, to be executed first */
3684 root 1.123 if (expect_false (checkcnt))
3685 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3686 root 1.337 #endif
3687 root 1.9
3688 root 1.297 EV_INVOKE_PENDING;
3689 root 1.1 }
3690 root 1.219 while (expect_true (
3691     activecnt
3692     && !loop_done
3693 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3694 root 1.219 ));
3695 root 1.13
3696 root 1.353 if (loop_done == EVBREAK_ONE)
3697     loop_done = EVBREAK_CANCEL;
3698 root 1.294
3699 root 1.338 #if EV_FEATURE_API
3700 root 1.294 --loop_depth;
3701 root 1.297 #endif
3702 root 1.418
3703     return activecnt;
3704 root 1.51 }
3705    
3706     void
3707 root 1.420 ev_break (EV_P_ int how) EV_THROW
3708 root 1.51 {
3709     loop_done = how;
3710 root 1.1 }
3711    
3712 root 1.285 void
3713 root 1.420 ev_ref (EV_P) EV_THROW
3714 root 1.285 {
3715     ++activecnt;
3716     }
3717    
3718     void
3719 root 1.420 ev_unref (EV_P) EV_THROW
3720 root 1.285 {
3721     --activecnt;
3722     }
3723    
3724     void
3725 root 1.420 ev_now_update (EV_P) EV_THROW
3726 root 1.285 {
3727     time_update (EV_A_ 1e100);
3728     }
3729    
3730     void
3731 root 1.420 ev_suspend (EV_P) EV_THROW
3732 root 1.285 {
3733     ev_now_update (EV_A);
3734     }
3735    
3736     void
3737 root 1.420 ev_resume (EV_P) EV_THROW
3738 root 1.285 {
3739     ev_tstamp mn_prev = mn_now;
3740    
3741     ev_now_update (EV_A);
3742     timers_reschedule (EV_A_ mn_now - mn_prev);
3743 root 1.286 #if EV_PERIODIC_ENABLE
3744 root 1.288 /* TODO: really do this? */
3745 root 1.285 periodics_reschedule (EV_A);
3746 root 1.286 #endif
3747 root 1.285 }
3748    
3749 root 1.8 /*****************************************************************************/
3750 root 1.288 /* singly-linked list management, used when the expected list length is short */
3751 root 1.8
3752 root 1.284 inline_size void
3753 root 1.10 wlist_add (WL *head, WL elem)
3754 root 1.1 {
3755     elem->next = *head;
3756     *head = elem;
3757     }
3758    
3759 root 1.284 inline_size void
3760 root 1.10 wlist_del (WL *head, WL elem)
3761 root 1.1 {
3762     while (*head)
3763     {
3764 root 1.307 if (expect_true (*head == elem))
3765 root 1.1 {
3766     *head = elem->next;
3767 root 1.307 break;
3768 root 1.1 }
3769    
3770     head = &(*head)->next;
3771     }
3772     }
3773    
3774 root 1.288 /* internal, faster, version of ev_clear_pending */
3775 root 1.284 inline_speed void
3776 root 1.166 clear_pending (EV_P_ W w)
3777 root 1.16 {
3778     if (w->pending)
3779     {
3780 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3781 root 1.16 w->pending = 0;
3782     }
3783     }
3784    
3785 root 1.167 int
3786 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3787 root 1.166 {
3788     W w_ = (W)w;
3789     int pending = w_->pending;
3790    
3791 root 1.172 if (expect_true (pending))
3792     {
3793     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3794 root 1.288 p->w = (W)&pending_w;
3795 root 1.172 w_->pending = 0;
3796     return p->events;
3797     }
3798     else
3799 root 1.167 return 0;
3800 root 1.166 }
3801    
3802 root 1.284 inline_size void
3803 root 1.164 pri_adjust (EV_P_ W w)
3804     {
3805 root 1.295 int pri = ev_priority (w);
3806 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3807     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3808 root 1.295 ev_set_priority (w, pri);
3809 root 1.164 }
3810    
3811 root 1.284 inline_speed void
3812 root 1.51 ev_start (EV_P_ W w, int active)
3813 root 1.1 {
3814 root 1.164 pri_adjust (EV_A_ w);
3815 root 1.1 w->active = active;
3816 root 1.51 ev_ref (EV_A);
3817 root 1.1 }
3818    
3819 root 1.284 inline_size void
3820 root 1.51 ev_stop (EV_P_ W w)
3821 root 1.1 {
3822 root 1.51 ev_unref (EV_A);
3823 root 1.1 w->active = 0;
3824     }
3825    
3826 root 1.8 /*****************************************************************************/
3827    
3828 root 1.171 void noinline
3829 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3830 root 1.1 {
3831 root 1.37 int fd = w->fd;
3832    
3833 root 1.123 if (expect_false (ev_is_active (w)))
3834 root 1.1 return;
3835    
3836 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3837 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3838 root 1.33
3839 root 1.248 EV_FREQUENT_CHECK;
3840    
3841 root 1.51 ev_start (EV_A_ (W)w, 1);
3842 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3843 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3844 root 1.1
3845 root 1.426 /* common bug, apparently */
3846     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3847    
3848 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3849 root 1.281 w->events &= ~EV__IOFDSET;
3850 root 1.248
3851     EV_FREQUENT_CHECK;
3852 root 1.1 }
3853    
3854 root 1.171 void noinline
3855 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3856 root 1.1 {
3857 root 1.166 clear_pending (EV_A_ (W)w);
3858 root 1.123 if (expect_false (!ev_is_active (w)))
3859 root 1.1 return;
3860    
3861 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3862 root 1.89
3863 root 1.248 EV_FREQUENT_CHECK;
3864    
3865 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3866 root 1.51 ev_stop (EV_A_ (W)w);
3867 root 1.1
3868 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3869 root 1.248
3870     EV_FREQUENT_CHECK;
3871 root 1.1 }
3872    
3873 root 1.171 void noinline
3874 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3875 root 1.1 {
3876 root 1.123 if (expect_false (ev_is_active (w)))
3877 root 1.1 return;
3878    
3879 root 1.228 ev_at (w) += mn_now;
3880 root 1.12
3881 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3882 root 1.13
3883 root 1.248 EV_FREQUENT_CHECK;
3884    
3885     ++timercnt;
3886     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3887 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3888     ANHE_w (timers [ev_active (w)]) = (WT)w;
3889 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3890 root 1.235 upheap (timers, ev_active (w));
3891 root 1.62
3892 root 1.248 EV_FREQUENT_CHECK;
3893    
3894 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3895 root 1.12 }
3896    
3897 root 1.171 void noinline
3898 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3899 root 1.12 {
3900 root 1.166 clear_pending (EV_A_ (W)w);
3901 root 1.123 if (expect_false (!ev_is_active (w)))
3902 root 1.12 return;
3903    
3904 root 1.248 EV_FREQUENT_CHECK;
3905    
3906 root 1.230 {
3907     int active = ev_active (w);
3908 root 1.62
3909 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3910 root 1.151
3911 root 1.248 --timercnt;
3912    
3913     if (expect_true (active < timercnt + HEAP0))
3914 root 1.151 {
3915 root 1.248 timers [active] = timers [timercnt + HEAP0];
3916 root 1.181 adjustheap (timers, timercnt, active);
3917 root 1.151 }
3918 root 1.248 }
3919 root 1.228
3920     ev_at (w) -= mn_now;
3921 root 1.14
3922 root 1.51 ev_stop (EV_A_ (W)w);
3923 root 1.328
3924     EV_FREQUENT_CHECK;
3925 root 1.12 }
3926 root 1.4
3927 root 1.171 void noinline
3928 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3929 root 1.14 {
3930 root 1.248 EV_FREQUENT_CHECK;
3931    
3932 root 1.407 clear_pending (EV_A_ (W)w);
3933 root 1.406
3934 root 1.14 if (ev_is_active (w))
3935     {
3936     if (w->repeat)
3937 root 1.99 {
3938 root 1.228 ev_at (w) = mn_now + w->repeat;
3939 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3940 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3941 root 1.99 }
3942 root 1.14 else
3943 root 1.51 ev_timer_stop (EV_A_ w);
3944 root 1.14 }
3945     else if (w->repeat)
3946 root 1.112 {
3947 root 1.229 ev_at (w) = w->repeat;
3948 root 1.112 ev_timer_start (EV_A_ w);
3949     }
3950 root 1.248
3951     EV_FREQUENT_CHECK;
3952 root 1.14 }
3953    
3954 root 1.301 ev_tstamp
3955 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3956 root 1.301 {
3957     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3958     }
3959    
3960 root 1.140 #if EV_PERIODIC_ENABLE
3961 root 1.171 void noinline
3962 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3963 root 1.12 {
3964 root 1.123 if (expect_false (ev_is_active (w)))
3965 root 1.12 return;
3966 root 1.1
3967 root 1.77 if (w->reschedule_cb)
3968 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3969 root 1.77 else if (w->interval)
3970     {
3971 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3972 root 1.370 periodic_recalc (EV_A_ w);
3973 root 1.77 }
3974 root 1.173 else
3975 root 1.228 ev_at (w) = w->offset;
3976 root 1.12
3977 root 1.248 EV_FREQUENT_CHECK;
3978    
3979     ++periodiccnt;
3980     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3981 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3982     ANHE_w (periodics [ev_active (w)]) = (WT)w;
3983 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
3984 root 1.235 upheap (periodics, ev_active (w));
3985 root 1.62
3986 root 1.248 EV_FREQUENT_CHECK;
3987    
3988 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3989 root 1.1 }
3990    
3991 root 1.171 void noinline
3992 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3993 root 1.1 {
3994 root 1.166 clear_pending (EV_A_ (W)w);
3995 root 1.123 if (expect_false (!ev_is_active (w)))
3996 root 1.1 return;
3997    
3998 root 1.248 EV_FREQUENT_CHECK;
3999    
4000 root 1.230 {
4001     int active = ev_active (w);
4002 root 1.62
4003 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4004 root 1.151
4005 root 1.248 --periodiccnt;
4006    
4007     if (expect_true (active < periodiccnt + HEAP0))
4008 root 1.151 {
4009 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
4010 root 1.181 adjustheap (periodics, periodiccnt, active);
4011 root 1.151 }
4012 root 1.248 }
4013 root 1.228
4014 root 1.328 ev_stop (EV_A_ (W)w);
4015    
4016 root 1.248 EV_FREQUENT_CHECK;
4017 root 1.1 }
4018    
4019 root 1.171 void noinline
4020 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
4021 root 1.77 {
4022 root 1.84 /* TODO: use adjustheap and recalculation */
4023 root 1.77 ev_periodic_stop (EV_A_ w);
4024     ev_periodic_start (EV_A_ w);
4025     }
4026 root 1.93 #endif
4027 root 1.77
4028 root 1.56 #ifndef SA_RESTART
4029     # define SA_RESTART 0
4030     #endif
4031    
4032 root 1.336 #if EV_SIGNAL_ENABLE
4033    
4034 root 1.171 void noinline
4035 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
4036 root 1.56 {
4037 root 1.123 if (expect_false (ev_is_active (w)))
4038 root 1.56 return;
4039    
4040 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4041    
4042     #if EV_MULTIPLICITY
4043 root 1.308 assert (("libev: a signal must not be attached to two different loops",
4044 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4045    
4046     signals [w->signum - 1].loop = EV_A;
4047 root 1.449 ECB_MEMORY_FENCE_RELEASE;
4048 root 1.306 #endif
4049 root 1.56
4050 root 1.303 EV_FREQUENT_CHECK;
4051    
4052     #if EV_USE_SIGNALFD
4053     if (sigfd == -2)
4054     {
4055     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4056     if (sigfd < 0 && errno == EINVAL)
4057     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4058    
4059     if (sigfd >= 0)
4060     {
4061     fd_intern (sigfd); /* doing it twice will not hurt */
4062    
4063     sigemptyset (&sigfd_set);
4064    
4065     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4066     ev_set_priority (&sigfd_w, EV_MAXPRI);
4067     ev_io_start (EV_A_ &sigfd_w);
4068     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4069     }
4070     }
4071    
4072     if (sigfd >= 0)
4073     {
4074     /* TODO: check .head */
4075     sigaddset (&sigfd_set, w->signum);
4076     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4077 root 1.207
4078 root 1.303 signalfd (sigfd, &sigfd_set, 0);
4079     }
4080 root 1.180 #endif
4081    
4082 root 1.56 ev_start (EV_A_ (W)w, 1);
4083 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
4084 root 1.56
4085 root 1.63 if (!((WL)w)->next)
4086 root 1.304 # if EV_USE_SIGNALFD
4087 root 1.306 if (sigfd < 0) /*TODO*/
4088 root 1.304 # endif
4089 root 1.306 {
4090 root 1.322 # ifdef _WIN32
4091 root 1.317 evpipe_init (EV_A);
4092    
4093 root 1.306 signal (w->signum, ev_sighandler);
4094     # else
4095     struct sigaction sa;
4096    
4097     evpipe_init (EV_A);
4098    
4099     sa.sa_handler = ev_sighandler;
4100     sigfillset (&sa.sa_mask);
4101     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4102     sigaction (w->signum, &sa, 0);
4103    
4104 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
4105     {
4106     sigemptyset (&sa.sa_mask);
4107     sigaddset (&sa.sa_mask, w->signum);
4108     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4109     }
4110 root 1.67 #endif
4111 root 1.306 }
4112 root 1.248
4113     EV_FREQUENT_CHECK;
4114 root 1.56 }
4115    
4116 root 1.171 void noinline
4117 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
4118 root 1.56 {
4119 root 1.166 clear_pending (EV_A_ (W)w);
4120 root 1.123 if (expect_false (!ev_is_active (w)))
4121 root 1.56 return;
4122    
4123 root 1.248 EV_FREQUENT_CHECK;
4124    
4125 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
4126 root 1.56 ev_stop (EV_A_ (W)w);
4127    
4128     if (!signals [w->signum - 1].head)
4129 root 1.306 {
4130 root 1.307 #if EV_MULTIPLICITY
4131 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
4132 root 1.307 #endif
4133     #if EV_USE_SIGNALFD
4134 root 1.306 if (sigfd >= 0)
4135     {
4136 root 1.321 sigset_t ss;
4137    
4138     sigemptyset (&ss);
4139     sigaddset (&ss, w->signum);
4140 root 1.306 sigdelset (&sigfd_set, w->signum);
4141 root 1.321
4142 root 1.306 signalfd (sigfd, &sigfd_set, 0);
4143 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
4144 root 1.306 }
4145     else
4146 root 1.307 #endif
4147 root 1.306 signal (w->signum, SIG_DFL);
4148     }
4149 root 1.248
4150     EV_FREQUENT_CHECK;
4151 root 1.56 }
4152    
4153 root 1.336 #endif
4154    
4155     #if EV_CHILD_ENABLE
4156    
4157 root 1.28 void
4158 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
4159 root 1.22 {
4160 root 1.56 #if EV_MULTIPLICITY
4161 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4162 root 1.56 #endif
4163 root 1.123 if (expect_false (ev_is_active (w)))
4164 root 1.22 return;
4165    
4166 root 1.248 EV_FREQUENT_CHECK;
4167    
4168 root 1.51 ev_start (EV_A_ (W)w, 1);
4169 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4170 root 1.248
4171     EV_FREQUENT_CHECK;
4172 root 1.22 }
4173    
4174 root 1.28 void
4175 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
4176 root 1.22 {
4177 root 1.166 clear_pending (EV_A_ (W)w);
4178 root 1.123 if (expect_false (!ev_is_active (w)))
4179 root 1.22 return;
4180    
4181 root 1.248 EV_FREQUENT_CHECK;
4182    
4183 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4184 root 1.51 ev_stop (EV_A_ (W)w);
4185 root 1.248
4186     EV_FREQUENT_CHECK;
4187 root 1.22 }
4188    
4189 root 1.336 #endif
4190    
4191 root 1.140 #if EV_STAT_ENABLE
4192    
4193     # ifdef _WIN32
4194 root 1.146 # undef lstat
4195     # define lstat(a,b) _stati64 (a,b)
4196 root 1.140 # endif
4197    
4198 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4199     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4200     #define MIN_STAT_INTERVAL 0.1074891
4201 root 1.143
4202 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4203 root 1.152
4204     #if EV_USE_INOTIFY
4205 root 1.326
4206     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4207     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4208 root 1.152
4209     static void noinline
4210     infy_add (EV_P_ ev_stat *w)
4211     {
4212 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4213     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4214     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4215     | IN_DONT_FOLLOW | IN_MASK_ADD);
4216 root 1.152
4217 root 1.318 if (w->wd >= 0)
4218 root 1.152 {
4219 root 1.318 struct statfs sfs;
4220    
4221     /* now local changes will be tracked by inotify, but remote changes won't */
4222     /* unless the filesystem is known to be local, we therefore still poll */
4223     /* also do poll on <2.6.25, but with normal frequency */
4224    
4225     if (!fs_2625)
4226     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4227     else if (!statfs (w->path, &sfs)
4228     && (sfs.f_type == 0x1373 /* devfs */
4229 root 1.451 || sfs.f_type == 0x4006 /* fat */
4230     || sfs.f_type == 0x4d44 /* msdos */
4231 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4232 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4233     || sfs.f_type == 0x858458f6 /* ramfs */
4234     || sfs.f_type == 0x5346544e /* ntfs */
4235 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4236 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4237 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4238 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4239 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4240     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4241     else
4242     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4243     }
4244     else
4245     {
4246     /* can't use inotify, continue to stat */
4247 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4248 root 1.152
4249 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4250 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4251 root 1.233 /* but an efficiency issue only */
4252 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4253 root 1.152 {
4254 root 1.153 char path [4096];
4255 root 1.152 strcpy (path, w->path);
4256    
4257     do
4258     {
4259     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4260     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4261    
4262     char *pend = strrchr (path, '/');
4263    
4264 root 1.275 if (!pend || pend == path)
4265     break;
4266 root 1.152
4267     *pend = 0;
4268 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4269 root 1.372 }
4270 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4271     }
4272     }
4273 root 1.275
4274     if (w->wd >= 0)
4275 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4276 root 1.152
4277 root 1.318 /* now re-arm timer, if required */
4278     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4279     ev_timer_again (EV_A_ &w->timer);
4280     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4281 root 1.152 }
4282    
4283     static void noinline
4284     infy_del (EV_P_ ev_stat *w)
4285     {
4286     int slot;
4287     int wd = w->wd;
4288    
4289     if (wd < 0)
4290     return;
4291    
4292     w->wd = -2;
4293 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4294 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4295    
4296     /* remove this watcher, if others are watching it, they will rearm */
4297     inotify_rm_watch (fs_fd, wd);
4298     }
4299    
4300     static void noinline
4301     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4302     {
4303     if (slot < 0)
4304 root 1.264 /* overflow, need to check for all hash slots */
4305 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4306 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4307     else
4308     {
4309     WL w_;
4310    
4311 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4312 root 1.152 {
4313     ev_stat *w = (ev_stat *)w_;
4314     w_ = w_->next; /* lets us remove this watcher and all before it */
4315    
4316     if (w->wd == wd || wd == -1)
4317     {
4318     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4319     {
4320 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4321 root 1.152 w->wd = -1;
4322     infy_add (EV_A_ w); /* re-add, no matter what */
4323     }
4324    
4325 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4326 root 1.152 }
4327     }
4328     }
4329     }
4330    
4331     static void
4332     infy_cb (EV_P_ ev_io *w, int revents)
4333     {
4334     char buf [EV_INOTIFY_BUFSIZE];
4335     int ofs;
4336     int len = read (fs_fd, buf, sizeof (buf));
4337    
4338 root 1.326 for (ofs = 0; ofs < len; )
4339     {
4340     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4341     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4342     ofs += sizeof (struct inotify_event) + ev->len;
4343     }
4344 root 1.152 }
4345    
4346 root 1.379 inline_size void ecb_cold
4347 root 1.330 ev_check_2625 (EV_P)
4348     {
4349     /* kernels < 2.6.25 are borked
4350     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4351     */
4352     if (ev_linux_version () < 0x020619)
4353 root 1.273 return;
4354 root 1.264
4355 root 1.273 fs_2625 = 1;
4356     }
4357 root 1.264
4358 root 1.315 inline_size int
4359     infy_newfd (void)
4360     {
4361 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4362 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4363     if (fd >= 0)
4364     return fd;
4365     #endif
4366     return inotify_init ();
4367     }
4368    
4369 root 1.284 inline_size void
4370 root 1.273 infy_init (EV_P)
4371     {
4372     if (fs_fd != -2)
4373     return;
4374 root 1.264
4375 root 1.273 fs_fd = -1;
4376 root 1.264
4377 root 1.330 ev_check_2625 (EV_A);
4378 root 1.264
4379 root 1.315 fs_fd = infy_newfd ();
4380 root 1.152
4381     if (fs_fd >= 0)
4382     {
4383 root 1.315 fd_intern (fs_fd);
4384 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4385     ev_set_priority (&fs_w, EV_MAXPRI);
4386     ev_io_start (EV_A_ &fs_w);
4387 root 1.317 ev_unref (EV_A);
4388 root 1.152 }
4389     }
4390    
4391 root 1.284 inline_size void
4392 root 1.154 infy_fork (EV_P)
4393     {
4394     int slot;
4395    
4396     if (fs_fd < 0)
4397     return;
4398    
4399 root 1.317 ev_ref (EV_A);
4400 root 1.315 ev_io_stop (EV_A_ &fs_w);
4401 root 1.154 close (fs_fd);
4402 root 1.315 fs_fd = infy_newfd ();
4403    
4404     if (fs_fd >= 0)
4405     {
4406     fd_intern (fs_fd);
4407     ev_io_set (&fs_w, fs_fd, EV_READ);
4408     ev_io_start (EV_A_ &fs_w);
4409 root 1.317 ev_unref (EV_A);
4410 root 1.315 }
4411 root 1.154
4412 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4413 root 1.154 {
4414     WL w_ = fs_hash [slot].head;
4415     fs_hash [slot].head = 0;
4416    
4417     while (w_)
4418     {
4419     ev_stat *w = (ev_stat *)w_;
4420     w_ = w_->next; /* lets us add this watcher */
4421    
4422     w->wd = -1;
4423    
4424     if (fs_fd >= 0)
4425     infy_add (EV_A_ w); /* re-add, no matter what */
4426     else
4427 root 1.318 {
4428     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4429     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4430     ev_timer_again (EV_A_ &w->timer);
4431     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4432     }
4433 root 1.154 }
4434     }
4435     }
4436    
4437 root 1.152 #endif
4438    
4439 root 1.255 #ifdef _WIN32
4440     # define EV_LSTAT(p,b) _stati64 (p, b)
4441     #else
4442     # define EV_LSTAT(p,b) lstat (p, b)
4443     #endif
4444    
4445 root 1.140 void
4446 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4447 root 1.140 {
4448     if (lstat (w->path, &w->attr) < 0)
4449     w->attr.st_nlink = 0;
4450     else if (!w->attr.st_nlink)
4451     w->attr.st_nlink = 1;
4452     }
4453    
4454 root 1.157 static void noinline
4455 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4456     {
4457     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4458    
4459 root 1.320 ev_statdata prev = w->attr;
4460 root 1.140 ev_stat_stat (EV_A_ w);
4461    
4462 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4463     if (
4464 root 1.320 prev.st_dev != w->attr.st_dev
4465     || prev.st_ino != w->attr.st_ino
4466     || prev.st_mode != w->attr.st_mode
4467     || prev.st_nlink != w->attr.st_nlink
4468     || prev.st_uid != w->attr.st_uid
4469     || prev.st_gid != w->attr.st_gid
4470     || prev.st_rdev != w->attr.st_rdev
4471     || prev.st_size != w->attr.st_size
4472     || prev.st_atime != w->attr.st_atime
4473     || prev.st_mtime != w->attr.st_mtime
4474     || prev.st_ctime != w->attr.st_ctime
4475 root 1.156 ) {
4476 root 1.320 /* we only update w->prev on actual differences */
4477     /* in case we test more often than invoke the callback, */
4478     /* to ensure that prev is always different to attr */
4479     w->prev = prev;
4480    
4481 root 1.152 #if EV_USE_INOTIFY
4482 root 1.264 if (fs_fd >= 0)
4483     {
4484     infy_del (EV_A_ w);
4485     infy_add (EV_A_ w);
4486     ev_stat_stat (EV_A_ w); /* avoid race... */
4487     }
4488 root 1.152 #endif
4489    
4490     ev_feed_event (EV_A_ w, EV_STAT);
4491     }
4492 root 1.140 }
4493    
4494     void
4495 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4496 root 1.140 {
4497     if (expect_false (ev_is_active (w)))
4498     return;
4499    
4500     ev_stat_stat (EV_A_ w);
4501    
4502 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4503     w->interval = MIN_STAT_INTERVAL;
4504 root 1.143
4505 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4506 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4507 root 1.152
4508     #if EV_USE_INOTIFY
4509     infy_init (EV_A);
4510    
4511     if (fs_fd >= 0)
4512     infy_add (EV_A_ w);
4513     else
4514     #endif
4515 root 1.318 {
4516     ev_timer_again (EV_A_ &w->timer);
4517     ev_unref (EV_A);
4518     }
4519 root 1.140
4520     ev_start (EV_A_ (W)w, 1);
4521 root 1.248
4522     EV_FREQUENT_CHECK;
4523 root 1.140 }
4524    
4525     void
4526 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4527 root 1.140 {
4528 root 1.166 clear_pending (EV_A_ (W)w);
4529 root 1.140 if (expect_false (!ev_is_active (w)))
4530     return;
4531    
4532 root 1.248 EV_FREQUENT_CHECK;
4533    
4534 root 1.152 #if EV_USE_INOTIFY
4535     infy_del (EV_A_ w);
4536     #endif
4537 root 1.318
4538     if (ev_is_active (&w->timer))
4539     {
4540     ev_ref (EV_A);
4541     ev_timer_stop (EV_A_ &w->timer);
4542     }
4543 root 1.140
4544 root 1.134 ev_stop (EV_A_ (W)w);
4545 root 1.248
4546     EV_FREQUENT_CHECK;
4547 root 1.134 }
4548     #endif
4549    
4550 root 1.164 #if EV_IDLE_ENABLE
4551 root 1.144 void
4552 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4553 root 1.144 {
4554     if (expect_false (ev_is_active (w)))
4555     return;
4556    
4557 root 1.164 pri_adjust (EV_A_ (W)w);
4558    
4559 root 1.248 EV_FREQUENT_CHECK;
4560    
4561 root 1.164 {
4562     int active = ++idlecnt [ABSPRI (w)];
4563    
4564     ++idleall;
4565     ev_start (EV_A_ (W)w, active);
4566    
4567     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4568     idles [ABSPRI (w)][active - 1] = w;
4569     }
4570 root 1.248
4571     EV_FREQUENT_CHECK;
4572 root 1.144 }
4573    
4574     void
4575 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4576 root 1.144 {
4577 root 1.166 clear_pending (EV_A_ (W)w);
4578 root 1.144 if (expect_false (!ev_is_active (w)))
4579     return;
4580    
4581 root 1.248 EV_FREQUENT_CHECK;
4582    
4583 root 1.144 {
4584 root 1.230 int active = ev_active (w);
4585 root 1.164
4586     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4587 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4588 root 1.164
4589     ev_stop (EV_A_ (W)w);
4590     --idleall;
4591 root 1.144 }
4592 root 1.248
4593     EV_FREQUENT_CHECK;
4594 root 1.144 }
4595 root 1.164 #endif
4596 root 1.144
4597 root 1.337 #if EV_PREPARE_ENABLE
4598 root 1.144 void
4599 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4600 root 1.144 {
4601     if (expect_false (ev_is_active (w)))
4602     return;
4603    
4604 root 1.248 EV_FREQUENT_CHECK;
4605    
4606 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4607     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4608     prepares [preparecnt - 1] = w;
4609 root 1.248
4610     EV_FREQUENT_CHECK;
4611 root 1.144 }
4612    
4613     void
4614 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4615 root 1.144 {
4616 root 1.166 clear_pending (EV_A_ (W)w);
4617 root 1.144 if (expect_false (!ev_is_active (w)))
4618     return;
4619    
4620 root 1.248 EV_FREQUENT_CHECK;
4621    
4622 root 1.144 {
4623 root 1.230 int active = ev_active (w);
4624    
4625 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4626 root 1.230 ev_active (prepares [active - 1]) = active;
4627 root 1.144 }
4628    
4629     ev_stop (EV_A_ (W)w);
4630 root 1.248
4631     EV_FREQUENT_CHECK;
4632 root 1.144 }
4633 root 1.337 #endif
4634 root 1.144
4635 root 1.337 #if EV_CHECK_ENABLE
4636 root 1.144 void
4637 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4638 root 1.144 {
4639     if (expect_false (ev_is_active (w)))
4640     return;
4641    
4642 root 1.248 EV_FREQUENT_CHECK;
4643    
4644 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4645     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4646     checks [checkcnt - 1] = w;
4647 root 1.248
4648     EV_FREQUENT_CHECK;
4649 root 1.144 }
4650    
4651     void
4652 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4653 root 1.144 {
4654 root 1.166 clear_pending (EV_A_ (W)w);
4655 root 1.144 if (expect_false (!ev_is_active (w)))
4656     return;
4657    
4658 root 1.248 EV_FREQUENT_CHECK;
4659    
4660 root 1.144 {
4661 root 1.230 int active = ev_active (w);
4662    
4663 root 1.144 checks [active - 1] = checks [--checkcnt];
4664 root 1.230 ev_active (checks [active - 1]) = active;
4665 root 1.144 }
4666    
4667     ev_stop (EV_A_ (W)w);
4668 root 1.248
4669     EV_FREQUENT_CHECK;
4670 root 1.144 }
4671 root 1.337 #endif
4672 root 1.144
4673     #if EV_EMBED_ENABLE
4674     void noinline
4675 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4676 root 1.144 {
4677 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4678 root 1.144 }
4679    
4680     static void
4681 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4682 root 1.144 {
4683     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4684    
4685     if (ev_cb (w))
4686     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4687     else
4688 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4689 root 1.144 }
4690    
4691 root 1.189 static void
4692     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4693     {
4694     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4695    
4696 root 1.195 {
4697 root 1.306 EV_P = w->other;
4698 root 1.195
4699     while (fdchangecnt)
4700     {
4701     fd_reify (EV_A);
4702 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4703 root 1.195 }
4704     }
4705     }
4706    
4707 root 1.261 static void
4708     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4709     {
4710     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4711    
4712 root 1.277 ev_embed_stop (EV_A_ w);
4713    
4714 root 1.261 {
4715 root 1.306 EV_P = w->other;
4716 root 1.261
4717     ev_loop_fork (EV_A);
4718 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4719 root 1.261 }
4720 root 1.277
4721     ev_embed_start (EV_A_ w);
4722 root 1.261 }
4723    
4724 root 1.195 #if 0
4725     static void
4726     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4727     {
4728     ev_idle_stop (EV_A_ idle);
4729 root 1.189 }
4730 root 1.195 #endif
4731 root 1.189
4732 root 1.144 void
4733 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4734 root 1.144 {
4735     if (expect_false (ev_is_active (w)))
4736     return;
4737    
4738     {
4739 root 1.306 EV_P = w->other;
4740 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4741 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4742 root 1.144 }
4743    
4744 root 1.248 EV_FREQUENT_CHECK;
4745    
4746 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4747     ev_io_start (EV_A_ &w->io);
4748    
4749 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4750     ev_set_priority (&w->prepare, EV_MINPRI);
4751     ev_prepare_start (EV_A_ &w->prepare);
4752    
4753 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4754     ev_fork_start (EV_A_ &w->fork);
4755    
4756 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4757    
4758 root 1.144 ev_start (EV_A_ (W)w, 1);
4759 root 1.248
4760     EV_FREQUENT_CHECK;
4761 root 1.144 }
4762    
4763     void
4764 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4765 root 1.144 {
4766 root 1.166 clear_pending (EV_A_ (W)w);
4767 root 1.144 if (expect_false (!ev_is_active (w)))
4768     return;
4769    
4770 root 1.248 EV_FREQUENT_CHECK;
4771    
4772 root 1.261 ev_io_stop (EV_A_ &w->io);
4773 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4774 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4775 root 1.248
4776 root 1.328 ev_stop (EV_A_ (W)w);
4777    
4778 root 1.248 EV_FREQUENT_CHECK;
4779 root 1.144 }
4780     #endif
4781    
4782 root 1.147 #if EV_FORK_ENABLE
4783     void
4784 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4785 root 1.147 {
4786     if (expect_false (ev_is_active (w)))
4787     return;
4788    
4789 root 1.248 EV_FREQUENT_CHECK;
4790    
4791 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4792     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4793     forks [forkcnt - 1] = w;
4794 root 1.248
4795     EV_FREQUENT_CHECK;
4796 root 1.147 }
4797    
4798     void
4799 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4800 root 1.147 {
4801 root 1.166 clear_pending (EV_A_ (W)w);
4802 root 1.147 if (expect_false (!ev_is_active (w)))
4803     return;
4804    
4805 root 1.248 EV_FREQUENT_CHECK;
4806    
4807 root 1.147 {
4808 root 1.230 int active = ev_active (w);
4809    
4810 root 1.147 forks [active - 1] = forks [--forkcnt];
4811 root 1.230 ev_active (forks [active - 1]) = active;
4812 root 1.147 }
4813    
4814     ev_stop (EV_A_ (W)w);
4815 root 1.248
4816     EV_FREQUENT_CHECK;
4817 root 1.147 }
4818     #endif
4819    
4820 root 1.360 #if EV_CLEANUP_ENABLE
4821     void
4822 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4823 root 1.360 {
4824     if (expect_false (ev_is_active (w)))
4825     return;
4826    
4827     EV_FREQUENT_CHECK;
4828    
4829     ev_start (EV_A_ (W)w, ++cleanupcnt);
4830     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4831     cleanups [cleanupcnt - 1] = w;
4832    
4833 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4834     ev_unref (EV_A);
4835 root 1.360 EV_FREQUENT_CHECK;
4836     }
4837    
4838     void
4839 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4840 root 1.360 {
4841     clear_pending (EV_A_ (W)w);
4842     if (expect_false (!ev_is_active (w)))
4843     return;
4844    
4845     EV_FREQUENT_CHECK;
4846 root 1.362 ev_ref (EV_A);
4847 root 1.360
4848     {
4849     int active = ev_active (w);
4850    
4851     cleanups [active - 1] = cleanups [--cleanupcnt];
4852     ev_active (cleanups [active - 1]) = active;
4853     }
4854    
4855     ev_stop (EV_A_ (W)w);
4856    
4857     EV_FREQUENT_CHECK;
4858     }
4859     #endif
4860    
4861 root 1.207 #if EV_ASYNC_ENABLE
4862     void
4863 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4864 root 1.207 {
4865     if (expect_false (ev_is_active (w)))
4866     return;
4867    
4868 root 1.352 w->sent = 0;
4869    
4870 root 1.207 evpipe_init (EV_A);
4871    
4872 root 1.248 EV_FREQUENT_CHECK;
4873    
4874 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4875     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4876     asyncs [asynccnt - 1] = w;
4877 root 1.248
4878     EV_FREQUENT_CHECK;
4879 root 1.207 }
4880    
4881     void
4882 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4883 root 1.207 {
4884     clear_pending (EV_A_ (W)w);
4885     if (expect_false (!ev_is_active (w)))
4886     return;
4887    
4888 root 1.248 EV_FREQUENT_CHECK;
4889    
4890 root 1.207 {
4891 root 1.230 int active = ev_active (w);
4892    
4893 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4894 root 1.230 ev_active (asyncs [active - 1]) = active;
4895 root 1.207 }
4896    
4897     ev_stop (EV_A_ (W)w);
4898 root 1.248
4899     EV_FREQUENT_CHECK;
4900 root 1.207 }
4901    
4902     void
4903 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4904 root 1.207 {
4905     w->sent = 1;
4906 root 1.307 evpipe_write (EV_A_ &async_pending);
4907 root 1.207 }
4908     #endif
4909    
4910 root 1.1 /*****************************************************************************/
4911 root 1.10
4912 root 1.16 struct ev_once
4913     {
4914 root 1.136 ev_io io;
4915     ev_timer to;
4916 root 1.16 void (*cb)(int revents, void *arg);
4917     void *arg;
4918     };
4919    
4920     static void
4921 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4922 root 1.16 {
4923     void (*cb)(int revents, void *arg) = once->cb;
4924     void *arg = once->arg;
4925    
4926 root 1.259 ev_io_stop (EV_A_ &once->io);
4927 root 1.51 ev_timer_stop (EV_A_ &once->to);
4928 root 1.69 ev_free (once);
4929 root 1.16
4930     cb (revents, arg);
4931     }
4932    
4933     static void
4934 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4935 root 1.16 {
4936 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4937    
4938     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4939 root 1.16 }
4940    
4941     static void
4942 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4943 root 1.16 {
4944 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4945    
4946     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4947 root 1.16 }
4948    
4949     void
4950 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4951 root 1.16 {
4952 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4953 root 1.16
4954 root 1.123 if (expect_false (!once))
4955 root 1.16 {
4956 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4957 root 1.123 return;
4958     }
4959    
4960     once->cb = cb;
4961     once->arg = arg;
4962 root 1.16
4963 root 1.123 ev_init (&once->io, once_cb_io);
4964     if (fd >= 0)
4965     {
4966     ev_io_set (&once->io, fd, events);
4967     ev_io_start (EV_A_ &once->io);
4968     }
4969 root 1.16
4970 root 1.123 ev_init (&once->to, once_cb_to);
4971     if (timeout >= 0.)
4972     {
4973     ev_timer_set (&once->to, timeout, 0.);
4974     ev_timer_start (EV_A_ &once->to);
4975 root 1.16 }
4976     }
4977    
4978 root 1.282 /*****************************************************************************/
4979    
4980 root 1.288 #if EV_WALK_ENABLE
4981 root 1.379 void ecb_cold
4982 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4983 root 1.282 {
4984     int i, j;
4985     ev_watcher_list *wl, *wn;
4986    
4987     if (types & (EV_IO | EV_EMBED))
4988     for (i = 0; i < anfdmax; ++i)
4989     for (wl = anfds [i].head; wl; )
4990     {
4991     wn = wl->next;
4992    
4993     #if EV_EMBED_ENABLE
4994     if (ev_cb ((ev_io *)wl) == embed_io_cb)
4995     {
4996     if (types & EV_EMBED)
4997     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4998     }
4999     else
5000     #endif
5001     #if EV_USE_INOTIFY
5002     if (ev_cb ((ev_io *)wl) == infy_cb)
5003     ;
5004     else
5005     #endif
5006 root 1.288 if ((ev_io *)wl != &pipe_w)
5007 root 1.282 if (types & EV_IO)
5008     cb (EV_A_ EV_IO, wl);
5009    
5010     wl = wn;
5011     }
5012    
5013     if (types & (EV_TIMER | EV_STAT))
5014     for (i = timercnt + HEAP0; i-- > HEAP0; )
5015     #if EV_STAT_ENABLE
5016     /*TODO: timer is not always active*/
5017     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5018     {
5019     if (types & EV_STAT)
5020     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5021     }
5022     else
5023     #endif
5024     if (types & EV_TIMER)
5025     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5026    
5027     #if EV_PERIODIC_ENABLE
5028     if (types & EV_PERIODIC)
5029     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5030     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5031     #endif
5032    
5033     #if EV_IDLE_ENABLE
5034     if (types & EV_IDLE)
5035 root 1.390 for (j = NUMPRI; j--; )
5036 root 1.282 for (i = idlecnt [j]; i--; )
5037     cb (EV_A_ EV_IDLE, idles [j][i]);
5038     #endif
5039    
5040     #if EV_FORK_ENABLE
5041     if (types & EV_FORK)
5042     for (i = forkcnt; i--; )
5043     if (ev_cb (forks [i]) != embed_fork_cb)
5044     cb (EV_A_ EV_FORK, forks [i]);
5045     #endif
5046    
5047     #if EV_ASYNC_ENABLE
5048     if (types & EV_ASYNC)
5049     for (i = asynccnt; i--; )
5050     cb (EV_A_ EV_ASYNC, asyncs [i]);
5051     #endif
5052    
5053 root 1.337 #if EV_PREPARE_ENABLE
5054 root 1.282 if (types & EV_PREPARE)
5055     for (i = preparecnt; i--; )
5056 root 1.337 # if EV_EMBED_ENABLE
5057 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
5058 root 1.337 # endif
5059     cb (EV_A_ EV_PREPARE, prepares [i]);
5060 root 1.282 #endif
5061    
5062 root 1.337 #if EV_CHECK_ENABLE
5063 root 1.282 if (types & EV_CHECK)
5064     for (i = checkcnt; i--; )
5065     cb (EV_A_ EV_CHECK, checks [i]);
5066 root 1.337 #endif
5067 root 1.282
5068 root 1.337 #if EV_SIGNAL_ENABLE
5069 root 1.282 if (types & EV_SIGNAL)
5070 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
5071 root 1.282 for (wl = signals [i].head; wl; )
5072     {
5073     wn = wl->next;
5074     cb (EV_A_ EV_SIGNAL, wl);
5075     wl = wn;
5076     }
5077 root 1.337 #endif
5078 root 1.282
5079 root 1.337 #if EV_CHILD_ENABLE
5080 root 1.282 if (types & EV_CHILD)
5081 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
5082 root 1.282 for (wl = childs [i]; wl; )
5083     {
5084     wn = wl->next;
5085     cb (EV_A_ EV_CHILD, wl);
5086     wl = wn;
5087     }
5088 root 1.337 #endif
5089 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
5090     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5091     }
5092     #endif
5093    
5094 root 1.188 #if EV_MULTIPLICITY
5095     #include "ev_wrap.h"
5096     #endif
5097