ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.48
Committed: Sat Nov 3 12:19:31 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.47: +2 -0 lines
Log Message:
save and restore errno in signal handler

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.29 #if EV_USE_CONFIG_H
32     # include "config.h"
33     #endif
34 root 1.17
35 root 1.1 #include <math.h>
36     #include <stdlib.h>
37 root 1.7 #include <unistd.h>
38     #include <fcntl.h>
39     #include <signal.h>
40 root 1.16 #include <stddef.h>
41 root 1.1
42     #include <stdio.h>
43    
44 root 1.4 #include <assert.h>
45 root 1.1 #include <errno.h>
46 root 1.22 #include <sys/types.h>
47 root 1.45 #ifndef WIN32
48     # include <sys/wait.h>
49     #endif
50 root 1.1 #include <sys/time.h>
51     #include <time.h>
52    
53 root 1.40 /**/
54    
55 root 1.29 #ifndef EV_USE_MONOTONIC
56 root 1.37 # define EV_USE_MONOTONIC 1
57     #endif
58    
59 root 1.29 #ifndef EV_USE_SELECT
60     # define EV_USE_SELECT 1
61 root 1.10 #endif
62    
63 root 1.41 #ifndef EV_USE_POLL
64     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65     #endif
66    
67 root 1.29 #ifndef EV_USE_EPOLL
68     # define EV_USE_EPOLL 0
69 root 1.10 #endif
70    
71 root 1.44 #ifndef EV_USE_KQUEUE
72     # define EV_USE_KQUEUE 0
73     #endif
74    
75 root 1.40 #ifndef EV_USE_REALTIME
76     # define EV_USE_REALTIME 1
77     #endif
78    
79     /**/
80    
81     #ifndef CLOCK_MONOTONIC
82     # undef EV_USE_MONOTONIC
83     # define EV_USE_MONOTONIC 0
84     #endif
85    
86 root 1.31 #ifndef CLOCK_REALTIME
87 root 1.40 # undef EV_USE_REALTIME
88 root 1.31 # define EV_USE_REALTIME 0
89     #endif
90 root 1.40
91     /**/
92 root 1.1
93 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 root 1.1
98     #include "ev.h"
99    
100 root 1.40 #if __GNUC__ >= 3
101     # define expect(expr,value) __builtin_expect ((expr),(value))
102     # define inline inline
103     #else
104     # define expect(expr,value) (expr)
105     # define inline static
106     #endif
107    
108     #define expect_false(expr) expect ((expr) != 0, 0)
109     #define expect_true(expr) expect ((expr) != 0, 1)
110    
111 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
113    
114 root 1.10 typedef struct ev_watcher *W;
115     typedef struct ev_watcher_list *WL;
116 root 1.12 typedef struct ev_watcher_time *WT;
117 root 1.10
118 root 1.40 static ev_tstamp now_floor, now, diff; /* monotonic clock */
119 root 1.1 ev_tstamp ev_now;
120     int ev_method;
121    
122     static int have_monotonic; /* runtime */
123    
124     static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125 root 1.5 static void (*method_modify)(int fd, int oev, int nev);
126 root 1.1 static void (*method_poll)(ev_tstamp timeout);
127    
128 root 1.8 /*****************************************************************************/
129    
130 root 1.1 ev_tstamp
131     ev_time (void)
132     {
133 root 1.29 #if EV_USE_REALTIME
134 root 1.1 struct timespec ts;
135     clock_gettime (CLOCK_REALTIME, &ts);
136     return ts.tv_sec + ts.tv_nsec * 1e-9;
137     #else
138     struct timeval tv;
139     gettimeofday (&tv, 0);
140     return tv.tv_sec + tv.tv_usec * 1e-6;
141     #endif
142     }
143    
144     static ev_tstamp
145     get_clock (void)
146     {
147 root 1.29 #if EV_USE_MONOTONIC
148 root 1.40 if (expect_true (have_monotonic))
149 root 1.1 {
150     struct timespec ts;
151     clock_gettime (CLOCK_MONOTONIC, &ts);
152     return ts.tv_sec + ts.tv_nsec * 1e-9;
153     }
154     #endif
155    
156     return ev_time ();
157     }
158    
159 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
160 root 1.29
161 root 1.1 #define array_needsize(base,cur,cnt,init) \
162 root 1.40 if (expect_false ((cnt) > cur)) \
163 root 1.1 { \
164 root 1.23 int newcnt = cur; \
165     do \
166     { \
167 root 1.30 newcnt = array_roundsize (base, newcnt << 1); \
168 root 1.23 } \
169     while ((cnt) > newcnt); \
170     \
171 root 1.1 base = realloc (base, sizeof (*base) * (newcnt)); \
172     init (base + cur, newcnt - cur); \
173     cur = newcnt; \
174     }
175    
176 root 1.8 /*****************************************************************************/
177    
178 root 1.1 typedef struct
179     {
180     struct ev_io *head;
181 root 1.33 unsigned char events;
182     unsigned char reify;
183 root 1.1 } ANFD;
184    
185     static ANFD *anfds;
186     static int anfdmax;
187    
188     static void
189     anfds_init (ANFD *base, int count)
190     {
191     while (count--)
192     {
193 root 1.27 base->head = 0;
194     base->events = EV_NONE;
195 root 1.33 base->reify = 0;
196    
197 root 1.1 ++base;
198     }
199     }
200    
201     typedef struct
202     {
203 root 1.10 W w;
204 root 1.1 int events;
205     } ANPENDING;
206    
207 root 1.42 static ANPENDING *pendings [NUMPRI];
208     static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209 root 1.1
210     static void
211 root 1.10 event (W w, int events)
212 root 1.1 {
213 root 1.32 if (w->pending)
214     {
215 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 root 1.32 return;
217     }
218    
219 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
220     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
221     pendings [ABSPRI (w)][w->pending - 1].w = w;
222     pendings [ABSPRI (w)][w->pending - 1].events = events;
223 root 1.1 }
224    
225     static void
226 root 1.27 queue_events (W *events, int eventcnt, int type)
227     {
228     int i;
229    
230     for (i = 0; i < eventcnt; ++i)
231     event (events [i], type);
232     }
233    
234     static void
235 root 1.1 fd_event (int fd, int events)
236     {
237     ANFD *anfd = anfds + fd;
238     struct ev_io *w;
239    
240     for (w = anfd->head; w; w = w->next)
241     {
242     int ev = w->events & events;
243    
244     if (ev)
245 root 1.10 event ((W)w, ev);
246 root 1.1 }
247     }
248    
249 root 1.27 /*****************************************************************************/
250    
251     static int *fdchanges;
252     static int fdchangemax, fdchangecnt;
253    
254 root 1.9 static void
255 root 1.27 fd_reify (void)
256 root 1.9 {
257     int i;
258    
259 root 1.27 for (i = 0; i < fdchangecnt; ++i)
260     {
261     int fd = fdchanges [i];
262     ANFD *anfd = anfds + fd;
263     struct ev_io *w;
264    
265     int events = 0;
266    
267     for (w = anfd->head; w; w = w->next)
268     events |= w->events;
269    
270 root 1.33 anfd->reify = 0;
271 root 1.27
272     if (anfd->events != events)
273     {
274     method_modify (fd, anfd->events, events);
275     anfd->events = events;
276     }
277     }
278    
279     fdchangecnt = 0;
280     }
281    
282     static void
283     fd_change (int fd)
284     {
285 root 1.33 if (anfds [fd].reify || fdchangecnt < 0)
286 root 1.27 return;
287    
288 root 1.33 anfds [fd].reify = 1;
289 root 1.27
290     ++fdchangecnt;
291     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292     fdchanges [fdchangecnt - 1] = fd;
293 root 1.9 }
294    
295 root 1.41 static void
296     fd_kill (int fd)
297     {
298     struct ev_io *w;
299    
300     printf ("killing fd %d\n", fd);//D
301     while ((w = anfds [fd].head))
302     {
303     ev_io_stop (w);
304     event ((W)w, EV_ERROR | EV_READ | EV_WRITE);
305     }
306     }
307    
308 root 1.19 /* called on EBADF to verify fds */
309     static void
310 root 1.41 fd_ebadf (void)
311 root 1.19 {
312     int fd;
313    
314     for (fd = 0; fd < anfdmax; ++fd)
315 root 1.27 if (anfds [fd].events)
316 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 root 1.41 fd_kill (fd);
318     }
319    
320     /* called on ENOMEM in select/poll to kill some fds and retry */
321     static void
322     fd_enomem (void)
323     {
324     int fd = anfdmax;
325    
326     while (fd--)
327     if (anfds [fd].events)
328     {
329     close (fd);
330     fd_kill (fd);
331     return;
332     }
333 root 1.19 }
334    
335 root 1.8 /*****************************************************************************/
336    
337 root 1.12 static struct ev_timer **timers;
338     static int timermax, timercnt;
339 root 1.4
340 root 1.12 static struct ev_periodic **periodics;
341     static int periodicmax, periodiccnt;
342 root 1.1
343     static void
344 root 1.12 upheap (WT *timers, int k)
345 root 1.1 {
346 root 1.12 WT w = timers [k];
347 root 1.1
348     while (k && timers [k >> 1]->at > w->at)
349     {
350     timers [k] = timers [k >> 1];
351     timers [k]->active = k + 1;
352     k >>= 1;
353     }
354    
355     timers [k] = w;
356     timers [k]->active = k + 1;
357    
358     }
359    
360     static void
361 root 1.12 downheap (WT *timers, int N, int k)
362 root 1.1 {
363 root 1.12 WT w = timers [k];
364 root 1.1
365 root 1.4 while (k < (N >> 1))
366 root 1.1 {
367     int j = k << 1;
368    
369 root 1.4 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
370 root 1.1 ++j;
371    
372     if (w->at <= timers [j]->at)
373     break;
374    
375     timers [k] = timers [j];
376 root 1.2 timers [k]->active = k + 1;
377 root 1.1 k = j;
378     }
379    
380     timers [k] = w;
381     timers [k]->active = k + 1;
382     }
383    
384 root 1.8 /*****************************************************************************/
385    
386 root 1.7 typedef struct
387     {
388     struct ev_signal *head;
389 root 1.34 sig_atomic_t volatile gotsig;
390 root 1.7 } ANSIG;
391    
392     static ANSIG *signals;
393 root 1.4 static int signalmax;
394 root 1.1
395 root 1.7 static int sigpipe [2];
396 root 1.34 static sig_atomic_t volatile gotsig;
397 root 1.7 static struct ev_io sigev;
398    
399 root 1.1 static void
400 root 1.7 signals_init (ANSIG *base, int count)
401 root 1.1 {
402     while (count--)
403 root 1.7 {
404     base->head = 0;
405     base->gotsig = 0;
406 root 1.33
407 root 1.7 ++base;
408     }
409     }
410    
411     static void
412     sighandler (int signum)
413     {
414     signals [signum - 1].gotsig = 1;
415    
416     if (!gotsig)
417     {
418 root 1.48 int old_errno = errno;
419 root 1.7 gotsig = 1;
420 root 1.34 write (sigpipe [1], &signum, 1);
421 root 1.48 errno = old_errno;
422 root 1.7 }
423     }
424    
425     static void
426     sigcb (struct ev_io *iow, int revents)
427     {
428     struct ev_signal *w;
429 root 1.38 int signum;
430 root 1.7
431 root 1.34 read (sigpipe [0], &revents, 1);
432 root 1.7 gotsig = 0;
433    
434 root 1.38 for (signum = signalmax; signum--; )
435     if (signals [signum].gotsig)
436 root 1.7 {
437 root 1.38 signals [signum].gotsig = 0;
438 root 1.7
439 root 1.38 for (w = signals [signum].head; w; w = w->next)
440 root 1.10 event ((W)w, EV_SIGNAL);
441 root 1.7 }
442     }
443    
444     static void
445     siginit (void)
446     {
447 root 1.45 #ifndef WIN32
448 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
449     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
450    
451     /* rather than sort out wether we really need nb, set it */
452     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
453     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
454 root 1.45 #endif
455 root 1.7
456 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
457     ev_io_start (&sigev);
458 root 1.1 }
459    
460 root 1.8 /*****************************************************************************/
461    
462 root 1.9 static struct ev_idle **idles;
463     static int idlemax, idlecnt;
464    
465 root 1.20 static struct ev_prepare **prepares;
466     static int preparemax, preparecnt;
467    
468 root 1.9 static struct ev_check **checks;
469     static int checkmax, checkcnt;
470    
471     /*****************************************************************************/
472    
473 root 1.22 static struct ev_child *childs [PID_HASHSIZE];
474     static struct ev_signal childev;
475    
476 root 1.45 #ifndef WIN32
477    
478 root 1.22 #ifndef WCONTINUED
479     # define WCONTINUED 0
480     #endif
481    
482     static void
483 root 1.47 child_reap (struct ev_signal *sw, int chain, int pid, int status)
484     {
485     struct ev_child *w;
486    
487     for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next)
488     if (w->pid == pid || !w->pid)
489     {
490     w->priority = sw->priority; /* need to do it *now* */
491     w->rpid = pid;
492     w->rstatus = status;
493     printf ("rpid %p %d %d\n", w, pid, w->pid);//D
494     event ((W)w, EV_CHILD);
495     }
496     }
497    
498     static void
499 root 1.22 childcb (struct ev_signal *sw, int revents)
500     {
501     int pid, status;
502    
503 root 1.47 printf ("chld %x\n", revents);//D
504     if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
505     {
506     /* make sure we are called again until all childs have been reaped */
507     event ((W)sw, EV_SIGNAL);
508    
509     child_reap (sw, pid, pid, status);
510     child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
511     }
512 root 1.22 }
513    
514 root 1.45 #endif
515    
516 root 1.22 /*****************************************************************************/
517    
518 root 1.44 #if EV_USE_KQUEUE
519     # include "ev_kqueue.c"
520     #endif
521 root 1.29 #if EV_USE_EPOLL
522 root 1.1 # include "ev_epoll.c"
523     #endif
524 root 1.41 #if EV_USE_POLL
525     # include "ev_poll.c"
526     #endif
527 root 1.29 #if EV_USE_SELECT
528 root 1.1 # include "ev_select.c"
529     #endif
530    
531 root 1.24 int
532     ev_version_major (void)
533     {
534     return EV_VERSION_MAJOR;
535     }
536    
537     int
538     ev_version_minor (void)
539     {
540     return EV_VERSION_MINOR;
541     }
542    
543 root 1.41 /* return true if we are running with elevated privileges and ignore env variables */
544     static int
545     enable_secure ()
546     {
547     return getuid () != geteuid ()
548     || getgid () != getegid ();
549     }
550    
551     int ev_init (int methods)
552 root 1.1 {
553 root 1.23 if (!ev_method)
554     {
555 root 1.29 #if EV_USE_MONOTONIC
556 root 1.23 {
557     struct timespec ts;
558     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
559     have_monotonic = 1;
560     }
561 root 1.1 #endif
562    
563 root 1.40 ev_now = ev_time ();
564     now = get_clock ();
565     now_floor = now;
566     diff = ev_now - now;
567 root 1.1
568 root 1.23 if (pipe (sigpipe))
569     return 0;
570 root 1.7
571 root 1.41 if (methods == EVMETHOD_AUTO)
572     if (!enable_secure () && getenv ("LIBEV_METHODS"))
573     methods = atoi (getenv ("LIBEV_METHODS"));
574     else
575     methods = EVMETHOD_ANY;
576    
577     ev_method = 0;
578 root 1.44 #if EV_USE_KQUEUE
579     if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods);
580     #endif
581 root 1.29 #if EV_USE_EPOLL
582 root 1.41 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods);
583     #endif
584     #if EV_USE_POLL
585     if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods);
586 root 1.1 #endif
587 root 1.29 #if EV_USE_SELECT
588 root 1.41 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods);
589 root 1.1 #endif
590    
591 root 1.23 if (ev_method)
592     {
593 root 1.28 ev_watcher_init (&sigev, sigcb);
594 root 1.47 ev_set_priority (&sigev, EV_MAXPRI);
595 root 1.23 siginit ();
596 root 1.22
597 root 1.45 #ifndef WIN32
598 root 1.28 ev_signal_init (&childev, childcb, SIGCHLD);
599 root 1.47 ev_set_priority (&childev, EV_MAXPRI);
600 root 1.28 ev_signal_start (&childev);
601 root 1.45 #endif
602 root 1.23 }
603 root 1.7 }
604    
605 root 1.1 return ev_method;
606     }
607    
608 root 1.8 /*****************************************************************************/
609    
610 root 1.24 void
611 root 1.35 ev_fork_prepare (void)
612 root 1.1 {
613 root 1.11 /* nop */
614 root 1.1 }
615    
616 root 1.24 void
617 root 1.35 ev_fork_parent (void)
618 root 1.1 {
619 root 1.11 /* nop */
620 root 1.1 }
621    
622 root 1.24 void
623 root 1.35 ev_fork_child (void)
624 root 1.1 {
625 root 1.29 #if EV_USE_EPOLL
626 root 1.5 if (ev_method == EVMETHOD_EPOLL)
627     epoll_postfork_child ();
628 root 1.1 #endif
629 root 1.7
630 root 1.28 ev_io_stop (&sigev);
631 root 1.7 close (sigpipe [0]);
632     close (sigpipe [1]);
633     pipe (sigpipe);
634     siginit ();
635 root 1.1 }
636    
637 root 1.8 /*****************************************************************************/
638    
639 root 1.1 static void
640 root 1.24 call_pending (void)
641 root 1.1 {
642 root 1.42 int pri;
643    
644     for (pri = NUMPRI; pri--; )
645     while (pendingcnt [pri])
646     {
647     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
648 root 1.1
649 root 1.42 if (p->w)
650     {
651     p->w->pending = 0;
652     p->w->cb (p->w, p->events);
653     }
654     }
655 root 1.1 }
656    
657     static void
658 root 1.24 timers_reify (void)
659 root 1.1 {
660 root 1.4 while (timercnt && timers [0]->at <= now)
661 root 1.1 {
662     struct ev_timer *w = timers [0];
663    
664 root 1.4 /* first reschedule or stop timer */
665 root 1.1 if (w->repeat)
666     {
667 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
668 root 1.12 w->at = now + w->repeat;
669     downheap ((WT *)timers, timercnt, 0);
670     }
671     else
672 root 1.28 ev_timer_stop (w); /* nonrepeating: stop timer */
673 root 1.30
674     event ((W)w, EV_TIMEOUT);
675 root 1.12 }
676     }
677 root 1.4
678 root 1.12 static void
679 root 1.24 periodics_reify (void)
680 root 1.12 {
681     while (periodiccnt && periodics [0]->at <= ev_now)
682     {
683     struct ev_periodic *w = periodics [0];
684 root 1.1
685 root 1.12 /* first reschedule or stop timer */
686     if (w->interval)
687     {
688     w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval;
689 root 1.33 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now));
690 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
691 root 1.1 }
692     else
693 root 1.28 ev_periodic_stop (w); /* nonrepeating: stop timer */
694 root 1.12
695 root 1.33 event ((W)w, EV_PERIODIC);
696 root 1.12 }
697     }
698    
699     static void
700 root 1.13 periodics_reschedule (ev_tstamp diff)
701 root 1.12 {
702     int i;
703    
704 root 1.13 /* adjust periodics after time jump */
705 root 1.12 for (i = 0; i < periodiccnt; ++i)
706     {
707     struct ev_periodic *w = periodics [i];
708    
709     if (w->interval)
710 root 1.4 {
711 root 1.12 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval;
712    
713     if (fabs (diff) >= 1e-4)
714     {
715 root 1.28 ev_periodic_stop (w);
716     ev_periodic_start (w);
717 root 1.12
718     i = 0; /* restart loop, inefficient, but time jumps should be rare */
719     }
720 root 1.4 }
721 root 1.12 }
722 root 1.1 }
723    
724 root 1.40 static int
725     time_update_monotonic (void)
726     {
727     now = get_clock ();
728    
729     if (expect_true (now - now_floor < MIN_TIMEJUMP * .5))
730     {
731     ev_now = now + diff;
732     return 0;
733     }
734     else
735     {
736     now_floor = now;
737     ev_now = ev_time ();
738     return 1;
739     }
740     }
741    
742 root 1.4 static void
743 root 1.24 time_update (void)
744 root 1.4 {
745     int i;
746 root 1.12
747 root 1.40 #if EV_USE_MONOTONIC
748     if (expect_true (have_monotonic))
749     {
750     if (time_update_monotonic ())
751     {
752     ev_tstamp odiff = diff;
753 root 1.4
754 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
755     {
756     diff = ev_now - now;
757 root 1.4
758 root 1.40 if (fabs (odiff - diff) < MIN_TIMEJUMP)
759     return; /* all is well */
760 root 1.4
761 root 1.40 ev_now = ev_time ();
762     now = get_clock ();
763     now_floor = now;
764     }
765 root 1.4
766 root 1.40 periodics_reschedule (diff - odiff);
767     /* no timer adjustment, as the monotonic clock doesn't jump */
768 root 1.4 }
769     }
770     else
771 root 1.40 #endif
772 root 1.4 {
773 root 1.40 ev_now = ev_time ();
774    
775     if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
776 root 1.13 {
777     periodics_reschedule (ev_now - now);
778    
779     /* adjust timers. this is easy, as the offset is the same for all */
780     for (i = 0; i < timercnt; ++i)
781     timers [i]->at += diff;
782     }
783 root 1.4
784     now = ev_now;
785     }
786     }
787    
788 root 1.1 int ev_loop_done;
789    
790 root 1.4 void ev_loop (int flags)
791 root 1.1 {
792     double block;
793 root 1.26 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
794 root 1.1
795 root 1.20 do
796 root 1.9 {
797 root 1.20 /* queue check watchers (and execute them) */
798 root 1.40 if (expect_false (preparecnt))
799 root 1.20 {
800     queue_events ((W *)prepares, preparecnt, EV_PREPARE);
801     call_pending ();
802     }
803 root 1.9
804 root 1.1 /* update fd-related kernel structures */
805 root 1.5 fd_reify ();
806 root 1.1
807     /* calculate blocking time */
808 root 1.12
809 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
810     always have timers, we just calculate it always */
811 root 1.40 #if EV_USE_MONOTONIC
812     if (expect_true (have_monotonic))
813     time_update_monotonic ();
814     else
815     #endif
816     {
817     ev_now = ev_time ();
818     now = ev_now;
819     }
820 root 1.12
821 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
822 root 1.1 block = 0.;
823     else
824     {
825 root 1.4 block = MAX_BLOCKTIME;
826    
827 root 1.12 if (timercnt)
828 root 1.4 {
829 root 1.40 ev_tstamp to = timers [0]->at - now + method_fudge;
830 root 1.4 if (block > to) block = to;
831     }
832    
833 root 1.12 if (periodiccnt)
834 root 1.4 {
835 root 1.12 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
836 root 1.4 if (block > to) block = to;
837     }
838    
839 root 1.1 if (block < 0.) block = 0.;
840     }
841    
842     method_poll (block);
843    
844 root 1.4 /* update ev_now, do magic */
845     time_update ();
846    
847 root 1.9 /* queue pending timers and reschedule them */
848 root 1.20 timers_reify (); /* relative timers called last */
849     periodics_reify (); /* absolute timers called first */
850 root 1.1
851 root 1.9 /* queue idle watchers unless io or timers are pending */
852     if (!pendingcnt)
853 root 1.10 queue_events ((W *)idles, idlecnt, EV_IDLE);
854 root 1.9
855 root 1.20 /* queue check watchers, to be executed first */
856     if (checkcnt)
857     queue_events ((W *)checks, checkcnt, EV_CHECK);
858 root 1.9
859 root 1.1 call_pending ();
860     }
861     while (!ev_loop_done);
862 root 1.13
863     if (ev_loop_done != 2)
864     ev_loop_done = 0;
865 root 1.1 }
866    
867 root 1.8 /*****************************************************************************/
868    
869 root 1.1 static void
870 root 1.10 wlist_add (WL *head, WL elem)
871 root 1.1 {
872     elem->next = *head;
873     *head = elem;
874     }
875    
876     static void
877 root 1.10 wlist_del (WL *head, WL elem)
878 root 1.1 {
879     while (*head)
880     {
881     if (*head == elem)
882     {
883     *head = elem->next;
884     return;
885     }
886    
887     head = &(*head)->next;
888     }
889     }
890    
891     static void
892 root 1.33 ev_clear_pending (W w)
893 root 1.16 {
894     if (w->pending)
895     {
896 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
897 root 1.16 w->pending = 0;
898     }
899     }
900    
901     static void
902 root 1.10 ev_start (W w, int active)
903 root 1.1 {
904 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
905     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
906    
907 root 1.1 w->active = active;
908     }
909    
910     static void
911 root 1.10 ev_stop (W w)
912 root 1.1 {
913     w->active = 0;
914     }
915    
916 root 1.8 /*****************************************************************************/
917    
918 root 1.1 void
919 root 1.28 ev_io_start (struct ev_io *w)
920 root 1.1 {
921 root 1.37 int fd = w->fd;
922    
923 root 1.1 if (ev_is_active (w))
924     return;
925    
926 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
927    
928 root 1.10 ev_start ((W)w, 1);
929 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
930 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
931 root 1.1
932 root 1.27 fd_change (fd);
933 root 1.1 }
934    
935     void
936 root 1.28 ev_io_stop (struct ev_io *w)
937 root 1.1 {
938 root 1.33 ev_clear_pending ((W)w);
939 root 1.1 if (!ev_is_active (w))
940     return;
941    
942 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
943     ev_stop ((W)w);
944 root 1.1
945 root 1.27 fd_change (w->fd);
946 root 1.1 }
947    
948     void
949 root 1.28 ev_timer_start (struct ev_timer *w)
950 root 1.1 {
951     if (ev_is_active (w))
952     return;
953    
954 root 1.12 w->at += now;
955    
956 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
957 root 1.13
958 root 1.12 ev_start ((W)w, ++timercnt);
959     array_needsize (timers, timermax, timercnt, );
960     timers [timercnt - 1] = w;
961     upheap ((WT *)timers, timercnt - 1);
962     }
963    
964     void
965 root 1.28 ev_timer_stop (struct ev_timer *w)
966 root 1.12 {
967 root 1.33 ev_clear_pending ((W)w);
968 root 1.12 if (!ev_is_active (w))
969     return;
970    
971     if (w->active < timercnt--)
972 root 1.1 {
973 root 1.12 timers [w->active - 1] = timers [timercnt];
974     downheap ((WT *)timers, timercnt, w->active - 1);
975     }
976 root 1.4
977 root 1.14 w->at = w->repeat;
978    
979 root 1.12 ev_stop ((W)w);
980     }
981 root 1.4
982 root 1.12 void
983 root 1.28 ev_timer_again (struct ev_timer *w)
984 root 1.14 {
985     if (ev_is_active (w))
986     {
987     if (w->repeat)
988     {
989     w->at = now + w->repeat;
990     downheap ((WT *)timers, timercnt, w->active - 1);
991     }
992     else
993 root 1.28 ev_timer_stop (w);
994 root 1.14 }
995     else if (w->repeat)
996 root 1.28 ev_timer_start (w);
997 root 1.14 }
998    
999     void
1000 root 1.28 ev_periodic_start (struct ev_periodic *w)
1001 root 1.12 {
1002     if (ev_is_active (w))
1003     return;
1004 root 1.1
1005 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1006 root 1.13
1007 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1008     if (w->interval)
1009     w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
1010    
1011     ev_start ((W)w, ++periodiccnt);
1012     array_needsize (periodics, periodicmax, periodiccnt, );
1013     periodics [periodiccnt - 1] = w;
1014     upheap ((WT *)periodics, periodiccnt - 1);
1015 root 1.1 }
1016    
1017     void
1018 root 1.28 ev_periodic_stop (struct ev_periodic *w)
1019 root 1.1 {
1020 root 1.33 ev_clear_pending ((W)w);
1021 root 1.1 if (!ev_is_active (w))
1022     return;
1023    
1024 root 1.12 if (w->active < periodiccnt--)
1025 root 1.2 {
1026 root 1.12 periodics [w->active - 1] = periodics [periodiccnt];
1027     downheap ((WT *)periodics, periodiccnt, w->active - 1);
1028 root 1.2 }
1029    
1030 root 1.10 ev_stop ((W)w);
1031 root 1.1 }
1032    
1033 root 1.47 #ifndef SA_RESTART
1034     # define SA_RESTART 0
1035     #endif
1036    
1037 root 1.1 void
1038 root 1.28 ev_signal_start (struct ev_signal *w)
1039 root 1.1 {
1040     if (ev_is_active (w))
1041     return;
1042    
1043 root 1.33 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1044    
1045 root 1.10 ev_start ((W)w, 1);
1046 root 1.1 array_needsize (signals, signalmax, w->signum, signals_init);
1047 root 1.10 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1048 root 1.7
1049     if (!w->next)
1050     {
1051     struct sigaction sa;
1052     sa.sa_handler = sighandler;
1053     sigfillset (&sa.sa_mask);
1054 root 1.47 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1055 root 1.7 sigaction (w->signum, &sa, 0);
1056     }
1057 root 1.1 }
1058    
1059     void
1060 root 1.28 ev_signal_stop (struct ev_signal *w)
1061 root 1.1 {
1062 root 1.33 ev_clear_pending ((W)w);
1063 root 1.1 if (!ev_is_active (w))
1064     return;
1065    
1066 root 1.10 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1067     ev_stop ((W)w);
1068 root 1.7
1069     if (!signals [w->signum - 1].head)
1070     signal (w->signum, SIG_DFL);
1071 root 1.1 }
1072    
1073 root 1.28 void
1074     ev_idle_start (struct ev_idle *w)
1075 root 1.9 {
1076     if (ev_is_active (w))
1077     return;
1078    
1079 root 1.10 ev_start ((W)w, ++idlecnt);
1080 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1081     idles [idlecnt - 1] = w;
1082     }
1083    
1084 root 1.28 void
1085     ev_idle_stop (struct ev_idle *w)
1086 root 1.9 {
1087 root 1.33 ev_clear_pending ((W)w);
1088 root 1.16 if (ev_is_active (w))
1089     return;
1090    
1091 root 1.9 idles [w->active - 1] = idles [--idlecnt];
1092 root 1.10 ev_stop ((W)w);
1093 root 1.9 }
1094    
1095 root 1.28 void
1096     ev_prepare_start (struct ev_prepare *w)
1097 root 1.20 {
1098     if (ev_is_active (w))
1099     return;
1100    
1101     ev_start ((W)w, ++preparecnt);
1102     array_needsize (prepares, preparemax, preparecnt, );
1103     prepares [preparecnt - 1] = w;
1104     }
1105    
1106 root 1.28 void
1107     ev_prepare_stop (struct ev_prepare *w)
1108 root 1.20 {
1109 root 1.33 ev_clear_pending ((W)w);
1110 root 1.20 if (ev_is_active (w))
1111     return;
1112    
1113     prepares [w->active - 1] = prepares [--preparecnt];
1114     ev_stop ((W)w);
1115     }
1116    
1117 root 1.28 void
1118     ev_check_start (struct ev_check *w)
1119 root 1.9 {
1120     if (ev_is_active (w))
1121     return;
1122    
1123 root 1.10 ev_start ((W)w, ++checkcnt);
1124 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1125     checks [checkcnt - 1] = w;
1126     }
1127    
1128 root 1.28 void
1129     ev_check_stop (struct ev_check *w)
1130 root 1.9 {
1131 root 1.33 ev_clear_pending ((W)w);
1132 root 1.16 if (ev_is_active (w))
1133     return;
1134    
1135 root 1.9 checks [w->active - 1] = checks [--checkcnt];
1136 root 1.10 ev_stop ((W)w);
1137 root 1.9 }
1138    
1139 root 1.28 void
1140     ev_child_start (struct ev_child *w)
1141 root 1.22 {
1142     if (ev_is_active (w))
1143     return;
1144    
1145     ev_start ((W)w, 1);
1146     wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1147     }
1148    
1149 root 1.28 void
1150     ev_child_stop (struct ev_child *w)
1151 root 1.22 {
1152 root 1.33 ev_clear_pending ((W)w);
1153 root 1.22 if (ev_is_active (w))
1154     return;
1155    
1156     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1157     ev_stop ((W)w);
1158     }
1159    
1160 root 1.1 /*****************************************************************************/
1161 root 1.10
1162 root 1.16 struct ev_once
1163     {
1164     struct ev_io io;
1165     struct ev_timer to;
1166     void (*cb)(int revents, void *arg);
1167     void *arg;
1168     };
1169    
1170     static void
1171     once_cb (struct ev_once *once, int revents)
1172     {
1173     void (*cb)(int revents, void *arg) = once->cb;
1174     void *arg = once->arg;
1175    
1176 root 1.28 ev_io_stop (&once->io);
1177     ev_timer_stop (&once->to);
1178 root 1.16 free (once);
1179    
1180     cb (revents, arg);
1181     }
1182    
1183     static void
1184     once_cb_io (struct ev_io *w, int revents)
1185     {
1186     once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1187     }
1188    
1189     static void
1190     once_cb_to (struct ev_timer *w, int revents)
1191     {
1192     once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1193     }
1194    
1195     void
1196     ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1197     {
1198     struct ev_once *once = malloc (sizeof (struct ev_once));
1199    
1200     if (!once)
1201 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1202 root 1.16 else
1203     {
1204     once->cb = cb;
1205     once->arg = arg;
1206    
1207 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1208 root 1.16 if (fd >= 0)
1209     {
1210 root 1.28 ev_io_set (&once->io, fd, events);
1211     ev_io_start (&once->io);
1212 root 1.16 }
1213    
1214 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1215 root 1.16 if (timeout >= 0.)
1216     {
1217 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1218     ev_timer_start (&once->to);
1219 root 1.16 }
1220     }
1221     }
1222    
1223     /*****************************************************************************/
1224    
1225 root 1.13 #if 0
1226 root 1.12
1227     struct ev_io wio;
1228 root 1.1
1229     static void
1230     sin_cb (struct ev_io *w, int revents)
1231     {
1232     fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1233     }
1234    
1235     static void
1236     ocb (struct ev_timer *w, int revents)
1237     {
1238 root 1.4 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1239 root 1.28 ev_timer_stop (w);
1240     ev_timer_start (w);
1241 root 1.1 }
1242    
1243 root 1.7 static void
1244     scb (struct ev_signal *w, int revents)
1245     {
1246     fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1247 root 1.28 ev_io_stop (&wio);
1248     ev_io_start (&wio);
1249 root 1.7 }
1250    
1251 root 1.9 static void
1252     gcb (struct ev_signal *w, int revents)
1253     {
1254     fprintf (stderr, "generic %x\n", revents);
1255 root 1.12
1256 root 1.9 }
1257    
1258 root 1.1 int main (void)
1259     {
1260     ev_init (0);
1261    
1262 root 1.28 ev_io_init (&wio, sin_cb, 0, EV_READ);
1263     ev_io_start (&wio);
1264 root 1.1
1265 root 1.4 struct ev_timer t[10000];
1266 root 1.2
1267 root 1.9 #if 0
1268 root 1.2 int i;
1269 root 1.4 for (i = 0; i < 10000; ++i)
1270 root 1.2 {
1271     struct ev_timer *w = t + i;
1272 root 1.28 ev_watcher_init (w, ocb, i);
1273     ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1274     ev_timer_start (w);
1275 root 1.2 if (drand48 () < 0.5)
1276 root 1.28 ev_timer_stop (w);
1277 root 1.2 }
1278 root 1.4 #endif
1279    
1280     struct ev_timer t1;
1281 root 1.28 ev_timer_init (&t1, ocb, 5, 10);
1282     ev_timer_start (&t1);
1283 root 1.1
1284 root 1.7 struct ev_signal sig;
1285 root 1.28 ev_signal_init (&sig, scb, SIGQUIT);
1286     ev_signal_start (&sig);
1287 root 1.7
1288 root 1.9 struct ev_check cw;
1289 root 1.28 ev_check_init (&cw, gcb);
1290     ev_check_start (&cw);
1291 root 1.9
1292     struct ev_idle iw;
1293 root 1.28 ev_idle_init (&iw, gcb);
1294     ev_idle_start (&iw);
1295 root 1.9
1296 root 1.1 ev_loop (0);
1297    
1298     return 0;
1299     }
1300    
1301     #endif
1302    
1303    
1304    
1305