ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.481
Committed: Thu Jun 1 20:25:50 2017 UTC (6 years, 11 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.480: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.463 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.1 #include <stdlib.h>
168 root 1.319 #include <string.h>
169 root 1.7 #include <fcntl.h>
170 root 1.16 #include <stddef.h>
171 root 1.1
172     #include <stdio.h>
173    
174 root 1.4 #include <assert.h>
175 root 1.1 #include <errno.h>
176 root 1.22 #include <sys/types.h>
177 root 1.71 #include <time.h>
178 root 1.326 #include <limits.h>
179 root 1.71
180 root 1.72 #include <signal.h>
181 root 1.71
182 root 1.152 #ifdef EV_H
183     # include EV_H
184     #else
185     # include "ev.h"
186     #endif
187    
188 root 1.410 #if EV_NO_THREADS
189     # undef EV_NO_SMP
190     # define EV_NO_SMP 1
191     # undef ECB_NO_THREADS
192     # define ECB_NO_THREADS 1
193     #endif
194     #if EV_NO_SMP
195     # undef EV_NO_SMP
196     # define ECB_NO_SMP 1
197     #endif
198    
199 root 1.103 #ifndef _WIN32
200 root 1.71 # include <sys/time.h>
201 root 1.45 # include <sys/wait.h>
202 root 1.140 # include <unistd.h>
203 root 1.103 #else
204 root 1.256 # include <io.h>
205 root 1.103 # define WIN32_LEAN_AND_MEAN
206 root 1.431 # include <winsock2.h>
207 root 1.103 # include <windows.h>
208     # ifndef EV_SELECT_IS_WINSOCKET
209     # define EV_SELECT_IS_WINSOCKET 1
210     # endif
211 root 1.331 # undef EV_AVOID_STDIO
212 root 1.45 #endif
213 root 1.103
214 root 1.344 /* OS X, in its infinite idiocy, actually HARDCODES
215     * a limit of 1024 into their select. Where people have brains,
216     * OS X engineers apparently have a vacuum. Or maybe they were
217     * ordered to have a vacuum, or they do anything for money.
218     * This might help. Or not.
219     */
220     #define _DARWIN_UNLIMITED_SELECT 1
221    
222 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 root 1.40
224 root 1.305 /* try to deduce the maximum number of signals on this platform */
225 root 1.416 #if defined EV_NSIG
226 root 1.305 /* use what's provided */
227 root 1.416 #elif defined NSIG
228 root 1.305 # define EV_NSIG (NSIG)
229 root 1.416 #elif defined _NSIG
230 root 1.305 # define EV_NSIG (_NSIG)
231 root 1.416 #elif defined SIGMAX
232 root 1.305 # define EV_NSIG (SIGMAX+1)
233 root 1.416 #elif defined SIG_MAX
234 root 1.305 # define EV_NSIG (SIG_MAX+1)
235 root 1.416 #elif defined _SIG_MAX
236 root 1.305 # define EV_NSIG (_SIG_MAX+1)
237 root 1.416 #elif defined MAXSIG
238 root 1.305 # define EV_NSIG (MAXSIG+1)
239 root 1.416 #elif defined MAX_SIG
240 root 1.305 # define EV_NSIG (MAX_SIG+1)
241 root 1.416 #elif defined SIGARRAYSIZE
242 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 root 1.416 #elif defined _sys_nsig
244 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245     #else
246 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 root 1.305 #endif
248    
249 root 1.373 #ifndef EV_USE_FLOOR
250     # define EV_USE_FLOOR 0
251     #endif
252    
253 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
254 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 root 1.274 # else
257     # define EV_USE_CLOCK_SYSCALL 0
258     # endif
259     #endif
260    
261 root 1.470 #if !(_POSIX_TIMERS > 0)
262     # ifndef EV_USE_MONOTONIC
263     # define EV_USE_MONOTONIC 0
264     # endif
265     # ifndef EV_USE_REALTIME
266     # define EV_USE_REALTIME 0
267     # endif
268     #endif
269    
270 root 1.29 #ifndef EV_USE_MONOTONIC
271 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
273 root 1.253 # else
274     # define EV_USE_MONOTONIC 0
275     # endif
276 root 1.37 #endif
277    
278 root 1.118 #ifndef EV_USE_REALTIME
279 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280 root 1.118 #endif
281    
282 root 1.193 #ifndef EV_USE_NANOSLEEP
283 root 1.253 # if _POSIX_C_SOURCE >= 199309L
284 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
285 root 1.253 # else
286     # define EV_USE_NANOSLEEP 0
287     # endif
288 root 1.193 #endif
289    
290 root 1.29 #ifndef EV_USE_SELECT
291 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
292 root 1.10 #endif
293    
294 root 1.59 #ifndef EV_USE_POLL
295 root 1.104 # ifdef _WIN32
296     # define EV_USE_POLL 0
297     # else
298 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
299 root 1.104 # endif
300 root 1.41 #endif
301    
302 root 1.29 #ifndef EV_USE_EPOLL
303 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
305 root 1.220 # else
306     # define EV_USE_EPOLL 0
307     # endif
308 root 1.10 #endif
309    
310 root 1.44 #ifndef EV_USE_KQUEUE
311     # define EV_USE_KQUEUE 0
312     #endif
313    
314 root 1.118 #ifndef EV_USE_PORT
315     # define EV_USE_PORT 0
316 root 1.40 #endif
317    
318 root 1.152 #ifndef EV_USE_INOTIFY
319 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
321 root 1.220 # else
322     # define EV_USE_INOTIFY 0
323     # endif
324 root 1.152 #endif
325    
326 root 1.149 #ifndef EV_PID_HASHSIZE
327 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328 root 1.149 #endif
329    
330 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
331 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332 root 1.152 #endif
333    
334 root 1.220 #ifndef EV_USE_EVENTFD
335     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
337 root 1.220 # else
338     # define EV_USE_EVENTFD 0
339     # endif
340     #endif
341    
342 root 1.303 #ifndef EV_USE_SIGNALFD
343 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
345 root 1.303 # else
346     # define EV_USE_SIGNALFD 0
347     # endif
348     #endif
349    
350 root 1.249 #if 0 /* debugging */
351 root 1.250 # define EV_VERIFY 3
352 root 1.249 # define EV_USE_4HEAP 1
353     # define EV_HEAP_CACHE_AT 1
354     #endif
355    
356 root 1.250 #ifndef EV_VERIFY
357 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358 root 1.250 #endif
359    
360 root 1.243 #ifndef EV_USE_4HEAP
361 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
362 root 1.243 #endif
363    
364     #ifndef EV_HEAP_CACHE_AT
365 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366 root 1.243 #endif
367    
368 root 1.481 #ifdef __ANDROID__
369 root 1.452 /* supposedly, android doesn't typedef fd_mask */
370     # undef EV_USE_SELECT
371     # define EV_USE_SELECT 0
372     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373     # undef EV_USE_CLOCK_SYSCALL
374     # define EV_USE_CLOCK_SYSCALL 0
375     #endif
376    
377     /* aix's poll.h seems to cause lots of trouble */
378     #ifdef _AIX
379     /* AIX has a completely broken poll.h header */
380     # undef EV_USE_POLL
381     # define EV_USE_POLL 0
382     #endif
383    
384 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385     /* which makes programs even slower. might work on other unices, too. */
386     #if EV_USE_CLOCK_SYSCALL
387 root 1.423 # include <sys/syscall.h>
388 root 1.291 # ifdef SYS_clock_gettime
389     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390     # undef EV_USE_MONOTONIC
391     # define EV_USE_MONOTONIC 1
392     # else
393     # undef EV_USE_CLOCK_SYSCALL
394     # define EV_USE_CLOCK_SYSCALL 0
395     # endif
396     #endif
397    
398 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
399 root 1.40
400     #ifndef CLOCK_MONOTONIC
401     # undef EV_USE_MONOTONIC
402     # define EV_USE_MONOTONIC 0
403     #endif
404    
405 root 1.31 #ifndef CLOCK_REALTIME
406 root 1.40 # undef EV_USE_REALTIME
407 root 1.31 # define EV_USE_REALTIME 0
408     #endif
409 root 1.40
410 root 1.152 #if !EV_STAT_ENABLE
411 root 1.185 # undef EV_USE_INOTIFY
412 root 1.152 # define EV_USE_INOTIFY 0
413     #endif
414    
415 root 1.193 #if !EV_USE_NANOSLEEP
416 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
417 root 1.416 # if !defined _WIN32 && !defined __hpux
418 root 1.193 # include <sys/select.h>
419     # endif
420     #endif
421    
422 root 1.152 #if EV_USE_INOTIFY
423 root 1.273 # include <sys/statfs.h>
424 root 1.152 # include <sys/inotify.h>
425 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426     # ifndef IN_DONT_FOLLOW
427     # undef EV_USE_INOTIFY
428     # define EV_USE_INOTIFY 0
429     # endif
430 root 1.152 #endif
431    
432 root 1.220 #if EV_USE_EVENTFD
433     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 root 1.221 # include <stdint.h>
435 root 1.303 # ifndef EFD_NONBLOCK
436     # define EFD_NONBLOCK O_NONBLOCK
437     # endif
438     # ifndef EFD_CLOEXEC
439 root 1.311 # ifdef O_CLOEXEC
440     # define EFD_CLOEXEC O_CLOEXEC
441     # else
442     # define EFD_CLOEXEC 02000000
443     # endif
444 root 1.303 # endif
445 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446 root 1.220 #endif
447    
448 root 1.303 #if EV_USE_SIGNALFD
449 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450     # include <stdint.h>
451     # ifndef SFD_NONBLOCK
452     # define SFD_NONBLOCK O_NONBLOCK
453     # endif
454     # ifndef SFD_CLOEXEC
455     # ifdef O_CLOEXEC
456     # define SFD_CLOEXEC O_CLOEXEC
457     # else
458     # define SFD_CLOEXEC 02000000
459     # endif
460     # endif
461 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462 root 1.314
463     struct signalfd_siginfo
464     {
465     uint32_t ssi_signo;
466     char pad[128 - sizeof (uint32_t)];
467     };
468 root 1.303 #endif
469    
470 root 1.40 /**/
471 root 1.1
472 root 1.250 #if EV_VERIFY >= 3
473 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
474 root 1.248 #else
475     # define EV_FREQUENT_CHECK do { } while (0)
476     #endif
477    
478 root 1.176 /*
479 root 1.373 * This is used to work around floating point rounding problems.
480 root 1.177 * This value is good at least till the year 4000.
481 root 1.176 */
482 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
484 root 1.176
485 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
486 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
487 root 1.1
488 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490 root 1.347
491 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492     /* ECB.H BEGIN */
493     /*
494     * libecb - http://software.schmorp.de/pkg/libecb
495     *
496 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
498     * All rights reserved.
499     *
500     * Redistribution and use in source and binary forms, with or without modifica-
501     * tion, are permitted provided that the following conditions are met:
502     *
503     * 1. Redistributions of source code must retain the above copyright notice,
504     * this list of conditions and the following disclaimer.
505     *
506     * 2. Redistributions in binary form must reproduce the above copyright
507     * notice, this list of conditions and the following disclaimer in the
508     * documentation and/or other materials provided with the distribution.
509     *
510     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519     * OF THE POSSIBILITY OF SUCH DAMAGE.
520 root 1.467 *
521     * Alternatively, the contents of this file may be used under the terms of
522     * the GNU General Public License ("GPL") version 2 or any later version,
523     * in which case the provisions of the GPL are applicable instead of
524     * the above. If you wish to allow the use of your version of this file
525     * only under the terms of the GPL and not to allow others to use your
526     * version of this file under the BSD license, indicate your decision
527     * by deleting the provisions above and replace them with the notice
528     * and other provisions required by the GPL. If you do not delete the
529     * provisions above, a recipient may use your version of this file under
530     * either the BSD or the GPL.
531 root 1.391 */
532    
533     #ifndef ECB_H
534     #define ECB_H
535    
536 root 1.437 /* 16 bits major, 16 bits minor */
537 root 1.479 #define ECB_VERSION 0x00010005
538 root 1.437
539 root 1.391 #ifdef _WIN32
540     typedef signed char int8_t;
541     typedef unsigned char uint8_t;
542     typedef signed short int16_t;
543     typedef unsigned short uint16_t;
544     typedef signed int int32_t;
545     typedef unsigned int uint32_t;
546     #if __GNUC__
547     typedef signed long long int64_t;
548     typedef unsigned long long uint64_t;
549     #else /* _MSC_VER || __BORLANDC__ */
550     typedef signed __int64 int64_t;
551     typedef unsigned __int64 uint64_t;
552     #endif
553 root 1.437 #ifdef _WIN64
554     #define ECB_PTRSIZE 8
555     typedef uint64_t uintptr_t;
556     typedef int64_t intptr_t;
557     #else
558     #define ECB_PTRSIZE 4
559     typedef uint32_t uintptr_t;
560     typedef int32_t intptr_t;
561     #endif
562 root 1.391 #else
563     #include <inttypes.h>
564 root 1.479 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565 root 1.437 #define ECB_PTRSIZE 8
566     #else
567     #define ECB_PTRSIZE 4
568     #endif
569 root 1.391 #endif
570 root 1.379
571 sf-exg 1.475 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573    
574 root 1.454 /* work around x32 idiocy by defining proper macros */
575 sf-exg 1.475 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 root 1.458 #if _ILP32
577 root 1.454 #define ECB_AMD64_X32 1
578     #else
579     #define ECB_AMD64 1
580     #endif
581     #endif
582    
583 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
584     * what their idiot authors think are the "more important" extensions,
585 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
586 root 1.379 * or so.
587     * we try to detect these and simply assume they are not gcc - if they have
588     * an issue with that they should have done it right in the first place.
589     */
590 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591     #define ECB_GCC_VERSION(major,minor) 0
592     #else
593     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594     #endif
595    
596     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597    
598     #if __clang__ && defined __has_builtin
599     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600     #else
601     #define ECB_CLANG_BUILTIN(x) 0
602     #endif
603    
604     #if __clang__ && defined __has_extension
605     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606     #else
607     #define ECB_CLANG_EXTENSION(x) 0
608 root 1.379 #endif
609    
610 root 1.437 #define ECB_CPP (__cplusplus+0)
611     #define ECB_CPP11 (__cplusplus >= 201103L)
612    
613 root 1.450 #if ECB_CPP
614 root 1.464 #define ECB_C 0
615     #define ECB_STDC_VERSION 0
616     #else
617     #define ECB_C 1
618     #define ECB_STDC_VERSION __STDC_VERSION__
619     #endif
620    
621     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623    
624     #if ECB_CPP
625 root 1.450 #define ECB_EXTERN_C extern "C"
626     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627     #define ECB_EXTERN_C_END }
628     #else
629     #define ECB_EXTERN_C extern
630     #define ECB_EXTERN_C_BEG
631     #define ECB_EXTERN_C_END
632     #endif
633    
634 root 1.391 /*****************************************************************************/
635    
636     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638    
639 root 1.410 #if ECB_NO_THREADS
640 root 1.439 #define ECB_NO_SMP 1
641 root 1.410 #endif
642    
643 root 1.437 #if ECB_NO_SMP
644 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
645 root 1.40 #endif
646    
647 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648     #if __xlC__ && ECB_CPP
649     #include <builtins.h>
650     #endif
651    
652 root 1.479 #if 1400 <= _MSC_VER
653     #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654     #endif
655    
656 root 1.383 #ifndef ECB_MEMORY_FENCE
657 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658 root 1.404 #if __i386 || __i386__
659 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 sf-exg 1.475 #elif ECB_GCC_AMD64
663 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
664     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
665     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
668 root 1.479 #elif defined __ARM_ARCH_2__ \
669     || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
670     || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
671     || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
672     || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673     || defined __ARM_ARCH_5TEJ__
674     /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
676 root 1.479 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677     || defined __ARM_ARCH_6T2__
678 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
680 root 1.479 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
682 root 1.464 #elif __aarch64__
683     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
684 root 1.477 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
687     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
688 root 1.417 #elif defined __s390__ || defined __s390x__
689 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690 root 1.417 #elif defined __mips__
691 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694 root 1.419 #elif defined __alpha__
695 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
696     #elif defined __hppa__
697     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
698     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699     #elif defined __ia64__
700     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
701 root 1.457 #elif defined __m68k__
702     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703     #elif defined __m88k__
704     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705     #elif defined __sh__
706     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
707 root 1.383 #endif
708     #endif
709     #endif
710    
711     #ifndef ECB_MEMORY_FENCE
712 root 1.437 #if ECB_GCC_VERSION(4,7)
713 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
714 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
715 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717 root 1.450
718 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
719     /* see comment below (stdatomic.h) about the C11 memory model. */
720     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723 root 1.450
724 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
726 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
727     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
730     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
733     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
735     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737 root 1.417 #elif defined _WIN32
738 root 1.388 #include <WinNT.h>
739 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
740 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741     #include <mbarrier.h>
742     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
743     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
744     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
745 root 1.413 #elif __xlC__
746 root 1.414 #define ECB_MEMORY_FENCE __sync ()
747 root 1.383 #endif
748     #endif
749    
750     #ifndef ECB_MEMORY_FENCE
751 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752     /* we assume that these memory fences work on all variables/all memory accesses, */
753     /* not just C11 atomics and atomic accesses */
754     #include <stdatomic.h>
755 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756     /* any fence other than seq_cst, which isn't very efficient for us. */
757     /* Why that is, we don't know - either the C11 memory model is quite useless */
758     /* for most usages, or gcc and clang have a bug */
759     /* I *currently* lean towards the latter, and inefficiently implement */
760     /* all three of ecb's fences as a seq_cst fence */
761 root 1.464 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762     /* for all __atomic_thread_fence's except seq_cst */
763 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
764     #endif
765     #endif
766    
767     #ifndef ECB_MEMORY_FENCE
768 root 1.392 #if !ECB_AVOID_PTHREADS
769     /*
770     * if you get undefined symbol references to pthread_mutex_lock,
771     * or failure to find pthread.h, then you should implement
772     * the ECB_MEMORY_FENCE operations for your cpu/compiler
773     * OR provide pthread.h and link against the posix thread library
774     * of your system.
775     */
776     #include <pthread.h>
777     #define ECB_NEEDS_PTHREADS 1
778     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779    
780     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782     #endif
783     #endif
784 root 1.383
785 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787 root 1.392 #endif
788    
789 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791     #endif
792    
793 root 1.391 /*****************************************************************************/
794    
795 root 1.474 #if ECB_CPP
796 root 1.391 #define ecb_inline static inline
797     #elif ECB_GCC_VERSION(2,5)
798     #define ecb_inline static __inline__
799     #elif ECB_C99
800     #define ecb_inline static inline
801     #else
802     #define ecb_inline static
803     #endif
804    
805     #if ECB_GCC_VERSION(3,3)
806     #define ecb_restrict __restrict__
807     #elif ECB_C99
808     #define ecb_restrict restrict
809     #else
810     #define ecb_restrict
811     #endif
812    
813     typedef int ecb_bool;
814    
815     #define ECB_CONCAT_(a, b) a ## b
816     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817     #define ECB_STRINGIFY_(a) # a
818     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819 sf-exg 1.475 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820 root 1.391
821     #define ecb_function_ ecb_inline
822    
823 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824     #define ecb_attribute(attrlist) __attribute__ (attrlist)
825 root 1.379 #else
826     #define ecb_attribute(attrlist)
827 root 1.474 #endif
828 root 1.464
829 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830     #define ecb_is_constant(expr) __builtin_constant_p (expr)
831     #else
832 root 1.464 /* possible C11 impl for integral types
833     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835    
836 root 1.379 #define ecb_is_constant(expr) 0
837 root 1.474 #endif
838    
839     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
840     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
841     #else
842 root 1.379 #define ecb_expect(expr,value) (expr)
843 root 1.474 #endif
844    
845     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847     #else
848 root 1.379 #define ecb_prefetch(addr,rw,locality)
849     #endif
850    
851 root 1.391 /* no emulation for ecb_decltype */
852 root 1.474 #if ECB_CPP11
853     // older implementations might have problems with decltype(x)::type, work around it
854     template<class T> struct ecb_decltype_t { typedef T type; };
855     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857     #define ecb_decltype(x) __typeof__ (x)
858 root 1.391 #endif
859    
860 root 1.468 #if _MSC_VER >= 1300
861 root 1.474 #define ecb_deprecated __declspec (deprecated)
862 root 1.468 #else
863     #define ecb_deprecated ecb_attribute ((__deprecated__))
864     #endif
865    
866 root 1.476 #if _MSC_VER >= 1500
867 sf-exg 1.475 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868     #elif ECB_GCC_VERSION(4,5)
869     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870     #else
871     #define ecb_deprecated_message(msg) ecb_deprecated
872     #endif
873    
874     #if _MSC_VER >= 1400
875     #define ecb_noinline __declspec (noinline)
876     #else
877     #define ecb_noinline ecb_attribute ((__noinline__))
878     #endif
879    
880 root 1.379 #define ecb_unused ecb_attribute ((__unused__))
881     #define ecb_const ecb_attribute ((__const__))
882     #define ecb_pure ecb_attribute ((__pure__))
883    
884 root 1.474 #if ECB_C11 || __IBMC_NORETURN
885 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886 root 1.437 #define ecb_noreturn _Noreturn
887 sf-exg 1.475 #elif ECB_CPP11
888     #define ecb_noreturn [[noreturn]]
889     #elif _MSC_VER >= 1200
890     /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891     #define ecb_noreturn __declspec (noreturn)
892 root 1.437 #else
893     #define ecb_noreturn ecb_attribute ((__noreturn__))
894     #endif
895    
896 root 1.379 #if ECB_GCC_VERSION(4,3)
897     #define ecb_artificial ecb_attribute ((__artificial__))
898     #define ecb_hot ecb_attribute ((__hot__))
899     #define ecb_cold ecb_attribute ((__cold__))
900     #else
901     #define ecb_artificial
902     #define ecb_hot
903     #define ecb_cold
904     #endif
905    
906     /* put around conditional expressions if you are very sure that the */
907     /* expression is mostly true or mostly false. note that these return */
908     /* booleans, not the expression. */
909     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
910     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
911 root 1.391 /* for compatibility to the rest of the world */
912     #define ecb_likely(expr) ecb_expect_true (expr)
913     #define ecb_unlikely(expr) ecb_expect_false (expr)
914    
915     /* count trailing zero bits and count # of one bits */
916 root 1.474 #if ECB_GCC_VERSION(3,4) \
917     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919     && ECB_CLANG_BUILTIN(__builtin_popcount))
920 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
922     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
923     #define ecb_ctz32(x) __builtin_ctz (x)
924     #define ecb_ctz64(x) __builtin_ctzll (x)
925     #define ecb_popcount32(x) __builtin_popcount (x)
926     /* no popcountll */
927     #else
928 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929     ecb_function_ ecb_const int
930 root 1.391 ecb_ctz32 (uint32_t x)
931     {
932 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933     unsigned long r;
934     _BitScanForward (&r, x);
935     return (int)r;
936     #else
937 root 1.391 int r = 0;
938    
939     x &= ~x + 1; /* this isolates the lowest bit */
940    
941     #if ECB_branchless_on_i386
942     r += !!(x & 0xaaaaaaaa) << 0;
943     r += !!(x & 0xcccccccc) << 1;
944     r += !!(x & 0xf0f0f0f0) << 2;
945     r += !!(x & 0xff00ff00) << 3;
946     r += !!(x & 0xffff0000) << 4;
947     #else
948     if (x & 0xaaaaaaaa) r += 1;
949     if (x & 0xcccccccc) r += 2;
950     if (x & 0xf0f0f0f0) r += 4;
951     if (x & 0xff00ff00) r += 8;
952     if (x & 0xffff0000) r += 16;
953     #endif
954    
955     return r;
956 root 1.479 #endif
957 root 1.391 }
958    
959 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960     ecb_function_ ecb_const int
961 root 1.391 ecb_ctz64 (uint64_t x)
962     {
963 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964     unsigned long r;
965     _BitScanForward64 (&r, x);
966     return (int)r;
967     #else
968     int shift = x & 0xffffffff ? 0 : 32;
969 root 1.391 return ecb_ctz32 (x >> shift) + shift;
970 root 1.479 #endif
971 root 1.391 }
972    
973 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974     ecb_function_ ecb_const int
975 root 1.391 ecb_popcount32 (uint32_t x)
976     {
977     x -= (x >> 1) & 0x55555555;
978     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979     x = ((x >> 4) + x) & 0x0f0f0f0f;
980     x *= 0x01010101;
981    
982     return x >> 24;
983     }
984    
985 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
986     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987 root 1.391 {
988 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989     unsigned long r;
990     _BitScanReverse (&r, x);
991     return (int)r;
992     #else
993 root 1.391 int r = 0;
994    
995     if (x >> 16) { x >>= 16; r += 16; }
996     if (x >> 8) { x >>= 8; r += 8; }
997     if (x >> 4) { x >>= 4; r += 4; }
998     if (x >> 2) { x >>= 2; r += 2; }
999     if (x >> 1) { r += 1; }
1000    
1001     return r;
1002 root 1.479 #endif
1003 root 1.391 }
1004    
1005 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1006     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007 root 1.391 {
1008 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009     unsigned long r;
1010     _BitScanReverse64 (&r, x);
1011     return (int)r;
1012     #else
1013 root 1.391 int r = 0;
1014    
1015     if (x >> 32) { x >>= 32; r += 32; }
1016    
1017     return r + ecb_ld32 (x);
1018 root 1.479 #endif
1019 root 1.391 }
1020     #endif
1021    
1022 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1023     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1025     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026 root 1.437
1027 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1028     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1029 root 1.403 {
1030     return ( (x * 0x0802U & 0x22110U)
1031 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032 root 1.403 }
1033    
1034 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1035     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036 root 1.403 {
1037     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1038     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1039     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1040     x = ( x >> 8 ) | ( x << 8);
1041    
1042     return x;
1043     }
1044    
1045 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1046     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047 root 1.403 {
1048     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1049     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1050     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1051     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1052     x = ( x >> 16 ) | ( x << 16);
1053    
1054     return x;
1055     }
1056    
1057 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1058     /* so for this version we are lazy */
1059 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060     ecb_function_ ecb_const int
1061 root 1.391 ecb_popcount64 (uint64_t x)
1062     {
1063     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064     }
1065    
1066 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1067     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1068     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074    
1075     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1076     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1077     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1078     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1079     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1080     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1081     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1082     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083 root 1.391
1084 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085 root 1.476 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086     #define ecb_bswap16(x) __builtin_bswap16 (x)
1087     #else
1088 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089 root 1.476 #endif
1090 root 1.391 #define ecb_bswap32(x) __builtin_bswap32 (x)
1091     #define ecb_bswap64(x) __builtin_bswap64 (x)
1092 root 1.476 #elif _MSC_VER
1093     #include <stdlib.h>
1094     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1096     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097 root 1.391 #else
1098 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099     ecb_function_ ecb_const uint16_t
1100 root 1.391 ecb_bswap16 (uint16_t x)
1101     {
1102     return ecb_rotl16 (x, 8);
1103     }
1104    
1105 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106     ecb_function_ ecb_const uint32_t
1107 root 1.391 ecb_bswap32 (uint32_t x)
1108     {
1109     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110     }
1111    
1112 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113     ecb_function_ ecb_const uint64_t
1114 root 1.391 ecb_bswap64 (uint64_t x)
1115     {
1116     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117     }
1118     #endif
1119    
1120 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1122     #else
1123     /* this seems to work fine, but gcc always emits a warning for it :/ */
1124 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1125     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126 root 1.391 #endif
1127    
1128     /* try to tell the compiler that some condition is definitely true */
1129 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130 root 1.391
1131 root 1.479 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132     ecb_inline ecb_const uint32_t
1133 root 1.391 ecb_byteorder_helper (void)
1134     {
1135 root 1.450 /* the union code still generates code under pressure in gcc, */
1136     /* but less than using pointers, and always seems to */
1137     /* successfully return a constant. */
1138     /* the reason why we have this horrible preprocessor mess */
1139     /* is to avoid it in all cases, at least on common architectures */
1140     /* or when using a recent enough gcc version (>= 4.6) */
1141 root 1.479 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143     #define ECB_LITTLE_ENDIAN 1
1144     return 0x44332211;
1145     #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146     || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147     #define ECB_BIG_ENDIAN 1
1148     return 0x11223344;
1149 root 1.450 #else
1150     union
1151     {
1152 root 1.479 uint8_t c[4];
1153     uint32_t u;
1154     } u = { 0x11, 0x22, 0x33, 0x44 };
1155     return u.u;
1156 root 1.450 #endif
1157 root 1.391 }
1158    
1159 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1160 root 1.479 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1161 root 1.474 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1162 root 1.479 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163 root 1.391
1164     #if ECB_GCC_VERSION(3,0) || ECB_C99
1165     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166     #else
1167     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168     #endif
1169    
1170 root 1.474 #if ECB_CPP
1171 root 1.398 template<typename T>
1172     static inline T ecb_div_rd (T val, T div)
1173     {
1174     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1175     }
1176     template<typename T>
1177     static inline T ecb_div_ru (T val, T div)
1178     {
1179     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1180     }
1181     #else
1182     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1183     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1184     #endif
1185    
1186 root 1.391 #if ecb_cplusplus_does_not_suck
1187     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188     template<typename T, int N>
1189     static inline int ecb_array_length (const T (&arr)[N])
1190     {
1191     return N;
1192     }
1193     #else
1194     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195     #endif
1196    
1197 root 1.479 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198     ecb_function_ ecb_const uint32_t
1199     ecb_binary16_to_binary32 (uint32_t x)
1200     {
1201     unsigned int s = (x & 0x8000) << (31 - 15);
1202     int e = (x >> 10) & 0x001f;
1203     unsigned int m = x & 0x03ff;
1204    
1205     if (ecb_expect_false (e == 31))
1206     /* infinity or NaN */
1207     e = 255 - (127 - 15);
1208     else if (ecb_expect_false (!e))
1209     {
1210     if (ecb_expect_true (!m))
1211     /* zero, handled by code below by forcing e to 0 */
1212     e = 0 - (127 - 15);
1213     else
1214     {
1215     /* subnormal, renormalise */
1216     unsigned int s = 10 - ecb_ld32 (m);
1217    
1218     m = (m << s) & 0x3ff; /* mask implicit bit */
1219     e -= s - 1;
1220     }
1221     }
1222    
1223     /* e and m now are normalised, or zero, (or inf or nan) */
1224     e += 127 - 15;
1225    
1226     return s | (e << 23) | (m << (23 - 10));
1227     }
1228    
1229     ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230     ecb_function_ ecb_const uint16_t
1231     ecb_binary32_to_binary16 (uint32_t x)
1232     {
1233     unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234     unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235     unsigned int m = x & 0x007fffff;
1236    
1237     x &= 0x7fffffff;
1238    
1239     /* if it's within range of binary16 normals, use fast path */
1240     if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241     {
1242     /* mantissa round-to-even */
1243     m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244    
1245     /* handle overflow */
1246     if (ecb_expect_false (m >= 0x00800000))
1247     {
1248     m >>= 1;
1249     e += 1;
1250     }
1251    
1252     return s | (e << 10) | (m >> (23 - 10));
1253     }
1254    
1255     /* handle large numbers and infinity */
1256     if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257     return s | 0x7c00;
1258    
1259     /* handle zero, subnormals and small numbers */
1260     if (ecb_expect_true (x < 0x38800000))
1261     {
1262     /* zero */
1263     if (ecb_expect_true (!x))
1264     return s;
1265    
1266     /* handle subnormals */
1267    
1268     /* too small, will be zero */
1269     if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270     return s;
1271    
1272     m |= 0x00800000; /* make implicit bit explicit */
1273    
1274     /* very tricky - we need to round to the nearest e (+10) bit value */
1275     {
1276     unsigned int bits = 14 - e;
1277     unsigned int half = (1 << (bits - 1)) - 1;
1278     unsigned int even = (m >> bits) & 1;
1279    
1280     /* if this overflows, we will end up with a normalised number */
1281     m = (m + half + even) >> bits;
1282     }
1283    
1284     return s | m;
1285     }
1286    
1287     /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288     m >>= 13;
1289    
1290     return s | 0x7c00 | m | !m;
1291     }
1292    
1293 root 1.450 /*******************************************************************************/
1294     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295    
1296     /* basically, everything uses "ieee pure-endian" floating point numbers */
1297     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298     #if 0 \
1299     || __i386 || __i386__ \
1300 sf-exg 1.475 || ECB_GCC_AMD64 \
1301 root 1.450 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302     || defined __s390__ || defined __s390x__ \
1303     || defined __mips__ \
1304     || defined __alpha__ \
1305     || defined __hppa__ \
1306     || defined __ia64__ \
1307 root 1.457 || defined __m68k__ \
1308     || defined __m88k__ \
1309     || defined __sh__ \
1310 sf-exg 1.475 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312 root 1.466 || defined __aarch64__
1313 root 1.450 #define ECB_STDFP 1
1314     #include <string.h> /* for memcpy */
1315     #else
1316     #define ECB_STDFP 0
1317     #endif
1318    
1319     #ifndef ECB_NO_LIBM
1320    
1321 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322    
1323 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1324     #ifdef INFINITY
1325     #define ECB_INFINITY INFINITY
1326     #else
1327     #define ECB_INFINITY HUGE_VAL
1328     #endif
1329    
1330     #ifdef NAN
1331 root 1.458 #define ECB_NAN NAN
1332     #else
1333 root 1.462 #define ECB_NAN ECB_INFINITY
1334 root 1.458 #endif
1335    
1336 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338 root 1.476 #define ecb_frexpf(x,e) frexpf ((x), (e))
1339 root 1.474 #else
1340 root 1.476 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342 root 1.474 #endif
1343    
1344 root 1.450 /* convert a float to ieee single/binary32 */
1345 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346     ecb_function_ ecb_const uint32_t
1347 root 1.450 ecb_float_to_binary32 (float x)
1348     {
1349     uint32_t r;
1350    
1351     #if ECB_STDFP
1352     memcpy (&r, &x, 4);
1353     #else
1354     /* slow emulation, works for anything but -0 */
1355     uint32_t m;
1356     int e;
1357    
1358     if (x == 0e0f ) return 0x00000000U;
1359     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361     if (x != x ) return 0x7fbfffffU;
1362    
1363 root 1.476 m = ecb_frexpf (x, &e) * 0x1000000U;
1364 root 1.450
1365     r = m & 0x80000000U;
1366    
1367     if (r)
1368     m = -m;
1369    
1370     if (e <= -126)
1371     {
1372     m &= 0xffffffU;
1373     m >>= (-125 - e);
1374     e = -126;
1375     }
1376    
1377     r |= (e + 126) << 23;
1378     r |= m & 0x7fffffU;
1379     #endif
1380    
1381     return r;
1382     }
1383    
1384     /* converts an ieee single/binary32 to a float */
1385 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386     ecb_function_ ecb_const float
1387 root 1.450 ecb_binary32_to_float (uint32_t x)
1388     {
1389     float r;
1390    
1391     #if ECB_STDFP
1392     memcpy (&r, &x, 4);
1393     #else
1394     /* emulation, only works for normals and subnormals and +0 */
1395     int neg = x >> 31;
1396     int e = (x >> 23) & 0xffU;
1397    
1398     x &= 0x7fffffU;
1399    
1400     if (e)
1401     x |= 0x800000U;
1402     else
1403     e = 1;
1404    
1405     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407 root 1.450
1408     r = neg ? -r : r;
1409     #endif
1410    
1411     return r;
1412     }
1413    
1414     /* convert a double to ieee double/binary64 */
1415 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416     ecb_function_ ecb_const uint64_t
1417 root 1.450 ecb_double_to_binary64 (double x)
1418     {
1419     uint64_t r;
1420    
1421     #if ECB_STDFP
1422     memcpy (&r, &x, 8);
1423     #else
1424     /* slow emulation, works for anything but -0 */
1425     uint64_t m;
1426     int e;
1427    
1428     if (x == 0e0 ) return 0x0000000000000000U;
1429     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431     if (x != x ) return 0X7ff7ffffffffffffU;
1432    
1433     m = frexp (x, &e) * 0x20000000000000U;
1434    
1435     r = m & 0x8000000000000000;;
1436    
1437     if (r)
1438     m = -m;
1439    
1440     if (e <= -1022)
1441     {
1442     m &= 0x1fffffffffffffU;
1443     m >>= (-1021 - e);
1444     e = -1022;
1445     }
1446    
1447     r |= ((uint64_t)(e + 1022)) << 52;
1448     r |= m & 0xfffffffffffffU;
1449     #endif
1450    
1451     return r;
1452     }
1453    
1454     /* converts an ieee double/binary64 to a double */
1455 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456     ecb_function_ ecb_const double
1457 root 1.450 ecb_binary64_to_double (uint64_t x)
1458     {
1459     double r;
1460    
1461     #if ECB_STDFP
1462     memcpy (&r, &x, 8);
1463     #else
1464     /* emulation, only works for normals and subnormals and +0 */
1465     int neg = x >> 63;
1466     int e = (x >> 52) & 0x7ffU;
1467    
1468     x &= 0xfffffffffffffU;
1469    
1470     if (e)
1471     x |= 0x10000000000000U;
1472     else
1473     e = 1;
1474    
1475     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477    
1478     r = neg ? -r : r;
1479     #endif
1480    
1481     return r;
1482     }
1483    
1484 root 1.479 /* convert a float to ieee half/binary16 */
1485     ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486     ecb_function_ ecb_const uint16_t
1487     ecb_float_to_binary16 (float x)
1488     {
1489     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490     }
1491    
1492     /* convert an ieee half/binary16 to float */
1493     ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494     ecb_function_ ecb_const float
1495     ecb_binary16_to_float (uint16_t x)
1496     {
1497     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498     }
1499    
1500 root 1.450 #endif
1501    
1502 root 1.391 #endif
1503    
1504     /* ECB.H END */
1505 root 1.379
1506 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1508 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1509     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1511 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1512     * which will then provide the memory fences.
1513     */
1514     # error "memory fences not defined for your architecture, please report"
1515     #endif
1516    
1517     #ifndef ECB_MEMORY_FENCE
1518     # define ECB_MEMORY_FENCE do { } while (0)
1519     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1520     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1521 root 1.392 #endif
1522    
1523 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1524     #define expect_true(cond) ecb_expect_true (cond)
1525     #define noinline ecb_noinline
1526    
1527     #define inline_size ecb_inline
1528 root 1.169
1529 root 1.338 #if EV_FEATURE_CODE
1530 root 1.379 # define inline_speed ecb_inline
1531 root 1.338 #else
1532 root 1.480 # define inline_speed noinline static
1533 root 1.169 #endif
1534 root 1.40
1535 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1536    
1537     #if EV_MINPRI == EV_MAXPRI
1538     # define ABSPRI(w) (((W)w), 0)
1539     #else
1540     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1541     #endif
1542 root 1.42
1543 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1544 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1545 root 1.103
1546 root 1.136 typedef ev_watcher *W;
1547     typedef ev_watcher_list *WL;
1548     typedef ev_watcher_time *WT;
1549 root 1.10
1550 root 1.229 #define ev_active(w) ((W)(w))->active
1551 root 1.228 #define ev_at(w) ((WT)(w))->at
1552    
1553 root 1.279 #if EV_USE_REALTIME
1554 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1555 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1556 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1557     #endif
1558    
1559     #if EV_USE_MONOTONIC
1560 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1561 root 1.198 #endif
1562 root 1.54
1563 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1564     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1565     #endif
1566     #ifndef EV_WIN32_HANDLE_TO_FD
1567 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1568 root 1.313 #endif
1569     #ifndef EV_WIN32_CLOSE_FD
1570     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1571     #endif
1572    
1573 root 1.103 #ifdef _WIN32
1574 root 1.98 # include "ev_win32.c"
1575     #endif
1576 root 1.67
1577 root 1.53 /*****************************************************************************/
1578 root 1.1
1579 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1580    
1581     #if EV_USE_FLOOR
1582     # include <math.h>
1583     # define ev_floor(v) floor (v)
1584     #else
1585    
1586     #include <float.h>
1587    
1588     /* a floor() replacement function, should be independent of ev_tstamp type */
1589 root 1.480 noinline
1590     static ev_tstamp
1591 root 1.373 ev_floor (ev_tstamp v)
1592     {
1593     /* the choice of shift factor is not terribly important */
1594     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1595     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1596     #else
1597     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1598     #endif
1599    
1600     /* argument too large for an unsigned long? */
1601     if (expect_false (v >= shift))
1602     {
1603     ev_tstamp f;
1604    
1605     if (v == v - 1.)
1606     return v; /* very large number */
1607    
1608     f = shift * ev_floor (v * (1. / shift));
1609     return f + ev_floor (v - f);
1610     }
1611    
1612     /* special treatment for negative args? */
1613     if (expect_false (v < 0.))
1614     {
1615     ev_tstamp f = -ev_floor (-v);
1616    
1617     return f - (f == v ? 0 : 1);
1618     }
1619    
1620     /* fits into an unsigned long */
1621     return (unsigned long)v;
1622     }
1623    
1624     #endif
1625    
1626     /*****************************************************************************/
1627    
1628 root 1.356 #ifdef __linux
1629     # include <sys/utsname.h>
1630     #endif
1631    
1632 root 1.480 noinline ecb_cold
1633     static unsigned int
1634 root 1.355 ev_linux_version (void)
1635     {
1636     #ifdef __linux
1637 root 1.359 unsigned int v = 0;
1638 root 1.355 struct utsname buf;
1639     int i;
1640     char *p = buf.release;
1641    
1642     if (uname (&buf))
1643     return 0;
1644    
1645     for (i = 3+1; --i; )
1646     {
1647     unsigned int c = 0;
1648    
1649     for (;;)
1650     {
1651     if (*p >= '0' && *p <= '9')
1652     c = c * 10 + *p++ - '0';
1653     else
1654     {
1655     p += *p == '.';
1656     break;
1657     }
1658     }
1659    
1660     v = (v << 8) | c;
1661     }
1662    
1663     return v;
1664     #else
1665     return 0;
1666     #endif
1667     }
1668    
1669     /*****************************************************************************/
1670    
1671 root 1.331 #if EV_AVOID_STDIO
1672 root 1.480 noinline ecb_cold
1673     static void
1674 root 1.331 ev_printerr (const char *msg)
1675     {
1676     write (STDERR_FILENO, msg, strlen (msg));
1677     }
1678     #endif
1679    
1680 root 1.420 static void (*syserr_cb)(const char *msg) EV_THROW;
1681 root 1.69
1682 root 1.480 ecb_cold
1683     void
1684 root 1.434 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1685 root 1.69 {
1686     syserr_cb = cb;
1687     }
1688    
1689 root 1.480 noinline ecb_cold
1690     static void
1691 root 1.269 ev_syserr (const char *msg)
1692 root 1.69 {
1693 root 1.70 if (!msg)
1694     msg = "(libev) system error";
1695    
1696 root 1.69 if (syserr_cb)
1697 root 1.70 syserr_cb (msg);
1698 root 1.69 else
1699     {
1700 root 1.330 #if EV_AVOID_STDIO
1701 root 1.331 ev_printerr (msg);
1702     ev_printerr (": ");
1703 root 1.365 ev_printerr (strerror (errno));
1704 root 1.331 ev_printerr ("\n");
1705 root 1.330 #else
1706 root 1.70 perror (msg);
1707 root 1.330 #endif
1708 root 1.69 abort ();
1709     }
1710     }
1711    
1712 root 1.224 static void *
1713 root 1.434 ev_realloc_emul (void *ptr, long size) EV_THROW
1714 root 1.224 {
1715     /* some systems, notably openbsd and darwin, fail to properly
1716 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1717 root 1.224 * the single unix specification, so work around them here.
1718 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1719     * despite documenting it otherwise.
1720 root 1.224 */
1721 root 1.333
1722 root 1.224 if (size)
1723     return realloc (ptr, size);
1724    
1725     free (ptr);
1726     return 0;
1727     }
1728    
1729 root 1.420 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1730 root 1.69
1731 root 1.480 ecb_cold
1732     void
1733 root 1.434 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1734 root 1.69 {
1735     alloc = cb;
1736     }
1737    
1738 root 1.150 inline_speed void *
1739 root 1.155 ev_realloc (void *ptr, long size)
1740 root 1.69 {
1741 root 1.224 ptr = alloc (ptr, size);
1742 root 1.69
1743     if (!ptr && size)
1744     {
1745 root 1.330 #if EV_AVOID_STDIO
1746 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1747 root 1.330 #else
1748 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1749 root 1.330 #endif
1750 root 1.69 abort ();
1751     }
1752    
1753     return ptr;
1754     }
1755    
1756     #define ev_malloc(size) ev_realloc (0, (size))
1757     #define ev_free(ptr) ev_realloc ((ptr), 0)
1758    
1759     /*****************************************************************************/
1760    
1761 root 1.298 /* set in reify when reification needed */
1762     #define EV_ANFD_REIFY 1
1763    
1764 root 1.288 /* file descriptor info structure */
1765 root 1.53 typedef struct
1766     {
1767 root 1.68 WL head;
1768 root 1.288 unsigned char events; /* the events watched for */
1769 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1770 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1771 root 1.269 unsigned char unused;
1772     #if EV_USE_EPOLL
1773 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1774 root 1.269 #endif
1775 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1776 root 1.103 SOCKET handle;
1777     #endif
1778 root 1.357 #if EV_USE_IOCP
1779     OVERLAPPED or, ow;
1780     #endif
1781 root 1.53 } ANFD;
1782 root 1.1
1783 root 1.288 /* stores the pending event set for a given watcher */
1784 root 1.53 typedef struct
1785     {
1786     W w;
1787 root 1.288 int events; /* the pending event set for the given watcher */
1788 root 1.53 } ANPENDING;
1789 root 1.51
1790 root 1.155 #if EV_USE_INOTIFY
1791 root 1.241 /* hash table entry per inotify-id */
1792 root 1.152 typedef struct
1793     {
1794     WL head;
1795 root 1.155 } ANFS;
1796 root 1.152 #endif
1797    
1798 root 1.241 /* Heap Entry */
1799     #if EV_HEAP_CACHE_AT
1800 root 1.288 /* a heap element */
1801 root 1.241 typedef struct {
1802 root 1.243 ev_tstamp at;
1803 root 1.241 WT w;
1804     } ANHE;
1805    
1806 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1807     #define ANHE_at(he) (he).at /* access cached at, read-only */
1808     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1809 root 1.241 #else
1810 root 1.288 /* a heap element */
1811 root 1.241 typedef WT ANHE;
1812    
1813 root 1.248 #define ANHE_w(he) (he)
1814     #define ANHE_at(he) (he)->at
1815     #define ANHE_at_cache(he)
1816 root 1.241 #endif
1817    
1818 root 1.55 #if EV_MULTIPLICITY
1819 root 1.54
1820 root 1.80 struct ev_loop
1821     {
1822 root 1.86 ev_tstamp ev_rt_now;
1823 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1824 root 1.80 #define VAR(name,decl) decl;
1825     #include "ev_vars.h"
1826     #undef VAR
1827     };
1828     #include "ev_wrap.h"
1829    
1830 root 1.116 static struct ev_loop default_loop_struct;
1831 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1832 root 1.54
1833 root 1.53 #else
1834 root 1.54
1835 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1836 root 1.80 #define VAR(name,decl) static decl;
1837     #include "ev_vars.h"
1838     #undef VAR
1839    
1840 root 1.116 static int ev_default_loop_ptr;
1841 root 1.54
1842 root 1.51 #endif
1843 root 1.1
1844 root 1.338 #if EV_FEATURE_API
1845 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1846     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1847 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1848     #else
1849 root 1.298 # define EV_RELEASE_CB (void)0
1850     # define EV_ACQUIRE_CB (void)0
1851 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1852     #endif
1853    
1854 root 1.353 #define EVBREAK_RECURSE 0x80
1855 root 1.298
1856 root 1.8 /*****************************************************************************/
1857    
1858 root 1.292 #ifndef EV_HAVE_EV_TIME
1859 root 1.141 ev_tstamp
1860 root 1.420 ev_time (void) EV_THROW
1861 root 1.1 {
1862 root 1.29 #if EV_USE_REALTIME
1863 root 1.279 if (expect_true (have_realtime))
1864     {
1865     struct timespec ts;
1866     clock_gettime (CLOCK_REALTIME, &ts);
1867     return ts.tv_sec + ts.tv_nsec * 1e-9;
1868     }
1869     #endif
1870    
1871 root 1.1 struct timeval tv;
1872     gettimeofday (&tv, 0);
1873     return tv.tv_sec + tv.tv_usec * 1e-6;
1874     }
1875 root 1.292 #endif
1876 root 1.1
1877 root 1.284 inline_size ev_tstamp
1878 root 1.1 get_clock (void)
1879     {
1880 root 1.29 #if EV_USE_MONOTONIC
1881 root 1.40 if (expect_true (have_monotonic))
1882 root 1.1 {
1883     struct timespec ts;
1884     clock_gettime (CLOCK_MONOTONIC, &ts);
1885     return ts.tv_sec + ts.tv_nsec * 1e-9;
1886     }
1887     #endif
1888    
1889     return ev_time ();
1890     }
1891    
1892 root 1.85 #if EV_MULTIPLICITY
1893 root 1.51 ev_tstamp
1894 root 1.420 ev_now (EV_P) EV_THROW
1895 root 1.51 {
1896 root 1.85 return ev_rt_now;
1897 root 1.51 }
1898 root 1.85 #endif
1899 root 1.51
1900 root 1.193 void
1901 root 1.420 ev_sleep (ev_tstamp delay) EV_THROW
1902 root 1.193 {
1903     if (delay > 0.)
1904     {
1905     #if EV_USE_NANOSLEEP
1906     struct timespec ts;
1907    
1908 root 1.348 EV_TS_SET (ts, delay);
1909 root 1.193 nanosleep (&ts, 0);
1910 root 1.416 #elif defined _WIN32
1911 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1912 root 1.193 #else
1913     struct timeval tv;
1914    
1915 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1916 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1917 root 1.257 /* by older ones */
1918 sf-exg 1.349 EV_TV_SET (tv, delay);
1919 root 1.193 select (0, 0, 0, 0, &tv);
1920     #endif
1921     }
1922     }
1923    
1924     /*****************************************************************************/
1925    
1926 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1927 root 1.232
1928 root 1.288 /* find a suitable new size for the given array, */
1929 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1930 root 1.284 inline_size int
1931 root 1.163 array_nextsize (int elem, int cur, int cnt)
1932     {
1933     int ncur = cur + 1;
1934    
1935     do
1936     ncur <<= 1;
1937     while (cnt > ncur);
1938    
1939 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1940 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1941 root 1.163 {
1942     ncur *= elem;
1943 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1944 root 1.163 ncur = ncur - sizeof (void *) * 4;
1945     ncur /= elem;
1946     }
1947    
1948     return ncur;
1949     }
1950    
1951 root 1.480 noinline ecb_cold
1952     static void *
1953 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1954     {
1955     *cur = array_nextsize (elem, *cur, cnt);
1956     return ev_realloc (base, elem * *cur);
1957     }
1958 root 1.29
1959 root 1.265 #define array_init_zero(base,count) \
1960     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1961    
1962 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1963 root 1.163 if (expect_false ((cnt) > (cur))) \
1964 root 1.69 { \
1965 root 1.480 ecb_unused int ocur_ = (cur); \
1966 root 1.163 (base) = (type *)array_realloc \
1967     (sizeof (type), (base), &(cur), (cnt)); \
1968     init ((base) + (ocur_), (cur) - ocur_); \
1969 root 1.1 }
1970    
1971 root 1.163 #if 0
1972 root 1.74 #define array_slim(type,stem) \
1973 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1974     { \
1975     stem ## max = array_roundsize (stem ## cnt >> 1); \
1976 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1977 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1978     }
1979 root 1.163 #endif
1980 root 1.67
1981 root 1.65 #define array_free(stem, idx) \
1982 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1983 root 1.65
1984 root 1.8 /*****************************************************************************/
1985    
1986 root 1.288 /* dummy callback for pending events */
1987 root 1.480 noinline
1988     static void
1989 root 1.288 pendingcb (EV_P_ ev_prepare *w, int revents)
1990     {
1991     }
1992    
1993 root 1.480 noinline
1994     void
1995 root 1.420 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1996 root 1.1 {
1997 root 1.78 W w_ = (W)w;
1998 root 1.171 int pri = ABSPRI (w_);
1999 root 1.78
2000 root 1.123 if (expect_false (w_->pending))
2001 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
2002     else
2003 root 1.32 {
2004 root 1.171 w_->pending = ++pendingcnt [pri];
2005     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
2006     pendings [pri][w_->pending - 1].w = w_;
2007     pendings [pri][w_->pending - 1].events = revents;
2008 root 1.32 }
2009 root 1.425
2010     pendingpri = NUMPRI - 1;
2011 root 1.1 }
2012    
2013 root 1.284 inline_speed void
2014     feed_reverse (EV_P_ W w)
2015     {
2016     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2017     rfeeds [rfeedcnt++] = w;
2018     }
2019    
2020     inline_size void
2021     feed_reverse_done (EV_P_ int revents)
2022     {
2023     do
2024     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2025     while (rfeedcnt);
2026     }
2027    
2028     inline_speed void
2029 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
2030 root 1.27 {
2031     int i;
2032    
2033     for (i = 0; i < eventcnt; ++i)
2034 root 1.78 ev_feed_event (EV_A_ events [i], type);
2035 root 1.27 }
2036    
2037 root 1.141 /*****************************************************************************/
2038    
2039 root 1.284 inline_speed void
2040 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
2041 root 1.1 {
2042     ANFD *anfd = anfds + fd;
2043 root 1.136 ev_io *w;
2044 root 1.1
2045 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2046 root 1.1 {
2047 root 1.79 int ev = w->events & revents;
2048 root 1.1
2049     if (ev)
2050 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
2051 root 1.1 }
2052     }
2053    
2054 root 1.298 /* do not submit kernel events for fds that have reify set */
2055     /* because that means they changed while we were polling for new events */
2056     inline_speed void
2057     fd_event (EV_P_ int fd, int revents)
2058     {
2059     ANFD *anfd = anfds + fd;
2060    
2061     if (expect_true (!anfd->reify))
2062 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2063 root 1.298 }
2064    
2065 root 1.79 void
2066 root 1.420 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
2067 root 1.79 {
2068 root 1.168 if (fd >= 0 && fd < anfdmax)
2069 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2070 root 1.79 }
2071    
2072 root 1.288 /* make sure the external fd watch events are in-sync */
2073     /* with the kernel/libev internal state */
2074 root 1.284 inline_size void
2075 root 1.51 fd_reify (EV_P)
2076 root 1.9 {
2077     int i;
2078    
2079 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2080     for (i = 0; i < fdchangecnt; ++i)
2081     {
2082     int fd = fdchanges [i];
2083     ANFD *anfd = anfds + fd;
2084    
2085 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
2086 root 1.371 {
2087     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2088    
2089     if (handle != anfd->handle)
2090     {
2091     unsigned long arg;
2092    
2093     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2094    
2095     /* handle changed, but fd didn't - we need to do it in two steps */
2096     backend_modify (EV_A_ fd, anfd->events, 0);
2097     anfd->events = 0;
2098     anfd->handle = handle;
2099     }
2100     }
2101     }
2102     #endif
2103    
2104 root 1.27 for (i = 0; i < fdchangecnt; ++i)
2105     {
2106     int fd = fdchanges [i];
2107     ANFD *anfd = anfds + fd;
2108 root 1.136 ev_io *w;
2109 root 1.27
2110 root 1.350 unsigned char o_events = anfd->events;
2111     unsigned char o_reify = anfd->reify;
2112 root 1.27
2113 root 1.350 anfd->reify = 0;
2114 root 1.27
2115 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2116     {
2117     anfd->events = 0;
2118 root 1.184
2119 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2120     anfd->events |= (unsigned char)w->events;
2121 root 1.27
2122 root 1.351 if (o_events != anfd->events)
2123 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
2124     }
2125    
2126     if (o_reify & EV__IOFDSET)
2127     backend_modify (EV_A_ fd, o_events, anfd->events);
2128 root 1.27 }
2129    
2130     fdchangecnt = 0;
2131     }
2132    
2133 root 1.288 /* something about the given fd changed */
2134 root 1.480 inline_size
2135     void
2136 root 1.183 fd_change (EV_P_ int fd, int flags)
2137 root 1.27 {
2138 root 1.183 unsigned char reify = anfds [fd].reify;
2139 root 1.184 anfds [fd].reify |= flags;
2140 root 1.27
2141 root 1.183 if (expect_true (!reify))
2142     {
2143     ++fdchangecnt;
2144     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
2145     fdchanges [fdchangecnt - 1] = fd;
2146     }
2147 root 1.9 }
2148    
2149 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2150 root 1.480 inline_speed ecb_cold void
2151 root 1.51 fd_kill (EV_P_ int fd)
2152 root 1.41 {
2153 root 1.136 ev_io *w;
2154 root 1.41
2155 root 1.136 while ((w = (ev_io *)anfds [fd].head))
2156 root 1.41 {
2157 root 1.51 ev_io_stop (EV_A_ w);
2158 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2159 root 1.41 }
2160     }
2161    
2162 root 1.336 /* check whether the given fd is actually valid, for error recovery */
2163 root 1.480 inline_size ecb_cold int
2164 root 1.71 fd_valid (int fd)
2165     {
2166 root 1.103 #ifdef _WIN32
2167 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2168 root 1.71 #else
2169     return fcntl (fd, F_GETFD) != -1;
2170     #endif
2171     }
2172    
2173 root 1.19 /* called on EBADF to verify fds */
2174 root 1.480 noinline ecb_cold
2175     static void
2176 root 1.51 fd_ebadf (EV_P)
2177 root 1.19 {
2178     int fd;
2179    
2180     for (fd = 0; fd < anfdmax; ++fd)
2181 root 1.27 if (anfds [fd].events)
2182 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2183 root 1.51 fd_kill (EV_A_ fd);
2184 root 1.41 }
2185    
2186     /* called on ENOMEM in select/poll to kill some fds and retry */
2187 root 1.480 noinline ecb_cold
2188     static void
2189 root 1.51 fd_enomem (EV_P)
2190 root 1.41 {
2191 root 1.62 int fd;
2192 root 1.41
2193 root 1.62 for (fd = anfdmax; fd--; )
2194 root 1.41 if (anfds [fd].events)
2195     {
2196 root 1.51 fd_kill (EV_A_ fd);
2197 root 1.307 break;
2198 root 1.41 }
2199 root 1.19 }
2200    
2201 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2202 root 1.480 noinline
2203     static void
2204 root 1.56 fd_rearm_all (EV_P)
2205     {
2206     int fd;
2207    
2208     for (fd = 0; fd < anfdmax; ++fd)
2209     if (anfds [fd].events)
2210     {
2211     anfds [fd].events = 0;
2212 root 1.268 anfds [fd].emask = 0;
2213 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2214 root 1.56 }
2215     }
2216    
2217 root 1.336 /* used to prepare libev internal fd's */
2218     /* this is not fork-safe */
2219     inline_speed void
2220     fd_intern (int fd)
2221     {
2222     #ifdef _WIN32
2223     unsigned long arg = 1;
2224     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2225     #else
2226     fcntl (fd, F_SETFD, FD_CLOEXEC);
2227     fcntl (fd, F_SETFL, O_NONBLOCK);
2228     #endif
2229     }
2230    
2231 root 1.8 /*****************************************************************************/
2232    
2233 root 1.235 /*
2234 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2235 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2236     * the branching factor of the d-tree.
2237     */
2238    
2239     /*
2240 root 1.235 * at the moment we allow libev the luxury of two heaps,
2241     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2242     * which is more cache-efficient.
2243     * the difference is about 5% with 50000+ watchers.
2244     */
2245 root 1.241 #if EV_USE_4HEAP
2246 root 1.235
2247 root 1.237 #define DHEAP 4
2248     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2249 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2250 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2251 root 1.235
2252     /* away from the root */
2253 root 1.284 inline_speed void
2254 root 1.241 downheap (ANHE *heap, int N, int k)
2255 root 1.235 {
2256 root 1.241 ANHE he = heap [k];
2257     ANHE *E = heap + N + HEAP0;
2258 root 1.235
2259     for (;;)
2260     {
2261     ev_tstamp minat;
2262 root 1.241 ANHE *minpos;
2263 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2264 root 1.235
2265 root 1.248 /* find minimum child */
2266 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
2267 root 1.235 {
2268 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2269     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2270     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2271     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2272 root 1.235 }
2273 root 1.240 else if (pos < E)
2274 root 1.235 {
2275 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2276     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2277     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2278     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2279 root 1.235 }
2280 root 1.240 else
2281     break;
2282 root 1.235
2283 root 1.241 if (ANHE_at (he) <= minat)
2284 root 1.235 break;
2285    
2286 root 1.247 heap [k] = *minpos;
2287 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2288 root 1.235
2289     k = minpos - heap;
2290     }
2291    
2292 root 1.247 heap [k] = he;
2293 root 1.241 ev_active (ANHE_w (he)) = k;
2294 root 1.235 }
2295    
2296 root 1.248 #else /* 4HEAP */
2297 root 1.235
2298     #define HEAP0 1
2299 root 1.247 #define HPARENT(k) ((k) >> 1)
2300 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2301 root 1.235
2302 root 1.248 /* away from the root */
2303 root 1.284 inline_speed void
2304 root 1.248 downheap (ANHE *heap, int N, int k)
2305 root 1.1 {
2306 root 1.241 ANHE he = heap [k];
2307 root 1.1
2308 root 1.228 for (;;)
2309 root 1.1 {
2310 root 1.248 int c = k << 1;
2311 root 1.179
2312 root 1.309 if (c >= N + HEAP0)
2313 root 1.179 break;
2314    
2315 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2316     ? 1 : 0;
2317    
2318     if (ANHE_at (he) <= ANHE_at (heap [c]))
2319     break;
2320    
2321     heap [k] = heap [c];
2322 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2323 root 1.248
2324     k = c;
2325 root 1.1 }
2326    
2327 root 1.243 heap [k] = he;
2328 root 1.248 ev_active (ANHE_w (he)) = k;
2329 root 1.1 }
2330 root 1.248 #endif
2331 root 1.1
2332 root 1.248 /* towards the root */
2333 root 1.284 inline_speed void
2334 root 1.248 upheap (ANHE *heap, int k)
2335 root 1.1 {
2336 root 1.241 ANHE he = heap [k];
2337 root 1.1
2338 root 1.179 for (;;)
2339 root 1.1 {
2340 root 1.248 int p = HPARENT (k);
2341 root 1.179
2342 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2343 root 1.179 break;
2344 root 1.1
2345 root 1.248 heap [k] = heap [p];
2346 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2347 root 1.248 k = p;
2348 root 1.1 }
2349    
2350 root 1.241 heap [k] = he;
2351     ev_active (ANHE_w (he)) = k;
2352 root 1.1 }
2353    
2354 root 1.288 /* move an element suitably so it is in a correct place */
2355 root 1.284 inline_size void
2356 root 1.241 adjustheap (ANHE *heap, int N, int k)
2357 root 1.84 {
2358 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2359 root 1.247 upheap (heap, k);
2360     else
2361     downheap (heap, N, k);
2362 root 1.84 }
2363    
2364 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2365 root 1.284 inline_size void
2366 root 1.248 reheap (ANHE *heap, int N)
2367     {
2368     int i;
2369 root 1.251
2370 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2371     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2372     for (i = 0; i < N; ++i)
2373     upheap (heap, i + HEAP0);
2374     }
2375    
2376 root 1.8 /*****************************************************************************/
2377    
2378 root 1.288 /* associate signal watchers to a signal signal */
2379 root 1.7 typedef struct
2380     {
2381 root 1.307 EV_ATOMIC_T pending;
2382 root 1.306 #if EV_MULTIPLICITY
2383     EV_P;
2384     #endif
2385 root 1.68 WL head;
2386 root 1.7 } ANSIG;
2387    
2388 root 1.306 static ANSIG signals [EV_NSIG - 1];
2389 root 1.7
2390 root 1.207 /*****************************************************************************/
2391    
2392 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2393 root 1.207
2394 root 1.480 noinline ecb_cold
2395     static void
2396 root 1.207 evpipe_init (EV_P)
2397     {
2398 root 1.288 if (!ev_is_active (&pipe_w))
2399 root 1.207 {
2400 root 1.448 int fds [2];
2401    
2402 root 1.336 # if EV_USE_EVENTFD
2403 root 1.448 fds [0] = -1;
2404     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2405     if (fds [1] < 0 && errno == EINVAL)
2406     fds [1] = eventfd (0, 0);
2407    
2408     if (fds [1] < 0)
2409     # endif
2410     {
2411     while (pipe (fds))
2412     ev_syserr ("(libev) error creating signal/async pipe");
2413    
2414     fd_intern (fds [0]);
2415 root 1.220 }
2416 root 1.448
2417     evpipe [0] = fds [0];
2418    
2419     if (evpipe [1] < 0)
2420     evpipe [1] = fds [1]; /* first call, set write fd */
2421 root 1.220 else
2422     {
2423 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2424     /* so that evpipe_write can always rely on its value. */
2425     /* this branch does not do anything sensible on windows, */
2426     /* so must not be executed on windows */
2427 root 1.207
2428 root 1.448 dup2 (fds [1], evpipe [1]);
2429     close (fds [1]);
2430 root 1.220 }
2431 root 1.207
2432 root 1.455 fd_intern (evpipe [1]);
2433    
2434 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2435 root 1.288 ev_io_start (EV_A_ &pipe_w);
2436 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2437 root 1.207 }
2438     }
2439    
2440 root 1.380 inline_speed void
2441 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2442 root 1.207 {
2443 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2444    
2445 root 1.383 if (expect_true (*flag))
2446 root 1.387 return;
2447 root 1.383
2448     *flag = 1;
2449 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2450 root 1.383
2451     pipe_write_skipped = 1;
2452 root 1.378
2453 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2454 root 1.214
2455 root 1.383 if (pipe_write_wanted)
2456     {
2457     int old_errno;
2458 root 1.378
2459 root 1.436 pipe_write_skipped = 0;
2460     ECB_MEMORY_FENCE_RELEASE;
2461 root 1.220
2462 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2463 root 1.380
2464 root 1.220 #if EV_USE_EVENTFD
2465 root 1.448 if (evpipe [0] < 0)
2466 root 1.383 {
2467     uint64_t counter = 1;
2468 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2469 root 1.383 }
2470     else
2471 root 1.220 #endif
2472 root 1.383 {
2473 root 1.427 #ifdef _WIN32
2474     WSABUF buf;
2475     DWORD sent;
2476     buf.buf = &buf;
2477     buf.len = 1;
2478     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2479     #else
2480 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2481 root 1.427 #endif
2482 root 1.383 }
2483 root 1.214
2484 root 1.383 errno = old_errno;
2485 root 1.207 }
2486     }
2487    
2488 root 1.288 /* called whenever the libev signal pipe */
2489     /* got some events (signal, async) */
2490 root 1.207 static void
2491     pipecb (EV_P_ ev_io *iow, int revents)
2492     {
2493 root 1.307 int i;
2494    
2495 root 1.378 if (revents & EV_READ)
2496     {
2497 root 1.220 #if EV_USE_EVENTFD
2498 root 1.448 if (evpipe [0] < 0)
2499 root 1.378 {
2500     uint64_t counter;
2501 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2502 root 1.378 }
2503     else
2504 root 1.220 #endif
2505 root 1.378 {
2506 root 1.427 char dummy[4];
2507     #ifdef _WIN32
2508     WSABUF buf;
2509     DWORD recvd;
2510 root 1.432 DWORD flags = 0;
2511 root 1.427 buf.buf = dummy;
2512     buf.len = sizeof (dummy);
2513 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2514 root 1.427 #else
2515     read (evpipe [0], &dummy, sizeof (dummy));
2516     #endif
2517 root 1.378 }
2518 root 1.220 }
2519 root 1.207
2520 root 1.378 pipe_write_skipped = 0;
2521    
2522 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2523    
2524 root 1.369 #if EV_SIGNAL_ENABLE
2525 root 1.307 if (sig_pending)
2526 root 1.372 {
2527 root 1.307 sig_pending = 0;
2528 root 1.207
2529 root 1.436 ECB_MEMORY_FENCE;
2530 root 1.424
2531 root 1.307 for (i = EV_NSIG - 1; i--; )
2532     if (expect_false (signals [i].pending))
2533     ev_feed_signal_event (EV_A_ i + 1);
2534 root 1.207 }
2535 root 1.369 #endif
2536 root 1.207
2537 root 1.209 #if EV_ASYNC_ENABLE
2538 root 1.307 if (async_pending)
2539 root 1.207 {
2540 root 1.307 async_pending = 0;
2541 root 1.207
2542 root 1.436 ECB_MEMORY_FENCE;
2543 root 1.424
2544 root 1.207 for (i = asynccnt; i--; )
2545     if (asyncs [i]->sent)
2546     {
2547     asyncs [i]->sent = 0;
2548 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2549 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2550     }
2551     }
2552 root 1.209 #endif
2553 root 1.207 }
2554    
2555     /*****************************************************************************/
2556    
2557 root 1.366 void
2558 root 1.420 ev_feed_signal (int signum) EV_THROW
2559 root 1.7 {
2560 root 1.207 #if EV_MULTIPLICITY
2561 root 1.453 EV_P;
2562 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2563 root 1.453 EV_A = signals [signum - 1].loop;
2564 root 1.366
2565     if (!EV_A)
2566     return;
2567 root 1.207 #endif
2568    
2569 root 1.366 signals [signum - 1].pending = 1;
2570     evpipe_write (EV_A_ &sig_pending);
2571     }
2572    
2573     static void
2574     ev_sighandler (int signum)
2575     {
2576 root 1.322 #ifdef _WIN32
2577 root 1.218 signal (signum, ev_sighandler);
2578 root 1.67 #endif
2579    
2580 root 1.366 ev_feed_signal (signum);
2581 root 1.7 }
2582    
2583 root 1.480 noinline
2584     void
2585 root 1.420 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2586 root 1.79 {
2587 root 1.80 WL w;
2588    
2589 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2590 root 1.307 return;
2591    
2592     --signum;
2593    
2594 root 1.79 #if EV_MULTIPLICITY
2595 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2596     /* or, likely more useful, feeding a signal nobody is waiting for */
2597 root 1.79
2598 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2599 root 1.306 return;
2600 root 1.307 #endif
2601 root 1.306
2602 root 1.307 signals [signum].pending = 0;
2603 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2604 root 1.79
2605     for (w = signals [signum].head; w; w = w->next)
2606     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2607     }
2608    
2609 root 1.303 #if EV_USE_SIGNALFD
2610     static void
2611     sigfdcb (EV_P_ ev_io *iow, int revents)
2612     {
2613 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2614 root 1.303
2615     for (;;)
2616     {
2617     ssize_t res = read (sigfd, si, sizeof (si));
2618    
2619     /* not ISO-C, as res might be -1, but works with SuS */
2620     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2621     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2622    
2623     if (res < (ssize_t)sizeof (si))
2624     break;
2625     }
2626     }
2627     #endif
2628    
2629 root 1.336 #endif
2630    
2631 root 1.8 /*****************************************************************************/
2632    
2633 root 1.336 #if EV_CHILD_ENABLE
2634 root 1.182 static WL childs [EV_PID_HASHSIZE];
2635 root 1.71
2636 root 1.136 static ev_signal childev;
2637 root 1.59
2638 root 1.206 #ifndef WIFCONTINUED
2639     # define WIFCONTINUED(status) 0
2640     #endif
2641    
2642 root 1.288 /* handle a single child status event */
2643 root 1.284 inline_speed void
2644 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2645 root 1.47 {
2646 root 1.136 ev_child *w;
2647 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2648 root 1.47
2649 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2650 root 1.206 {
2651     if ((w->pid == pid || !w->pid)
2652     && (!traced || (w->flags & 1)))
2653     {
2654 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2655 root 1.206 w->rpid = pid;
2656     w->rstatus = status;
2657     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2658     }
2659     }
2660 root 1.47 }
2661    
2662 root 1.142 #ifndef WCONTINUED
2663     # define WCONTINUED 0
2664     #endif
2665    
2666 root 1.288 /* called on sigchld etc., calls waitpid */
2667 root 1.47 static void
2668 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2669 root 1.22 {
2670     int pid, status;
2671    
2672 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2673     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2674     if (!WCONTINUED
2675     || errno != EINVAL
2676     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2677     return;
2678    
2679 root 1.216 /* make sure we are called again until all children have been reaped */
2680 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2681     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2682 root 1.47
2683 root 1.216 child_reap (EV_A_ pid, pid, status);
2684 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2685 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2686 root 1.22 }
2687    
2688 root 1.45 #endif
2689    
2690 root 1.22 /*****************************************************************************/
2691    
2692 root 1.357 #if EV_USE_IOCP
2693     # include "ev_iocp.c"
2694     #endif
2695 root 1.118 #if EV_USE_PORT
2696     # include "ev_port.c"
2697     #endif
2698 root 1.44 #if EV_USE_KQUEUE
2699     # include "ev_kqueue.c"
2700     #endif
2701 root 1.29 #if EV_USE_EPOLL
2702 root 1.1 # include "ev_epoll.c"
2703     #endif
2704 root 1.59 #if EV_USE_POLL
2705 root 1.41 # include "ev_poll.c"
2706     #endif
2707 root 1.29 #if EV_USE_SELECT
2708 root 1.1 # include "ev_select.c"
2709     #endif
2710    
2711 root 1.480 ecb_cold int
2712 root 1.420 ev_version_major (void) EV_THROW
2713 root 1.24 {
2714     return EV_VERSION_MAJOR;
2715     }
2716    
2717 root 1.480 ecb_cold int
2718 root 1.420 ev_version_minor (void) EV_THROW
2719 root 1.24 {
2720     return EV_VERSION_MINOR;
2721     }
2722    
2723 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2724 root 1.480 inline_size ecb_cold int
2725 root 1.51 enable_secure (void)
2726 root 1.41 {
2727 root 1.103 #ifdef _WIN32
2728 root 1.49 return 0;
2729     #else
2730 root 1.41 return getuid () != geteuid ()
2731     || getgid () != getegid ();
2732 root 1.49 #endif
2733 root 1.41 }
2734    
2735 root 1.480 ecb_cold
2736     unsigned int
2737 root 1.420 ev_supported_backends (void) EV_THROW
2738 root 1.129 {
2739 root 1.130 unsigned int flags = 0;
2740 root 1.129
2741     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2742     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2743     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2744     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2745     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2746    
2747     return flags;
2748     }
2749    
2750 root 1.480 ecb_cold
2751     unsigned int
2752 root 1.420 ev_recommended_backends (void) EV_THROW
2753 root 1.1 {
2754 root 1.131 unsigned int flags = ev_supported_backends ();
2755 root 1.129
2756     #ifndef __NetBSD__
2757     /* kqueue is borked on everything but netbsd apparently */
2758     /* it usually doesn't work correctly on anything but sockets and pipes */
2759     flags &= ~EVBACKEND_KQUEUE;
2760     #endif
2761     #ifdef __APPLE__
2762 root 1.278 /* only select works correctly on that "unix-certified" platform */
2763     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2764     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2765 root 1.129 #endif
2766 root 1.342 #ifdef __FreeBSD__
2767     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2768     #endif
2769 root 1.129
2770     return flags;
2771 root 1.51 }
2772    
2773 root 1.480 ecb_cold
2774     unsigned int
2775 root 1.420 ev_embeddable_backends (void) EV_THROW
2776 root 1.134 {
2777 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2778    
2779 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2780 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2781     flags &= ~EVBACKEND_EPOLL;
2782 root 1.196
2783     return flags;
2784 root 1.134 }
2785    
2786     unsigned int
2787 root 1.420 ev_backend (EV_P) EV_THROW
2788 root 1.130 {
2789     return backend;
2790     }
2791    
2792 root 1.338 #if EV_FEATURE_API
2793 root 1.162 unsigned int
2794 root 1.420 ev_iteration (EV_P) EV_THROW
2795 root 1.162 {
2796     return loop_count;
2797     }
2798    
2799 root 1.294 unsigned int
2800 root 1.420 ev_depth (EV_P) EV_THROW
2801 root 1.294 {
2802     return loop_depth;
2803     }
2804    
2805 root 1.193 void
2806 root 1.420 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2807 root 1.193 {
2808     io_blocktime = interval;
2809     }
2810    
2811     void
2812 root 1.420 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2813 root 1.193 {
2814     timeout_blocktime = interval;
2815     }
2816    
2817 root 1.297 void
2818 root 1.420 ev_set_userdata (EV_P_ void *data) EV_THROW
2819 root 1.297 {
2820     userdata = data;
2821     }
2822    
2823     void *
2824 root 1.420 ev_userdata (EV_P) EV_THROW
2825 root 1.297 {
2826     return userdata;
2827     }
2828    
2829 root 1.379 void
2830 root 1.461 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2831 root 1.297 {
2832     invoke_cb = invoke_pending_cb;
2833     }
2834    
2835 root 1.379 void
2836 root 1.473 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2837 root 1.297 {
2838 root 1.298 release_cb = release;
2839     acquire_cb = acquire;
2840 root 1.297 }
2841     #endif
2842    
2843 root 1.288 /* initialise a loop structure, must be zero-initialised */
2844 root 1.480 noinline ecb_cold
2845     static void
2846 root 1.420 loop_init (EV_P_ unsigned int flags) EV_THROW
2847 root 1.51 {
2848 root 1.130 if (!backend)
2849 root 1.23 {
2850 root 1.366 origflags = flags;
2851    
2852 root 1.279 #if EV_USE_REALTIME
2853     if (!have_realtime)
2854     {
2855     struct timespec ts;
2856    
2857     if (!clock_gettime (CLOCK_REALTIME, &ts))
2858     have_realtime = 1;
2859     }
2860     #endif
2861    
2862 root 1.29 #if EV_USE_MONOTONIC
2863 root 1.279 if (!have_monotonic)
2864     {
2865     struct timespec ts;
2866    
2867     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2868     have_monotonic = 1;
2869     }
2870 root 1.1 #endif
2871    
2872 root 1.306 /* pid check not overridable via env */
2873     #ifndef _WIN32
2874     if (flags & EVFLAG_FORKCHECK)
2875     curpid = getpid ();
2876     #endif
2877    
2878     if (!(flags & EVFLAG_NOENV)
2879     && !enable_secure ()
2880     && getenv ("LIBEV_FLAGS"))
2881     flags = atoi (getenv ("LIBEV_FLAGS"));
2882    
2883 root 1.378 ev_rt_now = ev_time ();
2884     mn_now = get_clock ();
2885     now_floor = mn_now;
2886     rtmn_diff = ev_rt_now - mn_now;
2887 root 1.338 #if EV_FEATURE_API
2888 root 1.378 invoke_cb = ev_invoke_pending;
2889 root 1.297 #endif
2890 root 1.1
2891 root 1.378 io_blocktime = 0.;
2892     timeout_blocktime = 0.;
2893     backend = 0;
2894     backend_fd = -1;
2895     sig_pending = 0;
2896 root 1.307 #if EV_ASYNC_ENABLE
2897 root 1.378 async_pending = 0;
2898 root 1.307 #endif
2899 root 1.378 pipe_write_skipped = 0;
2900     pipe_write_wanted = 0;
2901 root 1.448 evpipe [0] = -1;
2902     evpipe [1] = -1;
2903 root 1.209 #if EV_USE_INOTIFY
2904 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2905 root 1.209 #endif
2906 root 1.303 #if EV_USE_SIGNALFD
2907 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2908 root 1.303 #endif
2909 root 1.193
2910 root 1.366 if (!(flags & EVBACKEND_MASK))
2911 root 1.129 flags |= ev_recommended_backends ();
2912 root 1.41
2913 root 1.357 #if EV_USE_IOCP
2914     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2915     #endif
2916 root 1.118 #if EV_USE_PORT
2917 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2918 root 1.118 #endif
2919 root 1.44 #if EV_USE_KQUEUE
2920 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2921 root 1.44 #endif
2922 root 1.29 #if EV_USE_EPOLL
2923 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2924 root 1.41 #endif
2925 root 1.59 #if EV_USE_POLL
2926 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2927 root 1.1 #endif
2928 root 1.29 #if EV_USE_SELECT
2929 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2930 root 1.1 #endif
2931 root 1.70
2932 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2933    
2934 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2935 root 1.288 ev_init (&pipe_w, pipecb);
2936     ev_set_priority (&pipe_w, EV_MAXPRI);
2937 root 1.336 #endif
2938 root 1.56 }
2939     }
2940    
2941 root 1.288 /* free up a loop structure */
2942 root 1.480 ecb_cold
2943     void
2944 root 1.422 ev_loop_destroy (EV_P)
2945 root 1.56 {
2946 root 1.65 int i;
2947    
2948 root 1.364 #if EV_MULTIPLICITY
2949 root 1.363 /* mimic free (0) */
2950     if (!EV_A)
2951     return;
2952 root 1.364 #endif
2953 root 1.363
2954 root 1.361 #if EV_CLEANUP_ENABLE
2955     /* queue cleanup watchers (and execute them) */
2956     if (expect_false (cleanupcnt))
2957     {
2958     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2959     EV_INVOKE_PENDING;
2960     }
2961     #endif
2962    
2963 root 1.359 #if EV_CHILD_ENABLE
2964 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2965 root 1.359 {
2966     ev_ref (EV_A); /* child watcher */
2967     ev_signal_stop (EV_A_ &childev);
2968     }
2969     #endif
2970    
2971 root 1.288 if (ev_is_active (&pipe_w))
2972 root 1.207 {
2973 root 1.303 /*ev_ref (EV_A);*/
2974     /*ev_io_stop (EV_A_ &pipe_w);*/
2975 root 1.207
2976 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2977     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2978 root 1.207 }
2979    
2980 root 1.303 #if EV_USE_SIGNALFD
2981     if (ev_is_active (&sigfd_w))
2982 root 1.317 close (sigfd);
2983 root 1.303 #endif
2984    
2985 root 1.152 #if EV_USE_INOTIFY
2986     if (fs_fd >= 0)
2987     close (fs_fd);
2988     #endif
2989    
2990     if (backend_fd >= 0)
2991     close (backend_fd);
2992    
2993 root 1.357 #if EV_USE_IOCP
2994     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2995     #endif
2996 root 1.118 #if EV_USE_PORT
2997 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2998 root 1.118 #endif
2999 root 1.56 #if EV_USE_KQUEUE
3000 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
3001 root 1.56 #endif
3002     #if EV_USE_EPOLL
3003 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3004 root 1.56 #endif
3005 root 1.59 #if EV_USE_POLL
3006 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3007 root 1.56 #endif
3008     #if EV_USE_SELECT
3009 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
3010 root 1.56 #endif
3011 root 1.1
3012 root 1.65 for (i = NUMPRI; i--; )
3013 root 1.164 {
3014     array_free (pending, [i]);
3015     #if EV_IDLE_ENABLE
3016     array_free (idle, [i]);
3017     #endif
3018     }
3019 root 1.65
3020 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
3021 root 1.186
3022 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
3023 root 1.284 array_free (rfeed, EMPTY);
3024 root 1.164 array_free (fdchange, EMPTY);
3025     array_free (timer, EMPTY);
3026 root 1.140 #if EV_PERIODIC_ENABLE
3027 root 1.164 array_free (periodic, EMPTY);
3028 root 1.93 #endif
3029 root 1.187 #if EV_FORK_ENABLE
3030     array_free (fork, EMPTY);
3031     #endif
3032 root 1.360 #if EV_CLEANUP_ENABLE
3033     array_free (cleanup, EMPTY);
3034     #endif
3035 root 1.164 array_free (prepare, EMPTY);
3036     array_free (check, EMPTY);
3037 root 1.209 #if EV_ASYNC_ENABLE
3038     array_free (async, EMPTY);
3039     #endif
3040 root 1.65
3041 root 1.130 backend = 0;
3042 root 1.359
3043     #if EV_MULTIPLICITY
3044     if (ev_is_default_loop (EV_A))
3045     #endif
3046     ev_default_loop_ptr = 0;
3047     #if EV_MULTIPLICITY
3048     else
3049     ev_free (EV_A);
3050     #endif
3051 root 1.56 }
3052 root 1.22
3053 root 1.226 #if EV_USE_INOTIFY
3054 root 1.284 inline_size void infy_fork (EV_P);
3055 root 1.226 #endif
3056 root 1.154
3057 root 1.284 inline_size void
3058 root 1.56 loop_fork (EV_P)
3059     {
3060 root 1.118 #if EV_USE_PORT
3061 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3062 root 1.56 #endif
3063     #if EV_USE_KQUEUE
3064 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
3065 root 1.45 #endif
3066 root 1.118 #if EV_USE_EPOLL
3067 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3068 root 1.118 #endif
3069 root 1.154 #if EV_USE_INOTIFY
3070     infy_fork (EV_A);
3071     #endif
3072 root 1.70
3073 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3074 root 1.478 if (ev_is_active (&pipe_w) && postfork != 2)
3075 root 1.70 {
3076 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3077 root 1.70
3078     ev_ref (EV_A);
3079 root 1.288 ev_io_stop (EV_A_ &pipe_w);
3080 root 1.220
3081     if (evpipe [0] >= 0)
3082 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
3083 root 1.207
3084     evpipe_init (EV_A);
3085 root 1.443 /* iterate over everything, in case we missed something before */
3086     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3087 root 1.448 }
3088 root 1.337 #endif
3089 root 1.70
3090     postfork = 0;
3091 root 1.1 }
3092    
3093 root 1.55 #if EV_MULTIPLICITY
3094 root 1.250
3095 root 1.480 ecb_cold
3096     struct ev_loop *
3097 root 1.420 ev_loop_new (unsigned int flags) EV_THROW
3098 root 1.54 {
3099 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3100 root 1.69
3101 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
3102 root 1.108 loop_init (EV_A_ flags);
3103 root 1.56
3104 root 1.130 if (ev_backend (EV_A))
3105 root 1.306 return EV_A;
3106 root 1.54
3107 root 1.359 ev_free (EV_A);
3108 root 1.55 return 0;
3109 root 1.54 }
3110    
3111 root 1.297 #endif /* multiplicity */
3112 root 1.248
3113     #if EV_VERIFY
3114 root 1.480 noinline ecb_cold
3115     static void
3116 root 1.251 verify_watcher (EV_P_ W w)
3117     {
3118 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3119 root 1.251
3120     if (w->pending)
3121 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3122 root 1.251 }
3123    
3124 root 1.480 noinline ecb_cold
3125     static void
3126 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
3127     {
3128     int i;
3129    
3130     for (i = HEAP0; i < N + HEAP0; ++i)
3131     {
3132 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3133     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3134     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3135 root 1.251
3136     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3137     }
3138     }
3139    
3140 root 1.480 noinline ecb_cold
3141     static void
3142 root 1.251 array_verify (EV_P_ W *ws, int cnt)
3143 root 1.248 {
3144     while (cnt--)
3145 root 1.251 {
3146 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3147 root 1.251 verify_watcher (EV_A_ ws [cnt]);
3148     }
3149 root 1.248 }
3150 root 1.250 #endif
3151 root 1.248
3152 root 1.338 #if EV_FEATURE_API
3153 root 1.379 void ecb_cold
3154 root 1.420 ev_verify (EV_P) EV_THROW
3155 root 1.248 {
3156 root 1.250 #if EV_VERIFY
3157 root 1.429 int i;
3158 root 1.426 WL w, w2;
3159 root 1.251
3160     assert (activecnt >= -1);
3161    
3162     assert (fdchangemax >= fdchangecnt);
3163     for (i = 0; i < fdchangecnt; ++i)
3164 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3165 root 1.251
3166     assert (anfdmax >= 0);
3167 root 1.429 for (i = 0; i < anfdmax; ++i)
3168     {
3169     int j = 0;
3170    
3171     for (w = w2 = anfds [i].head; w; w = w->next)
3172     {
3173     verify_watcher (EV_A_ (W)w);
3174 root 1.426
3175 root 1.429 if (j++ & 1)
3176     {
3177     assert (("libev: io watcher list contains a loop", w != w2));
3178     w2 = w2->next;
3179     }
3180 root 1.426
3181 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3182     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3183     }
3184     }
3185 root 1.251
3186     assert (timermax >= timercnt);
3187     verify_heap (EV_A_ timers, timercnt);
3188 root 1.248
3189     #if EV_PERIODIC_ENABLE
3190 root 1.251 assert (periodicmax >= periodiccnt);
3191     verify_heap (EV_A_ periodics, periodiccnt);
3192 root 1.248 #endif
3193    
3194 root 1.251 for (i = NUMPRI; i--; )
3195     {
3196     assert (pendingmax [i] >= pendingcnt [i]);
3197 root 1.248 #if EV_IDLE_ENABLE
3198 root 1.252 assert (idleall >= 0);
3199 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3200     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3201 root 1.248 #endif
3202 root 1.251 }
3203    
3204 root 1.248 #if EV_FORK_ENABLE
3205 root 1.251 assert (forkmax >= forkcnt);
3206     array_verify (EV_A_ (W *)forks, forkcnt);
3207 root 1.248 #endif
3208 root 1.251
3209 root 1.360 #if EV_CLEANUP_ENABLE
3210     assert (cleanupmax >= cleanupcnt);
3211     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3212     #endif
3213    
3214 root 1.250 #if EV_ASYNC_ENABLE
3215 root 1.251 assert (asyncmax >= asynccnt);
3216     array_verify (EV_A_ (W *)asyncs, asynccnt);
3217 root 1.250 #endif
3218 root 1.251
3219 root 1.337 #if EV_PREPARE_ENABLE
3220 root 1.251 assert (preparemax >= preparecnt);
3221     array_verify (EV_A_ (W *)prepares, preparecnt);
3222 root 1.337 #endif
3223 root 1.251
3224 root 1.337 #if EV_CHECK_ENABLE
3225 root 1.251 assert (checkmax >= checkcnt);
3226     array_verify (EV_A_ (W *)checks, checkcnt);
3227 root 1.337 #endif
3228 root 1.251
3229     # if 0
3230 root 1.336 #if EV_CHILD_ENABLE
3231 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3232 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3233 root 1.336 #endif
3234 root 1.251 # endif
3235 root 1.248 #endif
3236     }
3237 root 1.297 #endif
3238 root 1.56
3239     #if EV_MULTIPLICITY
3240 root 1.480 ecb_cold
3241     struct ev_loop *
3242 root 1.54 #else
3243     int
3244 root 1.358 #endif
3245 root 1.420 ev_default_loop (unsigned int flags) EV_THROW
3246 root 1.54 {
3247 root 1.116 if (!ev_default_loop_ptr)
3248 root 1.56 {
3249     #if EV_MULTIPLICITY
3250 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3251 root 1.56 #else
3252 ayin 1.117 ev_default_loop_ptr = 1;
3253 root 1.54 #endif
3254    
3255 root 1.110 loop_init (EV_A_ flags);
3256 root 1.56
3257 root 1.130 if (ev_backend (EV_A))
3258 root 1.56 {
3259 root 1.336 #if EV_CHILD_ENABLE
3260 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3261     ev_set_priority (&childev, EV_MAXPRI);
3262     ev_signal_start (EV_A_ &childev);
3263     ev_unref (EV_A); /* child watcher should not keep loop alive */
3264     #endif
3265     }
3266     else
3267 root 1.116 ev_default_loop_ptr = 0;
3268 root 1.56 }
3269 root 1.8
3270 root 1.116 return ev_default_loop_ptr;
3271 root 1.1 }
3272    
3273 root 1.24 void
3274 root 1.420 ev_loop_fork (EV_P) EV_THROW
3275 root 1.1 {
3276 root 1.440 postfork = 1;
3277 root 1.1 }
3278    
3279 root 1.8 /*****************************************************************************/
3280    
3281 root 1.168 void
3282     ev_invoke (EV_P_ void *w, int revents)
3283     {
3284     EV_CB_INVOKE ((W)w, revents);
3285     }
3286    
3287 root 1.300 unsigned int
3288 root 1.420 ev_pending_count (EV_P) EV_THROW
3289 root 1.300 {
3290     int pri;
3291     unsigned int count = 0;
3292    
3293     for (pri = NUMPRI; pri--; )
3294     count += pendingcnt [pri];
3295    
3296     return count;
3297     }
3298    
3299 root 1.480 noinline
3300     void
3301 root 1.296 ev_invoke_pending (EV_P)
3302 root 1.1 {
3303 root 1.445 pendingpri = NUMPRI;
3304    
3305     while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3306     {
3307     --pendingpri;
3308    
3309     while (pendingcnt [pendingpri])
3310     {
3311     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3312 root 1.1
3313 root 1.445 p->w->pending = 0;
3314     EV_CB_INVOKE (p->w, p->events);
3315     EV_FREQUENT_CHECK;
3316     }
3317     }
3318 root 1.1 }
3319    
3320 root 1.234 #if EV_IDLE_ENABLE
3321 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3322     /* only when higher priorities are idle" logic */
3323 root 1.284 inline_size void
3324 root 1.234 idle_reify (EV_P)
3325     {
3326     if (expect_false (idleall))
3327     {
3328     int pri;
3329    
3330     for (pri = NUMPRI; pri--; )
3331     {
3332     if (pendingcnt [pri])
3333     break;
3334    
3335     if (idlecnt [pri])
3336     {
3337     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3338     break;
3339     }
3340     }
3341     }
3342     }
3343     #endif
3344    
3345 root 1.288 /* make timers pending */
3346 root 1.284 inline_size void
3347 root 1.51 timers_reify (EV_P)
3348 root 1.1 {
3349 root 1.248 EV_FREQUENT_CHECK;
3350    
3351 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3352 root 1.1 {
3353 root 1.284 do
3354     {
3355     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3356 root 1.1
3357 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3358    
3359     /* first reschedule or stop timer */
3360     if (w->repeat)
3361     {
3362     ev_at (w) += w->repeat;
3363     if (ev_at (w) < mn_now)
3364     ev_at (w) = mn_now;
3365 root 1.61
3366 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3367 root 1.90
3368 root 1.284 ANHE_at_cache (timers [HEAP0]);
3369     downheap (timers, timercnt, HEAP0);
3370     }
3371     else
3372     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3373 root 1.243
3374 root 1.284 EV_FREQUENT_CHECK;
3375     feed_reverse (EV_A_ (W)w);
3376 root 1.12 }
3377 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3378 root 1.30
3379 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3380 root 1.12 }
3381     }
3382 root 1.4
3383 root 1.140 #if EV_PERIODIC_ENABLE
3384 root 1.370
3385 root 1.480 noinline
3386     static void
3387 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3388     {
3389 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3390     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3391    
3392     /* the above almost always errs on the low side */
3393     while (at <= ev_rt_now)
3394     {
3395     ev_tstamp nat = at + w->interval;
3396    
3397     /* when resolution fails us, we use ev_rt_now */
3398     if (expect_false (nat == at))
3399     {
3400     at = ev_rt_now;
3401     break;
3402     }
3403    
3404     at = nat;
3405     }
3406    
3407     ev_at (w) = at;
3408 root 1.370 }
3409    
3410 root 1.288 /* make periodics pending */
3411 root 1.284 inline_size void
3412 root 1.51 periodics_reify (EV_P)
3413 root 1.12 {
3414 root 1.248 EV_FREQUENT_CHECK;
3415 root 1.250
3416 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3417 root 1.12 {
3418 root 1.284 do
3419     {
3420     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3421 root 1.1
3422 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3423 root 1.61
3424 root 1.284 /* first reschedule or stop timer */
3425     if (w->reschedule_cb)
3426     {
3427     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3428 root 1.243
3429 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3430 root 1.243
3431 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3432     downheap (periodics, periodiccnt, HEAP0);
3433     }
3434     else if (w->interval)
3435 root 1.246 {
3436 root 1.370 periodic_recalc (EV_A_ w);
3437 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3438     downheap (periodics, periodiccnt, HEAP0);
3439 root 1.246 }
3440 root 1.284 else
3441     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3442 root 1.243
3443 root 1.284 EV_FREQUENT_CHECK;
3444     feed_reverse (EV_A_ (W)w);
3445 root 1.1 }
3446 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3447 root 1.12
3448 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3449 root 1.12 }
3450     }
3451    
3452 root 1.288 /* simply recalculate all periodics */
3453 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3454 root 1.480 noinline ecb_cold
3455     static void
3456 root 1.54 periodics_reschedule (EV_P)
3457 root 1.12 {
3458     int i;
3459    
3460 root 1.13 /* adjust periodics after time jump */
3461 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3462 root 1.12 {
3463 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3464 root 1.12
3465 root 1.77 if (w->reschedule_cb)
3466 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3467 root 1.77 else if (w->interval)
3468 root 1.370 periodic_recalc (EV_A_ w);
3469 root 1.242
3470 root 1.248 ANHE_at_cache (periodics [i]);
3471 root 1.77 }
3472 root 1.12
3473 root 1.248 reheap (periodics, periodiccnt);
3474 root 1.1 }
3475 root 1.93 #endif
3476 root 1.1
3477 root 1.288 /* adjust all timers by a given offset */
3478 root 1.480 noinline ecb_cold
3479     static void
3480 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3481     {
3482     int i;
3483    
3484     for (i = 0; i < timercnt; ++i)
3485     {
3486     ANHE *he = timers + i + HEAP0;
3487     ANHE_w (*he)->at += adjust;
3488     ANHE_at_cache (*he);
3489     }
3490     }
3491    
3492 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3493 root 1.324 /* also detect if there was a timejump, and act accordingly */
3494 root 1.284 inline_speed void
3495 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3496 root 1.4 {
3497 root 1.40 #if EV_USE_MONOTONIC
3498     if (expect_true (have_monotonic))
3499     {
3500 root 1.289 int i;
3501 root 1.178 ev_tstamp odiff = rtmn_diff;
3502    
3503     mn_now = get_clock ();
3504    
3505     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3506     /* interpolate in the meantime */
3507     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3508 root 1.40 {
3509 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3510     return;
3511     }
3512    
3513     now_floor = mn_now;
3514     ev_rt_now = ev_time ();
3515 root 1.4
3516 root 1.178 /* loop a few times, before making important decisions.
3517     * on the choice of "4": one iteration isn't enough,
3518     * in case we get preempted during the calls to
3519     * ev_time and get_clock. a second call is almost guaranteed
3520     * to succeed in that case, though. and looping a few more times
3521     * doesn't hurt either as we only do this on time-jumps or
3522     * in the unlikely event of having been preempted here.
3523     */
3524     for (i = 4; --i; )
3525     {
3526 root 1.373 ev_tstamp diff;
3527 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3528 root 1.4
3529 root 1.373 diff = odiff - rtmn_diff;
3530    
3531     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3532 root 1.178 return; /* all is well */
3533 root 1.4
3534 root 1.178 ev_rt_now = ev_time ();
3535     mn_now = get_clock ();
3536     now_floor = mn_now;
3537     }
3538 root 1.4
3539 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3540     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3541 root 1.140 # if EV_PERIODIC_ENABLE
3542 root 1.178 periodics_reschedule (EV_A);
3543 root 1.93 # endif
3544 root 1.4 }
3545     else
3546 root 1.40 #endif
3547 root 1.4 {
3548 root 1.85 ev_rt_now = ev_time ();
3549 root 1.40
3550 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3551 root 1.13 {
3552 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3553     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3554 root 1.140 #if EV_PERIODIC_ENABLE
3555 root 1.54 periodics_reschedule (EV_A);
3556 root 1.93 #endif
3557 root 1.13 }
3558 root 1.4
3559 root 1.85 mn_now = ev_rt_now;
3560 root 1.4 }
3561     }
3562    
3563 root 1.418 int
3564 root 1.353 ev_run (EV_P_ int flags)
3565 root 1.1 {
3566 root 1.338 #if EV_FEATURE_API
3567 root 1.294 ++loop_depth;
3568 root 1.297 #endif
3569 root 1.294
3570 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3571 root 1.298
3572 root 1.353 loop_done = EVBREAK_CANCEL;
3573 root 1.1
3574 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3575 root 1.158
3576 root 1.161 do
3577 root 1.9 {
3578 root 1.250 #if EV_VERIFY >= 2
3579 root 1.340 ev_verify (EV_A);
3580 root 1.250 #endif
3581    
3582 root 1.158 #ifndef _WIN32
3583     if (expect_false (curpid)) /* penalise the forking check even more */
3584     if (expect_false (getpid () != curpid))
3585     {
3586     curpid = getpid ();
3587     postfork = 1;
3588     }
3589     #endif
3590    
3591 root 1.157 #if EV_FORK_ENABLE
3592     /* we might have forked, so queue fork handlers */
3593     if (expect_false (postfork))
3594     if (forkcnt)
3595     {
3596     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3597 root 1.297 EV_INVOKE_PENDING;
3598 root 1.157 }
3599     #endif
3600 root 1.147
3601 root 1.337 #if EV_PREPARE_ENABLE
3602 root 1.170 /* queue prepare watchers (and execute them) */
3603 root 1.40 if (expect_false (preparecnt))
3604 root 1.20 {
3605 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3606 root 1.297 EV_INVOKE_PENDING;
3607 root 1.20 }
3608 root 1.337 #endif
3609 root 1.9
3610 root 1.298 if (expect_false (loop_done))
3611     break;
3612    
3613 root 1.70 /* we might have forked, so reify kernel state if necessary */
3614     if (expect_false (postfork))
3615     loop_fork (EV_A);
3616    
3617 root 1.1 /* update fd-related kernel structures */
3618 root 1.51 fd_reify (EV_A);
3619 root 1.1
3620     /* calculate blocking time */
3621 root 1.135 {
3622 root 1.193 ev_tstamp waittime = 0.;
3623     ev_tstamp sleeptime = 0.;
3624 root 1.12
3625 root 1.353 /* remember old timestamp for io_blocktime calculation */
3626     ev_tstamp prev_mn_now = mn_now;
3627 root 1.293
3628 root 1.353 /* update time to cancel out callback processing overhead */
3629     time_update (EV_A_ 1e100);
3630 root 1.135
3631 root 1.378 /* from now on, we want a pipe-wake-up */
3632     pipe_write_wanted = 1;
3633    
3634 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3635 root 1.383
3636 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3637 root 1.353 {
3638 root 1.287 waittime = MAX_BLOCKTIME;
3639    
3640 root 1.135 if (timercnt)
3641     {
3642 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3643 root 1.193 if (waittime > to) waittime = to;
3644 root 1.135 }
3645 root 1.4
3646 root 1.140 #if EV_PERIODIC_ENABLE
3647 root 1.135 if (periodiccnt)
3648     {
3649 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3650 root 1.193 if (waittime > to) waittime = to;
3651 root 1.135 }
3652 root 1.93 #endif
3653 root 1.4
3654 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3655 root 1.193 if (expect_false (waittime < timeout_blocktime))
3656     waittime = timeout_blocktime;
3657    
3658 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3659     /* to pass a minimum nonzero value to the backend */
3660     if (expect_false (waittime < backend_mintime))
3661     waittime = backend_mintime;
3662    
3663 root 1.293 /* extra check because io_blocktime is commonly 0 */
3664     if (expect_false (io_blocktime))
3665     {
3666     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3667 root 1.193
3668 root 1.376 if (sleeptime > waittime - backend_mintime)
3669     sleeptime = waittime - backend_mintime;
3670 root 1.193
3671 root 1.293 if (expect_true (sleeptime > 0.))
3672     {
3673     ev_sleep (sleeptime);
3674     waittime -= sleeptime;
3675     }
3676 root 1.193 }
3677 root 1.135 }
3678 root 1.1
3679 root 1.338 #if EV_FEATURE_API
3680 root 1.162 ++loop_count;
3681 root 1.297 #endif
3682 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3683 root 1.193 backend_poll (EV_A_ waittime);
3684 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3685 root 1.178
3686 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3687 root 1.378
3688 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3689 root 1.378 if (pipe_write_skipped)
3690     {
3691     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3692     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3693     }
3694    
3695    
3696 root 1.178 /* update ev_rt_now, do magic */
3697 root 1.193 time_update (EV_A_ waittime + sleeptime);
3698 root 1.135 }
3699 root 1.1
3700 root 1.9 /* queue pending timers and reschedule them */
3701 root 1.51 timers_reify (EV_A); /* relative timers called last */
3702 root 1.140 #if EV_PERIODIC_ENABLE
3703 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3704 root 1.93 #endif
3705 root 1.1
3706 root 1.164 #if EV_IDLE_ENABLE
3707 root 1.137 /* queue idle watchers unless other events are pending */
3708 root 1.164 idle_reify (EV_A);
3709     #endif
3710 root 1.9
3711 root 1.337 #if EV_CHECK_ENABLE
3712 root 1.20 /* queue check watchers, to be executed first */
3713 root 1.123 if (expect_false (checkcnt))
3714 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3715 root 1.337 #endif
3716 root 1.9
3717 root 1.297 EV_INVOKE_PENDING;
3718 root 1.1 }
3719 root 1.219 while (expect_true (
3720     activecnt
3721     && !loop_done
3722 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3723 root 1.219 ));
3724 root 1.13
3725 root 1.353 if (loop_done == EVBREAK_ONE)
3726     loop_done = EVBREAK_CANCEL;
3727 root 1.294
3728 root 1.338 #if EV_FEATURE_API
3729 root 1.294 --loop_depth;
3730 root 1.297 #endif
3731 root 1.418
3732     return activecnt;
3733 root 1.51 }
3734    
3735     void
3736 root 1.420 ev_break (EV_P_ int how) EV_THROW
3737 root 1.51 {
3738     loop_done = how;
3739 root 1.1 }
3740    
3741 root 1.285 void
3742 root 1.420 ev_ref (EV_P) EV_THROW
3743 root 1.285 {
3744     ++activecnt;
3745     }
3746    
3747     void
3748 root 1.420 ev_unref (EV_P) EV_THROW
3749 root 1.285 {
3750     --activecnt;
3751     }
3752    
3753     void
3754 root 1.420 ev_now_update (EV_P) EV_THROW
3755 root 1.285 {
3756     time_update (EV_A_ 1e100);
3757     }
3758    
3759     void
3760 root 1.420 ev_suspend (EV_P) EV_THROW
3761 root 1.285 {
3762     ev_now_update (EV_A);
3763     }
3764    
3765     void
3766 root 1.420 ev_resume (EV_P) EV_THROW
3767 root 1.285 {
3768     ev_tstamp mn_prev = mn_now;
3769    
3770     ev_now_update (EV_A);
3771     timers_reschedule (EV_A_ mn_now - mn_prev);
3772 root 1.286 #if EV_PERIODIC_ENABLE
3773 root 1.288 /* TODO: really do this? */
3774 root 1.285 periodics_reschedule (EV_A);
3775 root 1.286 #endif
3776 root 1.285 }
3777    
3778 root 1.8 /*****************************************************************************/
3779 root 1.288 /* singly-linked list management, used when the expected list length is short */
3780 root 1.8
3781 root 1.284 inline_size void
3782 root 1.10 wlist_add (WL *head, WL elem)
3783 root 1.1 {
3784     elem->next = *head;
3785     *head = elem;
3786     }
3787    
3788 root 1.284 inline_size void
3789 root 1.10 wlist_del (WL *head, WL elem)
3790 root 1.1 {
3791     while (*head)
3792     {
3793 root 1.307 if (expect_true (*head == elem))
3794 root 1.1 {
3795     *head = elem->next;
3796 root 1.307 break;
3797 root 1.1 }
3798    
3799     head = &(*head)->next;
3800     }
3801     }
3802    
3803 root 1.288 /* internal, faster, version of ev_clear_pending */
3804 root 1.284 inline_speed void
3805 root 1.166 clear_pending (EV_P_ W w)
3806 root 1.16 {
3807     if (w->pending)
3808     {
3809 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3810 root 1.16 w->pending = 0;
3811     }
3812     }
3813    
3814 root 1.167 int
3815 root 1.420 ev_clear_pending (EV_P_ void *w) EV_THROW
3816 root 1.166 {
3817     W w_ = (W)w;
3818     int pending = w_->pending;
3819    
3820 root 1.172 if (expect_true (pending))
3821     {
3822     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3823 root 1.288 p->w = (W)&pending_w;
3824 root 1.172 w_->pending = 0;
3825     return p->events;
3826     }
3827     else
3828 root 1.167 return 0;
3829 root 1.166 }
3830    
3831 root 1.284 inline_size void
3832 root 1.164 pri_adjust (EV_P_ W w)
3833     {
3834 root 1.295 int pri = ev_priority (w);
3835 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3836     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3837 root 1.295 ev_set_priority (w, pri);
3838 root 1.164 }
3839    
3840 root 1.284 inline_speed void
3841 root 1.51 ev_start (EV_P_ W w, int active)
3842 root 1.1 {
3843 root 1.164 pri_adjust (EV_A_ w);
3844 root 1.1 w->active = active;
3845 root 1.51 ev_ref (EV_A);
3846 root 1.1 }
3847    
3848 root 1.284 inline_size void
3849 root 1.51 ev_stop (EV_P_ W w)
3850 root 1.1 {
3851 root 1.51 ev_unref (EV_A);
3852 root 1.1 w->active = 0;
3853     }
3854    
3855 root 1.8 /*****************************************************************************/
3856    
3857 root 1.480 noinline
3858     void
3859 root 1.420 ev_io_start (EV_P_ ev_io *w) EV_THROW
3860 root 1.1 {
3861 root 1.37 int fd = w->fd;
3862    
3863 root 1.123 if (expect_false (ev_is_active (w)))
3864 root 1.1 return;
3865    
3866 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3867 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3868 root 1.33
3869 root 1.248 EV_FREQUENT_CHECK;
3870    
3871 root 1.51 ev_start (EV_A_ (W)w, 1);
3872 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3873 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3874 root 1.1
3875 root 1.426 /* common bug, apparently */
3876     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3877    
3878 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3879 root 1.281 w->events &= ~EV__IOFDSET;
3880 root 1.248
3881     EV_FREQUENT_CHECK;
3882 root 1.1 }
3883    
3884 root 1.480 noinline
3885     void
3886 root 1.420 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3887 root 1.1 {
3888 root 1.166 clear_pending (EV_A_ (W)w);
3889 root 1.123 if (expect_false (!ev_is_active (w)))
3890 root 1.1 return;
3891    
3892 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3893 root 1.89
3894 root 1.248 EV_FREQUENT_CHECK;
3895    
3896 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3897 root 1.51 ev_stop (EV_A_ (W)w);
3898 root 1.1
3899 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3900 root 1.248
3901     EV_FREQUENT_CHECK;
3902 root 1.1 }
3903    
3904 root 1.480 noinline
3905     void
3906 root 1.420 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3907 root 1.1 {
3908 root 1.123 if (expect_false (ev_is_active (w)))
3909 root 1.1 return;
3910    
3911 root 1.228 ev_at (w) += mn_now;
3912 root 1.12
3913 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3914 root 1.13
3915 root 1.248 EV_FREQUENT_CHECK;
3916    
3917     ++timercnt;
3918     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3919 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3920     ANHE_w (timers [ev_active (w)]) = (WT)w;
3921 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3922 root 1.235 upheap (timers, ev_active (w));
3923 root 1.62
3924 root 1.248 EV_FREQUENT_CHECK;
3925    
3926 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3927 root 1.12 }
3928    
3929 root 1.480 noinline
3930     void
3931 root 1.420 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3932 root 1.12 {
3933 root 1.166 clear_pending (EV_A_ (W)w);
3934 root 1.123 if (expect_false (!ev_is_active (w)))
3935 root 1.12 return;
3936    
3937 root 1.248 EV_FREQUENT_CHECK;
3938    
3939 root 1.230 {
3940     int active = ev_active (w);
3941 root 1.62
3942 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3943 root 1.151
3944 root 1.248 --timercnt;
3945    
3946     if (expect_true (active < timercnt + HEAP0))
3947 root 1.151 {
3948 root 1.248 timers [active] = timers [timercnt + HEAP0];
3949 root 1.181 adjustheap (timers, timercnt, active);
3950 root 1.151 }
3951 root 1.248 }
3952 root 1.228
3953     ev_at (w) -= mn_now;
3954 root 1.14
3955 root 1.51 ev_stop (EV_A_ (W)w);
3956 root 1.328
3957     EV_FREQUENT_CHECK;
3958 root 1.12 }
3959 root 1.4
3960 root 1.480 noinline
3961     void
3962 root 1.420 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3963 root 1.14 {
3964 root 1.248 EV_FREQUENT_CHECK;
3965    
3966 root 1.407 clear_pending (EV_A_ (W)w);
3967 root 1.406
3968 root 1.14 if (ev_is_active (w))
3969     {
3970     if (w->repeat)
3971 root 1.99 {
3972 root 1.228 ev_at (w) = mn_now + w->repeat;
3973 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3974 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3975 root 1.99 }
3976 root 1.14 else
3977 root 1.51 ev_timer_stop (EV_A_ w);
3978 root 1.14 }
3979     else if (w->repeat)
3980 root 1.112 {
3981 root 1.229 ev_at (w) = w->repeat;
3982 root 1.112 ev_timer_start (EV_A_ w);
3983     }
3984 root 1.248
3985     EV_FREQUENT_CHECK;
3986 root 1.14 }
3987    
3988 root 1.301 ev_tstamp
3989 root 1.420 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3990 root 1.301 {
3991     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3992     }
3993    
3994 root 1.140 #if EV_PERIODIC_ENABLE
3995 root 1.480 noinline
3996     void
3997 root 1.420 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3998 root 1.12 {
3999 root 1.123 if (expect_false (ev_is_active (w)))
4000 root 1.12 return;
4001 root 1.1
4002 root 1.77 if (w->reschedule_cb)
4003 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4004 root 1.77 else if (w->interval)
4005     {
4006 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4007 root 1.370 periodic_recalc (EV_A_ w);
4008 root 1.77 }
4009 root 1.173 else
4010 root 1.228 ev_at (w) = w->offset;
4011 root 1.12
4012 root 1.248 EV_FREQUENT_CHECK;
4013    
4014     ++periodiccnt;
4015     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4016 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
4017     ANHE_w (periodics [ev_active (w)]) = (WT)w;
4018 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
4019 root 1.235 upheap (periodics, ev_active (w));
4020 root 1.62
4021 root 1.248 EV_FREQUENT_CHECK;
4022    
4023 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4024 root 1.1 }
4025    
4026 root 1.480 noinline
4027     void
4028 root 1.420 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
4029 root 1.1 {
4030 root 1.166 clear_pending (EV_A_ (W)w);
4031 root 1.123 if (expect_false (!ev_is_active (w)))
4032 root 1.1 return;
4033    
4034 root 1.248 EV_FREQUENT_CHECK;
4035    
4036 root 1.230 {
4037     int active = ev_active (w);
4038 root 1.62
4039 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4040 root 1.151
4041 root 1.248 --periodiccnt;
4042    
4043     if (expect_true (active < periodiccnt + HEAP0))
4044 root 1.151 {
4045 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
4046 root 1.181 adjustheap (periodics, periodiccnt, active);
4047 root 1.151 }
4048 root 1.248 }
4049 root 1.228
4050 root 1.328 ev_stop (EV_A_ (W)w);
4051    
4052 root 1.248 EV_FREQUENT_CHECK;
4053 root 1.1 }
4054    
4055 root 1.480 noinline
4056     void
4057 root 1.420 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
4058 root 1.77 {
4059 root 1.84 /* TODO: use adjustheap and recalculation */
4060 root 1.77 ev_periodic_stop (EV_A_ w);
4061     ev_periodic_start (EV_A_ w);
4062     }
4063 root 1.93 #endif
4064 root 1.77
4065 root 1.56 #ifndef SA_RESTART
4066     # define SA_RESTART 0
4067     #endif
4068    
4069 root 1.336 #if EV_SIGNAL_ENABLE
4070    
4071 root 1.480 noinline
4072     void
4073 root 1.420 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
4074 root 1.56 {
4075 root 1.123 if (expect_false (ev_is_active (w)))
4076 root 1.56 return;
4077    
4078 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4079    
4080     #if EV_MULTIPLICITY
4081 root 1.308 assert (("libev: a signal must not be attached to two different loops",
4082 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4083    
4084     signals [w->signum - 1].loop = EV_A;
4085 root 1.449 ECB_MEMORY_FENCE_RELEASE;
4086 root 1.306 #endif
4087 root 1.56
4088 root 1.303 EV_FREQUENT_CHECK;
4089    
4090     #if EV_USE_SIGNALFD
4091     if (sigfd == -2)
4092     {
4093     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4094     if (sigfd < 0 && errno == EINVAL)
4095     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4096    
4097     if (sigfd >= 0)
4098     {
4099     fd_intern (sigfd); /* doing it twice will not hurt */
4100    
4101     sigemptyset (&sigfd_set);
4102    
4103     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4104     ev_set_priority (&sigfd_w, EV_MAXPRI);
4105     ev_io_start (EV_A_ &sigfd_w);
4106     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4107     }
4108     }
4109    
4110     if (sigfd >= 0)
4111     {
4112     /* TODO: check .head */
4113     sigaddset (&sigfd_set, w->signum);
4114     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4115 root 1.207
4116 root 1.303 signalfd (sigfd, &sigfd_set, 0);
4117     }
4118 root 1.180 #endif
4119    
4120 root 1.56 ev_start (EV_A_ (W)w, 1);
4121 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
4122 root 1.56
4123 root 1.63 if (!((WL)w)->next)
4124 root 1.304 # if EV_USE_SIGNALFD
4125 root 1.306 if (sigfd < 0) /*TODO*/
4126 root 1.304 # endif
4127 root 1.306 {
4128 root 1.322 # ifdef _WIN32
4129 root 1.317 evpipe_init (EV_A);
4130    
4131 root 1.306 signal (w->signum, ev_sighandler);
4132     # else
4133     struct sigaction sa;
4134    
4135     evpipe_init (EV_A);
4136    
4137     sa.sa_handler = ev_sighandler;
4138     sigfillset (&sa.sa_mask);
4139     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4140     sigaction (w->signum, &sa, 0);
4141    
4142 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
4143     {
4144     sigemptyset (&sa.sa_mask);
4145     sigaddset (&sa.sa_mask, w->signum);
4146     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4147     }
4148 root 1.67 #endif
4149 root 1.306 }
4150 root 1.248
4151     EV_FREQUENT_CHECK;
4152 root 1.56 }
4153    
4154 root 1.480 noinline
4155     void
4156 root 1.420 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
4157 root 1.56 {
4158 root 1.166 clear_pending (EV_A_ (W)w);
4159 root 1.123 if (expect_false (!ev_is_active (w)))
4160 root 1.56 return;
4161    
4162 root 1.248 EV_FREQUENT_CHECK;
4163    
4164 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
4165 root 1.56 ev_stop (EV_A_ (W)w);
4166    
4167     if (!signals [w->signum - 1].head)
4168 root 1.306 {
4169 root 1.307 #if EV_MULTIPLICITY
4170 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
4171 root 1.307 #endif
4172     #if EV_USE_SIGNALFD
4173 root 1.306 if (sigfd >= 0)
4174     {
4175 root 1.321 sigset_t ss;
4176    
4177     sigemptyset (&ss);
4178     sigaddset (&ss, w->signum);
4179 root 1.306 sigdelset (&sigfd_set, w->signum);
4180 root 1.321
4181 root 1.306 signalfd (sigfd, &sigfd_set, 0);
4182 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
4183 root 1.306 }
4184     else
4185 root 1.307 #endif
4186 root 1.306 signal (w->signum, SIG_DFL);
4187     }
4188 root 1.248
4189     EV_FREQUENT_CHECK;
4190 root 1.56 }
4191    
4192 root 1.336 #endif
4193    
4194     #if EV_CHILD_ENABLE
4195    
4196 root 1.28 void
4197 root 1.420 ev_child_start (EV_P_ ev_child *w) EV_THROW
4198 root 1.22 {
4199 root 1.56 #if EV_MULTIPLICITY
4200 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4201 root 1.56 #endif
4202 root 1.123 if (expect_false (ev_is_active (w)))
4203 root 1.22 return;
4204    
4205 root 1.248 EV_FREQUENT_CHECK;
4206    
4207 root 1.51 ev_start (EV_A_ (W)w, 1);
4208 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4209 root 1.248
4210     EV_FREQUENT_CHECK;
4211 root 1.22 }
4212    
4213 root 1.28 void
4214 root 1.420 ev_child_stop (EV_P_ ev_child *w) EV_THROW
4215 root 1.22 {
4216 root 1.166 clear_pending (EV_A_ (W)w);
4217 root 1.123 if (expect_false (!ev_is_active (w)))
4218 root 1.22 return;
4219    
4220 root 1.248 EV_FREQUENT_CHECK;
4221    
4222 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4223 root 1.51 ev_stop (EV_A_ (W)w);
4224 root 1.248
4225     EV_FREQUENT_CHECK;
4226 root 1.22 }
4227    
4228 root 1.336 #endif
4229    
4230 root 1.140 #if EV_STAT_ENABLE
4231    
4232     # ifdef _WIN32
4233 root 1.146 # undef lstat
4234     # define lstat(a,b) _stati64 (a,b)
4235 root 1.140 # endif
4236    
4237 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4238     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4239     #define MIN_STAT_INTERVAL 0.1074891
4240 root 1.143
4241 root 1.480 noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4242 root 1.152
4243     #if EV_USE_INOTIFY
4244 root 1.326
4245     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4246     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4247 root 1.152
4248 root 1.480 noinline
4249     static void
4250 root 1.152 infy_add (EV_P_ ev_stat *w)
4251     {
4252 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4253     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4254     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4255     | IN_DONT_FOLLOW | IN_MASK_ADD);
4256 root 1.152
4257 root 1.318 if (w->wd >= 0)
4258 root 1.152 {
4259 root 1.318 struct statfs sfs;
4260    
4261     /* now local changes will be tracked by inotify, but remote changes won't */
4262     /* unless the filesystem is known to be local, we therefore still poll */
4263     /* also do poll on <2.6.25, but with normal frequency */
4264    
4265     if (!fs_2625)
4266     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4267     else if (!statfs (w->path, &sfs)
4268     && (sfs.f_type == 0x1373 /* devfs */
4269 root 1.451 || sfs.f_type == 0x4006 /* fat */
4270     || sfs.f_type == 0x4d44 /* msdos */
4271 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4272 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4273     || sfs.f_type == 0x858458f6 /* ramfs */
4274     || sfs.f_type == 0x5346544e /* ntfs */
4275 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4276 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4277 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4278 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4279 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4280     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4281     else
4282     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4283     }
4284     else
4285     {
4286     /* can't use inotify, continue to stat */
4287 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4288 root 1.152
4289 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4290 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4291 root 1.233 /* but an efficiency issue only */
4292 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4293 root 1.152 {
4294 root 1.153 char path [4096];
4295 root 1.152 strcpy (path, w->path);
4296    
4297     do
4298     {
4299     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4300     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4301    
4302     char *pend = strrchr (path, '/');
4303    
4304 root 1.275 if (!pend || pend == path)
4305     break;
4306 root 1.152
4307     *pend = 0;
4308 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4309 root 1.372 }
4310 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4311     }
4312     }
4313 root 1.275
4314     if (w->wd >= 0)
4315 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4316 root 1.152
4317 root 1.318 /* now re-arm timer, if required */
4318     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4319     ev_timer_again (EV_A_ &w->timer);
4320     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4321 root 1.152 }
4322    
4323 root 1.480 noinline
4324     static void
4325 root 1.152 infy_del (EV_P_ ev_stat *w)
4326     {
4327     int slot;
4328     int wd = w->wd;
4329    
4330     if (wd < 0)
4331     return;
4332    
4333     w->wd = -2;
4334 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4335 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4336    
4337     /* remove this watcher, if others are watching it, they will rearm */
4338     inotify_rm_watch (fs_fd, wd);
4339     }
4340    
4341 root 1.480 noinline
4342     static void
4343 root 1.152 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4344     {
4345     if (slot < 0)
4346 root 1.264 /* overflow, need to check for all hash slots */
4347 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4348 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4349     else
4350     {
4351     WL w_;
4352    
4353 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4354 root 1.152 {
4355     ev_stat *w = (ev_stat *)w_;
4356     w_ = w_->next; /* lets us remove this watcher and all before it */
4357    
4358     if (w->wd == wd || wd == -1)
4359     {
4360     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4361     {
4362 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4363 root 1.152 w->wd = -1;
4364     infy_add (EV_A_ w); /* re-add, no matter what */
4365     }
4366    
4367 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4368 root 1.152 }
4369     }
4370     }
4371     }
4372    
4373     static void
4374     infy_cb (EV_P_ ev_io *w, int revents)
4375     {
4376     char buf [EV_INOTIFY_BUFSIZE];
4377     int ofs;
4378     int len = read (fs_fd, buf, sizeof (buf));
4379    
4380 root 1.326 for (ofs = 0; ofs < len; )
4381     {
4382     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4383     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4384     ofs += sizeof (struct inotify_event) + ev->len;
4385     }
4386 root 1.152 }
4387    
4388 root 1.480 inline_size ecb_cold
4389     void
4390 root 1.330 ev_check_2625 (EV_P)
4391     {
4392     /* kernels < 2.6.25 are borked
4393     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4394     */
4395     if (ev_linux_version () < 0x020619)
4396 root 1.273 return;
4397 root 1.264
4398 root 1.273 fs_2625 = 1;
4399     }
4400 root 1.264
4401 root 1.315 inline_size int
4402     infy_newfd (void)
4403     {
4404 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4405 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4406     if (fd >= 0)
4407     return fd;
4408     #endif
4409     return inotify_init ();
4410     }
4411    
4412 root 1.284 inline_size void
4413 root 1.273 infy_init (EV_P)
4414     {
4415     if (fs_fd != -2)
4416     return;
4417 root 1.264
4418 root 1.273 fs_fd = -1;
4419 root 1.264
4420 root 1.330 ev_check_2625 (EV_A);
4421 root 1.264
4422 root 1.315 fs_fd = infy_newfd ();
4423 root 1.152
4424     if (fs_fd >= 0)
4425     {
4426 root 1.315 fd_intern (fs_fd);
4427 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4428     ev_set_priority (&fs_w, EV_MAXPRI);
4429     ev_io_start (EV_A_ &fs_w);
4430 root 1.317 ev_unref (EV_A);
4431 root 1.152 }
4432     }
4433    
4434 root 1.284 inline_size void
4435 root 1.154 infy_fork (EV_P)
4436     {
4437     int slot;
4438    
4439     if (fs_fd < 0)
4440     return;
4441    
4442 root 1.317 ev_ref (EV_A);
4443 root 1.315 ev_io_stop (EV_A_ &fs_w);
4444 root 1.154 close (fs_fd);
4445 root 1.315 fs_fd = infy_newfd ();
4446    
4447     if (fs_fd >= 0)
4448     {
4449     fd_intern (fs_fd);
4450     ev_io_set (&fs_w, fs_fd, EV_READ);
4451     ev_io_start (EV_A_ &fs_w);
4452 root 1.317 ev_unref (EV_A);
4453 root 1.315 }
4454 root 1.154
4455 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4456 root 1.154 {
4457     WL w_ = fs_hash [slot].head;
4458     fs_hash [slot].head = 0;
4459    
4460     while (w_)
4461     {
4462     ev_stat *w = (ev_stat *)w_;
4463     w_ = w_->next; /* lets us add this watcher */
4464    
4465     w->wd = -1;
4466    
4467     if (fs_fd >= 0)
4468     infy_add (EV_A_ w); /* re-add, no matter what */
4469     else
4470 root 1.318 {
4471     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4472     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4473     ev_timer_again (EV_A_ &w->timer);
4474     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4475     }
4476 root 1.154 }
4477     }
4478     }
4479    
4480 root 1.152 #endif
4481    
4482 root 1.255 #ifdef _WIN32
4483     # define EV_LSTAT(p,b) _stati64 (p, b)
4484     #else
4485     # define EV_LSTAT(p,b) lstat (p, b)
4486     #endif
4487    
4488 root 1.140 void
4489 root 1.420 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4490 root 1.140 {
4491     if (lstat (w->path, &w->attr) < 0)
4492     w->attr.st_nlink = 0;
4493     else if (!w->attr.st_nlink)
4494     w->attr.st_nlink = 1;
4495     }
4496    
4497 root 1.480 noinline
4498     static void
4499 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4500     {
4501     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4502    
4503 root 1.320 ev_statdata prev = w->attr;
4504 root 1.140 ev_stat_stat (EV_A_ w);
4505    
4506 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4507     if (
4508 root 1.320 prev.st_dev != w->attr.st_dev
4509     || prev.st_ino != w->attr.st_ino
4510     || prev.st_mode != w->attr.st_mode
4511     || prev.st_nlink != w->attr.st_nlink
4512     || prev.st_uid != w->attr.st_uid
4513     || prev.st_gid != w->attr.st_gid
4514     || prev.st_rdev != w->attr.st_rdev
4515     || prev.st_size != w->attr.st_size
4516     || prev.st_atime != w->attr.st_atime
4517     || prev.st_mtime != w->attr.st_mtime
4518     || prev.st_ctime != w->attr.st_ctime
4519 root 1.156 ) {
4520 root 1.320 /* we only update w->prev on actual differences */
4521     /* in case we test more often than invoke the callback, */
4522     /* to ensure that prev is always different to attr */
4523     w->prev = prev;
4524    
4525 root 1.152 #if EV_USE_INOTIFY
4526 root 1.264 if (fs_fd >= 0)
4527     {
4528     infy_del (EV_A_ w);
4529     infy_add (EV_A_ w);
4530     ev_stat_stat (EV_A_ w); /* avoid race... */
4531     }
4532 root 1.152 #endif
4533    
4534     ev_feed_event (EV_A_ w, EV_STAT);
4535     }
4536 root 1.140 }
4537    
4538     void
4539 root 1.420 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4540 root 1.140 {
4541     if (expect_false (ev_is_active (w)))
4542     return;
4543    
4544     ev_stat_stat (EV_A_ w);
4545    
4546 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4547     w->interval = MIN_STAT_INTERVAL;
4548 root 1.143
4549 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4550 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4551 root 1.152
4552     #if EV_USE_INOTIFY
4553     infy_init (EV_A);
4554    
4555     if (fs_fd >= 0)
4556     infy_add (EV_A_ w);
4557     else
4558     #endif
4559 root 1.318 {
4560     ev_timer_again (EV_A_ &w->timer);
4561     ev_unref (EV_A);
4562     }
4563 root 1.140
4564     ev_start (EV_A_ (W)w, 1);
4565 root 1.248
4566     EV_FREQUENT_CHECK;
4567 root 1.140 }
4568    
4569     void
4570 root 1.420 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4571 root 1.140 {
4572 root 1.166 clear_pending (EV_A_ (W)w);
4573 root 1.140 if (expect_false (!ev_is_active (w)))
4574     return;
4575    
4576 root 1.248 EV_FREQUENT_CHECK;
4577    
4578 root 1.152 #if EV_USE_INOTIFY
4579     infy_del (EV_A_ w);
4580     #endif
4581 root 1.318
4582     if (ev_is_active (&w->timer))
4583     {
4584     ev_ref (EV_A);
4585     ev_timer_stop (EV_A_ &w->timer);
4586     }
4587 root 1.140
4588 root 1.134 ev_stop (EV_A_ (W)w);
4589 root 1.248
4590     EV_FREQUENT_CHECK;
4591 root 1.134 }
4592     #endif
4593    
4594 root 1.164 #if EV_IDLE_ENABLE
4595 root 1.144 void
4596 root 1.420 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4597 root 1.144 {
4598     if (expect_false (ev_is_active (w)))
4599     return;
4600    
4601 root 1.164 pri_adjust (EV_A_ (W)w);
4602    
4603 root 1.248 EV_FREQUENT_CHECK;
4604    
4605 root 1.164 {
4606     int active = ++idlecnt [ABSPRI (w)];
4607    
4608     ++idleall;
4609     ev_start (EV_A_ (W)w, active);
4610    
4611     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4612     idles [ABSPRI (w)][active - 1] = w;
4613     }
4614 root 1.248
4615     EV_FREQUENT_CHECK;
4616 root 1.144 }
4617    
4618     void
4619 root 1.420 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4620 root 1.144 {
4621 root 1.166 clear_pending (EV_A_ (W)w);
4622 root 1.144 if (expect_false (!ev_is_active (w)))
4623     return;
4624    
4625 root 1.248 EV_FREQUENT_CHECK;
4626    
4627 root 1.144 {
4628 root 1.230 int active = ev_active (w);
4629 root 1.164
4630     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4631 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4632 root 1.164
4633     ev_stop (EV_A_ (W)w);
4634     --idleall;
4635 root 1.144 }
4636 root 1.248
4637     EV_FREQUENT_CHECK;
4638 root 1.144 }
4639 root 1.164 #endif
4640 root 1.144
4641 root 1.337 #if EV_PREPARE_ENABLE
4642 root 1.144 void
4643 root 1.420 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4644 root 1.144 {
4645     if (expect_false (ev_is_active (w)))
4646     return;
4647    
4648 root 1.248 EV_FREQUENT_CHECK;
4649    
4650 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4651     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4652     prepares [preparecnt - 1] = w;
4653 root 1.248
4654     EV_FREQUENT_CHECK;
4655 root 1.144 }
4656    
4657     void
4658 root 1.420 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4659 root 1.144 {
4660 root 1.166 clear_pending (EV_A_ (W)w);
4661 root 1.144 if (expect_false (!ev_is_active (w)))
4662     return;
4663    
4664 root 1.248 EV_FREQUENT_CHECK;
4665    
4666 root 1.144 {
4667 root 1.230 int active = ev_active (w);
4668    
4669 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4670 root 1.230 ev_active (prepares [active - 1]) = active;
4671 root 1.144 }
4672    
4673     ev_stop (EV_A_ (W)w);
4674 root 1.248
4675     EV_FREQUENT_CHECK;
4676 root 1.144 }
4677 root 1.337 #endif
4678 root 1.144
4679 root 1.337 #if EV_CHECK_ENABLE
4680 root 1.144 void
4681 root 1.420 ev_check_start (EV_P_ ev_check *w) EV_THROW
4682 root 1.144 {
4683     if (expect_false (ev_is_active (w)))
4684     return;
4685    
4686 root 1.248 EV_FREQUENT_CHECK;
4687    
4688 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4689     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4690     checks [checkcnt - 1] = w;
4691 root 1.248
4692     EV_FREQUENT_CHECK;
4693 root 1.144 }
4694    
4695     void
4696 root 1.420 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4697 root 1.144 {
4698 root 1.166 clear_pending (EV_A_ (W)w);
4699 root 1.144 if (expect_false (!ev_is_active (w)))
4700     return;
4701    
4702 root 1.248 EV_FREQUENT_CHECK;
4703    
4704 root 1.144 {
4705 root 1.230 int active = ev_active (w);
4706    
4707 root 1.144 checks [active - 1] = checks [--checkcnt];
4708 root 1.230 ev_active (checks [active - 1]) = active;
4709 root 1.144 }
4710    
4711     ev_stop (EV_A_ (W)w);
4712 root 1.248
4713     EV_FREQUENT_CHECK;
4714 root 1.144 }
4715 root 1.337 #endif
4716 root 1.144
4717     #if EV_EMBED_ENABLE
4718 root 1.480 noinline
4719     void
4720 root 1.420 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4721 root 1.144 {
4722 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4723 root 1.144 }
4724    
4725     static void
4726 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4727 root 1.144 {
4728     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4729    
4730     if (ev_cb (w))
4731     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4732     else
4733 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4734 root 1.144 }
4735    
4736 root 1.189 static void
4737     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4738     {
4739     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4740    
4741 root 1.195 {
4742 root 1.306 EV_P = w->other;
4743 root 1.195
4744     while (fdchangecnt)
4745     {
4746     fd_reify (EV_A);
4747 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4748 root 1.195 }
4749     }
4750     }
4751    
4752 root 1.261 static void
4753     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4754     {
4755     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4756    
4757 root 1.277 ev_embed_stop (EV_A_ w);
4758    
4759 root 1.261 {
4760 root 1.306 EV_P = w->other;
4761 root 1.261
4762     ev_loop_fork (EV_A);
4763 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4764 root 1.261 }
4765 root 1.277
4766     ev_embed_start (EV_A_ w);
4767 root 1.261 }
4768    
4769 root 1.195 #if 0
4770     static void
4771     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4772     {
4773     ev_idle_stop (EV_A_ idle);
4774 root 1.189 }
4775 root 1.195 #endif
4776 root 1.189
4777 root 1.144 void
4778 root 1.420 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4779 root 1.144 {
4780     if (expect_false (ev_is_active (w)))
4781     return;
4782    
4783     {
4784 root 1.306 EV_P = w->other;
4785 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4786 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4787 root 1.144 }
4788    
4789 root 1.248 EV_FREQUENT_CHECK;
4790    
4791 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4792     ev_io_start (EV_A_ &w->io);
4793    
4794 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4795     ev_set_priority (&w->prepare, EV_MINPRI);
4796     ev_prepare_start (EV_A_ &w->prepare);
4797    
4798 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4799     ev_fork_start (EV_A_ &w->fork);
4800    
4801 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4802    
4803 root 1.144 ev_start (EV_A_ (W)w, 1);
4804 root 1.248
4805     EV_FREQUENT_CHECK;
4806 root 1.144 }
4807    
4808     void
4809 root 1.420 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4810 root 1.144 {
4811 root 1.166 clear_pending (EV_A_ (W)w);
4812 root 1.144 if (expect_false (!ev_is_active (w)))
4813     return;
4814    
4815 root 1.248 EV_FREQUENT_CHECK;
4816    
4817 root 1.261 ev_io_stop (EV_A_ &w->io);
4818 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4819 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4820 root 1.248
4821 root 1.328 ev_stop (EV_A_ (W)w);
4822    
4823 root 1.248 EV_FREQUENT_CHECK;
4824 root 1.144 }
4825     #endif
4826    
4827 root 1.147 #if EV_FORK_ENABLE
4828     void
4829 root 1.420 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4830 root 1.147 {
4831     if (expect_false (ev_is_active (w)))
4832     return;
4833    
4834 root 1.248 EV_FREQUENT_CHECK;
4835    
4836 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4837     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4838     forks [forkcnt - 1] = w;
4839 root 1.248
4840     EV_FREQUENT_CHECK;
4841 root 1.147 }
4842    
4843     void
4844 root 1.420 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4845 root 1.147 {
4846 root 1.166 clear_pending (EV_A_ (W)w);
4847 root 1.147 if (expect_false (!ev_is_active (w)))
4848     return;
4849    
4850 root 1.248 EV_FREQUENT_CHECK;
4851    
4852 root 1.147 {
4853 root 1.230 int active = ev_active (w);
4854    
4855 root 1.147 forks [active - 1] = forks [--forkcnt];
4856 root 1.230 ev_active (forks [active - 1]) = active;
4857 root 1.147 }
4858    
4859     ev_stop (EV_A_ (W)w);
4860 root 1.248
4861     EV_FREQUENT_CHECK;
4862 root 1.147 }
4863     #endif
4864    
4865 root 1.360 #if EV_CLEANUP_ENABLE
4866     void
4867 root 1.420 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4868 root 1.360 {
4869     if (expect_false (ev_is_active (w)))
4870     return;
4871    
4872     EV_FREQUENT_CHECK;
4873    
4874     ev_start (EV_A_ (W)w, ++cleanupcnt);
4875     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4876     cleanups [cleanupcnt - 1] = w;
4877    
4878 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4879     ev_unref (EV_A);
4880 root 1.360 EV_FREQUENT_CHECK;
4881     }
4882    
4883     void
4884 root 1.420 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4885 root 1.360 {
4886     clear_pending (EV_A_ (W)w);
4887     if (expect_false (!ev_is_active (w)))
4888     return;
4889    
4890     EV_FREQUENT_CHECK;
4891 root 1.362 ev_ref (EV_A);
4892 root 1.360
4893     {
4894     int active = ev_active (w);
4895    
4896     cleanups [active - 1] = cleanups [--cleanupcnt];
4897     ev_active (cleanups [active - 1]) = active;
4898     }
4899    
4900     ev_stop (EV_A_ (W)w);
4901    
4902     EV_FREQUENT_CHECK;
4903     }
4904     #endif
4905    
4906 root 1.207 #if EV_ASYNC_ENABLE
4907     void
4908 root 1.420 ev_async_start (EV_P_ ev_async *w) EV_THROW
4909 root 1.207 {
4910     if (expect_false (ev_is_active (w)))
4911     return;
4912    
4913 root 1.352 w->sent = 0;
4914    
4915 root 1.207 evpipe_init (EV_A);
4916    
4917 root 1.248 EV_FREQUENT_CHECK;
4918    
4919 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4920     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4921     asyncs [asynccnt - 1] = w;
4922 root 1.248
4923     EV_FREQUENT_CHECK;
4924 root 1.207 }
4925    
4926     void
4927 root 1.420 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4928 root 1.207 {
4929     clear_pending (EV_A_ (W)w);
4930     if (expect_false (!ev_is_active (w)))
4931     return;
4932    
4933 root 1.248 EV_FREQUENT_CHECK;
4934    
4935 root 1.207 {
4936 root 1.230 int active = ev_active (w);
4937    
4938 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4939 root 1.230 ev_active (asyncs [active - 1]) = active;
4940 root 1.207 }
4941    
4942     ev_stop (EV_A_ (W)w);
4943 root 1.248
4944     EV_FREQUENT_CHECK;
4945 root 1.207 }
4946    
4947     void
4948 root 1.420 ev_async_send (EV_P_ ev_async *w) EV_THROW
4949 root 1.207 {
4950     w->sent = 1;
4951 root 1.307 evpipe_write (EV_A_ &async_pending);
4952 root 1.207 }
4953     #endif
4954    
4955 root 1.1 /*****************************************************************************/
4956 root 1.10
4957 root 1.16 struct ev_once
4958     {
4959 root 1.136 ev_io io;
4960     ev_timer to;
4961 root 1.16 void (*cb)(int revents, void *arg);
4962     void *arg;
4963     };
4964    
4965     static void
4966 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4967 root 1.16 {
4968     void (*cb)(int revents, void *arg) = once->cb;
4969     void *arg = once->arg;
4970    
4971 root 1.259 ev_io_stop (EV_A_ &once->io);
4972 root 1.51 ev_timer_stop (EV_A_ &once->to);
4973 root 1.69 ev_free (once);
4974 root 1.16
4975     cb (revents, arg);
4976     }
4977    
4978     static void
4979 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4980 root 1.16 {
4981 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4982    
4983     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4984 root 1.16 }
4985    
4986     static void
4987 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4988 root 1.16 {
4989 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4990    
4991     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4992 root 1.16 }
4993    
4994     void
4995 root 1.420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4996 root 1.16 {
4997 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4998 root 1.16
4999 root 1.123 if (expect_false (!once))
5000 root 1.16 {
5001 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
5002 root 1.123 return;
5003     }
5004    
5005     once->cb = cb;
5006     once->arg = arg;
5007 root 1.16
5008 root 1.123 ev_init (&once->io, once_cb_io);
5009     if (fd >= 0)
5010     {
5011     ev_io_set (&once->io, fd, events);
5012     ev_io_start (EV_A_ &once->io);
5013     }
5014 root 1.16
5015 root 1.123 ev_init (&once->to, once_cb_to);
5016     if (timeout >= 0.)
5017     {
5018     ev_timer_set (&once->to, timeout, 0.);
5019     ev_timer_start (EV_A_ &once->to);
5020 root 1.16 }
5021     }
5022    
5023 root 1.282 /*****************************************************************************/
5024    
5025 root 1.288 #if EV_WALK_ENABLE
5026 root 1.480 ecb_cold
5027     void
5028 root 1.420 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
5029 root 1.282 {
5030     int i, j;
5031     ev_watcher_list *wl, *wn;
5032    
5033     if (types & (EV_IO | EV_EMBED))
5034     for (i = 0; i < anfdmax; ++i)
5035     for (wl = anfds [i].head; wl; )
5036     {
5037     wn = wl->next;
5038    
5039     #if EV_EMBED_ENABLE
5040     if (ev_cb ((ev_io *)wl) == embed_io_cb)
5041     {
5042     if (types & EV_EMBED)
5043     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5044     }
5045     else
5046     #endif
5047     #if EV_USE_INOTIFY
5048     if (ev_cb ((ev_io *)wl) == infy_cb)
5049     ;
5050     else
5051     #endif
5052 root 1.288 if ((ev_io *)wl != &pipe_w)
5053 root 1.282 if (types & EV_IO)
5054     cb (EV_A_ EV_IO, wl);
5055    
5056     wl = wn;
5057     }
5058    
5059     if (types & (EV_TIMER | EV_STAT))
5060     for (i = timercnt + HEAP0; i-- > HEAP0; )
5061     #if EV_STAT_ENABLE
5062     /*TODO: timer is not always active*/
5063     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5064     {
5065     if (types & EV_STAT)
5066     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5067     }
5068     else
5069     #endif
5070     if (types & EV_TIMER)
5071     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5072    
5073     #if EV_PERIODIC_ENABLE
5074     if (types & EV_PERIODIC)
5075     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5076     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5077     #endif
5078    
5079     #if EV_IDLE_ENABLE
5080     if (types & EV_IDLE)
5081 root 1.390 for (j = NUMPRI; j--; )
5082 root 1.282 for (i = idlecnt [j]; i--; )
5083     cb (EV_A_ EV_IDLE, idles [j][i]);
5084     #endif
5085    
5086     #if EV_FORK_ENABLE
5087     if (types & EV_FORK)
5088     for (i = forkcnt; i--; )
5089     if (ev_cb (forks [i]) != embed_fork_cb)
5090     cb (EV_A_ EV_FORK, forks [i]);
5091     #endif
5092    
5093     #if EV_ASYNC_ENABLE
5094     if (types & EV_ASYNC)
5095     for (i = asynccnt; i--; )
5096     cb (EV_A_ EV_ASYNC, asyncs [i]);
5097     #endif
5098    
5099 root 1.337 #if EV_PREPARE_ENABLE
5100 root 1.282 if (types & EV_PREPARE)
5101     for (i = preparecnt; i--; )
5102 root 1.337 # if EV_EMBED_ENABLE
5103 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
5104 root 1.337 # endif
5105     cb (EV_A_ EV_PREPARE, prepares [i]);
5106 root 1.282 #endif
5107    
5108 root 1.337 #if EV_CHECK_ENABLE
5109 root 1.282 if (types & EV_CHECK)
5110     for (i = checkcnt; i--; )
5111     cb (EV_A_ EV_CHECK, checks [i]);
5112 root 1.337 #endif
5113 root 1.282
5114 root 1.337 #if EV_SIGNAL_ENABLE
5115 root 1.282 if (types & EV_SIGNAL)
5116 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
5117 root 1.282 for (wl = signals [i].head; wl; )
5118     {
5119     wn = wl->next;
5120     cb (EV_A_ EV_SIGNAL, wl);
5121     wl = wn;
5122     }
5123 root 1.337 #endif
5124 root 1.282
5125 root 1.337 #if EV_CHILD_ENABLE
5126 root 1.282 if (types & EV_CHILD)
5127 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
5128 root 1.282 for (wl = childs [i]; wl; )
5129     {
5130     wn = wl->next;
5131     cb (EV_A_ EV_CHILD, wl);
5132     wl = wn;
5133     }
5134 root 1.337 #endif
5135 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
5136     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5137     }
5138     #endif
5139    
5140 root 1.188 #if EV_MULTIPLICITY
5141     #include "ev_wrap.h"
5142     #endif
5143