ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.486
Committed: Thu Oct 25 03:11:04 2018 UTC (5 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.485: +73 -73 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.463 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.483 /* OS X, in its infinite idiocy, actually HARDCODES
168     * a limit of 1024 into their select. Where people have brains,
169     * OS X engineers apparently have a vacuum. Or maybe they were
170     * ordered to have a vacuum, or they do anything for money.
171     * This might help. Or not.
172     * Note that this must be defined early, as other include files
173     * will rely on this define as well.
174     */
175     #define _DARWIN_UNLIMITED_SELECT 1
176    
177 root 1.1 #include <stdlib.h>
178 root 1.319 #include <string.h>
179 root 1.7 #include <fcntl.h>
180 root 1.16 #include <stddef.h>
181 root 1.1
182     #include <stdio.h>
183    
184 root 1.4 #include <assert.h>
185 root 1.1 #include <errno.h>
186 root 1.22 #include <sys/types.h>
187 root 1.71 #include <time.h>
188 root 1.326 #include <limits.h>
189 root 1.71
190 root 1.72 #include <signal.h>
191 root 1.71
192 root 1.152 #ifdef EV_H
193     # include EV_H
194     #else
195     # include "ev.h"
196     #endif
197    
198 root 1.410 #if EV_NO_THREADS
199     # undef EV_NO_SMP
200     # define EV_NO_SMP 1
201     # undef ECB_NO_THREADS
202     # define ECB_NO_THREADS 1
203     #endif
204     #if EV_NO_SMP
205     # undef EV_NO_SMP
206     # define ECB_NO_SMP 1
207     #endif
208    
209 root 1.103 #ifndef _WIN32
210 root 1.71 # include <sys/time.h>
211 root 1.45 # include <sys/wait.h>
212 root 1.140 # include <unistd.h>
213 root 1.103 #else
214 root 1.256 # include <io.h>
215 root 1.103 # define WIN32_LEAN_AND_MEAN
216 root 1.431 # include <winsock2.h>
217 root 1.103 # include <windows.h>
218     # ifndef EV_SELECT_IS_WINSOCKET
219     # define EV_SELECT_IS_WINSOCKET 1
220     # endif
221 root 1.331 # undef EV_AVOID_STDIO
222 root 1.45 #endif
223 root 1.103
224 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
225 root 1.40
226 root 1.305 /* try to deduce the maximum number of signals on this platform */
227 root 1.416 #if defined EV_NSIG
228 root 1.305 /* use what's provided */
229 root 1.416 #elif defined NSIG
230 root 1.305 # define EV_NSIG (NSIG)
231 root 1.416 #elif defined _NSIG
232 root 1.305 # define EV_NSIG (_NSIG)
233 root 1.416 #elif defined SIGMAX
234 root 1.305 # define EV_NSIG (SIGMAX+1)
235 root 1.416 #elif defined SIG_MAX
236 root 1.305 # define EV_NSIG (SIG_MAX+1)
237 root 1.416 #elif defined _SIG_MAX
238 root 1.305 # define EV_NSIG (_SIG_MAX+1)
239 root 1.416 #elif defined MAXSIG
240 root 1.305 # define EV_NSIG (MAXSIG+1)
241 root 1.416 #elif defined MAX_SIG
242 root 1.305 # define EV_NSIG (MAX_SIG+1)
243 root 1.416 #elif defined SIGARRAYSIZE
244 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245 root 1.416 #elif defined _sys_nsig
246 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247     #else
248 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
249 root 1.305 #endif
250    
251 root 1.373 #ifndef EV_USE_FLOOR
252     # define EV_USE_FLOOR 0
253     #endif
254    
255 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
256 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258 root 1.274 # else
259     # define EV_USE_CLOCK_SYSCALL 0
260     # endif
261     #endif
262    
263 root 1.470 #if !(_POSIX_TIMERS > 0)
264     # ifndef EV_USE_MONOTONIC
265     # define EV_USE_MONOTONIC 0
266     # endif
267     # ifndef EV_USE_REALTIME
268     # define EV_USE_REALTIME 0
269     # endif
270     #endif
271    
272 root 1.29 #ifndef EV_USE_MONOTONIC
273 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
275 root 1.253 # else
276     # define EV_USE_MONOTONIC 0
277     # endif
278 root 1.37 #endif
279    
280 root 1.118 #ifndef EV_USE_REALTIME
281 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
282 root 1.118 #endif
283    
284 root 1.193 #ifndef EV_USE_NANOSLEEP
285 root 1.253 # if _POSIX_C_SOURCE >= 199309L
286 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
287 root 1.253 # else
288     # define EV_USE_NANOSLEEP 0
289     # endif
290 root 1.193 #endif
291    
292 root 1.29 #ifndef EV_USE_SELECT
293 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
294 root 1.10 #endif
295    
296 root 1.59 #ifndef EV_USE_POLL
297 root 1.104 # ifdef _WIN32
298     # define EV_USE_POLL 0
299     # else
300 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
301 root 1.104 # endif
302 root 1.41 #endif
303    
304 root 1.29 #ifndef EV_USE_EPOLL
305 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
306 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
307 root 1.220 # else
308     # define EV_USE_EPOLL 0
309     # endif
310 root 1.10 #endif
311    
312 root 1.44 #ifndef EV_USE_KQUEUE
313     # define EV_USE_KQUEUE 0
314     #endif
315    
316 root 1.118 #ifndef EV_USE_PORT
317     # define EV_USE_PORT 0
318 root 1.40 #endif
319    
320 root 1.152 #ifndef EV_USE_INOTIFY
321 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
322 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
323 root 1.220 # else
324     # define EV_USE_INOTIFY 0
325     # endif
326 root 1.152 #endif
327    
328 root 1.149 #ifndef EV_PID_HASHSIZE
329 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
330 root 1.149 #endif
331    
332 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
333 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
334 root 1.152 #endif
335    
336 root 1.220 #ifndef EV_USE_EVENTFD
337     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
339 root 1.220 # else
340     # define EV_USE_EVENTFD 0
341     # endif
342     #endif
343    
344 root 1.303 #ifndef EV_USE_SIGNALFD
345 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
346 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
347 root 1.303 # else
348     # define EV_USE_SIGNALFD 0
349     # endif
350     #endif
351    
352 root 1.249 #if 0 /* debugging */
353 root 1.250 # define EV_VERIFY 3
354 root 1.249 # define EV_USE_4HEAP 1
355     # define EV_HEAP_CACHE_AT 1
356     #endif
357    
358 root 1.250 #ifndef EV_VERIFY
359 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
360 root 1.250 #endif
361    
362 root 1.243 #ifndef EV_USE_4HEAP
363 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
364 root 1.243 #endif
365    
366     #ifndef EV_HEAP_CACHE_AT
367 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
368 root 1.243 #endif
369    
370 root 1.481 #ifdef __ANDROID__
371 root 1.452 /* supposedly, android doesn't typedef fd_mask */
372     # undef EV_USE_SELECT
373     # define EV_USE_SELECT 0
374     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
375     # undef EV_USE_CLOCK_SYSCALL
376     # define EV_USE_CLOCK_SYSCALL 0
377     #endif
378    
379     /* aix's poll.h seems to cause lots of trouble */
380     #ifdef _AIX
381     /* AIX has a completely broken poll.h header */
382     # undef EV_USE_POLL
383     # define EV_USE_POLL 0
384     #endif
385    
386 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
387     /* which makes programs even slower. might work on other unices, too. */
388     #if EV_USE_CLOCK_SYSCALL
389 root 1.423 # include <sys/syscall.h>
390 root 1.291 # ifdef SYS_clock_gettime
391     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
392     # undef EV_USE_MONOTONIC
393     # define EV_USE_MONOTONIC 1
394     # else
395     # undef EV_USE_CLOCK_SYSCALL
396     # define EV_USE_CLOCK_SYSCALL 0
397     # endif
398     #endif
399    
400 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
401 root 1.40
402     #ifndef CLOCK_MONOTONIC
403     # undef EV_USE_MONOTONIC
404     # define EV_USE_MONOTONIC 0
405     #endif
406    
407 root 1.31 #ifndef CLOCK_REALTIME
408 root 1.40 # undef EV_USE_REALTIME
409 root 1.31 # define EV_USE_REALTIME 0
410     #endif
411 root 1.40
412 root 1.152 #if !EV_STAT_ENABLE
413 root 1.185 # undef EV_USE_INOTIFY
414 root 1.152 # define EV_USE_INOTIFY 0
415     #endif
416    
417 root 1.193 #if !EV_USE_NANOSLEEP
418 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
419 root 1.416 # if !defined _WIN32 && !defined __hpux
420 root 1.193 # include <sys/select.h>
421     # endif
422     #endif
423    
424 root 1.152 #if EV_USE_INOTIFY
425 root 1.273 # include <sys/statfs.h>
426 root 1.152 # include <sys/inotify.h>
427 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
428     # ifndef IN_DONT_FOLLOW
429     # undef EV_USE_INOTIFY
430     # define EV_USE_INOTIFY 0
431     # endif
432 root 1.152 #endif
433    
434 root 1.220 #if EV_USE_EVENTFD
435     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
436 root 1.221 # include <stdint.h>
437 root 1.303 # ifndef EFD_NONBLOCK
438     # define EFD_NONBLOCK O_NONBLOCK
439     # endif
440     # ifndef EFD_CLOEXEC
441 root 1.311 # ifdef O_CLOEXEC
442     # define EFD_CLOEXEC O_CLOEXEC
443     # else
444     # define EFD_CLOEXEC 02000000
445     # endif
446 root 1.303 # endif
447 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
448 root 1.220 #endif
449    
450 root 1.303 #if EV_USE_SIGNALFD
451 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
452     # include <stdint.h>
453     # ifndef SFD_NONBLOCK
454     # define SFD_NONBLOCK O_NONBLOCK
455     # endif
456     # ifndef SFD_CLOEXEC
457     # ifdef O_CLOEXEC
458     # define SFD_CLOEXEC O_CLOEXEC
459     # else
460     # define SFD_CLOEXEC 02000000
461     # endif
462     # endif
463 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
464 root 1.314
465     struct signalfd_siginfo
466     {
467     uint32_t ssi_signo;
468     char pad[128 - sizeof (uint32_t)];
469     };
470 root 1.303 #endif
471    
472 root 1.40 /**/
473 root 1.1
474 root 1.250 #if EV_VERIFY >= 3
475 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
476 root 1.248 #else
477     # define EV_FREQUENT_CHECK do { } while (0)
478     #endif
479    
480 root 1.176 /*
481 root 1.373 * This is used to work around floating point rounding problems.
482 root 1.177 * This value is good at least till the year 4000.
483 root 1.176 */
484 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
485     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
486 root 1.176
487 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
488 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
489 root 1.1
490 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
491 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
492 root 1.347
493 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
494     /* ECB.H BEGIN */
495     /*
496     * libecb - http://software.schmorp.de/pkg/libecb
497     *
498 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
499 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
500     * All rights reserved.
501     *
502     * Redistribution and use in source and binary forms, with or without modifica-
503     * tion, are permitted provided that the following conditions are met:
504     *
505     * 1. Redistributions of source code must retain the above copyright notice,
506     * this list of conditions and the following disclaimer.
507     *
508     * 2. Redistributions in binary form must reproduce the above copyright
509     * notice, this list of conditions and the following disclaimer in the
510     * documentation and/or other materials provided with the distribution.
511     *
512     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
513     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
514     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
515     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
516     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
517     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
518     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
519     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
520     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
521     * OF THE POSSIBILITY OF SUCH DAMAGE.
522 root 1.467 *
523     * Alternatively, the contents of this file may be used under the terms of
524     * the GNU General Public License ("GPL") version 2 or any later version,
525     * in which case the provisions of the GPL are applicable instead of
526     * the above. If you wish to allow the use of your version of this file
527     * only under the terms of the GPL and not to allow others to use your
528     * version of this file under the BSD license, indicate your decision
529     * by deleting the provisions above and replace them with the notice
530     * and other provisions required by the GPL. If you do not delete the
531     * provisions above, a recipient may use your version of this file under
532     * either the BSD or the GPL.
533 root 1.391 */
534    
535     #ifndef ECB_H
536     #define ECB_H
537    
538 root 1.437 /* 16 bits major, 16 bits minor */
539 root 1.479 #define ECB_VERSION 0x00010005
540 root 1.437
541 root 1.391 #ifdef _WIN32
542     typedef signed char int8_t;
543     typedef unsigned char uint8_t;
544     typedef signed short int16_t;
545     typedef unsigned short uint16_t;
546     typedef signed int int32_t;
547     typedef unsigned int uint32_t;
548     #if __GNUC__
549     typedef signed long long int64_t;
550     typedef unsigned long long uint64_t;
551     #else /* _MSC_VER || __BORLANDC__ */
552     typedef signed __int64 int64_t;
553     typedef unsigned __int64 uint64_t;
554     #endif
555 root 1.437 #ifdef _WIN64
556     #define ECB_PTRSIZE 8
557     typedef uint64_t uintptr_t;
558     typedef int64_t intptr_t;
559     #else
560     #define ECB_PTRSIZE 4
561     typedef uint32_t uintptr_t;
562     typedef int32_t intptr_t;
563     #endif
564 root 1.391 #else
565     #include <inttypes.h>
566 root 1.479 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
567 root 1.437 #define ECB_PTRSIZE 8
568     #else
569     #define ECB_PTRSIZE 4
570     #endif
571 root 1.391 #endif
572 root 1.379
573 sf-exg 1.475 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
574     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
575    
576 root 1.454 /* work around x32 idiocy by defining proper macros */
577 sf-exg 1.475 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
578 root 1.458 #if _ILP32
579 root 1.454 #define ECB_AMD64_X32 1
580     #else
581     #define ECB_AMD64 1
582     #endif
583     #endif
584    
585 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
586     * what their idiot authors think are the "more important" extensions,
587 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
588 root 1.379 * or so.
589     * we try to detect these and simply assume they are not gcc - if they have
590     * an issue with that they should have done it right in the first place.
591     */
592 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
593     #define ECB_GCC_VERSION(major,minor) 0
594     #else
595     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
596     #endif
597    
598     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
599    
600     #if __clang__ && defined __has_builtin
601     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
602     #else
603     #define ECB_CLANG_BUILTIN(x) 0
604     #endif
605    
606     #if __clang__ && defined __has_extension
607     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
608     #else
609     #define ECB_CLANG_EXTENSION(x) 0
610 root 1.379 #endif
611    
612 root 1.437 #define ECB_CPP (__cplusplus+0)
613     #define ECB_CPP11 (__cplusplus >= 201103L)
614    
615 root 1.450 #if ECB_CPP
616 root 1.464 #define ECB_C 0
617     #define ECB_STDC_VERSION 0
618     #else
619     #define ECB_C 1
620     #define ECB_STDC_VERSION __STDC_VERSION__
621     #endif
622    
623     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
624     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
625    
626     #if ECB_CPP
627 root 1.450 #define ECB_EXTERN_C extern "C"
628     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
629     #define ECB_EXTERN_C_END }
630     #else
631     #define ECB_EXTERN_C extern
632     #define ECB_EXTERN_C_BEG
633     #define ECB_EXTERN_C_END
634     #endif
635    
636 root 1.391 /*****************************************************************************/
637    
638     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
639     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
640    
641 root 1.410 #if ECB_NO_THREADS
642 root 1.439 #define ECB_NO_SMP 1
643 root 1.410 #endif
644    
645 root 1.437 #if ECB_NO_SMP
646 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
647 root 1.40 #endif
648    
649 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
650     #if __xlC__ && ECB_CPP
651     #include <builtins.h>
652     #endif
653    
654 root 1.479 #if 1400 <= _MSC_VER
655     #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
656     #endif
657    
658 root 1.383 #ifndef ECB_MEMORY_FENCE
659 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 root 1.404 #if __i386 || __i386__
661 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
662 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
663     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
664 sf-exg 1.475 #elif ECB_GCC_AMD64
665 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
666     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
667     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
668 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
669 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
670 root 1.479 #elif defined __ARM_ARCH_2__ \
671     || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
672     || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
673     || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
674     || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
675     || defined __ARM_ARCH_5TEJ__
676     /* should not need any, unless running old code on newer cpu - arm doesn't support that */
677 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
678 root 1.479 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
679     || defined __ARM_ARCH_6T2__
680 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
681 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
682 root 1.479 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
683 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
684 root 1.464 #elif __aarch64__
685     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
686 root 1.477 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
687 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
688     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
689     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
690 root 1.417 #elif defined __s390__ || defined __s390x__
691 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
692 root 1.417 #elif defined __mips__
693 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
694 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
695     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
696 root 1.419 #elif defined __alpha__
697 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
698     #elif defined __hppa__
699     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
700     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
701     #elif defined __ia64__
702     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
703 root 1.457 #elif defined __m68k__
704     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
705     #elif defined __m88k__
706     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
707     #elif defined __sh__
708     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
709 root 1.383 #endif
710     #endif
711     #endif
712    
713     #ifndef ECB_MEMORY_FENCE
714 root 1.437 #if ECB_GCC_VERSION(4,7)
715 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
716 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
717 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
718     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
719 root 1.450
720 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
721     /* see comment below (stdatomic.h) about the C11 memory model. */
722     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
723     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
724     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
725 root 1.450
726 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
727 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
728 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
729     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
730     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
731     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
732     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
733     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
734 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
735     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
736     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
737     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
738     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
739 root 1.417 #elif defined _WIN32
740 root 1.388 #include <WinNT.h>
741 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
742 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
743     #include <mbarrier.h>
744     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
745     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
746     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
747 root 1.413 #elif __xlC__
748 root 1.414 #define ECB_MEMORY_FENCE __sync ()
749 root 1.383 #endif
750     #endif
751    
752     #ifndef ECB_MEMORY_FENCE
753 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
754     /* we assume that these memory fences work on all variables/all memory accesses, */
755     /* not just C11 atomics and atomic accesses */
756     #include <stdatomic.h>
757 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
758     /* any fence other than seq_cst, which isn't very efficient for us. */
759     /* Why that is, we don't know - either the C11 memory model is quite useless */
760     /* for most usages, or gcc and clang have a bug */
761     /* I *currently* lean towards the latter, and inefficiently implement */
762     /* all three of ecb's fences as a seq_cst fence */
763 root 1.464 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
764     /* for all __atomic_thread_fence's except seq_cst */
765 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
766     #endif
767     #endif
768    
769     #ifndef ECB_MEMORY_FENCE
770 root 1.392 #if !ECB_AVOID_PTHREADS
771     /*
772     * if you get undefined symbol references to pthread_mutex_lock,
773     * or failure to find pthread.h, then you should implement
774     * the ECB_MEMORY_FENCE operations for your cpu/compiler
775     * OR provide pthread.h and link against the posix thread library
776     * of your system.
777     */
778     #include <pthread.h>
779     #define ECB_NEEDS_PTHREADS 1
780     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
781    
782     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
783     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
784     #endif
785     #endif
786 root 1.383
787 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
788 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
789 root 1.392 #endif
790    
791 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
792 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
793     #endif
794    
795 root 1.391 /*****************************************************************************/
796    
797 root 1.474 #if ECB_CPP
798 root 1.391 #define ecb_inline static inline
799     #elif ECB_GCC_VERSION(2,5)
800     #define ecb_inline static __inline__
801     #elif ECB_C99
802     #define ecb_inline static inline
803     #else
804     #define ecb_inline static
805     #endif
806    
807     #if ECB_GCC_VERSION(3,3)
808     #define ecb_restrict __restrict__
809     #elif ECB_C99
810     #define ecb_restrict restrict
811     #else
812     #define ecb_restrict
813     #endif
814    
815     typedef int ecb_bool;
816    
817     #define ECB_CONCAT_(a, b) a ## b
818     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
819     #define ECB_STRINGIFY_(a) # a
820     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
821 sf-exg 1.475 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
822 root 1.391
823     #define ecb_function_ ecb_inline
824    
825 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
826     #define ecb_attribute(attrlist) __attribute__ (attrlist)
827 root 1.379 #else
828     #define ecb_attribute(attrlist)
829 root 1.474 #endif
830 root 1.464
831 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
832     #define ecb_is_constant(expr) __builtin_constant_p (expr)
833     #else
834 root 1.464 /* possible C11 impl for integral types
835     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
836     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
837    
838 root 1.379 #define ecb_is_constant(expr) 0
839 root 1.474 #endif
840    
841     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
842     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
843     #else
844 root 1.379 #define ecb_expect(expr,value) (expr)
845 root 1.474 #endif
846    
847     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
848     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
849     #else
850 root 1.379 #define ecb_prefetch(addr,rw,locality)
851     #endif
852    
853 root 1.391 /* no emulation for ecb_decltype */
854 root 1.474 #if ECB_CPP11
855     // older implementations might have problems with decltype(x)::type, work around it
856     template<class T> struct ecb_decltype_t { typedef T type; };
857     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
858     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
859     #define ecb_decltype(x) __typeof__ (x)
860 root 1.391 #endif
861    
862 root 1.468 #if _MSC_VER >= 1300
863 root 1.474 #define ecb_deprecated __declspec (deprecated)
864 root 1.468 #else
865     #define ecb_deprecated ecb_attribute ((__deprecated__))
866     #endif
867    
868 root 1.476 #if _MSC_VER >= 1500
869 sf-exg 1.475 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
870     #elif ECB_GCC_VERSION(4,5)
871     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
872     #else
873     #define ecb_deprecated_message(msg) ecb_deprecated
874     #endif
875    
876     #if _MSC_VER >= 1400
877     #define ecb_noinline __declspec (noinline)
878     #else
879     #define ecb_noinline ecb_attribute ((__noinline__))
880     #endif
881    
882 root 1.379 #define ecb_unused ecb_attribute ((__unused__))
883     #define ecb_const ecb_attribute ((__const__))
884     #define ecb_pure ecb_attribute ((__pure__))
885    
886 root 1.474 #if ECB_C11 || __IBMC_NORETURN
887 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
888 root 1.437 #define ecb_noreturn _Noreturn
889 sf-exg 1.475 #elif ECB_CPP11
890     #define ecb_noreturn [[noreturn]]
891     #elif _MSC_VER >= 1200
892     /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
893     #define ecb_noreturn __declspec (noreturn)
894 root 1.437 #else
895     #define ecb_noreturn ecb_attribute ((__noreturn__))
896     #endif
897    
898 root 1.379 #if ECB_GCC_VERSION(4,3)
899     #define ecb_artificial ecb_attribute ((__artificial__))
900     #define ecb_hot ecb_attribute ((__hot__))
901     #define ecb_cold ecb_attribute ((__cold__))
902     #else
903     #define ecb_artificial
904     #define ecb_hot
905     #define ecb_cold
906     #endif
907    
908     /* put around conditional expressions if you are very sure that the */
909     /* expression is mostly true or mostly false. note that these return */
910     /* booleans, not the expression. */
911     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
912     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
913 root 1.391 /* for compatibility to the rest of the world */
914     #define ecb_likely(expr) ecb_expect_true (expr)
915     #define ecb_unlikely(expr) ecb_expect_false (expr)
916    
917     /* count trailing zero bits and count # of one bits */
918 root 1.474 #if ECB_GCC_VERSION(3,4) \
919     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
920     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
921     && ECB_CLANG_BUILTIN(__builtin_popcount))
922 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
923     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
924     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
925     #define ecb_ctz32(x) __builtin_ctz (x)
926     #define ecb_ctz64(x) __builtin_ctzll (x)
927     #define ecb_popcount32(x) __builtin_popcount (x)
928     /* no popcountll */
929     #else
930 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
931     ecb_function_ ecb_const int
932 root 1.391 ecb_ctz32 (uint32_t x)
933     {
934 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
935     unsigned long r;
936     _BitScanForward (&r, x);
937     return (int)r;
938     #else
939 root 1.391 int r = 0;
940    
941     x &= ~x + 1; /* this isolates the lowest bit */
942    
943     #if ECB_branchless_on_i386
944     r += !!(x & 0xaaaaaaaa) << 0;
945     r += !!(x & 0xcccccccc) << 1;
946     r += !!(x & 0xf0f0f0f0) << 2;
947     r += !!(x & 0xff00ff00) << 3;
948     r += !!(x & 0xffff0000) << 4;
949     #else
950     if (x & 0xaaaaaaaa) r += 1;
951     if (x & 0xcccccccc) r += 2;
952     if (x & 0xf0f0f0f0) r += 4;
953     if (x & 0xff00ff00) r += 8;
954     if (x & 0xffff0000) r += 16;
955     #endif
956    
957     return r;
958 root 1.479 #endif
959 root 1.391 }
960    
961 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
962     ecb_function_ ecb_const int
963 root 1.391 ecb_ctz64 (uint64_t x)
964     {
965 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
966     unsigned long r;
967     _BitScanForward64 (&r, x);
968     return (int)r;
969     #else
970     int shift = x & 0xffffffff ? 0 : 32;
971 root 1.391 return ecb_ctz32 (x >> shift) + shift;
972 root 1.479 #endif
973 root 1.391 }
974    
975 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
976     ecb_function_ ecb_const int
977 root 1.391 ecb_popcount32 (uint32_t x)
978     {
979     x -= (x >> 1) & 0x55555555;
980     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
981     x = ((x >> 4) + x) & 0x0f0f0f0f;
982     x *= 0x01010101;
983    
984     return x >> 24;
985     }
986    
987 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
988     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
989 root 1.391 {
990 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
991     unsigned long r;
992     _BitScanReverse (&r, x);
993     return (int)r;
994     #else
995 root 1.391 int r = 0;
996    
997     if (x >> 16) { x >>= 16; r += 16; }
998     if (x >> 8) { x >>= 8; r += 8; }
999     if (x >> 4) { x >>= 4; r += 4; }
1000     if (x >> 2) { x >>= 2; r += 2; }
1001     if (x >> 1) { r += 1; }
1002    
1003     return r;
1004 root 1.479 #endif
1005 root 1.391 }
1006    
1007 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1008     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1009 root 1.391 {
1010 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1011     unsigned long r;
1012     _BitScanReverse64 (&r, x);
1013     return (int)r;
1014     #else
1015 root 1.391 int r = 0;
1016    
1017     if (x >> 32) { x >>= 32; r += 32; }
1018    
1019     return r + ecb_ld32 (x);
1020 root 1.479 #endif
1021 root 1.391 }
1022     #endif
1023    
1024 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1025     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1026     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1027     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1028 root 1.437
1029 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1030     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1031 root 1.403 {
1032     return ( (x * 0x0802U & 0x22110U)
1033 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1034 root 1.403 }
1035    
1036 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1037     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1038 root 1.403 {
1039     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1040     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1041     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1042     x = ( x >> 8 ) | ( x << 8);
1043    
1044     return x;
1045     }
1046    
1047 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1048     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1049 root 1.403 {
1050     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1051     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1052     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1053     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1054     x = ( x >> 16 ) | ( x << 16);
1055    
1056     return x;
1057     }
1058    
1059 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1060     /* so for this version we are lazy */
1061 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1062     ecb_function_ ecb_const int
1063 root 1.391 ecb_popcount64 (uint64_t x)
1064     {
1065     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1066     }
1067    
1068 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1069     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1070     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1071     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1072     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1073     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1074     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1075     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1076    
1077     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1078     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1079     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1080     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1081     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1082     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1083     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1084     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1085 root 1.391
1086 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1087 root 1.476 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1088     #define ecb_bswap16(x) __builtin_bswap16 (x)
1089     #else
1090 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1091 root 1.476 #endif
1092 root 1.391 #define ecb_bswap32(x) __builtin_bswap32 (x)
1093     #define ecb_bswap64(x) __builtin_bswap64 (x)
1094 root 1.476 #elif _MSC_VER
1095     #include <stdlib.h>
1096     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1097     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1098     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1099 root 1.391 #else
1100 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1101     ecb_function_ ecb_const uint16_t
1102 root 1.391 ecb_bswap16 (uint16_t x)
1103     {
1104     return ecb_rotl16 (x, 8);
1105     }
1106    
1107 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1108     ecb_function_ ecb_const uint32_t
1109 root 1.391 ecb_bswap32 (uint32_t x)
1110     {
1111     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1112     }
1113    
1114 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1115     ecb_function_ ecb_const uint64_t
1116 root 1.391 ecb_bswap64 (uint64_t x)
1117     {
1118     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1119     }
1120     #endif
1121    
1122 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1123 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1124     #else
1125     /* this seems to work fine, but gcc always emits a warning for it :/ */
1126 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1127     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1128 root 1.391 #endif
1129    
1130     /* try to tell the compiler that some condition is definitely true */
1131 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1132 root 1.391
1133 root 1.479 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1134     ecb_inline ecb_const uint32_t
1135 root 1.391 ecb_byteorder_helper (void)
1136     {
1137 root 1.450 /* the union code still generates code under pressure in gcc, */
1138     /* but less than using pointers, and always seems to */
1139     /* successfully return a constant. */
1140     /* the reason why we have this horrible preprocessor mess */
1141     /* is to avoid it in all cases, at least on common architectures */
1142     /* or when using a recent enough gcc version (>= 4.6) */
1143 root 1.479 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1144     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1145     #define ECB_LITTLE_ENDIAN 1
1146     return 0x44332211;
1147     #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1148     || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1149     #define ECB_BIG_ENDIAN 1
1150     return 0x11223344;
1151 root 1.450 #else
1152     union
1153     {
1154 root 1.479 uint8_t c[4];
1155     uint32_t u;
1156     } u = { 0x11, 0x22, 0x33, 0x44 };
1157     return u.u;
1158 root 1.450 #endif
1159 root 1.391 }
1160    
1161 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1162 root 1.479 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1163 root 1.474 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1164 root 1.479 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1165 root 1.391
1166     #if ECB_GCC_VERSION(3,0) || ECB_C99
1167     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1168     #else
1169     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1170     #endif
1171    
1172 root 1.474 #if ECB_CPP
1173 root 1.398 template<typename T>
1174     static inline T ecb_div_rd (T val, T div)
1175     {
1176     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1177     }
1178     template<typename T>
1179     static inline T ecb_div_ru (T val, T div)
1180     {
1181     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1182     }
1183     #else
1184     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1185     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1186     #endif
1187    
1188 root 1.391 #if ecb_cplusplus_does_not_suck
1189     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1190     template<typename T, int N>
1191     static inline int ecb_array_length (const T (&arr)[N])
1192     {
1193     return N;
1194     }
1195     #else
1196     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1197     #endif
1198    
1199 root 1.479 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1200     ecb_function_ ecb_const uint32_t
1201     ecb_binary16_to_binary32 (uint32_t x)
1202     {
1203     unsigned int s = (x & 0x8000) << (31 - 15);
1204     int e = (x >> 10) & 0x001f;
1205     unsigned int m = x & 0x03ff;
1206    
1207     if (ecb_expect_false (e == 31))
1208     /* infinity or NaN */
1209     e = 255 - (127 - 15);
1210     else if (ecb_expect_false (!e))
1211     {
1212     if (ecb_expect_true (!m))
1213     /* zero, handled by code below by forcing e to 0 */
1214     e = 0 - (127 - 15);
1215     else
1216     {
1217     /* subnormal, renormalise */
1218     unsigned int s = 10 - ecb_ld32 (m);
1219    
1220     m = (m << s) & 0x3ff; /* mask implicit bit */
1221     e -= s - 1;
1222     }
1223     }
1224    
1225     /* e and m now are normalised, or zero, (or inf or nan) */
1226     e += 127 - 15;
1227    
1228     return s | (e << 23) | (m << (23 - 10));
1229     }
1230    
1231     ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1232     ecb_function_ ecb_const uint16_t
1233     ecb_binary32_to_binary16 (uint32_t x)
1234     {
1235     unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1236     unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1237     unsigned int m = x & 0x007fffff;
1238    
1239     x &= 0x7fffffff;
1240    
1241     /* if it's within range of binary16 normals, use fast path */
1242     if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1243     {
1244     /* mantissa round-to-even */
1245     m += 0x00000fff + ((m >> (23 - 10)) & 1);
1246    
1247     /* handle overflow */
1248     if (ecb_expect_false (m >= 0x00800000))
1249     {
1250     m >>= 1;
1251     e += 1;
1252     }
1253    
1254     return s | (e << 10) | (m >> (23 - 10));
1255     }
1256    
1257     /* handle large numbers and infinity */
1258     if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1259     return s | 0x7c00;
1260    
1261     /* handle zero, subnormals and small numbers */
1262     if (ecb_expect_true (x < 0x38800000))
1263     {
1264     /* zero */
1265     if (ecb_expect_true (!x))
1266     return s;
1267    
1268     /* handle subnormals */
1269    
1270     /* too small, will be zero */
1271     if (e < (14 - 24)) /* might not be sharp, but is good enough */
1272     return s;
1273    
1274     m |= 0x00800000; /* make implicit bit explicit */
1275    
1276     /* very tricky - we need to round to the nearest e (+10) bit value */
1277     {
1278     unsigned int bits = 14 - e;
1279     unsigned int half = (1 << (bits - 1)) - 1;
1280     unsigned int even = (m >> bits) & 1;
1281    
1282     /* if this overflows, we will end up with a normalised number */
1283     m = (m + half + even) >> bits;
1284     }
1285    
1286     return s | m;
1287     }
1288    
1289     /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1290     m >>= 13;
1291    
1292     return s | 0x7c00 | m | !m;
1293     }
1294    
1295 root 1.450 /*******************************************************************************/
1296     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1297    
1298     /* basically, everything uses "ieee pure-endian" floating point numbers */
1299     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1300     #if 0 \
1301     || __i386 || __i386__ \
1302 sf-exg 1.475 || ECB_GCC_AMD64 \
1303 root 1.450 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1304     || defined __s390__ || defined __s390x__ \
1305     || defined __mips__ \
1306     || defined __alpha__ \
1307     || defined __hppa__ \
1308     || defined __ia64__ \
1309 root 1.457 || defined __m68k__ \
1310     || defined __m88k__ \
1311     || defined __sh__ \
1312 sf-exg 1.475 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1313 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1314 root 1.466 || defined __aarch64__
1315 root 1.450 #define ECB_STDFP 1
1316     #include <string.h> /* for memcpy */
1317     #else
1318     #define ECB_STDFP 0
1319     #endif
1320    
1321     #ifndef ECB_NO_LIBM
1322    
1323 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1324    
1325 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1326     #ifdef INFINITY
1327     #define ECB_INFINITY INFINITY
1328     #else
1329     #define ECB_INFINITY HUGE_VAL
1330     #endif
1331    
1332     #ifdef NAN
1333 root 1.458 #define ECB_NAN NAN
1334     #else
1335 root 1.462 #define ECB_NAN ECB_INFINITY
1336 root 1.458 #endif
1337    
1338 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1339     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1340 root 1.476 #define ecb_frexpf(x,e) frexpf ((x), (e))
1341 root 1.474 #else
1342 root 1.476 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1343     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1344 root 1.474 #endif
1345    
1346 root 1.450 /* convert a float to ieee single/binary32 */
1347 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1348     ecb_function_ ecb_const uint32_t
1349 root 1.450 ecb_float_to_binary32 (float x)
1350     {
1351     uint32_t r;
1352    
1353     #if ECB_STDFP
1354     memcpy (&r, &x, 4);
1355     #else
1356     /* slow emulation, works for anything but -0 */
1357     uint32_t m;
1358     int e;
1359    
1360     if (x == 0e0f ) return 0x00000000U;
1361     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1362     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1363     if (x != x ) return 0x7fbfffffU;
1364    
1365 root 1.476 m = ecb_frexpf (x, &e) * 0x1000000U;
1366 root 1.450
1367     r = m & 0x80000000U;
1368    
1369     if (r)
1370     m = -m;
1371    
1372     if (e <= -126)
1373     {
1374     m &= 0xffffffU;
1375     m >>= (-125 - e);
1376     e = -126;
1377     }
1378    
1379     r |= (e + 126) << 23;
1380     r |= m & 0x7fffffU;
1381     #endif
1382    
1383     return r;
1384     }
1385    
1386     /* converts an ieee single/binary32 to a float */
1387 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1388     ecb_function_ ecb_const float
1389 root 1.450 ecb_binary32_to_float (uint32_t x)
1390     {
1391     float r;
1392    
1393     #if ECB_STDFP
1394     memcpy (&r, &x, 4);
1395     #else
1396     /* emulation, only works for normals and subnormals and +0 */
1397     int neg = x >> 31;
1398     int e = (x >> 23) & 0xffU;
1399    
1400     x &= 0x7fffffU;
1401    
1402     if (e)
1403     x |= 0x800000U;
1404     else
1405     e = 1;
1406    
1407     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1408 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1409 root 1.450
1410     r = neg ? -r : r;
1411     #endif
1412    
1413     return r;
1414     }
1415    
1416     /* convert a double to ieee double/binary64 */
1417 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1418     ecb_function_ ecb_const uint64_t
1419 root 1.450 ecb_double_to_binary64 (double x)
1420     {
1421     uint64_t r;
1422    
1423     #if ECB_STDFP
1424     memcpy (&r, &x, 8);
1425     #else
1426     /* slow emulation, works for anything but -0 */
1427     uint64_t m;
1428     int e;
1429    
1430     if (x == 0e0 ) return 0x0000000000000000U;
1431     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1432     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1433     if (x != x ) return 0X7ff7ffffffffffffU;
1434    
1435     m = frexp (x, &e) * 0x20000000000000U;
1436    
1437     r = m & 0x8000000000000000;;
1438    
1439     if (r)
1440     m = -m;
1441    
1442     if (e <= -1022)
1443     {
1444     m &= 0x1fffffffffffffU;
1445     m >>= (-1021 - e);
1446     e = -1022;
1447     }
1448    
1449     r |= ((uint64_t)(e + 1022)) << 52;
1450     r |= m & 0xfffffffffffffU;
1451     #endif
1452    
1453     return r;
1454     }
1455    
1456     /* converts an ieee double/binary64 to a double */
1457 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1458     ecb_function_ ecb_const double
1459 root 1.450 ecb_binary64_to_double (uint64_t x)
1460     {
1461     double r;
1462    
1463     #if ECB_STDFP
1464     memcpy (&r, &x, 8);
1465     #else
1466     /* emulation, only works for normals and subnormals and +0 */
1467     int neg = x >> 63;
1468     int e = (x >> 52) & 0x7ffU;
1469    
1470     x &= 0xfffffffffffffU;
1471    
1472     if (e)
1473     x |= 0x10000000000000U;
1474     else
1475     e = 1;
1476    
1477     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1478     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1479    
1480     r = neg ? -r : r;
1481     #endif
1482    
1483     return r;
1484     }
1485    
1486 root 1.479 /* convert a float to ieee half/binary16 */
1487     ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1488     ecb_function_ ecb_const uint16_t
1489     ecb_float_to_binary16 (float x)
1490     {
1491     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1492     }
1493    
1494     /* convert an ieee half/binary16 to float */
1495     ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1496     ecb_function_ ecb_const float
1497     ecb_binary16_to_float (uint16_t x)
1498     {
1499     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1500     }
1501    
1502 root 1.450 #endif
1503    
1504 root 1.391 #endif
1505    
1506     /* ECB.H END */
1507 root 1.379
1508 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1509 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1510 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1511     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1512 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1513 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1514     * which will then provide the memory fences.
1515     */
1516     # error "memory fences not defined for your architecture, please report"
1517     #endif
1518    
1519     #ifndef ECB_MEMORY_FENCE
1520     # define ECB_MEMORY_FENCE do { } while (0)
1521     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1522     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1523 root 1.392 #endif
1524    
1525 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1526     #define expect_true(cond) ecb_expect_true (cond)
1527     #define noinline ecb_noinline
1528    
1529     #define inline_size ecb_inline
1530 root 1.169
1531 root 1.338 #if EV_FEATURE_CODE
1532 root 1.379 # define inline_speed ecb_inline
1533 root 1.338 #else
1534 root 1.480 # define inline_speed noinline static
1535 root 1.169 #endif
1536 root 1.40
1537 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1538    
1539     #if EV_MINPRI == EV_MAXPRI
1540     # define ABSPRI(w) (((W)w), 0)
1541     #else
1542     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1543     #endif
1544 root 1.42
1545 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1546 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1547 root 1.103
1548 root 1.136 typedef ev_watcher *W;
1549     typedef ev_watcher_list *WL;
1550     typedef ev_watcher_time *WT;
1551 root 1.10
1552 root 1.229 #define ev_active(w) ((W)(w))->active
1553 root 1.228 #define ev_at(w) ((WT)(w))->at
1554    
1555 root 1.279 #if EV_USE_REALTIME
1556 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1557 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1558 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1559     #endif
1560    
1561     #if EV_USE_MONOTONIC
1562 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1563 root 1.198 #endif
1564 root 1.54
1565 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1566     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1567     #endif
1568     #ifndef EV_WIN32_HANDLE_TO_FD
1569 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1570 root 1.313 #endif
1571     #ifndef EV_WIN32_CLOSE_FD
1572     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1573     #endif
1574    
1575 root 1.103 #ifdef _WIN32
1576 root 1.98 # include "ev_win32.c"
1577     #endif
1578 root 1.67
1579 root 1.53 /*****************************************************************************/
1580 root 1.1
1581 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1582    
1583     #if EV_USE_FLOOR
1584     # include <math.h>
1585     # define ev_floor(v) floor (v)
1586     #else
1587    
1588     #include <float.h>
1589    
1590     /* a floor() replacement function, should be independent of ev_tstamp type */
1591 root 1.480 noinline
1592     static ev_tstamp
1593 root 1.373 ev_floor (ev_tstamp v)
1594     {
1595     /* the choice of shift factor is not terribly important */
1596     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1597     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1598     #else
1599     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1600     #endif
1601    
1602     /* argument too large for an unsigned long? */
1603     if (expect_false (v >= shift))
1604     {
1605     ev_tstamp f;
1606    
1607     if (v == v - 1.)
1608     return v; /* very large number */
1609    
1610     f = shift * ev_floor (v * (1. / shift));
1611     return f + ev_floor (v - f);
1612     }
1613    
1614     /* special treatment for negative args? */
1615     if (expect_false (v < 0.))
1616     {
1617     ev_tstamp f = -ev_floor (-v);
1618    
1619     return f - (f == v ? 0 : 1);
1620     }
1621    
1622     /* fits into an unsigned long */
1623     return (unsigned long)v;
1624     }
1625    
1626     #endif
1627    
1628     /*****************************************************************************/
1629    
1630 root 1.356 #ifdef __linux
1631     # include <sys/utsname.h>
1632     #endif
1633    
1634 root 1.480 noinline ecb_cold
1635     static unsigned int
1636 root 1.355 ev_linux_version (void)
1637     {
1638     #ifdef __linux
1639 root 1.359 unsigned int v = 0;
1640 root 1.355 struct utsname buf;
1641     int i;
1642     char *p = buf.release;
1643    
1644     if (uname (&buf))
1645     return 0;
1646    
1647     for (i = 3+1; --i; )
1648     {
1649     unsigned int c = 0;
1650    
1651     for (;;)
1652     {
1653     if (*p >= '0' && *p <= '9')
1654     c = c * 10 + *p++ - '0';
1655     else
1656     {
1657     p += *p == '.';
1658     break;
1659     }
1660     }
1661    
1662     v = (v << 8) | c;
1663     }
1664    
1665     return v;
1666     #else
1667     return 0;
1668     #endif
1669     }
1670    
1671     /*****************************************************************************/
1672    
1673 root 1.331 #if EV_AVOID_STDIO
1674 root 1.480 noinline ecb_cold
1675     static void
1676 root 1.331 ev_printerr (const char *msg)
1677     {
1678     write (STDERR_FILENO, msg, strlen (msg));
1679     }
1680     #endif
1681    
1682 root 1.486 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1683 root 1.69
1684 root 1.480 ecb_cold
1685     void
1686 root 1.486 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1687 root 1.69 {
1688     syserr_cb = cb;
1689     }
1690    
1691 root 1.480 noinline ecb_cold
1692     static void
1693 root 1.269 ev_syserr (const char *msg)
1694 root 1.69 {
1695 root 1.70 if (!msg)
1696     msg = "(libev) system error";
1697    
1698 root 1.69 if (syserr_cb)
1699 root 1.70 syserr_cb (msg);
1700 root 1.69 else
1701     {
1702 root 1.330 #if EV_AVOID_STDIO
1703 root 1.331 ev_printerr (msg);
1704     ev_printerr (": ");
1705 root 1.365 ev_printerr (strerror (errno));
1706 root 1.331 ev_printerr ("\n");
1707 root 1.330 #else
1708 root 1.70 perror (msg);
1709 root 1.330 #endif
1710 root 1.69 abort ();
1711     }
1712     }
1713    
1714 root 1.224 static void *
1715 root 1.486 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1716 root 1.224 {
1717     /* some systems, notably openbsd and darwin, fail to properly
1718 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1719 root 1.224 * the single unix specification, so work around them here.
1720 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1721     * despite documenting it otherwise.
1722 root 1.224 */
1723 root 1.333
1724 root 1.224 if (size)
1725     return realloc (ptr, size);
1726    
1727     free (ptr);
1728     return 0;
1729     }
1730    
1731 root 1.486 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1732 root 1.69
1733 root 1.480 ecb_cold
1734     void
1735 root 1.486 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1736 root 1.69 {
1737     alloc = cb;
1738     }
1739    
1740 root 1.150 inline_speed void *
1741 root 1.155 ev_realloc (void *ptr, long size)
1742 root 1.69 {
1743 root 1.224 ptr = alloc (ptr, size);
1744 root 1.69
1745     if (!ptr && size)
1746     {
1747 root 1.330 #if EV_AVOID_STDIO
1748 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1749 root 1.330 #else
1750 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1751 root 1.330 #endif
1752 root 1.69 abort ();
1753     }
1754    
1755     return ptr;
1756     }
1757    
1758     #define ev_malloc(size) ev_realloc (0, (size))
1759     #define ev_free(ptr) ev_realloc ((ptr), 0)
1760    
1761     /*****************************************************************************/
1762    
1763 root 1.298 /* set in reify when reification needed */
1764     #define EV_ANFD_REIFY 1
1765    
1766 root 1.288 /* file descriptor info structure */
1767 root 1.53 typedef struct
1768     {
1769 root 1.68 WL head;
1770 root 1.288 unsigned char events; /* the events watched for */
1771 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1772 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1773 root 1.269 unsigned char unused;
1774     #if EV_USE_EPOLL
1775 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1776 root 1.269 #endif
1777 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1778 root 1.103 SOCKET handle;
1779     #endif
1780 root 1.357 #if EV_USE_IOCP
1781     OVERLAPPED or, ow;
1782     #endif
1783 root 1.53 } ANFD;
1784 root 1.1
1785 root 1.288 /* stores the pending event set for a given watcher */
1786 root 1.53 typedef struct
1787     {
1788     W w;
1789 root 1.288 int events; /* the pending event set for the given watcher */
1790 root 1.53 } ANPENDING;
1791 root 1.51
1792 root 1.155 #if EV_USE_INOTIFY
1793 root 1.241 /* hash table entry per inotify-id */
1794 root 1.152 typedef struct
1795     {
1796     WL head;
1797 root 1.155 } ANFS;
1798 root 1.152 #endif
1799    
1800 root 1.241 /* Heap Entry */
1801     #if EV_HEAP_CACHE_AT
1802 root 1.288 /* a heap element */
1803 root 1.241 typedef struct {
1804 root 1.243 ev_tstamp at;
1805 root 1.241 WT w;
1806     } ANHE;
1807    
1808 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1809     #define ANHE_at(he) (he).at /* access cached at, read-only */
1810     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1811 root 1.241 #else
1812 root 1.288 /* a heap element */
1813 root 1.241 typedef WT ANHE;
1814    
1815 root 1.248 #define ANHE_w(he) (he)
1816     #define ANHE_at(he) (he)->at
1817     #define ANHE_at_cache(he)
1818 root 1.241 #endif
1819    
1820 root 1.55 #if EV_MULTIPLICITY
1821 root 1.54
1822 root 1.80 struct ev_loop
1823     {
1824 root 1.86 ev_tstamp ev_rt_now;
1825 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1826 root 1.80 #define VAR(name,decl) decl;
1827     #include "ev_vars.h"
1828     #undef VAR
1829     };
1830     #include "ev_wrap.h"
1831    
1832 root 1.116 static struct ev_loop default_loop_struct;
1833 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1834 root 1.54
1835 root 1.53 #else
1836 root 1.54
1837 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1838 root 1.80 #define VAR(name,decl) static decl;
1839     #include "ev_vars.h"
1840     #undef VAR
1841    
1842 root 1.116 static int ev_default_loop_ptr;
1843 root 1.54
1844 root 1.51 #endif
1845 root 1.1
1846 root 1.338 #if EV_FEATURE_API
1847 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1848     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1849 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1850     #else
1851 root 1.298 # define EV_RELEASE_CB (void)0
1852     # define EV_ACQUIRE_CB (void)0
1853 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1854     #endif
1855    
1856 root 1.353 #define EVBREAK_RECURSE 0x80
1857 root 1.298
1858 root 1.8 /*****************************************************************************/
1859    
1860 root 1.292 #ifndef EV_HAVE_EV_TIME
1861 root 1.141 ev_tstamp
1862 root 1.486 ev_time (void) EV_NOEXCEPT
1863 root 1.1 {
1864 root 1.29 #if EV_USE_REALTIME
1865 root 1.279 if (expect_true (have_realtime))
1866     {
1867     struct timespec ts;
1868     clock_gettime (CLOCK_REALTIME, &ts);
1869     return ts.tv_sec + ts.tv_nsec * 1e-9;
1870     }
1871     #endif
1872    
1873 root 1.1 struct timeval tv;
1874     gettimeofday (&tv, 0);
1875     return tv.tv_sec + tv.tv_usec * 1e-6;
1876     }
1877 root 1.292 #endif
1878 root 1.1
1879 root 1.284 inline_size ev_tstamp
1880 root 1.1 get_clock (void)
1881     {
1882 root 1.29 #if EV_USE_MONOTONIC
1883 root 1.40 if (expect_true (have_monotonic))
1884 root 1.1 {
1885     struct timespec ts;
1886     clock_gettime (CLOCK_MONOTONIC, &ts);
1887     return ts.tv_sec + ts.tv_nsec * 1e-9;
1888     }
1889     #endif
1890    
1891     return ev_time ();
1892     }
1893    
1894 root 1.85 #if EV_MULTIPLICITY
1895 root 1.51 ev_tstamp
1896 root 1.486 ev_now (EV_P) EV_NOEXCEPT
1897 root 1.51 {
1898 root 1.85 return ev_rt_now;
1899 root 1.51 }
1900 root 1.85 #endif
1901 root 1.51
1902 root 1.193 void
1903 root 1.486 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1904 root 1.193 {
1905     if (delay > 0.)
1906     {
1907     #if EV_USE_NANOSLEEP
1908     struct timespec ts;
1909    
1910 root 1.348 EV_TS_SET (ts, delay);
1911 root 1.193 nanosleep (&ts, 0);
1912 root 1.416 #elif defined _WIN32
1913 root 1.482 /* maybe this should round up, as ms is very low resolution */
1914     /* compared to select (µs) or nanosleep (ns) */
1915 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1916 root 1.193 #else
1917     struct timeval tv;
1918    
1919 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1920 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1921 root 1.257 /* by older ones */
1922 sf-exg 1.349 EV_TV_SET (tv, delay);
1923 root 1.193 select (0, 0, 0, 0, &tv);
1924     #endif
1925     }
1926     }
1927    
1928     /*****************************************************************************/
1929    
1930 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1931 root 1.232
1932 root 1.288 /* find a suitable new size for the given array, */
1933 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1934 root 1.284 inline_size int
1935 root 1.163 array_nextsize (int elem, int cur, int cnt)
1936     {
1937     int ncur = cur + 1;
1938    
1939     do
1940     ncur <<= 1;
1941     while (cnt > ncur);
1942    
1943 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1944 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1945 root 1.163 {
1946     ncur *= elem;
1947 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1948 root 1.163 ncur = ncur - sizeof (void *) * 4;
1949     ncur /= elem;
1950     }
1951    
1952     return ncur;
1953     }
1954    
1955 root 1.480 noinline ecb_cold
1956     static void *
1957 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1958     {
1959     *cur = array_nextsize (elem, *cur, cnt);
1960     return ev_realloc (base, elem * *cur);
1961     }
1962 root 1.29
1963 root 1.265 #define array_init_zero(base,count) \
1964     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1965    
1966 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1967 root 1.163 if (expect_false ((cnt) > (cur))) \
1968 root 1.69 { \
1969 root 1.480 ecb_unused int ocur_ = (cur); \
1970 root 1.163 (base) = (type *)array_realloc \
1971     (sizeof (type), (base), &(cur), (cnt)); \
1972     init ((base) + (ocur_), (cur) - ocur_); \
1973 root 1.1 }
1974    
1975 root 1.163 #if 0
1976 root 1.74 #define array_slim(type,stem) \
1977 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1978     { \
1979     stem ## max = array_roundsize (stem ## cnt >> 1); \
1980 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1981 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1982     }
1983 root 1.163 #endif
1984 root 1.67
1985 root 1.65 #define array_free(stem, idx) \
1986 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1987 root 1.65
1988 root 1.8 /*****************************************************************************/
1989    
1990 root 1.288 /* dummy callback for pending events */
1991 root 1.480 noinline
1992     static void
1993 root 1.288 pendingcb (EV_P_ ev_prepare *w, int revents)
1994     {
1995     }
1996    
1997 root 1.480 noinline
1998     void
1999 root 1.486 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2000 root 1.1 {
2001 root 1.78 W w_ = (W)w;
2002 root 1.171 int pri = ABSPRI (w_);
2003 root 1.78
2004 root 1.123 if (expect_false (w_->pending))
2005 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
2006     else
2007 root 1.32 {
2008 root 1.171 w_->pending = ++pendingcnt [pri];
2009     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
2010     pendings [pri][w_->pending - 1].w = w_;
2011     pendings [pri][w_->pending - 1].events = revents;
2012 root 1.32 }
2013 root 1.425
2014     pendingpri = NUMPRI - 1;
2015 root 1.1 }
2016    
2017 root 1.284 inline_speed void
2018     feed_reverse (EV_P_ W w)
2019     {
2020     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2021     rfeeds [rfeedcnt++] = w;
2022     }
2023    
2024     inline_size void
2025     feed_reverse_done (EV_P_ int revents)
2026     {
2027     do
2028     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2029     while (rfeedcnt);
2030     }
2031    
2032     inline_speed void
2033 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
2034 root 1.27 {
2035     int i;
2036    
2037     for (i = 0; i < eventcnt; ++i)
2038 root 1.78 ev_feed_event (EV_A_ events [i], type);
2039 root 1.27 }
2040    
2041 root 1.141 /*****************************************************************************/
2042    
2043 root 1.284 inline_speed void
2044 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
2045 root 1.1 {
2046     ANFD *anfd = anfds + fd;
2047 root 1.136 ev_io *w;
2048 root 1.1
2049 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2050 root 1.1 {
2051 root 1.79 int ev = w->events & revents;
2052 root 1.1
2053     if (ev)
2054 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
2055 root 1.1 }
2056     }
2057    
2058 root 1.298 /* do not submit kernel events for fds that have reify set */
2059     /* because that means they changed while we were polling for new events */
2060     inline_speed void
2061     fd_event (EV_P_ int fd, int revents)
2062     {
2063     ANFD *anfd = anfds + fd;
2064    
2065     if (expect_true (!anfd->reify))
2066 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2067 root 1.298 }
2068    
2069 root 1.79 void
2070 root 1.486 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2071 root 1.79 {
2072 root 1.168 if (fd >= 0 && fd < anfdmax)
2073 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2074 root 1.79 }
2075    
2076 root 1.288 /* make sure the external fd watch events are in-sync */
2077     /* with the kernel/libev internal state */
2078 root 1.284 inline_size void
2079 root 1.51 fd_reify (EV_P)
2080 root 1.9 {
2081     int i;
2082    
2083 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2084     for (i = 0; i < fdchangecnt; ++i)
2085     {
2086     int fd = fdchanges [i];
2087     ANFD *anfd = anfds + fd;
2088    
2089 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
2090 root 1.371 {
2091     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2092    
2093     if (handle != anfd->handle)
2094     {
2095     unsigned long arg;
2096    
2097     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2098    
2099     /* handle changed, but fd didn't - we need to do it in two steps */
2100     backend_modify (EV_A_ fd, anfd->events, 0);
2101     anfd->events = 0;
2102     anfd->handle = handle;
2103     }
2104     }
2105     }
2106     #endif
2107    
2108 root 1.27 for (i = 0; i < fdchangecnt; ++i)
2109     {
2110     int fd = fdchanges [i];
2111     ANFD *anfd = anfds + fd;
2112 root 1.136 ev_io *w;
2113 root 1.27
2114 root 1.350 unsigned char o_events = anfd->events;
2115     unsigned char o_reify = anfd->reify;
2116 root 1.27
2117 root 1.350 anfd->reify = 0;
2118 root 1.27
2119 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2120     {
2121     anfd->events = 0;
2122 root 1.184
2123 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2124     anfd->events |= (unsigned char)w->events;
2125 root 1.27
2126 root 1.351 if (o_events != anfd->events)
2127 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
2128     }
2129    
2130     if (o_reify & EV__IOFDSET)
2131     backend_modify (EV_A_ fd, o_events, anfd->events);
2132 root 1.27 }
2133    
2134     fdchangecnt = 0;
2135     }
2136    
2137 root 1.288 /* something about the given fd changed */
2138 root 1.480 inline_size
2139     void
2140 root 1.183 fd_change (EV_P_ int fd, int flags)
2141 root 1.27 {
2142 root 1.183 unsigned char reify = anfds [fd].reify;
2143 root 1.184 anfds [fd].reify |= flags;
2144 root 1.27
2145 root 1.183 if (expect_true (!reify))
2146     {
2147     ++fdchangecnt;
2148     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
2149     fdchanges [fdchangecnt - 1] = fd;
2150     }
2151 root 1.9 }
2152    
2153 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2154 root 1.480 inline_speed ecb_cold void
2155 root 1.51 fd_kill (EV_P_ int fd)
2156 root 1.41 {
2157 root 1.136 ev_io *w;
2158 root 1.41
2159 root 1.136 while ((w = (ev_io *)anfds [fd].head))
2160 root 1.41 {
2161 root 1.51 ev_io_stop (EV_A_ w);
2162 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2163 root 1.41 }
2164     }
2165    
2166 root 1.336 /* check whether the given fd is actually valid, for error recovery */
2167 root 1.480 inline_size ecb_cold int
2168 root 1.71 fd_valid (int fd)
2169     {
2170 root 1.103 #ifdef _WIN32
2171 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2172 root 1.71 #else
2173     return fcntl (fd, F_GETFD) != -1;
2174     #endif
2175     }
2176    
2177 root 1.19 /* called on EBADF to verify fds */
2178 root 1.480 noinline ecb_cold
2179     static void
2180 root 1.51 fd_ebadf (EV_P)
2181 root 1.19 {
2182     int fd;
2183    
2184     for (fd = 0; fd < anfdmax; ++fd)
2185 root 1.27 if (anfds [fd].events)
2186 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2187 root 1.51 fd_kill (EV_A_ fd);
2188 root 1.41 }
2189    
2190     /* called on ENOMEM in select/poll to kill some fds and retry */
2191 root 1.480 noinline ecb_cold
2192     static void
2193 root 1.51 fd_enomem (EV_P)
2194 root 1.41 {
2195 root 1.62 int fd;
2196 root 1.41
2197 root 1.62 for (fd = anfdmax; fd--; )
2198 root 1.41 if (anfds [fd].events)
2199     {
2200 root 1.51 fd_kill (EV_A_ fd);
2201 root 1.307 break;
2202 root 1.41 }
2203 root 1.19 }
2204    
2205 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2206 root 1.480 noinline
2207     static void
2208 root 1.56 fd_rearm_all (EV_P)
2209     {
2210     int fd;
2211    
2212     for (fd = 0; fd < anfdmax; ++fd)
2213     if (anfds [fd].events)
2214     {
2215     anfds [fd].events = 0;
2216 root 1.268 anfds [fd].emask = 0;
2217 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2218 root 1.56 }
2219     }
2220    
2221 root 1.336 /* used to prepare libev internal fd's */
2222     /* this is not fork-safe */
2223     inline_speed void
2224     fd_intern (int fd)
2225     {
2226     #ifdef _WIN32
2227     unsigned long arg = 1;
2228     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2229     #else
2230     fcntl (fd, F_SETFD, FD_CLOEXEC);
2231     fcntl (fd, F_SETFL, O_NONBLOCK);
2232     #endif
2233     }
2234    
2235 root 1.8 /*****************************************************************************/
2236    
2237 root 1.235 /*
2238 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2239 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2240     * the branching factor of the d-tree.
2241     */
2242    
2243     /*
2244 root 1.235 * at the moment we allow libev the luxury of two heaps,
2245     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2246     * which is more cache-efficient.
2247     * the difference is about 5% with 50000+ watchers.
2248     */
2249 root 1.241 #if EV_USE_4HEAP
2250 root 1.235
2251 root 1.237 #define DHEAP 4
2252     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2253 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2254 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2255 root 1.235
2256     /* away from the root */
2257 root 1.284 inline_speed void
2258 root 1.241 downheap (ANHE *heap, int N, int k)
2259 root 1.235 {
2260 root 1.241 ANHE he = heap [k];
2261     ANHE *E = heap + N + HEAP0;
2262 root 1.235
2263     for (;;)
2264     {
2265     ev_tstamp minat;
2266 root 1.241 ANHE *minpos;
2267 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2268 root 1.235
2269 root 1.248 /* find minimum child */
2270 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
2271 root 1.235 {
2272 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2273     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2274     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2275     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2276 root 1.235 }
2277 root 1.240 else if (pos < E)
2278 root 1.235 {
2279 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2280     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2281     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2282     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2283 root 1.235 }
2284 root 1.240 else
2285     break;
2286 root 1.235
2287 root 1.241 if (ANHE_at (he) <= minat)
2288 root 1.235 break;
2289    
2290 root 1.247 heap [k] = *minpos;
2291 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2292 root 1.235
2293     k = minpos - heap;
2294     }
2295    
2296 root 1.247 heap [k] = he;
2297 root 1.241 ev_active (ANHE_w (he)) = k;
2298 root 1.235 }
2299    
2300 root 1.248 #else /* 4HEAP */
2301 root 1.235
2302     #define HEAP0 1
2303 root 1.247 #define HPARENT(k) ((k) >> 1)
2304 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2305 root 1.235
2306 root 1.248 /* away from the root */
2307 root 1.284 inline_speed void
2308 root 1.248 downheap (ANHE *heap, int N, int k)
2309 root 1.1 {
2310 root 1.241 ANHE he = heap [k];
2311 root 1.1
2312 root 1.228 for (;;)
2313 root 1.1 {
2314 root 1.248 int c = k << 1;
2315 root 1.179
2316 root 1.309 if (c >= N + HEAP0)
2317 root 1.179 break;
2318    
2319 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2320     ? 1 : 0;
2321    
2322     if (ANHE_at (he) <= ANHE_at (heap [c]))
2323     break;
2324    
2325     heap [k] = heap [c];
2326 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2327 root 1.248
2328     k = c;
2329 root 1.1 }
2330    
2331 root 1.243 heap [k] = he;
2332 root 1.248 ev_active (ANHE_w (he)) = k;
2333 root 1.1 }
2334 root 1.248 #endif
2335 root 1.1
2336 root 1.248 /* towards the root */
2337 root 1.284 inline_speed void
2338 root 1.248 upheap (ANHE *heap, int k)
2339 root 1.1 {
2340 root 1.241 ANHE he = heap [k];
2341 root 1.1
2342 root 1.179 for (;;)
2343 root 1.1 {
2344 root 1.248 int p = HPARENT (k);
2345 root 1.179
2346 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2347 root 1.179 break;
2348 root 1.1
2349 root 1.248 heap [k] = heap [p];
2350 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2351 root 1.248 k = p;
2352 root 1.1 }
2353    
2354 root 1.241 heap [k] = he;
2355     ev_active (ANHE_w (he)) = k;
2356 root 1.1 }
2357    
2358 root 1.288 /* move an element suitably so it is in a correct place */
2359 root 1.284 inline_size void
2360 root 1.241 adjustheap (ANHE *heap, int N, int k)
2361 root 1.84 {
2362 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2363 root 1.247 upheap (heap, k);
2364     else
2365     downheap (heap, N, k);
2366 root 1.84 }
2367    
2368 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2369 root 1.284 inline_size void
2370 root 1.248 reheap (ANHE *heap, int N)
2371     {
2372     int i;
2373 root 1.251
2374 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2375     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2376     for (i = 0; i < N; ++i)
2377     upheap (heap, i + HEAP0);
2378     }
2379    
2380 root 1.8 /*****************************************************************************/
2381    
2382 root 1.288 /* associate signal watchers to a signal signal */
2383 root 1.7 typedef struct
2384     {
2385 root 1.307 EV_ATOMIC_T pending;
2386 root 1.306 #if EV_MULTIPLICITY
2387     EV_P;
2388     #endif
2389 root 1.68 WL head;
2390 root 1.7 } ANSIG;
2391    
2392 root 1.306 static ANSIG signals [EV_NSIG - 1];
2393 root 1.7
2394 root 1.207 /*****************************************************************************/
2395    
2396 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2397 root 1.207
2398 root 1.480 noinline ecb_cold
2399     static void
2400 root 1.207 evpipe_init (EV_P)
2401     {
2402 root 1.288 if (!ev_is_active (&pipe_w))
2403 root 1.207 {
2404 root 1.448 int fds [2];
2405    
2406 root 1.336 # if EV_USE_EVENTFD
2407 root 1.448 fds [0] = -1;
2408     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2409     if (fds [1] < 0 && errno == EINVAL)
2410     fds [1] = eventfd (0, 0);
2411    
2412     if (fds [1] < 0)
2413     # endif
2414     {
2415     while (pipe (fds))
2416     ev_syserr ("(libev) error creating signal/async pipe");
2417    
2418     fd_intern (fds [0]);
2419 root 1.220 }
2420 root 1.448
2421     evpipe [0] = fds [0];
2422    
2423     if (evpipe [1] < 0)
2424     evpipe [1] = fds [1]; /* first call, set write fd */
2425 root 1.220 else
2426     {
2427 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2428     /* so that evpipe_write can always rely on its value. */
2429     /* this branch does not do anything sensible on windows, */
2430     /* so must not be executed on windows */
2431 root 1.207
2432 root 1.448 dup2 (fds [1], evpipe [1]);
2433     close (fds [1]);
2434 root 1.220 }
2435 root 1.207
2436 root 1.455 fd_intern (evpipe [1]);
2437    
2438 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2439 root 1.288 ev_io_start (EV_A_ &pipe_w);
2440 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2441 root 1.207 }
2442     }
2443    
2444 root 1.380 inline_speed void
2445 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2446 root 1.207 {
2447 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2448    
2449 root 1.383 if (expect_true (*flag))
2450 root 1.387 return;
2451 root 1.383
2452     *flag = 1;
2453 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2454 root 1.383
2455     pipe_write_skipped = 1;
2456 root 1.378
2457 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2458 root 1.214
2459 root 1.383 if (pipe_write_wanted)
2460     {
2461     int old_errno;
2462 root 1.378
2463 root 1.436 pipe_write_skipped = 0;
2464     ECB_MEMORY_FENCE_RELEASE;
2465 root 1.220
2466 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2467 root 1.380
2468 root 1.220 #if EV_USE_EVENTFD
2469 root 1.448 if (evpipe [0] < 0)
2470 root 1.383 {
2471     uint64_t counter = 1;
2472 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2473 root 1.383 }
2474     else
2475 root 1.220 #endif
2476 root 1.383 {
2477 root 1.427 #ifdef _WIN32
2478     WSABUF buf;
2479     DWORD sent;
2480 root 1.485 buf.buf = (char *)&buf;
2481 root 1.427 buf.len = 1;
2482     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2483     #else
2484 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2485 root 1.427 #endif
2486 root 1.383 }
2487 root 1.214
2488 root 1.383 errno = old_errno;
2489 root 1.207 }
2490     }
2491    
2492 root 1.288 /* called whenever the libev signal pipe */
2493     /* got some events (signal, async) */
2494 root 1.207 static void
2495     pipecb (EV_P_ ev_io *iow, int revents)
2496     {
2497 root 1.307 int i;
2498    
2499 root 1.378 if (revents & EV_READ)
2500     {
2501 root 1.220 #if EV_USE_EVENTFD
2502 root 1.448 if (evpipe [0] < 0)
2503 root 1.378 {
2504     uint64_t counter;
2505 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2506 root 1.378 }
2507     else
2508 root 1.220 #endif
2509 root 1.378 {
2510 root 1.427 char dummy[4];
2511     #ifdef _WIN32
2512     WSABUF buf;
2513     DWORD recvd;
2514 root 1.432 DWORD flags = 0;
2515 root 1.427 buf.buf = dummy;
2516     buf.len = sizeof (dummy);
2517 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2518 root 1.427 #else
2519     read (evpipe [0], &dummy, sizeof (dummy));
2520     #endif
2521 root 1.378 }
2522 root 1.220 }
2523 root 1.207
2524 root 1.378 pipe_write_skipped = 0;
2525    
2526 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2527    
2528 root 1.369 #if EV_SIGNAL_ENABLE
2529 root 1.307 if (sig_pending)
2530 root 1.372 {
2531 root 1.307 sig_pending = 0;
2532 root 1.207
2533 root 1.436 ECB_MEMORY_FENCE;
2534 root 1.424
2535 root 1.307 for (i = EV_NSIG - 1; i--; )
2536     if (expect_false (signals [i].pending))
2537     ev_feed_signal_event (EV_A_ i + 1);
2538 root 1.207 }
2539 root 1.369 #endif
2540 root 1.207
2541 root 1.209 #if EV_ASYNC_ENABLE
2542 root 1.307 if (async_pending)
2543 root 1.207 {
2544 root 1.307 async_pending = 0;
2545 root 1.207
2546 root 1.436 ECB_MEMORY_FENCE;
2547 root 1.424
2548 root 1.207 for (i = asynccnt; i--; )
2549     if (asyncs [i]->sent)
2550     {
2551     asyncs [i]->sent = 0;
2552 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2553 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2554     }
2555     }
2556 root 1.209 #endif
2557 root 1.207 }
2558    
2559     /*****************************************************************************/
2560    
2561 root 1.366 void
2562 root 1.486 ev_feed_signal (int signum) EV_NOEXCEPT
2563 root 1.7 {
2564 root 1.207 #if EV_MULTIPLICITY
2565 root 1.453 EV_P;
2566 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2567 root 1.453 EV_A = signals [signum - 1].loop;
2568 root 1.366
2569     if (!EV_A)
2570     return;
2571 root 1.207 #endif
2572    
2573 root 1.366 signals [signum - 1].pending = 1;
2574     evpipe_write (EV_A_ &sig_pending);
2575     }
2576    
2577     static void
2578     ev_sighandler (int signum)
2579     {
2580 root 1.322 #ifdef _WIN32
2581 root 1.218 signal (signum, ev_sighandler);
2582 root 1.67 #endif
2583    
2584 root 1.366 ev_feed_signal (signum);
2585 root 1.7 }
2586    
2587 root 1.480 noinline
2588     void
2589 root 1.486 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2590 root 1.79 {
2591 root 1.80 WL w;
2592    
2593 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2594 root 1.307 return;
2595    
2596     --signum;
2597    
2598 root 1.79 #if EV_MULTIPLICITY
2599 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2600     /* or, likely more useful, feeding a signal nobody is waiting for */
2601 root 1.79
2602 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2603 root 1.306 return;
2604 root 1.307 #endif
2605 root 1.306
2606 root 1.307 signals [signum].pending = 0;
2607 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2608 root 1.79
2609     for (w = signals [signum].head; w; w = w->next)
2610     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2611     }
2612    
2613 root 1.303 #if EV_USE_SIGNALFD
2614     static void
2615     sigfdcb (EV_P_ ev_io *iow, int revents)
2616     {
2617 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2618 root 1.303
2619     for (;;)
2620     {
2621     ssize_t res = read (sigfd, si, sizeof (si));
2622    
2623     /* not ISO-C, as res might be -1, but works with SuS */
2624     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2625     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2626    
2627     if (res < (ssize_t)sizeof (si))
2628     break;
2629     }
2630     }
2631     #endif
2632    
2633 root 1.336 #endif
2634    
2635 root 1.8 /*****************************************************************************/
2636    
2637 root 1.336 #if EV_CHILD_ENABLE
2638 root 1.182 static WL childs [EV_PID_HASHSIZE];
2639 root 1.71
2640 root 1.136 static ev_signal childev;
2641 root 1.59
2642 root 1.206 #ifndef WIFCONTINUED
2643     # define WIFCONTINUED(status) 0
2644     #endif
2645    
2646 root 1.288 /* handle a single child status event */
2647 root 1.284 inline_speed void
2648 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2649 root 1.47 {
2650 root 1.136 ev_child *w;
2651 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2652 root 1.47
2653 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2654 root 1.206 {
2655     if ((w->pid == pid || !w->pid)
2656     && (!traced || (w->flags & 1)))
2657     {
2658 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2659 root 1.206 w->rpid = pid;
2660     w->rstatus = status;
2661     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2662     }
2663     }
2664 root 1.47 }
2665    
2666 root 1.142 #ifndef WCONTINUED
2667     # define WCONTINUED 0
2668     #endif
2669    
2670 root 1.288 /* called on sigchld etc., calls waitpid */
2671 root 1.47 static void
2672 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2673 root 1.22 {
2674     int pid, status;
2675    
2676 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2677     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2678     if (!WCONTINUED
2679     || errno != EINVAL
2680     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2681     return;
2682    
2683 root 1.216 /* make sure we are called again until all children have been reaped */
2684 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2685     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2686 root 1.47
2687 root 1.216 child_reap (EV_A_ pid, pid, status);
2688 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2689 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2690 root 1.22 }
2691    
2692 root 1.45 #endif
2693    
2694 root 1.22 /*****************************************************************************/
2695    
2696 root 1.357 #if EV_USE_IOCP
2697     # include "ev_iocp.c"
2698     #endif
2699 root 1.118 #if EV_USE_PORT
2700     # include "ev_port.c"
2701     #endif
2702 root 1.44 #if EV_USE_KQUEUE
2703     # include "ev_kqueue.c"
2704     #endif
2705 root 1.29 #if EV_USE_EPOLL
2706 root 1.1 # include "ev_epoll.c"
2707     #endif
2708 root 1.59 #if EV_USE_POLL
2709 root 1.41 # include "ev_poll.c"
2710     #endif
2711 root 1.29 #if EV_USE_SELECT
2712 root 1.1 # include "ev_select.c"
2713     #endif
2714    
2715 root 1.480 ecb_cold int
2716 root 1.486 ev_version_major (void) EV_NOEXCEPT
2717 root 1.24 {
2718     return EV_VERSION_MAJOR;
2719     }
2720    
2721 root 1.480 ecb_cold int
2722 root 1.486 ev_version_minor (void) EV_NOEXCEPT
2723 root 1.24 {
2724     return EV_VERSION_MINOR;
2725     }
2726    
2727 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2728 root 1.480 inline_size ecb_cold int
2729 root 1.51 enable_secure (void)
2730 root 1.41 {
2731 root 1.103 #ifdef _WIN32
2732 root 1.49 return 0;
2733     #else
2734 root 1.41 return getuid () != geteuid ()
2735     || getgid () != getegid ();
2736 root 1.49 #endif
2737 root 1.41 }
2738    
2739 root 1.480 ecb_cold
2740     unsigned int
2741 root 1.486 ev_supported_backends (void) EV_NOEXCEPT
2742 root 1.129 {
2743 root 1.130 unsigned int flags = 0;
2744 root 1.129
2745     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2746     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2747     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2748     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2749     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2750    
2751     return flags;
2752     }
2753    
2754 root 1.480 ecb_cold
2755     unsigned int
2756 root 1.486 ev_recommended_backends (void) EV_NOEXCEPT
2757 root 1.1 {
2758 root 1.131 unsigned int flags = ev_supported_backends ();
2759 root 1.129
2760     #ifndef __NetBSD__
2761     /* kqueue is borked on everything but netbsd apparently */
2762     /* it usually doesn't work correctly on anything but sockets and pipes */
2763     flags &= ~EVBACKEND_KQUEUE;
2764     #endif
2765     #ifdef __APPLE__
2766 root 1.278 /* only select works correctly on that "unix-certified" platform */
2767     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2768     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2769 root 1.129 #endif
2770 root 1.342 #ifdef __FreeBSD__
2771     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2772     #endif
2773 root 1.129
2774     return flags;
2775 root 1.51 }
2776    
2777 root 1.480 ecb_cold
2778     unsigned int
2779 root 1.486 ev_embeddable_backends (void) EV_NOEXCEPT
2780 root 1.134 {
2781 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2782    
2783 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2784 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2785     flags &= ~EVBACKEND_EPOLL;
2786 root 1.196
2787     return flags;
2788 root 1.134 }
2789    
2790     unsigned int
2791 root 1.486 ev_backend (EV_P) EV_NOEXCEPT
2792 root 1.130 {
2793     return backend;
2794     }
2795    
2796 root 1.338 #if EV_FEATURE_API
2797 root 1.162 unsigned int
2798 root 1.486 ev_iteration (EV_P) EV_NOEXCEPT
2799 root 1.162 {
2800     return loop_count;
2801     }
2802    
2803 root 1.294 unsigned int
2804 root 1.486 ev_depth (EV_P) EV_NOEXCEPT
2805 root 1.294 {
2806     return loop_depth;
2807     }
2808    
2809 root 1.193 void
2810 root 1.486 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2811 root 1.193 {
2812     io_blocktime = interval;
2813     }
2814    
2815     void
2816 root 1.486 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2817 root 1.193 {
2818     timeout_blocktime = interval;
2819     }
2820    
2821 root 1.297 void
2822 root 1.486 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2823 root 1.297 {
2824     userdata = data;
2825     }
2826    
2827     void *
2828 root 1.486 ev_userdata (EV_P) EV_NOEXCEPT
2829 root 1.297 {
2830     return userdata;
2831     }
2832    
2833 root 1.379 void
2834 root 1.486 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2835 root 1.297 {
2836     invoke_cb = invoke_pending_cb;
2837     }
2838    
2839 root 1.379 void
2840 root 1.486 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2841 root 1.297 {
2842 root 1.298 release_cb = release;
2843     acquire_cb = acquire;
2844 root 1.297 }
2845     #endif
2846    
2847 root 1.288 /* initialise a loop structure, must be zero-initialised */
2848 root 1.480 noinline ecb_cold
2849     static void
2850 root 1.486 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2851 root 1.51 {
2852 root 1.130 if (!backend)
2853 root 1.23 {
2854 root 1.366 origflags = flags;
2855    
2856 root 1.279 #if EV_USE_REALTIME
2857     if (!have_realtime)
2858     {
2859     struct timespec ts;
2860    
2861     if (!clock_gettime (CLOCK_REALTIME, &ts))
2862     have_realtime = 1;
2863     }
2864     #endif
2865    
2866 root 1.29 #if EV_USE_MONOTONIC
2867 root 1.279 if (!have_monotonic)
2868     {
2869     struct timespec ts;
2870    
2871     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2872     have_monotonic = 1;
2873     }
2874 root 1.1 #endif
2875    
2876 root 1.306 /* pid check not overridable via env */
2877     #ifndef _WIN32
2878     if (flags & EVFLAG_FORKCHECK)
2879     curpid = getpid ();
2880     #endif
2881    
2882     if (!(flags & EVFLAG_NOENV)
2883     && !enable_secure ()
2884     && getenv ("LIBEV_FLAGS"))
2885     flags = atoi (getenv ("LIBEV_FLAGS"));
2886    
2887 root 1.378 ev_rt_now = ev_time ();
2888     mn_now = get_clock ();
2889     now_floor = mn_now;
2890     rtmn_diff = ev_rt_now - mn_now;
2891 root 1.338 #if EV_FEATURE_API
2892 root 1.378 invoke_cb = ev_invoke_pending;
2893 root 1.297 #endif
2894 root 1.1
2895 root 1.378 io_blocktime = 0.;
2896     timeout_blocktime = 0.;
2897     backend = 0;
2898     backend_fd = -1;
2899     sig_pending = 0;
2900 root 1.307 #if EV_ASYNC_ENABLE
2901 root 1.378 async_pending = 0;
2902 root 1.307 #endif
2903 root 1.378 pipe_write_skipped = 0;
2904     pipe_write_wanted = 0;
2905 root 1.448 evpipe [0] = -1;
2906     evpipe [1] = -1;
2907 root 1.209 #if EV_USE_INOTIFY
2908 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2909 root 1.209 #endif
2910 root 1.303 #if EV_USE_SIGNALFD
2911 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2912 root 1.303 #endif
2913 root 1.193
2914 root 1.366 if (!(flags & EVBACKEND_MASK))
2915 root 1.129 flags |= ev_recommended_backends ();
2916 root 1.41
2917 root 1.357 #if EV_USE_IOCP
2918     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2919     #endif
2920 root 1.118 #if EV_USE_PORT
2921 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2922 root 1.118 #endif
2923 root 1.44 #if EV_USE_KQUEUE
2924 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2925 root 1.44 #endif
2926 root 1.29 #if EV_USE_EPOLL
2927 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2928 root 1.41 #endif
2929 root 1.59 #if EV_USE_POLL
2930 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2931 root 1.1 #endif
2932 root 1.29 #if EV_USE_SELECT
2933 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2934 root 1.1 #endif
2935 root 1.70
2936 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2937    
2938 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2939 root 1.288 ev_init (&pipe_w, pipecb);
2940     ev_set_priority (&pipe_w, EV_MAXPRI);
2941 root 1.336 #endif
2942 root 1.56 }
2943     }
2944    
2945 root 1.288 /* free up a loop structure */
2946 root 1.480 ecb_cold
2947     void
2948 root 1.422 ev_loop_destroy (EV_P)
2949 root 1.56 {
2950 root 1.65 int i;
2951    
2952 root 1.364 #if EV_MULTIPLICITY
2953 root 1.363 /* mimic free (0) */
2954     if (!EV_A)
2955     return;
2956 root 1.364 #endif
2957 root 1.363
2958 root 1.361 #if EV_CLEANUP_ENABLE
2959     /* queue cleanup watchers (and execute them) */
2960     if (expect_false (cleanupcnt))
2961     {
2962     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2963     EV_INVOKE_PENDING;
2964     }
2965     #endif
2966    
2967 root 1.359 #if EV_CHILD_ENABLE
2968 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2969 root 1.359 {
2970     ev_ref (EV_A); /* child watcher */
2971     ev_signal_stop (EV_A_ &childev);
2972     }
2973     #endif
2974    
2975 root 1.288 if (ev_is_active (&pipe_w))
2976 root 1.207 {
2977 root 1.303 /*ev_ref (EV_A);*/
2978     /*ev_io_stop (EV_A_ &pipe_w);*/
2979 root 1.207
2980 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2981     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2982 root 1.207 }
2983    
2984 root 1.303 #if EV_USE_SIGNALFD
2985     if (ev_is_active (&sigfd_w))
2986 root 1.317 close (sigfd);
2987 root 1.303 #endif
2988    
2989 root 1.152 #if EV_USE_INOTIFY
2990     if (fs_fd >= 0)
2991     close (fs_fd);
2992     #endif
2993    
2994     if (backend_fd >= 0)
2995     close (backend_fd);
2996    
2997 root 1.357 #if EV_USE_IOCP
2998     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2999     #endif
3000 root 1.118 #if EV_USE_PORT
3001 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3002 root 1.118 #endif
3003 root 1.56 #if EV_USE_KQUEUE
3004 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
3005 root 1.56 #endif
3006     #if EV_USE_EPOLL
3007 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3008 root 1.56 #endif
3009 root 1.59 #if EV_USE_POLL
3010 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3011 root 1.56 #endif
3012     #if EV_USE_SELECT
3013 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
3014 root 1.56 #endif
3015 root 1.1
3016 root 1.65 for (i = NUMPRI; i--; )
3017 root 1.164 {
3018     array_free (pending, [i]);
3019     #if EV_IDLE_ENABLE
3020     array_free (idle, [i]);
3021     #endif
3022     }
3023 root 1.65
3024 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
3025 root 1.186
3026 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
3027 root 1.284 array_free (rfeed, EMPTY);
3028 root 1.164 array_free (fdchange, EMPTY);
3029     array_free (timer, EMPTY);
3030 root 1.140 #if EV_PERIODIC_ENABLE
3031 root 1.164 array_free (periodic, EMPTY);
3032 root 1.93 #endif
3033 root 1.187 #if EV_FORK_ENABLE
3034     array_free (fork, EMPTY);
3035     #endif
3036 root 1.360 #if EV_CLEANUP_ENABLE
3037     array_free (cleanup, EMPTY);
3038     #endif
3039 root 1.164 array_free (prepare, EMPTY);
3040     array_free (check, EMPTY);
3041 root 1.209 #if EV_ASYNC_ENABLE
3042     array_free (async, EMPTY);
3043     #endif
3044 root 1.65
3045 root 1.130 backend = 0;
3046 root 1.359
3047     #if EV_MULTIPLICITY
3048     if (ev_is_default_loop (EV_A))
3049     #endif
3050     ev_default_loop_ptr = 0;
3051     #if EV_MULTIPLICITY
3052     else
3053     ev_free (EV_A);
3054     #endif
3055 root 1.56 }
3056 root 1.22
3057 root 1.226 #if EV_USE_INOTIFY
3058 root 1.284 inline_size void infy_fork (EV_P);
3059 root 1.226 #endif
3060 root 1.154
3061 root 1.284 inline_size void
3062 root 1.56 loop_fork (EV_P)
3063     {
3064 root 1.118 #if EV_USE_PORT
3065 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3066 root 1.56 #endif
3067     #if EV_USE_KQUEUE
3068 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
3069 root 1.45 #endif
3070 root 1.118 #if EV_USE_EPOLL
3071 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3072 root 1.118 #endif
3073 root 1.154 #if EV_USE_INOTIFY
3074     infy_fork (EV_A);
3075     #endif
3076 root 1.70
3077 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3078 root 1.478 if (ev_is_active (&pipe_w) && postfork != 2)
3079 root 1.70 {
3080 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3081 root 1.70
3082     ev_ref (EV_A);
3083 root 1.288 ev_io_stop (EV_A_ &pipe_w);
3084 root 1.220
3085     if (evpipe [0] >= 0)
3086 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
3087 root 1.207
3088     evpipe_init (EV_A);
3089 root 1.443 /* iterate over everything, in case we missed something before */
3090     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3091 root 1.448 }
3092 root 1.337 #endif
3093 root 1.70
3094     postfork = 0;
3095 root 1.1 }
3096    
3097 root 1.55 #if EV_MULTIPLICITY
3098 root 1.250
3099 root 1.480 ecb_cold
3100     struct ev_loop *
3101 root 1.486 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3102 root 1.54 {
3103 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3104 root 1.69
3105 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
3106 root 1.108 loop_init (EV_A_ flags);
3107 root 1.56
3108 root 1.130 if (ev_backend (EV_A))
3109 root 1.306 return EV_A;
3110 root 1.54
3111 root 1.359 ev_free (EV_A);
3112 root 1.55 return 0;
3113 root 1.54 }
3114    
3115 root 1.297 #endif /* multiplicity */
3116 root 1.248
3117     #if EV_VERIFY
3118 root 1.480 noinline ecb_cold
3119     static void
3120 root 1.251 verify_watcher (EV_P_ W w)
3121     {
3122 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3123 root 1.251
3124     if (w->pending)
3125 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3126 root 1.251 }
3127    
3128 root 1.480 noinline ecb_cold
3129     static void
3130 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
3131     {
3132     int i;
3133    
3134     for (i = HEAP0; i < N + HEAP0; ++i)
3135     {
3136 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3137     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3138     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3139 root 1.251
3140     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3141     }
3142     }
3143    
3144 root 1.480 noinline ecb_cold
3145     static void
3146 root 1.251 array_verify (EV_P_ W *ws, int cnt)
3147 root 1.248 {
3148     while (cnt--)
3149 root 1.251 {
3150 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3151 root 1.251 verify_watcher (EV_A_ ws [cnt]);
3152     }
3153 root 1.248 }
3154 root 1.250 #endif
3155 root 1.248
3156 root 1.338 #if EV_FEATURE_API
3157 root 1.379 void ecb_cold
3158 root 1.486 ev_verify (EV_P) EV_NOEXCEPT
3159 root 1.248 {
3160 root 1.250 #if EV_VERIFY
3161 root 1.429 int i;
3162 root 1.426 WL w, w2;
3163 root 1.251
3164     assert (activecnt >= -1);
3165    
3166     assert (fdchangemax >= fdchangecnt);
3167     for (i = 0; i < fdchangecnt; ++i)
3168 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3169 root 1.251
3170     assert (anfdmax >= 0);
3171 root 1.429 for (i = 0; i < anfdmax; ++i)
3172     {
3173     int j = 0;
3174    
3175     for (w = w2 = anfds [i].head; w; w = w->next)
3176     {
3177     verify_watcher (EV_A_ (W)w);
3178 root 1.426
3179 root 1.429 if (j++ & 1)
3180     {
3181     assert (("libev: io watcher list contains a loop", w != w2));
3182     w2 = w2->next;
3183     }
3184 root 1.426
3185 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3186     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3187     }
3188     }
3189 root 1.251
3190     assert (timermax >= timercnt);
3191     verify_heap (EV_A_ timers, timercnt);
3192 root 1.248
3193     #if EV_PERIODIC_ENABLE
3194 root 1.251 assert (periodicmax >= periodiccnt);
3195     verify_heap (EV_A_ periodics, periodiccnt);
3196 root 1.248 #endif
3197    
3198 root 1.251 for (i = NUMPRI; i--; )
3199     {
3200     assert (pendingmax [i] >= pendingcnt [i]);
3201 root 1.248 #if EV_IDLE_ENABLE
3202 root 1.252 assert (idleall >= 0);
3203 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3204     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3205 root 1.248 #endif
3206 root 1.251 }
3207    
3208 root 1.248 #if EV_FORK_ENABLE
3209 root 1.251 assert (forkmax >= forkcnt);
3210     array_verify (EV_A_ (W *)forks, forkcnt);
3211 root 1.248 #endif
3212 root 1.251
3213 root 1.360 #if EV_CLEANUP_ENABLE
3214     assert (cleanupmax >= cleanupcnt);
3215     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3216     #endif
3217    
3218 root 1.250 #if EV_ASYNC_ENABLE
3219 root 1.251 assert (asyncmax >= asynccnt);
3220     array_verify (EV_A_ (W *)asyncs, asynccnt);
3221 root 1.250 #endif
3222 root 1.251
3223 root 1.337 #if EV_PREPARE_ENABLE
3224 root 1.251 assert (preparemax >= preparecnt);
3225     array_verify (EV_A_ (W *)prepares, preparecnt);
3226 root 1.337 #endif
3227 root 1.251
3228 root 1.337 #if EV_CHECK_ENABLE
3229 root 1.251 assert (checkmax >= checkcnt);
3230     array_verify (EV_A_ (W *)checks, checkcnt);
3231 root 1.337 #endif
3232 root 1.251
3233     # if 0
3234 root 1.336 #if EV_CHILD_ENABLE
3235 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3236 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3237 root 1.336 #endif
3238 root 1.251 # endif
3239 root 1.248 #endif
3240     }
3241 root 1.297 #endif
3242 root 1.56
3243     #if EV_MULTIPLICITY
3244 root 1.480 ecb_cold
3245     struct ev_loop *
3246 root 1.54 #else
3247     int
3248 root 1.358 #endif
3249 root 1.486 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3250 root 1.54 {
3251 root 1.116 if (!ev_default_loop_ptr)
3252 root 1.56 {
3253     #if EV_MULTIPLICITY
3254 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3255 root 1.56 #else
3256 ayin 1.117 ev_default_loop_ptr = 1;
3257 root 1.54 #endif
3258    
3259 root 1.110 loop_init (EV_A_ flags);
3260 root 1.56
3261 root 1.130 if (ev_backend (EV_A))
3262 root 1.56 {
3263 root 1.336 #if EV_CHILD_ENABLE
3264 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3265     ev_set_priority (&childev, EV_MAXPRI);
3266     ev_signal_start (EV_A_ &childev);
3267     ev_unref (EV_A); /* child watcher should not keep loop alive */
3268     #endif
3269     }
3270     else
3271 root 1.116 ev_default_loop_ptr = 0;
3272 root 1.56 }
3273 root 1.8
3274 root 1.116 return ev_default_loop_ptr;
3275 root 1.1 }
3276    
3277 root 1.24 void
3278 root 1.486 ev_loop_fork (EV_P) EV_NOEXCEPT
3279 root 1.1 {
3280 root 1.440 postfork = 1;
3281 root 1.1 }
3282    
3283 root 1.8 /*****************************************************************************/
3284    
3285 root 1.168 void
3286     ev_invoke (EV_P_ void *w, int revents)
3287     {
3288     EV_CB_INVOKE ((W)w, revents);
3289     }
3290    
3291 root 1.300 unsigned int
3292 root 1.486 ev_pending_count (EV_P) EV_NOEXCEPT
3293 root 1.300 {
3294     int pri;
3295     unsigned int count = 0;
3296    
3297     for (pri = NUMPRI; pri--; )
3298     count += pendingcnt [pri];
3299    
3300     return count;
3301     }
3302    
3303 root 1.480 noinline
3304     void
3305 root 1.296 ev_invoke_pending (EV_P)
3306 root 1.1 {
3307 root 1.445 pendingpri = NUMPRI;
3308    
3309 root 1.484 do
3310 root 1.445 {
3311     --pendingpri;
3312    
3313 root 1.484 /* pendingpri possibly gets modified in the inner loop */
3314 root 1.445 while (pendingcnt [pendingpri])
3315     {
3316     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3317 root 1.1
3318 root 1.445 p->w->pending = 0;
3319     EV_CB_INVOKE (p->w, p->events);
3320     EV_FREQUENT_CHECK;
3321     }
3322     }
3323 root 1.484 while (pendingpri);
3324 root 1.1 }
3325    
3326 root 1.234 #if EV_IDLE_ENABLE
3327 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3328     /* only when higher priorities are idle" logic */
3329 root 1.284 inline_size void
3330 root 1.234 idle_reify (EV_P)
3331     {
3332     if (expect_false (idleall))
3333     {
3334     int pri;
3335    
3336     for (pri = NUMPRI; pri--; )
3337     {
3338     if (pendingcnt [pri])
3339     break;
3340    
3341     if (idlecnt [pri])
3342     {
3343     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3344     break;
3345     }
3346     }
3347     }
3348     }
3349     #endif
3350    
3351 root 1.288 /* make timers pending */
3352 root 1.284 inline_size void
3353 root 1.51 timers_reify (EV_P)
3354 root 1.1 {
3355 root 1.248 EV_FREQUENT_CHECK;
3356    
3357 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3358 root 1.1 {
3359 root 1.284 do
3360     {
3361     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3362 root 1.1
3363 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3364    
3365     /* first reschedule or stop timer */
3366     if (w->repeat)
3367     {
3368     ev_at (w) += w->repeat;
3369     if (ev_at (w) < mn_now)
3370     ev_at (w) = mn_now;
3371 root 1.61
3372 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3373 root 1.90
3374 root 1.284 ANHE_at_cache (timers [HEAP0]);
3375     downheap (timers, timercnt, HEAP0);
3376     }
3377     else
3378     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3379 root 1.243
3380 root 1.284 EV_FREQUENT_CHECK;
3381     feed_reverse (EV_A_ (W)w);
3382 root 1.12 }
3383 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3384 root 1.30
3385 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3386 root 1.12 }
3387     }
3388 root 1.4
3389 root 1.140 #if EV_PERIODIC_ENABLE
3390 root 1.370
3391 root 1.480 noinline
3392     static void
3393 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3394     {
3395 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3396     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3397    
3398     /* the above almost always errs on the low side */
3399     while (at <= ev_rt_now)
3400     {
3401     ev_tstamp nat = at + w->interval;
3402    
3403     /* when resolution fails us, we use ev_rt_now */
3404     if (expect_false (nat == at))
3405     {
3406     at = ev_rt_now;
3407     break;
3408     }
3409    
3410     at = nat;
3411     }
3412    
3413     ev_at (w) = at;
3414 root 1.370 }
3415    
3416 root 1.288 /* make periodics pending */
3417 root 1.284 inline_size void
3418 root 1.51 periodics_reify (EV_P)
3419 root 1.12 {
3420 root 1.248 EV_FREQUENT_CHECK;
3421 root 1.250
3422 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3423 root 1.12 {
3424 root 1.284 do
3425     {
3426     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3427 root 1.1
3428 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3429 root 1.61
3430 root 1.284 /* first reschedule or stop timer */
3431     if (w->reschedule_cb)
3432     {
3433     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3434 root 1.243
3435 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3436 root 1.243
3437 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3438     downheap (periodics, periodiccnt, HEAP0);
3439     }
3440     else if (w->interval)
3441 root 1.246 {
3442 root 1.370 periodic_recalc (EV_A_ w);
3443 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3444     downheap (periodics, periodiccnt, HEAP0);
3445 root 1.246 }
3446 root 1.284 else
3447     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3448 root 1.243
3449 root 1.284 EV_FREQUENT_CHECK;
3450     feed_reverse (EV_A_ (W)w);
3451 root 1.1 }
3452 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3453 root 1.12
3454 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3455 root 1.12 }
3456     }
3457    
3458 root 1.288 /* simply recalculate all periodics */
3459 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3460 root 1.480 noinline ecb_cold
3461     static void
3462 root 1.54 periodics_reschedule (EV_P)
3463 root 1.12 {
3464     int i;
3465    
3466 root 1.13 /* adjust periodics after time jump */
3467 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3468 root 1.12 {
3469 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3470 root 1.12
3471 root 1.77 if (w->reschedule_cb)
3472 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3473 root 1.77 else if (w->interval)
3474 root 1.370 periodic_recalc (EV_A_ w);
3475 root 1.242
3476 root 1.248 ANHE_at_cache (periodics [i]);
3477 root 1.77 }
3478 root 1.12
3479 root 1.248 reheap (periodics, periodiccnt);
3480 root 1.1 }
3481 root 1.93 #endif
3482 root 1.1
3483 root 1.288 /* adjust all timers by a given offset */
3484 root 1.480 noinline ecb_cold
3485     static void
3486 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3487     {
3488     int i;
3489    
3490     for (i = 0; i < timercnt; ++i)
3491     {
3492     ANHE *he = timers + i + HEAP0;
3493     ANHE_w (*he)->at += adjust;
3494     ANHE_at_cache (*he);
3495     }
3496     }
3497    
3498 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3499 root 1.324 /* also detect if there was a timejump, and act accordingly */
3500 root 1.284 inline_speed void
3501 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3502 root 1.4 {
3503 root 1.40 #if EV_USE_MONOTONIC
3504     if (expect_true (have_monotonic))
3505     {
3506 root 1.289 int i;
3507 root 1.178 ev_tstamp odiff = rtmn_diff;
3508    
3509     mn_now = get_clock ();
3510    
3511     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3512     /* interpolate in the meantime */
3513     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3514 root 1.40 {
3515 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3516     return;
3517     }
3518    
3519     now_floor = mn_now;
3520     ev_rt_now = ev_time ();
3521 root 1.4
3522 root 1.178 /* loop a few times, before making important decisions.
3523     * on the choice of "4": one iteration isn't enough,
3524     * in case we get preempted during the calls to
3525     * ev_time and get_clock. a second call is almost guaranteed
3526     * to succeed in that case, though. and looping a few more times
3527     * doesn't hurt either as we only do this on time-jumps or
3528     * in the unlikely event of having been preempted here.
3529     */
3530     for (i = 4; --i; )
3531     {
3532 root 1.373 ev_tstamp diff;
3533 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3534 root 1.4
3535 root 1.373 diff = odiff - rtmn_diff;
3536    
3537     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3538 root 1.178 return; /* all is well */
3539 root 1.4
3540 root 1.178 ev_rt_now = ev_time ();
3541     mn_now = get_clock ();
3542     now_floor = mn_now;
3543     }
3544 root 1.4
3545 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3546     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3547 root 1.140 # if EV_PERIODIC_ENABLE
3548 root 1.178 periodics_reschedule (EV_A);
3549 root 1.93 # endif
3550 root 1.4 }
3551     else
3552 root 1.40 #endif
3553 root 1.4 {
3554 root 1.85 ev_rt_now = ev_time ();
3555 root 1.40
3556 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3557 root 1.13 {
3558 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3559     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3560 root 1.140 #if EV_PERIODIC_ENABLE
3561 root 1.54 periodics_reschedule (EV_A);
3562 root 1.93 #endif
3563 root 1.13 }
3564 root 1.4
3565 root 1.85 mn_now = ev_rt_now;
3566 root 1.4 }
3567     }
3568    
3569 root 1.418 int
3570 root 1.353 ev_run (EV_P_ int flags)
3571 root 1.1 {
3572 root 1.338 #if EV_FEATURE_API
3573 root 1.294 ++loop_depth;
3574 root 1.297 #endif
3575 root 1.294
3576 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3577 root 1.298
3578 root 1.353 loop_done = EVBREAK_CANCEL;
3579 root 1.1
3580 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3581 root 1.158
3582 root 1.161 do
3583 root 1.9 {
3584 root 1.250 #if EV_VERIFY >= 2
3585 root 1.340 ev_verify (EV_A);
3586 root 1.250 #endif
3587    
3588 root 1.158 #ifndef _WIN32
3589     if (expect_false (curpid)) /* penalise the forking check even more */
3590     if (expect_false (getpid () != curpid))
3591     {
3592     curpid = getpid ();
3593     postfork = 1;
3594     }
3595     #endif
3596    
3597 root 1.157 #if EV_FORK_ENABLE
3598     /* we might have forked, so queue fork handlers */
3599     if (expect_false (postfork))
3600     if (forkcnt)
3601     {
3602     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3603 root 1.297 EV_INVOKE_PENDING;
3604 root 1.157 }
3605     #endif
3606 root 1.147
3607 root 1.337 #if EV_PREPARE_ENABLE
3608 root 1.170 /* queue prepare watchers (and execute them) */
3609 root 1.40 if (expect_false (preparecnt))
3610 root 1.20 {
3611 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3612 root 1.297 EV_INVOKE_PENDING;
3613 root 1.20 }
3614 root 1.337 #endif
3615 root 1.9
3616 root 1.298 if (expect_false (loop_done))
3617     break;
3618    
3619 root 1.70 /* we might have forked, so reify kernel state if necessary */
3620     if (expect_false (postfork))
3621     loop_fork (EV_A);
3622    
3623 root 1.1 /* update fd-related kernel structures */
3624 root 1.51 fd_reify (EV_A);
3625 root 1.1
3626     /* calculate blocking time */
3627 root 1.135 {
3628 root 1.193 ev_tstamp waittime = 0.;
3629     ev_tstamp sleeptime = 0.;
3630 root 1.12
3631 root 1.353 /* remember old timestamp for io_blocktime calculation */
3632     ev_tstamp prev_mn_now = mn_now;
3633 root 1.293
3634 root 1.353 /* update time to cancel out callback processing overhead */
3635     time_update (EV_A_ 1e100);
3636 root 1.135
3637 root 1.378 /* from now on, we want a pipe-wake-up */
3638     pipe_write_wanted = 1;
3639    
3640 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3641 root 1.383
3642 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3643 root 1.353 {
3644 root 1.287 waittime = MAX_BLOCKTIME;
3645    
3646 root 1.135 if (timercnt)
3647     {
3648 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3649 root 1.193 if (waittime > to) waittime = to;
3650 root 1.135 }
3651 root 1.4
3652 root 1.140 #if EV_PERIODIC_ENABLE
3653 root 1.135 if (periodiccnt)
3654     {
3655 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3656 root 1.193 if (waittime > to) waittime = to;
3657 root 1.135 }
3658 root 1.93 #endif
3659 root 1.4
3660 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3661 root 1.193 if (expect_false (waittime < timeout_blocktime))
3662     waittime = timeout_blocktime;
3663    
3664 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3665     /* to pass a minimum nonzero value to the backend */
3666     if (expect_false (waittime < backend_mintime))
3667     waittime = backend_mintime;
3668    
3669 root 1.293 /* extra check because io_blocktime is commonly 0 */
3670     if (expect_false (io_blocktime))
3671     {
3672     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3673 root 1.193
3674 root 1.376 if (sleeptime > waittime - backend_mintime)
3675     sleeptime = waittime - backend_mintime;
3676 root 1.193
3677 root 1.293 if (expect_true (sleeptime > 0.))
3678     {
3679     ev_sleep (sleeptime);
3680     waittime -= sleeptime;
3681     }
3682 root 1.193 }
3683 root 1.135 }
3684 root 1.1
3685 root 1.338 #if EV_FEATURE_API
3686 root 1.162 ++loop_count;
3687 root 1.297 #endif
3688 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3689 root 1.193 backend_poll (EV_A_ waittime);
3690 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3691 root 1.178
3692 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3693 root 1.378
3694 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3695 root 1.378 if (pipe_write_skipped)
3696     {
3697     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3698     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3699     }
3700    
3701    
3702 root 1.178 /* update ev_rt_now, do magic */
3703 root 1.193 time_update (EV_A_ waittime + sleeptime);
3704 root 1.135 }
3705 root 1.1
3706 root 1.9 /* queue pending timers and reschedule them */
3707 root 1.51 timers_reify (EV_A); /* relative timers called last */
3708 root 1.140 #if EV_PERIODIC_ENABLE
3709 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3710 root 1.93 #endif
3711 root 1.1
3712 root 1.164 #if EV_IDLE_ENABLE
3713 root 1.137 /* queue idle watchers unless other events are pending */
3714 root 1.164 idle_reify (EV_A);
3715     #endif
3716 root 1.9
3717 root 1.337 #if EV_CHECK_ENABLE
3718 root 1.20 /* queue check watchers, to be executed first */
3719 root 1.123 if (expect_false (checkcnt))
3720 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3721 root 1.337 #endif
3722 root 1.9
3723 root 1.297 EV_INVOKE_PENDING;
3724 root 1.1 }
3725 root 1.219 while (expect_true (
3726     activecnt
3727     && !loop_done
3728 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3729 root 1.219 ));
3730 root 1.13
3731 root 1.353 if (loop_done == EVBREAK_ONE)
3732     loop_done = EVBREAK_CANCEL;
3733 root 1.294
3734 root 1.338 #if EV_FEATURE_API
3735 root 1.294 --loop_depth;
3736 root 1.297 #endif
3737 root 1.418
3738     return activecnt;
3739 root 1.51 }
3740    
3741     void
3742 root 1.486 ev_break (EV_P_ int how) EV_NOEXCEPT
3743 root 1.51 {
3744     loop_done = how;
3745 root 1.1 }
3746    
3747 root 1.285 void
3748 root 1.486 ev_ref (EV_P) EV_NOEXCEPT
3749 root 1.285 {
3750     ++activecnt;
3751     }
3752    
3753     void
3754 root 1.486 ev_unref (EV_P) EV_NOEXCEPT
3755 root 1.285 {
3756     --activecnt;
3757     }
3758    
3759     void
3760 root 1.486 ev_now_update (EV_P) EV_NOEXCEPT
3761 root 1.285 {
3762     time_update (EV_A_ 1e100);
3763     }
3764    
3765     void
3766 root 1.486 ev_suspend (EV_P) EV_NOEXCEPT
3767 root 1.285 {
3768     ev_now_update (EV_A);
3769     }
3770    
3771     void
3772 root 1.486 ev_resume (EV_P) EV_NOEXCEPT
3773 root 1.285 {
3774     ev_tstamp mn_prev = mn_now;
3775    
3776     ev_now_update (EV_A);
3777     timers_reschedule (EV_A_ mn_now - mn_prev);
3778 root 1.286 #if EV_PERIODIC_ENABLE
3779 root 1.288 /* TODO: really do this? */
3780 root 1.285 periodics_reschedule (EV_A);
3781 root 1.286 #endif
3782 root 1.285 }
3783    
3784 root 1.8 /*****************************************************************************/
3785 root 1.288 /* singly-linked list management, used when the expected list length is short */
3786 root 1.8
3787 root 1.284 inline_size void
3788 root 1.10 wlist_add (WL *head, WL elem)
3789 root 1.1 {
3790     elem->next = *head;
3791     *head = elem;
3792     }
3793    
3794 root 1.284 inline_size void
3795 root 1.10 wlist_del (WL *head, WL elem)
3796 root 1.1 {
3797     while (*head)
3798     {
3799 root 1.307 if (expect_true (*head == elem))
3800 root 1.1 {
3801     *head = elem->next;
3802 root 1.307 break;
3803 root 1.1 }
3804    
3805     head = &(*head)->next;
3806     }
3807     }
3808    
3809 root 1.288 /* internal, faster, version of ev_clear_pending */
3810 root 1.284 inline_speed void
3811 root 1.166 clear_pending (EV_P_ W w)
3812 root 1.16 {
3813     if (w->pending)
3814     {
3815 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3816 root 1.16 w->pending = 0;
3817     }
3818     }
3819    
3820 root 1.167 int
3821 root 1.486 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3822 root 1.166 {
3823     W w_ = (W)w;
3824     int pending = w_->pending;
3825    
3826 root 1.172 if (expect_true (pending))
3827     {
3828     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3829 root 1.288 p->w = (W)&pending_w;
3830 root 1.172 w_->pending = 0;
3831     return p->events;
3832     }
3833     else
3834 root 1.167 return 0;
3835 root 1.166 }
3836    
3837 root 1.284 inline_size void
3838 root 1.164 pri_adjust (EV_P_ W w)
3839     {
3840 root 1.295 int pri = ev_priority (w);
3841 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3842     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3843 root 1.295 ev_set_priority (w, pri);
3844 root 1.164 }
3845    
3846 root 1.284 inline_speed void
3847 root 1.51 ev_start (EV_P_ W w, int active)
3848 root 1.1 {
3849 root 1.164 pri_adjust (EV_A_ w);
3850 root 1.1 w->active = active;
3851 root 1.51 ev_ref (EV_A);
3852 root 1.1 }
3853    
3854 root 1.284 inline_size void
3855 root 1.51 ev_stop (EV_P_ W w)
3856 root 1.1 {
3857 root 1.51 ev_unref (EV_A);
3858 root 1.1 w->active = 0;
3859     }
3860    
3861 root 1.8 /*****************************************************************************/
3862    
3863 root 1.480 noinline
3864     void
3865 root 1.486 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
3866 root 1.1 {
3867 root 1.37 int fd = w->fd;
3868    
3869 root 1.123 if (expect_false (ev_is_active (w)))
3870 root 1.1 return;
3871    
3872 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3873 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3874 root 1.33
3875 root 1.248 EV_FREQUENT_CHECK;
3876    
3877 root 1.51 ev_start (EV_A_ (W)w, 1);
3878 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3879 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3880 root 1.1
3881 root 1.426 /* common bug, apparently */
3882     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3883    
3884 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3885 root 1.281 w->events &= ~EV__IOFDSET;
3886 root 1.248
3887     EV_FREQUENT_CHECK;
3888 root 1.1 }
3889    
3890 root 1.480 noinline
3891     void
3892 root 1.486 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
3893 root 1.1 {
3894 root 1.166 clear_pending (EV_A_ (W)w);
3895 root 1.123 if (expect_false (!ev_is_active (w)))
3896 root 1.1 return;
3897    
3898 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3899 root 1.89
3900 root 1.248 EV_FREQUENT_CHECK;
3901    
3902 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3903 root 1.51 ev_stop (EV_A_ (W)w);
3904 root 1.1
3905 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3906 root 1.248
3907     EV_FREQUENT_CHECK;
3908 root 1.1 }
3909    
3910 root 1.480 noinline
3911     void
3912 root 1.486 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3913 root 1.1 {
3914 root 1.123 if (expect_false (ev_is_active (w)))
3915 root 1.1 return;
3916    
3917 root 1.228 ev_at (w) += mn_now;
3918 root 1.12
3919 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3920 root 1.13
3921 root 1.248 EV_FREQUENT_CHECK;
3922    
3923     ++timercnt;
3924     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3925 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3926     ANHE_w (timers [ev_active (w)]) = (WT)w;
3927 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3928 root 1.235 upheap (timers, ev_active (w));
3929 root 1.62
3930 root 1.248 EV_FREQUENT_CHECK;
3931    
3932 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3933 root 1.12 }
3934    
3935 root 1.480 noinline
3936     void
3937 root 1.486 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3938 root 1.12 {
3939 root 1.166 clear_pending (EV_A_ (W)w);
3940 root 1.123 if (expect_false (!ev_is_active (w)))
3941 root 1.12 return;
3942    
3943 root 1.248 EV_FREQUENT_CHECK;
3944    
3945 root 1.230 {
3946     int active = ev_active (w);
3947 root 1.62
3948 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3949 root 1.151
3950 root 1.248 --timercnt;
3951    
3952     if (expect_true (active < timercnt + HEAP0))
3953 root 1.151 {
3954 root 1.248 timers [active] = timers [timercnt + HEAP0];
3955 root 1.181 adjustheap (timers, timercnt, active);
3956 root 1.151 }
3957 root 1.248 }
3958 root 1.228
3959     ev_at (w) -= mn_now;
3960 root 1.14
3961 root 1.51 ev_stop (EV_A_ (W)w);
3962 root 1.328
3963     EV_FREQUENT_CHECK;
3964 root 1.12 }
3965 root 1.4
3966 root 1.480 noinline
3967     void
3968 root 1.486 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
3969 root 1.14 {
3970 root 1.248 EV_FREQUENT_CHECK;
3971    
3972 root 1.407 clear_pending (EV_A_ (W)w);
3973 root 1.406
3974 root 1.14 if (ev_is_active (w))
3975     {
3976     if (w->repeat)
3977 root 1.99 {
3978 root 1.228 ev_at (w) = mn_now + w->repeat;
3979 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3980 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3981 root 1.99 }
3982 root 1.14 else
3983 root 1.51 ev_timer_stop (EV_A_ w);
3984 root 1.14 }
3985     else if (w->repeat)
3986 root 1.112 {
3987 root 1.229 ev_at (w) = w->repeat;
3988 root 1.112 ev_timer_start (EV_A_ w);
3989     }
3990 root 1.248
3991     EV_FREQUENT_CHECK;
3992 root 1.14 }
3993    
3994 root 1.301 ev_tstamp
3995 root 1.486 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
3996 root 1.301 {
3997     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3998     }
3999    
4000 root 1.140 #if EV_PERIODIC_ENABLE
4001 root 1.480 noinline
4002     void
4003 root 1.486 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4004 root 1.12 {
4005 root 1.123 if (expect_false (ev_is_active (w)))
4006 root 1.12 return;
4007 root 1.1
4008 root 1.77 if (w->reschedule_cb)
4009 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4010 root 1.77 else if (w->interval)
4011     {
4012 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4013 root 1.370 periodic_recalc (EV_A_ w);
4014 root 1.77 }
4015 root 1.173 else
4016 root 1.228 ev_at (w) = w->offset;
4017 root 1.12
4018 root 1.248 EV_FREQUENT_CHECK;
4019    
4020     ++periodiccnt;
4021     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4022 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
4023     ANHE_w (periodics [ev_active (w)]) = (WT)w;
4024 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
4025 root 1.235 upheap (periodics, ev_active (w));
4026 root 1.62
4027 root 1.248 EV_FREQUENT_CHECK;
4028    
4029 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4030 root 1.1 }
4031    
4032 root 1.480 noinline
4033     void
4034 root 1.486 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4035 root 1.1 {
4036 root 1.166 clear_pending (EV_A_ (W)w);
4037 root 1.123 if (expect_false (!ev_is_active (w)))
4038 root 1.1 return;
4039    
4040 root 1.248 EV_FREQUENT_CHECK;
4041    
4042 root 1.230 {
4043     int active = ev_active (w);
4044 root 1.62
4045 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4046 root 1.151
4047 root 1.248 --periodiccnt;
4048    
4049     if (expect_true (active < periodiccnt + HEAP0))
4050 root 1.151 {
4051 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
4052 root 1.181 adjustheap (periodics, periodiccnt, active);
4053 root 1.151 }
4054 root 1.248 }
4055 root 1.228
4056 root 1.328 ev_stop (EV_A_ (W)w);
4057    
4058 root 1.248 EV_FREQUENT_CHECK;
4059 root 1.1 }
4060    
4061 root 1.480 noinline
4062     void
4063 root 1.486 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4064 root 1.77 {
4065 root 1.84 /* TODO: use adjustheap and recalculation */
4066 root 1.77 ev_periodic_stop (EV_A_ w);
4067     ev_periodic_start (EV_A_ w);
4068     }
4069 root 1.93 #endif
4070 root 1.77
4071 root 1.56 #ifndef SA_RESTART
4072     # define SA_RESTART 0
4073     #endif
4074    
4075 root 1.336 #if EV_SIGNAL_ENABLE
4076    
4077 root 1.480 noinline
4078     void
4079 root 1.486 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4080 root 1.56 {
4081 root 1.123 if (expect_false (ev_is_active (w)))
4082 root 1.56 return;
4083    
4084 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4085    
4086     #if EV_MULTIPLICITY
4087 root 1.308 assert (("libev: a signal must not be attached to two different loops",
4088 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4089    
4090     signals [w->signum - 1].loop = EV_A;
4091 root 1.449 ECB_MEMORY_FENCE_RELEASE;
4092 root 1.306 #endif
4093 root 1.56
4094 root 1.303 EV_FREQUENT_CHECK;
4095    
4096     #if EV_USE_SIGNALFD
4097     if (sigfd == -2)
4098     {
4099     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4100     if (sigfd < 0 && errno == EINVAL)
4101     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4102    
4103     if (sigfd >= 0)
4104     {
4105     fd_intern (sigfd); /* doing it twice will not hurt */
4106    
4107     sigemptyset (&sigfd_set);
4108    
4109     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4110     ev_set_priority (&sigfd_w, EV_MAXPRI);
4111     ev_io_start (EV_A_ &sigfd_w);
4112     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4113     }
4114     }
4115    
4116     if (sigfd >= 0)
4117     {
4118     /* TODO: check .head */
4119     sigaddset (&sigfd_set, w->signum);
4120     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4121 root 1.207
4122 root 1.303 signalfd (sigfd, &sigfd_set, 0);
4123     }
4124 root 1.180 #endif
4125    
4126 root 1.56 ev_start (EV_A_ (W)w, 1);
4127 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
4128 root 1.56
4129 root 1.63 if (!((WL)w)->next)
4130 root 1.304 # if EV_USE_SIGNALFD
4131 root 1.306 if (sigfd < 0) /*TODO*/
4132 root 1.304 # endif
4133 root 1.306 {
4134 root 1.322 # ifdef _WIN32
4135 root 1.317 evpipe_init (EV_A);
4136    
4137 root 1.306 signal (w->signum, ev_sighandler);
4138     # else
4139     struct sigaction sa;
4140    
4141     evpipe_init (EV_A);
4142    
4143     sa.sa_handler = ev_sighandler;
4144     sigfillset (&sa.sa_mask);
4145     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4146     sigaction (w->signum, &sa, 0);
4147    
4148 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
4149     {
4150     sigemptyset (&sa.sa_mask);
4151     sigaddset (&sa.sa_mask, w->signum);
4152     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4153     }
4154 root 1.67 #endif
4155 root 1.306 }
4156 root 1.248
4157     EV_FREQUENT_CHECK;
4158 root 1.56 }
4159    
4160 root 1.480 noinline
4161     void
4162 root 1.486 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4163 root 1.56 {
4164 root 1.166 clear_pending (EV_A_ (W)w);
4165 root 1.123 if (expect_false (!ev_is_active (w)))
4166 root 1.56 return;
4167    
4168 root 1.248 EV_FREQUENT_CHECK;
4169    
4170 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
4171 root 1.56 ev_stop (EV_A_ (W)w);
4172    
4173     if (!signals [w->signum - 1].head)
4174 root 1.306 {
4175 root 1.307 #if EV_MULTIPLICITY
4176 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
4177 root 1.307 #endif
4178     #if EV_USE_SIGNALFD
4179 root 1.306 if (sigfd >= 0)
4180     {
4181 root 1.321 sigset_t ss;
4182    
4183     sigemptyset (&ss);
4184     sigaddset (&ss, w->signum);
4185 root 1.306 sigdelset (&sigfd_set, w->signum);
4186 root 1.321
4187 root 1.306 signalfd (sigfd, &sigfd_set, 0);
4188 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
4189 root 1.306 }
4190     else
4191 root 1.307 #endif
4192 root 1.306 signal (w->signum, SIG_DFL);
4193     }
4194 root 1.248
4195     EV_FREQUENT_CHECK;
4196 root 1.56 }
4197    
4198 root 1.336 #endif
4199    
4200     #if EV_CHILD_ENABLE
4201    
4202 root 1.28 void
4203 root 1.486 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4204 root 1.22 {
4205 root 1.56 #if EV_MULTIPLICITY
4206 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4207 root 1.56 #endif
4208 root 1.123 if (expect_false (ev_is_active (w)))
4209 root 1.22 return;
4210    
4211 root 1.248 EV_FREQUENT_CHECK;
4212    
4213 root 1.51 ev_start (EV_A_ (W)w, 1);
4214 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4215 root 1.248
4216     EV_FREQUENT_CHECK;
4217 root 1.22 }
4218    
4219 root 1.28 void
4220 root 1.486 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4221 root 1.22 {
4222 root 1.166 clear_pending (EV_A_ (W)w);
4223 root 1.123 if (expect_false (!ev_is_active (w)))
4224 root 1.22 return;
4225    
4226 root 1.248 EV_FREQUENT_CHECK;
4227    
4228 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4229 root 1.51 ev_stop (EV_A_ (W)w);
4230 root 1.248
4231     EV_FREQUENT_CHECK;
4232 root 1.22 }
4233    
4234 root 1.336 #endif
4235    
4236 root 1.140 #if EV_STAT_ENABLE
4237    
4238     # ifdef _WIN32
4239 root 1.146 # undef lstat
4240     # define lstat(a,b) _stati64 (a,b)
4241 root 1.140 # endif
4242    
4243 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4244     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4245     #define MIN_STAT_INTERVAL 0.1074891
4246 root 1.143
4247 root 1.480 noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4248 root 1.152
4249     #if EV_USE_INOTIFY
4250 root 1.326
4251     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4252     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4253 root 1.152
4254 root 1.480 noinline
4255     static void
4256 root 1.152 infy_add (EV_P_ ev_stat *w)
4257     {
4258 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4259     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4260     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4261     | IN_DONT_FOLLOW | IN_MASK_ADD);
4262 root 1.152
4263 root 1.318 if (w->wd >= 0)
4264 root 1.152 {
4265 root 1.318 struct statfs sfs;
4266    
4267     /* now local changes will be tracked by inotify, but remote changes won't */
4268     /* unless the filesystem is known to be local, we therefore still poll */
4269     /* also do poll on <2.6.25, but with normal frequency */
4270    
4271     if (!fs_2625)
4272     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4273     else if (!statfs (w->path, &sfs)
4274     && (sfs.f_type == 0x1373 /* devfs */
4275 root 1.451 || sfs.f_type == 0x4006 /* fat */
4276     || sfs.f_type == 0x4d44 /* msdos */
4277 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4278 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4279     || sfs.f_type == 0x858458f6 /* ramfs */
4280     || sfs.f_type == 0x5346544e /* ntfs */
4281 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4282 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4283 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4284 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4285 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4286     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4287     else
4288     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4289     }
4290     else
4291     {
4292     /* can't use inotify, continue to stat */
4293 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4294 root 1.152
4295 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4296 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4297 root 1.233 /* but an efficiency issue only */
4298 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4299 root 1.152 {
4300 root 1.153 char path [4096];
4301 root 1.152 strcpy (path, w->path);
4302    
4303     do
4304     {
4305     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4306     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4307    
4308     char *pend = strrchr (path, '/');
4309    
4310 root 1.275 if (!pend || pend == path)
4311     break;
4312 root 1.152
4313     *pend = 0;
4314 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4315 root 1.372 }
4316 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4317     }
4318     }
4319 root 1.275
4320     if (w->wd >= 0)
4321 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4322 root 1.152
4323 root 1.318 /* now re-arm timer, if required */
4324     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4325     ev_timer_again (EV_A_ &w->timer);
4326     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4327 root 1.152 }
4328    
4329 root 1.480 noinline
4330     static void
4331 root 1.152 infy_del (EV_P_ ev_stat *w)
4332     {
4333     int slot;
4334     int wd = w->wd;
4335    
4336     if (wd < 0)
4337     return;
4338    
4339     w->wd = -2;
4340 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4341 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4342    
4343     /* remove this watcher, if others are watching it, they will rearm */
4344     inotify_rm_watch (fs_fd, wd);
4345     }
4346    
4347 root 1.480 noinline
4348     static void
4349 root 1.152 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4350     {
4351     if (slot < 0)
4352 root 1.264 /* overflow, need to check for all hash slots */
4353 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4354 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4355     else
4356     {
4357     WL w_;
4358    
4359 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4360 root 1.152 {
4361     ev_stat *w = (ev_stat *)w_;
4362     w_ = w_->next; /* lets us remove this watcher and all before it */
4363    
4364     if (w->wd == wd || wd == -1)
4365     {
4366     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4367     {
4368 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4369 root 1.152 w->wd = -1;
4370     infy_add (EV_A_ w); /* re-add, no matter what */
4371     }
4372    
4373 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4374 root 1.152 }
4375     }
4376     }
4377     }
4378    
4379     static void
4380     infy_cb (EV_P_ ev_io *w, int revents)
4381     {
4382     char buf [EV_INOTIFY_BUFSIZE];
4383     int ofs;
4384     int len = read (fs_fd, buf, sizeof (buf));
4385    
4386 root 1.326 for (ofs = 0; ofs < len; )
4387     {
4388     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4389     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4390     ofs += sizeof (struct inotify_event) + ev->len;
4391     }
4392 root 1.152 }
4393    
4394 root 1.480 inline_size ecb_cold
4395     void
4396 root 1.330 ev_check_2625 (EV_P)
4397     {
4398     /* kernels < 2.6.25 are borked
4399     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4400     */
4401     if (ev_linux_version () < 0x020619)
4402 root 1.273 return;
4403 root 1.264
4404 root 1.273 fs_2625 = 1;
4405     }
4406 root 1.264
4407 root 1.315 inline_size int
4408     infy_newfd (void)
4409     {
4410 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4411 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4412     if (fd >= 0)
4413     return fd;
4414     #endif
4415     return inotify_init ();
4416     }
4417    
4418 root 1.284 inline_size void
4419 root 1.273 infy_init (EV_P)
4420     {
4421     if (fs_fd != -2)
4422     return;
4423 root 1.264
4424 root 1.273 fs_fd = -1;
4425 root 1.264
4426 root 1.330 ev_check_2625 (EV_A);
4427 root 1.264
4428 root 1.315 fs_fd = infy_newfd ();
4429 root 1.152
4430     if (fs_fd >= 0)
4431     {
4432 root 1.315 fd_intern (fs_fd);
4433 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4434     ev_set_priority (&fs_w, EV_MAXPRI);
4435     ev_io_start (EV_A_ &fs_w);
4436 root 1.317 ev_unref (EV_A);
4437 root 1.152 }
4438     }
4439    
4440 root 1.284 inline_size void
4441 root 1.154 infy_fork (EV_P)
4442     {
4443     int slot;
4444    
4445     if (fs_fd < 0)
4446     return;
4447    
4448 root 1.317 ev_ref (EV_A);
4449 root 1.315 ev_io_stop (EV_A_ &fs_w);
4450 root 1.154 close (fs_fd);
4451 root 1.315 fs_fd = infy_newfd ();
4452    
4453     if (fs_fd >= 0)
4454     {
4455     fd_intern (fs_fd);
4456     ev_io_set (&fs_w, fs_fd, EV_READ);
4457     ev_io_start (EV_A_ &fs_w);
4458 root 1.317 ev_unref (EV_A);
4459 root 1.315 }
4460 root 1.154
4461 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4462 root 1.154 {
4463     WL w_ = fs_hash [slot].head;
4464     fs_hash [slot].head = 0;
4465    
4466     while (w_)
4467     {
4468     ev_stat *w = (ev_stat *)w_;
4469     w_ = w_->next; /* lets us add this watcher */
4470    
4471     w->wd = -1;
4472    
4473     if (fs_fd >= 0)
4474     infy_add (EV_A_ w); /* re-add, no matter what */
4475     else
4476 root 1.318 {
4477     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4478     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4479     ev_timer_again (EV_A_ &w->timer);
4480     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4481     }
4482 root 1.154 }
4483     }
4484     }
4485    
4486 root 1.152 #endif
4487    
4488 root 1.255 #ifdef _WIN32
4489     # define EV_LSTAT(p,b) _stati64 (p, b)
4490     #else
4491     # define EV_LSTAT(p,b) lstat (p, b)
4492     #endif
4493    
4494 root 1.140 void
4495 root 1.486 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4496 root 1.140 {
4497     if (lstat (w->path, &w->attr) < 0)
4498     w->attr.st_nlink = 0;
4499     else if (!w->attr.st_nlink)
4500     w->attr.st_nlink = 1;
4501     }
4502    
4503 root 1.480 noinline
4504     static void
4505 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4506     {
4507     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4508    
4509 root 1.320 ev_statdata prev = w->attr;
4510 root 1.140 ev_stat_stat (EV_A_ w);
4511    
4512 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4513     if (
4514 root 1.320 prev.st_dev != w->attr.st_dev
4515     || prev.st_ino != w->attr.st_ino
4516     || prev.st_mode != w->attr.st_mode
4517     || prev.st_nlink != w->attr.st_nlink
4518     || prev.st_uid != w->attr.st_uid
4519     || prev.st_gid != w->attr.st_gid
4520     || prev.st_rdev != w->attr.st_rdev
4521     || prev.st_size != w->attr.st_size
4522     || prev.st_atime != w->attr.st_atime
4523     || prev.st_mtime != w->attr.st_mtime
4524     || prev.st_ctime != w->attr.st_ctime
4525 root 1.156 ) {
4526 root 1.320 /* we only update w->prev on actual differences */
4527     /* in case we test more often than invoke the callback, */
4528     /* to ensure that prev is always different to attr */
4529     w->prev = prev;
4530    
4531 root 1.152 #if EV_USE_INOTIFY
4532 root 1.264 if (fs_fd >= 0)
4533     {
4534     infy_del (EV_A_ w);
4535     infy_add (EV_A_ w);
4536     ev_stat_stat (EV_A_ w); /* avoid race... */
4537     }
4538 root 1.152 #endif
4539    
4540     ev_feed_event (EV_A_ w, EV_STAT);
4541     }
4542 root 1.140 }
4543    
4544     void
4545 root 1.486 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4546 root 1.140 {
4547     if (expect_false (ev_is_active (w)))
4548     return;
4549    
4550     ev_stat_stat (EV_A_ w);
4551    
4552 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4553     w->interval = MIN_STAT_INTERVAL;
4554 root 1.143
4555 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4556 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4557 root 1.152
4558     #if EV_USE_INOTIFY
4559     infy_init (EV_A);
4560    
4561     if (fs_fd >= 0)
4562     infy_add (EV_A_ w);
4563     else
4564     #endif
4565 root 1.318 {
4566     ev_timer_again (EV_A_ &w->timer);
4567     ev_unref (EV_A);
4568     }
4569 root 1.140
4570     ev_start (EV_A_ (W)w, 1);
4571 root 1.248
4572     EV_FREQUENT_CHECK;
4573 root 1.140 }
4574    
4575     void
4576 root 1.486 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4577 root 1.140 {
4578 root 1.166 clear_pending (EV_A_ (W)w);
4579 root 1.140 if (expect_false (!ev_is_active (w)))
4580     return;
4581    
4582 root 1.248 EV_FREQUENT_CHECK;
4583    
4584 root 1.152 #if EV_USE_INOTIFY
4585     infy_del (EV_A_ w);
4586     #endif
4587 root 1.318
4588     if (ev_is_active (&w->timer))
4589     {
4590     ev_ref (EV_A);
4591     ev_timer_stop (EV_A_ &w->timer);
4592     }
4593 root 1.140
4594 root 1.134 ev_stop (EV_A_ (W)w);
4595 root 1.248
4596     EV_FREQUENT_CHECK;
4597 root 1.134 }
4598     #endif
4599    
4600 root 1.164 #if EV_IDLE_ENABLE
4601 root 1.144 void
4602 root 1.486 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4603 root 1.144 {
4604     if (expect_false (ev_is_active (w)))
4605     return;
4606    
4607 root 1.164 pri_adjust (EV_A_ (W)w);
4608    
4609 root 1.248 EV_FREQUENT_CHECK;
4610    
4611 root 1.164 {
4612     int active = ++idlecnt [ABSPRI (w)];
4613    
4614     ++idleall;
4615     ev_start (EV_A_ (W)w, active);
4616    
4617     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4618     idles [ABSPRI (w)][active - 1] = w;
4619     }
4620 root 1.248
4621     EV_FREQUENT_CHECK;
4622 root 1.144 }
4623    
4624     void
4625 root 1.486 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4626 root 1.144 {
4627 root 1.166 clear_pending (EV_A_ (W)w);
4628 root 1.144 if (expect_false (!ev_is_active (w)))
4629     return;
4630    
4631 root 1.248 EV_FREQUENT_CHECK;
4632    
4633 root 1.144 {
4634 root 1.230 int active = ev_active (w);
4635 root 1.164
4636     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4637 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4638 root 1.164
4639     ev_stop (EV_A_ (W)w);
4640     --idleall;
4641 root 1.144 }
4642 root 1.248
4643     EV_FREQUENT_CHECK;
4644 root 1.144 }
4645 root 1.164 #endif
4646 root 1.144
4647 root 1.337 #if EV_PREPARE_ENABLE
4648 root 1.144 void
4649 root 1.486 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4650 root 1.144 {
4651     if (expect_false (ev_is_active (w)))
4652     return;
4653    
4654 root 1.248 EV_FREQUENT_CHECK;
4655    
4656 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4657     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4658     prepares [preparecnt - 1] = w;
4659 root 1.248
4660     EV_FREQUENT_CHECK;
4661 root 1.144 }
4662    
4663     void
4664 root 1.486 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4665 root 1.144 {
4666 root 1.166 clear_pending (EV_A_ (W)w);
4667 root 1.144 if (expect_false (!ev_is_active (w)))
4668     return;
4669    
4670 root 1.248 EV_FREQUENT_CHECK;
4671    
4672 root 1.144 {
4673 root 1.230 int active = ev_active (w);
4674    
4675 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4676 root 1.230 ev_active (prepares [active - 1]) = active;
4677 root 1.144 }
4678    
4679     ev_stop (EV_A_ (W)w);
4680 root 1.248
4681     EV_FREQUENT_CHECK;
4682 root 1.144 }
4683 root 1.337 #endif
4684 root 1.144
4685 root 1.337 #if EV_CHECK_ENABLE
4686 root 1.144 void
4687 root 1.486 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4688 root 1.144 {
4689     if (expect_false (ev_is_active (w)))
4690     return;
4691    
4692 root 1.248 EV_FREQUENT_CHECK;
4693    
4694 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4695     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4696     checks [checkcnt - 1] = w;
4697 root 1.248
4698     EV_FREQUENT_CHECK;
4699 root 1.144 }
4700    
4701     void
4702 root 1.486 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4703 root 1.144 {
4704 root 1.166 clear_pending (EV_A_ (W)w);
4705 root 1.144 if (expect_false (!ev_is_active (w)))
4706     return;
4707    
4708 root 1.248 EV_FREQUENT_CHECK;
4709    
4710 root 1.144 {
4711 root 1.230 int active = ev_active (w);
4712    
4713 root 1.144 checks [active - 1] = checks [--checkcnt];
4714 root 1.230 ev_active (checks [active - 1]) = active;
4715 root 1.144 }
4716    
4717     ev_stop (EV_A_ (W)w);
4718 root 1.248
4719     EV_FREQUENT_CHECK;
4720 root 1.144 }
4721 root 1.337 #endif
4722 root 1.144
4723     #if EV_EMBED_ENABLE
4724 root 1.480 noinline
4725     void
4726 root 1.486 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4727 root 1.144 {
4728 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4729 root 1.144 }
4730    
4731     static void
4732 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4733 root 1.144 {
4734     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4735    
4736     if (ev_cb (w))
4737     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4738     else
4739 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4740 root 1.144 }
4741    
4742 root 1.189 static void
4743     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4744     {
4745     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4746    
4747 root 1.195 {
4748 root 1.306 EV_P = w->other;
4749 root 1.195
4750     while (fdchangecnt)
4751     {
4752     fd_reify (EV_A);
4753 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4754 root 1.195 }
4755     }
4756     }
4757    
4758 root 1.261 static void
4759     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4760     {
4761     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4762    
4763 root 1.277 ev_embed_stop (EV_A_ w);
4764    
4765 root 1.261 {
4766 root 1.306 EV_P = w->other;
4767 root 1.261
4768     ev_loop_fork (EV_A);
4769 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4770 root 1.261 }
4771 root 1.277
4772     ev_embed_start (EV_A_ w);
4773 root 1.261 }
4774    
4775 root 1.195 #if 0
4776     static void
4777     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4778     {
4779     ev_idle_stop (EV_A_ idle);
4780 root 1.189 }
4781 root 1.195 #endif
4782 root 1.189
4783 root 1.144 void
4784 root 1.486 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4785 root 1.144 {
4786     if (expect_false (ev_is_active (w)))
4787     return;
4788    
4789     {
4790 root 1.306 EV_P = w->other;
4791 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4792 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4793 root 1.144 }
4794    
4795 root 1.248 EV_FREQUENT_CHECK;
4796    
4797 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4798     ev_io_start (EV_A_ &w->io);
4799    
4800 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4801     ev_set_priority (&w->prepare, EV_MINPRI);
4802     ev_prepare_start (EV_A_ &w->prepare);
4803    
4804 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4805     ev_fork_start (EV_A_ &w->fork);
4806    
4807 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4808    
4809 root 1.144 ev_start (EV_A_ (W)w, 1);
4810 root 1.248
4811     EV_FREQUENT_CHECK;
4812 root 1.144 }
4813    
4814     void
4815 root 1.486 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4816 root 1.144 {
4817 root 1.166 clear_pending (EV_A_ (W)w);
4818 root 1.144 if (expect_false (!ev_is_active (w)))
4819     return;
4820    
4821 root 1.248 EV_FREQUENT_CHECK;
4822    
4823 root 1.261 ev_io_stop (EV_A_ &w->io);
4824 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4825 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4826 root 1.248
4827 root 1.328 ev_stop (EV_A_ (W)w);
4828    
4829 root 1.248 EV_FREQUENT_CHECK;
4830 root 1.144 }
4831     #endif
4832    
4833 root 1.147 #if EV_FORK_ENABLE
4834     void
4835 root 1.486 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4836 root 1.147 {
4837     if (expect_false (ev_is_active (w)))
4838     return;
4839    
4840 root 1.248 EV_FREQUENT_CHECK;
4841    
4842 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4843     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4844     forks [forkcnt - 1] = w;
4845 root 1.248
4846     EV_FREQUENT_CHECK;
4847 root 1.147 }
4848    
4849     void
4850 root 1.486 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4851 root 1.147 {
4852 root 1.166 clear_pending (EV_A_ (W)w);
4853 root 1.147 if (expect_false (!ev_is_active (w)))
4854     return;
4855    
4856 root 1.248 EV_FREQUENT_CHECK;
4857    
4858 root 1.147 {
4859 root 1.230 int active = ev_active (w);
4860    
4861 root 1.147 forks [active - 1] = forks [--forkcnt];
4862 root 1.230 ev_active (forks [active - 1]) = active;
4863 root 1.147 }
4864    
4865     ev_stop (EV_A_ (W)w);
4866 root 1.248
4867     EV_FREQUENT_CHECK;
4868 root 1.147 }
4869     #endif
4870    
4871 root 1.360 #if EV_CLEANUP_ENABLE
4872     void
4873 root 1.486 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4874 root 1.360 {
4875     if (expect_false (ev_is_active (w)))
4876     return;
4877    
4878     EV_FREQUENT_CHECK;
4879    
4880     ev_start (EV_A_ (W)w, ++cleanupcnt);
4881     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4882     cleanups [cleanupcnt - 1] = w;
4883    
4884 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4885     ev_unref (EV_A);
4886 root 1.360 EV_FREQUENT_CHECK;
4887     }
4888    
4889     void
4890 root 1.486 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4891 root 1.360 {
4892     clear_pending (EV_A_ (W)w);
4893     if (expect_false (!ev_is_active (w)))
4894     return;
4895    
4896     EV_FREQUENT_CHECK;
4897 root 1.362 ev_ref (EV_A);
4898 root 1.360
4899     {
4900     int active = ev_active (w);
4901    
4902     cleanups [active - 1] = cleanups [--cleanupcnt];
4903     ev_active (cleanups [active - 1]) = active;
4904     }
4905    
4906     ev_stop (EV_A_ (W)w);
4907    
4908     EV_FREQUENT_CHECK;
4909     }
4910     #endif
4911    
4912 root 1.207 #if EV_ASYNC_ENABLE
4913     void
4914 root 1.486 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4915 root 1.207 {
4916     if (expect_false (ev_is_active (w)))
4917     return;
4918    
4919 root 1.352 w->sent = 0;
4920    
4921 root 1.207 evpipe_init (EV_A);
4922    
4923 root 1.248 EV_FREQUENT_CHECK;
4924    
4925 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4926     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4927     asyncs [asynccnt - 1] = w;
4928 root 1.248
4929     EV_FREQUENT_CHECK;
4930 root 1.207 }
4931    
4932     void
4933 root 1.486 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4934 root 1.207 {
4935     clear_pending (EV_A_ (W)w);
4936     if (expect_false (!ev_is_active (w)))
4937     return;
4938    
4939 root 1.248 EV_FREQUENT_CHECK;
4940    
4941 root 1.207 {
4942 root 1.230 int active = ev_active (w);
4943    
4944 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4945 root 1.230 ev_active (asyncs [active - 1]) = active;
4946 root 1.207 }
4947    
4948     ev_stop (EV_A_ (W)w);
4949 root 1.248
4950     EV_FREQUENT_CHECK;
4951 root 1.207 }
4952    
4953     void
4954 root 1.486 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
4955 root 1.207 {
4956     w->sent = 1;
4957 root 1.307 evpipe_write (EV_A_ &async_pending);
4958 root 1.207 }
4959     #endif
4960    
4961 root 1.1 /*****************************************************************************/
4962 root 1.10
4963 root 1.16 struct ev_once
4964     {
4965 root 1.136 ev_io io;
4966     ev_timer to;
4967 root 1.16 void (*cb)(int revents, void *arg);
4968     void *arg;
4969     };
4970    
4971     static void
4972 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4973 root 1.16 {
4974     void (*cb)(int revents, void *arg) = once->cb;
4975     void *arg = once->arg;
4976    
4977 root 1.259 ev_io_stop (EV_A_ &once->io);
4978 root 1.51 ev_timer_stop (EV_A_ &once->to);
4979 root 1.69 ev_free (once);
4980 root 1.16
4981     cb (revents, arg);
4982     }
4983    
4984     static void
4985 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4986 root 1.16 {
4987 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4988    
4989     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4990 root 1.16 }
4991    
4992     static void
4993 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4994 root 1.16 {
4995 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4996    
4997     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4998 root 1.16 }
4999    
5000     void
5001 root 1.486 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5002 root 1.16 {
5003 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5004 root 1.16
5005 root 1.123 if (expect_false (!once))
5006 root 1.16 {
5007 root 1.341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
5008 root 1.123 return;
5009     }
5010    
5011     once->cb = cb;
5012     once->arg = arg;
5013 root 1.16
5014 root 1.123 ev_init (&once->io, once_cb_io);
5015     if (fd >= 0)
5016     {
5017     ev_io_set (&once->io, fd, events);
5018     ev_io_start (EV_A_ &once->io);
5019     }
5020 root 1.16
5021 root 1.123 ev_init (&once->to, once_cb_to);
5022     if (timeout >= 0.)
5023     {
5024     ev_timer_set (&once->to, timeout, 0.);
5025     ev_timer_start (EV_A_ &once->to);
5026 root 1.16 }
5027     }
5028    
5029 root 1.282 /*****************************************************************************/
5030    
5031 root 1.288 #if EV_WALK_ENABLE
5032 root 1.480 ecb_cold
5033     void
5034 root 1.486 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5035 root 1.282 {
5036     int i, j;
5037     ev_watcher_list *wl, *wn;
5038    
5039     if (types & (EV_IO | EV_EMBED))
5040     for (i = 0; i < anfdmax; ++i)
5041     for (wl = anfds [i].head; wl; )
5042     {
5043     wn = wl->next;
5044    
5045     #if EV_EMBED_ENABLE
5046     if (ev_cb ((ev_io *)wl) == embed_io_cb)
5047     {
5048     if (types & EV_EMBED)
5049     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5050     }
5051     else
5052     #endif
5053     #if EV_USE_INOTIFY
5054     if (ev_cb ((ev_io *)wl) == infy_cb)
5055     ;
5056     else
5057     #endif
5058 root 1.288 if ((ev_io *)wl != &pipe_w)
5059 root 1.282 if (types & EV_IO)
5060     cb (EV_A_ EV_IO, wl);
5061    
5062     wl = wn;
5063     }
5064    
5065     if (types & (EV_TIMER | EV_STAT))
5066     for (i = timercnt + HEAP0; i-- > HEAP0; )
5067     #if EV_STAT_ENABLE
5068     /*TODO: timer is not always active*/
5069     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5070     {
5071     if (types & EV_STAT)
5072     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5073     }
5074     else
5075     #endif
5076     if (types & EV_TIMER)
5077     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5078    
5079     #if EV_PERIODIC_ENABLE
5080     if (types & EV_PERIODIC)
5081     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5082     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5083     #endif
5084    
5085     #if EV_IDLE_ENABLE
5086     if (types & EV_IDLE)
5087 root 1.390 for (j = NUMPRI; j--; )
5088 root 1.282 for (i = idlecnt [j]; i--; )
5089     cb (EV_A_ EV_IDLE, idles [j][i]);
5090     #endif
5091    
5092     #if EV_FORK_ENABLE
5093     if (types & EV_FORK)
5094     for (i = forkcnt; i--; )
5095     if (ev_cb (forks [i]) != embed_fork_cb)
5096     cb (EV_A_ EV_FORK, forks [i]);
5097     #endif
5098    
5099     #if EV_ASYNC_ENABLE
5100     if (types & EV_ASYNC)
5101     for (i = asynccnt; i--; )
5102     cb (EV_A_ EV_ASYNC, asyncs [i]);
5103     #endif
5104    
5105 root 1.337 #if EV_PREPARE_ENABLE
5106 root 1.282 if (types & EV_PREPARE)
5107     for (i = preparecnt; i--; )
5108 root 1.337 # if EV_EMBED_ENABLE
5109 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
5110 root 1.337 # endif
5111     cb (EV_A_ EV_PREPARE, prepares [i]);
5112 root 1.282 #endif
5113    
5114 root 1.337 #if EV_CHECK_ENABLE
5115 root 1.282 if (types & EV_CHECK)
5116     for (i = checkcnt; i--; )
5117     cb (EV_A_ EV_CHECK, checks [i]);
5118 root 1.337 #endif
5119 root 1.282
5120 root 1.337 #if EV_SIGNAL_ENABLE
5121 root 1.282 if (types & EV_SIGNAL)
5122 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
5123 root 1.282 for (wl = signals [i].head; wl; )
5124     {
5125     wn = wl->next;
5126     cb (EV_A_ EV_SIGNAL, wl);
5127     wl = wn;
5128     }
5129 root 1.337 #endif
5130 root 1.282
5131 root 1.337 #if EV_CHILD_ENABLE
5132 root 1.282 if (types & EV_CHILD)
5133 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
5134 root 1.282 for (wl = childs [i]; wl; )
5135     {
5136     wn = wl->next;
5137     cb (EV_A_ EV_CHILD, wl);
5138     wl = wn;
5139     }
5140 root 1.337 #endif
5141 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
5142     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5143     }
5144     #endif
5145    
5146 root 1.188 #if EV_MULTIPLICITY
5147     #include "ev_wrap.h"
5148     #endif
5149