ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.489
Committed: Sat Dec 29 14:23:20 2018 UTC (5 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.488: +0 -6 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.487 * Copyright (c) 2007-2018 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.483 /* OS X, in its infinite idiocy, actually HARDCODES
168     * a limit of 1024 into their select. Where people have brains,
169     * OS X engineers apparently have a vacuum. Or maybe they were
170     * ordered to have a vacuum, or they do anything for money.
171     * This might help. Or not.
172     * Note that this must be defined early, as other include files
173     * will rely on this define as well.
174     */
175     #define _DARWIN_UNLIMITED_SELECT 1
176    
177 root 1.1 #include <stdlib.h>
178 root 1.319 #include <string.h>
179 root 1.7 #include <fcntl.h>
180 root 1.16 #include <stddef.h>
181 root 1.1
182     #include <stdio.h>
183    
184 root 1.4 #include <assert.h>
185 root 1.1 #include <errno.h>
186 root 1.22 #include <sys/types.h>
187 root 1.71 #include <time.h>
188 root 1.326 #include <limits.h>
189 root 1.71
190 root 1.72 #include <signal.h>
191 root 1.71
192 root 1.152 #ifdef EV_H
193     # include EV_H
194     #else
195     # include "ev.h"
196     #endif
197    
198 root 1.410 #if EV_NO_THREADS
199     # undef EV_NO_SMP
200     # define EV_NO_SMP 1
201     # undef ECB_NO_THREADS
202     # define ECB_NO_THREADS 1
203     #endif
204     #if EV_NO_SMP
205     # undef EV_NO_SMP
206     # define ECB_NO_SMP 1
207     #endif
208    
209 root 1.103 #ifndef _WIN32
210 root 1.71 # include <sys/time.h>
211 root 1.45 # include <sys/wait.h>
212 root 1.140 # include <unistd.h>
213 root 1.103 #else
214 root 1.256 # include <io.h>
215 root 1.103 # define WIN32_LEAN_AND_MEAN
216 root 1.431 # include <winsock2.h>
217 root 1.103 # include <windows.h>
218     # ifndef EV_SELECT_IS_WINSOCKET
219     # define EV_SELECT_IS_WINSOCKET 1
220     # endif
221 root 1.331 # undef EV_AVOID_STDIO
222 root 1.45 #endif
223 root 1.103
224 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
225 root 1.40
226 root 1.305 /* try to deduce the maximum number of signals on this platform */
227 root 1.416 #if defined EV_NSIG
228 root 1.305 /* use what's provided */
229 root 1.416 #elif defined NSIG
230 root 1.305 # define EV_NSIG (NSIG)
231 root 1.416 #elif defined _NSIG
232 root 1.305 # define EV_NSIG (_NSIG)
233 root 1.416 #elif defined SIGMAX
234 root 1.305 # define EV_NSIG (SIGMAX+1)
235 root 1.416 #elif defined SIG_MAX
236 root 1.305 # define EV_NSIG (SIG_MAX+1)
237 root 1.416 #elif defined _SIG_MAX
238 root 1.305 # define EV_NSIG (_SIG_MAX+1)
239 root 1.416 #elif defined MAXSIG
240 root 1.305 # define EV_NSIG (MAXSIG+1)
241 root 1.416 #elif defined MAX_SIG
242 root 1.305 # define EV_NSIG (MAX_SIG+1)
243 root 1.416 #elif defined SIGARRAYSIZE
244 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245 root 1.416 #elif defined _sys_nsig
246 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247     #else
248 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
249 root 1.305 #endif
250    
251 root 1.373 #ifndef EV_USE_FLOOR
252     # define EV_USE_FLOOR 0
253     #endif
254    
255 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
256 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258 root 1.274 # else
259     # define EV_USE_CLOCK_SYSCALL 0
260     # endif
261     #endif
262    
263 root 1.470 #if !(_POSIX_TIMERS > 0)
264     # ifndef EV_USE_MONOTONIC
265     # define EV_USE_MONOTONIC 0
266     # endif
267     # ifndef EV_USE_REALTIME
268     # define EV_USE_REALTIME 0
269     # endif
270     #endif
271    
272 root 1.29 #ifndef EV_USE_MONOTONIC
273 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
275 root 1.253 # else
276     # define EV_USE_MONOTONIC 0
277     # endif
278 root 1.37 #endif
279    
280 root 1.118 #ifndef EV_USE_REALTIME
281 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
282 root 1.118 #endif
283    
284 root 1.193 #ifndef EV_USE_NANOSLEEP
285 root 1.253 # if _POSIX_C_SOURCE >= 199309L
286 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
287 root 1.253 # else
288     # define EV_USE_NANOSLEEP 0
289     # endif
290 root 1.193 #endif
291    
292 root 1.29 #ifndef EV_USE_SELECT
293 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
294 root 1.10 #endif
295    
296 root 1.59 #ifndef EV_USE_POLL
297 root 1.104 # ifdef _WIN32
298     # define EV_USE_POLL 0
299     # else
300 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
301 root 1.104 # endif
302 root 1.41 #endif
303    
304 root 1.29 #ifndef EV_USE_EPOLL
305 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
306 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
307 root 1.220 # else
308     # define EV_USE_EPOLL 0
309     # endif
310 root 1.10 #endif
311    
312 root 1.44 #ifndef EV_USE_KQUEUE
313     # define EV_USE_KQUEUE 0
314     #endif
315    
316 root 1.118 #ifndef EV_USE_PORT
317     # define EV_USE_PORT 0
318 root 1.40 #endif
319    
320 root 1.152 #ifndef EV_USE_INOTIFY
321 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
322 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
323 root 1.220 # else
324     # define EV_USE_INOTIFY 0
325     # endif
326 root 1.152 #endif
327    
328 root 1.149 #ifndef EV_PID_HASHSIZE
329 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
330 root 1.149 #endif
331    
332 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
333 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
334 root 1.152 #endif
335    
336 root 1.220 #ifndef EV_USE_EVENTFD
337     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
339 root 1.220 # else
340     # define EV_USE_EVENTFD 0
341     # endif
342     #endif
343    
344 root 1.303 #ifndef EV_USE_SIGNALFD
345 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
346 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
347 root 1.303 # else
348     # define EV_USE_SIGNALFD 0
349     # endif
350     #endif
351    
352 root 1.249 #if 0 /* debugging */
353 root 1.250 # define EV_VERIFY 3
354 root 1.249 # define EV_USE_4HEAP 1
355     # define EV_HEAP_CACHE_AT 1
356     #endif
357    
358 root 1.250 #ifndef EV_VERIFY
359 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
360 root 1.250 #endif
361    
362 root 1.243 #ifndef EV_USE_4HEAP
363 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
364 root 1.243 #endif
365    
366     #ifndef EV_HEAP_CACHE_AT
367 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
368 root 1.243 #endif
369    
370 root 1.481 #ifdef __ANDROID__
371 root 1.452 /* supposedly, android doesn't typedef fd_mask */
372     # undef EV_USE_SELECT
373     # define EV_USE_SELECT 0
374     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
375     # undef EV_USE_CLOCK_SYSCALL
376     # define EV_USE_CLOCK_SYSCALL 0
377     #endif
378    
379     /* aix's poll.h seems to cause lots of trouble */
380     #ifdef _AIX
381     /* AIX has a completely broken poll.h header */
382     # undef EV_USE_POLL
383     # define EV_USE_POLL 0
384     #endif
385    
386 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
387     /* which makes programs even slower. might work on other unices, too. */
388     #if EV_USE_CLOCK_SYSCALL
389 root 1.423 # include <sys/syscall.h>
390 root 1.291 # ifdef SYS_clock_gettime
391     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
392     # undef EV_USE_MONOTONIC
393     # define EV_USE_MONOTONIC 1
394     # else
395     # undef EV_USE_CLOCK_SYSCALL
396     # define EV_USE_CLOCK_SYSCALL 0
397     # endif
398     #endif
399    
400 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
401 root 1.40
402     #ifndef CLOCK_MONOTONIC
403     # undef EV_USE_MONOTONIC
404     # define EV_USE_MONOTONIC 0
405     #endif
406    
407 root 1.31 #ifndef CLOCK_REALTIME
408 root 1.40 # undef EV_USE_REALTIME
409 root 1.31 # define EV_USE_REALTIME 0
410     #endif
411 root 1.40
412 root 1.152 #if !EV_STAT_ENABLE
413 root 1.185 # undef EV_USE_INOTIFY
414 root 1.152 # define EV_USE_INOTIFY 0
415     #endif
416    
417 root 1.193 #if !EV_USE_NANOSLEEP
418 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
419 root 1.416 # if !defined _WIN32 && !defined __hpux
420 root 1.193 # include <sys/select.h>
421     # endif
422     #endif
423    
424 root 1.152 #if EV_USE_INOTIFY
425 root 1.273 # include <sys/statfs.h>
426 root 1.152 # include <sys/inotify.h>
427 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
428     # ifndef IN_DONT_FOLLOW
429     # undef EV_USE_INOTIFY
430     # define EV_USE_INOTIFY 0
431     # endif
432 root 1.152 #endif
433    
434 root 1.220 #if EV_USE_EVENTFD
435     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
436 root 1.221 # include <stdint.h>
437 root 1.303 # ifndef EFD_NONBLOCK
438     # define EFD_NONBLOCK O_NONBLOCK
439     # endif
440     # ifndef EFD_CLOEXEC
441 root 1.311 # ifdef O_CLOEXEC
442     # define EFD_CLOEXEC O_CLOEXEC
443     # else
444     # define EFD_CLOEXEC 02000000
445     # endif
446 root 1.303 # endif
447 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
448 root 1.220 #endif
449    
450 root 1.303 #if EV_USE_SIGNALFD
451 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
452     # include <stdint.h>
453     # ifndef SFD_NONBLOCK
454     # define SFD_NONBLOCK O_NONBLOCK
455     # endif
456     # ifndef SFD_CLOEXEC
457     # ifdef O_CLOEXEC
458     # define SFD_CLOEXEC O_CLOEXEC
459     # else
460     # define SFD_CLOEXEC 02000000
461     # endif
462     # endif
463 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
464 root 1.314
465     struct signalfd_siginfo
466     {
467     uint32_t ssi_signo;
468     char pad[128 - sizeof (uint32_t)];
469     };
470 root 1.303 #endif
471    
472 root 1.40 /**/
473 root 1.1
474 root 1.250 #if EV_VERIFY >= 3
475 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
476 root 1.248 #else
477     # define EV_FREQUENT_CHECK do { } while (0)
478     #endif
479    
480 root 1.176 /*
481 root 1.373 * This is used to work around floating point rounding problems.
482 root 1.177 * This value is good at least till the year 4000.
483 root 1.176 */
484 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
485     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
486 root 1.176
487 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
488 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
489 root 1.1
490 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
491 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
492 root 1.347
493 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
494     /* ECB.H BEGIN */
495     /*
496     * libecb - http://software.schmorp.de/pkg/libecb
497     *
498 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
499 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
500     * All rights reserved.
501     *
502     * Redistribution and use in source and binary forms, with or without modifica-
503     * tion, are permitted provided that the following conditions are met:
504     *
505     * 1. Redistributions of source code must retain the above copyright notice,
506     * this list of conditions and the following disclaimer.
507     *
508     * 2. Redistributions in binary form must reproduce the above copyright
509     * notice, this list of conditions and the following disclaimer in the
510     * documentation and/or other materials provided with the distribution.
511     *
512     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
513     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
514     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
515     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
516     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
517     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
518     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
519     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
520     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
521     * OF THE POSSIBILITY OF SUCH DAMAGE.
522 root 1.467 *
523     * Alternatively, the contents of this file may be used under the terms of
524     * the GNU General Public License ("GPL") version 2 or any later version,
525     * in which case the provisions of the GPL are applicable instead of
526     * the above. If you wish to allow the use of your version of this file
527     * only under the terms of the GPL and not to allow others to use your
528     * version of this file under the BSD license, indicate your decision
529     * by deleting the provisions above and replace them with the notice
530     * and other provisions required by the GPL. If you do not delete the
531     * provisions above, a recipient may use your version of this file under
532     * either the BSD or the GPL.
533 root 1.391 */
534    
535     #ifndef ECB_H
536     #define ECB_H
537    
538 root 1.437 /* 16 bits major, 16 bits minor */
539 root 1.479 #define ECB_VERSION 0x00010005
540 root 1.437
541 root 1.391 #ifdef _WIN32
542     typedef signed char int8_t;
543     typedef unsigned char uint8_t;
544     typedef signed short int16_t;
545     typedef unsigned short uint16_t;
546     typedef signed int int32_t;
547     typedef unsigned int uint32_t;
548     #if __GNUC__
549     typedef signed long long int64_t;
550     typedef unsigned long long uint64_t;
551     #else /* _MSC_VER || __BORLANDC__ */
552     typedef signed __int64 int64_t;
553     typedef unsigned __int64 uint64_t;
554     #endif
555 root 1.437 #ifdef _WIN64
556     #define ECB_PTRSIZE 8
557     typedef uint64_t uintptr_t;
558     typedef int64_t intptr_t;
559     #else
560     #define ECB_PTRSIZE 4
561     typedef uint32_t uintptr_t;
562     typedef int32_t intptr_t;
563     #endif
564 root 1.391 #else
565     #include <inttypes.h>
566 root 1.479 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
567 root 1.437 #define ECB_PTRSIZE 8
568     #else
569     #define ECB_PTRSIZE 4
570     #endif
571 root 1.391 #endif
572 root 1.379
573 sf-exg 1.475 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
574     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
575    
576 root 1.454 /* work around x32 idiocy by defining proper macros */
577 sf-exg 1.475 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
578 root 1.458 #if _ILP32
579 root 1.454 #define ECB_AMD64_X32 1
580     #else
581     #define ECB_AMD64 1
582     #endif
583     #endif
584    
585 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
586     * what their idiot authors think are the "more important" extensions,
587 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
588 root 1.379 * or so.
589     * we try to detect these and simply assume they are not gcc - if they have
590     * an issue with that they should have done it right in the first place.
591     */
592 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
593     #define ECB_GCC_VERSION(major,minor) 0
594     #else
595     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
596     #endif
597    
598     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
599    
600     #if __clang__ && defined __has_builtin
601     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
602     #else
603     #define ECB_CLANG_BUILTIN(x) 0
604     #endif
605    
606     #if __clang__ && defined __has_extension
607     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
608     #else
609     #define ECB_CLANG_EXTENSION(x) 0
610 root 1.379 #endif
611    
612 root 1.437 #define ECB_CPP (__cplusplus+0)
613     #define ECB_CPP11 (__cplusplus >= 201103L)
614 root 1.488 #define ECB_CPP14 (__cplusplus >= 201402L)
615     #define ECB_CPP17 (__cplusplus >= 201703L)
616 root 1.437
617 root 1.450 #if ECB_CPP
618 root 1.464 #define ECB_C 0
619     #define ECB_STDC_VERSION 0
620     #else
621     #define ECB_C 1
622     #define ECB_STDC_VERSION __STDC_VERSION__
623     #endif
624    
625     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
626     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
627 root 1.488 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
628 root 1.464
629     #if ECB_CPP
630 root 1.450 #define ECB_EXTERN_C extern "C"
631     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
632     #define ECB_EXTERN_C_END }
633     #else
634     #define ECB_EXTERN_C extern
635     #define ECB_EXTERN_C_BEG
636     #define ECB_EXTERN_C_END
637     #endif
638    
639 root 1.391 /*****************************************************************************/
640    
641     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
642     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
643    
644 root 1.410 #if ECB_NO_THREADS
645 root 1.439 #define ECB_NO_SMP 1
646 root 1.410 #endif
647    
648 root 1.437 #if ECB_NO_SMP
649 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
650 root 1.40 #endif
651    
652 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
653     #if __xlC__ && ECB_CPP
654     #include <builtins.h>
655     #endif
656    
657 root 1.479 #if 1400 <= _MSC_VER
658     #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
659     #endif
660    
661 root 1.383 #ifndef ECB_MEMORY_FENCE
662 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
663 root 1.404 #if __i386 || __i386__
664 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
665 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
666 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
667 sf-exg 1.475 #elif ECB_GCC_AMD64
668 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
669     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
670 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
671 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
672 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
673 root 1.479 #elif defined __ARM_ARCH_2__ \
674     || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
675     || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
676     || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
677     || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
678     || defined __ARM_ARCH_5TEJ__
679     /* should not need any, unless running old code on newer cpu - arm doesn't support that */
680 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
681 root 1.479 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
682     || defined __ARM_ARCH_6T2__
683 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
684 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
685 root 1.479 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
686 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
687 root 1.464 #elif __aarch64__
688     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
689 root 1.477 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
690 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
691     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
692     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
693 root 1.417 #elif defined __s390__ || defined __s390x__
694 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
695 root 1.417 #elif defined __mips__
696 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
697 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
698     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
699 root 1.419 #elif defined __alpha__
700 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
701     #elif defined __hppa__
702     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
704     #elif defined __ia64__
705     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
706 root 1.457 #elif defined __m68k__
707     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
708     #elif defined __m88k__
709     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
710     #elif defined __sh__
711     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
712 root 1.383 #endif
713     #endif
714     #endif
715    
716     #ifndef ECB_MEMORY_FENCE
717 root 1.437 #if ECB_GCC_VERSION(4,7)
718 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
719 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
720 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
721     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
722 root 1.450
723 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
724     /* see comment below (stdatomic.h) about the C11 memory model. */
725     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
726     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
727     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
728 root 1.450
729 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
730 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
731 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
732     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
733     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
735     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
736     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
737 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
738     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
739     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
740     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
741     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
742 root 1.417 #elif defined _WIN32
743 root 1.388 #include <WinNT.h>
744 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
745 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
746     #include <mbarrier.h>
747     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
748     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
749     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
750 root 1.413 #elif __xlC__
751 root 1.414 #define ECB_MEMORY_FENCE __sync ()
752 root 1.383 #endif
753     #endif
754    
755     #ifndef ECB_MEMORY_FENCE
756 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
757     /* we assume that these memory fences work on all variables/all memory accesses, */
758     /* not just C11 atomics and atomic accesses */
759     #include <stdatomic.h>
760 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
761     /* any fence other than seq_cst, which isn't very efficient for us. */
762     /* Why that is, we don't know - either the C11 memory model is quite useless */
763     /* for most usages, or gcc and clang have a bug */
764     /* I *currently* lean towards the latter, and inefficiently implement */
765     /* all three of ecb's fences as a seq_cst fence */
766 root 1.464 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
767     /* for all __atomic_thread_fence's except seq_cst */
768 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
769     #endif
770     #endif
771    
772     #ifndef ECB_MEMORY_FENCE
773 root 1.392 #if !ECB_AVOID_PTHREADS
774     /*
775     * if you get undefined symbol references to pthread_mutex_lock,
776     * or failure to find pthread.h, then you should implement
777     * the ECB_MEMORY_FENCE operations for your cpu/compiler
778     * OR provide pthread.h and link against the posix thread library
779     * of your system.
780     */
781     #include <pthread.h>
782     #define ECB_NEEDS_PTHREADS 1
783     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
784    
785     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
786     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
787     #endif
788     #endif
789 root 1.383
790 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
791 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
792 root 1.392 #endif
793    
794 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
795 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
796     #endif
797    
798 root 1.391 /*****************************************************************************/
799    
800 root 1.474 #if ECB_CPP
801 root 1.391 #define ecb_inline static inline
802     #elif ECB_GCC_VERSION(2,5)
803     #define ecb_inline static __inline__
804     #elif ECB_C99
805     #define ecb_inline static inline
806     #else
807     #define ecb_inline static
808     #endif
809    
810     #if ECB_GCC_VERSION(3,3)
811     #define ecb_restrict __restrict__
812     #elif ECB_C99
813     #define ecb_restrict restrict
814     #else
815     #define ecb_restrict
816     #endif
817    
818     typedef int ecb_bool;
819    
820     #define ECB_CONCAT_(a, b) a ## b
821     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
822     #define ECB_STRINGIFY_(a) # a
823     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
824 sf-exg 1.475 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
825 root 1.391
826     #define ecb_function_ ecb_inline
827    
828 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
829     #define ecb_attribute(attrlist) __attribute__ (attrlist)
830 root 1.379 #else
831     #define ecb_attribute(attrlist)
832 root 1.474 #endif
833 root 1.464
834 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
835     #define ecb_is_constant(expr) __builtin_constant_p (expr)
836     #else
837 root 1.464 /* possible C11 impl for integral types
838     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
839     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
840    
841 root 1.379 #define ecb_is_constant(expr) 0
842 root 1.474 #endif
843    
844     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
845     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
846     #else
847 root 1.379 #define ecb_expect(expr,value) (expr)
848 root 1.474 #endif
849    
850     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
851     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
852     #else
853 root 1.379 #define ecb_prefetch(addr,rw,locality)
854     #endif
855    
856 root 1.391 /* no emulation for ecb_decltype */
857 root 1.474 #if ECB_CPP11
858     // older implementations might have problems with decltype(x)::type, work around it
859     template<class T> struct ecb_decltype_t { typedef T type; };
860     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
861     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
862     #define ecb_decltype(x) __typeof__ (x)
863 root 1.391 #endif
864    
865 root 1.468 #if _MSC_VER >= 1300
866 root 1.474 #define ecb_deprecated __declspec (deprecated)
867 root 1.468 #else
868     #define ecb_deprecated ecb_attribute ((__deprecated__))
869     #endif
870    
871 root 1.476 #if _MSC_VER >= 1500
872 sf-exg 1.475 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
873     #elif ECB_GCC_VERSION(4,5)
874     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
875     #else
876     #define ecb_deprecated_message(msg) ecb_deprecated
877     #endif
878    
879     #if _MSC_VER >= 1400
880     #define ecb_noinline __declspec (noinline)
881     #else
882     #define ecb_noinline ecb_attribute ((__noinline__))
883     #endif
884    
885 root 1.379 #define ecb_unused ecb_attribute ((__unused__))
886     #define ecb_const ecb_attribute ((__const__))
887     #define ecb_pure ecb_attribute ((__pure__))
888    
889 root 1.474 #if ECB_C11 || __IBMC_NORETURN
890 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
891 root 1.437 #define ecb_noreturn _Noreturn
892 sf-exg 1.475 #elif ECB_CPP11
893     #define ecb_noreturn [[noreturn]]
894     #elif _MSC_VER >= 1200
895     /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
896     #define ecb_noreturn __declspec (noreturn)
897 root 1.437 #else
898     #define ecb_noreturn ecb_attribute ((__noreturn__))
899     #endif
900    
901 root 1.379 #if ECB_GCC_VERSION(4,3)
902     #define ecb_artificial ecb_attribute ((__artificial__))
903     #define ecb_hot ecb_attribute ((__hot__))
904     #define ecb_cold ecb_attribute ((__cold__))
905     #else
906     #define ecb_artificial
907     #define ecb_hot
908     #define ecb_cold
909     #endif
910    
911     /* put around conditional expressions if you are very sure that the */
912     /* expression is mostly true or mostly false. note that these return */
913     /* booleans, not the expression. */
914     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
915     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
916 root 1.391 /* for compatibility to the rest of the world */
917     #define ecb_likely(expr) ecb_expect_true (expr)
918     #define ecb_unlikely(expr) ecb_expect_false (expr)
919    
920     /* count trailing zero bits and count # of one bits */
921 root 1.474 #if ECB_GCC_VERSION(3,4) \
922     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
923     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
924     && ECB_CLANG_BUILTIN(__builtin_popcount))
925 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
926     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
927     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
928     #define ecb_ctz32(x) __builtin_ctz (x)
929     #define ecb_ctz64(x) __builtin_ctzll (x)
930     #define ecb_popcount32(x) __builtin_popcount (x)
931     /* no popcountll */
932     #else
933 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
934     ecb_function_ ecb_const int
935 root 1.391 ecb_ctz32 (uint32_t x)
936     {
937 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
938     unsigned long r;
939     _BitScanForward (&r, x);
940     return (int)r;
941     #else
942 root 1.391 int r = 0;
943    
944     x &= ~x + 1; /* this isolates the lowest bit */
945    
946     #if ECB_branchless_on_i386
947     r += !!(x & 0xaaaaaaaa) << 0;
948     r += !!(x & 0xcccccccc) << 1;
949     r += !!(x & 0xf0f0f0f0) << 2;
950     r += !!(x & 0xff00ff00) << 3;
951     r += !!(x & 0xffff0000) << 4;
952     #else
953     if (x & 0xaaaaaaaa) r += 1;
954     if (x & 0xcccccccc) r += 2;
955     if (x & 0xf0f0f0f0) r += 4;
956     if (x & 0xff00ff00) r += 8;
957     if (x & 0xffff0000) r += 16;
958     #endif
959    
960     return r;
961 root 1.479 #endif
962 root 1.391 }
963    
964 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
965     ecb_function_ ecb_const int
966 root 1.391 ecb_ctz64 (uint64_t x)
967     {
968 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
969     unsigned long r;
970     _BitScanForward64 (&r, x);
971     return (int)r;
972     #else
973     int shift = x & 0xffffffff ? 0 : 32;
974 root 1.391 return ecb_ctz32 (x >> shift) + shift;
975 root 1.479 #endif
976 root 1.391 }
977    
978 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
979     ecb_function_ ecb_const int
980 root 1.391 ecb_popcount32 (uint32_t x)
981     {
982     x -= (x >> 1) & 0x55555555;
983     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
984     x = ((x >> 4) + x) & 0x0f0f0f0f;
985     x *= 0x01010101;
986    
987     return x >> 24;
988     }
989    
990 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
991     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
992 root 1.391 {
993 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
994     unsigned long r;
995     _BitScanReverse (&r, x);
996     return (int)r;
997     #else
998 root 1.391 int r = 0;
999    
1000     if (x >> 16) { x >>= 16; r += 16; }
1001     if (x >> 8) { x >>= 8; r += 8; }
1002     if (x >> 4) { x >>= 4; r += 4; }
1003     if (x >> 2) { x >>= 2; r += 2; }
1004     if (x >> 1) { r += 1; }
1005    
1006     return r;
1007 root 1.479 #endif
1008 root 1.391 }
1009    
1010 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1011     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1012 root 1.391 {
1013 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1014     unsigned long r;
1015     _BitScanReverse64 (&r, x);
1016     return (int)r;
1017     #else
1018 root 1.391 int r = 0;
1019    
1020     if (x >> 32) { x >>= 32; r += 32; }
1021    
1022     return r + ecb_ld32 (x);
1023 root 1.479 #endif
1024 root 1.391 }
1025     #endif
1026    
1027 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1028     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1029     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1030     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1031 root 1.437
1032 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1033     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1034 root 1.403 {
1035     return ( (x * 0x0802U & 0x22110U)
1036 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1037 root 1.403 }
1038    
1039 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1040     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1041 root 1.403 {
1042     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1043     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1044     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1045     x = ( x >> 8 ) | ( x << 8);
1046    
1047     return x;
1048     }
1049    
1050 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1051     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1052 root 1.403 {
1053     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1054     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1055     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1056     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1057     x = ( x >> 16 ) | ( x << 16);
1058    
1059     return x;
1060     }
1061    
1062 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1063     /* so for this version we are lazy */
1064 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1065     ecb_function_ ecb_const int
1066 root 1.391 ecb_popcount64 (uint64_t x)
1067     {
1068     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1069     }
1070    
1071 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1072     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1073     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1074     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1075     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1076     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1077     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1078     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1079    
1080     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1081     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1082     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1083     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1084     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1085     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1086     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1087     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1088 root 1.391
1089 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1090 root 1.476 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1091     #define ecb_bswap16(x) __builtin_bswap16 (x)
1092     #else
1093 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1094 root 1.476 #endif
1095 root 1.391 #define ecb_bswap32(x) __builtin_bswap32 (x)
1096     #define ecb_bswap64(x) __builtin_bswap64 (x)
1097 root 1.476 #elif _MSC_VER
1098     #include <stdlib.h>
1099     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1100     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1101     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1102 root 1.391 #else
1103 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1104     ecb_function_ ecb_const uint16_t
1105 root 1.391 ecb_bswap16 (uint16_t x)
1106     {
1107     return ecb_rotl16 (x, 8);
1108     }
1109    
1110 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1111     ecb_function_ ecb_const uint32_t
1112 root 1.391 ecb_bswap32 (uint32_t x)
1113     {
1114     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1115     }
1116    
1117 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1118     ecb_function_ ecb_const uint64_t
1119 root 1.391 ecb_bswap64 (uint64_t x)
1120     {
1121     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1122     }
1123     #endif
1124    
1125 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1126 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1127     #else
1128     /* this seems to work fine, but gcc always emits a warning for it :/ */
1129 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1130     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1131 root 1.391 #endif
1132    
1133     /* try to tell the compiler that some condition is definitely true */
1134 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1135 root 1.391
1136 root 1.479 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1137     ecb_inline ecb_const uint32_t
1138 root 1.391 ecb_byteorder_helper (void)
1139     {
1140 root 1.450 /* the union code still generates code under pressure in gcc, */
1141     /* but less than using pointers, and always seems to */
1142     /* successfully return a constant. */
1143     /* the reason why we have this horrible preprocessor mess */
1144     /* is to avoid it in all cases, at least on common architectures */
1145     /* or when using a recent enough gcc version (>= 4.6) */
1146 root 1.479 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1147     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1148     #define ECB_LITTLE_ENDIAN 1
1149     return 0x44332211;
1150     #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1151     || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1152     #define ECB_BIG_ENDIAN 1
1153     return 0x11223344;
1154 root 1.450 #else
1155     union
1156     {
1157 root 1.479 uint8_t c[4];
1158     uint32_t u;
1159     } u = { 0x11, 0x22, 0x33, 0x44 };
1160     return u.u;
1161 root 1.450 #endif
1162 root 1.391 }
1163    
1164 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1165 root 1.479 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1166 root 1.474 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1167 root 1.479 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1168 root 1.391
1169     #if ECB_GCC_VERSION(3,0) || ECB_C99
1170     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1171     #else
1172     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1173     #endif
1174    
1175 root 1.474 #if ECB_CPP
1176 root 1.398 template<typename T>
1177     static inline T ecb_div_rd (T val, T div)
1178     {
1179     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1180     }
1181     template<typename T>
1182     static inline T ecb_div_ru (T val, T div)
1183     {
1184     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1185     }
1186     #else
1187     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1188     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1189     #endif
1190    
1191 root 1.391 #if ecb_cplusplus_does_not_suck
1192     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1193     template<typename T, int N>
1194     static inline int ecb_array_length (const T (&arr)[N])
1195     {
1196     return N;
1197     }
1198     #else
1199     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1200     #endif
1201    
1202 root 1.479 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1203     ecb_function_ ecb_const uint32_t
1204     ecb_binary16_to_binary32 (uint32_t x)
1205     {
1206     unsigned int s = (x & 0x8000) << (31 - 15);
1207     int e = (x >> 10) & 0x001f;
1208     unsigned int m = x & 0x03ff;
1209    
1210     if (ecb_expect_false (e == 31))
1211     /* infinity or NaN */
1212     e = 255 - (127 - 15);
1213     else if (ecb_expect_false (!e))
1214     {
1215     if (ecb_expect_true (!m))
1216     /* zero, handled by code below by forcing e to 0 */
1217     e = 0 - (127 - 15);
1218     else
1219     {
1220     /* subnormal, renormalise */
1221     unsigned int s = 10 - ecb_ld32 (m);
1222    
1223     m = (m << s) & 0x3ff; /* mask implicit bit */
1224     e -= s - 1;
1225     }
1226     }
1227    
1228     /* e and m now are normalised, or zero, (or inf or nan) */
1229     e += 127 - 15;
1230    
1231     return s | (e << 23) | (m << (23 - 10));
1232     }
1233    
1234     ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1235     ecb_function_ ecb_const uint16_t
1236     ecb_binary32_to_binary16 (uint32_t x)
1237     {
1238     unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1239     unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1240     unsigned int m = x & 0x007fffff;
1241    
1242     x &= 0x7fffffff;
1243    
1244     /* if it's within range of binary16 normals, use fast path */
1245     if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1246     {
1247     /* mantissa round-to-even */
1248     m += 0x00000fff + ((m >> (23 - 10)) & 1);
1249    
1250     /* handle overflow */
1251     if (ecb_expect_false (m >= 0x00800000))
1252     {
1253     m >>= 1;
1254     e += 1;
1255     }
1256    
1257     return s | (e << 10) | (m >> (23 - 10));
1258     }
1259    
1260     /* handle large numbers and infinity */
1261     if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1262     return s | 0x7c00;
1263    
1264     /* handle zero, subnormals and small numbers */
1265     if (ecb_expect_true (x < 0x38800000))
1266     {
1267     /* zero */
1268     if (ecb_expect_true (!x))
1269     return s;
1270    
1271     /* handle subnormals */
1272    
1273     /* too small, will be zero */
1274     if (e < (14 - 24)) /* might not be sharp, but is good enough */
1275     return s;
1276    
1277     m |= 0x00800000; /* make implicit bit explicit */
1278    
1279     /* very tricky - we need to round to the nearest e (+10) bit value */
1280     {
1281     unsigned int bits = 14 - e;
1282     unsigned int half = (1 << (bits - 1)) - 1;
1283     unsigned int even = (m >> bits) & 1;
1284    
1285     /* if this overflows, we will end up with a normalised number */
1286     m = (m + half + even) >> bits;
1287     }
1288    
1289     return s | m;
1290     }
1291    
1292     /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1293     m >>= 13;
1294    
1295     return s | 0x7c00 | m | !m;
1296     }
1297    
1298 root 1.450 /*******************************************************************************/
1299     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1300    
1301     /* basically, everything uses "ieee pure-endian" floating point numbers */
1302     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1303     #if 0 \
1304     || __i386 || __i386__ \
1305 sf-exg 1.475 || ECB_GCC_AMD64 \
1306 root 1.450 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1307     || defined __s390__ || defined __s390x__ \
1308     || defined __mips__ \
1309     || defined __alpha__ \
1310     || defined __hppa__ \
1311     || defined __ia64__ \
1312 root 1.457 || defined __m68k__ \
1313     || defined __m88k__ \
1314     || defined __sh__ \
1315 sf-exg 1.475 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1316 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1317 root 1.466 || defined __aarch64__
1318 root 1.450 #define ECB_STDFP 1
1319     #include <string.h> /* for memcpy */
1320     #else
1321     #define ECB_STDFP 0
1322     #endif
1323    
1324     #ifndef ECB_NO_LIBM
1325    
1326 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1327    
1328 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1329     #ifdef INFINITY
1330     #define ECB_INFINITY INFINITY
1331     #else
1332     #define ECB_INFINITY HUGE_VAL
1333     #endif
1334    
1335     #ifdef NAN
1336 root 1.458 #define ECB_NAN NAN
1337     #else
1338 root 1.462 #define ECB_NAN ECB_INFINITY
1339 root 1.458 #endif
1340    
1341 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1342     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1343 root 1.476 #define ecb_frexpf(x,e) frexpf ((x), (e))
1344 root 1.474 #else
1345 root 1.476 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1346     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1347 root 1.474 #endif
1348    
1349 root 1.450 /* convert a float to ieee single/binary32 */
1350 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1351     ecb_function_ ecb_const uint32_t
1352 root 1.450 ecb_float_to_binary32 (float x)
1353     {
1354     uint32_t r;
1355    
1356     #if ECB_STDFP
1357     memcpy (&r, &x, 4);
1358     #else
1359     /* slow emulation, works for anything but -0 */
1360     uint32_t m;
1361     int e;
1362    
1363     if (x == 0e0f ) return 0x00000000U;
1364     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1365     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1366     if (x != x ) return 0x7fbfffffU;
1367    
1368 root 1.476 m = ecb_frexpf (x, &e) * 0x1000000U;
1369 root 1.450
1370     r = m & 0x80000000U;
1371    
1372     if (r)
1373     m = -m;
1374    
1375     if (e <= -126)
1376     {
1377     m &= 0xffffffU;
1378     m >>= (-125 - e);
1379     e = -126;
1380     }
1381    
1382     r |= (e + 126) << 23;
1383     r |= m & 0x7fffffU;
1384     #endif
1385    
1386     return r;
1387     }
1388    
1389     /* converts an ieee single/binary32 to a float */
1390 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1391     ecb_function_ ecb_const float
1392 root 1.450 ecb_binary32_to_float (uint32_t x)
1393     {
1394     float r;
1395    
1396     #if ECB_STDFP
1397     memcpy (&r, &x, 4);
1398     #else
1399     /* emulation, only works for normals and subnormals and +0 */
1400     int neg = x >> 31;
1401     int e = (x >> 23) & 0xffU;
1402    
1403     x &= 0x7fffffU;
1404    
1405     if (e)
1406     x |= 0x800000U;
1407     else
1408     e = 1;
1409    
1410     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1411 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1412 root 1.450
1413     r = neg ? -r : r;
1414     #endif
1415    
1416     return r;
1417     }
1418    
1419     /* convert a double to ieee double/binary64 */
1420 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1421     ecb_function_ ecb_const uint64_t
1422 root 1.450 ecb_double_to_binary64 (double x)
1423     {
1424     uint64_t r;
1425    
1426     #if ECB_STDFP
1427     memcpy (&r, &x, 8);
1428     #else
1429     /* slow emulation, works for anything but -0 */
1430     uint64_t m;
1431     int e;
1432    
1433     if (x == 0e0 ) return 0x0000000000000000U;
1434     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1435     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1436     if (x != x ) return 0X7ff7ffffffffffffU;
1437    
1438     m = frexp (x, &e) * 0x20000000000000U;
1439    
1440     r = m & 0x8000000000000000;;
1441    
1442     if (r)
1443     m = -m;
1444    
1445     if (e <= -1022)
1446     {
1447     m &= 0x1fffffffffffffU;
1448     m >>= (-1021 - e);
1449     e = -1022;
1450     }
1451    
1452     r |= ((uint64_t)(e + 1022)) << 52;
1453     r |= m & 0xfffffffffffffU;
1454     #endif
1455    
1456     return r;
1457     }
1458    
1459     /* converts an ieee double/binary64 to a double */
1460 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1461     ecb_function_ ecb_const double
1462 root 1.450 ecb_binary64_to_double (uint64_t x)
1463     {
1464     double r;
1465    
1466     #if ECB_STDFP
1467     memcpy (&r, &x, 8);
1468     #else
1469     /* emulation, only works for normals and subnormals and +0 */
1470     int neg = x >> 63;
1471     int e = (x >> 52) & 0x7ffU;
1472    
1473     x &= 0xfffffffffffffU;
1474    
1475     if (e)
1476     x |= 0x10000000000000U;
1477     else
1478     e = 1;
1479    
1480     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1481     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1482    
1483     r = neg ? -r : r;
1484     #endif
1485    
1486     return r;
1487     }
1488    
1489 root 1.479 /* convert a float to ieee half/binary16 */
1490     ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1491     ecb_function_ ecb_const uint16_t
1492     ecb_float_to_binary16 (float x)
1493     {
1494     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1495     }
1496    
1497     /* convert an ieee half/binary16 to float */
1498     ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1499     ecb_function_ ecb_const float
1500     ecb_binary16_to_float (uint16_t x)
1501     {
1502     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1503     }
1504    
1505 root 1.450 #endif
1506    
1507 root 1.391 #endif
1508    
1509     /* ECB.H END */
1510 root 1.379
1511 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1512 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1513 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1514     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1515 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1516 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1517     * which will then provide the memory fences.
1518     */
1519     # error "memory fences not defined for your architecture, please report"
1520     #endif
1521    
1522     #ifndef ECB_MEMORY_FENCE
1523     # define ECB_MEMORY_FENCE do { } while (0)
1524     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1525     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1526 root 1.392 #endif
1527    
1528 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1529     #define expect_true(cond) ecb_expect_true (cond)
1530     #define noinline ecb_noinline
1531    
1532     #define inline_size ecb_inline
1533 root 1.169
1534 root 1.338 #if EV_FEATURE_CODE
1535 root 1.379 # define inline_speed ecb_inline
1536 root 1.338 #else
1537 root 1.480 # define inline_speed noinline static
1538 root 1.169 #endif
1539 root 1.40
1540 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1541    
1542     #if EV_MINPRI == EV_MAXPRI
1543     # define ABSPRI(w) (((W)w), 0)
1544     #else
1545     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1546     #endif
1547 root 1.42
1548 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1549 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
1550 root 1.103
1551 root 1.136 typedef ev_watcher *W;
1552     typedef ev_watcher_list *WL;
1553     typedef ev_watcher_time *WT;
1554 root 1.10
1555 root 1.229 #define ev_active(w) ((W)(w))->active
1556 root 1.228 #define ev_at(w) ((WT)(w))->at
1557    
1558 root 1.279 #if EV_USE_REALTIME
1559 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1560 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1561 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1562     #endif
1563    
1564     #if EV_USE_MONOTONIC
1565 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1566 root 1.198 #endif
1567 root 1.54
1568 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1569     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1570     #endif
1571     #ifndef EV_WIN32_HANDLE_TO_FD
1572 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1573 root 1.313 #endif
1574     #ifndef EV_WIN32_CLOSE_FD
1575     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1576     #endif
1577    
1578 root 1.103 #ifdef _WIN32
1579 root 1.98 # include "ev_win32.c"
1580     #endif
1581 root 1.67
1582 root 1.53 /*****************************************************************************/
1583 root 1.1
1584 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1585    
1586     #if EV_USE_FLOOR
1587     # include <math.h>
1588     # define ev_floor(v) floor (v)
1589     #else
1590    
1591     #include <float.h>
1592    
1593     /* a floor() replacement function, should be independent of ev_tstamp type */
1594 root 1.480 noinline
1595     static ev_tstamp
1596 root 1.373 ev_floor (ev_tstamp v)
1597     {
1598     /* the choice of shift factor is not terribly important */
1599     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1600     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1601     #else
1602     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1603     #endif
1604    
1605     /* argument too large for an unsigned long? */
1606     if (expect_false (v >= shift))
1607     {
1608     ev_tstamp f;
1609    
1610     if (v == v - 1.)
1611     return v; /* very large number */
1612    
1613     f = shift * ev_floor (v * (1. / shift));
1614     return f + ev_floor (v - f);
1615     }
1616    
1617     /* special treatment for negative args? */
1618     if (expect_false (v < 0.))
1619     {
1620     ev_tstamp f = -ev_floor (-v);
1621    
1622     return f - (f == v ? 0 : 1);
1623     }
1624    
1625     /* fits into an unsigned long */
1626     return (unsigned long)v;
1627     }
1628    
1629     #endif
1630    
1631     /*****************************************************************************/
1632    
1633 root 1.356 #ifdef __linux
1634     # include <sys/utsname.h>
1635     #endif
1636    
1637 root 1.480 noinline ecb_cold
1638     static unsigned int
1639 root 1.355 ev_linux_version (void)
1640     {
1641     #ifdef __linux
1642 root 1.359 unsigned int v = 0;
1643 root 1.355 struct utsname buf;
1644     int i;
1645     char *p = buf.release;
1646    
1647     if (uname (&buf))
1648     return 0;
1649    
1650     for (i = 3+1; --i; )
1651     {
1652     unsigned int c = 0;
1653    
1654     for (;;)
1655     {
1656     if (*p >= '0' && *p <= '9')
1657     c = c * 10 + *p++ - '0';
1658     else
1659     {
1660     p += *p == '.';
1661     break;
1662     }
1663     }
1664    
1665     v = (v << 8) | c;
1666     }
1667    
1668     return v;
1669     #else
1670     return 0;
1671     #endif
1672     }
1673    
1674     /*****************************************************************************/
1675    
1676 root 1.331 #if EV_AVOID_STDIO
1677 root 1.480 noinline ecb_cold
1678     static void
1679 root 1.331 ev_printerr (const char *msg)
1680     {
1681     write (STDERR_FILENO, msg, strlen (msg));
1682     }
1683     #endif
1684    
1685 root 1.486 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1686 root 1.69
1687 root 1.480 ecb_cold
1688     void
1689 root 1.486 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1690 root 1.69 {
1691     syserr_cb = cb;
1692     }
1693    
1694 root 1.480 noinline ecb_cold
1695     static void
1696 root 1.269 ev_syserr (const char *msg)
1697 root 1.69 {
1698 root 1.70 if (!msg)
1699     msg = "(libev) system error";
1700    
1701 root 1.69 if (syserr_cb)
1702 root 1.70 syserr_cb (msg);
1703 root 1.69 else
1704     {
1705 root 1.330 #if EV_AVOID_STDIO
1706 root 1.331 ev_printerr (msg);
1707     ev_printerr (": ");
1708 root 1.365 ev_printerr (strerror (errno));
1709 root 1.331 ev_printerr ("\n");
1710 root 1.330 #else
1711 root 1.70 perror (msg);
1712 root 1.330 #endif
1713 root 1.69 abort ();
1714     }
1715     }
1716    
1717 root 1.224 static void *
1718 root 1.486 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1719 root 1.224 {
1720     /* some systems, notably openbsd and darwin, fail to properly
1721 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1722 root 1.224 * the single unix specification, so work around them here.
1723 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1724     * despite documenting it otherwise.
1725 root 1.224 */
1726 root 1.333
1727 root 1.224 if (size)
1728     return realloc (ptr, size);
1729    
1730     free (ptr);
1731     return 0;
1732     }
1733    
1734 root 1.486 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1735 root 1.69
1736 root 1.480 ecb_cold
1737     void
1738 root 1.486 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1739 root 1.69 {
1740     alloc = cb;
1741     }
1742    
1743 root 1.150 inline_speed void *
1744 root 1.155 ev_realloc (void *ptr, long size)
1745 root 1.69 {
1746 root 1.224 ptr = alloc (ptr, size);
1747 root 1.69
1748     if (!ptr && size)
1749     {
1750 root 1.330 #if EV_AVOID_STDIO
1751 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1752 root 1.330 #else
1753 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1754 root 1.330 #endif
1755 root 1.69 abort ();
1756     }
1757    
1758     return ptr;
1759     }
1760    
1761     #define ev_malloc(size) ev_realloc (0, (size))
1762     #define ev_free(ptr) ev_realloc ((ptr), 0)
1763    
1764     /*****************************************************************************/
1765    
1766 root 1.298 /* set in reify when reification needed */
1767     #define EV_ANFD_REIFY 1
1768    
1769 root 1.288 /* file descriptor info structure */
1770 root 1.53 typedef struct
1771     {
1772 root 1.68 WL head;
1773 root 1.288 unsigned char events; /* the events watched for */
1774 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1775 root 1.288 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1776 root 1.269 unsigned char unused;
1777     #if EV_USE_EPOLL
1778 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1779 root 1.269 #endif
1780 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1781 root 1.103 SOCKET handle;
1782     #endif
1783 root 1.357 #if EV_USE_IOCP
1784     OVERLAPPED or, ow;
1785     #endif
1786 root 1.53 } ANFD;
1787 root 1.1
1788 root 1.288 /* stores the pending event set for a given watcher */
1789 root 1.53 typedef struct
1790     {
1791     W w;
1792 root 1.288 int events; /* the pending event set for the given watcher */
1793 root 1.53 } ANPENDING;
1794 root 1.51
1795 root 1.155 #if EV_USE_INOTIFY
1796 root 1.241 /* hash table entry per inotify-id */
1797 root 1.152 typedef struct
1798     {
1799     WL head;
1800 root 1.155 } ANFS;
1801 root 1.152 #endif
1802    
1803 root 1.241 /* Heap Entry */
1804     #if EV_HEAP_CACHE_AT
1805 root 1.288 /* a heap element */
1806 root 1.241 typedef struct {
1807 root 1.243 ev_tstamp at;
1808 root 1.241 WT w;
1809     } ANHE;
1810    
1811 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1812     #define ANHE_at(he) (he).at /* access cached at, read-only */
1813     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1814 root 1.241 #else
1815 root 1.288 /* a heap element */
1816 root 1.241 typedef WT ANHE;
1817    
1818 root 1.248 #define ANHE_w(he) (he)
1819     #define ANHE_at(he) (he)->at
1820     #define ANHE_at_cache(he)
1821 root 1.241 #endif
1822    
1823 root 1.55 #if EV_MULTIPLICITY
1824 root 1.54
1825 root 1.80 struct ev_loop
1826     {
1827 root 1.86 ev_tstamp ev_rt_now;
1828 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1829 root 1.80 #define VAR(name,decl) decl;
1830     #include "ev_vars.h"
1831     #undef VAR
1832     };
1833     #include "ev_wrap.h"
1834    
1835 root 1.116 static struct ev_loop default_loop_struct;
1836 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1837 root 1.54
1838 root 1.53 #else
1839 root 1.54
1840 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1841 root 1.80 #define VAR(name,decl) static decl;
1842     #include "ev_vars.h"
1843     #undef VAR
1844    
1845 root 1.116 static int ev_default_loop_ptr;
1846 root 1.54
1847 root 1.51 #endif
1848 root 1.1
1849 root 1.338 #if EV_FEATURE_API
1850 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1851     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1852 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1853     #else
1854 root 1.298 # define EV_RELEASE_CB (void)0
1855     # define EV_ACQUIRE_CB (void)0
1856 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1857     #endif
1858    
1859 root 1.353 #define EVBREAK_RECURSE 0x80
1860 root 1.298
1861 root 1.8 /*****************************************************************************/
1862    
1863 root 1.292 #ifndef EV_HAVE_EV_TIME
1864 root 1.141 ev_tstamp
1865 root 1.486 ev_time (void) EV_NOEXCEPT
1866 root 1.1 {
1867 root 1.29 #if EV_USE_REALTIME
1868 root 1.279 if (expect_true (have_realtime))
1869     {
1870     struct timespec ts;
1871     clock_gettime (CLOCK_REALTIME, &ts);
1872     return ts.tv_sec + ts.tv_nsec * 1e-9;
1873     }
1874     #endif
1875    
1876 root 1.1 struct timeval tv;
1877     gettimeofday (&tv, 0);
1878     return tv.tv_sec + tv.tv_usec * 1e-6;
1879     }
1880 root 1.292 #endif
1881 root 1.1
1882 root 1.284 inline_size ev_tstamp
1883 root 1.1 get_clock (void)
1884     {
1885 root 1.29 #if EV_USE_MONOTONIC
1886 root 1.40 if (expect_true (have_monotonic))
1887 root 1.1 {
1888     struct timespec ts;
1889     clock_gettime (CLOCK_MONOTONIC, &ts);
1890     return ts.tv_sec + ts.tv_nsec * 1e-9;
1891     }
1892     #endif
1893    
1894     return ev_time ();
1895     }
1896    
1897 root 1.85 #if EV_MULTIPLICITY
1898 root 1.51 ev_tstamp
1899 root 1.486 ev_now (EV_P) EV_NOEXCEPT
1900 root 1.51 {
1901 root 1.85 return ev_rt_now;
1902 root 1.51 }
1903 root 1.85 #endif
1904 root 1.51
1905 root 1.193 void
1906 root 1.486 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1907 root 1.193 {
1908     if (delay > 0.)
1909     {
1910     #if EV_USE_NANOSLEEP
1911     struct timespec ts;
1912    
1913 root 1.348 EV_TS_SET (ts, delay);
1914 root 1.193 nanosleep (&ts, 0);
1915 root 1.416 #elif defined _WIN32
1916 root 1.482 /* maybe this should round up, as ms is very low resolution */
1917     /* compared to select (µs) or nanosleep (ns) */
1918 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1919 root 1.193 #else
1920     struct timeval tv;
1921    
1922 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1923 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1924 root 1.257 /* by older ones */
1925 sf-exg 1.349 EV_TV_SET (tv, delay);
1926 root 1.193 select (0, 0, 0, 0, &tv);
1927     #endif
1928     }
1929     }
1930    
1931     /*****************************************************************************/
1932    
1933 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1934 root 1.232
1935 root 1.288 /* find a suitable new size for the given array, */
1936 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1937 root 1.284 inline_size int
1938 root 1.163 array_nextsize (int elem, int cur, int cnt)
1939     {
1940     int ncur = cur + 1;
1941    
1942     do
1943     ncur <<= 1;
1944     while (cnt > ncur);
1945    
1946 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1947 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1948 root 1.163 {
1949     ncur *= elem;
1950 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1951 root 1.163 ncur = ncur - sizeof (void *) * 4;
1952     ncur /= elem;
1953     }
1954    
1955     return ncur;
1956     }
1957    
1958 root 1.480 noinline ecb_cold
1959     static void *
1960 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1961     {
1962     *cur = array_nextsize (elem, *cur, cnt);
1963     return ev_realloc (base, elem * *cur);
1964     }
1965 root 1.29
1966 root 1.265 #define array_init_zero(base,count) \
1967     memset ((void *)(base), 0, sizeof (*(base)) * (count))
1968    
1969 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1970 root 1.163 if (expect_false ((cnt) > (cur))) \
1971 root 1.69 { \
1972 root 1.480 ecb_unused int ocur_ = (cur); \
1973 root 1.163 (base) = (type *)array_realloc \
1974     (sizeof (type), (base), &(cur), (cnt)); \
1975     init ((base) + (ocur_), (cur) - ocur_); \
1976 root 1.1 }
1977    
1978 root 1.163 #if 0
1979 root 1.74 #define array_slim(type,stem) \
1980 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1981     { \
1982     stem ## max = array_roundsize (stem ## cnt >> 1); \
1983 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1984 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1985     }
1986 root 1.163 #endif
1987 root 1.67
1988 root 1.65 #define array_free(stem, idx) \
1989 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1990 root 1.65
1991 root 1.8 /*****************************************************************************/
1992    
1993 root 1.288 /* dummy callback for pending events */
1994 root 1.480 noinline
1995     static void
1996 root 1.288 pendingcb (EV_P_ ev_prepare *w, int revents)
1997     {
1998     }
1999    
2000 root 1.480 noinline
2001     void
2002 root 1.486 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2003 root 1.1 {
2004 root 1.78 W w_ = (W)w;
2005 root 1.171 int pri = ABSPRI (w_);
2006 root 1.78
2007 root 1.123 if (expect_false (w_->pending))
2008 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
2009     else
2010 root 1.32 {
2011 root 1.171 w_->pending = ++pendingcnt [pri];
2012     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
2013     pendings [pri][w_->pending - 1].w = w_;
2014     pendings [pri][w_->pending - 1].events = revents;
2015 root 1.32 }
2016 root 1.425
2017     pendingpri = NUMPRI - 1;
2018 root 1.1 }
2019    
2020 root 1.284 inline_speed void
2021     feed_reverse (EV_P_ W w)
2022     {
2023     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2024     rfeeds [rfeedcnt++] = w;
2025     }
2026    
2027     inline_size void
2028     feed_reverse_done (EV_P_ int revents)
2029     {
2030     do
2031     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2032     while (rfeedcnt);
2033     }
2034    
2035     inline_speed void
2036 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
2037 root 1.27 {
2038     int i;
2039    
2040     for (i = 0; i < eventcnt; ++i)
2041 root 1.78 ev_feed_event (EV_A_ events [i], type);
2042 root 1.27 }
2043    
2044 root 1.141 /*****************************************************************************/
2045    
2046 root 1.284 inline_speed void
2047 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
2048 root 1.1 {
2049     ANFD *anfd = anfds + fd;
2050 root 1.136 ev_io *w;
2051 root 1.1
2052 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2053 root 1.1 {
2054 root 1.79 int ev = w->events & revents;
2055 root 1.1
2056     if (ev)
2057 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
2058 root 1.1 }
2059     }
2060    
2061 root 1.298 /* do not submit kernel events for fds that have reify set */
2062     /* because that means they changed while we were polling for new events */
2063     inline_speed void
2064     fd_event (EV_P_ int fd, int revents)
2065     {
2066     ANFD *anfd = anfds + fd;
2067    
2068     if (expect_true (!anfd->reify))
2069 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2070 root 1.298 }
2071    
2072 root 1.79 void
2073 root 1.486 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2074 root 1.79 {
2075 root 1.168 if (fd >= 0 && fd < anfdmax)
2076 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2077 root 1.79 }
2078    
2079 root 1.288 /* make sure the external fd watch events are in-sync */
2080     /* with the kernel/libev internal state */
2081 root 1.284 inline_size void
2082 root 1.51 fd_reify (EV_P)
2083 root 1.9 {
2084     int i;
2085    
2086 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2087     for (i = 0; i < fdchangecnt; ++i)
2088     {
2089     int fd = fdchanges [i];
2090     ANFD *anfd = anfds + fd;
2091    
2092 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
2093 root 1.371 {
2094     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2095    
2096     if (handle != anfd->handle)
2097     {
2098     unsigned long arg;
2099    
2100     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2101    
2102     /* handle changed, but fd didn't - we need to do it in two steps */
2103     backend_modify (EV_A_ fd, anfd->events, 0);
2104     anfd->events = 0;
2105     anfd->handle = handle;
2106     }
2107     }
2108     }
2109     #endif
2110    
2111 root 1.27 for (i = 0; i < fdchangecnt; ++i)
2112     {
2113     int fd = fdchanges [i];
2114     ANFD *anfd = anfds + fd;
2115 root 1.136 ev_io *w;
2116 root 1.27
2117 root 1.350 unsigned char o_events = anfd->events;
2118     unsigned char o_reify = anfd->reify;
2119 root 1.27
2120 root 1.350 anfd->reify = 0;
2121 root 1.27
2122 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2123     {
2124     anfd->events = 0;
2125 root 1.184
2126 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2127     anfd->events |= (unsigned char)w->events;
2128 root 1.27
2129 root 1.351 if (o_events != anfd->events)
2130 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
2131     }
2132    
2133     if (o_reify & EV__IOFDSET)
2134     backend_modify (EV_A_ fd, o_events, anfd->events);
2135 root 1.27 }
2136    
2137     fdchangecnt = 0;
2138     }
2139    
2140 root 1.288 /* something about the given fd changed */
2141 root 1.480 inline_size
2142     void
2143 root 1.183 fd_change (EV_P_ int fd, int flags)
2144 root 1.27 {
2145 root 1.183 unsigned char reify = anfds [fd].reify;
2146 root 1.184 anfds [fd].reify |= flags;
2147 root 1.27
2148 root 1.183 if (expect_true (!reify))
2149     {
2150     ++fdchangecnt;
2151     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
2152     fdchanges [fdchangecnt - 1] = fd;
2153     }
2154 root 1.9 }
2155    
2156 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2157 root 1.480 inline_speed ecb_cold void
2158 root 1.51 fd_kill (EV_P_ int fd)
2159 root 1.41 {
2160 root 1.136 ev_io *w;
2161 root 1.41
2162 root 1.136 while ((w = (ev_io *)anfds [fd].head))
2163 root 1.41 {
2164 root 1.51 ev_io_stop (EV_A_ w);
2165 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2166 root 1.41 }
2167     }
2168    
2169 root 1.336 /* check whether the given fd is actually valid, for error recovery */
2170 root 1.480 inline_size ecb_cold int
2171 root 1.71 fd_valid (int fd)
2172     {
2173 root 1.103 #ifdef _WIN32
2174 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2175 root 1.71 #else
2176     return fcntl (fd, F_GETFD) != -1;
2177     #endif
2178     }
2179    
2180 root 1.19 /* called on EBADF to verify fds */
2181 root 1.480 noinline ecb_cold
2182     static void
2183 root 1.51 fd_ebadf (EV_P)
2184 root 1.19 {
2185     int fd;
2186    
2187     for (fd = 0; fd < anfdmax; ++fd)
2188 root 1.27 if (anfds [fd].events)
2189 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2190 root 1.51 fd_kill (EV_A_ fd);
2191 root 1.41 }
2192    
2193     /* called on ENOMEM in select/poll to kill some fds and retry */
2194 root 1.480 noinline ecb_cold
2195     static void
2196 root 1.51 fd_enomem (EV_P)
2197 root 1.41 {
2198 root 1.62 int fd;
2199 root 1.41
2200 root 1.62 for (fd = anfdmax; fd--; )
2201 root 1.41 if (anfds [fd].events)
2202     {
2203 root 1.51 fd_kill (EV_A_ fd);
2204 root 1.307 break;
2205 root 1.41 }
2206 root 1.19 }
2207    
2208 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2209 root 1.480 noinline
2210     static void
2211 root 1.56 fd_rearm_all (EV_P)
2212     {
2213     int fd;
2214    
2215     for (fd = 0; fd < anfdmax; ++fd)
2216     if (anfds [fd].events)
2217     {
2218     anfds [fd].events = 0;
2219 root 1.268 anfds [fd].emask = 0;
2220 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2221 root 1.56 }
2222     }
2223    
2224 root 1.336 /* used to prepare libev internal fd's */
2225     /* this is not fork-safe */
2226     inline_speed void
2227     fd_intern (int fd)
2228     {
2229     #ifdef _WIN32
2230     unsigned long arg = 1;
2231     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2232     #else
2233     fcntl (fd, F_SETFD, FD_CLOEXEC);
2234     fcntl (fd, F_SETFL, O_NONBLOCK);
2235     #endif
2236     }
2237    
2238 root 1.8 /*****************************************************************************/
2239    
2240 root 1.235 /*
2241 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2242 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2243     * the branching factor of the d-tree.
2244     */
2245    
2246     /*
2247 root 1.235 * at the moment we allow libev the luxury of two heaps,
2248     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2249     * which is more cache-efficient.
2250     * the difference is about 5% with 50000+ watchers.
2251     */
2252 root 1.241 #if EV_USE_4HEAP
2253 root 1.235
2254 root 1.237 #define DHEAP 4
2255     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2256 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2257 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2258 root 1.235
2259     /* away from the root */
2260 root 1.284 inline_speed void
2261 root 1.241 downheap (ANHE *heap, int N, int k)
2262 root 1.235 {
2263 root 1.241 ANHE he = heap [k];
2264     ANHE *E = heap + N + HEAP0;
2265 root 1.235
2266     for (;;)
2267     {
2268     ev_tstamp minat;
2269 root 1.241 ANHE *minpos;
2270 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2271 root 1.235
2272 root 1.248 /* find minimum child */
2273 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
2274 root 1.235 {
2275 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2276     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2277     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2278     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2279 root 1.235 }
2280 root 1.240 else if (pos < E)
2281 root 1.235 {
2282 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2283     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2284     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2285     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2286 root 1.235 }
2287 root 1.240 else
2288     break;
2289 root 1.235
2290 root 1.241 if (ANHE_at (he) <= minat)
2291 root 1.235 break;
2292    
2293 root 1.247 heap [k] = *minpos;
2294 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2295 root 1.235
2296     k = minpos - heap;
2297     }
2298    
2299 root 1.247 heap [k] = he;
2300 root 1.241 ev_active (ANHE_w (he)) = k;
2301 root 1.235 }
2302    
2303 root 1.248 #else /* 4HEAP */
2304 root 1.235
2305     #define HEAP0 1
2306 root 1.247 #define HPARENT(k) ((k) >> 1)
2307 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2308 root 1.235
2309 root 1.248 /* away from the root */
2310 root 1.284 inline_speed void
2311 root 1.248 downheap (ANHE *heap, int N, int k)
2312 root 1.1 {
2313 root 1.241 ANHE he = heap [k];
2314 root 1.1
2315 root 1.228 for (;;)
2316 root 1.1 {
2317 root 1.248 int c = k << 1;
2318 root 1.179
2319 root 1.309 if (c >= N + HEAP0)
2320 root 1.179 break;
2321    
2322 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2323     ? 1 : 0;
2324    
2325     if (ANHE_at (he) <= ANHE_at (heap [c]))
2326     break;
2327    
2328     heap [k] = heap [c];
2329 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2330 root 1.248
2331     k = c;
2332 root 1.1 }
2333    
2334 root 1.243 heap [k] = he;
2335 root 1.248 ev_active (ANHE_w (he)) = k;
2336 root 1.1 }
2337 root 1.248 #endif
2338 root 1.1
2339 root 1.248 /* towards the root */
2340 root 1.284 inline_speed void
2341 root 1.248 upheap (ANHE *heap, int k)
2342 root 1.1 {
2343 root 1.241 ANHE he = heap [k];
2344 root 1.1
2345 root 1.179 for (;;)
2346 root 1.1 {
2347 root 1.248 int p = HPARENT (k);
2348 root 1.179
2349 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2350 root 1.179 break;
2351 root 1.1
2352 root 1.248 heap [k] = heap [p];
2353 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2354 root 1.248 k = p;
2355 root 1.1 }
2356    
2357 root 1.241 heap [k] = he;
2358     ev_active (ANHE_w (he)) = k;
2359 root 1.1 }
2360    
2361 root 1.288 /* move an element suitably so it is in a correct place */
2362 root 1.284 inline_size void
2363 root 1.241 adjustheap (ANHE *heap, int N, int k)
2364 root 1.84 {
2365 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2366 root 1.247 upheap (heap, k);
2367     else
2368     downheap (heap, N, k);
2369 root 1.84 }
2370    
2371 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2372 root 1.284 inline_size void
2373 root 1.248 reheap (ANHE *heap, int N)
2374     {
2375     int i;
2376 root 1.251
2377 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2378     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2379     for (i = 0; i < N; ++i)
2380     upheap (heap, i + HEAP0);
2381     }
2382    
2383 root 1.8 /*****************************************************************************/
2384    
2385 root 1.288 /* associate signal watchers to a signal signal */
2386 root 1.7 typedef struct
2387     {
2388 root 1.307 EV_ATOMIC_T pending;
2389 root 1.306 #if EV_MULTIPLICITY
2390     EV_P;
2391     #endif
2392 root 1.68 WL head;
2393 root 1.7 } ANSIG;
2394    
2395 root 1.306 static ANSIG signals [EV_NSIG - 1];
2396 root 1.7
2397 root 1.207 /*****************************************************************************/
2398    
2399 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2400 root 1.207
2401 root 1.480 noinline ecb_cold
2402     static void
2403 root 1.207 evpipe_init (EV_P)
2404     {
2405 root 1.288 if (!ev_is_active (&pipe_w))
2406 root 1.207 {
2407 root 1.448 int fds [2];
2408    
2409 root 1.336 # if EV_USE_EVENTFD
2410 root 1.448 fds [0] = -1;
2411     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2412     if (fds [1] < 0 && errno == EINVAL)
2413     fds [1] = eventfd (0, 0);
2414    
2415     if (fds [1] < 0)
2416     # endif
2417     {
2418     while (pipe (fds))
2419     ev_syserr ("(libev) error creating signal/async pipe");
2420    
2421     fd_intern (fds [0]);
2422 root 1.220 }
2423 root 1.448
2424     evpipe [0] = fds [0];
2425    
2426     if (evpipe [1] < 0)
2427     evpipe [1] = fds [1]; /* first call, set write fd */
2428 root 1.220 else
2429     {
2430 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2431     /* so that evpipe_write can always rely on its value. */
2432     /* this branch does not do anything sensible on windows, */
2433     /* so must not be executed on windows */
2434 root 1.207
2435 root 1.448 dup2 (fds [1], evpipe [1]);
2436     close (fds [1]);
2437 root 1.220 }
2438 root 1.207
2439 root 1.455 fd_intern (evpipe [1]);
2440    
2441 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2442 root 1.288 ev_io_start (EV_A_ &pipe_w);
2443 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2444 root 1.207 }
2445     }
2446    
2447 root 1.380 inline_speed void
2448 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2449 root 1.207 {
2450 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2451    
2452 root 1.383 if (expect_true (*flag))
2453 root 1.387 return;
2454 root 1.383
2455     *flag = 1;
2456 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2457 root 1.383
2458     pipe_write_skipped = 1;
2459 root 1.378
2460 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2461 root 1.214
2462 root 1.383 if (pipe_write_wanted)
2463     {
2464     int old_errno;
2465 root 1.378
2466 root 1.436 pipe_write_skipped = 0;
2467     ECB_MEMORY_FENCE_RELEASE;
2468 root 1.220
2469 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2470 root 1.380
2471 root 1.220 #if EV_USE_EVENTFD
2472 root 1.448 if (evpipe [0] < 0)
2473 root 1.383 {
2474     uint64_t counter = 1;
2475 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2476 root 1.383 }
2477     else
2478 root 1.220 #endif
2479 root 1.383 {
2480 root 1.427 #ifdef _WIN32
2481     WSABUF buf;
2482     DWORD sent;
2483 root 1.485 buf.buf = (char *)&buf;
2484 root 1.427 buf.len = 1;
2485     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2486     #else
2487 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2488 root 1.427 #endif
2489 root 1.383 }
2490 root 1.214
2491 root 1.383 errno = old_errno;
2492 root 1.207 }
2493     }
2494    
2495 root 1.288 /* called whenever the libev signal pipe */
2496     /* got some events (signal, async) */
2497 root 1.207 static void
2498     pipecb (EV_P_ ev_io *iow, int revents)
2499     {
2500 root 1.307 int i;
2501    
2502 root 1.378 if (revents & EV_READ)
2503     {
2504 root 1.220 #if EV_USE_EVENTFD
2505 root 1.448 if (evpipe [0] < 0)
2506 root 1.378 {
2507     uint64_t counter;
2508 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2509 root 1.378 }
2510     else
2511 root 1.220 #endif
2512 root 1.378 {
2513 root 1.427 char dummy[4];
2514     #ifdef _WIN32
2515     WSABUF buf;
2516     DWORD recvd;
2517 root 1.432 DWORD flags = 0;
2518 root 1.427 buf.buf = dummy;
2519     buf.len = sizeof (dummy);
2520 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2521 root 1.427 #else
2522     read (evpipe [0], &dummy, sizeof (dummy));
2523     #endif
2524 root 1.378 }
2525 root 1.220 }
2526 root 1.207
2527 root 1.378 pipe_write_skipped = 0;
2528    
2529 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2530    
2531 root 1.369 #if EV_SIGNAL_ENABLE
2532 root 1.307 if (sig_pending)
2533 root 1.372 {
2534 root 1.307 sig_pending = 0;
2535 root 1.207
2536 root 1.436 ECB_MEMORY_FENCE;
2537 root 1.424
2538 root 1.307 for (i = EV_NSIG - 1; i--; )
2539     if (expect_false (signals [i].pending))
2540     ev_feed_signal_event (EV_A_ i + 1);
2541 root 1.207 }
2542 root 1.369 #endif
2543 root 1.207
2544 root 1.209 #if EV_ASYNC_ENABLE
2545 root 1.307 if (async_pending)
2546 root 1.207 {
2547 root 1.307 async_pending = 0;
2548 root 1.207
2549 root 1.436 ECB_MEMORY_FENCE;
2550 root 1.424
2551 root 1.207 for (i = asynccnt; i--; )
2552     if (asyncs [i]->sent)
2553     {
2554     asyncs [i]->sent = 0;
2555 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2556 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2557     }
2558     }
2559 root 1.209 #endif
2560 root 1.207 }
2561    
2562     /*****************************************************************************/
2563    
2564 root 1.366 void
2565 root 1.486 ev_feed_signal (int signum) EV_NOEXCEPT
2566 root 1.7 {
2567 root 1.207 #if EV_MULTIPLICITY
2568 root 1.453 EV_P;
2569 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2570 root 1.453 EV_A = signals [signum - 1].loop;
2571 root 1.366
2572     if (!EV_A)
2573     return;
2574 root 1.207 #endif
2575    
2576 root 1.366 signals [signum - 1].pending = 1;
2577     evpipe_write (EV_A_ &sig_pending);
2578     }
2579    
2580     static void
2581     ev_sighandler (int signum)
2582     {
2583 root 1.322 #ifdef _WIN32
2584 root 1.218 signal (signum, ev_sighandler);
2585 root 1.67 #endif
2586    
2587 root 1.366 ev_feed_signal (signum);
2588 root 1.7 }
2589    
2590 root 1.480 noinline
2591     void
2592 root 1.486 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2593 root 1.79 {
2594 root 1.80 WL w;
2595    
2596 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2597 root 1.307 return;
2598    
2599     --signum;
2600    
2601 root 1.79 #if EV_MULTIPLICITY
2602 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2603     /* or, likely more useful, feeding a signal nobody is waiting for */
2604 root 1.79
2605 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2606 root 1.306 return;
2607 root 1.307 #endif
2608 root 1.306
2609 root 1.307 signals [signum].pending = 0;
2610 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2611 root 1.79
2612     for (w = signals [signum].head; w; w = w->next)
2613     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2614     }
2615    
2616 root 1.303 #if EV_USE_SIGNALFD
2617     static void
2618     sigfdcb (EV_P_ ev_io *iow, int revents)
2619     {
2620 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2621 root 1.303
2622     for (;;)
2623     {
2624     ssize_t res = read (sigfd, si, sizeof (si));
2625    
2626     /* not ISO-C, as res might be -1, but works with SuS */
2627     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2628     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2629    
2630     if (res < (ssize_t)sizeof (si))
2631     break;
2632     }
2633     }
2634     #endif
2635    
2636 root 1.336 #endif
2637    
2638 root 1.8 /*****************************************************************************/
2639    
2640 root 1.336 #if EV_CHILD_ENABLE
2641 root 1.182 static WL childs [EV_PID_HASHSIZE];
2642 root 1.71
2643 root 1.136 static ev_signal childev;
2644 root 1.59
2645 root 1.206 #ifndef WIFCONTINUED
2646     # define WIFCONTINUED(status) 0
2647     #endif
2648    
2649 root 1.288 /* handle a single child status event */
2650 root 1.284 inline_speed void
2651 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2652 root 1.47 {
2653 root 1.136 ev_child *w;
2654 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2655 root 1.47
2656 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2657 root 1.206 {
2658     if ((w->pid == pid || !w->pid)
2659     && (!traced || (w->flags & 1)))
2660     {
2661 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2662 root 1.206 w->rpid = pid;
2663     w->rstatus = status;
2664     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2665     }
2666     }
2667 root 1.47 }
2668    
2669 root 1.142 #ifndef WCONTINUED
2670     # define WCONTINUED 0
2671     #endif
2672    
2673 root 1.288 /* called on sigchld etc., calls waitpid */
2674 root 1.47 static void
2675 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2676 root 1.22 {
2677     int pid, status;
2678    
2679 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2680     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2681     if (!WCONTINUED
2682     || errno != EINVAL
2683     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2684     return;
2685    
2686 root 1.216 /* make sure we are called again until all children have been reaped */
2687 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2688     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2689 root 1.47
2690 root 1.216 child_reap (EV_A_ pid, pid, status);
2691 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2692 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2693 root 1.22 }
2694    
2695 root 1.45 #endif
2696    
2697 root 1.22 /*****************************************************************************/
2698    
2699 root 1.357 #if EV_USE_IOCP
2700     # include "ev_iocp.c"
2701     #endif
2702 root 1.118 #if EV_USE_PORT
2703     # include "ev_port.c"
2704     #endif
2705 root 1.44 #if EV_USE_KQUEUE
2706     # include "ev_kqueue.c"
2707     #endif
2708 root 1.29 #if EV_USE_EPOLL
2709 root 1.1 # include "ev_epoll.c"
2710     #endif
2711 root 1.59 #if EV_USE_POLL
2712 root 1.41 # include "ev_poll.c"
2713     #endif
2714 root 1.29 #if EV_USE_SELECT
2715 root 1.1 # include "ev_select.c"
2716     #endif
2717    
2718 root 1.480 ecb_cold int
2719 root 1.486 ev_version_major (void) EV_NOEXCEPT
2720 root 1.24 {
2721     return EV_VERSION_MAJOR;
2722     }
2723    
2724 root 1.480 ecb_cold int
2725 root 1.486 ev_version_minor (void) EV_NOEXCEPT
2726 root 1.24 {
2727     return EV_VERSION_MINOR;
2728     }
2729    
2730 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2731 root 1.480 inline_size ecb_cold int
2732 root 1.51 enable_secure (void)
2733 root 1.41 {
2734 root 1.103 #ifdef _WIN32
2735 root 1.49 return 0;
2736     #else
2737 root 1.41 return getuid () != geteuid ()
2738     || getgid () != getegid ();
2739 root 1.49 #endif
2740 root 1.41 }
2741    
2742 root 1.480 ecb_cold
2743     unsigned int
2744 root 1.486 ev_supported_backends (void) EV_NOEXCEPT
2745 root 1.129 {
2746 root 1.130 unsigned int flags = 0;
2747 root 1.129
2748     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2749     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2750     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2751     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2752     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2753    
2754     return flags;
2755     }
2756    
2757 root 1.480 ecb_cold
2758     unsigned int
2759 root 1.486 ev_recommended_backends (void) EV_NOEXCEPT
2760 root 1.1 {
2761 root 1.131 unsigned int flags = ev_supported_backends ();
2762 root 1.129
2763     #ifndef __NetBSD__
2764     /* kqueue is borked on everything but netbsd apparently */
2765     /* it usually doesn't work correctly on anything but sockets and pipes */
2766     flags &= ~EVBACKEND_KQUEUE;
2767     #endif
2768     #ifdef __APPLE__
2769 root 1.278 /* only select works correctly on that "unix-certified" platform */
2770     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2771     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2772 root 1.129 #endif
2773 root 1.342 #ifdef __FreeBSD__
2774     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2775     #endif
2776 root 1.129
2777     return flags;
2778 root 1.51 }
2779    
2780 root 1.480 ecb_cold
2781     unsigned int
2782 root 1.486 ev_embeddable_backends (void) EV_NOEXCEPT
2783 root 1.134 {
2784 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2785    
2786 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2787 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2788     flags &= ~EVBACKEND_EPOLL;
2789 root 1.196
2790     return flags;
2791 root 1.134 }
2792    
2793     unsigned int
2794 root 1.486 ev_backend (EV_P) EV_NOEXCEPT
2795 root 1.130 {
2796     return backend;
2797     }
2798    
2799 root 1.338 #if EV_FEATURE_API
2800 root 1.162 unsigned int
2801 root 1.486 ev_iteration (EV_P) EV_NOEXCEPT
2802 root 1.162 {
2803     return loop_count;
2804     }
2805    
2806 root 1.294 unsigned int
2807 root 1.486 ev_depth (EV_P) EV_NOEXCEPT
2808 root 1.294 {
2809     return loop_depth;
2810     }
2811    
2812 root 1.193 void
2813 root 1.486 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2814 root 1.193 {
2815     io_blocktime = interval;
2816     }
2817    
2818     void
2819 root 1.486 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2820 root 1.193 {
2821     timeout_blocktime = interval;
2822     }
2823    
2824 root 1.297 void
2825 root 1.486 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2826 root 1.297 {
2827     userdata = data;
2828     }
2829    
2830     void *
2831 root 1.486 ev_userdata (EV_P) EV_NOEXCEPT
2832 root 1.297 {
2833     return userdata;
2834     }
2835    
2836 root 1.379 void
2837 root 1.486 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2838 root 1.297 {
2839     invoke_cb = invoke_pending_cb;
2840     }
2841    
2842 root 1.379 void
2843 root 1.486 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2844 root 1.297 {
2845 root 1.298 release_cb = release;
2846     acquire_cb = acquire;
2847 root 1.297 }
2848     #endif
2849    
2850 root 1.288 /* initialise a loop structure, must be zero-initialised */
2851 root 1.480 noinline ecb_cold
2852     static void
2853 root 1.486 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2854 root 1.51 {
2855 root 1.130 if (!backend)
2856 root 1.23 {
2857 root 1.366 origflags = flags;
2858    
2859 root 1.279 #if EV_USE_REALTIME
2860     if (!have_realtime)
2861     {
2862     struct timespec ts;
2863    
2864     if (!clock_gettime (CLOCK_REALTIME, &ts))
2865     have_realtime = 1;
2866     }
2867     #endif
2868    
2869 root 1.29 #if EV_USE_MONOTONIC
2870 root 1.279 if (!have_monotonic)
2871     {
2872     struct timespec ts;
2873    
2874     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2875     have_monotonic = 1;
2876     }
2877 root 1.1 #endif
2878    
2879 root 1.306 /* pid check not overridable via env */
2880     #ifndef _WIN32
2881     if (flags & EVFLAG_FORKCHECK)
2882     curpid = getpid ();
2883     #endif
2884    
2885     if (!(flags & EVFLAG_NOENV)
2886     && !enable_secure ()
2887     && getenv ("LIBEV_FLAGS"))
2888     flags = atoi (getenv ("LIBEV_FLAGS"));
2889    
2890 root 1.378 ev_rt_now = ev_time ();
2891     mn_now = get_clock ();
2892     now_floor = mn_now;
2893     rtmn_diff = ev_rt_now - mn_now;
2894 root 1.338 #if EV_FEATURE_API
2895 root 1.378 invoke_cb = ev_invoke_pending;
2896 root 1.297 #endif
2897 root 1.1
2898 root 1.378 io_blocktime = 0.;
2899     timeout_blocktime = 0.;
2900     backend = 0;
2901     backend_fd = -1;
2902     sig_pending = 0;
2903 root 1.307 #if EV_ASYNC_ENABLE
2904 root 1.378 async_pending = 0;
2905 root 1.307 #endif
2906 root 1.378 pipe_write_skipped = 0;
2907     pipe_write_wanted = 0;
2908 root 1.448 evpipe [0] = -1;
2909     evpipe [1] = -1;
2910 root 1.209 #if EV_USE_INOTIFY
2911 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2912 root 1.209 #endif
2913 root 1.303 #if EV_USE_SIGNALFD
2914 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2915 root 1.303 #endif
2916 root 1.193
2917 root 1.366 if (!(flags & EVBACKEND_MASK))
2918 root 1.129 flags |= ev_recommended_backends ();
2919 root 1.41
2920 root 1.357 #if EV_USE_IOCP
2921     if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2922     #endif
2923 root 1.118 #if EV_USE_PORT
2924 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2925 root 1.118 #endif
2926 root 1.44 #if EV_USE_KQUEUE
2927 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2928 root 1.44 #endif
2929 root 1.29 #if EV_USE_EPOLL
2930 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2931 root 1.41 #endif
2932 root 1.59 #if EV_USE_POLL
2933 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2934 root 1.1 #endif
2935 root 1.29 #if EV_USE_SELECT
2936 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2937 root 1.1 #endif
2938 root 1.70
2939 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2940    
2941 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2942 root 1.288 ev_init (&pipe_w, pipecb);
2943     ev_set_priority (&pipe_w, EV_MAXPRI);
2944 root 1.336 #endif
2945 root 1.56 }
2946     }
2947    
2948 root 1.288 /* free up a loop structure */
2949 root 1.480 ecb_cold
2950     void
2951 root 1.422 ev_loop_destroy (EV_P)
2952 root 1.56 {
2953 root 1.65 int i;
2954    
2955 root 1.364 #if EV_MULTIPLICITY
2956 root 1.363 /* mimic free (0) */
2957     if (!EV_A)
2958     return;
2959 root 1.364 #endif
2960 root 1.363
2961 root 1.361 #if EV_CLEANUP_ENABLE
2962     /* queue cleanup watchers (and execute them) */
2963     if (expect_false (cleanupcnt))
2964     {
2965     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2966     EV_INVOKE_PENDING;
2967     }
2968     #endif
2969    
2970 root 1.359 #if EV_CHILD_ENABLE
2971 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2972 root 1.359 {
2973     ev_ref (EV_A); /* child watcher */
2974     ev_signal_stop (EV_A_ &childev);
2975     }
2976     #endif
2977    
2978 root 1.288 if (ev_is_active (&pipe_w))
2979 root 1.207 {
2980 root 1.303 /*ev_ref (EV_A);*/
2981     /*ev_io_stop (EV_A_ &pipe_w);*/
2982 root 1.207
2983 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2984     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2985 root 1.207 }
2986    
2987 root 1.303 #if EV_USE_SIGNALFD
2988     if (ev_is_active (&sigfd_w))
2989 root 1.317 close (sigfd);
2990 root 1.303 #endif
2991    
2992 root 1.152 #if EV_USE_INOTIFY
2993     if (fs_fd >= 0)
2994     close (fs_fd);
2995     #endif
2996    
2997     if (backend_fd >= 0)
2998     close (backend_fd);
2999    
3000 root 1.357 #if EV_USE_IOCP
3001     if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3002     #endif
3003 root 1.118 #if EV_USE_PORT
3004 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3005 root 1.118 #endif
3006 root 1.56 #if EV_USE_KQUEUE
3007 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
3008 root 1.56 #endif
3009     #if EV_USE_EPOLL
3010 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3011 root 1.56 #endif
3012 root 1.59 #if EV_USE_POLL
3013 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3014 root 1.56 #endif
3015     #if EV_USE_SELECT
3016 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
3017 root 1.56 #endif
3018 root 1.1
3019 root 1.65 for (i = NUMPRI; i--; )
3020 root 1.164 {
3021     array_free (pending, [i]);
3022     #if EV_IDLE_ENABLE
3023     array_free (idle, [i]);
3024     #endif
3025     }
3026 root 1.65
3027 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
3028 root 1.186
3029 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
3030 root 1.284 array_free (rfeed, EMPTY);
3031 root 1.164 array_free (fdchange, EMPTY);
3032     array_free (timer, EMPTY);
3033 root 1.140 #if EV_PERIODIC_ENABLE
3034 root 1.164 array_free (periodic, EMPTY);
3035 root 1.93 #endif
3036 root 1.187 #if EV_FORK_ENABLE
3037     array_free (fork, EMPTY);
3038     #endif
3039 root 1.360 #if EV_CLEANUP_ENABLE
3040     array_free (cleanup, EMPTY);
3041     #endif
3042 root 1.164 array_free (prepare, EMPTY);
3043     array_free (check, EMPTY);
3044 root 1.209 #if EV_ASYNC_ENABLE
3045     array_free (async, EMPTY);
3046     #endif
3047 root 1.65
3048 root 1.130 backend = 0;
3049 root 1.359
3050     #if EV_MULTIPLICITY
3051     if (ev_is_default_loop (EV_A))
3052     #endif
3053     ev_default_loop_ptr = 0;
3054     #if EV_MULTIPLICITY
3055     else
3056     ev_free (EV_A);
3057     #endif
3058 root 1.56 }
3059 root 1.22
3060 root 1.226 #if EV_USE_INOTIFY
3061 root 1.284 inline_size void infy_fork (EV_P);
3062 root 1.226 #endif
3063 root 1.154
3064 root 1.284 inline_size void
3065 root 1.56 loop_fork (EV_P)
3066     {
3067 root 1.118 #if EV_USE_PORT
3068 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3069 root 1.56 #endif
3070     #if EV_USE_KQUEUE
3071 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
3072 root 1.45 #endif
3073 root 1.118 #if EV_USE_EPOLL
3074 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3075 root 1.118 #endif
3076 root 1.154 #if EV_USE_INOTIFY
3077     infy_fork (EV_A);
3078     #endif
3079 root 1.70
3080 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3081 root 1.478 if (ev_is_active (&pipe_w) && postfork != 2)
3082 root 1.70 {
3083 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3084 root 1.70
3085     ev_ref (EV_A);
3086 root 1.288 ev_io_stop (EV_A_ &pipe_w);
3087 root 1.220
3088     if (evpipe [0] >= 0)
3089 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
3090 root 1.207
3091     evpipe_init (EV_A);
3092 root 1.443 /* iterate over everything, in case we missed something before */
3093     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3094 root 1.448 }
3095 root 1.337 #endif
3096 root 1.70
3097     postfork = 0;
3098 root 1.1 }
3099    
3100 root 1.55 #if EV_MULTIPLICITY
3101 root 1.250
3102 root 1.480 ecb_cold
3103     struct ev_loop *
3104 root 1.486 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3105 root 1.54 {
3106 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3107 root 1.69
3108 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
3109 root 1.108 loop_init (EV_A_ flags);
3110 root 1.56
3111 root 1.130 if (ev_backend (EV_A))
3112 root 1.306 return EV_A;
3113 root 1.54
3114 root 1.359 ev_free (EV_A);
3115 root 1.55 return 0;
3116 root 1.54 }
3117    
3118 root 1.297 #endif /* multiplicity */
3119 root 1.248
3120     #if EV_VERIFY
3121 root 1.480 noinline ecb_cold
3122     static void
3123 root 1.251 verify_watcher (EV_P_ W w)
3124     {
3125 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3126 root 1.251
3127     if (w->pending)
3128 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3129 root 1.251 }
3130    
3131 root 1.480 noinline ecb_cold
3132     static void
3133 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
3134     {
3135     int i;
3136    
3137     for (i = HEAP0; i < N + HEAP0; ++i)
3138     {
3139 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3140     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3141     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3142 root 1.251
3143     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3144     }
3145     }
3146    
3147 root 1.480 noinline ecb_cold
3148     static void
3149 root 1.251 array_verify (EV_P_ W *ws, int cnt)
3150 root 1.248 {
3151     while (cnt--)
3152 root 1.251 {
3153 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3154 root 1.251 verify_watcher (EV_A_ ws [cnt]);
3155     }
3156 root 1.248 }
3157 root 1.250 #endif
3158 root 1.248
3159 root 1.338 #if EV_FEATURE_API
3160 root 1.379 void ecb_cold
3161 root 1.486 ev_verify (EV_P) EV_NOEXCEPT
3162 root 1.248 {
3163 root 1.250 #if EV_VERIFY
3164 root 1.429 int i;
3165 root 1.426 WL w, w2;
3166 root 1.251
3167     assert (activecnt >= -1);
3168    
3169     assert (fdchangemax >= fdchangecnt);
3170     for (i = 0; i < fdchangecnt; ++i)
3171 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3172 root 1.251
3173     assert (anfdmax >= 0);
3174 root 1.429 for (i = 0; i < anfdmax; ++i)
3175     {
3176     int j = 0;
3177    
3178     for (w = w2 = anfds [i].head; w; w = w->next)
3179     {
3180     verify_watcher (EV_A_ (W)w);
3181 root 1.426
3182 root 1.429 if (j++ & 1)
3183     {
3184     assert (("libev: io watcher list contains a loop", w != w2));
3185     w2 = w2->next;
3186     }
3187 root 1.426
3188 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3189     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3190     }
3191     }
3192 root 1.251
3193     assert (timermax >= timercnt);
3194     verify_heap (EV_A_ timers, timercnt);
3195 root 1.248
3196     #if EV_PERIODIC_ENABLE
3197 root 1.251 assert (periodicmax >= periodiccnt);
3198     verify_heap (EV_A_ periodics, periodiccnt);
3199 root 1.248 #endif
3200    
3201 root 1.251 for (i = NUMPRI; i--; )
3202     {
3203     assert (pendingmax [i] >= pendingcnt [i]);
3204 root 1.248 #if EV_IDLE_ENABLE
3205 root 1.252 assert (idleall >= 0);
3206 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3207     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3208 root 1.248 #endif
3209 root 1.251 }
3210    
3211 root 1.248 #if EV_FORK_ENABLE
3212 root 1.251 assert (forkmax >= forkcnt);
3213     array_verify (EV_A_ (W *)forks, forkcnt);
3214 root 1.248 #endif
3215 root 1.251
3216 root 1.360 #if EV_CLEANUP_ENABLE
3217     assert (cleanupmax >= cleanupcnt);
3218     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3219     #endif
3220    
3221 root 1.250 #if EV_ASYNC_ENABLE
3222 root 1.251 assert (asyncmax >= asynccnt);
3223     array_verify (EV_A_ (W *)asyncs, asynccnt);
3224 root 1.250 #endif
3225 root 1.251
3226 root 1.337 #if EV_PREPARE_ENABLE
3227 root 1.251 assert (preparemax >= preparecnt);
3228     array_verify (EV_A_ (W *)prepares, preparecnt);
3229 root 1.337 #endif
3230 root 1.251
3231 root 1.337 #if EV_CHECK_ENABLE
3232 root 1.251 assert (checkmax >= checkcnt);
3233     array_verify (EV_A_ (W *)checks, checkcnt);
3234 root 1.337 #endif
3235 root 1.251
3236     # if 0
3237 root 1.336 #if EV_CHILD_ENABLE
3238 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3239 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3240 root 1.336 #endif
3241 root 1.251 # endif
3242 root 1.248 #endif
3243     }
3244 root 1.297 #endif
3245 root 1.56
3246     #if EV_MULTIPLICITY
3247 root 1.480 ecb_cold
3248     struct ev_loop *
3249 root 1.54 #else
3250     int
3251 root 1.358 #endif
3252 root 1.486 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3253 root 1.54 {
3254 root 1.116 if (!ev_default_loop_ptr)
3255 root 1.56 {
3256     #if EV_MULTIPLICITY
3257 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3258 root 1.56 #else
3259 ayin 1.117 ev_default_loop_ptr = 1;
3260 root 1.54 #endif
3261    
3262 root 1.110 loop_init (EV_A_ flags);
3263 root 1.56
3264 root 1.130 if (ev_backend (EV_A))
3265 root 1.56 {
3266 root 1.336 #if EV_CHILD_ENABLE
3267 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3268     ev_set_priority (&childev, EV_MAXPRI);
3269     ev_signal_start (EV_A_ &childev);
3270     ev_unref (EV_A); /* child watcher should not keep loop alive */
3271     #endif
3272     }
3273     else
3274 root 1.116 ev_default_loop_ptr = 0;
3275 root 1.56 }
3276 root 1.8
3277 root 1.116 return ev_default_loop_ptr;
3278 root 1.1 }
3279    
3280 root 1.24 void
3281 root 1.486 ev_loop_fork (EV_P) EV_NOEXCEPT
3282 root 1.1 {
3283 root 1.440 postfork = 1;
3284 root 1.1 }
3285    
3286 root 1.8 /*****************************************************************************/
3287    
3288 root 1.168 void
3289     ev_invoke (EV_P_ void *w, int revents)
3290     {
3291     EV_CB_INVOKE ((W)w, revents);
3292     }
3293    
3294 root 1.300 unsigned int
3295 root 1.486 ev_pending_count (EV_P) EV_NOEXCEPT
3296 root 1.300 {
3297     int pri;
3298     unsigned int count = 0;
3299    
3300     for (pri = NUMPRI; pri--; )
3301     count += pendingcnt [pri];
3302    
3303     return count;
3304     }
3305    
3306 root 1.480 noinline
3307     void
3308 root 1.296 ev_invoke_pending (EV_P)
3309 root 1.1 {
3310 root 1.445 pendingpri = NUMPRI;
3311    
3312 root 1.484 do
3313 root 1.445 {
3314     --pendingpri;
3315    
3316 root 1.484 /* pendingpri possibly gets modified in the inner loop */
3317 root 1.445 while (pendingcnt [pendingpri])
3318     {
3319     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3320 root 1.1
3321 root 1.445 p->w->pending = 0;
3322     EV_CB_INVOKE (p->w, p->events);
3323     EV_FREQUENT_CHECK;
3324     }
3325     }
3326 root 1.484 while (pendingpri);
3327 root 1.1 }
3328    
3329 root 1.234 #if EV_IDLE_ENABLE
3330 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3331     /* only when higher priorities are idle" logic */
3332 root 1.284 inline_size void
3333 root 1.234 idle_reify (EV_P)
3334     {
3335     if (expect_false (idleall))
3336     {
3337     int pri;
3338    
3339     for (pri = NUMPRI; pri--; )
3340     {
3341     if (pendingcnt [pri])
3342     break;
3343    
3344     if (idlecnt [pri])
3345     {
3346     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3347     break;
3348     }
3349     }
3350     }
3351     }
3352     #endif
3353    
3354 root 1.288 /* make timers pending */
3355 root 1.284 inline_size void
3356 root 1.51 timers_reify (EV_P)
3357 root 1.1 {
3358 root 1.248 EV_FREQUENT_CHECK;
3359    
3360 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3361 root 1.1 {
3362 root 1.284 do
3363     {
3364     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3365 root 1.1
3366 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3367    
3368     /* first reschedule or stop timer */
3369     if (w->repeat)
3370     {
3371     ev_at (w) += w->repeat;
3372     if (ev_at (w) < mn_now)
3373     ev_at (w) = mn_now;
3374 root 1.61
3375 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3376 root 1.90
3377 root 1.284 ANHE_at_cache (timers [HEAP0]);
3378     downheap (timers, timercnt, HEAP0);
3379     }
3380     else
3381     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3382 root 1.243
3383 root 1.284 EV_FREQUENT_CHECK;
3384     feed_reverse (EV_A_ (W)w);
3385 root 1.12 }
3386 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3387 root 1.30
3388 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3389 root 1.12 }
3390     }
3391 root 1.4
3392 root 1.140 #if EV_PERIODIC_ENABLE
3393 root 1.370
3394 root 1.480 noinline
3395     static void
3396 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3397     {
3398 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3399     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3400    
3401     /* the above almost always errs on the low side */
3402     while (at <= ev_rt_now)
3403     {
3404     ev_tstamp nat = at + w->interval;
3405    
3406     /* when resolution fails us, we use ev_rt_now */
3407     if (expect_false (nat == at))
3408     {
3409     at = ev_rt_now;
3410     break;
3411     }
3412    
3413     at = nat;
3414     }
3415    
3416     ev_at (w) = at;
3417 root 1.370 }
3418    
3419 root 1.288 /* make periodics pending */
3420 root 1.284 inline_size void
3421 root 1.51 periodics_reify (EV_P)
3422 root 1.12 {
3423 root 1.248 EV_FREQUENT_CHECK;
3424 root 1.250
3425 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3426 root 1.12 {
3427 root 1.284 do
3428     {
3429     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3430 root 1.1
3431 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3432 root 1.61
3433 root 1.284 /* first reschedule or stop timer */
3434     if (w->reschedule_cb)
3435     {
3436     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3437 root 1.243
3438 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3439 root 1.243
3440 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3441     downheap (periodics, periodiccnt, HEAP0);
3442     }
3443     else if (w->interval)
3444 root 1.246 {
3445 root 1.370 periodic_recalc (EV_A_ w);
3446 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3447     downheap (periodics, periodiccnt, HEAP0);
3448 root 1.246 }
3449 root 1.284 else
3450     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3451 root 1.243
3452 root 1.284 EV_FREQUENT_CHECK;
3453     feed_reverse (EV_A_ (W)w);
3454 root 1.1 }
3455 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3456 root 1.12
3457 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3458 root 1.12 }
3459     }
3460    
3461 root 1.288 /* simply recalculate all periodics */
3462 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3463 root 1.480 noinline ecb_cold
3464     static void
3465 root 1.54 periodics_reschedule (EV_P)
3466 root 1.12 {
3467     int i;
3468    
3469 root 1.13 /* adjust periodics after time jump */
3470 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3471 root 1.12 {
3472 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3473 root 1.12
3474 root 1.77 if (w->reschedule_cb)
3475 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3476 root 1.77 else if (w->interval)
3477 root 1.370 periodic_recalc (EV_A_ w);
3478 root 1.242
3479 root 1.248 ANHE_at_cache (periodics [i]);
3480 root 1.77 }
3481 root 1.12
3482 root 1.248 reheap (periodics, periodiccnt);
3483 root 1.1 }
3484 root 1.93 #endif
3485 root 1.1
3486 root 1.288 /* adjust all timers by a given offset */
3487 root 1.480 noinline ecb_cold
3488     static void
3489 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3490     {
3491     int i;
3492    
3493     for (i = 0; i < timercnt; ++i)
3494     {
3495     ANHE *he = timers + i + HEAP0;
3496     ANHE_w (*he)->at += adjust;
3497     ANHE_at_cache (*he);
3498     }
3499     }
3500    
3501 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3502 root 1.324 /* also detect if there was a timejump, and act accordingly */
3503 root 1.284 inline_speed void
3504 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3505 root 1.4 {
3506 root 1.40 #if EV_USE_MONOTONIC
3507     if (expect_true (have_monotonic))
3508     {
3509 root 1.289 int i;
3510 root 1.178 ev_tstamp odiff = rtmn_diff;
3511    
3512     mn_now = get_clock ();
3513    
3514     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3515     /* interpolate in the meantime */
3516     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3517 root 1.40 {
3518 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3519     return;
3520     }
3521    
3522     now_floor = mn_now;
3523     ev_rt_now = ev_time ();
3524 root 1.4
3525 root 1.178 /* loop a few times, before making important decisions.
3526     * on the choice of "4": one iteration isn't enough,
3527     * in case we get preempted during the calls to
3528     * ev_time and get_clock. a second call is almost guaranteed
3529     * to succeed in that case, though. and looping a few more times
3530     * doesn't hurt either as we only do this on time-jumps or
3531     * in the unlikely event of having been preempted here.
3532     */
3533     for (i = 4; --i; )
3534     {
3535 root 1.373 ev_tstamp diff;
3536 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3537 root 1.4
3538 root 1.373 diff = odiff - rtmn_diff;
3539    
3540     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3541 root 1.178 return; /* all is well */
3542 root 1.4
3543 root 1.178 ev_rt_now = ev_time ();
3544     mn_now = get_clock ();
3545     now_floor = mn_now;
3546     }
3547 root 1.4
3548 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3549     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3550 root 1.140 # if EV_PERIODIC_ENABLE
3551 root 1.178 periodics_reschedule (EV_A);
3552 root 1.93 # endif
3553 root 1.4 }
3554     else
3555 root 1.40 #endif
3556 root 1.4 {
3557 root 1.85 ev_rt_now = ev_time ();
3558 root 1.40
3559 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3560 root 1.13 {
3561 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3562     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3563 root 1.140 #if EV_PERIODIC_ENABLE
3564 root 1.54 periodics_reschedule (EV_A);
3565 root 1.93 #endif
3566 root 1.13 }
3567 root 1.4
3568 root 1.85 mn_now = ev_rt_now;
3569 root 1.4 }
3570     }
3571    
3572 root 1.418 int
3573 root 1.353 ev_run (EV_P_ int flags)
3574 root 1.1 {
3575 root 1.338 #if EV_FEATURE_API
3576 root 1.294 ++loop_depth;
3577 root 1.297 #endif
3578 root 1.294
3579 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3580 root 1.298
3581 root 1.353 loop_done = EVBREAK_CANCEL;
3582 root 1.1
3583 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3584 root 1.158
3585 root 1.161 do
3586 root 1.9 {
3587 root 1.250 #if EV_VERIFY >= 2
3588 root 1.340 ev_verify (EV_A);
3589 root 1.250 #endif
3590    
3591 root 1.158 #ifndef _WIN32
3592     if (expect_false (curpid)) /* penalise the forking check even more */
3593     if (expect_false (getpid () != curpid))
3594     {
3595     curpid = getpid ();
3596     postfork = 1;
3597     }
3598     #endif
3599    
3600 root 1.157 #if EV_FORK_ENABLE
3601     /* we might have forked, so queue fork handlers */
3602     if (expect_false (postfork))
3603     if (forkcnt)
3604     {
3605     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3606 root 1.297 EV_INVOKE_PENDING;
3607 root 1.157 }
3608     #endif
3609 root 1.147
3610 root 1.337 #if EV_PREPARE_ENABLE
3611 root 1.170 /* queue prepare watchers (and execute them) */
3612 root 1.40 if (expect_false (preparecnt))
3613 root 1.20 {
3614 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3615 root 1.297 EV_INVOKE_PENDING;
3616 root 1.20 }
3617 root 1.337 #endif
3618 root 1.9
3619 root 1.298 if (expect_false (loop_done))
3620     break;
3621    
3622 root 1.70 /* we might have forked, so reify kernel state if necessary */
3623     if (expect_false (postfork))
3624     loop_fork (EV_A);
3625    
3626 root 1.1 /* update fd-related kernel structures */
3627 root 1.51 fd_reify (EV_A);
3628 root 1.1
3629     /* calculate blocking time */
3630 root 1.135 {
3631 root 1.193 ev_tstamp waittime = 0.;
3632     ev_tstamp sleeptime = 0.;
3633 root 1.12
3634 root 1.353 /* remember old timestamp for io_blocktime calculation */
3635     ev_tstamp prev_mn_now = mn_now;
3636 root 1.293
3637 root 1.353 /* update time to cancel out callback processing overhead */
3638     time_update (EV_A_ 1e100);
3639 root 1.135
3640 root 1.378 /* from now on, we want a pipe-wake-up */
3641     pipe_write_wanted = 1;
3642    
3643 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3644 root 1.383
3645 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3646 root 1.353 {
3647 root 1.287 waittime = MAX_BLOCKTIME;
3648    
3649 root 1.135 if (timercnt)
3650     {
3651 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3652 root 1.193 if (waittime > to) waittime = to;
3653 root 1.135 }
3654 root 1.4
3655 root 1.140 #if EV_PERIODIC_ENABLE
3656 root 1.135 if (periodiccnt)
3657     {
3658 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3659 root 1.193 if (waittime > to) waittime = to;
3660 root 1.135 }
3661 root 1.93 #endif
3662 root 1.4
3663 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3664 root 1.193 if (expect_false (waittime < timeout_blocktime))
3665     waittime = timeout_blocktime;
3666    
3667 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3668     /* to pass a minimum nonzero value to the backend */
3669     if (expect_false (waittime < backend_mintime))
3670     waittime = backend_mintime;
3671    
3672 root 1.293 /* extra check because io_blocktime is commonly 0 */
3673     if (expect_false (io_blocktime))
3674     {
3675     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3676 root 1.193
3677 root 1.376 if (sleeptime > waittime - backend_mintime)
3678     sleeptime = waittime - backend_mintime;
3679 root 1.193
3680 root 1.293 if (expect_true (sleeptime > 0.))
3681     {
3682     ev_sleep (sleeptime);
3683     waittime -= sleeptime;
3684     }
3685 root 1.193 }
3686 root 1.135 }
3687 root 1.1
3688 root 1.338 #if EV_FEATURE_API
3689 root 1.162 ++loop_count;
3690 root 1.297 #endif
3691 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3692 root 1.193 backend_poll (EV_A_ waittime);
3693 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3694 root 1.178
3695 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3696 root 1.378
3697 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3698 root 1.378 if (pipe_write_skipped)
3699     {
3700     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3701     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3702     }
3703    
3704    
3705 root 1.178 /* update ev_rt_now, do magic */
3706 root 1.193 time_update (EV_A_ waittime + sleeptime);
3707 root 1.135 }
3708 root 1.1
3709 root 1.9 /* queue pending timers and reschedule them */
3710 root 1.51 timers_reify (EV_A); /* relative timers called last */
3711 root 1.140 #if EV_PERIODIC_ENABLE
3712 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3713 root 1.93 #endif
3714 root 1.1
3715 root 1.164 #if EV_IDLE_ENABLE
3716 root 1.137 /* queue idle watchers unless other events are pending */
3717 root 1.164 idle_reify (EV_A);
3718     #endif
3719 root 1.9
3720 root 1.337 #if EV_CHECK_ENABLE
3721 root 1.20 /* queue check watchers, to be executed first */
3722 root 1.123 if (expect_false (checkcnt))
3723 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3724 root 1.337 #endif
3725 root 1.9
3726 root 1.297 EV_INVOKE_PENDING;
3727 root 1.1 }
3728 root 1.219 while (expect_true (
3729     activecnt
3730     && !loop_done
3731 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3732 root 1.219 ));
3733 root 1.13
3734 root 1.353 if (loop_done == EVBREAK_ONE)
3735     loop_done = EVBREAK_CANCEL;
3736 root 1.294
3737 root 1.338 #if EV_FEATURE_API
3738 root 1.294 --loop_depth;
3739 root 1.297 #endif
3740 root 1.418
3741     return activecnt;
3742 root 1.51 }
3743    
3744     void
3745 root 1.486 ev_break (EV_P_ int how) EV_NOEXCEPT
3746 root 1.51 {
3747     loop_done = how;
3748 root 1.1 }
3749    
3750 root 1.285 void
3751 root 1.486 ev_ref (EV_P) EV_NOEXCEPT
3752 root 1.285 {
3753     ++activecnt;
3754     }
3755    
3756     void
3757 root 1.486 ev_unref (EV_P) EV_NOEXCEPT
3758 root 1.285 {
3759     --activecnt;
3760     }
3761    
3762     void
3763 root 1.486 ev_now_update (EV_P) EV_NOEXCEPT
3764 root 1.285 {
3765     time_update (EV_A_ 1e100);
3766     }
3767    
3768     void
3769 root 1.486 ev_suspend (EV_P) EV_NOEXCEPT
3770 root 1.285 {
3771     ev_now_update (EV_A);
3772     }
3773    
3774     void
3775 root 1.486 ev_resume (EV_P) EV_NOEXCEPT
3776 root 1.285 {
3777     ev_tstamp mn_prev = mn_now;
3778    
3779     ev_now_update (EV_A);
3780     timers_reschedule (EV_A_ mn_now - mn_prev);
3781 root 1.286 #if EV_PERIODIC_ENABLE
3782 root 1.288 /* TODO: really do this? */
3783 root 1.285 periodics_reschedule (EV_A);
3784 root 1.286 #endif
3785 root 1.285 }
3786    
3787 root 1.8 /*****************************************************************************/
3788 root 1.288 /* singly-linked list management, used when the expected list length is short */
3789 root 1.8
3790 root 1.284 inline_size void
3791 root 1.10 wlist_add (WL *head, WL elem)
3792 root 1.1 {
3793     elem->next = *head;
3794     *head = elem;
3795     }
3796    
3797 root 1.284 inline_size void
3798 root 1.10 wlist_del (WL *head, WL elem)
3799 root 1.1 {
3800     while (*head)
3801     {
3802 root 1.307 if (expect_true (*head == elem))
3803 root 1.1 {
3804     *head = elem->next;
3805 root 1.307 break;
3806 root 1.1 }
3807    
3808     head = &(*head)->next;
3809     }
3810     }
3811    
3812 root 1.288 /* internal, faster, version of ev_clear_pending */
3813 root 1.284 inline_speed void
3814 root 1.166 clear_pending (EV_P_ W w)
3815 root 1.16 {
3816     if (w->pending)
3817     {
3818 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3819 root 1.16 w->pending = 0;
3820     }
3821     }
3822    
3823 root 1.167 int
3824 root 1.486 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3825 root 1.166 {
3826     W w_ = (W)w;
3827     int pending = w_->pending;
3828    
3829 root 1.172 if (expect_true (pending))
3830     {
3831     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3832 root 1.288 p->w = (W)&pending_w;
3833 root 1.172 w_->pending = 0;
3834     return p->events;
3835     }
3836     else
3837 root 1.167 return 0;
3838 root 1.166 }
3839    
3840 root 1.284 inline_size void
3841 root 1.164 pri_adjust (EV_P_ W w)
3842     {
3843 root 1.295 int pri = ev_priority (w);
3844 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3845     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3846 root 1.295 ev_set_priority (w, pri);
3847 root 1.164 }
3848    
3849 root 1.284 inline_speed void
3850 root 1.51 ev_start (EV_P_ W w, int active)
3851 root 1.1 {
3852 root 1.164 pri_adjust (EV_A_ w);
3853 root 1.1 w->active = active;
3854 root 1.51 ev_ref (EV_A);
3855 root 1.1 }
3856    
3857 root 1.284 inline_size void
3858 root 1.51 ev_stop (EV_P_ W w)
3859 root 1.1 {
3860 root 1.51 ev_unref (EV_A);
3861 root 1.1 w->active = 0;
3862     }
3863    
3864 root 1.8 /*****************************************************************************/
3865    
3866 root 1.480 noinline
3867     void
3868 root 1.486 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
3869 root 1.1 {
3870 root 1.37 int fd = w->fd;
3871    
3872 root 1.123 if (expect_false (ev_is_active (w)))
3873 root 1.1 return;
3874    
3875 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3876 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3877 root 1.33
3878 root 1.248 EV_FREQUENT_CHECK;
3879    
3880 root 1.51 ev_start (EV_A_ (W)w, 1);
3881 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3882 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3883 root 1.1
3884 root 1.426 /* common bug, apparently */
3885     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3886    
3887 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3888 root 1.281 w->events &= ~EV__IOFDSET;
3889 root 1.248
3890     EV_FREQUENT_CHECK;
3891 root 1.1 }
3892    
3893 root 1.480 noinline
3894     void
3895 root 1.486 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
3896 root 1.1 {
3897 root 1.166 clear_pending (EV_A_ (W)w);
3898 root 1.123 if (expect_false (!ev_is_active (w)))
3899 root 1.1 return;
3900    
3901 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3902 root 1.89
3903 root 1.248 EV_FREQUENT_CHECK;
3904    
3905 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3906 root 1.51 ev_stop (EV_A_ (W)w);
3907 root 1.1
3908 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3909 root 1.248
3910     EV_FREQUENT_CHECK;
3911 root 1.1 }
3912    
3913 root 1.480 noinline
3914     void
3915 root 1.486 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3916 root 1.1 {
3917 root 1.123 if (expect_false (ev_is_active (w)))
3918 root 1.1 return;
3919    
3920 root 1.228 ev_at (w) += mn_now;
3921 root 1.12
3922 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3923 root 1.13
3924 root 1.248 EV_FREQUENT_CHECK;
3925    
3926     ++timercnt;
3927     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3928 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3929     ANHE_w (timers [ev_active (w)]) = (WT)w;
3930 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3931 root 1.235 upheap (timers, ev_active (w));
3932 root 1.62
3933 root 1.248 EV_FREQUENT_CHECK;
3934    
3935 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3936 root 1.12 }
3937    
3938 root 1.480 noinline
3939     void
3940 root 1.486 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3941 root 1.12 {
3942 root 1.166 clear_pending (EV_A_ (W)w);
3943 root 1.123 if (expect_false (!ev_is_active (w)))
3944 root 1.12 return;
3945    
3946 root 1.248 EV_FREQUENT_CHECK;
3947    
3948 root 1.230 {
3949     int active = ev_active (w);
3950 root 1.62
3951 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3952 root 1.151
3953 root 1.248 --timercnt;
3954    
3955     if (expect_true (active < timercnt + HEAP0))
3956 root 1.151 {
3957 root 1.248 timers [active] = timers [timercnt + HEAP0];
3958 root 1.181 adjustheap (timers, timercnt, active);
3959 root 1.151 }
3960 root 1.248 }
3961 root 1.228
3962     ev_at (w) -= mn_now;
3963 root 1.14
3964 root 1.51 ev_stop (EV_A_ (W)w);
3965 root 1.328
3966     EV_FREQUENT_CHECK;
3967 root 1.12 }
3968 root 1.4
3969 root 1.480 noinline
3970     void
3971 root 1.486 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
3972 root 1.14 {
3973 root 1.248 EV_FREQUENT_CHECK;
3974    
3975 root 1.407 clear_pending (EV_A_ (W)w);
3976 root 1.406
3977 root 1.14 if (ev_is_active (w))
3978     {
3979     if (w->repeat)
3980 root 1.99 {
3981 root 1.228 ev_at (w) = mn_now + w->repeat;
3982 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3983 root 1.230 adjustheap (timers, timercnt, ev_active (w));
3984 root 1.99 }
3985 root 1.14 else
3986 root 1.51 ev_timer_stop (EV_A_ w);
3987 root 1.14 }
3988     else if (w->repeat)
3989 root 1.112 {
3990 root 1.229 ev_at (w) = w->repeat;
3991 root 1.112 ev_timer_start (EV_A_ w);
3992     }
3993 root 1.248
3994     EV_FREQUENT_CHECK;
3995 root 1.14 }
3996    
3997 root 1.301 ev_tstamp
3998 root 1.486 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
3999 root 1.301 {
4000     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4001     }
4002    
4003 root 1.140 #if EV_PERIODIC_ENABLE
4004 root 1.480 noinline
4005     void
4006 root 1.486 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4007 root 1.12 {
4008 root 1.123 if (expect_false (ev_is_active (w)))
4009 root 1.12 return;
4010 root 1.1
4011 root 1.77 if (w->reschedule_cb)
4012 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4013 root 1.77 else if (w->interval)
4014     {
4015 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4016 root 1.370 periodic_recalc (EV_A_ w);
4017 root 1.77 }
4018 root 1.173 else
4019 root 1.228 ev_at (w) = w->offset;
4020 root 1.12
4021 root 1.248 EV_FREQUENT_CHECK;
4022    
4023     ++periodiccnt;
4024     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4025 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
4026     ANHE_w (periodics [ev_active (w)]) = (WT)w;
4027 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
4028 root 1.235 upheap (periodics, ev_active (w));
4029 root 1.62
4030 root 1.248 EV_FREQUENT_CHECK;
4031    
4032 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4033 root 1.1 }
4034    
4035 root 1.480 noinline
4036     void
4037 root 1.486 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4038 root 1.1 {
4039 root 1.166 clear_pending (EV_A_ (W)w);
4040 root 1.123 if (expect_false (!ev_is_active (w)))
4041 root 1.1 return;
4042    
4043 root 1.248 EV_FREQUENT_CHECK;
4044    
4045 root 1.230 {
4046     int active = ev_active (w);
4047 root 1.62
4048 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4049 root 1.151
4050 root 1.248 --periodiccnt;
4051    
4052     if (expect_true (active < periodiccnt + HEAP0))
4053 root 1.151 {
4054 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
4055 root 1.181 adjustheap (periodics, periodiccnt, active);
4056 root 1.151 }
4057 root 1.248 }
4058 root 1.228
4059 root 1.328 ev_stop (EV_A_ (W)w);
4060    
4061 root 1.248 EV_FREQUENT_CHECK;
4062 root 1.1 }
4063    
4064 root 1.480 noinline
4065     void
4066 root 1.486 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4067 root 1.77 {
4068 root 1.84 /* TODO: use adjustheap and recalculation */
4069 root 1.77 ev_periodic_stop (EV_A_ w);
4070     ev_periodic_start (EV_A_ w);
4071     }
4072 root 1.93 #endif
4073 root 1.77
4074 root 1.56 #ifndef SA_RESTART
4075     # define SA_RESTART 0
4076     #endif
4077    
4078 root 1.336 #if EV_SIGNAL_ENABLE
4079    
4080 root 1.480 noinline
4081     void
4082 root 1.486 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4083 root 1.56 {
4084 root 1.123 if (expect_false (ev_is_active (w)))
4085 root 1.56 return;
4086    
4087 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4088    
4089     #if EV_MULTIPLICITY
4090 root 1.308 assert (("libev: a signal must not be attached to two different loops",
4091 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4092    
4093     signals [w->signum - 1].loop = EV_A;
4094 root 1.449 ECB_MEMORY_FENCE_RELEASE;
4095 root 1.306 #endif
4096 root 1.56
4097 root 1.303 EV_FREQUENT_CHECK;
4098    
4099     #if EV_USE_SIGNALFD
4100     if (sigfd == -2)
4101     {
4102     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4103     if (sigfd < 0 && errno == EINVAL)
4104     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4105    
4106     if (sigfd >= 0)
4107     {
4108     fd_intern (sigfd); /* doing it twice will not hurt */
4109    
4110     sigemptyset (&sigfd_set);
4111    
4112     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4113     ev_set_priority (&sigfd_w, EV_MAXPRI);
4114     ev_io_start (EV_A_ &sigfd_w);
4115     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4116     }
4117     }
4118    
4119     if (sigfd >= 0)
4120     {
4121     /* TODO: check .head */
4122     sigaddset (&sigfd_set, w->signum);
4123     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4124 root 1.207
4125 root 1.303 signalfd (sigfd, &sigfd_set, 0);
4126     }
4127 root 1.180 #endif
4128    
4129 root 1.56 ev_start (EV_A_ (W)w, 1);
4130 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
4131 root 1.56
4132 root 1.63 if (!((WL)w)->next)
4133 root 1.304 # if EV_USE_SIGNALFD
4134 root 1.306 if (sigfd < 0) /*TODO*/
4135 root 1.304 # endif
4136 root 1.306 {
4137 root 1.322 # ifdef _WIN32
4138 root 1.317 evpipe_init (EV_A);
4139    
4140 root 1.306 signal (w->signum, ev_sighandler);
4141     # else
4142     struct sigaction sa;
4143    
4144     evpipe_init (EV_A);
4145    
4146     sa.sa_handler = ev_sighandler;
4147     sigfillset (&sa.sa_mask);
4148     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4149     sigaction (w->signum, &sa, 0);
4150    
4151 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
4152     {
4153     sigemptyset (&sa.sa_mask);
4154     sigaddset (&sa.sa_mask, w->signum);
4155     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4156     }
4157 root 1.67 #endif
4158 root 1.306 }
4159 root 1.248
4160     EV_FREQUENT_CHECK;
4161 root 1.56 }
4162    
4163 root 1.480 noinline
4164     void
4165 root 1.486 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4166 root 1.56 {
4167 root 1.166 clear_pending (EV_A_ (W)w);
4168 root 1.123 if (expect_false (!ev_is_active (w)))
4169 root 1.56 return;
4170    
4171 root 1.248 EV_FREQUENT_CHECK;
4172    
4173 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
4174 root 1.56 ev_stop (EV_A_ (W)w);
4175    
4176     if (!signals [w->signum - 1].head)
4177 root 1.306 {
4178 root 1.307 #if EV_MULTIPLICITY
4179 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
4180 root 1.307 #endif
4181     #if EV_USE_SIGNALFD
4182 root 1.306 if (sigfd >= 0)
4183     {
4184 root 1.321 sigset_t ss;
4185    
4186     sigemptyset (&ss);
4187     sigaddset (&ss, w->signum);
4188 root 1.306 sigdelset (&sigfd_set, w->signum);
4189 root 1.321
4190 root 1.306 signalfd (sigfd, &sigfd_set, 0);
4191 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
4192 root 1.306 }
4193     else
4194 root 1.307 #endif
4195 root 1.306 signal (w->signum, SIG_DFL);
4196     }
4197 root 1.248
4198     EV_FREQUENT_CHECK;
4199 root 1.56 }
4200    
4201 root 1.336 #endif
4202    
4203     #if EV_CHILD_ENABLE
4204    
4205 root 1.28 void
4206 root 1.486 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4207 root 1.22 {
4208 root 1.56 #if EV_MULTIPLICITY
4209 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4210 root 1.56 #endif
4211 root 1.123 if (expect_false (ev_is_active (w)))
4212 root 1.22 return;
4213    
4214 root 1.248 EV_FREQUENT_CHECK;
4215    
4216 root 1.51 ev_start (EV_A_ (W)w, 1);
4217 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4218 root 1.248
4219     EV_FREQUENT_CHECK;
4220 root 1.22 }
4221    
4222 root 1.28 void
4223 root 1.486 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4224 root 1.22 {
4225 root 1.166 clear_pending (EV_A_ (W)w);
4226 root 1.123 if (expect_false (!ev_is_active (w)))
4227 root 1.22 return;
4228    
4229 root 1.248 EV_FREQUENT_CHECK;
4230    
4231 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4232 root 1.51 ev_stop (EV_A_ (W)w);
4233 root 1.248
4234     EV_FREQUENT_CHECK;
4235 root 1.22 }
4236    
4237 root 1.336 #endif
4238    
4239 root 1.140 #if EV_STAT_ENABLE
4240    
4241     # ifdef _WIN32
4242 root 1.146 # undef lstat
4243     # define lstat(a,b) _stati64 (a,b)
4244 root 1.140 # endif
4245    
4246 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4247     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4248     #define MIN_STAT_INTERVAL 0.1074891
4249 root 1.143
4250 root 1.480 noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4251 root 1.152
4252     #if EV_USE_INOTIFY
4253 root 1.326
4254     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4255     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4256 root 1.152
4257 root 1.480 noinline
4258     static void
4259 root 1.152 infy_add (EV_P_ ev_stat *w)
4260     {
4261 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4262     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4263     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4264     | IN_DONT_FOLLOW | IN_MASK_ADD);
4265 root 1.152
4266 root 1.318 if (w->wd >= 0)
4267 root 1.152 {
4268 root 1.318 struct statfs sfs;
4269    
4270     /* now local changes will be tracked by inotify, but remote changes won't */
4271     /* unless the filesystem is known to be local, we therefore still poll */
4272     /* also do poll on <2.6.25, but with normal frequency */
4273    
4274     if (!fs_2625)
4275     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4276     else if (!statfs (w->path, &sfs)
4277     && (sfs.f_type == 0x1373 /* devfs */
4278 root 1.451 || sfs.f_type == 0x4006 /* fat */
4279     || sfs.f_type == 0x4d44 /* msdos */
4280 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4281 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4282     || sfs.f_type == 0x858458f6 /* ramfs */
4283     || sfs.f_type == 0x5346544e /* ntfs */
4284 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4285 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4286 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4287 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4288 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4289     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4290     else
4291     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4292     }
4293     else
4294     {
4295     /* can't use inotify, continue to stat */
4296 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4297 root 1.152
4298 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4299 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4300 root 1.233 /* but an efficiency issue only */
4301 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4302 root 1.152 {
4303 root 1.153 char path [4096];
4304 root 1.152 strcpy (path, w->path);
4305    
4306     do
4307     {
4308     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4309     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4310    
4311     char *pend = strrchr (path, '/');
4312    
4313 root 1.275 if (!pend || pend == path)
4314     break;
4315 root 1.152
4316     *pend = 0;
4317 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4318 root 1.372 }
4319 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4320     }
4321     }
4322 root 1.275
4323     if (w->wd >= 0)
4324 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4325 root 1.152
4326 root 1.318 /* now re-arm timer, if required */
4327     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4328     ev_timer_again (EV_A_ &w->timer);
4329     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4330 root 1.152 }
4331    
4332 root 1.480 noinline
4333     static void
4334 root 1.152 infy_del (EV_P_ ev_stat *w)
4335     {
4336     int slot;
4337     int wd = w->wd;
4338    
4339     if (wd < 0)
4340     return;
4341    
4342     w->wd = -2;
4343 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4344 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4345    
4346     /* remove this watcher, if others are watching it, they will rearm */
4347     inotify_rm_watch (fs_fd, wd);
4348     }
4349    
4350 root 1.480 noinline
4351     static void
4352 root 1.152 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4353     {
4354     if (slot < 0)
4355 root 1.264 /* overflow, need to check for all hash slots */
4356 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4357 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4358     else
4359     {
4360     WL w_;
4361    
4362 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4363 root 1.152 {
4364     ev_stat *w = (ev_stat *)w_;
4365     w_ = w_->next; /* lets us remove this watcher and all before it */
4366    
4367     if (w->wd == wd || wd == -1)
4368     {
4369     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4370     {
4371 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4372 root 1.152 w->wd = -1;
4373     infy_add (EV_A_ w); /* re-add, no matter what */
4374     }
4375    
4376 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4377 root 1.152 }
4378     }
4379     }
4380     }
4381    
4382     static void
4383     infy_cb (EV_P_ ev_io *w, int revents)
4384     {
4385     char buf [EV_INOTIFY_BUFSIZE];
4386     int ofs;
4387     int len = read (fs_fd, buf, sizeof (buf));
4388    
4389 root 1.326 for (ofs = 0; ofs < len; )
4390     {
4391     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4392     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4393     ofs += sizeof (struct inotify_event) + ev->len;
4394     }
4395 root 1.152 }
4396    
4397 root 1.480 inline_size ecb_cold
4398     void
4399 root 1.330 ev_check_2625 (EV_P)
4400     {
4401     /* kernels < 2.6.25 are borked
4402     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4403     */
4404     if (ev_linux_version () < 0x020619)
4405 root 1.273 return;
4406 root 1.264
4407 root 1.273 fs_2625 = 1;
4408     }
4409 root 1.264
4410 root 1.315 inline_size int
4411     infy_newfd (void)
4412     {
4413 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4414 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4415     if (fd >= 0)
4416     return fd;
4417     #endif
4418     return inotify_init ();
4419     }
4420    
4421 root 1.284 inline_size void
4422 root 1.273 infy_init (EV_P)
4423     {
4424     if (fs_fd != -2)
4425     return;
4426 root 1.264
4427 root 1.273 fs_fd = -1;
4428 root 1.264
4429 root 1.330 ev_check_2625 (EV_A);
4430 root 1.264
4431 root 1.315 fs_fd = infy_newfd ();
4432 root 1.152
4433     if (fs_fd >= 0)
4434     {
4435 root 1.315 fd_intern (fs_fd);
4436 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4437     ev_set_priority (&fs_w, EV_MAXPRI);
4438     ev_io_start (EV_A_ &fs_w);
4439 root 1.317 ev_unref (EV_A);
4440 root 1.152 }
4441     }
4442    
4443 root 1.284 inline_size void
4444 root 1.154 infy_fork (EV_P)
4445     {
4446     int slot;
4447    
4448     if (fs_fd < 0)
4449     return;
4450    
4451 root 1.317 ev_ref (EV_A);
4452 root 1.315 ev_io_stop (EV_A_ &fs_w);
4453 root 1.154 close (fs_fd);
4454 root 1.315 fs_fd = infy_newfd ();
4455    
4456     if (fs_fd >= 0)
4457     {
4458     fd_intern (fs_fd);
4459     ev_io_set (&fs_w, fs_fd, EV_READ);
4460     ev_io_start (EV_A_ &fs_w);
4461 root 1.317 ev_unref (EV_A);
4462 root 1.315 }
4463 root 1.154
4464 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4465 root 1.154 {
4466     WL w_ = fs_hash [slot].head;
4467     fs_hash [slot].head = 0;
4468    
4469     while (w_)
4470     {
4471     ev_stat *w = (ev_stat *)w_;
4472     w_ = w_->next; /* lets us add this watcher */
4473    
4474     w->wd = -1;
4475    
4476     if (fs_fd >= 0)
4477     infy_add (EV_A_ w); /* re-add, no matter what */
4478     else
4479 root 1.318 {
4480     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4481     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4482     ev_timer_again (EV_A_ &w->timer);
4483     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4484     }
4485 root 1.154 }
4486     }
4487     }
4488    
4489 root 1.152 #endif
4490    
4491 root 1.255 #ifdef _WIN32
4492     # define EV_LSTAT(p,b) _stati64 (p, b)
4493     #else
4494     # define EV_LSTAT(p,b) lstat (p, b)
4495     #endif
4496    
4497 root 1.140 void
4498 root 1.486 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4499 root 1.140 {
4500     if (lstat (w->path, &w->attr) < 0)
4501     w->attr.st_nlink = 0;
4502     else if (!w->attr.st_nlink)
4503     w->attr.st_nlink = 1;
4504     }
4505    
4506 root 1.480 noinline
4507     static void
4508 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4509     {
4510     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4511    
4512 root 1.320 ev_statdata prev = w->attr;
4513 root 1.140 ev_stat_stat (EV_A_ w);
4514    
4515 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4516     if (
4517 root 1.320 prev.st_dev != w->attr.st_dev
4518     || prev.st_ino != w->attr.st_ino
4519     || prev.st_mode != w->attr.st_mode
4520     || prev.st_nlink != w->attr.st_nlink
4521     || prev.st_uid != w->attr.st_uid
4522     || prev.st_gid != w->attr.st_gid
4523     || prev.st_rdev != w->attr.st_rdev
4524     || prev.st_size != w->attr.st_size
4525     || prev.st_atime != w->attr.st_atime
4526     || prev.st_mtime != w->attr.st_mtime
4527     || prev.st_ctime != w->attr.st_ctime
4528 root 1.156 ) {
4529 root 1.320 /* we only update w->prev on actual differences */
4530     /* in case we test more often than invoke the callback, */
4531     /* to ensure that prev is always different to attr */
4532     w->prev = prev;
4533    
4534 root 1.152 #if EV_USE_INOTIFY
4535 root 1.264 if (fs_fd >= 0)
4536     {
4537     infy_del (EV_A_ w);
4538     infy_add (EV_A_ w);
4539     ev_stat_stat (EV_A_ w); /* avoid race... */
4540     }
4541 root 1.152 #endif
4542    
4543     ev_feed_event (EV_A_ w, EV_STAT);
4544     }
4545 root 1.140 }
4546    
4547     void
4548 root 1.486 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4549 root 1.140 {
4550     if (expect_false (ev_is_active (w)))
4551     return;
4552    
4553     ev_stat_stat (EV_A_ w);
4554    
4555 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4556     w->interval = MIN_STAT_INTERVAL;
4557 root 1.143
4558 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4559 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4560 root 1.152
4561     #if EV_USE_INOTIFY
4562     infy_init (EV_A);
4563    
4564     if (fs_fd >= 0)
4565     infy_add (EV_A_ w);
4566     else
4567     #endif
4568 root 1.318 {
4569     ev_timer_again (EV_A_ &w->timer);
4570     ev_unref (EV_A);
4571     }
4572 root 1.140
4573     ev_start (EV_A_ (W)w, 1);
4574 root 1.248
4575     EV_FREQUENT_CHECK;
4576 root 1.140 }
4577    
4578     void
4579 root 1.486 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4580 root 1.140 {
4581 root 1.166 clear_pending (EV_A_ (W)w);
4582 root 1.140 if (expect_false (!ev_is_active (w)))
4583     return;
4584    
4585 root 1.248 EV_FREQUENT_CHECK;
4586    
4587 root 1.152 #if EV_USE_INOTIFY
4588     infy_del (EV_A_ w);
4589     #endif
4590 root 1.318
4591     if (ev_is_active (&w->timer))
4592     {
4593     ev_ref (EV_A);
4594     ev_timer_stop (EV_A_ &w->timer);
4595     }
4596 root 1.140
4597 root 1.134 ev_stop (EV_A_ (W)w);
4598 root 1.248
4599     EV_FREQUENT_CHECK;
4600 root 1.134 }
4601     #endif
4602    
4603 root 1.164 #if EV_IDLE_ENABLE
4604 root 1.144 void
4605 root 1.486 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4606 root 1.144 {
4607     if (expect_false (ev_is_active (w)))
4608     return;
4609    
4610 root 1.164 pri_adjust (EV_A_ (W)w);
4611    
4612 root 1.248 EV_FREQUENT_CHECK;
4613    
4614 root 1.164 {
4615     int active = ++idlecnt [ABSPRI (w)];
4616    
4617     ++idleall;
4618     ev_start (EV_A_ (W)w, active);
4619    
4620     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4621     idles [ABSPRI (w)][active - 1] = w;
4622     }
4623 root 1.248
4624     EV_FREQUENT_CHECK;
4625 root 1.144 }
4626    
4627     void
4628 root 1.486 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4629 root 1.144 {
4630 root 1.166 clear_pending (EV_A_ (W)w);
4631 root 1.144 if (expect_false (!ev_is_active (w)))
4632     return;
4633    
4634 root 1.248 EV_FREQUENT_CHECK;
4635    
4636 root 1.144 {
4637 root 1.230 int active = ev_active (w);
4638 root 1.164
4639     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4640 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4641 root 1.164
4642     ev_stop (EV_A_ (W)w);
4643     --idleall;
4644 root 1.144 }
4645 root 1.248
4646     EV_FREQUENT_CHECK;
4647 root 1.144 }
4648 root 1.164 #endif
4649 root 1.144
4650 root 1.337 #if EV_PREPARE_ENABLE
4651 root 1.144 void
4652 root 1.486 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4653 root 1.144 {
4654     if (expect_false (ev_is_active (w)))
4655     return;
4656    
4657 root 1.248 EV_FREQUENT_CHECK;
4658    
4659 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4660     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4661     prepares [preparecnt - 1] = w;
4662 root 1.248
4663     EV_FREQUENT_CHECK;
4664 root 1.144 }
4665    
4666     void
4667 root 1.486 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4668 root 1.144 {
4669 root 1.166 clear_pending (EV_A_ (W)w);
4670 root 1.144 if (expect_false (!ev_is_active (w)))
4671     return;
4672    
4673 root 1.248 EV_FREQUENT_CHECK;
4674    
4675 root 1.144 {
4676 root 1.230 int active = ev_active (w);
4677    
4678 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4679 root 1.230 ev_active (prepares [active - 1]) = active;
4680 root 1.144 }
4681    
4682     ev_stop (EV_A_ (W)w);
4683 root 1.248
4684     EV_FREQUENT_CHECK;
4685 root 1.144 }
4686 root 1.337 #endif
4687 root 1.144
4688 root 1.337 #if EV_CHECK_ENABLE
4689 root 1.144 void
4690 root 1.486 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4691 root 1.144 {
4692     if (expect_false (ev_is_active (w)))
4693     return;
4694    
4695 root 1.248 EV_FREQUENT_CHECK;
4696    
4697 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4698     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4699     checks [checkcnt - 1] = w;
4700 root 1.248
4701     EV_FREQUENT_CHECK;
4702 root 1.144 }
4703    
4704     void
4705 root 1.486 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4706 root 1.144 {
4707 root 1.166 clear_pending (EV_A_ (W)w);
4708 root 1.144 if (expect_false (!ev_is_active (w)))
4709     return;
4710    
4711 root 1.248 EV_FREQUENT_CHECK;
4712    
4713 root 1.144 {
4714 root 1.230 int active = ev_active (w);
4715    
4716 root 1.144 checks [active - 1] = checks [--checkcnt];
4717 root 1.230 ev_active (checks [active - 1]) = active;
4718 root 1.144 }
4719    
4720     ev_stop (EV_A_ (W)w);
4721 root 1.248
4722     EV_FREQUENT_CHECK;
4723 root 1.144 }
4724 root 1.337 #endif
4725 root 1.144
4726     #if EV_EMBED_ENABLE
4727 root 1.480 noinline
4728     void
4729 root 1.486 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4730 root 1.144 {
4731 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4732 root 1.144 }
4733    
4734     static void
4735 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4736 root 1.144 {
4737     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4738    
4739     if (ev_cb (w))
4740     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4741     else
4742 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4743 root 1.144 }
4744    
4745 root 1.189 static void
4746     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4747     {
4748     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4749    
4750 root 1.195 {
4751 root 1.306 EV_P = w->other;
4752 root 1.195
4753     while (fdchangecnt)
4754     {
4755     fd_reify (EV_A);
4756 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4757 root 1.195 }
4758     }
4759     }
4760    
4761 root 1.261 static void
4762     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4763     {
4764     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4765    
4766 root 1.277 ev_embed_stop (EV_A_ w);
4767    
4768 root 1.261 {
4769 root 1.306 EV_P = w->other;
4770 root 1.261
4771     ev_loop_fork (EV_A);
4772 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4773 root 1.261 }
4774 root 1.277
4775     ev_embed_start (EV_A_ w);
4776 root 1.261 }
4777    
4778 root 1.195 #if 0
4779     static void
4780     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4781     {
4782     ev_idle_stop (EV_A_ idle);
4783 root 1.189 }
4784 root 1.195 #endif
4785 root 1.189
4786 root 1.144 void
4787 root 1.486 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4788 root 1.144 {
4789     if (expect_false (ev_is_active (w)))
4790     return;
4791    
4792     {
4793 root 1.306 EV_P = w->other;
4794 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4795 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4796 root 1.144 }
4797    
4798 root 1.248 EV_FREQUENT_CHECK;
4799    
4800 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4801     ev_io_start (EV_A_ &w->io);
4802    
4803 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4804     ev_set_priority (&w->prepare, EV_MINPRI);
4805     ev_prepare_start (EV_A_ &w->prepare);
4806    
4807 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4808     ev_fork_start (EV_A_ &w->fork);
4809    
4810 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4811    
4812 root 1.144 ev_start (EV_A_ (W)w, 1);
4813 root 1.248
4814     EV_FREQUENT_CHECK;
4815 root 1.144 }
4816    
4817     void
4818 root 1.486 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4819 root 1.144 {
4820 root 1.166 clear_pending (EV_A_ (W)w);
4821 root 1.144 if (expect_false (!ev_is_active (w)))
4822     return;
4823    
4824 root 1.248 EV_FREQUENT_CHECK;
4825    
4826 root 1.261 ev_io_stop (EV_A_ &w->io);
4827 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4828 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4829 root 1.248
4830 root 1.328 ev_stop (EV_A_ (W)w);
4831    
4832 root 1.248 EV_FREQUENT_CHECK;
4833 root 1.144 }
4834     #endif
4835    
4836 root 1.147 #if EV_FORK_ENABLE
4837     void
4838 root 1.486 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4839 root 1.147 {
4840     if (expect_false (ev_is_active (w)))
4841     return;
4842    
4843 root 1.248 EV_FREQUENT_CHECK;
4844    
4845 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4846     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4847     forks [forkcnt - 1] = w;
4848 root 1.248
4849     EV_FREQUENT_CHECK;
4850 root 1.147 }
4851    
4852     void
4853 root 1.486 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4854 root 1.147 {
4855 root 1.166 clear_pending (EV_A_ (W)w);
4856 root 1.147 if (expect_false (!ev_is_active (w)))
4857     return;
4858    
4859 root 1.248 EV_FREQUENT_CHECK;
4860    
4861 root 1.147 {
4862 root 1.230 int active = ev_active (w);
4863    
4864 root 1.147 forks [active - 1] = forks [--forkcnt];
4865 root 1.230 ev_active (forks [active - 1]) = active;
4866 root 1.147 }
4867    
4868     ev_stop (EV_A_ (W)w);
4869 root 1.248
4870     EV_FREQUENT_CHECK;
4871 root 1.147 }
4872     #endif
4873    
4874 root 1.360 #if EV_CLEANUP_ENABLE
4875     void
4876 root 1.486 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4877 root 1.360 {
4878     if (expect_false (ev_is_active (w)))
4879     return;
4880    
4881     EV_FREQUENT_CHECK;
4882    
4883     ev_start (EV_A_ (W)w, ++cleanupcnt);
4884     array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4885     cleanups [cleanupcnt - 1] = w;
4886    
4887 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4888     ev_unref (EV_A);
4889 root 1.360 EV_FREQUENT_CHECK;
4890     }
4891    
4892     void
4893 root 1.486 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4894 root 1.360 {
4895     clear_pending (EV_A_ (W)w);
4896     if (expect_false (!ev_is_active (w)))
4897     return;
4898    
4899     EV_FREQUENT_CHECK;
4900 root 1.362 ev_ref (EV_A);
4901 root 1.360
4902     {
4903     int active = ev_active (w);
4904    
4905     cleanups [active - 1] = cleanups [--cleanupcnt];
4906     ev_active (cleanups [active - 1]) = active;
4907     }
4908    
4909     ev_stop (EV_A_ (W)w);
4910    
4911     EV_FREQUENT_CHECK;
4912     }
4913     #endif
4914    
4915 root 1.207 #if EV_ASYNC_ENABLE
4916     void
4917 root 1.486 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4918 root 1.207 {
4919     if (expect_false (ev_is_active (w)))
4920     return;
4921    
4922 root 1.352 w->sent = 0;
4923    
4924 root 1.207 evpipe_init (EV_A);
4925    
4926 root 1.248 EV_FREQUENT_CHECK;
4927    
4928 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4929     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4930     asyncs [asynccnt - 1] = w;
4931 root 1.248
4932     EV_FREQUENT_CHECK;
4933 root 1.207 }
4934    
4935     void
4936 root 1.486 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4937 root 1.207 {
4938     clear_pending (EV_A_ (W)w);
4939     if (expect_false (!ev_is_active (w)))
4940     return;
4941    
4942 root 1.248 EV_FREQUENT_CHECK;
4943    
4944 root 1.207 {
4945 root 1.230 int active = ev_active (w);
4946    
4947 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4948 root 1.230 ev_active (asyncs [active - 1]) = active;
4949 root 1.207 }
4950    
4951     ev_stop (EV_A_ (W)w);
4952 root 1.248
4953     EV_FREQUENT_CHECK;
4954 root 1.207 }
4955    
4956     void
4957 root 1.486 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
4958 root 1.207 {
4959     w->sent = 1;
4960 root 1.307 evpipe_write (EV_A_ &async_pending);
4961 root 1.207 }
4962     #endif
4963    
4964 root 1.1 /*****************************************************************************/
4965 root 1.10
4966 root 1.16 struct ev_once
4967     {
4968 root 1.136 ev_io io;
4969     ev_timer to;
4970 root 1.16 void (*cb)(int revents, void *arg);
4971     void *arg;
4972     };
4973    
4974     static void
4975 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4976 root 1.16 {
4977     void (*cb)(int revents, void *arg) = once->cb;
4978     void *arg = once->arg;
4979    
4980 root 1.259 ev_io_stop (EV_A_ &once->io);
4981 root 1.51 ev_timer_stop (EV_A_ &once->to);
4982 root 1.69 ev_free (once);
4983 root 1.16
4984     cb (revents, arg);
4985     }
4986    
4987     static void
4988 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
4989 root 1.16 {
4990 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4991    
4992     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4993 root 1.16 }
4994    
4995     static void
4996 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
4997 root 1.16 {
4998 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4999    
5000     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5001 root 1.16 }
5002    
5003     void
5004 root 1.486 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5005 root 1.16 {
5006 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5007 root 1.16
5008 root 1.123 once->cb = cb;
5009     once->arg = arg;
5010 root 1.16
5011 root 1.123 ev_init (&once->io, once_cb_io);
5012     if (fd >= 0)
5013     {
5014     ev_io_set (&once->io, fd, events);
5015     ev_io_start (EV_A_ &once->io);
5016     }
5017 root 1.16
5018 root 1.123 ev_init (&once->to, once_cb_to);
5019     if (timeout >= 0.)
5020     {
5021     ev_timer_set (&once->to, timeout, 0.);
5022     ev_timer_start (EV_A_ &once->to);
5023 root 1.16 }
5024     }
5025    
5026 root 1.282 /*****************************************************************************/
5027    
5028 root 1.288 #if EV_WALK_ENABLE
5029 root 1.480 ecb_cold
5030     void
5031 root 1.486 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5032 root 1.282 {
5033     int i, j;
5034     ev_watcher_list *wl, *wn;
5035    
5036     if (types & (EV_IO | EV_EMBED))
5037     for (i = 0; i < anfdmax; ++i)
5038     for (wl = anfds [i].head; wl; )
5039     {
5040     wn = wl->next;
5041    
5042     #if EV_EMBED_ENABLE
5043     if (ev_cb ((ev_io *)wl) == embed_io_cb)
5044     {
5045     if (types & EV_EMBED)
5046     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5047     }
5048     else
5049     #endif
5050     #if EV_USE_INOTIFY
5051     if (ev_cb ((ev_io *)wl) == infy_cb)
5052     ;
5053     else
5054     #endif
5055 root 1.288 if ((ev_io *)wl != &pipe_w)
5056 root 1.282 if (types & EV_IO)
5057     cb (EV_A_ EV_IO, wl);
5058    
5059     wl = wn;
5060     }
5061    
5062     if (types & (EV_TIMER | EV_STAT))
5063     for (i = timercnt + HEAP0; i-- > HEAP0; )
5064     #if EV_STAT_ENABLE
5065     /*TODO: timer is not always active*/
5066     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5067     {
5068     if (types & EV_STAT)
5069     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5070     }
5071     else
5072     #endif
5073     if (types & EV_TIMER)
5074     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5075    
5076     #if EV_PERIODIC_ENABLE
5077     if (types & EV_PERIODIC)
5078     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5079     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5080     #endif
5081    
5082     #if EV_IDLE_ENABLE
5083     if (types & EV_IDLE)
5084 root 1.390 for (j = NUMPRI; j--; )
5085 root 1.282 for (i = idlecnt [j]; i--; )
5086     cb (EV_A_ EV_IDLE, idles [j][i]);
5087     #endif
5088    
5089     #if EV_FORK_ENABLE
5090     if (types & EV_FORK)
5091     for (i = forkcnt; i--; )
5092     if (ev_cb (forks [i]) != embed_fork_cb)
5093     cb (EV_A_ EV_FORK, forks [i]);
5094     #endif
5095    
5096     #if EV_ASYNC_ENABLE
5097     if (types & EV_ASYNC)
5098     for (i = asynccnt; i--; )
5099     cb (EV_A_ EV_ASYNC, asyncs [i]);
5100     #endif
5101    
5102 root 1.337 #if EV_PREPARE_ENABLE
5103 root 1.282 if (types & EV_PREPARE)
5104     for (i = preparecnt; i--; )
5105 root 1.337 # if EV_EMBED_ENABLE
5106 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
5107 root 1.337 # endif
5108     cb (EV_A_ EV_PREPARE, prepares [i]);
5109 root 1.282 #endif
5110    
5111 root 1.337 #if EV_CHECK_ENABLE
5112 root 1.282 if (types & EV_CHECK)
5113     for (i = checkcnt; i--; )
5114     cb (EV_A_ EV_CHECK, checks [i]);
5115 root 1.337 #endif
5116 root 1.282
5117 root 1.337 #if EV_SIGNAL_ENABLE
5118 root 1.282 if (types & EV_SIGNAL)
5119 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
5120 root 1.282 for (wl = signals [i].head; wl; )
5121     {
5122     wn = wl->next;
5123     cb (EV_A_ EV_SIGNAL, wl);
5124     wl = wn;
5125     }
5126 root 1.337 #endif
5127 root 1.282
5128 root 1.337 #if EV_CHILD_ENABLE
5129 root 1.282 if (types & EV_CHILD)
5130 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
5131 root 1.282 for (wl = childs [i]; wl; )
5132     {
5133     wn = wl->next;
5134     cb (EV_A_ EV_CHILD, wl);
5135     wl = wn;
5136     }
5137 root 1.337 #endif
5138 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
5139     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5140     }
5141     #endif
5142    
5143 root 1.188 #if EV_MULTIPLICITY
5144     #include "ev_wrap.h"
5145     #endif
5146